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 Smoking and tobacco dependence are serious health concerns in the United States 

and globally. Reward via the pharmacological effects of nicotine are believed to be the 

principal motivating factor that drive tobacco dependence. Research reveals differences 

in sensitivity between males and females to the motivational effects of nicotine in 

tobacco use. Enhancement of reinforcement value of non-nicotine rewards contributes to 

overall nicotine reward. Similar value-enhancing effects have been observed by the two 

most commonly prescribed smoking cessation aids, bupropion and varenicline. The 

present dissertation investigated the value-enhancing effects of nicotine, bupropion and 

varenicline in both male and female rats using a behavioral economic, reinforcer demand 

approach. Additionally, the role of dopamine D1 and D2 receptor families and of α4β2* 

and α7 nicotinic acetylcholine receptors (nAChRs) were investigated in the enhancing 

effects of nicotine and of bupropion and varenicline, respectively. In two experiments, 

rats were trained to lever-press maintained by visual stimulus (VS) reinforcement. The 

response requirement was systematically increased over blocks of 16 sessions according 

to the following sequence of fixed ratio schedules: 1, 2, 4, 8, 16, 32, 64, 128, 256, 512. 

Saline, nicotine and bupropion (Experiment 1) or varenicline (Experiment 2) were 

administered preceding sessions within each session block. Demand for VS 

reinforcement was analyzed under each drug condition and between the sexes using a 



 
 

behavioral economic model. The effects of dopamine (D1 or D2 family, Exp1) or nAChR 

antagonism (α4β2* and α7, Exp2) under each drug condition were also analyzed on 

responding maintained by progressive ratio VS reinforcement. Nicotine, bupropion and 

varenicline each enhanced the value of VS reinforcement in male and female rats. 

Females showed greater sensitivity to the value-enhancing effects of each drug, 

especially on measures of persistence. Enhancement by bupropion but not nicotine was 

attenuated by D2 family antagonism in both sexes. Antagonism of α4β2* but not α7 

nAChRs attenuated the value-enhancing effects of nicotine and varenicline in females, 

but only of nicotine in males.
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Chapter 1: Reward Enhancement and the Nicotine Reinforcement Conundrum 

The Significance of Sex in the Social Costs of Smoking 

 Tobacco use is the single greatest contributor to the global burden of disease and 

is the leading cause of preventable death and disease in the world (World Health 

Organization [WHO], 2004). Cigarette smoking, the primary form of tobacco use, 

accounts for over 480,000 premature deaths annually in the United States alone. For 

every smoking-related death, an additional 20 persons suffer daily from serious smoking-

related illness (United States Department of Health and Human Services [USDHHS], 

2014). The estimated annual economic cost of tobacco addiction amounts to $289 billion; 

over four times the 2013 federal budget of the U.S. Department of Education (USDHHS, 

2014). The health and economic benefits of improving our understanding of the factors 

that drive smoking and nicotine dependence are enormous.  

  There are significant differences in the prevalence and nature of nicotine-

dependence between the sexes. Women, on average, report higher smoking frequency, 

are less likely to attempt to quit smoking, and are more likely to relapse after quitting 

than men (Lynch et al., 2001; Roth et al., 2004). Nicotine replacement therapies for 

smoking cessation (i.e. nicotine gum or patches) are less effective amongst female 

smokers, and evidence suggests that the sensory and social contexts of smoking are more 

influential in women than in men (Perkins et al., 1994; 2002; Perkins, 2009). The U.S. 

Surgeon General published a 675 page report in 2001 entitled Women and Smoking that 

highlights a massive body of research on the prevalence, risk factors, and health 

consequences of smoking amongst women and girls; a body of research that has only 

grown in the past 13 years (USDHHS, 2001). Despite the information now available 
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documenting differences between men and women regarding smoking, we are a long way 

off from fully understanding the reasons behind those differences. Most research on sex 

differences in smoking have focused on differential sensitivity to the primary reinforcing 

properties of nicotine alone. Interestingly, much of that research has revealed that females 

may be less sensitive than males to the pharmacodynamic effects of nicotine related to 

reinforcement and reward (for a review see Perkins, 2009). For instance, Perkins and 

colleagues (2002) found that amongst abstinent smokers, males preferred puffs from 

nicotine-containing cigarettes over de-nicotinized cigarettes, whereas females did not 

exhibit a preference. Recently, the LeSage laboratory found that male rats increased their 

nicotine intake significantly more than females when nicotine infusion doses were 

progressively decreased across self-administration sessions (Grebenstein et al., 2013).  

 While evidence suggests that females may be less sensitive than males to the 

primary rewarding properties of nicotine, increasing evidence suggests that females are 

more sensitive to the sensory elements of smoking. For instance, Perkins et al. (1994) 

found that the presentation of a lit cigarette cue shifted preference toward smoking more 

in females than males in a procedure arranging concurrent availability of cigarette puffs 

and monetary reward on competing response alternatives. Caggiula and colleagues found 

that female rats earn more presentations of a sensory reinforcer than males on low fixed-

ratio schedules of reinforcement, which corresponded to higher rates of lever pressing for 

sensory reinforcement coupled with response contingent nicotine infusions on an fixed 

ratio (FR) 5 schedule of reinforcement (Chaudhri et al., 2005). Despite these recent 

observations, the majority of research on the behavioral effects of nicotine are still 

conducted exclusively in males, with little attention to potential differences between the 
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sexes. One of the primary aims of the work presented in this dissertation was to 

investigate differences between males and females in the rewarding properties of nicotine 

and the two most commonly prescribed non-nicotine smoking cessation 

pharmacotherapies, bupropion (Zyban®) and varenicline (Chantix®). 

The Conundrum of Nicotine Reinforcement 

 The central nervous system effects of nicotine are widely accepted as the primary 

motivator that drives addiction to tobacco products (USDHHS, 2014). Specifically, the 

primary reinforcing properties of nicotine are commonly indicated as the principle 

driving factor that establishes and maintains smoking behavior (USDHHS, 1988). Indeed, 

great research effort has been made to demonstrate that nicotine directly reinforces 

behavior upon which its delivery is made contingent (Corrigall and Coen, 1989; Donny et 

al., 1995; 1998; 1999). The quintessential demonstration of primary reinforcement by 

nicotine (or any drug, for that matter) is the drug self-administration procedure. In this 

preparation, subjects (typically rodents or non-human primates) are prepared with an 

indwelling catheter that can be connected to a drug-syringe pump. Completion of an 

experimenter-defined operant task, such as lever-pressing, results in drug infusion via 

brief activation of the drug-pump (Corrigall and Coen, 1989; Donny et al., 1995; 1998; 

1999). Significantly higher rates of responding on the active manipulandum than on an 

inactive manipulandum, or compared to a saline control condition, are interpreted as 

evidence of a primary reinforcing effect of the drug in question. Generally speaking, most 

drugs of abuse (cocaine, amphetamines, heroin, alcohol, etc.) show some evidence of 

primary reinforcing capacity when studied in the self-administration paradigm (see 

Panlilio and Goldberg, 2007). However, studies investigating the primary reinforcing 
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properties of nicotine through the drug self-administration procedure have yielded mixed 

results (Corrigall and Coen, 1989; Donny et al., 1995; 1998; 1999; 2003). Those studies 

that manage to demonstrate nicotine self-administration typically show relatively low 

rates of self-administration behavior compared to those engendered by prototypical drugs 

of abuse, such as cocaine or amphetamine (Panlilio and Goldberg, 2007). Notably, the 

majority of studies that demonstrate nicotine self-administration employ the use of 

supporting stimuli to signal drug delivery and/or the availability of drug infusions, such 

as cue lights, lever insertion, or auditory stimuli (Corrigall and Coen, 1989; Caggiula et 

al., 2001; 2002; Donny et al., 1995; 1998; 1999; 2003; Grebenstein et al., 2013). In fact, 

Caggiula and colleagues argue that the inclusion of such stimuli may be requisite for 

establishing reliable rates of nicotine self-administration (Caggiula et al., 2001; 2002). 

Given the peculiarities in establishing nicotine self-administration in non-human animals, 

the degree to which the field asserts that the primary reinforcing properties of nicotine are 

the principle driving mechanism of smoking behavior is somewhat puzzling. How can the 

reinforcing properties of nicotine, which appear to be weak at best, establish and maintain 

smoking behavior at the rates and tenacity that are readily observed in human smoking 

populations? 

 Several accounts have been created to help resolve the apparent dichotomy 

between the tenacity of human smoking behavior and the weak reinforcing capacity of 

nicotine in self-administration studies. Secondary (i.e. conditioned) reinforcement via 

nicotine-associated stimuli is commonly invoked as an additional component of the 

nicotine reinforcement equation. That is, nicotine in tobacco is delivered in the context of 

many other environmental stimuli that reliably occasion the primary reinforcing effects of 
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nicotine. The sight, smell and taste of a cigarette, interaction with friends with whom one 

smokes, the time and place of smoke breaks at work or after a meal, and countless other 

variables that occasion smoking, may all enter into Pavlovian associations with the 

primary reinforcing effects of nicotine and thereby acquire some degree of its reinforcing 

strength. Arguably, the combination of primary reinforcement by nicotine and secondary 

reinforcement by nicotine-associated stimuli may combine to generate greater overall 

reinforcement from smoking. However, a significant problem arises with this account 

when one stops to consider that secondary reinforcers acquire their strength from the 

primary reinforcement with which they are associated (Kelleher and Gollub, 1962), and 

in the case of nicotine, that is not a lot. Therefore, although stimuli associated with 

nicotine delivery undoubtedly acquire some reinforcing capacity by virtue of their 

association with nicotine (Wilkinson and Bevins, 2008), their reinforcement capacity is 

also arguably insufficient to explain the high rates and tenacity of smoking seen in human 

populations. 

 When considering the role of Pavlovian conditioning and secondary 

reinforcement in overall nicotine reward, it is important to recognize that nicotine, like 

other drugs, possesses distinct and perceptible interoceptive stimulus properties. Thus, 

nicotine is both an unconditioned stimulus with primary reinforcing properties and can 

become a conditioned stimulus when repeatedly paired with other, non-nicotine 

unconditioned stimuli. Inasmuch as smokers regularly experience the stimulus properties 

of nicotine in the context of other reinforcing stimuli (e.g. peer interaction, food, sex, 

relaxation, alcohol or other drug use, etc.), the reinforcing capacity of these stimuli may 

be partially acquired by the nicotine stimulus as a secondary reinforcer (for a review, see 
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Bevins and Besheer, 2014). A study by Besheer et al. (2004) provides a clear 

demonstration of the ability of nicotine to serve as an interoceptive stimulus that comes to 

evoke approach behavior by virtue of associations formed with appetitive unconditioned 

stimuli. In their study, rats were administered 0.4 mg/kg nicotine or saline via 

subcutaneous injection prior to placement in a conditioning apparatus. On nicotine 

sessions, sucrose solution was noncontingently delivered periodically within the session, 

beginning approximately 2 min into the session. On saline sessions, no sucrose was 

presented. On all sessions, conditioned responding was measured as the rate of approach 

behavior via head entry into the dipper receptacle prior to the first delivery of sucrose (or 

an equally matched time-interval on saline sessions). Rats rapidly acquired conditioned 

approach behavior to the dipper receptacle that was more frequent on nicotine sessions. 

Furthermore, conditioned responding to the nicotine stimulus was extinguished when 

nicotine was repeatedly administered across sessions and sucrose deliveries were 

withheld (Besheer et al., 2004). The finding the nicotine can serve as a conditioned 

stimulus associated with an appetitive unconditioned stimulus has since be replicated in 

numerous experiments (see Bevins et al., 2012 for a review). Importantly, these studies 

demonstrate that nicotine can function as an interoceptive stimulus and can acquire 

evocative control over behavior via associations with non-nicotine unconditioned stimuli 

in the environment. However, the ability of conditioned associations between the nicotine 

stimulus and other reinforcing stimuli to increase the reinforcing capacity of nicotine has 

not yet been adequately demonstrated. 

 In the past decade, researchers have begun to investigate a different effect of 

nicotine in relation to supporting environmental stimuli: reward enhancement. Nicotine, 
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and other psychomotor stimulants, have been shown to increase rates of operant behavior 

that produce non-nicotine reinforcing stimuli. In an increasingly classic example, Donny 

and colleagues (2003) trained rats to lever-press maintained by brief presentations of a 

compound visual stimulus. This visual stimulus (VS) was comprised of 60-s termination 

of otherwise constant chamber illumination in compound with 5-s illumination of two 

28V DC lamps located above the two response levers. In some of the groups of rats, 

infusions of 0.03 mg/kg nicotine or saline occasioned delivery of the VS (i.e. prototypical 

nicotine self-administration). In other groups, infusions of nicotine or saline were also 

delivered but their timing was controlled by rats in the response-contingent delivery 

groups. Finally, additional groups received response-contingent infusions of nicotine or 

saline, but no VS (i.e. unsignaled nicotine self-administration). Donny and colleagues 

observed that response rates were highest in groups where responding was maintained by 

presentation of VS and also received nicotine, regardless of whether nicotine delivery 

was response-contingent or controlled by a yoked partner. Interestingly, responding 

maintained by nicotine infusions in the absence of VS was not significantly different than 

responding maintained by saline infusions under similar conditions, and was significantly 

lower than responding maintained by VS in the absence of nicotine (Donny et al., 2003).  

 These findings show that nicotine alone does not possess strong primary 

reinforcing properties, as responding maintained by nicotine in the absence of VS was not 

significantly different than responding maintained by saline. More importantly, 

responding maintained by VS showed signs of primary reinforcement by VS 

presentation, which was enhanced when nicotine was also delivered either contingently 

or noncontingently. This latter finding, that nicotine enhances the strength of other 
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reinforcing stimuli has been invoked repeatedly in research over the past decade as a 

potential contributor to nicotine reinforcement of smoking. 

 Since 2003, reward enhancement has been increasingly explored as a contributing 

mechanism in nicotine reinforcement of smoking behavior. Indeed, enhancement of 

reinforcement value by nicotine appears to hold some promise in helping to elucidate the 

mechanisms by which nicotine drives tobacco abuse without discarding the contributions 

of nicotine primary and secondary reinforcement. Rather, the reward enhancing effects of 

nicotine may support and otherwise strengthen the contributions that nicotine-associated 

primary and secondary reinforcers give in the equation of overall nicotine reinforcement. 

This concept is well described by Bevins and Palmatier (2004), wherein they 

conceptualize overall nicotine reward as being the summation of four critical 

components: 1) the primary reinforcing properties of nicotine, 2) the secondary 

reinforcing properties of nicotine-associated stimuli, 3) the acquired, secondary 

reinforcing properties of the nicotine stimulus by virtue of its association with other 

primary reinforcers in the smoker's environment, and 4) the incentive amplifying effects 

of nicotine on each of the three aforementioned components.  

Reward Enhancement and Nicotine 

 The work of Donny et al. (2003) represent the first clear demonstration that 

nicotine can enhance rates of operant responding maintained by reinforcing, non-nicotine 

stimuli. In that same study, Donny and colleagues convincingly demonstrate that this 

enhancement effect of nicotine was not the result of an associative learning process, as 

enhanced responding disappeared and returned immediately following termination and 

reintroduction of nicotine administration, respectively. Similarly, continuous infusion of 
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nicotine across the duration of experimental sessions also enhanced responding 

maintained by VS, removing the possibility that serendipitous pairings of nicotine 

infusion and VS presentation resulted in enhanced responding through Pavlovian 

conditioning (Donny et al., 2003). Additionally, Palmatier et al. (2007a) found that the 

reward enhancing effects of nicotine increase with repeated nicotine administration and 

rats who switched from receiving nicotine injections 1 h post-session to 5 min pre-session 

expressed immediate increases in operant responding that did not differ from those of rats 

who always received pre-session injections of nicotine. The finding that repeated nicotine 

administration increased the reward enhancing effects of nicotine in Palmatier et al. 

(2007a) is corroborated by the finding that repeated nicotine exposure may be requisite to 

the expression of reward enhancement (Barrett and Odum, 2011). Taken together, the 

above findings suggest that the reward enhancing effects of nicotine are an inherent result 

of its pharmacology that develop with repeated exposure as a change in responsiveness to 

nicotine rather than through acquisition via an associative learning process (Palmatier et 

al., 2007a). 

 Although the expression of reward enhancement does not appear dependent upon 

associative learning between nicotine and non-nicotine unconditioned stimuli, that does 

not necessarily mean that the reward enhancing effects of nicotine are not affected by 

associative learning processes. For instance, Barrett and Bevins (2013) found that 

nicotine increased lever-pressing under extinction conditions only when it had also been 

administered in the preceding reinforcer-maintenance conditions, and this was not merely 

an effect of repeated nicotine exposure. That is, nicotine enhanced non-reinforced lever-

pressing only when nicotine had occasioned reinforced lever-pressing in the past. 
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Palmatier, O'Brien and Hall (2012) found that the reward-enhancing effects of nicotine 

are related to reinforcer salience, and that they are also influenced by conditioning 

history. In separate experiments, rats were trained to lever-press on a progressive ratio 

schedule maintained by presentations of liquid sucrose, and the effects of nicotine to 

enhance progressive ratio breakpoints were assessed across a range of varying sucrose 

concentrations (0 to 60%, w/v). In the first experiment, rats were exposed to variations in 

sucrose concentration over several sessions prior to subsequent assessment of the effects 

of nicotine to enhance responding maintained by sucrose solution of varying 

concentration. In the second experiment, experience with sucrose reinforcement was 

restricted to a single concentration until later assessment with nicotine on varying 

concentrations. Notably, nicotine enhanced progressive ratio breakpoints of responding 

reinforced by the full range of concentrations of sucrose reward in Experiment 1, but 

enhancement was concentration dependent in Experiment 2. In other words, differential 

experience with varying sucrose concentration between the experiments appear to have 

caused differential sensitivity of nicotine enhancement to sucrose concentration 

(Palmatier et al., 2012). 

 As another example of how nicotine enhancement may be affected by associative 

learning processes, consider the findings of Palmatier et al. (2013). In their study, rats 

were trained to associate 30-s presentation of an illuminated dipper receptacle (the 

conditioned stimulus; CS) with delivery of a rewarding sucrose solution (the 

unconditioned stimulus; US). The effects of nicotine on conditioned approach to the 

dipper receptacle during CS presentations was then assessed. Interestingly, nicotine did 

not enhance conditioned approach behavior when the CS and US were delivered in the 
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same dipper receptacle. However, when the presentations of CS and US were separated 

into two different receptacles, nicotine enhanced approach to the CS (i.e. sign-tracking) 

but not to the US (i.e. goal-tracking). The failure to enhance goal-tracking (i.e. US-

directed responding) was observed across groups of rats trained with differing 

concentrations of sucrose (0 to 20%, w/v), reducing the likelihood that the lack of 

increases in goal-tracking behavior were the result of a ceiling effect of sucrose 

reinforcement value (Palmatier et al., 2013).  

