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Climate change and its effects on ecosystems is a major concern. For certain animal

species, especially those that exhibit what is known as temperature-dependent sex

determination (TSD), temperature variations pose a possibly serious threat

(Valenzuela and Lance, 2004). In these species, temperature, and not chromosomes,

determines the sex of the animal (Valenzuela and Lance, 2004). It is conceivable there-

fore, that if the temperature changes to favor only one sex, then dire consequences

for their populations could occur. In this dissertation, we examine possible effects

that climate change may have upon Painted Turtles (Chrysemys picta), a species

with TSD. We investigate the magnitude and type of change required to have an

adverse effect upon its population. We look at both the effects caused by an increase

in average temperature and an increase in daily temperature variance. To examine

these effects, we develop a computational model that connects daily ambient air tem-

perature and solar radiation readings to the sex of the turtles in the nests and to

the male/female population structure. We show that an increase in temperature or

variance may cause a decline in the population, but an increase in both temperature

and variance produces the greatest decline.
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Chapter 1

Introduction

Climate change and its effects on ecosystems is a major concern. The 2007 Intergov-

ernmental Panel on Climate Change (IPCC) reports that climate change is evident

worldwide. They report the frequency of heat waves and heat extremes is likely to in-

crease (Bernstein, 2007). For certain animal species, especially those that exhibit what

is known as temperature-dependent sex determination (TSD), temperature variations

pose a possibly serious threat (Valenzuela and Lance, 2004). In these species, temper-

ature, and not chromosomes, determines the sex of the animal (Valenzuela and Lance,

2004). It is conceivable therefore, that if the temperature changes to favor only one

sex, then dire consequences for their populations could occur.

In this dissertation, we examine possible effects that climate change may have

upon Painted Turtles (Chrysemys picta), a species with TSD. We investigate the

magnitude and type of change required to have an adverse effect upon its population.

We look at both the effects caused by an increase in average temperature and an

increase in daily temperature variance. We chose to observe the effects of changing

average temperature and daily amplitude because Shine and Harlow (1996) found

that both the mean temperature and the variance of temperature influenced the
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development rates and thus incubation periods of skinks (Bassiana duperreyi).

To examine these effects, we develop a computational model that connects daily

ambient air temperature and solar radiation readings to the sex of the turtles in the

nests and to the male/female population structure. There seems to be no detailed

population model in the literature that incorporates effects of climate change on popu-

lations and gender structure of any species with TSD. In one related study the author

correlated the average air temperature in July to the the sex of the turtles, and then

they extrapolated the result to determine that an increase of 4◦C could effectively

eliminate the population (Janzen, 1994). However, only the average monthly tem-

perature was considered, and the author did not to take into account the possible

insulating effects that air may have around the eggs. As part of our study, we model

the temperature profile in a nest, given ambient air temperature and solar radiation;

we include the effects of variable heat conduction properties in the nest, specifically

of the air and soil effects in the egg layer. In contrast to Janzen (1994), we show

that a global increase of 4◦C is not enough to eliminate the population, but that an

increase of 4◦C coupled with an increase of 4◦C in average temperature amplitude is

necessary for the population to decrease.

Woodward and Murry (1993) construct a model that describes dynamics for a pop-

ulation with TSD, but in their model they assume that the proportion of females each

year is constant. In our model, we use a stochastic temperature profile inside the nest

to determine the proportion of females each year. The proportion of females is calcu-

lated using a degree-hour approach. Georges (1989; 2005 and Valenzuela and Lance

(2004)) has developed a model for determining the sex of the nest based upon the

temperature profile inside the nest, but his model is only valid for species with one

temperature threshold. Because northern painted turtles have both upper and lower

temperature thresholds, we cannot use Georges’ model. We use a degree hour model
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instead. Schwarzkopf et. al. (1987) found that degree-hours best predicted the sex

of the nest in northern painted turtles.

1.1 Temperature-Dependent Sex Determination

Temperature-dependent sex determination (TSD) is a life history strategy in which

the temperature during development of the organism determines the sex of the animal,

in contrast to other organisms which determine sex through chromosomes. There are

three major types of TSD: male-female where males are produced at cooler tempera-

tures and females at warmer temperatures, female-male where females are produced

at cooler temperatures and males at warmer temperatures and female-male-female

where females are produced at both temperature extremes and males are produced

in between. TSD is seen in crocodilians, lizards, turtles, some fish and even in some

birds. (Valenzuela and Lance, 2004)

There have been many studies performed in laboratory settings on the effects of

temperature on sex (Demuth, 2001; Chevalier et al., 1999; Du and Ji, 2003)

(Shine and Harlow, 1996; Janzen and Morjan, 2002; Schwarzkpf and Brooks, 1985;

Bull et al., 1982). The majority of the laboratory studies involve incubating the

eggs at a constant temperature. However, there have been very few studies on the

influence of temperature in actual nests (Bull, 1985; Georges, 1992; Shine and Harlow,

1996; Janzen, 1994).

While painted turtles in southern latitudes of the United States exhibit the male-

female type of TSD, (Bull et al., 1982), Schwarzkopf et. al. (1985) and Gutzke

et. al. (1984) have shown that northern populations of painted turtles produce fe-

males at both cooler and very warm nest temperatures. The upper and lower thresh-

olds for producing males show some variation among the populations. The upper
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threshold was found to be 27.5◦C in Tennessee (Bull et al., 1982) and in Ontario

(Schwarzkpf and Brooks, 1985), 28◦C in Nebraska (Gutzke and Paukstis, 1984) and

28.5 in Wisconsin (Bull et al., 1982). In Nebraska, the lower threshold was found to

be 22◦C (Gutzke and Paukstis, 1984) and in Ontario 20◦C (Schwarzkpf and Brooks,

1985). It is speculated that the lower threshold evolved because the ground tempera-

ture in northern climates seldom reaches a temperature above 28◦C

(Gutzke and Paukstis, 1984). In this study, we use the threshold temperatures for

the Nebraska turtles (Fig. 1.1).

19 2322 28 28.521 27.5

Females Mixed Males

Temperature (oC)

Figure 1.1: Temperature thresholds for the Nebraska population of painted turtles.

The sex of a painted turtle is determined during the middle-third of its develop-

mental period (Valenzuela and Lance, 2004). If the majority of development during

this time period occurs within the male temperature range, the nest will be male.

If the majority of the development occurs within the female temperature range, the

nest will produce females, and if the temperature fluctuates about a threshold cutoff,

the nest will produce both males and females (Valenzuela and Lance, 2004).