 These findings, coupled with those of Palmatier et al. (2012) suggest that the 

effects of nicotine to enhance behavior may not be as simple as increasing the 

reinforcement value of non-nicotine rewards, but may result from an enhancement of 

other motivational properties of incentive stimuli, such as those that evoke conditioned 

responses, approach behavior, or preparatory responses (Palmatier et al., 2012; Konorski, 

1967). While this alternative theoretical framework for the effects of nicotine to enhanced 

reinforced behavior is intriguing, parsing apart reinforcement value from the other 

elements of what is commonly referred to as incentive salience may be a futile endeavor, 

to some degree. Indeed, one could argue that the distinctions between the incentive 

amplification and value-enhancement accounts may simply be an issue of semantics. 

Therefore, for the remainder of this dissertation, I will use the terms "value-

enhancement" and "incentive amplification" more or less interchangeably, though there 

are subtle theoretical distinctions between the two terms that are beyond the scope of 

discussion in this dissertation. 

  One of the important features of value-enhancement by nicotine is its relationship 

to the basal reinforcement value of the stimuli upon which it acts. As mentioned above, 
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Palmatier et al. (2012) demonstrated that the degree to which nicotine enhanced 

progressive ratio breakpoints of sucrose maintained behavior depended, in part, upon the 

sucrose concentration. Palmatier et al. (2007) found something similar with responding 

maintained by sensory reinforcement: nicotine moderately enhanced response rates 

maintained by a mildly reinforcing VS (adding 28V DC lamp illumination to an already 

illuminated chamber for 5 s) and greatly enhanced response rates maintained by a more 

reinforcing VS (turning off all chamber illumination for 5 s). These findings suggest that 

the greater the basal incentive salience a stimulus exerts, the greater the degree of 

enhancement that will be observed following nicotine administration. However, Barrett 

and Bevins (2013) observed that an enhancement effect of nicotine was more difficult to 

detect on behavior maintained by 26% sucrose solution than on behavior maintained by 

4% sucrose solution. Similarly, Raiff and Dallery (2008) observed reliable enhancement 

of responding maintained by relatively low strength conditioned reinforcers, but failed to 

observe enhancement of food-pellet maintained behavior in the same sessions. The 

combined observations of these studies may reflect that nicotine enhances the value of 

reinforcing stimuli up to a threshold, beyond which observing increases in the value of 

these stimuli may be difficult to detect because of ceiling effects on either the 

reinforcement value of the stimuli or on the behavioral performance from which value is 

inferred. 

 The value-enhancing and primary reinforcing effects of nicotine operate as two 

distinct elements that contribute to overall nicotine reward (see Caggiula et al., 2009 for a 

review of this "dual reinforcement hypothesis").  Evidence of this distinction comes from 

observations that value-enhancement and primary reinforcement by nicotine are 
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behaviorally and pharmacologically dissociable. The behavioral dissociation between the 

value-enhancing and primary reinforcing effects of nicotine was demonstrated in a 

cleverly designed experiment by Palmatier et al. (2006). In this experiment, rats who had 

already acquired the lever-press response via training with food pellets, were presented 

two levers upon which they could response for nicotine infusions, VS presentations, or 

both. In one group, only nicotine was available (NIC-Only); in another group only VS 

presentations were available (VS-Only); and in yet a third group, nicotine infusions and 

VS presentations were both available contingent upon presses on the same lever 

(NIC+VS). Finally, the critical group of interest received nicotine infusions by 

responding on one of the levers and VS presentations by responding on the other lever (2-

Lever). Thus, rats in the 2-Lever group could choose to respond for deliveries of either 

nicotine or VS independent of each other. After experience with these conditions on fixed 

ratio schedules of reinforcement, clear patterns emerged for the different groups. In the 

NIC-Only group, low response rates on the active lever were only slightly higher than 

responding on the inactive lever. Active lever-pressing in the VS-Only group was 

moderately higher than that of the NIC-Only group. Active lever-pressing in the NIC+VS 

group was synergistically enhanced to levels 2 to 3x that of the VS-Only group, and far 

greater than would be expected by summation of responding in the NIC-Only and VS-

Only groups. Importantly, responding on the nicotine lever of the 2-Lever group did not 

differ from than of the NIC-Only group, and responding on the VS lever did not differ 

from that of the NIC+VS group. These differences collapsed when saline was substituted 

for nicotine in all the groups: VS lever-pressing in the 2-Lever, NIC+VS and VS-Only 

groups did not differ from each other and nicotine (now saline) lever-pressing in the 2-



14 
 

lever and NIC-Only groups decreased slightly but did not differ from each other. It is 

worth noting that nicotine intake was highest in the NIC+VS group, where both the 

primary and value-enhancing effects of nicotine operated on responding on the same 

lever. These results demonstrate that while nicotine can simultaneously exert both 

primary reinforcing and value-enhancing effects on behavior, these effects operate as 

separate behavioral processes that may combine to drive overall reinforcement by 

nicotine. 

 Using the procedure developed by Palmatier et al. (2006), a few studies have been 

able to show that not only are the primary reinforcing and value-enhancing effects of 

nicotine behaviorally distinct, they are pharmacologically dissociable as well. For 

instance, Palmatier et al. (2008) explored the role of metabotropic glutamate 5 (mGlu5) 

receptors in the primary reinforcing and value-enhancing effects of nicotine in a series of 

experiments using a similar design to Palmatier et al. (2006) described above. Notably, 

when lever-pressing across all the groups had been established for 10 days on a fixed 

ratio (FR) 2 schedule, the mGlu5 receptors antagonists 2-methyl-6-(phenylethynyl)-

pyridine (i.e. MPEP) or 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine (i.e. MTEP) were 

tested on all the rats and the effects on responding maintained by nicotine, VS, or both 

were observed. MPEP and MTEP administration decreased response rates on the 

nicotine-producing lever in the 2-Lever, NIC-Only, and NIC+VS groups. Lever pressing 

on the VS-producing lever was also decreased in the 2-Lever groups, but not in the VS-

Only groups. Because mGlu5 receptor antagonism decreased nicotine intake in the 2-

Lever group, decreases in responding on the VS-producing lever may have been a result 

of reductions in nicotine intake and not an attenuation of the value-enhancing effects of 
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nicotine. To investigate this possibility, the effects of MPEP and MTEP administration 

were explored in combination with nicotine replacement via delivery of non-contingent 

nicotine infusions. The combination of mGlu5 receptor antagonism and nicotine 

replacement resulted in decreases in responding only on the nicotine-producing lever of 

the 2-Lever, NIC-Only and NIC+VS groups, and no effects of the VS-producing lever of 

the 2-Lever or VS-Only groups. The principal conclusion from these experiments was 

that mGlu5 receptors were involved in the primary reinforcing effects of nicotine, but not 

in the value-enhancing properties of nicotine on responding for VS (Palmatier et al., 

2008). 

 In another study, the primary reinforcing and value-enhancing effects of 

varenicline were investigated using a refined version of the two-lever design described 

above, with the following groups: concurrently available saline and VS (2L:SAL), 

concurrently available nicotine and VS (2L:NIC), concurrently available varenicline and 

VS (2L:VAR), varenicline only (1L:VAR), varenicline infusion coupled with VS on the 

same operandum (1L:VAR+VS), and response-contingent delivery of VS combined with 

noncontingent delivery of varenicline controlled by a yoked partner in the 1L:VAR+VS 

group (Schassburger et al., in press; Palmatier et al., 2006). Varenicline (i.e. Chantix®) is 

a FDA approved smoking cessation aid developed by Pfizer which has shown relatively 

good efficacy in helping reduce smoking and risk of relapse (Tonstad, 2006; 

Koegelenberg et al., 2014). Schassburger et al. (in press) found enhanced response rates 

of VS-reinforced behavior in the 2L:NIC and 1L:VAR+VS groups compared to the two-

lever saline (2L:SAL) group. Additionally, increased responding relative to the saline 

control group on the infusion-producing lever was observed in the same 2L:NIC and 
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1L:VAR+VS groups. These findings suggest that nicotine and varenicline produce value-

enhancement effects on responding maintained by VS; this effect was observed to be 

greater with nicotine than with varenicline, corresponding to a similar finding by Levin et 

al. (2012). Notably, responding on the infusion-lever in the 2L:VAR and 1L:VAR groups 

was not significantly different from the saline control group, suggesting a lack of primary 

reinforcing effects of varenicline. Their results imply that somewhere in the shared 

mechanisms between varenicline and nicotine, we may possibly find the receptor 

mechanisms of their common value-enhancing effects. In contrast, somewhere in the 

disparate mechanisms of action between varenicline and nicotine may possibly lie the 

relevant receptor mechanisms of the primary reinforcing properties of nicotine 

(Schassburger et al., 2014). 

 Like nicotine, varenicline acts as an agonist at α4β2-containing nicotinic 

acetylcholine receptors (nAChRs), though only partially, and acts as a full agonist at α7 

and α3β4*  nAChRs, where * indicates additional unspecified subunits (Grady et al., 

2010; Ortiz et al., 2012). Considerable evidence suggests that β2-containing nAChRs on 

dopaminergic neurons in the midbrain regions of the ventral tegmental area and nucleus 

accumbens mediate the primary reinforcing effects of nicotine (Placzek and Dani, 2009; 

Picciotto et al., 1998; Picciotto and Mineur, 2014; Brunzell and Picciotto, 2009). 

Varenicline has mixed agonist and antagonist effects on α4β2-containing nAChRs, which 

may account for the apparent lack of primary reinforcing effects of varenicline 

(Schassburger et al., in press; Grady et al., 2010; Ortiz et al., 2012).  

 Regarding the value-enhancing effects of nicotine and varenicline, there is little 

evidence to suggest that α7 nAChRs as a mechanism (Liu et al., 2007; Guy and Fletcher, 



17 
 

2013), despite the high affinity of varenicline at these receptors (Mihalak et al, 2006). 

Previous work has shown that the α7-selective antagonist, methyllycaconitine (MLA), 

does not impair the value-enhancing effects of nicotine on responding for VS (Liu et al., 

2007), but no study has investigated the role of α7 receptors in value-enhancement by 

varenicline. Investigation of the α3β4* receptor may have promise, but little research has 

been conducted on the role of α3β4* nAChRs in nicotine reward given the lack of highly 

specific agonist or antagonist compounds for this receptor subtype. The novel compound 

AT-1001 is a relatively selective antagonist at α3β4* nAChRs, but is presently only 

synthesized in a few laboratories and is not widely available or well researched (Toll et 

al., 2012). Dihydro-β-erythoidine (DHβE) acts as an antagonist at β2 and β4-containing 

nAChRs, but its far greater affinity for β2-containing receptors renders it less ideal than 

AT-1001 (Harvey and Luetje, 1996; Harvey et al., 1996). 

Value-Enhancement and Smoking Cessation Pharmacotherapy 

 The finding that varenicline, one of the most effective and commonly prescribed 

smoking cessation pharmacotherapies, possesses value-enhancing properties similar to 

nicotine should not be surprising. Given the premise that nicotine enhances the 

reinforcement value of other rewarding stimuli, then smoking cessation results in not 

only a loss of smoking-related reinforcers, but also a loss in the value of additional 

sources of reinforcement in the smoker's environment (Raiff and Dallery, 2008). The 

efficacy of varenicline, therefore, may be partially related to the replacement of the 

value-enhancing effects of nicotine in tobacco smoke with value-enhancing effects of 

varenicline. In this sense, varenicline treatment may function in a similar fashion as 

nicotine replacement therapy. Notably, the other most commonly prescribed 
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pharmacotherapy for smoking cessation is the anti-depressant, bupropion 

(Zyban®/Wellbutrin®), which also possesses value-enhancing properties (Palmatier et al., 

2009).  

 The value-enhancing effects of bupropion are interesting from a pharmacological 

perspective in that the shared mechanisms of bupropion and nicotine on nAChRs are 

fairly limited. Bupropion acts as a noncompetitive antagonist of α3β4, α3β2, and α4β2-

containing nAChRs, as well as a weak reuptake inhibitor of dopamine, norepinephrine 

and serotonin (Carroll et al., 2014; Dwoskin et al., 2006). In contrast, nicotine functions 

as an agonist at these same nAChRs, though following initial activation by nicotine, 

many nAChRs rapidly desensitize and require a period in inactivity before recovering to 

their resting state (Pitchford et al., 1992; Wang and Sun, 2005). However, both nicotine 

and bupropion share similar downstream effects in the dopaminergic signaling pathways 

of the midbrain; that is, increased dopaminergic tone in the ventral tegmental area and 

nucleus accumbens (Palmatier et al., 2009; Dwoskin et al., 2006). Notably, Palmatier et 

al. (2009) found that nicotine and bupropion enhanced responding maintained by a mildly 

reinforcing VS, but observed that antagonism of nAChRs via mecamylamine attenuated 

the value-enhancing effects of nicotine, but not bupropion. Conversely, antagonism of 

α1-norepinephrine receptors attenuated the reward-enhancing effects of bupropion, but 

not of nicotine. Taken together, these findings show that value-enhancement may result 

from disparate primary targets of different drugs that lead to similar downstream effects 

in the dopaminergic pathways of the midbrain (Palmatier et al., 2009). 

 The cases of value-enhancement by varenicline and bupropion demonstrate how 

replacing the value-enhancing effects of nicotine in tobacco with enhancement effects 
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from a non-nicotine alternative may be helpful as a smoking cessation aid. Moreover, by 

furthering our understanding of the pharmacological mechanisms by which nicotine, 

varenicline, bupropion, and other value-enhancing compounds produce their effects, we 

may gain a greater understanding of the important variables that drive nicotine 

reinforcement and tobacco dependence and the neurobiological mechanisms that underlie 

those variables. The work presented in the later chapters of this dissertation represent part 

of a larger programmatic effort to elucidate these variables and increase our 

understanding of their driving mechanisms, and to extend that investigation to include 

both males and females. 

  



20 
 

Chapter 2: Quantitatively Representing Reinforcement Value 

Issues with Reinforcement Value 

 Reinforcement value is an ambiguous construct; therefore, the assertion that 

nicotine enhances the reinforcement value of rewarding environmental stimuli has 

ambiguous implications. Part of this ambiguity stems from the diverse traditions whereby 

researchers have attempted to quantify reinforcement value and the methods by which 

value is inferred from behavior. The fact that reinforcement value is a hypothetical 

construct inferred from behavior is important to recognize; this fact regulates the utility 

of the reinforcement value construct to that of an intervening variable and not an ultimate 

cause of behavior. That is, biological and environmental variables specific to the 

organism and the situation determine effects on sensitivity of behavior to variables such 

as reinforcer delay, magnitude, contingency, or response-cost. In turn, these behavioral 

dispositions specific to the reinforcement situation are observed by changes in rate of 

response, behavioral persistence, reinforcer consumption, or choice and preference 

between reinforcement alternatives. The construct of reinforcement value is therefore a 

theoretical representation of the effects of biological and environmental factors to 

determine differential sensitivity to reinforcing stimuli on observable behavior. 

 One of the issues with the construct of reinforcement value is that it is difficult to 

quantify or represent in any single measure. Given that value is actually a reflection of 

multiple dimensions of behavioral disposition toward the different variables of 

reinforcement delivery, this should come as no surprise. For this reason, decades of 

behavioral research have generated many different metrics that encapsulate diverse facets 

of the reinforcement value construct. For instance, both Thorndike and Pavlov regularly 
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employed response latency as a measure of response strength, from which the term 

reinforcement descends (Thorndike, 1911; Pavlov, 1927). Skinner related response 

strength to probability of response measured via response rates (Skinner, 1938; Ferster 

and Skinner, 1957). Herrnstein further built upon Skinner's ideas by developing a model 

of the effects of relative rates of reinforcement on relative rates of response (Herrnstein, 

1961; 1970). Mazur's model of hyperbolic delay discounting is based on the idea that 

reinforcement value is inversely related to delays in reinforcer presentation (Mazur, 

1987). Nevin developed his own model that represents response strength as persistence of 

behavior in the face of disrupting variables (Nevin, 1974; Nevin and Grace, 2000). 

Finally, Hursh and Silberburg advocate a behavioral economic model of reinforcer 

demand that relates value to the relationship between reinforcer consumption and unit 

response cost (Hursh, 1980; Hursh and Silberburg, 2008). As you can see from this brief 

overview, the research literature and tradition of developing measurements intended to 

represent the construct of response strength and/or reinforcement value has a rich and 

diverse history. 

 A natural question arises when considering the sundry options for measuring 

reinforcement value and the effects of drugs to modify that value: what measure is most 

appropriate? On the surface, this question may appear to have no correct answer. That is, 

if each measure accurately detects variations in reinforcement value, then any method 

should be adequate. However, selection of the appropriate measure that best represents 

the dimensions of reinforcement value where experimental manipulations are 

hypothesized to exert their effects can make or break the results and interpretation of a 

particular study. Moreover, some methodologies are arguably more powerful than others 
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in that they simultaneously generate multiple measures of reinforcement value along 

distinct behavioral dimensions, or generate measures that represent multiple behavioral 

dimensions of reinforcement value in a single metric. The reinforcer demand method 

developed by Hursh and Silberburg is one such approach, yielding indices of value that 

represent behavioral persistence, maximal sustainable response effort, basal intensity of 

reinforcer demand, and sensitivity to escalations in unit response cost (Hursh and 

Silberburg, 2008; Barrett and Bevins, 2012). 

Reinforcement Value as Demand 

 The basic framework of the reinforcer demand approach is rooted in behavioral 

economic theory, where reinforcement value is conceptualized in terms of reinforcer 

consumption in relation to its price in units of response cost. As the price of each unit of 

the reinforcer increases, consumption of the reinforcer decreases, and the rate of these 

decreases in consumption represents what is termed elasticity of demand. Demand 

curves, generated by plotting rates of consumption as a function of unit response cost, are 

generally characterized by a portion of inelastic change in consumption followed by a 

domain of elastic change in reinforcer consumption. Inelastic demand refers to decreases 

in consumption that are relatively insensitive to increases in reinforcer price; elastic 

demand is characterized by relatively dramatic decreases in consumption with increases 

in unit price. The point of unit elasticity, or Pmax, is the price at which there is a 1:1 

relationship between proportional increases in unit cost and proportional decreases in unit 

consumption of the reinforcer. Pmax is one of the four principal measures of reinforcement 

value generated by reinforcer demand analyses, which each represent different 

dimensions of the value construct. Pmax reflects the price at which consumption of the 
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reinforcer shifts from inelastic demand to elastic demand, and thereby represents 

tolerance toward increases in response cost for reinforcement (i.e. persistence). The 

concept that increased Pmax is reflective of greater behavioral persistence is supported by 

repeated findings that higher estimates of Pmax correlate with increased breakpoints on 

progressive ratio schedules maintained by a wide variety of reinforcers (see Bickel, 

Marsch and Carroll, 2000 for a review). 

 The second principal metric of reinforcement value obtained in reinforcer demand 

analyses is the maximum response effort sustainable by the reinforcer, Omax. Values of 

Omax are directly related to Pmax, as maximum responding is always predicted at price 

Pmax. However, that is not to suggest that Omax is solely determined by Pmax; differences in 

basal reinforcer consumption (i.e. the ordinate intercept) and the rate of change in 

elasticity of demand (i.e. the second derivative) can also lead to differences in Omax at 

values of the same Pmax. Therefore, Omax reflects the interaction between response 

persistence (Pmax), intensity of demand (Q0), and the rate at which sensitivity to increases 

in unit cost changes from inelastic to elastic. In other words, Omax represents three distinct 

dimensions of reinforcement value within a single metric. Unsurprisingly, Omax is often 

revealed as the demand metric with the greatest predictive utility of outcomes related to a 

behavior maintained by a specific reinforcer. For instance, higher estimates of Omax as 

assessed by a hypothetical cigarette purchase task are highly correlated with 

questionnaire-assessed nicotine dependence, increased sensitivity to the value-deflating 

effects of reinforcer delay on cigarettes, and increased levels of puffs per cigarette during 

ad libitum cigarette consumption (Chase et al., 2013; MacKillop and Tidey, 2011). 
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 In order to understand the two remaining principal measures of reinforcement 

value obtained though reinforcer demand analyses, we must turn to the quantitative 

model of reinforcer demand developed by Hursh and Silberburg (2008). This model 

relates reinforcer consumption to unit response cost via the following equation: 

𝑙𝑜𝑔 𝑄 =  𝑙𝑜𝑔 𝑄0 +  𝑘(𝑒−𝛼∗𝑄0∗𝐶  −  1) 

where Q represents units of reinforcer consumption, Q0 is predicted consumption when 

the reinforcer costs nothing to obtain (i.e. the ordinate intercept), k is a constant reflecting 

the range of the demand function in log units of consumption, e is the base of the natural 

logarithm, C is the response cost per reinforcer delivery, and α represents the rate of 

change in decline in consumption in standardized price (Q0 * C). Notably, the values of 

Q0 and α are adjusted to maximize the fit of the demand model to the data of individuals, 

and may be conceptualized to represent intensity of demand (Q0) and the essential value 

of the reinforcer after accounting for differences in unit consumption in relation to unit 

cost (α; Hursh and Silberburg, 2008). Importantly, Hursh and Silberburg (2008) propose 

that the true value of a reinforcer is best represented by the rate of change in elasticity of 

demand as measured by the α parameter. The significance of α will be discussed 

momentarily, but first we will turn to consumption at unit cost zero, Q0. 

 As noted above, Q0 represents intensity of demand as consumption freed from 

constraints of response cost. Therefore, Q0 represents consumption where the only 

remaining limiting factor is satiation (i.e. diminishing marginal utility). For this reason, 

increases in reinforcer magnitude, as in number of food pellets or infusion dose of self-

administered drug, have decreasing effects on Q0. That is, satiation occurs more rapidly 

with higher magnitudes of food or drug reinforcement, and this leads to decreases in 
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levels of consumption at Q0, unless you normalize Q0 as unitary consumption. As 

previously mentioned, Q0 is fundamentally related to Omax via interaction with Pmax and 

the rate of change in the slope of the inelastic portion of the demand function. As such, 

increases or decreases in Q0 often result in similar effects in Omax, but these variables can 

vary independently when differences are observed in one or both of the other factors of 

Omax. Notably, values of Q0 have been shown to predict preference between 

reinforcement alternatives when both alternatives are available ad libitum, supporting the 

idea that Q0 represents basal intensity of demand for a reinforcer when freed from 

response cost (Bickel, Marsch and Carroll, 2000). 

  Finally, essential value as represented by α is the purported measure of the true 

value of a reinforcer independent of scalar differences in magnitude (Hursh and 

Silberburg, 2008; Hursh and Winger, 1995). That is, the essential value of one food pellet 

is equivalent to that of two food pellets as both represent scalar differences of the same 

reinforcer, all other variables being equal. The ability of the model to account for 

differences in magnitude of the same reinforcer results from the standardization of price 

relative to basal consumption in the demand model (i.e. Q0 * C; Hursh and Silberburg, 

2008). Essential value reflects the rate of change in demand elasticity (i.e. the second 

derivative) across the full domain of the demand function. Note that Omax is affected by 

the rate of change in demand elasticity in the inelastic portion of the demand function; 

this is not the same measure as essential value, which represents rate of change in 

elasticity across the entire demand function. This distinction may seem trivial, but it is 

important to recognize that consumption under the elastic and inelastic portions of the 

demand function represent behavior primarily affected by a different set of variables. 
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That is, in the inelastic portion of the demand function, consumption is primarily limited 

by satiation (i.e. diminishing marginal utility); in the elastic portion of the demand 

function, consumption is primarily limited by increasing price (i.e. constraint). Thus, the 

essential value parameter reflects the limiting effects of both satiation and price on 

consumption by representing the rate at which consumption shifts from being limited by 

satiation to limited by response requirement (Bickel, Marsch and Carroll, 2000; Hursh 

and Silberburg, 2008; Johnson and Bickel, 2006). For this reason, behavioral economists 

argue that α is a single parameter estimate of the essential value of a reinforcer, wherein 

value is well characterized by reinforcer consumption as a function of response cost 

(Hursh and Silberburg, 2008). 

Extension of Reinforcer Demand to Nicotine Value-Enhancement 

 Demand analyses have been widely applied to characterize the primary 

reinforcing effects of several drugs of abuse, including alcohol, cocaine, amphetamines, 

opiates, phencyclidine (PCP), and nicotine (Galuska et al., 2011; Hursh and Winger, 

1995; Murphy and MacKillop, 2006; Shahan et al., 1999; 2001; Wade-Galuska, Galuska, 

and Winger, 2011). However, few studies have used the reinforcer demand methodology 

to investigate the enhancing effects of nicotine on reinforcement value. The results of 

these studies so far largely support the notion that the value-enhancing effects play a 

large part in overall reinforcement derived from nicotine. For instance, Shahan and 

colleagues (1999) studied cigarette smokers with no immediate plans to quit smoking 

who were paid to operate a pull-mechanism plunger manipulandum to obtain access to 

puffs of two types of unlabeled cigarettes: nicotine-containing or de-nicotinized. The 

number of responses required for opportunity to smoke either kind of cigarette was 
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systematically increased over sessions. When puffs on either kind of cigarette were 

available independently, puffs per session and plunger response rates were similar 

between both types of cigarettes. When both kinds of cigarettes were made available 

concurrently, puffs per session and plunger response rates were significantly higher for 

nicotine-containing cigarettes than de-nicotinized cigarettes. Furthermore, subjects rated 

nicotine-containing cigarettes higher for their "taste", "smoothness", "potency", and 

"enjoyment". This study shows that current smokers will work equally hard for cigarettes 

containing or lacking nicotine when those cigarettes are offered independently, 

responding even thousands of times for a single puff of either type of cigarette. This 

finding suggests that the sensory elements of cigarette smoking are sufficient to maintain 

high rates of smoking behavior. However, when offered a choice, a clear preference for 

nicotine-containing cigarettes was observed and subjects reported greater satisfaction 

from smoking nicotine-containing cigarettes (Shahan et al., 1999). This finding suggests 

that nicotine enhanced the reinforcing elements of cigarette smoking sufficiently for 

participants to develop a preference for one "brand" over another. Interestingly, mean 

elasticity between types of cigarettes was similar on both the concurrent and independent 

availability conditions (Shahan et al., 1999). Inspection of the data pattern from the 

concurrent availability condition suggests potentially higher Q0 and Omax for nicotine-

containing cigarettes, but these parameters were not measured or reported in this study. 

 Pre-clinically, the value-enhancing effects of nicotine have only been investigated 

using reinforcer demand techniques in three published studies. Barrett and Bevins (2012) 

trained rats to lever-press maintained by VS in a procedure adapted from Donny et al. 

(2003). Nicotine (0.4 mg/kg) or saline was injected 5 min preceding experimental 
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sessions and rats could then lever-press to obtain VS presentations maintained by FR 

schedules of reinforcement. The FR response requirements were systematically increased 

over blocks of sessions and VS presentation between drug conditions was observed as a 

function of unit price. The authors found that nicotine increased VS consumption relative 

to saline across FR schedules up through FR 32. Furthermore, nicotine enhanced 

measures of VS reinforcement value relative to saline on Q0, Pmax, Omax and essential 

value (α). Finally, enhancement by nicotine of VS reinforcement did not differ in a 

manner analogous to a scalar increase in the magnitude of VS delivery (Barrett and 

Bevins, 2012). 

 Cassidy and Dallery (2012) trained rats to lever-press maintained with food 

pellets under conditions where all daily food rations were obtained within the 

experimental sessions (i.e. closed economy) versus when food was made available 

outside experimental sessions via post-session feeding (i.e. open economy). Additionally, 

rats could earn either 1 or 2 food pellets under each economy condition in separate 

experimental phases. The authors found that essential value of food-pellets did not differ 

between reinforcer magnitude conditions in a closed economy, but did in an open 

economy, likely reflecting an interaction with economy type on the consumption limiting 

influence of satiation for food pellets. Rats were then implanted with osmotic mini-

pumps that delivered a constant chronic dose of nicotine and demand for 1 or 2 food 

pellets was again assessed under conditions of closed economy. The authors found that 

nicotine enhanced essential value of food in the 1-pellet condition, but not in the 2-pellet 

condition (Cassidy and Dallery, 2012). Effects of nicotine on Q0, Pmax, or Omax were not 

reported, but visual inspection of their data suggests that nicotine likely also enhanced Q0 
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and possibly Omax in the 1-pellet condition, and had no effects on these parameters in the 

2-pellet condition (Cassidy and Dallery, 2012). 

 Finally, Cassidy and Dallery (in press) also investigated the effects of nicotine to 

enhance primary and conditioned reinforcement using a demand analysis in the observing 

response procedure. In this procedure, presses to one lever (i.e. the food lever) resulted in 

either food arranged on a variable interval (VI) 15 s schedule or extinction. Presses to a 

second lever (i.e. the observing lever) presented stimuli differentially correlated with the 

schedule in operation on the food lever. Previous work has demonstrated that stimuli 

associated with food availability in this procedure function as conditioned reinforcers 

(see Shahan, 2002). Over sessions, the FR requirement to produce the observing stimuli 

was increased, and baseline demand for conditioned reinforcement was assessed. 

Nicotine was then administered via osmotic mini-pumps and demand for conditioned 

reinforcers was reassessed using the same procedure. The authors found evidence of 

nicotine-enhancement of essential value of conditioned reinforcement in all rats. 

Measures of Q0, Pmax and Omax were not reported, but visual inspection of their presented 

demand curves suggest that nicotine may have enhanced value on all of these measures. 

The authors also observed nicotine-induced increases in responding on the food lever 

during intervals of presentation of the food-associated observing stimulus. This latter 

effect suggests that nicotine may have also enhanced the value of food primary 

reinforcement, which may account for some of the increases in value of the conditioned 

reinforcer (Cassidy and Dallery, in press). 

 Taken together, these three studies demonstrate that nicotine enhances the 

essential value of other, nonpharmacological reinforcers, though this effect may be 
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affected by conditions of open or closed economy (Barrett and Bevins, 2012; Cassidy and 

Dallery, 2012; in press). Importantly, nicotine also appears to enhance value as measured 

by the demand model. These results support the hypothesis that value-enhancement by 

nicotine may be an important variable in the overall reward derived from nicotine. 

Notably, these studies also demonstrate the feasibility of using a reinforcer demand 

methodology to investigate deeper issues regarding the value enhancing effects of 

nicotine. 

  In Chapter 1, we highlighted some of the unknowns regarding the effects of 

nicotine to alter reinforcement value. The experiments presented in this dissertation were 

designed to help elucidate the role of value-enhancement by nicotine as a driving 

motivational mechanism underlying tobacco dependence. As noted previously, females 

show greater sensitivity to the sensory elements of smoking, and nicotine is known to 

enhanced sensory reinforcers (Perkins, 2009; Caggiula et al., 2009). The present 

experiments explored whether female rats differ in sensitivity to reinforcement by VS 

and/or the enhancement of value of sensory reinforcers. Additionally, bupropion and 

varenicline engender value-enhancing effects, and these effects have been postulated to 

be at the heart of their clinical efficacy in smoking cessation (Palmatier et al., 2009; 

Levin et al., 2013; Schassburger et al., 2014). The present experiments characterize the 

value-enhancing effects of bupropion and varenicline in comparison to nicotine and 

attempt to determine whether the effects of each operate by similar or dissimilar 

behavioral mechanisms. Furthermore, the present experiments investigate the possibility 

of differences between the sexes in the value-enhancing effects of bupropion or 

varenicline. Finally, the pharmacological mechanisms of enhancement by bupropion and 
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varenicline may prove informative to understanding the pharmacological mechanisms of 

enhancement by nicotine and of the neurobiological mechanisms of perception of 

reinforcement value in general. The present experiments investigate the roles of 

dopamine receptors and specific subtypes of nAChRs in the enhancing effects of nicotine 

alongside those of bupropion and varenicline, respectively.  
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Chapter 3: Common Procedures 

 The following sections outline the common procedural details between the two 

experiments wherein we assessed the effects of nicotine, bupropion, and varenicline on 

the value of reinforcing sensory stimuli. Each experiment consisted of several phases, 

including lever-press training, reinforcer demand assessment, progressive ratio schedule 

training, and receptor antagonism on progressive ratio performance. The procedural 

specifics unique to each experiment are described further in Chapters 4 and 5 for 

Experiments 1 and 2, respectively. 

Subjects  

 Forty-eight experimentally-naïve Sprague-Dawley rats (n=12 per sex, per 

experiment; Harlan, Indianapolis, IN), aged 9 weeks upon arrival, were individually 

housed in clear polycarbonate tubs lined with TEK Fresh® cellulose bedding in a 

temperature- and humidity-controlled colony. Rats were given two days to acclimate to 

the colony followed by three additional days of repeated handling prior to initiation of 

training procedures.  Throughout each experiment, water was continuously available and 

rats were given 12 or 15 grams (for females and males, respectively) of laboratory chow 

daily (unless otherwise specified). Previous studies from the laboratory have shown that 

rats maintain healthy rates of growth while still encouraging exploratory behavior under 

these feeding conditions. Sessions were conducted during the light phase of a 12:12 hour 

light/dark cycle. Experimental protocols were approved by the University of Nebraska-

Lincoln Institutional Animal Care and Use Committee. 
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Apparatus 

 Sessions were conducted in sixteen conditioning chambers (ENV-008CT; Med-

Associates, Inc., St. Albans, VT; measuring 30.5 x 24.1 x 21.0 cm, l x w x h) enclosed in 

light- and sound-attenuating cubicles fitted with a fan to mask noise and provide airflow. 

Sidewalls were aluminum; the ceiling and front and back walls were clear polycarbonate. 

One sidewall featured a dipper receptacle, occupying a 5.2 x 5.2 x 3.8 cm (l x w x h) 

recessed space, into which a dipper arm could provide 0.1 ml of sucrose solution when 

raised. Retractable response levers were featured on either side of the dipper receptacle, 

approximately 5 cm above the rod floor. White 28 V DC (100 mA) lamps were located 3 

cm above each lever, hereafter referred to as the right and left lever lights. Two external 

28 V DC (100 mA) lamps were also located above the conditioning chamber, but within 

the sound attenuating cubicle, hereafter referred to as the house-light. An infrared 

emitter/detector unit, positioned 4 cm above the rod floor, bisected the chamber 14.5 cm 

from the sidewall featuring the dipper receptacle and functioned to monitor chamber 

crosses (locomotor activity) during experimental sessions. Data collection and 

presentation of experimental events were controlled via personal computer with Med 

Associates interface and software (MedPC for Windows, IV) located in the same room as 

the chambers. 

 Drugs 

 (-)-Nicotine hydrogen tartrate (0.4 mg/kg, 5 min injection-to-placement interval; 

IPI), bupropion hydrochloride (10 and 20 mg/kg; 15-min IPI), and varenicline 

dihydrochloride (0.1 and 1.0 mg/kg; 30-min IPI), SCH-23390 (10 and 30 µg/kg; 45-min 

IPI), eticlopride hydrochloride (10 and 30 µg/kg; 45-min IPI), dihydro-β-erythoidine 
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(DHβE; 1.0 and 3.0 mg/kg; 45-min IPI), and methyllycaconitine (MLA; 3.0 and 10 

mg/kg; 45-min IPI) (Sigma or NIDA [RTI]) were each mixed in 0.9% saline and injected 

in volumes of 1 mL/kg of body weight. As is standard in the field, nicotine doses are 

reported as base form; all other drug doses were salt form. The pH for nicotine was 

adjusted to 7.0±0.2 with a NaOH solution. All doses and IPIs were based on published 

research, including previous work from our laboratory on interoceptive conditioning 

(Reichel et al., 2010; Wilkinson et al., 2010). Please note that bupropion, SCH-23390, 

and eticlopride were only used in Experiment 1, and varenicline, DHβE, and MLA were 

only used in Experiment 2. Nicotine was injected subcutaneously, all other drugs were 

injected intraperitoneally. 