The evolutionary benefit of TSD remains uncertain. There are four widely ac-

cepted reasons for TSD persistence in reptiles, which are reviewed in

(Janzen and Phillips, 2006; Murry, 2002; Valenzuela and Lance, 2004). First, fitness

levels may be optimal for each sex at these temperatures; that is, males are produced
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if the eggs develop under conditions favorable to post-hatching males and females are

produced if the eggs develop under conditions favorable to post-hatching females

(Warner and Shine, 2008) although, Janzen et. al. (2006) downplay the significance

of this hypothesis, stating that the research confirming this view conflicts with other

research. There have been studies with the same experimental design as well as studies

on the same species but with different experimental designs that have produced both

results for and against this hypothesis (Janzen and Phillips, 2006). Second, ”TSD pro-

motes adaptive control of sex ratio to promote group fitness” (Janzen and Phillips,

2006). Third, “TSD minimizes inbreeding by producing single-sex clutches”

(Janzen and Phillips, 2006). Fourth, there is no adaptive advantage to evolving from

TSD, so it is just maintained.

1.2 Painted Turtle Life History

Chrysemys picta, the painted turtle, is characterized by a dark green to black cara-

pace, and the plastron ranges in color from yellow to a dark red with black ink-blot

type markings. The head, neck, and limbs are generally dark green in color and

can be striped with yellow or red lines. There are several distinguishing features be-

tween the sexes. Mature males have longer fore claws and longer, thicker tails than

those of females, and mature females are generally larger in overall size than males

(Bartlett and Bartlett, 2006; Ernst et al., 1994).

There are four subspecies of painted turtles which are determined according to

the region of North America it occupies. C. picta picta resides from southeastern

Canada down the coast to Georgia or Florida. C. picta marginata resides from the

southern Quebec and Ontario south through Illinois and east through Tennessee, West

Virginia, Virginia, and the Carolinas. C. picta dorsalis resides in southern Illinois
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and Missouri, down both sides of the Mississippi River to the Gulf of Mexico. C.

picta belli resides from western Ontario to British Columbia, down through northern

Oregon to Oklahoma. The differences between the subspecies are small, the main

difference being the number and size of the clutches (Ernst et al., 1994; Cagle, 1954).

The habitat of the painted turtle consists primarily of slow moving waters such

as lake coastlines, ponds, marshes, and creeks. The turtles generally begin their day

around sunrise when they bask out of the water for several hours before foraging. After

eating, they continue to bask in the sun until late afternoon or early evening when

they again forage for food before spending the night sleeping in the water. Painted

Turtles are opportunistic omnivores. Diet consist of plant matter, algae, leaches,

crayfish, spiders, mosquitoes, fish, frogs, and various other insects and bugs. Younger

painted turtles tend to be mostly carnivorous while adults are primarily herbivores

(Ernst et al., 1994).

Painted turtles have three general age classes: hatchlings (1 year olds), juveniles

(2-7 year olds), and adults (2-8+ year olds) (Cagle, 1954; Ernst et al., 1994). Hatch-

ling refers to the first year after emergence from the nest. During the first year

after emergence from the nest, hatchling growth is very rapid and they may double

in size (Cagle, 1954; Ernst et al., 1994). The age at which the turtles move from

the juvenile to adult age class depends upon both the sex of the turtle and the ge-

ographical location of the turtle (Gibbons, 1968; Ernst et al., 1994; Wilbur, 1975a;

Iverson and Simith, 1993). Juveniles grow at a steady rate until maturity is reached;

then they grow at a much slower rate (Gibbons, 1968; Wilbur, 1975b). Males reach

maturity after one to five years, while females require five to nine years (Gibbons,

1968; Ernst et al., 1994). Painted turtles in northern climates reach maturity later

than those in southern climates (Wilbur, 1975a; Iverson and Simith, 1993). Male

painted turtles generally live for at least six years, and females generally have a life
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span of at least 12 years. Many of both gender live for 15 years, and it has been

reported that painted turtles can live for 30 to 40 years. However, the upper limit on

life span is unknown (Gibbons, 1968).

The predators of the painted turtle are dependent upon the size of the turtle.

Hatchlings and juveniles are preyed upon by rice rats, muskrats, mink, raccoons,

snapping turtles, snakes, bullfrogs, large fish, herons, and water bugs, while predators

of adult turtles consist of alligators, raccoons, bald eagles, osprey, red-shouldered

hawks, and other birds. Humans and their automobiles contribute to the death

of many turtles, especially adults. Overall, raccoons are assumed to be the major

predator (Ernst et al., 1994).

Generally, reproduction occurs in late May through mid-July (Iverson and Simith,

1993; Rowe et al., 2003; Cagle, 1954; Tinkle et al., 1981). Temperature strongly in-

fluences the beginning of the nesting season, although how temperature determines

the beginning may depend on the location and, hence, subspecies of turtle. Ernst

(1994) reports that in Quebec, the beginning is positively correlated with the average

previous year’s temperature. But, in the Nebraska sand-hills (Iverson and Simith,

1993) and in Michigan (Rowe et al., 2003), the onset of nesting is correlated with the

average maximal temperature in March through May of the current year, and the

previous year’s temperature is unrelated to the onset of nesting .

Most nests are constructed in the late afternoon or early evening. They are dug in

sandy soil and are flask shaped. Generally, nests are “dug within 200m of water, but

may be as far away as 600m” (Ernst et al., 1994). After depositing and covering the

eggs with soil, the female often wets the soil with bladder water to moisten the nest.

The nests are often dug out in the open where the soil covering the nest is exposed

to direct sunlight. If weather conditions are not favorable, either too hot or too dry,

the female may delay nesting for up to three weeks (Ernst et al., 1994).
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A female will lay from one to five clutches per season, although two to three

clutches are common (Ernst et al., 1994). The number of eggs per clutch varies among

the subspecies. C. picta bella lays the most with 6 to 21 eggs, (Iverson and Simith,

1993) while C. picta picta lays 2-10 eggs and C. picta marginata lays 3-14 eggs. C.

picta dorsalis lays the fewest number with 1-7 eggs on average per clutch (Ernst et al.,

1994).

Female painted turtles store sperm of their mates. They can use this sperm to

fertilize multiple clutches within a single season and over multiple seasons. Females

may also mate with another male even if they have stored sperm from a previous

copulation. In this case, the most recent sperm is used in fertilizing the eggs first.

Larger clutches (more than 12 eggs) have a higher frequency of multiple paternity

than smaller clutches (Pearse et al., 2001, 2002).

Both the rate at which the soil conducts heat and the level of humidity play a role

in the hatching rate of the eggs. Eggs that are incubated in moist soil tend to take

longer to hatch, but have a greater hatching rate than those in dryer soil. Also, eggs

that are incubated in soil with higher thermal conductivity absorb more water than

those that are incubated in soil with lower thermal conductivity (Ernst et al., 1994).

The eggs hatch, on average, after a 76-day incubation period (Ernst et al., 1994).

In colder climates, the turtles hibernate in the nest and emerge in the spring. Painted

turtles have the ability to be frozen in the nest over winter and can survive temper-

atures as cold as −8.9◦C (Cagle, 1954; Ernst et al., 1994). Cagle (1954) reports that

during the first 10 days after emergence from the eggs, the turtles change greatly

in appearance, and by the tenth day they take on the size and proportions of small

juveniles.