Acquisition 

 Rats were trained to lever press over four "auto-shaping" sessions using 26% 

(weight/volume) liquid sucrose (Brown and Jenkins, 1968; as described in Charntikov et 

al., 2013). Auto-shaping sessions began with the random insertion of one of the two 

response levers. After either a lapse of 15 s or a lever press, the response lever was 

immediately retracted and the dipper arm was raised for 4 s. Following a variable length 

time out (average 60 s, range = 30-90 s), the opposite lever was inserted into the chamber 

initiating a new auto-shaping trial as just described. The lever inserted on odd numbered 

trials was always randomly determined, and the opposite lever always followed on even 

numbered trials. Thus, over these 60 trial sessions, each lever was inserted 30 times but 

was never presented more than 2 times in succession. Each session was conducted in 

continuous house-light illumination and no other stimuli were presented during these 

sessions. 
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  Over the following 10 days, rats were trained to lever-press maintained by 

reinforcement by visual stimuli (VS), consisting of 60 s termination of houselight 

illumination compounded with 5 s illumination of lever cue lights. Active and inactive 

lever assignments were pseudo-randomly determined and counterbalanced. Sessions were 

60 min, conducted daily during the light phase of a 12:12 light dark cycle. Across all 10 

sessions, VS reinforcement was delivered according to a fixed ratio (FR) 1 schedule (1 

response:reinforcer) for responding on the active lever; responses on the inactive lever 

were recorded but produced no programmed consequences. Active and inactive lever 

assignments were pseudo-randomly determined and counterbalanced across rats (within 

the sexes). In order to familiarize the rats to injection procedures and to provide sufficient 

nicotine pre-exposure to minimize the response and locomotor suppressant effects of 

nicotine, each rat received an injection of saline 5 min preceding placement into the 

chamber and an injection of nicotine 15 min following termination of each session.  

Reinforcer Demand Assessment 

 Following the tenth day of FR1 training on the VS reinforcement procedure, rats 

continued to lever-press maintained by VS reinforcement in 60-min sessions as described 

above, only the response requirement (i.e. fixed ratio (FR) schedule) was systematically 

increased over blocks of 16 sessions. The sequence of response costs followed an 

exponential base 2 sequence ranging from FR 1 to FR 512. Over different sessions within 

each FR block, rats received injections of 0.9 % saline, nicotine, and bupropion 

(Experiment 1) or varenicline (Experiment 2) prior to placement in the apparatus. 

Sessions proceeded with the restriction that each drug condition was experienced once 

before repeating and no drug condition was experienced two days in succession. Each 
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drug condition was experienced four times within each FR block, but only the last three 

were included in analyses to capture stable performance on each reinforcement schedule. 

Demand assessment continued for each rat until the last session of FR 512 or until the last 

session of a FR block in which a rat the mean number of VS presentations earned is less 

than 1 across all drug conditions. 

Progressive Ratio Performance 

 This phase began 24 h after the last demand assessment session. Over a single 

session, lever pressing was reestablished via 1 h auto-shaping sessions using 26% liquid 

sucrose. Over the next 15 sessions, responding for VS stabilized on a progressive ratio 

(PR) schedule of reinforcement. The PR sequence followed an exponential base 2 

sequence in one-third logarithmic steps, rounded to the nearest whole number (i.e. 2, 3, 4, 

5, 6, 8, 10, 13, 16, 20, 25, 32, etc.). This sequence was chosen because it included the 

ratios experienced in the demand assessment phase and progressed slowly enough so as 

to minimize ratio strain in the beginning of ratio progression. This progression also 

afforded the possibility of encountering schedules as high as, or higher than, each rat's 

breakpoint schedule in the demand assessment phase. Rats received injections of saline, 

nicotine, bupropion (Experiment 1) or varenicline (Experiment 2) preceding each 

experimental session as described above. 

Antagonist Testing on Progressive Ratio Performance 

 Over 36 sessions, rats continued to respond on the PR schedule described above. 

Over these sessions, rats received an injection of the specific antagonist respective to 

their experiment (SCH-23390, eticlopride, DHβE, or MLA) followed by administration 

of saline, nicotine, or a single dose of the experiment-specific nAChR agonist (bupropion 
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or varenicline). Each antagonist compound was assessed at two different doses and 

against a saline benchmark, and in combination with saline, nicotine, or 

bupropion/varenicline across two determinations, requiring 18 days of testing for each 

antagonist. Within each experiment, testing with one antagonist was completed before 

testing began with the next antagonist. The specific antagonist doses selected were based 

on previous research indicating differential effects of each compound on goal-directed 

behavior (Palmatier et al., 2009; Liu et al., 2010; Struthers et al., 2009; Wooters, Bevins 

and Bardo, 2009). 

Dependent Measures and Analyses 

 The computers recorded number of presses on both the active and inactive levers, 

general locomotor activity via breaks of the centrally bisecting infrared beam (see 

Apparatus section), and the number of VS presentations earned within each session. In 

the demand assessment phases of each experiment, locomotor activity and total lever-

presses on the active and inactive levers were averaged over the last three days of each 

drug condition from each FR schedule block, so as to represent only stable responding on 

each FR schedule. Each of these measures were analyzed using 3-factor mixed-measures 

ANOVA with Sex as a between-subjects factor and Drug condition and Unit Cost (i.e. FR 

schedule) as within-subject factors. Because males tended to exit the demand assessment 

phase earlier than females by meeting breakpoint criteria on lower FR schedules, only 

data from those FR schedules representing all the rats in each group were included in 

analyses (i.e. up to FR 32 for both experiments). A priori pairwise comparisons were 

conducted on the effects of Sex within each condition of Drug, the effects of Drug within 

each condition of Sex, and the effects of Drug within each condition of Unit Cost. 
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Additional post-hoc pairwise comparisons were also conducted upon detection of other 

significant interactions where appropriate. All pairwise comparisons employed Fisher's 

LSD test with significance set at p<0.05. Significant main effects of Drug or Unit Cost, 

and significant interactions were followed up with appropriate simplified ANOVA and 

Fisher's LSD contrasts with significance criteria set at p<0.05. 

 The number of VS presentations earned over sessions of the demand assessment 

phases of each experiment was analyzed using the exponential reinforcer demand model 

proposed by Hursh and Silberberg (2008) and the values of Q0, Pmax, Omax and α were 

calculated from the model fits for each rat individually using nonlinear least squares 

regression. Analyses on the effects of nicotine and bupropion/varenicline on the 

parameters of the reinforcer demand model used 2-factor, mixed measures ANOVA with 

Drug and Sex as independent variables. A priori comparisons were then conducted on the 

effects of Drug within each condition of Sex, and the effects of Sex within each condition 

of Drug. All planned comparisons used Fisher's LSD tests with significance set at 

ps<0.05. 

 The primary measures of interest during the antagonist testing phases of each 

experiment were the total number of active lever-presses and the total number of 

locomotor beam breaks emitted in test sessions under the PR schedule of reinforcement. 

The number of VS presentations earned is another potential measure than can be used on 

PR schedules, but it is redundant with and not as sensitive as active lever-pressing rates. 

Analyses of active lever-pressing and locomotor activity measures over the antagonist 

testing sessions were conducted using 3-factor, mixed measures ANOVA with Sex as a 

between-subjects factor and Antagonist Dose and Drug conditions as within-subjects 
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factors. The datasets from each antagonist testing phase (SCH-23390, eticlopride, DHβE, 

or MLA) were analyzed in separate analyses. A priori comparisons were conducted on 

the effects of antagonist dose within each drug condition of each sex; the effects of drug 

condition within each Sex in the absence of antagonist (i.e. the saline control condition of 

Antagonist Dose); and the effects of Sex within each drug condition in the absence of 

antagonist. Additional post-hoc pairwise comparisons were conducted upon detection of 

additional significant interactions where appropriate. All pairwise comparisons employed 

Fisher's LSD test with significance set at ps<0.05. 
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Chapter 4: Bupropion and Dopamine Receptor Antagonism 

 In Experiment 1, we investigated the role of the D1 and D2 families of dopamine 

receptors in the reward enhancing effects of nicotine and bupropion in male and female 

rats. Bupropion has been shown to exert a value-enhancement effect pharmacologically 

distinct from that of nicotine (Palmatier et al., 2009). However, nicotine and bupropion 

increase dopamine release in nucleus accumbens, an effect frequently implicated as a 

mechanism of reward (Wise, 1987). The role of dopamine receptors in the effects of 

nicotine and bupropion to enhance the value of other primary reinforcers has not been 

investigated (but see Guy and Fletcher, 2014). Moreover, the value-enhancing effects of 

bupropion have not been investigated using a technique that yields a quantitative 

assessment of reward along multiple behavioral dimensions of reinforcement value. In 

Experiment 1, we applied the reinforcer demand model and the PR performance model to 

characterize the value-enhancing effects of nicotine and bupropion in reference to each 

other and to saline. We also investigated the role of the D1 and D2 families of dopamine 

receptors as mechanisms of value-enhancement by both nicotine and bupropion using the 

PR performance model. Furthermore, we explored the possibility of sex differences in the 

value-enhancing effects of nicotine and bupropion, or in the involvement of D1- and D2-

family dopamine receptors in the expression of value-enhancement by these agents. 

 There are multiple reasons to suspect a role of D1- or D2-like dopamine receptors 

in the reward-enhancing effects of nicotine and bupropion. First, both receptor families 

are found in high densities in the nucleus accumbens, and dopamine transmission in this 

area is strongly associated with reward (Wise, 1987; Berridge and Robinson, 1998). In 

nicotine self-administration, blockade of either D1 or D2 receptors decreased nicotine 
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intake (Corrigall and Coen, 1991); this effect may reflect a blunting of nicotine primary 

reinforcement or nicotine enhancement of infusion-related cues. Additionally, 

antagonism of either D1 or D2 receptors also attenuated cue-induced reinstatement of 

nicotine seeking in rats (Liu et al., 2010). Furthermore, antagonism of D1 or D2-like 

receptors in the nucleus accumbens did not alter expression of nicotine-induced 

conditioned place preference, but D1 antagonism in the nucleus accumbens shell 

impaired acquisition of nicotine-induced conditioned place preference (Spina et al., 

2006). Ohmura and colleagues (2011) found that administration of D1-family and D2-

family agonist differentially attenuated somatic signs of nicotine withdrawal in rats. 

Lastly, Guy and Fletcher (2014) found that antagonism of either D1 or D2-like receptors 

decreased responding for a water-associated conditioned reinforcer and attenuated 

nicotine-induced increases in responding for conditioned reinforcement. Together, these 

studies implicate a role of D1- and D2-family dopamine receptors in the motivational 

properties of nicotine, including value-enhancement. Furthermore, bupropion acts as a 

partial antagonist of nAChRs, but also inhibits dopamine reuptake (Dwoskin et al., 2006; 

Carroll et al., 2014). Given that bupropion also enhances operant behavior in a manner 

analogous to nicotine (Palmatier et al., 2009), these observations suggest that activation 

of D1- or D2-like dopamine receptors may, in part, underlie the value-enhancing effects 

of bupropion.  

Procedures 

 Experiment 1 followed the general procedural design described in Chapter 3, with 

the specifications described hereafter. In the reinforcer demand assessment phase, 0.4 

mg/kg nicotine, 10 or 20 mg/kg bupropion, or saline were administered preceding session 
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initiation at their respective IPIs (see Drugs section in Chapter 3). In the antagonist 

testing phases, only the 20 mg/kg dose of bupropion was tested; this dose produced 

robust levels of enhancement in both male and female rats and provided a suitable 

baseline for assessing the effects of dopamine antagonist to decrease enhanced 

responding. Additionally, the D1-family receptor antagonist, SCH-23390, and the D2-

family receptor antagonist, eticlopride, were used in the antagonist testing phases of 

Experiment 1. 

Results - Lever Pressing and Locomotor Activity Across Escalating FR Schedules 

 All rats acquired the lever-press response over the 4 auto-shaping sessions and 

continued to press at moderate rates by the end of the 10-session VS training phase. 

Administration of nicotine and either dose of bupropion each increased lever-pressing 

rates relative to saline in both males and females across all FR schedules. Figure 1 

displays mean active and inactive lever-pressing between the sexes over the terminal 3 

sessions of each drug condition within each FR-schedule session-block. Analysis of 

active lever-pressing via 3-factor ANOVA (Sex x Drug x Unit Cost) revealed significant 

main effects of Sex [F(1,22)=5.200; p=0.0326], Drug [F(3,66)=44.44; p<0.0001], and 

Unit Cost [F(5,110)=19.53; p<0.0001]. The Sex x Drug [F(3,66)=5.892; p=0.0013], Sex 

x Unit Cost [F(5,110)=2.806; p=.0200], and Drug x Unit Cost interactions 

[F(15,330)=10.38; p<0.0001] were each significant. Further investigation of the Sex x 

Drug interaction found equivalently increased active lever-pressing rates under nicotine 

and both bupropion dose conditions relative to saline in females. In contrast, bupropion 

enhanced response rates intermediately between saline and nicotine levels in males at 

either dose [ps<0.05]. Additionally, active lever-pressing by females was significantly 
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higher than males across all drug conditions, including saline [ps<0.05]. Analysis of the 

Drug x Unit Cost interaction found that nicotine increased active lever-pressing relative 

to saline on all FR schedules except FR 1; both doses of bupropion likewise increased 

active-lever pressing relative to saline but did not begin to do so significantly until FR 4 

and higher. Active lever-pressing was significantly lower in both bupropion conditions 

compared to nicotine on FR 32, and 10 mg/kg bupropion was lower than 20 mg/kg 

bupropion and nicotine on FR 16 [ps<0.05]. Finally, the Sex x Unit Cost interaction was 

characterized by significantly higher active lever-pressing in females than males on FRs 

16 and 32, but not any of the lower FR schedules [ps<0.05]. 

 

Figure 1. Mean number of presses on the active (filled symbols) and inactive levers (open symbols) 
averaged over the terminal 3 sessions of each drug condition within blocks of FR schedules. Only data 
from those FR schedules where all the rats in both sexes remained in the demand assessment phase prior to 
meeting breakpoint criteria were included. Error bears represent ± 1 SEM. 
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 Nicotine and bupropion also increased inactive lever-pressing, but not nearly to 

the extent of active lever-pressing, as is shown in Figure 1. Analysis of inactive lever-

pressing revealed significant effects of Sex [F(1,22)=20.80; p=0.0002], Drug 

[F(3,66)=13.28; p<0.0001], and Unit Cost [F(5,110)=4.671; p=0.0007]. The interactions 

between Sex and Drug [F(3,66)=4.664; p=0.0052], and between Drug and Unit Cost 

[F(15,330)=5.918; p<0.0001] were also statistically significant. Further analysis of the 

Sex x Drug interaction found that inactive lever-pressing was increased only by nicotine 

in males, whereas nicotine and both doses of bupropion increased inactive lever-pressing 

in females [ps<0.05]. In addition, inactive lever pressing was significantly higher in 

females at each condition of drug, including saline [ps<0.05]. Investigation of the Drug x 

Unit Cost interaction found that nicotine increased inactive lever-pressing above the 

saline condition on FR 8 through FR 32, above both bupropion conditions on FR 32, and 

additionally above 20 mg/kg bupropion on FR 8 [ps<0.05]. Bupropion at 10 mg/kg 

increased inactive lever-pressing relative to saline on FR 4 through FR 32, and above 20 

mg/kg bupropion on FR 32 [ps<0.05]. Lastly, the 20 mg/kg bupropion increased inactive 

lever-pressing relative to saline only on FR 16 [p<0.05]. 

 The effects of nicotine, bupropion, and unit cost progression on locomotor 

activity are shown in Figure 2. Analysis revealed significant effects of Sex 

[F(1,22)=9.527; p=0.0054], Drug [F(3,66)=65.86, p<0.0001] and Unit Cost 

[F(5,110)=3.267; p=0.0087] on locomotor activity, as well as significant Sex x Drug 

[F(3,66)=14.27; p<0.0001] and Sex x Unit Cost interactions [F(5,110)=6.175; p<0.0001]. 

Follow-up analysis on the Sex x Drug interaction revealed significant differences in 

locomotor activity between each of the drug conditions in females, with increases above 
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saline levels in the nicotine condition and further increases above nicotine by bupropion 

in a dose-dependent manner [ps<0.05]. In males, nicotine did not increase locomotor 

activity above saline levels, but activity was higher than both saline and nicotine in both 

bupropion conditions [ps<0.05]; no differences in activity between bupropion doses were 

detected [ps>0.05]. In addition, higher locomotor activity in females was observed in the 

10 and 20 mg/kg bupropion conditions, but no sex differences in locomotor activation by 

nicotine or saline were detected [ps<0.05]. The effects on locomotor activity of drug 

condition at different levels of unit cost were inconsistent. Briefly, nicotine increased 

locomotor activity relative to saline on FR 1 and FR 4; 10 mg/kg bupropion relative to 

saline on FR 1, and 20 mg/kg bupropion relative to saline on FR 1 through FR 16 

[ps<0.05]. The Sex x Unit Cost interaction was characterized by significant differences in 

locomotor activity between males and females on all FR schedules that became 

increasingly large following progressions in Unit Cost [ps<0.05]. This effect likely 

resulted from an trend toward increasing locomotor activity in females rats with increases 

in Unit Cost in contrast with no apparent effects of Unit Cost on locomotor activity in 

males [ps<0.05]. 
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Figure 2. Mean locomotor activity as measured by breaks of the chamber bisecting infrared beam averaged 
across the terminal 3 sessions of each drug condition within session blocks of each FR schedule. Only data 
from those FR schedules where all the rats in both sexes remained in the demand assessment phase prior to 
meeting breakpoint criteria were included. Error bears represent ± 1 SEM. 

Results - Analysis of Demand for VS 
 
 Figure 3 presents the demand functions between the sexes for VS reinforcement 

under saline, nicotine and both bupropion dose conditions. Fits of the reinforcer demand 

model to the male and female group data are also presented as representative data; all 

analyses exclusively used fits to the data of individual rats. Because individual rats exited 

the demand assessment phase upon reaching breakpoint criteria at different FR schedules, 

not all of the data are presented in Figure 3; only data from those FR schedules where at 

least a quarter of the rats of each sex remained in the demand assessment phase are 

presented (FR 128 for males; FR 512 for females). 
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Figure 3. VS consumption as a function of FR schedule between males (left) and females (right), and 
across the four administration conditions of nicotine (filled circles), saline (open circles), 10 bupropion 
(open triangles), and 20 bupropion (closed triangles). 

 In the females, nicotine and both doses of bupropion increased VS consumption 

to similar levels across all FR schedules except the highest FR schedules, where both 

doses of bupropion comparably increased consumption to levels above nicotine. Nicotine 

and both doses of bupropion also increased VS consumption relative to saline in the 

males, but in contrast to the females, bupropion dose dependently enhanced responding to 

levels slightly below those of the nicotine condition. In addition, the males completed the 

demand assessment phase by reaching breakpoint criteria earlier than the females; 50% of 

the males had reached breakpoint criteria by FR 128, whereas the females reached the 

same condition at FR 256. Indeed, VS consumption in the females was consistently 

higher than in the males across all drug conditions throughout the demand assessment 

phase, as more clearly shown in Figure 4.  
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Figure 4. VS consumption between the sexes and across drug conditions as a function of FR schedule. 
Males are represented by open circles; females by the filled circles. The Pmax estimates from the group-
fitted demand curves are represented by the vertical lines (dashed=males, solid=females).  

 The values of Q0, Pmax, Omax and α were obtained via fits of the reinforcer demand 

model to the data of individual rats, and were each analyzed via two-factor, mixed-

measures ANOVA with Sex and Drug as factors with Fisher's LSD used for a priori 

planned pairwise comparisons. The estimates of Q0 for males and females and across 

drug conditions are presented in Figure 5. Analysis of the Q0 parameter revealed a 
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significant effect of Drug [F(3,66)=25.07;  p<0.0001], but not of Sex [F(1,22)=2.633; 

p=0.1189] or a Sex x Drug interaction [F(3,66)=2.388; p=0.0768]. Pairwise comparisons 

revealed nicotine and both doses of bupropion increased Q0 above saline levels in both 

the sexes [ps<0.05]. In females, neither bupropion dose differed from nicotine; in males 

20 mg/kg bupropion did not differ from nicotine, but 10 mg/kg bupropion differed from 

nicotine and 20 mg/kg bupropion [ps<0.05]. Thus, 10 mg/kg bupropion increased Q0 to 

moderate levels that were intermediate the enhancing effects of nicotine and 20 mg/kg 

bupropion in males, whereas both doses of bupropion and nicotine all increased Q0 to 

similar levels in females. Consequently, the only drug condition where Q0 significantly 

differed between the sexes was 10 mg/kg bupropion, where enhancement was greater in 

females than males [p<0.05]. 

 

Figure 5. Estimates of Q0 derived from the reinforcer demand model. Female rats are represented by the 
open bars, and male rats by the filled bars. Left: the effects of drug within each sex. * indicates significant 
differences from saline. ^ indicates a significant difference from nicotine. % represents a difference 
between bupropion conditions. Right: the effects of sex under each drug condition. Asterisks indicate 
significant differences between the sexes. Error bears represent ± 1 SEM. 

 Estimates of Pmax across drug conditions and between the sexes are shown in 

Figure 6. Analysis revealed significant main effects of Sex [F(1,22)=5.606, p=0.0271] 

and of Drug [F(3,66)=9.066, p<0.0001], but not a Sex x Drug interaction [F(3,66)=1.992, 
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p=0.1237]. Further investigation revealed that nicotine and both doses of bupropion 

increased estimates of Pmax in females relative to saline; for males, only nicotine 

increased Pmax relative to saline [ps<0.05]. Comparing between the sexes, estimates of 

Pmax were higher in females in the nicotine condition and the 10 and 20 mg/kg bupropion 

conditions [ps<0.05], but no differences were observed between the saline conditions 

between the sexes [p>0.05]. 

 

Figure 6. Estimates of Pmax derived from the reinforcer demand model. Female rats are represented by the 
open bars, and male rats by the filled bars. Left: the effects of drug within each sex. * indicates significant 
differences from the saline condition for each sex. Right: the effects of sex under each drug condition. 
Asterisks indicate significant differences between the sexes. Error bears represent ± 1 SEM. 

 The model-derived estimates of Omax from the demand assessment phase are 

portrayed in Figure 7. Statistical analysis revealed significant main effects of Sex 

[F(1,22)=10.30, p=0.0104] and of Drug [F(3,66)=18.59, p<0.0001], as well as a 

significant Sex x Drug interaction [F(3,66)=6.344, p=0.0008]. Post-hoc comparisons 

found significant increases in Omax under nicotine and both bupropion conditions relative 

to saline in females; nicotine and 20 mg/kg bupropion increase values of Omax relative to 

saline in males [ps<0.05]. Between the sexes, Omax values were higher in females under 
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nicotine and both bupropion conditions, but not following saline administration 

[ps<0.05]. 

 

Figure 7. Estimates of Omax derived from the reinforcer demand model. Female rats are represented by the 
open bars, and male rats by the filled bars. Left: the effects of drug within each sex. * indicates significant 
differences from saline. ^ indicates a significant difference from nicotine. % represents a difference 
between bupropion conditions. Right: the effects of sex under each drug condition. Asterisks indicate 
significant differences between the sexes. Error bears represent ± 1 SEM. 

 Finally, the estimates of the essential value parameter, α, estimated by the 

reinforcer demand model are displayed in Figure 8. Analysis revealed a significant main 

effect of Drug [F(3,66)=34.47, p<0.0001], but not of Sex [F(1,22)=2.111, p=0.1603] and 

not significant Sex x Drug interaction [F(3,66)=1.663 , p=0.1834]. Post-hoc comparisons 

revealed significant enhancement of essential value relative to saline by nicotine and both 

bupropion doses in males and females [ps<0.05]. There were no differences in essential 

value between nicotine and either bupropion condition in females. In males, essential 

value was greater (i.e. lower estimates of α) in the nicotine condition than the 10 mg/kg 

bupropion condition [ps<0.05]. When comparing between the sexes, females showed 

greater essential value of VS reinforcement than males in both bupropion conditions and 

in the saline condition [ps<0.05]. 
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Figure 8. Estimates of essential value parameter (α) derived from the reinforcer demand model. Female 
rats are represented by the open bars, and male rats by the filled bars. Left: the effects of drug within each 
sex. * indicates significant differences from saline. ^ indicates a significant difference from nicotine. Right: 
the effects of sex under each drug condition. Asterisks indicate significant differences between the sexes. 
Error bears represent ± 1 SEM. 

 The demand assessment phase revealed that nicotine and bupropion exert value-

enhancing effects on responding maintained by VS. This enhancement was observed in 

both males and females, though some differences between the sexes were evident 

regarding the enhancing effects of bupropion in particular. Specifically, females showed 

greater sensitivity to the value-enhancing effects of bupropion than males. Consider the 

observation that in females, bupropion at either dose, enhanced Q0, Pmax, Omax, and 

essential value to similar levels as nicotine. However, in males, enhancement by 

bupropion showed dose-dependency. For example, 10 mg/kg bupropion enhanced the Q0 

and essential value parameters to levels intermediate to saline and nicotine, whereas the 

20 mg/kg dose produced enhancement indistinguishable from nicotine. Notably, females 

showed greater enhancement by bupropion than males on all model estimates but Q0 at 

20 mg/kg, which failed to reach statistical significance but continued to show a tendency 

towards greater enhancement in females. Taken together, the results of demand 
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assessment phase suggest that while nicotine and bupropion produce value-enhancement, 

females may be more sensitive to the value-enhancing effects of bupropion than males. 

Results - D1 Antagonism on Progressive Ratio Performance 

 Active lever-pressing maintained by the PR schedule of VS reinforcement during 

SCH-23390 testing phase is shown in Figure 9. Nicotine and bupropion both increased 

active lever-pressing relative to saline in each sex, and systemic antagonism of the D1 

receptor family with SCH-23390 attenuated this effect. Analysis revealed significant 

main effects of Sex [F(1,22)=5.994; p=0.0228], Drug [F(2,44)=38.35; p<0.0001], and 

Antagonist Dose [F(2,44)=17.53; p<0.0001], as well as significant Sex x Drug interaction 

[F(2,44)=7.985; p=0.0011]. Planned comparisons found that 30 µg/kg SCH-23390 

decreased active lever-pressing in both sexes under nicotine and bupropion treatment 

conditions, and also under the saline condition in females [ps<0.05] (Figure 9, left panel). 

Active presses were also reduced in males following antagonism with 10 µg/kg SCH-

23390 under nicotine and bupropion treatment conditions [ps<0.05]. Additionally, SCH-

23390 dose-dependency was observed only in males on the nicotine condition [ps<0.05]. 

Further analysis revealed that nicotine and bupropion enhanced lever-pressing to similar 

levels in the absence of SCH-23390 [ps<0.05]. Finally, response rates on PR were 

significantly higher in females at each drug condition in the absence of SCH-23390 

[ps<0.05] (Figure 9, right panel). 
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Figure 9. Active lever-pressing across the sessions of the D1 antagonism testing phase using SCH-23390. 
Left: Active lever-pressing between the sexes, averaged across the 2 determinations of each of the SCH-
23390 test conditions. * represents a significant difference from the saline control condition of antagonist 
dose within a drug condition. ^ represents a significant difference between doses of SCH-23390 within a 
drug condition. Right: The effects nicotine and bupropion on active lever-pressing between the sexes in the 
absence of SCH-23390. * represents significant differences between the sexes within a drug condition. % 
represents a difference from the saline condition within each sex. ^ represents a significant difference from 
the nicotine condition within each sex. Error bears represent ± 1 SEM. 

 Figure 10 shows measures of locomotor activity across sessions of the SCH-

23390 testing phase. Analysis uncovered significant effects of Sex [F(1,22)=13.57; 

p=0.0013], Drug [F(2,44)=21.33; p<0.0001], and Antagonist Dose [F(2,44)=30.75; 

p<0.0001]. The Sex x Drug [F(2,44)=8.927; p=0.0006] and Sex x Antagonist Dose 

interactions [F(2,44)=4.875; p=0.0122] were also significant. Planned comparisons found 

decreases in locomotor activity by 30 µg/kg SCH-23390 under the nicotine and 

bupropion conditions in both sexes, and under the saline condition in females [ps<0.05] 

(Figure 10, left panel). Further investigation of the effects of drug condition in the 

absence of SCH-23390 uncovered significant increases in locomotor activity following 

bupropion administration in females. There were no effects of nicotine or bupropion on 

locomotor activity relative to saline in males, but significantly higher activity in the 

bupropion condition than the nicotine condition in males [ps<0.05]. Locomotor activity 

was significantly higher in females compared to males in the nicotine and bupropion 
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conditions in the absence of SCH-23390 [ps<0.05] (Figure 10, right panel). Finally, 

analysis of the Sex x Antagonist Dose interaction found significantly depressed 

locomotor activity by 30 µg/kg SCH-23390 relative to saline in both sexes, but locomotor 

depression was greater in females than in males [ps<0.05]. 

 

Figure 10. Locomotor activity across the sessions of the D1 antagonism testing phase using SCH-23390. 
Left: Locomotor activity between the sexes, averaged across the 2 determinations of each of the SCH-
23390 test conditions. * represents a significant difference from the saline control condition of antagonist 
dose within a drug condition. ^ represents a significant difference between doses of SCH-23390 within a 
drug condition. Right: The effects nicotine and bupropion on locomotor activity between the sexes in the 
absence of SCH-23390. * represents significant differences between the sexes within a drug condition. % 
represents a difference from the saline condition within each sex. ^ represents a significant difference from 
the nicotine condition within each sex. Error bears represent ± 1 SEM. 

Results - D2 Antagonism on Progressive Ratio Performance 

 Active lever-pressing across the sessions of antagonist testing with eticlopride is 

shown in Figure 11. Mixed-measures ANOVA revealed significant effects of Sex 

[F(1,22)=7.845; p=0.0104], Drug [F(2,44)=29.22; p<0.0001], and Antagonist Dose 

[F(2,44)=18.35; p<0.0001]. The Sex x Drug [F(2,44)=6.779; p=0.0027] and Drug x 

Antagonist Dose interactions [F(4,88)=3.443; p=0.0116] were also significant. Planned 

pairwise comparisons revealed significant decreases in active lever-pressing by 30 µg/kg 

eticlopride in the bupropion condition of both sexes; 10 µg/kg eticlopride also decreased 

bupropion-enhanced responding in the males, but not in females [ps<0.05] (Figure 11, 
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left panel). Statistical investigation of the effects of nicotine and bupropion in the absence 

of eticlopride (Figure 11, right panel) found significantly higher responding in females 

across all drug conditions, as in the preceding D1 antagonist testing phase [ps<0.05]. 

Additionally, nicotine and bupropion increased lever-pressing to similar levels in males, 

but levels of bupropion-enhanced responding were higher than those of nicotine in 

females [ps<0.05]. Investigation of the Drug x Antagonist Dose interaction found 

significantly decreased responding by 30 µg/kg eticlopride only under bupropion 

conditions [p<0.05]; eticlopride at either dose did not significantly reduce responding 

under the nicotine or saline conditions [ps>0.05]. 

 

Figure 11. Active lever-pressing across the sessions of the D2 antagonism testing phase using eticlopride. 
Left: Active lever-pressing between the sexes, averaged across the 2 determinations of each of the 
eticlopride test conditions. * represents a significant difference from the saline control condition of 
antagonist dose within a drug condition. ^ represents a significant difference between doses of eticlopride 
within a drug condition. Right: The effects nicotine and bupropion on active lever-pressing between the 
sexes in the absence of eticlopride. * represents significant differences between the sexes within a drug 
condition. % represents a difference from the saline condition within each sex. ^ represents a significant 
difference from the nicotine condition within each sex. Error bears represent ± 1 SEM. 

 Locomotor activity over the sessions of D2 receptor antagonism testing with 

eticlopride is presented in Figure 12. Statistical analysis found significant effects of Sex 

[F(1,22)=20.13; p=.0002], Drug [F(2,44)=31.25; p<0.0001], and Antagonist Dose 

[F(2,44)=3.533], and a significant Sex x Drug interaction [F(2,44)=13.03; p<0.0001]. 
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Eticlopride, at either dose, had no significant effects on locomotor activity within any of 

the drug conditions in either sex [ps>0.05] (Figure 12, left panel). However, the main 

effect of eticlopride did reveal that 30 µg/kg eticlopride decreased locomotor activity 

relative to saline when collapsing across the conditions of Sex and Drug [p<0.05]. 

Analysis of the effects of nicotine and bupropion on locomotor activity in the absence of 

eticlopride (Figure 12, right panel) discovered significantly higher activity under 

bupropion conditions in the females and differences between bupropion and nicotine in 

both the sexes [ps<0.05]. Locomotor activity in the females was greater than in the males 

at each drug condition in the absence of eticlopride [ps<0.05]. 

 

Figure 11. Locomotor activity across the sessions of the D2 antagonism testing phase using eticlopride. 
Left: Locomotor activity between the sexes, averaged across the 2 determinations of each of the eticlopride 
test conditions. * represents a significant difference from the saline control condition of antagonist dose 
within a drug condition. ^ represents a significant difference between doses of eticlopride within a drug 
condition. Right: The effects nicotine and bupropion on locomotor activity between the sexes in the 
absence of eticlopride. * represents significant differences between the sexes within a drug condition. % 
represents a difference from the saline condition within each sex. ^ represents a significant difference from 
the nicotine condition within each sex. Error bears represent ± 1 SEM. 

 The PR performance data reproduce the observations from the demand 

assessment phase that nicotine and bupropion enhance responding maintained by VS 

reinforcement, and that enhanced levels of responding were higher in females. 

Interestingly, lever-pressing was higher than females under saline conditions in the 
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absence of either antagonist, suggesting a tendency for females to exhibit higher lever-

pressing under baseline conditions (cf. Chaudhri et al., 2005; Grebenstein et al., 2013). 

Additionally, the greatest sex differences in lever-pressing were reliably observed under 

bupropion conditions. Nicotine and bupropion also increased locomotor activity in 

females, but not in males. Notably, D1 antagonism with SCH-23390 decreased active 

lever-pressing as well as locomotor activity in both sexes and under saline conditions. In 

contrast, D2 receptor family antagonism via eticlopride decreased lever-pressing in the 

bupropion conditions in each sex, and had no effects under saline or nicotine conditions. 

Additionally, no effects of eticlopride on locomotor activity were detected. Together, 

these effects suggest a role of D2-family dopamine receptors in the value-enhancing 

effects of bupropion, but not of nicotine. D1-family dopamine receptors may also be 

involved in the reward-enhancing effects of nicotine or bupropion, but locomotor 

suppression by SCH-23390 makes this finding difficult to interpret. 
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Chapter 5: Varenicline and Nicotinic Acetylcholine Receptor Antagonism 

 In Experiment 2, we investigated the roles of α4β2-containing and homomeric α7 

nAChRs in the reward enhancing effects of nicotine and varenicline in male and female 

rats. Varenicline has been shown to enhance rates of operant responding for mildly 

reinforcing visual stimuli in a fashion similar to nicotine, albeit to lower levels (Levin et 

al., 2012). Previous work has shown that antagonism of α4β2-containing receptors, but 

not of α7 receptors, partially attenuates the value-enhancing effects of intravenous 

nicotine on a FR5 schedule of VS reinforcement (Liu et al., 2007). As mentioned in 

Chapter 1, varenicline is a partial agonist at α4β2-containing nAChRs and a full agonist 

at α7 receptors. We hypothesized that the moderate value-enhancing effects of 

varenicline result from its action on α4β2-containing receptors, and not its α7 receptor 

activity, similar to nicotine. Experiment 2 was partially designed to test this hypothesis. 

We also designed the present experiment as a method for comparing the value-enhancing 

effects of varenicline and nicotine using the reinforcer demand model, which represents 

value along multiple behavioral dimensions (see Chapter 2). Finally, the present 

experiment also investigated whether the value-enhancing effects of varenicline would 

differ between the sexes, while simultaneously replicating our investigation of nicotine 

from Experiment 1. 

 Regarding the nAChR subtypes investigated here, there are a few important 

reasons for the selection of α4β2* and α7 receptors. First, α4β2* and α7 receptors are 

believed to be the two most common forms of the nAChR in the dopaminergic reward 

pathways of the midbrain (see Placzek and Dani, 2009; Brunzell and Picciotto, 2009). 

Previous work has shown that presentation of a DHβE-paired conditioned visual stimulus 
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increased current-intensity thresholds of reinforcing electrical stimulation of the medial 

forebrain bundle in rats (Kenny and Markou, 2006). Nicotine decreases reward thresholds 

in this preparation, which is congruent with the interpretation of reward-enhancement 

(Kenny and Markou, 2006). Additionally, administration of DHβE into the ventral 

tegmental area decreased nicotine self-administration in rats (Corrigall et al., 1994). 

Furthermore, antagonism of ventral tegmental area α7 receptors via MLA microinjection 

blocked nicotine-conditioned place preference (Laviolette and van der Kooy, 2003). 