According to Gibbons (1968), there are three major causes of mortality in the

nest. The first is infertility; that is, the eggs that are laid are not viable and will
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never hatch. Also, environmental conditions, such as extreme heat, cold, moisture,

or dryness may cause mortality. Finally, predation of the nests causes the failure of

many nests. The majority of predation is by raccoons, but other small rodents, foxes,

snakes and humans also contribute to failure of some nests (Ernst et al., 1994).

1.3 Model Overview

We develop a computational model to examine the potential effects that climate

change may have upon painted turtles. A computational modelis a model ”whose com-

plexity puts [it] beyond the reach of mathematical analysis” (Ellner and Guckenheimer

(2006) p. 243). That is, the model contains a large number of interacting processes

with a large parameter set. Each partof the model is modeled explicitly with a set of

rules governing the interactions between the parts.Because of their complexity, these

models must be analyzed by computer simulation. One criticism of this type of a

model is that one is replacing a complex biological process with a complex computer

system. However, a computer system does have its benefits because it can be studied

in a much shorter amount of time than the actual biological system.Also, a computer

model allows the experimenter to change whichever parameters he or she sees fit

without disturbing the actual biological system.

A second criticism is that because the models are so complex, it is difficult to

determine exactly why an outcome occurs. While this criticism cannot be completely

remedied, one can perform a local sensitivity analysis on the parameters whereby

one only considers small perturbations of each parameter, while holding the other

parameters constant. This allows the researcher to rank the parameters in order of

impact and it aids in the implementation of biological experiments. However, this

does not allow the researcher to discern possible interactions between the parameters.
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Here we use a stage structured population model to explore the effects of climate

change. We examine the effects that various temperature scenarios have upon the

population of painted turtles. Specifically, we examine the effects of increases in

average temperature and the effects of increases in daily temperature variance.

We increment the model yearly. That is, in each year we first determine stochas-

tic temperature and solar radiation profiles. For each female in the population, we

determine a first and second nesting date from a truncated normal distribution. Next

we calculate the temperature profile inside the egg layer of each nest from the heat,

or diffusion, equation. Then we determine the sex of the nest using a degree-hour

approach. Finally, we update the population projection matrix and compute the pop-

ulation vector for the year. We repeat this process for a 30-year time period. A flow

chart of the model process is shown in Fig. 1.2.

1.4 Model Assumptions

We make several assumptions to simplify the model.

1. Heat flow occurs only in the vertical direction. Because the computational

model is as complex as it is, we do not consider the geometry of the nest.

2. The metabolic heat created by the eggs is negligible. In a study on parchment-

shelled reptile eggs, such as for the painted turtle, Ackerman et. al. (1985b)

found that the eggs of three species of reptiles would be, on average, 0.18◦C

warmer than the air temperature. Because the clutch size of the painted turtle

is small (< 20 eggs) (Iverson and Simith, 1993; Ernst et al., 1994), and because

the temperature increase is minimal, we do not include the metabolic heat

created by the eggs in determining the nest temperatures. This assumption
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Figure 1.2: Flow chart for the computational model.

would not be valid for species of reptiles that have large clutches, such as the

sea turtle (Crouse et al., 1987).

3. Moisture levels remain constant in the nest. Water potential inside the nest

is very important for embryonic survival (Cagle et al., 1993; Ackerman et al.,

1985b; Gutzke et al., 1987; Ackerman et al., 1985a; Rimkus et al., 2002). We

assume that the moisture level remains constant and sufficient for development.

Thus we ignore the effect of rainfall on egg development. This assumption

simplifies the model in that the diffusivity of the soil and egg layers remain
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constant instead of variable.

4. Turtles only store sperm for at most one year, even though there is evidence

that, on occasion, sperm is stored for more than one year (Pearse et al., 2001,

2002). We also assume that the stored sperm does not lose its viability. Pearse

et. al. (2001) found that the hatchling success of turtles from stored sperm was

not significantly different from the hatchling success of turtles from new sperm.

5. Each female adult turtle nests twice a year and produces a nest every year.

Iverson et al. (1993), report that painted turtles in Nebraska generally produce

two nest each year. There is no indication of senescence. Wilbur (1975a) record

females over 30 years old still reproducing. We make the simplifying assumption

that the number of eggs laid by each adult is the same regardless of the age of

the female turtle.

6. The only environmental stochasticity is temperature. While other aspects of

environmental stochasticity (e.g., predators, food availability) may have an im-

pact upon turtle mortality and egg production, we consider only the effects of

temperature.
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Chapter 2

Model Derivation

2.1 Nest Temperature Model

We now examine the nest temperature part of our model. A diagram of the nest setup

is shown in Fig. 2.1. We begin by deriving the equation governing the flow of heat

through the nest. Then we discuss the conditions on the surface and at the top and

bottom of the nest. Finally, we discuss exact and numerical solutions to this part of

the model.

2.1.1 Diffusion Equation

In this section derive the heat equation, which describes the vertical flow of heat

through the nest. We follow the derivation given in (Logan (1987) Ch. 4). We

assume the egg layer begins at some depth a and ends at depth b, with 0 < a < b.

Let u(x, t) be the temperature at depth x at time t, and let A be the cross-sectional

area of the layer. Then for any depth x within the layer, the flux at x is given by

Fourier’s Law

flux at x = −K(x)ux(x, t),
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Soil
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a

b
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Solar Radiation
W(t)
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Uamb(t)

Figure 2.1: Schematic of a turtle nest below a ground area A.

where

K(x) =















Ks 0 ≤ x < a and b ≤ x ≤ L

Ke a ≤ x < b

is the thermal conductivity in the soil and egg layers. Let η and ζ be two points in

the soil or egg layer with ζ < η. Then the total energy in the region is

A

∫ η

ζ

c(x)ρ(x)u(x, t)dx

where

c(x) =















cs 0 ≤ x < a and b ≤ x ≤ L

ce a ≤ x < b

and ρ(x) =















ρs 0 ≤ x < a and b ≤ x ≤ L

ρe a ≤ x < b
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are the specific heat and density, respectively. Then the time rate of change of energy

in the region is equal to the heat entering at ζ minus the heat exiting at η. That is,

d

dt

∫ η

ζ

c(x)ρ(x)u(x, t)dx = K(η)ux(η, t) − K(ζ)ux(ζ, t).

Then, assuming that u is smooth in the layer (soil or egg), the Fundamental Theorem

of Calculus gives

d

dt

∫ η

ζ

c(x)ρ(x)u(x, t)dx =

∫ η

ζ

d

dx
(K(x)ux(x, t))dx.

Pulling the time derivative under the integrand and rearranging yields

∫ η

ζ

(

d

dt
(c(x)ρ(x)u(x, t)) −

d

dx
(K(x)ux(x, t))dx

)

= 0.

Therefore, as η and ζ are arbitrary, the integrand is zero and thus we have

c(x)ρ(x)ut(x, t) =
d

dx
(K(x)ux(x, t)).

Because c, ρ and K are constant in each zone (soil or egg), we can write

ut = k(x)uxx, (2.1)

where

k(x) =















ks 0 ≤ x < a and b ≤ x ≤ L

ke a ≤ x < b

with ks = Ks

csρs
and ke = Ke

ceρe
.
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The diffusivity is equal to the ratio of the thermal conductivity, Ks or Ke, to the

product of the density, ρs or ρe, and the specific heat, cs or ce, where the subscripts

denote the soil and egg layer values respectively.

2.1.2 Boundary Conditions

We now examine the condition at the boundaries: the surface, the interfaces, and

lower boundary. We consider a patch of ground of area A. At the surface, the flux in

at x = 0 is equal to the flux due to the temperature difference between the surface

and the ambient temperature plus the flux due to radiation. From Fourier’s law, the

flux in at x = 0 is

−AKsux(0
+, t),

where Ks is the thermal conductivity of the soil. The flux due to temperature differ-

ences is

Ah(Uamb(t) − u(0+, t)),

where h is the heat transfer coefficient from Newton’s law of cooling and Uamb(t) is

the ambient air temperature at time t. The radiation flux is

AαW (t),

where W (t) is the solar radiation at time t, and α is the proportion of the solar energy

absorbed. Putting this all together, we have

−AKsux(0
+, t) = Ah(Uamb(t) − u(0+, t)) + AαW (t).
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Dividing by A and rearranging, we obtain the boundary condition at the surface,

u(0+, t) −
Ks

h
ux(0

+, t) = Uamb(t) +
α

h
W (t). (2.2)

To calculate the boundary conditions at the interfaces, the top and bottom of the

nest layer, we let a be the depth where the egg layer begins and b be the depth where

the egg layer ends, with 0 < a < b. We require that the flux across each boundary

interface is constant. That is

Ksux(a
−, t) = Keux(a

+, t) Keux(b
−, t) = Ksux(b

+, t) (2.3)

In our model, we will also assume that we know the temperature profile at some

depth L. That is,

u(L, t) = g(t). (2.4)

This is a reasonable assumption because the earth’s temperature is relatively constant

at 9.76m below the surface (web, a). Note that this depth is much deeper than the

nest which is between 8cm to 12cm below the surface.

Therefore, we have that 2.1, 2.2, 2.3 and 2.4 form a BVP for the temperature in

0 < x < L, t > 0.

2.1.3 Numerical Solution

We now turn our attention to the numerical solution to the BVP for the nest tem-

perature. The temperature model solution is calculated numerically by a backward

implicit method (Logan, 1987). We use this method because it converges for all

choices of step size (Logan, 1987).
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We will calculate the numerical solution to the related BVP:

cρ(x)ut =
d

dx
(K(x)ux(x, t)) (2.5)

where

cρ(x) =















































csρs 0 ≤ x < a − ε and b + ε ≤ x ≤ L

ceρs a + εx < bx < b − ε

ceρe−csρs

2ε
(x − a + ε) + csρs a − ε ≤ x ≤ a + ε

csρs−ceρe

2ε
(x − b − ε) + csρs b − ε ≤ x ≤ b + ε

and

K(x) =















































Ks 0 ≤ x < a − ε and b + ε ≤ x ≤ L

Ke a + εx < bx < b − ε

Ke−Ks

2ε
(x − a + ε) + Ks a − ε ≤ x ≤ a + ε

Ks−Ke

2ε
(x − b − ε) + Ks b − ε ≤ x ≤ b + ε

with 0 < ε ≪ 1 with boundary conditions

u(0+, t) −
Ks

h
ux(0

+, t) = Uamb(t) +
α

h
W (t) (2.6)

u(L, t) = g(t) (2.7)

.

It is well-known in the literature that as ε → 0, the related BVP (2.5- 2.7) con-



19

verges to our BVP derived earlier (2.1, 2.2, 2.3, 2.4). Note that as ε → 0, the solution

to the related BVP does satisfy the boundary conditions at a and b. Observe that,

by the Fundamental Theorem of Calculus,

∫ a+ε

a−ε

cρ(x)utdx =

∫ a+ε

a−ε

d

dx
(K(x)ux)dx

= K(a + ε)ux(a + ε, t) − K(a − ε)ux(a − ε, t).

Evaluating the limit as ε → 0, we have

0 = K(a+)ux(a
+, t) − K(a−)ux(a

−, t).

That is,

Keux(a
+, t) = Ksux(a

−, t).

Similarly, as ε → 0,

Keux(b
−, t) = Ksux(b

+, t).

Now, a solution to the BVP exists and is unique. Indeed, assume there are two

solutions u1 and u2 of 2.5 with associated boundary conditions. Then, letting w =

u1 − u2, we have that w solves the BVP

wt = d
dx

k(x)wx 0 ≤ x ≤ L, 0 ≤ t

w(0+, t) − Ks

h
wx(0

+, t) = 0,

w(a−, t) = w(a+, t) w(b−, t) = w(b+, t)

Kswx(a
−, t) = Kewx(a

+, t) Kewx(b
−, t) = Kswx(b

+, t)

w(L, t) = 0

w(x, 0) = 0
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We set E(t) =
∫ L

0
w2dx, which is the energy. Then, E(t) ≥ 0 and E(0) = 0. Now,

E ′(t) =

∫ L

0

2wwtdx

=

∫ L

0

2w
d

dx
(k(x)wx)dx

= 2k(L)w(L, t)wx(L, t) − 2k(0)w(0, t)wx(0, t) −

∫ L

0

2k(x)(wx)
2dx

= 0 −
2ksh

Ks

(wx(0, t))
2
−

∫ L

0

2k(x)(wx)
2dx.

The final line in the inequalities is less than zero as 2ksh
Ks

> 0 and k(x) > 0 for

0 ≤ x ≤ L. Hence, E(t) is a non-increasing function, and because E(0) = 0 and

E(t) ≥ 0, we must have that E(t) = 0. Therefore, w(x, t) = 0 and the solution is

unique. Hence, the BVP is a well posed problem and so our numerical solution, which

approximates the solution to 2.5-2.7 with ε ≪ 1, will converge to the actual solution.

Assume that ε < 0.001 and let ∆x and ∆t be the space and time steps respectively

with ∆x > ε. We set up a grid (xj , tn), j = 1, 2, . . . J , n = 1, 2, . . . , N , of points with

t1 = x1 = 0, and where xj+1 = xj + ∆x and tn+1 = tn + ∆t. Note that we start our

counter at 1 instead of the conventional 0 to be consistent with the notation in our

Matlab program. Then, u(x, t) ≈ U(xj , tn) for some j, n. For simplicity of notation,

we write U(xj , tn) as Uj,n. The implicit method uses the backward approximation for

the time derivative,

ut ≈
Uj,n − Uj,n−1

∆t
,

and the second derivative is approximated by

uxx ≈
Uj+1,n − 2Uj,n + Uj−1,n

(∆x)2
.
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xj-1

tn

tn-1

xj+1
xj

Figure 2.2: A computational molecule for the implicit scheme.