Furthermore, high doses of MLA attenuated nicotine self-administration in rats (Markou 

and Paterson, 2001). Importantly, Liu et al. (2007) found that antagonism of α4β2* but 

not of α7 receptors attenuated enhancement of VS-maintained responding by intravenous 

nicotine. Similarly, antagonism of α4β2* but not of α7 receptors attenuated nicotine-

enhanced responding for a water-associated conditioned reinforcer (Guy and Fletcher, 

2013). Finally, administration of MLA, but not of DHβE, reduced the attenuated cue-

induced  reinstatement of nicotine-seeking behavior in rats, but produced no effects on 

nicotine self-administration or cue-induced food-seeking behavior (Liu, 2014). Together, 

these findings suggest a role of α4β2-containing and α7 nAChRs in the motivational 

effects of nicotine, but suggest that α4β2* receptors may be more directly involved in the 

reward-enhancing effects of nicotine. Varenicline also exerts reward-enhancing effects on 

responding and acts as a full agonist at α7 nAChRs and as a partial agonist at α4β2*, 

α3β4*,  and α6β2* nAChRs (Coe et al., 2005; Foulds, 2006; Grady et al., 2010; Mihalak 

et al, 2006; Rollema et al., 2007). However, no previous study has investigated the 

receptor mechanisms of value-enhancement in varenicline. 
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Procedures 

 Experiment 2 followed the general procedures described in Chapter 3, with the 

following distinctions. In the reinforcer demand assessment phase, 0.4 mg/kg nicotine, 

0.1 or 1.0 mg/kg varenicline, or saline were administered preceding experimental 

sessions at their respective IPIs (refer to Drugs section in Chapter 3). In the antagonist 

testing phase, only the 1.0 mg/kg dose of varenicline was tested, as were nicotine and 

saline. Antagonism of α4β2-containing and α7 receptors was tested using DHβE and 

MLA, respectively. One female rat was excluded from testing in both the antagonist 

testing phases because of health concerns regarding the development of tumors. 

Results - Lever Pressing and Locomotor Activity Across Escalating FR Schedules 

 All rats acquired the lever-press response over the 4 auto-shaping sessions and 

continued to press at moderate rates by the end of the 10-session VS training phase. Both 

nicotine and varenicline increased frequency of lever-pressing behavior relative to saline 

in male and female rats. Figure 13 shows mean active and inactive lever-pressing, in 

either sex, averaged over the terminal 3 sessions of each drug condition within each FR 

schedule session-block. Statistical analysis of active lever-pressing revealed significant 

effects of Drug [F(3,66)=72.80; p<0.0001] and Unit Cost [F(5,110)=19.62; p<0.0001], 

but not of Sex [F(1,22)=1.990; p=0.1724]. The Drug x Unit Cost interaction was also 

significant [F(15,330)=17.84; p<0.0001], and further analysis found that nicotine 

enhanced active lever-pressing across all FR schedules relative to saline, while 

varenicline dose-dependently increased active pressing relative to saline on all schedules 

but FR1 [ps<0.05]. Nicotine-enhanced rates of active lever-pressing exceeded those of 

both varenicline doses on schedules FR 2 though FR 32 [ps<0.05]. Planned comparisons 
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on the effects of sex under each drug condition found significantly higher rates of active 

lever-pressing in females than in males under all but the saline condition [ps<0.05]. 

Additionally, nicotine increased lever-pressing to the highest levels in females, followed 

by a dose-dependent enhancement of responding by varenicline [ps<0.05]. Similarly, 

nicotine increased active lever response rates above all other conditions in males; 

however, varenicline enhanced responding relative to saline but did not differ show dose 

dependency in males [ps<0.05]. 

 Nicotine and varenicline administration also had effects on inactive lever-pressing 

that varied with changes in FR schedule (Figure 13). Analysis revealed significant main 

effects of Drug [F(3,66)=11.82; p<0.0001] and of Unit Cost [F(5,110)=3.760; p=0.0035], 

but not of Sex [F<1]. There was also a significant Drug x Unit Cost interaction 

[F(15,330)=4.899; p<0.0001] and Sex x Drug x Unit Cost interaction [F(15,330)=2.181; 

p=0.0068]. In females, nicotine increased inactive presses relative to saline across all FR 

schedules, 0.1 mg/kg varenicline relative to saline on FR 4 and FR 32, 1.0 mg/kg 

varenicline relative to saline on all schedules but FR 4, and nicotine relative to 1.0 mg/kg 

varenicline on FR 16 and FR 32 [ps<0.05]. In males, inactive lever-pressing was 

increased by nicotine and 1.0 varenicline relative to saline only on schedules FR 8 

through FR 32, 0.1 mg/kg varenicline compared to saline on FR 8, and nicotine relative 

to 1.0 varenicline on FR 16 [ps<0.05]. Further comparisons found that females pressed 

the inactive lever more than males under the nicotine and 1.0 mg/kg varenicline 

conditions, except on FR 4 and FR 8. [ps<0.05]. Inactive pressing was also higher in 

females following 0.1 mg/kg varenicline and saline administration on FR 2 [ps<0.05].  
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Analysis of the Drug x Unit Cost interaction found that nicotine increased inactive lever-

pressing relative to saline across all FR schedules, and was higher than varenicline at the 

0.1 and 1.0 mg/kg doses on schedules FR 8 through 32, and FR 16 through 32, 

respectively [ps<0.05]. Varenicline increased inactive lever-pressing at the 0.1 mg/kg 

dose on FR 8 and FR 32 schedules; the 1.0 mg/kg dose increased inactive lever-pressing 

on schedules FR 8 through 32 [ps<0.05]. Finally, increases in inactive lever-pressing by 

the 1.0 mg/kg dose of varenicline were greater than those of the 0.1 mg/kg dose on FR 16 

and FR 32 [ps<0.05]. 

 

Figure 13. Mean number of presses on the active (filled symbols) and inactive levers (open symbols) 
averaged over the terminal 3 sessions of each drug condition within blocks of FR schedules. Only data 
from those FR schedules where all the rats in both sexes remained in the demand assessment phase prior to 
meeting breakpoint criteria are included. Error bears represent ± 1 SEM. 
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 The effects of nicotine and varenicline of locomotor activity across FR schedules 

and between the sexes is shown in Figure 14. Three-factor ANOVA revealed main effects 

of Sex [F(1,22)=7.539; p=0.0118], Drug [F(3,66)=11.35; p<0.0001], and Unit Cost 

[F(5,110)=4.661; p=0.0007], as well as significant Sex x Drug [F(3,66)=18.27; 

p<0.0001] and Sex x Unit Cost interactions [F(5,110)=3.802; p=0.0032]. The three-factor 

interaction approached conventional levels of significant [F(15,330)=1.695; p=0.0503]. 

The Sex x Drug interaction was characterized by differences in locomotor activity 

between each of the drug conditions in females (i.e. nicotine > 1.0 varenicline > 0.1 

varenicline > saline), but no differences in activity between drug conditions in the males 

[ps<0.05]. Additionally, locomotor activity was higher in females than males under each 

drug condition but saline [ps<0.05]. Further analysis of the interaction between Sex and 

Unit Cost found that locomotor activity was greater in females than in males on schedules 

FR 4 through FR 32, driven largely by a trend toward increased activity with later FR 

schedules in females and the absence of such a trend in males [ps<0.05]. 

 

Figure 14. Mean locomotor activity as measured by breaks of the chamber bisecting infrared beam 
averaged across the terminal 3 sessions of each drug condition within session blocks of each FR schedule. 
Only data from those FR schedules where all the rats in both sexes remained in the demand assessment 
phase prior to meeting breakpoint criteria are included. Error bears represent ± 1 SEM. 
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Results - Demand Assessment 

 Both nicotine and varenicline administration increased lever-pressing rates 

compared to saline conditions in male and female rats. Enhanced response rates were 

observed across FR schedules in the demand assessment phase. Figure 15 portrays the 

demand curves as fit to the grouped data of males and females between each of the drug 

conditions throughout the demand assessment phase. Note that the curves presented here 

are merely for representative purposes and that all comparative analyses were conducted 

using the results of fitting the reinforcer demand model to the data of individual rats. 

Because individual rats completed the demand assessment phase after meeting breakpoint 

criteria at different FR schedules, not all the data are represented in Figure 15. Only data 

up to those FR schedules where at least a quarter of the rats of each sex remained in the 

demand assessment phase are presented (FR 128 for males; FR 256 for females). 

 

Figure 15. VS consumption as a function of FR schedule between males (left) and females (right), and 
across the four administration conditions of nicotine (filled circles), saline (open circles), 0.1 varenicline 
(open triangles) and 1.0 varenicline (closed triangles). 
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Figure 16. VS consumption between the sexes and across drug conditions as a function of FR schedule. 
Males are represented by open circles; females by the filled circles. The Pmax estimates from the group-
fitted demand curves are represented by the vertical lines (dashed=males; solid=females).  

 Inspection of the VS demand curves revealed that in both sexes, nicotine 

enhanced VS consumption to the highest rates of all conditions across each of the FR 

schedules. Varenicline also increased VS consumption relative to saline in dose-

dependent manner. The point by which 50% of the rats of each sex had reached 

breakpoint criteria was FR 64 for males and FR 128 for females. Figure 16 shows that 



67 
 

within each drug condition, the demand curves for females were consistently above the 

curves for males, particularly at the higher FR schedules. 

 Values for Q0, Pmax, Omax and α of the reinforcer demand model were obtained by 

fitting the model to the data of individuals rats, and were compared using two-factor 

mixed measures ANOVA with Sex and Drug as factors. The model estimates of Q0 for 

males and females and across drug conditions are shown in Figure 17. Statistical analysis 

revealed a significant main effect of Drug [F(3,66)=3.951; p=0.0118], but not of Sex 

[F(1,22)=2.243; p=0.1484], nor a significant Sex x Drug interaction [F<1]. Further 

analysis found that nicotine induced higher Q0 values than any of the other drug 

conditions in males; no significant effects of Drug were detected in females [ps<0.05]. 

Additionally, values of Q0 were higher in females in the 1.0 mg/kg varenicline condition 

[p<0.05], but no other effects of sex were detected across the other drug conditions 

[ps>0.05]. 

 

Figure 17. Estimates of Q0 derived from the reinforcer demand model. Female rats are represented by the 
open bars, and male rats by the filled bars. Left: the effects of drug within each sex. * indicates significant 
differences from saline. ^ indicates a significant difference from nicotine. Right: the effects of sex under 
each drug condition. Asterisks indicate significant differences between the sexes. Error bears represent ± 1 
SEM. 
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 The calculated values of Pmax across drug conditions and between the sexes are 

shown in Figure 18. Analyses revealed a significant main effect of Drug [F(3,66)=14.78, 

p<0.0001], but not of Sex [F(1,22)=1.068, p=0.3126], or a Sex x Drug interaction 

[F(3,66)=1.618, p=0.1935]. Planned comparisons on the effects of Drug within the sexes 

found that nicotine and 1.0 mg/kg varenicline significantly elevated Pmax values relative 

to saline in males [ps<0.05]. In females, nicotine and both varenicline doses differed from 

saline, and both varenicline dose conditions were significantly lower on Pmax than 

nicotine [ps<0.05]. Statistical inspection of the effects of sex at the different drug 

conditions found higher values of Pmax in females in the nicotine and 0.1 mg/kg 

varenicline conditions [ps<0.05]. 

 

Figure 18. Estimates of Pmax derived from the reinforcer demand model. Female rats are represented by the 
open bars, and male rats by the filled bars. Left: the effects of drug within each sex. * indicates significant 
differences from the saline condition for each sex. ^ indicates a significant difference from nicotine.  Right: 
the effects of sex under each drug condition. Asterisks indicate significant differences between the sexes. 
Error bears represent ± 1 SEM. 

 Estimates of Omax derived from the reinforcer demand model are displayed in 

Figure 19. Analyses revealed a significant main effect of Drug [F(3,66)=43.77, 

p<0.0001], but not of Sex [F(1,22)=2.125, p=0.1590] or a Sex x Drug interaction 

[F(3,66)=2.280, p=0.0874]. Analysis of the effects of nicotine and varenicline 
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administration within the sexes found that nicotine and 1.0 mg/kg varenicline increased 

Omax estimates relative to saline in males and females; 0.1 mg/kg varenicline also 

increased Omax relative to saline in females [ps<0.05]. Both varenicline dose conditions 

also differed from nicotine in each of the sexes [ps<0.05]. Additionally, significant 

differences in Omax were observed between varenicline conditions in the females, with 

higher Omax associated with higher varenicline dose [p<0.05]. Additional analysis on the 

effects of sex at each drug condition found significantly higher estimates of Omax in 

females under drug all conditions but saline [ps<0.05]. 

 

Figure 19. Estimates of Omax derived from the reinforcer demand model. Female rats are represented by the 
open bars, and male rats by the filled bars. Left: the effects of drug within each sex. * indicates significant 
differences from saline. ^ indicates a significant difference from nicotine. % indicates a significant 
difference between varenicline doses. Right: the effects of sex under each drug condition. Asterisks 
indicate significant differences between the sexes. Error bears represent ± 1 SEM. 

 The estimates of essential value of VS reinforcement across drug conditions and 

between the sexes are shown in Figure 20. Analyses revealed a significant main effect of 

Drug [F(3,66)=31.24, p<0.0001], but not of Sex [F<1] or a Sex x Drug interaction [F<1]. 

A priori comparisons of the effects of Drug within the sexes revealed identical patterns in 

males and females: nicotine and both doses of varenicline significantly enhanced 

essential value relative to saline, and enhancement by 0.1 mg/kg varenicline was 
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intermediate to that of nicotine [ps<0.05]. Additionally, essential value was significantly 

greater (i.e. lower values of α) in 1.0 mg/kg varenicline than 0.1 mg/kg varenicline 

[p<0.05]. However, greater essential value was observed in females than in males in the 

nicotine condition, but not at any of the other drug conditions [ps>0.05]. 

 

Figure 20. Estimates of essential value parameter (α) derived from the reinforcer demand model. Female 
rats are represented by the open bars, and male rats by the filled bars. Left: the effects of drug within each 
sex. * indicates significant differences from saline. ^ indicates a significant difference from nicotine. Right: 
the effects of sex under each drug condition. Asterisks indicate significant differences between the sexes. 
Error bears represent ± 1 SEM. 

 Overall, the results of the demand assessment phase indicate that nicotine and 

varenicline enhanced the reinforcement value of VS relative to saline conditions. 

Enhancement was observed in males and females, with some notable differences between 

the sexes observed on different metrics of the reinforcer demand model. Namely, 

nicotine-enhanced measures of VS reinforcement value were greater in females with 

exception of the Q0 parameter. Additionally, females showed higher Q0, Pmax, and Omax 

values than males in the varenicline conditions, though the effects on Q0 and Pmax differed 

by varenicline dose. In combination, the findings of the demand assessment phase 

suggest that nicotine and varenicline enhance the value of reinforcing sensory stimuli in 
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males and females, but that females may be more sensitive than males to the enhancing 

effects of varenicline and nicotine on sensory reinforcement. 

Results - α4β2 Antagonism on Progressive Ratio Performance 

 Active-lever pressing on the PR schedule of VS reinforcement across sessions of 

the DHβE testing phase is displayed in Figure 21. Nicotine and varenicline increased 

active lever-pressing on the PR schedule relative to saline in males and females. Analysis 

revealed significant effects of Sex [F(1,21)=8.769; p=0.0075], Drug [F(2,42)=50.15; 

p<0.0001] and Antagonist Dose [F(2,42)=11.65; p<0.0001]. The Sex x Drug 

[F(2,42)=6.587; p=.0032], Sex x Antagonist Dose [F(2,42)=4.630; p=0.0152], and Drug 

x Antagonist Dose interactions [F(4,84)=7.313; p<0.0001] were significant as well. 

Finally, the Sex x Drug x Antagonist Dose interaction was also significant 

[F(4,84)=2.860; p=0.0286]. Planned pairwise comparisons found that 3.0 mg/kg DHβE 

decreased active lever-pressing in all drug conditions in females, and in the nicotine 

condition in males [ps<0.05] (Figure 21, left panel). The lower dose of 1.0 mg/kg DHβE 

also reduced active lever-pressing in females in the saline and varenicline conditions 

[ps<0.05]. Analysis of the effects of nicotine and varenicline within the sexes in the 

absence of DHβE found that both drugs increased active lever-pressing relative to saline; 

levels of enhanced responding were similar between nicotine and varenicline in the 

females, but nicotine-enhanced responding was greater than that of varenicline in males 

[ps<0.05]. Investigation of differences between the sexes in responding under each drug 

condition in the absence of DHβE revealed consistently higher responding in females 

than in males across drug conditions [ps<0.05] (Figure 21, right panel). Further analysis 

of the Sex x Drug x Antagonist Dose interaction revealed that antagonism with DHβE at 
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either dose attenuated the differences in nicotine and varenicline-enhanced responding in 

males, but both remained significantly higher than saline [ps>0.05]. In contrast, decreases 

in responding by 3.0 mg/kg DHβE were greater in the nicotine condition than the 

varenicline condition in females, such that nicotine levels of responding were 

intermediate to saline and varenicline [p<0.05]. 

 

Figure 21. Active lever-pressing across the sessions of the α4β2 antagonism testing phase using DHβE. 
Left: Active lever-pressing between the sexes, averaged across the 2 determinations of each of the DHβE 
test conditions. * represents a significant difference from the saline control condition of antagonist dose 
within a drug condition. ^ represents a significant difference between doses of DHβE within a drug 
condition. Right: The effects nicotine and varenicline on active lever-pressing between the sexes in the 
absence of DHβE. * represents significant differences between the sexes within a drug condition. % 
represents a difference from the saline condition within each sex. Error bears represent ± 1 SEM. 

 Figure 22 shows the locomotor activity across sessions of the α4β2 antagonism 

testing phase. Multi-factorial ANOVA revealed significant effects of Sex [F(1,21)=26.51; 

p<0.0001], of Drug [F(2,42)=10.08; p=0.0003], and a significant Sex x Drug interaction 

[F(2,42)=41.07; p<0.0001], but no main effect of Antagonist Dose [F(2,42)=1.397; 

p=0.2585]. Planned pairwise comparisons discovered a significant decrease in locomotor 

activity by 1.0 mg/kg DHβE under the saline condition in females [p<0.05], but no other 

effects of DHβE administration on locomotor activity within any of the drug conditions 

in either of the sexes [p<0.05] (Figure 22, left panel). Although a decrease was detected 

at the 1.0 mg/kg DHβE dose in females, the small effect size and lack of an effect at the 
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3.0 mg/kg DHβE dose suggest that this finding likely represents a Type I detection error. 