Thus, to leading order, the heat equation can be approximated by

Uj,n − Uj,n−1

∆t
− k(x)

Uj+1,n − 2Uj,n + Uj−1,n

(∆x)2
= 0,

which simplifies to

−rUj−1,n + (1 + 2r)Uj,n − rUj+1,n = Uj,n−1,

where r = k(x)∆t

(∆x)2
. This leads to the system of equations for each time n
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
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




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. (2.8)

Note that here U0,n is a false boundary point as we are indexing beginning at 1. The

computational molecule is shown in Fig. 2.2.

The surface boundary condition is discretized as follows. We have u(0+, t) ≈ U1,n
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and ux(0+, t) ≈
U2,n−U0,n

2∆x
. Again, here U0,n refers to a false boundary point and not

to the ambient air temperature above the ground. We then obtain

U1,n −
Ks

h

(

U2,n − U0,n

2∆x

)

= Uamb(tn) +
α

h
W (tn).

This equation simplifies to

U0,n =
1

β

(

Uamb(tn) +
α

h
W (tn) − U1,n

)

+ U2,n, (2.9)

where β = Ks

2h∆x
.

Now, the first row in the matrix equation (2.8) is

U1,n−1 + rU0,n = (1 + 2r)U1,n − rU2,n.

Using (2.9), we then have

U1,n−1 +
r

β

(

Uamb(tn) +
α

h
W (tn)

)

= (1 + 2r +
r

β
)U1,n − rU2,n.

At the lower boundary, or at depth L = xJ we have that u(L, t) = g(t) so we set

UJ,n = g(tn).

Recall that the boundary conditions at the interfaces, or at the top and bottom

of the egg layer, require that the flux is assumed constant. These may be discretized

as

− Ks

(

Ua,n − Ua−1,n

∆x

)

= −Ke

(

Ua+1,n − Um,n

∆x

)

(2.10)

and

− Ke

(

Ub,n − Ub−1,n

∆x

)

= −Ks

(

Ub+1,n − Ub,n

∆x

)

. (2.11)
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Here a and b depend upon the location of the egg layer as well as the choice of step

size. Hence, from (2.10) and (2.11), at depth a the corresponding row in the matrix

equation becomes

KsUa−1,n − (Ks + Ke)Ua,n + KeUa+1,n = 0,

and at depth b the corresponding row is

KeUb−1,n − (Ks + Ke)Ub,n + KsUb+1,n = 0.

2.1.4 Parameter Values

In our model, we assume that all nests are laid at the same depth. We assume that

the egg layer begins 8cm below the surface and ends 12cm below the surface. These

values are those given by Larson (2004), who observed Painted turtles in Nebraska.

According to Ernst, the average dimensions of nests in Pennsylvania were between

9.9cm and 11.1cm deep (Ernst et al. (1994) p.291). We will use the temperature

profile obtained from 10cm below the surface as the egg depth to calculate the sex of

the nest.

The thermal conductivity of the egg layer was calculated by estimating the ef-

fective thermal conductivity. As the specific geometry of the egg, air and soil ar-

rangements is unknown, we choose a model that takes this into consideration. There

are many methods for estimating the effective thermal conductivity of heterogeneous

media. Several of these have been reviewed in Floury et. al. (2008). The model

we have chosen was first given by Landour (1952) and expanded upon by Davis et.
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al. (1975). An overview of many widely used models is available in (Floury et al.,

2008). We choose this particular model because it assumes that the air-egg media are

randomly dispersed within the volume where as other models do not allow for this

random dispersion. The effective thermal conductivity is found by solving

∑

j

vj

Kj − Ke

Kj + 2Ke

= 0

for Ke, where vj is the fractional volume of the jth medium with thermal conductivity

Kj .

To determine the possible values for the fractional volumes of the eggs and the

air within the nest, we examine ellipsoid packings because Painted turtle eggs are

ellipsoidal. Indeed, Iverson et. al. (1993) reported that Nebraska Painted turtles

eggs measured on average 30.14 ± 2.14mm in length and 18.31 ± 1mm in width.

Experimentally, it has been determined that the most efficient packing will result in

approximately 74% of the volume filled with eggs (Donev et al., 2004). Thus, 74%

is taken to be an upper bound on the fractional volume of the eggs as it is unlikely

that the turtle will lay her eggs in a most efficient packing. We choose 60% to be the

default fractional volume of the eggs.

Because painted turtle eggs contain about 75% water Deeming (2004), we use

the values of water for the specific heat, density and thermal conductivity of the eggs.

Again, this is consistent with the literature Edwards et al. (2003). The values of these

parameters were obtained from web (2008) as well as the parameter values for air.

The specific heat and the density of the egg layer were obtained by multiplying the

fractional volume of the eggs by the specific heat (density) of water and then adding

this to the product of the fractional volume of the air (default is 40%) by the specific

heat (density) of air.
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The absorption coefficient, α, is taken to be 0.8, which is the value used in

Buonanno et al. (1995). The heat transfer coefficient, h, is estimated using the

method given in Kreith (1965) and Buonanno et al. (1995).

We used Soil Climate Analysis Network (SCAN) data (web, b) taken at Rogers

Farm southeast of Lincoln, NE to estimate the parameter values used for the soil layer.

At this site, the air temperature, solar radiation, and soil temperature at depths of

2in, 4in, 8in, 20in and 40in as well as other constants are observed every hour. We

estimated the soil layer parameter values by solving an inverse problem as follows.

We define the function soilTemps which takes as input two values: one for the soil

thermal conductivity and one for the product of the specific heat and density. The

function then returns the 2-norm difference between the numerical calculation of the

soil temperature and the actual data values of the soil temperature. We then apply

the Nelder-Mead method to minimize soilTemps. The starting values were taken

from Ramold (1996), who give a survey of the literature of acceptable values. The

numerical solution to the inverse problem gave Ks = 14.6 and csoilρsoil = 3.8. The

thermal conductivity value is close to those for dry-sandy soil given in the literature

(Buonanno et al., 1995; Ramold, 1996), but gives a higher value for the product of

the specific heat and density than those given in the literature. However, we feel our

solution is reasonable because the SCAN data includes bouts of moisture that are not

included in our model; including moisture would cause the difficulty in modeling to

increase. Buonanno et. al. (1995) lists thermal conductivities ranging from 14.4-21.6

W
cmC

and the product of the density and specific heat to be 1.121.36 J
cm3C

for dry-sandy

soil.
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Table 2.1: Parameter values used in the model.

Parameter Value
Ksoil 14.6
Kegg 21.7875
csoilρsoil 3.8
ceggρegg 1.7449

2.2 Degree Hour Model

Recall from section 1.2 that painted turtles have two thresholds for determining sex.

Painted turtles produce exclusively males if the eggs are incubated between 22C

and 28C. Eggs incubated at temperatures below 22C or above 28C produce females.

However, if the temperature fluctuates about one of these thresholds, a mixed nest will

be produced (Fig. 2.3) Gutzke and Paukstis (1984) Schwarzkpf and Brooks (1985).

Schwarzkopf et. al. found that degree hours best predicted the sex of the nest

Schwarzkopf and Brooks (1987). Thus, in our model, we determine the sex of each

nest based upon the proportion of development achieved within each temperature

range.

19 2322 28 28.521 27.5

Females Mixed Males

Temperature (oC)

Figure 2.3: Temperature thresholds for each sex.

Let d(θ) be the development rate, given in degree-days per day, at temperature θ.

Note that θ is a function of time t. Then, the total development, from time t = 0 to
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t = t∗ is given by
∫ t∗

0

d(θ(t))dt.

In our model we assume that the development rate is linear, and we use data from

Cagle et al. (1993) and Gutzke et al. (1987) to parameterize the development function.

Following the method in Shine and Harlow (1996), we divide the shortest incubation

time, 41 days, by the incubation time for each temperature (Ta 2.2). We then calculate

the least squares regression line with these points. Thus, the development function is

d(θ) =















.05θ − .6068 12.136 ≤ θ

0 θ < 12.136

.

This line has an R2 value of .9075.

Recall that the sex of the turtle is determined during the middle third of their

development; this is referred to as the thermal sensitive period. To determine the

thermal sensitive period, we determine the starting time,

TSPbegin, and the ending time, TSPend, of the middle third of the development period

by solving
∫ TSPbegin

0

d(θ(t))dt = 0.33

and
∫ TSPend

0

d(θ(t))dt = 0.66

for TSPbegin and TSPend respectively.

We do this numerically by calculating the sum

n∗

∑

n=0

d(θ(tn))∆t,
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Temperature (C) Incubation Period (days) Development Rate
22 97.9 .4188
22 97.9 .4188
22 100 .41
23.4 72.3 .5671
23.6 68.7 .5968
23.6 65.4 .6269
23.9 66.9 .6129
24 68.8 .5959
24.7 60.6 .6766
24.8 56.3 .7282
26 57.8 .7093
26.2 61.1 .671
27 53.5 .7664
27 52.7 .778
27 51.4 .7977
32 45.4 .9031
32 42 .9762
32 41 1

Table 2.2: The incubation period is the number of days until pipping. Data from
Gutzke et al. (1987) has temperature readings of 22, 27 and 32, all other readings are
from Cagle et al. (1993).

where ∆t is the time increment between time tn and tn+1, until we have reached

one-third and two-thirds of the total development, respectively.

Next, we determine the proportion of development within each temperature range.

Let Θ = [θ1, θ2] be a temperature interval and T = [TSPbegin, TSPend]. Then, numer-

ically, the total development achieved within that range is given by

∑

{t∈T:θ(t)∈Θ}

d(θ(t))∆t.

We then compare the total development in the female range, the male range, and the

mixed range. The range that has the highest cumulative development gives the sex

of the nest. Note that we are combining the total development in both female tem-
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perature ranges together and the development in both of the mixed ranges together

when determining the sex of the nest. If the largest proportion of development is in

the male temperature range, the program deems that nest to be male and returns a

0 as the proportion of females. If the largest proportion of time is spent in the mixed

range, the program returns 0.5 as the proportion of females in that nest, and if the

proportion is in the female range, it returns a 1.

2.3 Two-Sex Model

We model the population dynamics of the system with a two-sex model. The reasons

are two-fold. First, males reach maturity at a faster rate than females. Males reach

maturity after one to five years, while females require five to nine years (Gibbons, 1968;

Ernst et al., 1994). Second, besides being polyandrous, female turtles also can store

the sperm of their mates (Pearse and Avise, 2001; Pearse et al., 2002). It has been

shown they use this sperm even if they mate again the subsequent year, employing

a “last in first out” fertilization scheme (Pearse and Avise, 2001; Pearse et al., 2002).

That is, they use the most recent sperm first and then the stored sperm. In this

population, it is possible that reproduction could be sperm limited if the temperature

increase puts the population to be very female dominated. In Fig. 2.5, we plot the

total number of eggs as a function of the number of adult males in the population

with the number of adult females being held constant at 100 individuals. Notice

that once the ratio of adult males to adult females is less than 1:2, the number of

eggs declines dramatically. The ratio of adult males to adult females is generally 1:1,

although skewed sex ratios of 1.36:1 (male dominate) and 1:1.39 (female dominate)

have been reported (Ernst et al. (1994) p. 295).

The life cycle graph of the system is shown in Fig. 2.4. In this model, turtles
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Figure 2.5: The number of eggs as a function of the number of males. Here the
number of females is held at a constant 100 individuals.
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are divided into five age classes. Because of the variability of the age at maturity, we

could have done a stage structured model instead. However, according to Iverson et.

al.(1993), “age and size at maturity are about equally variable” Iverson and Simith

(1993). Because Painted turtles in northern climates reach maturity later than those

in southern climates (Wilbur, 1975a; Iverson and Simith, 1993), we use the later ages

for reaching adulthood. For males the classes are hatchlings (year 1), juveniles (years

2-3) and three adult stages, 4-5 years, 6-7 years and 8+ years. For females the classes

are hatchlings (year 1), three juvenile classes, 2-3 years, 4-5 years and 6-7 years, and

adults. Recall that in northern climates, the painted turtle eggs are laid from May

to mid July and the turtles overwinter in the nests emerging in the spring, so we give

them their own age class (Ernst et al., 1994).

We set si, i = 1, . . . , 5 and gi, i = 1, . . . , 4 to be the survivorship and graduation

rates respectively, and p is the proportion of eggs that are male. The annual sur-

vivorship of both males and females is similar within each age class (Mitchell, 1988;

Tinkle et al., 1981; Heppell, 1998). Thus, we assume that the survivorship and grad-

uation rates are the same for males and females within an age class. Note that s1

and s5 represent true annual survivorship rates, but s2, s3 and s4 are not true annual

survivorship rates since the turtles remain in the age classes they represent for two

years.

We define the variables E, eggs, Hm and Hf , male and female hatchlings, Jm,

Jf1, Jf2, Jf3, male and female juveniles, Am1, Am2, Am3, Af , male and female adults.

Each variable is a function of time. That is, Jf1(n) is the number of female juveniles
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age 2-3 years at year n. From Fig. 2.4, we deduce the equations

H(n + 1) = s1pE(n),

J(n + 1) = s2J(n) + g1H(n),

Am1(n + 1) = s3Am1(n) + g2J(n),

Am2(n + 1) = s4Am2(n) + g3Am1(n),

Am3(n + 1) = s5Am3(n).