Further analysis on the effects of drug on locomotor activity within the sexes in the 

absence of DHβE (Figure 22, right panel) found that nicotine and varenicline increased 

locomotor behavior in females to similar levels [ps<0.05]. In contrast, both drugs 

produced significant decreases in locomotor activity in males [ps<0.05]. Additionally, 

locomotor activity in the absence of DHβE was significantly higher in females than in 

males under all drug conditions, including saline [ps<0.05]. 

 

Figure 12. Locomotor activity across the sessions of the α4β2 antagonism testing phase using DHβE. Left: 
Locomotor activity between the sexes, averaged across the 2 determinations of each of the DHβE test 
conditions. * represents a significant difference from the saline control condition of antagonist dose within 
a drug condition. Right: The effects nicotine and varenicline on locomotor activity between the sexes in the 
absence of DHβE. * represents significant differences between the sexes within a drug condition. % 
represents a difference from the saline condition within each sex. Error bears represent ± 1 SEM. 

Results - α7 Antagonism on Progressive Ratio Performance 

 Active lever-pressing across the sessions of the antagonist testing phase with 

MLA is presented in Figure 23. Multi-factorial statistical analysis revealed significant 

effects of Sex [F(1,21)=7.831; p=0.0108] and Drug [F(2,42)=53.29; p<0.0001], but not of 

Antagonist Dose [F(2,42)=1.060; p=0.3555] and no significant interactions. Planned 

pairwise comparisons on the effects of MLA dose within drug conditions of each sex 

(Figure 23, left panel) found no effects of MLA antagonism of α7 nAChRs on active 
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lever-pressing in any drug condition [ps>0.05]. In the absence of MLA, nicotine and 

varenicline enhanced lever-pressing to similar levels in females, but enhancement by 

nicotine was greater than enhancement by varenicline in males [ps<0.05] (Figure 23, 

right panel). Furthermore, females lever-pressed more than males in each drug condition 

[ps<0.05]. 

 

Figure 23. Active lever-pressing across the sessions of the α7 antagonism testing phase using MLA. Left: 
Active lever-pressing between the sexes, averaged across the 2 determinations of each of the MLA test 
conditions. Right: The effects nicotine and varenicline on active lever-pressing between the sexes in the 
absence of MLA. * represents significant differences between the sexes within a drug condition. % 
represents a difference from the saline condition within each sex. Error bears represent ± 1 SEM. 

 Locomotor activity over the sessions of the MLA testing phase is presented in 

Figure 24. Analyses revealed significant effects of Sex [F(1,21)=28.21; p<0.0001], and of 

Drug [F(2,42)=5.854; p=0.0059], and a Sex x Drug interaction [F(2,42)=17.52; 

p<0.0001]. A priori pairwise comparisons discovered no effects of MLA administered at 

either dose on locomotor activity within drug conditions of either sex [ps>0.05] (Figure 

24, left panel). Further analysis on the effects of nicotine and varenicline on locomotor 

activity in the absence of MLA (Figure 24, right panel) revealed significant locomotor 

activation by both drugs in females relative to saline, but no effects of either drug on 

locomotor activity in males [ps<0.05]. Additionally, in the absence of MLA, females 
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expressed greater locomotor activity than males under the nicotine and varenicline 

conditions, but not following injection of saline [ps<0.05]. However, differences in 

locomotor activity following saline injection were significantly higher in females in the 

3.0 and 10 mg/kg MLA conditions [ps<0.05]. 

 

Figure 24. Locomotor activity across the sessions of the α7 antagonism testing phase using MLA. Left: 
Locomotor activity between the sexes, averaged across the 2 determinations of each of the MLA test 
conditions. Right: The effects nicotine and varenicline on locomotor activity between the sexes in the 
absence of MLA. * represents significant differences between the sexes within a drug condition. % 
represents a difference from the saline condition within each sex. Error bears represent ± 1 SEM. 

 The PR performance data corroborate the previous observation that nicotine and 

varenicline enhance responding maintained by VS reinforcement, and that enhanced 

levels of responding were higher in females. Additionally, the observation that females 

lever-pressed more than males under saline baseline conditions was also replicated. 

Interestingly, nicotine and varenicline induced hyper-locomotion in females, but neither 

drug increased locomotor behavior in males. In fact, nicotine and varenicline induced 

locomotor suppression in males while simultaneously enhancing active lever-pressing. 

This latter observation strongly implies that the value-enhancing effects of nicotine and 

varenicline are not an artifact of parallel effects of locomotor activation. Notably, α4β2-

containing nAChR antagonism via DHβE decreased active lever-pressing under the 

nicotine condition in both sexes without reliable effects of locomotor behavior. A similar 
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effect was observed in the varenicline condition of females. Additionally, α7 nAChR 

antagonism with MLA yielded no effects on lever-pressing or locomotion. Together, 

these findings suggest a critical role of α4β2-containing nAChRs, but not of α7 nAChRs, 

in the reward-enhancing effects of nicotine and varenicline.   
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Chapter 6: Summary and Discussion of Main Findings 

 Chapters 3, 4 and 5 outlined the methods and results of two experiments designed 

and conducted in an effort to improve our understanding of the value-enhancing effects 

of nicotine and the smoking cessation aids, bupropion and varenicline. Each experiment 

represents an independent investigation of value-enhancement with special attention to 

biological sex and the role of dopamine or nicotinic acetylcholine receptors as 

neuropharmacological mechanisms of enhancement. Despite the procedural differences 

between the present experiments, which are relatively few, the combined results of each 

help to construct a larger picture of value-enhancement and overall reinforcement by 

nicotine. In this chapter, I summarize the main findings of interest from the vast amount 

of data generated in the multiple phases of each experiment.  Thereafter, I will consider 

alternative interpretations of what the present findings reflect and why they are 

meaningful in the context of each experiment. Finally, we will consider the implications 

of the present findings in the wider context of nicotine reward and the driving 

motivational mechanisms of smoking behavior. 

Summary of Experiment 1 

 Experiment 1 was designed to investigate the value-enhancing effects of nicotine 

and bupropion using the quantitative methods of the reinforcer demand model. As 

highlighted in Chapter 2, the reinforcer demand model provides a unique method for 

characterizing the performance of behavior maintained by reinforcing stimuli that may 

arguably represent multiple facets of the reinforcement value construct (Barrett and 

Bevins, 2012; Hursh and Silberburg, 2008). A strength of Experiment 1 is that the value-

enhancing effects of nicotine and bupropion were characterized side-by-side in a within-
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subjects design, using the reinforcer demand model and more traditional measures of 

response strength. Such an approach generates the possibility for direct comparison 

between the effects of each compound on the behavior of individuals as they respond 

under schedules of VS reinforcement.  

 In Experiment 1, we found that nicotine and bupropion increased lever-press 

response rates and this effect was more pronounced on the active lever. This effect was 

observed across a range of FR schedules and was observed in both sexes. Interestingly, 

bupropion engendered far greater enhancement of response rates in females than in 

males, which is consistent with other findings that females are more sensitive to the 

response activating effects of many psychomotor stimulants (Van Swearinggen, Walker, 

and Kuhn, 2013; Reichel et al., 2012; Eubig et al., in press). Indeed, females also showed 

pronounced activation of locomotor behavior by both nicotine and bupropion, whereas 

males showed only moderate and inconsistent locomotor activation by bupropion, and no 

activation by nicotine. However, the increases in active lever-pressing by nicotine and 

bupropion observed in either sex are probably not caused principally by locomotor 

activation since enhancement by nicotine was observed in males in the absence of 

locomotor activation, and 10 mg/kg bupropion increased locomotor behavior in females 

to greater levels than nicotine, yet both drugs enhanced active lever-pressing to similar 

levels. A more thorough treatment of the relationship between locomotor activation and 

value-enhancement will be provided later when we consider the findings of both 

experiments together. 

 Demand for VS reinforcement was also enhanced by both nicotine and bupropion 

in Experiment 1. One of the most notable findings made evident by the reinforcer 
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demand analysis is that males and females differed in their consumption of VS reward 

under bupropion conditions. VS consumption in either bupropion condition was 

indistinguishable from the nicotine condition in females, whereas bupropion enhanced 

VS consumption in a dose-dependent manner in males, but not to the extent of 

enhancement by nicotine. Responding maintained by VS reinforcement was consistently 

greater in females across all drug conditions, and especially so at higher unit costs. From 

these observations, it would appear that females are generally more responsive to sensory 

reinforcement by VS than males, and the estimates of the components of the reinforcer 

demand model seem to corroborate this hypothesis. Closer inspection of potential sex 

differences on the four measures generated by the reinforcer demand model revealed that 

females and males consistently differed under bupropion conditions across all the indices 

of the demand model. Importantly, on the essential value parameter (α), the purported 

single-parameter encapsulation of reinforcement value (Hursh and Silberburg, 2008), sex 

differences were also observed in the saline condition. Finally, bupropion enhancement 

of VS reinforcer demand in males showed dose-dependency that was not observed in 

females, and with intermediate or no enhancement being reliably observed at the 10 

mg/kg dose condition. These findings combine to suggest that males and females may 

differ in basal value derived from the VS reinforcer used in these studies, and that they 

also differ in their sensitivity to the value-enhancing effects of bupropion. Notably, 

females showed greater sensitivity to the effects of nicotine, and the greatest sensitivity to 

bupropion on demand indices related to response persistence and maximal sustainable 

effort (Pmax and Omax).  
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 Over the sessions of the antagonist testing phases, nicotine and bupropion 

enhanced active lever-pressing to a greater degree in females than in males. Performance 

on PR schedules is often used as an assay of response persistence, of which PR 

breakpoints are a traditional measure (Bickel et al., 2000). The purpose of the PR in the 

present experiments was not to obtain breakpoints; nevertheless, the utility of testing on a 

PR schedule was partly to observe the effects of nicotine and bupropion treatment on 

behavior maintained under conditions that challenge persistence. In this way, the PR 

schedule served as a single session proxy for the demand assessment methodology with 

the benefit of allowing for quick and efficient testing of the antagonist effects, but at the 

drawback of not permitting an analysis of reinforcer consumption as a function of 

reinforcer price. In this fashion, the methods of the demand assessment phase and of the 

PR schedule in the antagonist testing phases should be viewed as complimentary, 

allowing for investigation of the effects of increasing response cost as an assay of 

behavioral persistence across and within sessions. The findings between the demand 

analysis and PR schedule converge to suggest that females may be more sensitive to 

enhancement of behavioral persistence by nicotine and bupropion. 

 Antagonism of the D1 receptor family by SCH-23390 decreased lever-pressing 

and locomotor activity in both males and females. Unfortunately, this makes interpreting 

the role that D1-family receptors play in the value-enhancing effects of nicotine and 

bupropion somewhat difficult. On the one hand, decreases in responding may actually 

reflect a decrease in basal reinforcement value of the VS that further decrease levels of 

value-enhancement by nicotine and bupropion. On the other hand, decreases in locomotor 

activity, particularly under saline conditions suggests a likely impairment of motor 
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behavior which may have interfered with lever-pressing for reasons not related to change 

in reinforcement value. Given the significant role that dopamine plays in locomotor 

behavior generally (Beninger, 1983; Hoffman and Beninger, 1985), a motor impairment 

account seems more parsimonious.  

 In contrast, the results from the antagonist testing phase with eticlopride are 

considerably less ambiguous. Eticlopride decreased lever pressing only in the bupropion 

conditions of both sexes, and these decreases were not accompanied by locomotor 

suppression. Although 30 µg/kg eticlopride did decrease responding when evaluating the 

main effect of antagonist dose, the size of this effect was considerably small and should 

not be interpreted as significant motor impairment. Rather, D2-receptor family 

antagonism appears to have partially attenuated the value-enhancing effects of bupropion 

without affecting the enhancing effects of nicotine or the basal reinforcement value of 

VS. Taken together, the results from both antagonist testing phases suggest that activation 

of D2-like receptors is a critical component of the enhancing effects of bupropion but not 

of nicotine, highlighting a pharmacological distinction in the mechanisms of value-

enhancement between these two drugs. Activation of D1-like receptors may also be 

involved in the value-enhancing effects of nicotine and bupropion, but this possibility 

will require further investigation using techniques that can parse apart the role of these 

receptors in locomotor behavior versus processing reinforcement value. 

Summary of Experiment 2 

 Experiment 2 evaluated the reward-enhancing effects of nicotine and varenicline 

using a side-by-side comparison within individual rats, in addition to comparison 

between the sexes. Nicotine and varenicline increased active lever-pressing rates relative 
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to saline, and did so over a wide range of FR schedules. Increases in inactive-lever 

pressing were also observed, but the size of these changes were small and nowhere near 

in proportion to the increases observed on the active lever. In both sexes, enhancement of 

lever-pressing by nicotine surpassed levels of enhancement by varenicline, corroborating 

the findings of previous studies that the value-enhancing effects of varenicline are weaker 

than those of nicotine (Levin et al., 2012; Schassburger et al., in press). Locomotor 

activity was also enhanced by nicotine and varenicline in females, but not in males. The 

apparent sex differences in the locomotor stimulating effects of nicotine in Experiment 2 

are a direct replication of a similar effect in the preceding experiment; together, these 

findings confirm observations from previous studies finding little or no locomotor 

activation by nicotine using similar procedures with male rats (Barrett and Bevins 2012; 

2013). Again, the response-elevating effects of nicotine and varenicline are not 

sufficiently explained by a locomotor activation account, since enhancement of response 

rates by both drugs was observed in males in the absence of locomotor activation. Indeed, 

enhancement of responding in males was observed in conditions where locomotor 

behavior was, in fact, decreased by nicotine and varenicline. 

 Evaluation of demand to consume VS reinforcers as a function of price in units of 

FR response cost revealed similar patterns of enhancement by nicotine and varenicline 

between the sexes. Nicotine robustly increased consumption of VS across values of unit 

cost, whereas varenicline dose-dependently enhanced VS consumption to levels generally 

below those of nicotine. As in Experiment 1, females showed greater levels of VS 

consumption than males under each of the drug conditions, but this may not actually 

reflect an increased sensitivity to VS sensory reinforcement  in females. Notably, females 
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did not differ from males in any of the parameters or predictions of the reinforcer demand 

model under any saline conditions in Experiment 2. However, females did show greater 

enhancement by nicotine and varenicline largely on indices related to behavioral 

persistence (Pmax and Omax), though it should be noted that nicotine-enhanced levels of 

essential value were also greater in females than in males. 

 Enhancement of value by nicotine and varenicline was detected by each of the 

indices of the reinforcer demand model assessed within the sexes, with the exception of 

Q0; only nicotine increased estimates of Q0 and only in males. In fact, the effects of 

nicotine on Q0 appear somewhat blunted in both the sexes in Experiment 2 when 

compared to previous work (Barrett and Bevins, 2012; Cassidy and Dallery, 2012, in 

press), including Experiment 1. This observation might result from repeated activation 

and prolonged desensitization of α4β2 nAChRs by repeated administration of nicotine 

and varenicline that may thereby cause a weakening of the value-enhancing effects of 

both compounds; or it could reflect a sample of rats with decreased sensitivity to sensory 

reinforcement or the value-enhancing effects of nicotine. Without confirmatory research, 

either account remains speculative. Nonetheless, the apparent lack of effect of nicotine or 

varenicline on Q0 in the female rats represents a point of departure in Experiment 2 from 

previous work that may warrant further investigation. It should be noted that although 

values of Q0 were higher in females than males at the 1.0 mg/kg varenicline dose, no 

enhancement of Q0 relative to saline was observed in females at this or any other 

condition. Therefore, the differences in Q0 between the sexes wrought by varenicline may 

not reflect a difference in enhancement by varenicline. Q0 aside, the effects of nicotine 

and varenicline on each of the other model estimates suggest that both compounds 
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enhanced the value of VS reinforcement within the sexes, and that enhancement by 

nicotine was by some degree stronger than enhancement by 1.0 mg/kg varenicline. 

 Nicotine and varenicline also enhanced lever-pressing performance on the PR 

schedule across the antagonist testing phases. Enhancement of PR performance by 1.0 

mg/kg varenicline was essentially equivalent to nicotine in females, but decreased 

relative to nicotine in males. Differences in lever-pressing were observed between the 

sexes, echoing the findings of Experiment 1 that females may have a tendency toward 

greater response persistence and enhancement of persistence by nicotine. Antagonism of 

α4β2-containing nAChRs decreased active lever-pressing maintained by VS 

reinforcement in each of the drug conditions in females, but only in the nicotine condition 

in males. The reason for this discrepancy in unclear. These findings may reflect a role on 

α4β2-containing receptors in the perception of reinforcement value and enhancement of 

value by nicotine and varenicline that is more pronounced in females than in males. 

Alternatively, these findings may result from a floor-effect that prohibited detection of 

parallel effects in the males. A floor-effect account is somewhat undermined by the 

observation that lever-pressing rates in the saline control condition in females were 

roughly equivalent to varenicline-enhanced rates in males, yet DHβE decreased 

responding in the saline conditions of females but not in the varenicline conditions in 

males. That is, decreases in response rates should have been detectable in the varenicline 

conditions of males given that such decreases were readily observed from similar rates in 

females under saline conditions. Nonetheless, DHβE decreased lever-pressing in the 

nicotine conditions of both sexes, suggesting that α4β2-containing nAChRs mediate the 

value-enhancing effects of nicotine, and possibly varenicline. The finding that DHβE had 
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no reliable effects on locomotor activation under any of the drug conditions for either of 

the sexes, suggests attenuation of value-enhancement by DHβE was not the result of 

locomotor suppression. 

 Antagonism of α7 nAChRs by MLA had no effects on lever-pressing or 

locomotor activity under any of the drug conditions in either of the sexes. These findings 

confirm previous work with nicotine that found no role of α7 receptors in the value-

enhancing effects of nicotine (Liu et al., 2007), and extends this finding to varenicline. 

The null effect of α7 antagonism in the varenicline conditions is notable because 

varenicline is a full agonist at, and binds with great affinity to α7 nAChRs (Grady et al., 

2010; Ortiz et al., 2012). In combination with previous work, the present results reinforce 

the conclusion that α7 nAChRs are not involved in the reward-enhancing effects of 

nicotine or the expression of reward-enhancement generally. 