The female cycle is done similarly. In all, the equations can be written in matrix form

as
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(2.12)

Note that this matrix does not give the number of eggs at time n+1. This is because

the number of eggs at time n is determined by the number of adults at time n and

number females at time n − 1. We deduce this equation later.
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Table 2.3: True annual survivorships for both males and females found in literature
and used in model.

Age Class Tinkle et. al. (1981) Mitchell (1988) Wilbur (1975) Model
Eggs and 1yr 0.67 0.19 0.08 .33
2-3 yrs 0.76 0.46 0.82 .6
4-7 yrs 0.76 0.94 0.82 .7
8+ yrs 0.76 0.96 0.82 .9

We assume that the annual survivorship rates within each age class is the same

for the male and female populations. This is consistent with findings in the literature

(Tinkle et al., 1981; Wilbur, 1975a; Mitchell, 1988). The values chosen for each age

class are shown in Ta. (2.3). There is much uncertainty in the annual survivorship

for the egg and 1 year old range. This is mainly due to the difficulty in finding and

capturing this age group because of how small they are. Thus, we chose 0.33 for the

eggs and 1 year olds because it allows for the model to approach a stable state.

We determine the survivorship proportion and graduation rate for age classes that

last for more than one year by using the method given in Crouse et al. (1987) and

Caswell (2001). We assume that the proportion of individuals in their first year in

the age class is 1 and let q be the probability of surviving one year. Note that for

each two year age class, q is the model proportion given in Ta. 2.3. Then, the relative

abundance of individuals is 1 + q. Hence, the proportion of individuals in the first

year of the age class is 1
1+q

, and therefore the probability of surviving and remaining

in the age class is q

1+q
. The proportion of individuals in their second year is q

1+q
, and

so the graduation probability is q2

1+q
. The survivorship and graduation rates used in

the model are shown in Ta. 2.3.

The number of eggs, E(n), is determined by a mating function. We let am(n)

represent the sum of all adult males at time n. We assume that the number of

mating episodes is the harmonic mean of the number of adult males and adult fe-
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Table 2.4: The survivorship proportion and graduation rate for both males and fe-
males used in the matrix model.

Age Class Survivorship Graduation
Egg & 1yr .33 .33
2-3 yrs. .375 .225
4-5 yrs. .4118 .2882
6-7 yrs. .4118 .2882
8+ yrs. .9

males. Although the harmonic mean was first used to model human populations, it

has since been applied to several non-human populations (Sundelöf and Åberg, 2006;

Ranta and Kaitala, 1999; Ranta et al., 1999; Lindström and Kokko, 1998; Engel et al.,

2001) . Thus, the total number of episodes is

2am(n)Af (n)

am(n) + Af (n)
.

We now adjust to include the average number of eggs laid by each female per year,

k, and the number of females, h, mated with per male. We get the total number of

eggs laid each year:

E(n) =
2am(n)kAf (n)

am(n) + h−1Af (n)
.

Finally, we let r be the probability of using the sperm from the current year n. Then

1−r is the probability of using the sperm from last year. Recall that we are assuming

that females do not store sperm for more than one year. Thus, the total number of

eggs is the number of eggs fertilized from the current year’s sperm plus the number

of eggs fertilized from the previous year’s sperm; therefore,

E(n) = r
2am(n)kAf (n)

am(n) + h−1Af (n)
+ (1 − r)

2am(n − 1)kAf(n − 1)s5

am(n − 1) + h−1Af (n − 1)s5
. (2.13)
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Note that we have multiplied only the total number of females by the survivorship

probability because to produce eggs in the current year they must be alive, but males

do not need to be alive in the current year to use their sperm from the previous year.

Figure 2.5 shows a graph of the number of eggs as a function of the number of males

in the population.

In turtles, where higher temperatures often favor female offspring, it has been

speculated that higher temperatures favor the expression of the gene for the female-

determining factor (Valenzuela and Lance, 2004; Janzen and Phillips, 2006; Murry,

2002). Further, in a warm nest, eggs develop faster (Gutzke et al., 1987; Cagle et al.,

1993). For certain species this may mean that adult females are larger and can lay

more eggs, and therefore have a higher fitness. Others speculate that it is density de-

pendence that governs the sex ratio rather than individual fitness (Valenzuela and Lance,

2004; Janzen and Phillips, 2006; Murry, 2002). Temperature changes in the environ-

ment may lead to dynamics that favor one sex or the other in the birth function of

a two-sex model. In different words, when the male population is low, there is an

increase in contribution that males make in the birth function. For example, in the

case here, the female may use stored sperm more frequently if the male population is

small.

The model we develop in this dissertation does not take into account possible

effects when the male population is small. However, it can be adapted to address

some of the issues involving natural selection and density dependence. Conducting

numerical simulations under various scenarios in a modified model may lead to a

better understanding of the possible role of these influences. These are problems we

point to for further study and analysis (2).

In summary, we use a two-sex model because the males and females have different

maturity rates and the females store sperm from one year to the next. The yearly
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dynamics are determined by the matrix 2.12 and the egg equation 2.13. Each year,

we first calculate the number of hatchlings, juveniles and adults and then we calculate

the total number of eggs laid.

2.4 Stochastic Air Temperature Model

We generate stochastically the daily ambient temperature profile following the method

given in Logan and Wolesensky (2007). The temperature profile, θy(t), for each Julian

day, y, is given by the sinusoidal curve

θy(t) = Θy − φy cos
( π

12
(4 − t)

)

,

where 0 ≤ t < 24. Here Θy is the stochastic average daily temperature and φy is the

stochastic daily amplitude. The average daily temperature is given by

θavg(y) = Yavg − Yamp cos

(

2π

365
(35 − y)

)

where Yavg is the yearly average temperature and Yamp is the yearly average amplitude

and y is the Julian day of the year. Then, the stochastic daily temperature is given

by the autoregression

Θy+1 = θavg(y) + Ycor(Θy − θavg(y)) + σy

√

1 − Y 2
corZ

where Ycor is the autocorrelation of the current day’s temperature with the previous

day’s temperature, σy the standard deviation of the temperature and Z a normal

random variable with mean 0 and standard deviation 1.
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Figure 2.6: A sample 20 day run of the temperature program.

The temperature amplitude for each day is determined by

φy+1 = Yamp + Φcor(φ(y) − Yamp) + σφ

√

1 − Φ2
corZ

where Φcor is the autocorrelation of the current day’s amplitude with the previous

day’s amplitude and σφ is the standard deviation of the amplitude.

The baseline values used for the temperature profile are:

Yavg = 10, Yamp = 13.5, Ycor = .9, σy = 4.4, Φcor = .9, σφ = 4.4.