Discussion of Main Findings 

 The combined findings of Experiments 1 and 2 provide a number of interesting 

observations regarding the reward-enhancing effects of nicotine and those of varenicline 

and bupropion. Foremost, nicotine potently enhances the reinforcement value of VS 

sensory reinforcement and this effect is not adequately explained by locomotor 

activation. Each experiment here represents a replication of this effect also observed in 

previous work, including our own work using the reinforcer demand model to quantify 

the value-enhancing effects of nicotine in male rats (Barrett and Bevins, 2012).  

 An interesting observation from the present experiments is that lever-pressing 

occurred at higher rates and persisted onto higher values of unit cost in females compared 

to males. Previous studies have shown a similar tendency for females to exhibit higher 
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baseline response rates (Chaudhri et al., 2005; Grebenstein et al., 2013). As noted above, 

this observation may reflect a tendency toward increased sensitivity to sensory 

reinforcement and/or to the enhancing effects of nicotine, bupropion and varenicline in 

females. However, the findings of the reinforcer demand model do not provide adequate 

support for this conclusion. In Experiment 1, the model estimated greater essential value 

in females compared to males under saline conditions, but did not find similar effects 

with any of the other model indices. Furthermore, the model estimates yielded no 

differences between the sexes under saline conditions in Experiment 2. Undeniably, a 

trend towards increased value sensitivity in females is observable across each of the 

model estimates in the saline conditions of both experiments. However, in neither 

experiment did the main effect of Sex reach significance in the analyses of the essential 

value parameter. Whether the difference between the sexes in essential value under saline 

conditions in Experiment 1 is an accurate representation or a Type I detection error 

remains unclear; further experimentation that includes a replication of the present 

demand assessment methodology between the sexes will be required to confirm or reject 

this observation. Saline conditions aside, sex differences in the effects of nicotine, 

bupropion, and varenicline were observed across experiments. Notably, the measures that 

most reliably detected differences between the sexes were those that provide some 

representation of persistence of responding (i.e. Pmax, Omax, and PR response rates). This 

observation may suggest that observed differences in response rates between the sexes is 

caused by another behavioral mechanism other than differential sensitivity to basal 

reinforcement value or to value-enhancing effects. 
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 One possibility is that females may be more sensitive to the associative links in 

the response-reinforcer or context-reinforcer relationships inherent in the present designs. 

Indeed, the observation that sex differences were most readily detected by measures 

reflecting persistence of responding may suggest that responding by females had acquired 

more behavioral momentum than responding by males. Behavioral momentum is a 

theoretical framework that relates strength of response (i.e. behavioral mass) to 

persistence of responding in the face of disrupting variables, such as changes in 

motivation, context, or reinforcement contingencies (Nevin, 1974; Nevin and Grace 

2000). Importantly, momentum is determined by the strength of conditioned associations 

formed between the response, reinforcing stimulus, and context of reinforcement; 

manipulations that strengthen or weaken these associations likewise affect persistence of 

responding. Thus, increased persistence of responding in the females in the present 

experiments could possibly result from heightened sensitivity to the stimulus elements of 

the context, or from stronger connections in the context-reinforcer or response-reinforcer 

associations. Such effects would strengthen persistence of responding without necessarily 

enhancing reinforcement-value as measured by reinforcer demand. While examination of 

these possibilities is beyond the scope of the present work, future research should 

investigate the possibility of sex differences in behavioral momentum acquired through 

sensory reinforcement, and the effects of nicotine within the behavioral momentum 

framework. 

 The present experiments also extend our understanding of the nature of value-

enhancement by bupropion and varenicline, and represent the first attempt to characterize 

reward-enhancement by either of these compounds in females. The original findings that 
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bupropion and varenicline possess value-enhancing properties that may contribute to their 

clinical efficacy in smoking cessation was replicated in the present experiments 

(Palmatier et al., 2009; Levin et al., 2012; Schassburger et al., in press). Importantly, 

there were differences in the behavioral characteristics of enhancement by bupropion and 

varenicline that may be informative to understanding the mechanisms of their clinical 

efficacy. Specifically, we observed that bupropion produced robust reward-enhancement 

that was more pronounced in females. Levels of bupropion-enhanced responding 

approximated those of nicotine, or even exceed nicotine-enhanced levels in some 

instances. Likewise, bupropion produced pronounced locomotor activation that was 

greater than activation by nicotine, and this effect was also greater in females. In contrast, 

varenicline enhanced lever-pressing to levels some degree lower than enhancement by 

nicotine, and this pattern was generally consistent between the sexes. Females did show 

greater enhancement by varenicline on measures of persistence, but showed no effects of 

varenicline of basal intensity of demand (Q0), and did not differ from males in 

varenicline-enhanced levels of essential value. Additionally, varenicline only increased 

locomotor activity in females; in males it had no effect or even decreased locomotor 

activity. Combined, these findings suggest that bupropion and varenicline may exert their 

enhancing effects on reinforced behavior via different mechanisms. This possibility 

should not come as a surprise, because we already knew that bupropion and nicotine 

enhance value via different pharmacological mechanisms (Palmatier et al., 2009), and the 

pharmacological mechanisms of enhancement between nicotine and varenicline are likely 

shared (Levin et al., 2012; Schassburger et al., in press). The differential effects of D2-

receptor family antagonism on nicotine and bupropion-enhanced responding in 
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Experiment 1, and the common effects of α4β2-containing nAChR antagonism on 

nicotine and varenicline-enhanced responding in Experiment 2 support the transitive 

extension that the pharmacological mechanisms of enhancement differ between 

bupropion and varenicline. 

 Previous work found that bupropion enhanced operant responding for VS via 

activation of α1-norepinephrine receptors and not via action at nAChRs (Palmatier et al., 

2009). The present findings extend previous findings by implicating a role of D2-family 

dopamine receptor activation in the enhancing effects of bupropion as well. Recall that 

the primary effects of bupropion on neurotransmission are inhibition of norepinephrine, 

dopamine, and serotonin reuptake, increasing vesicular monoamine transport, and 

noncompetitive antagonism of nAChRs (for a review, see Dwoskin et al., 2006). It seems 

likely that the value-enhancing effects of bupropion result from its ability to indirectly 

increase dopamine activity in the nucleus accumbens, either via reuptake inhibition or via 

activation of dopaminergic projections from the pre-frontal cortex into the nucleus 

accumbens through activation by norepinephrine (cf. Palmatier et al., 2009). The latter 

mechanism has been proposed based on the similarities in structure and function between 

bupropion and amphetamine, and the observation that activation in the α-norepinephrine 

receptor system of the prefrontal cortex is involved in the motivational effects of 

amphetamines (Darracq et al., 1998; Palmatier et al., 2009). An interesting question for 

consideration in future studies is whether it is the activation of pre- or post-synaptic D2-

family dopamine receptors that is primarily responsible for the dopaminergic mechanisms 

of enhancement by bupropion. However, such studies will have to be carefully designed 
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to account for the significant involvement of dopamine receptor function in motor 

behavior. 

 As mentioned in Chapter 1, varenicline has a complex pharmacological profile on 

nAChRs, but its clinical efficacy as a smoking cessation aid is believed to result from its 

partial agonist/antagonist activity at α4β2-containing receptors, both mimicking and 

antagonizing the effects of nicotine at these receptors. Varenicline acts as a full agonist at 

α7 receptors with high binding affinity, and also activates α6β2* and α3β4* receptors 

(Bordia et al., 2012; Grady et al., 2010; Ortiz et al., 2012; Rollema et al., 2007; Mihalak 

et al., 2006). The present work suggests that activation of α4β2-containing receptors, but 

not α7 receptors, plays a critical role in the value-enhancing effects of varenicline. 

Notably, this is a feature that it shares with nicotine, in which activation of α4β2-

containing receptors has been implicated in both the primary reinforcing and value-

enhancing effects of nicotine (Palmatier et al., 2009). However, recent findings suggest 

that varenicline does not appear to have primary reinforcing effects, despite sharing a 

mechanism of action with nicotine at α4β2-containing receptors (Schassburger et al., in 

press). Additionally, DHβE also works as an antagonist at receptors containing the α6β2 

and α3β4 subunits (Harvey and Luetje, 1996; Harvey et al., 1996), and the role of α4β2-

containing nAChRs in the value-enhancing effects of nicotine has only been investigated 

via antagonism with DHβE (Liu et al., 2007). Together, these findings suggest that the 

α4β2 subunit may not be solely responsible for the value-enhancing effects of nicotine 

and varenicline, but that some other receptor subtype also antagonized by DHβE may be 

involved, such as α6β2* or α3β4* nAChRs (Schassburger et al., in press). Further 

investigation using more specific receptor antagonists, such as AT-1001 (Toll et al., 
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2012), or knockout gene expression may be critical in further elucidating the mechanisms 

by which nicotine and varenicline enhance reinforcement value. 

 Nicotine, bupropion, and varenicline each produce locomotor activating effects 

that were observed primarily in females in the present experiments. Increases in inactive 

lever-pressing by nicotine, bupropion, and varenicline were also observed in the present 

experiments. Inactive lever-pressing is an oft employed measure of nonspecific 

behavioral activation and has served as a proxy for more direct locomotor activity 

measures (e.g. Barrett and Odum, 2011; Donny et al., 2003) . In the present work, 

increases in inactive lever-pressing were greater in females than in males, though these 

increases in either sex were relatively small in comparison to the effects of drug 

administration on active lever-pressing. However, the observation that locomotor activity 

and inactive lever-pressing were greater in females than in males should not be 

interpreted as the primary causal mechanism of sex differences in the value-enhancing 

effects observed in the present experiments. As briefly mentioned earlier, there are 

important distinctions between the effects of nicotine, bupropion, and varenicline on 

behavioral activation and their value-enhancing effects on active lever-pressing 

maintained by VS. First, the enhancing effects of drug administration on active lever-

pressing were sensitive to reinforcement schedule, with greater proportional enhancement 

occurring on arrangements of higher unit response cost. Locomotor activity and inactive 

lever-pressing were also affected to some degree by progression of response requirement, 

but these effects were inconsistent between the sexes and nowhere near the degree of 

enhancement of active lever-pressing.  
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 Second, locomotor activity was increased by nicotine, bupropion, and varenicline 

principally in the females, with little or no activation by these drugs in males. However, 

enhancement was observed in both the sexes, albeit levels of enhancement were generally 

greater in females than in males. This observation was especially true of responding on 

the PR schedule for VS reinforcement. It is worth noting that locomotor activation by 

bupropion was greater than that of nicotine on the PR schedule of Experiment 1, yet 

enhancement of lever-pressing did not reliably reveal the same pattern. Finally, 

enhancement of active lever-pressing was observed in the same conditions as significant 

decreases in locomotor activity, as was the case with nicotine and varenicline in males 

during the DHβE antagonist testing phase of Experiment 2. These findings substantiate 

those of previous studies that demonstrate that the locomotor activating and value-

enhancing effects of nicotine may vary independently of each other, and extends those 

findings to varenicline and bupropion (Barrett and Bevins, 2012; 2013; Palmatier et al., 

2006; 2009; Schassburger et al., in press). 

 The present work adds to a now extensive body of literature demonstrating the 

robust effect of nicotine to enhance the value of other reinforcing environmental stimuli 

(see Caggiula et al., 2009 for a review). The additional observation that this enhancement 

effect is greater in females than males is congruent with observations of increased 

tenacity of tobacco dependence and increased sensitivity to non-nicotine reinforcement 

factors of smoking in women (see Perkins 2009 for a review). By bridging these two 

bodies of research, the present work serves to enrich our understanding of the variables 

that differentially drive motivation for smoking in men and women. An important 

direction for future research will be to replicate the present finding that females are more 
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sensitive the value-enhancing effects of nicotine, bupropion, and varenicline in 

preclinical and clinical populations. Additionally, future studies should investigate the 

mechanisms that underlie the differences in sensitivity to value-enhancement between the 

sexes. While conjecture on the specific mechanisms from the present results is certainly 

speculative, a few areas for future investigation suggest themselves as likely candidates. 

For instance, future studies should investigate whether males and females differ only in 

their sensitivity to value-enhancement, or whether this applies to sensitivity to sensory 

reinforcement in the absence of nicotine. The present experiments do not provide 

conclusive evidence for or against differential sensitivity to basal reinforcement value, 

but there is a clear tendency towards higher value in females. Carefully designed 

experiments that use a range of value metrics and parametrically investigate sensitivity to 

reward along a continuum of basal reinforcement value may be illuminating. If, for 

instance, females are indeed more sensitive to reward by sensory reinforcers, then some 

of the differential sensitivity to value-enhancement may stem from differential 

amplification of basal reinforcement value (Palmatier et al., 2007). 

 Future experiments may also investigate whether differences in responsiveness to 

the value-enhancing effects of nicotine, bupropion, and varenicline stem from differences 

in pharmacokinetics or pharmacodynamics. That is, are the sex differences in reward-

enhancement the result of differences in absorption, distribution, metabolization or 

elimination of these drugs, or the result of differences in the receptor activity of these 

drugs in critical brain regions? Previous work has shown that blood-plasma levels of 

nicotine are higher in female rats than in males shortly after repeated intravenous 

administration (Harrod et al., 2007), suggesting sex differences in the pharmacokinetics 
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of nicotine may play a role in its behavioral effects. Interestingly, these sex differences 

were attenuated by gonadectomy, suggesting a role of gonadal hormones as a mechanism 

for pharmacokinetic differences between the sexes (Harrod et al., 2008). Additionally, 

clearance rates (i.e. elimination) of nicotine and cotinine, a prominent metabolite of 

nicotine, are higher in women than in men, and use of oral contraceptives further hasten 

these clearance rates in women (Benowitz et al., 2006). Together, these findings suggest 

that differences in pharmacokinetics may play a role in determining sex differences in the 

behavioral effects of nicotine, including reward-enhancement. However, there are two 

reasons to suppose that pharmacokinetic differences between the sexes does not 

exclusively account for observed differences in the reward-enhancing effects of nicotine 

(Perkins, 2009). First, the elimination half-life of nicotine is about 2 hours, but 

differences in the rewarding and reward-enhancing effects of nicotine have been 

observed in far briefer intervals following administration. Second, differences in nicotine 

pharmacokinetics should also yield differences in the dose-response relations on all 

measures of nicotine, including heart rate, mood, and locomotor behavior, but such 

effects have not be observed in studies where nicotine administration levels were 

controlled between the sexes (see Perkins, 2009). Indeed, faster nicotine clearance should 

result in decreased locomotor activation in females, but we observed the opposite effect 

in the present experiments. 

 As mentioned above, gonadal hormones have been implicated as an important 

factor in the sex differences in the pharmacokinetics of nicotine (Harrod et al., 2008; 

Benowitz et al., 2006; Benowitz et al., 2009). Additionally, some evidence suggests that 

gonadal hormones may cause differences in nicotine pharmacodynamics as well. That is, 
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ovarian steroid hormones have been shown to have regulatory effects on nAChR density 

and function (see Pauly, 2008 for a review). Ovariectomized rats show decreases in the 

density of α7 nAChRs in the hypothalamus, amygdala, raphe nucleus, and cerebellum; 

and estrogen replacement attenuates this effect (Morley et al., 1983; Miller et al., 1982, 

1984; Miller and Billiar, 1986; Arimatsu et al., 1985; Koylu et al., 1997; Centeno et al., 

2006). However, gonadal hormones do not appear to regulate the density of non-α7 

nAChRs, and the number, synaptic location, subtype distribution, and nicotine-induced 

up-regulation of nAChRs do not appear to differ reliably between male and female rats 

(cf. Pauly, 2008). However, given the findings that antagonism of α7 receptors does not 

attenuate the reward-enhancing effects of nicotine (Experiment 2 and Liu et al., 2007), 

the relative influence of gonadal hormones on the reward-enhancing effects of nicotine is 

uncertain. The effects of hormone levels or estrous cycling are beyond the scope of this 

dissertation; the present studies did not monitor hormone levels or estrous cycling. 

However, future research should investigate the role of estrous or other sex hormones in 

the reward-enhancing effects of nicotine and other drugs. 

 In the present studies, the greatest differences between the sexes were observed 

under bupropion conditions. Given that the mechanisms of bupropion enhancement are 

particularly mediated by dopamine and norepinephrine receptors (Experiment 1 and 

Palmatier et al., 2009), sex differences in the dopaminergic or adrenergic responses to 

nicotine and bupropion may be informative in the context of reward-enhancement. 

Indeed, an increasingly large body of literature implicates the heightened dopaminergic 

response of females in striatal cells as a mechanism for sex differences in rewarding 

effects of a variety of drugs of abuse (cf. Roth et al., 2004; Carroll and Anker, 2010). 
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There is some evidence that gonadal hormones, specifically estrogen, regulate 

dopaminergic response in striatal tissue (Becker, 1999; cf. Roth et al., 2004; Carroll and 

Anker, 2010). For instance, nicotine-evoked dopamine release has been shown to be 

greater in estrogen-treated ovariectomized rats (Dluzen and Anderson, 1997), and density 

of dopamine uptake sites varies with estrogen level through phases of estrous cycling 

(Morissette and Di Paolo, 1993). Differences in dopaminergic function between the sexes 

have been implicated as a mechanism for sex differences in the primary reinforcing 

effects of psychomotor stimulants, including nicotine (cf. Roth et al., 2004; Carroll and 

Anker, 2010). These pharmacokinetic differences may also underlie differences in the 

reward-enhancing effects of nicotine and other psychomotor stimulants. Future research 

should investigate the relationship between estrogen-regulated differences in 

dopaminergic tone in the midbrain and sensitivity to the reward-enhancing effects of 

nicotine, bupropion or other psychomotor stimulants. 

 Finally, future research should investigate the role that value-enhancement 

replacement by bupropion and varenicline may play in the efficacy of both agents as 

smoking cessation aids. If value-enhancement by these agents is critical to their efficacy 

as pharmacotherapies for smoking cessation, then perhaps bupropion and varenicline may 

be differentially effective treatments for men and women trying to quit smoking. 

Alternatively, differences in sensitivity to the value-enhancing effects of bupropion and 

varenicline may also be accompanied by differences in sensitivity to the side-effects of 

both these agents for tobacco-abstaining patients. Regardless, an extension of the present 

findings to human populations of smokers with special attention to the behavioral and 

biological mechanisms of value-enhancement promises to be a fruitful endeavor and may 
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provide great insights into the best practices toward treating tobacco dependence between 

the sexes. 
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