A sample of a temperature run is shown in Fig. 2.6.
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2.5 Stochastic Solar Radiation Model

We use average monthly data from the National Renewable Energy Laboratory (web,

c) to calculate the daily solar radiation. We assume that the solar radiation is zero

between the hours of 8:00p.m. and 6:00 a.m.. We also assume that the most in-

tense rays occur at 2:00p.m.. We assume that the daily solar radiation is given by a

piecewise cubic equation

W (t) =















0, 0 ≤ t ≤ 6 and 18 ≤ t < 24

At3 + Bt2 + Ct + D 6 ≤ t ≤ 18

.

For each Julian day, y, we choose a value, ry, from a uniform distribution between 0

and 0.8 to be the maximum solar radiation given in W/cm2, where 0.8 comes from

the solar radiation data for Nebraska, web (c). Because W (t) must pass through the

points, (6, 0), (14, ry) and (20, 0) and since (14, ry) is a local maximum, we are able

to solve for the coefficients of the cubic equation uniquely. Note that in our model,

we have not correlated the daily temperature to the solar radiation to simplify our

calculations. A sample of 20 days of a solar radiation run is shown in Fig. 2.7.

2.6 Computational Model

We combine the models in the previous sections together to examine the dynamics in

the turtle population based upon various changes in the temperature profile. A flow

chart of this process is shown in Fig. 2.6.

Each year, we determine the temperature and solar radiation profiles. We choose

a first nesting date for each female from a truncated-normal random distribution,

with mean June 1 and standard deviation of 7 days. The distribution is truncated at
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Figure 2.7: A sample 20 day run of the solar radiation program.

May 1 and June 30. These dates are those given in Iverson and Simith (1993) and

similar to those given in Rowe et al. (2003). According to Iverson et. al. (1993),

the second nest occurs, on average, 16 days after the first nest. Thus, we assume

that the turtle lays a second nest 16 days after her first nest. Next, we calculate the

temperature profile inside the nest for each nesting episode. Once we have determined

the temperature profile inside the nest, we then use the degree hour model to find

the sex of each nest. We then calculate the overall sex ratio for the eggs that year

by averaging the outcomes of each nest. We finally update the population projection

model.

We repeat this process for a period of thirty years, and observe the outcome of
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Figure 2.8: A flow chart of the computational model’s yearly process.

the population vector. We repeat this process for 50 total runs for each change in the

temperature model. After the baseline runs, we increase the average temperature by

2◦C and then 4◦C. We also observed the change in the dynamics when we change

the daily amplitude variation. We chose to observe the effects of changing average

temperature and daily amplitude because Shine and Harlow (Shine and Harlow, 1996)

found that both the mean temperature and the variance of temperature influenced

the development rates and thus incubation periods of skinks (Bassiana duperreyi).
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Chapter 3

Results

3.1 Numerical Solution of the Nest Temperature

Model

In this first section we examine the diffusion problem and demonstrate the comparison

between the numerical solution for the temperature in the nest and experimental

data. We simulated the model using as input the SCAN data gathered from Roger’s

farm web (b) for the surface boundary condition. We then compared the calculated

result using the diffusion model at 10cm below the surface to the data taken with

temperature sensors from the farm. Because the data from Roger’s farm does not

include a nest, we assumed that the nest in the numerical simulation began and

ended at the same depth of 9.14m. Both experimental and computed temperature

profiles are shown in Fig. 3.1. Overall, the numerical solution closely approximates

the experimental temperature profile. However, when there are large changes in

the surface temperature, the numerical solution seems to slightly exaggerate these

changes. Episodes of rain are not included in the numerical model, which may also



42

explain some of the differences in the two profiles.
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Figure 3.1: Actual temperature data taken from Roger’s Farm compared to the nu-
merical approximation at 10 cm below the surface.

In summary, the numerical solution provides a good approximation to the actual

experimental temperature profile. While we have not shown the convergence of the

numerical scheme, the accuracy is good evidence that the numerical solution converges

to the unique solution.

3.2 Parameter Sensitivity

Next we test the parameter sensitivity of the nest temperature model by adjusting

each parameter individually and comparing the resultant temperature profiles with

that of the baseline profile. In the baseline simulation, we set the ambient air tem-

perature at 10 cos(πt/12) + 25 and we assume that the solar radiation is 0. Choosing

these values, rather than a more random input, allows us to discern the effects of

each parameter with a minimum of computation. The baseline parameter values are
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Table 3.1: Parameter values used in the nest temperature baseline simulation.

Parameter Value

Ksoil 14.6
W

cmhC

Kegg 21.7875
W

cmhC

csoilρsoil 3.8
J

cm3C

ceggρegg 1.7449
J

cm3C

shown in Ta. 3.1.

• Soil Thermal Conductivity

For soil conductivity we ran the model with Ks values between 9.3191 and

59.3191 W
cmhC

, incrementing by 5 each on each run. These values are within

the typical range of soil thermal conductivities (Buonanno et al., 1995). All

simulations produced temperatures within 3.2918◦C of the baseline temperature.

Plots of these solutions are shown in Fig. 3.2. As expected, the higher the

thermal conductivity of the soil, the greater the amplitude of the temperature.

• Egg Layer Thermal Conductivity

For the egg layer’s thermal conductivity, we considered test values between 50%

above and below the baseline value. All simulations produced temperatures

within 0.1914◦C of the baseline value (Fig. 3.3).

• Egg Versus Air Ratio
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Figure 3.2: Temperature profiles for different soil thermal conductivities.
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Figure 3.3: Temperature profiles for the egg layer thermal conductivity.

Next, we increment the ratio between egg and air ratio in the egg layer. We

consider values between 15% and 75% incrementing by 5%. The simulations

produced temperatures within 0.2821◦C of the baseline (Fig. 3.4).

• Density and Specific Heat in Soil Layer

The product of density and specific heat in the soil layer was incremented be-
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Figure 3.4: Temperature profiles for the egg versus air ratio.

tween 50% above and below the baseline value. Temperature profiles were all

within 0.7365◦C of the baseline run (Fig. 3.5).
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Figure 3.5: Temperature profiles for the product of the density and specific heat in
the soil layer.

• Density and Specific Heat in Egg Layer

Within the egg layer, the values for the product of the density and specific
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Figure 3.6: Temperature profiles for the product of the density and specific heat in
the egg layer.

heat were incremented between 50% below and above the baseline value. All

simulations produce temperatures within 0.0983◦C of the baseline value (Fig.

3.6).

• Heat Transfer Coefficient

The heat transfer coefficient is perhaps the most uncertain parameter in the

model, and it is often difficult to determine in heat transfer models. To examine

sensitivity, values of the heat transfer coefficient were taken between 5 and 30

( ds J
cm2hC

),incrementing by 5. The temperature profiles differs from the baseline

profile by at most 1.1425◦C which occurred using the smallest value, 5 (Fig. 3.7).

We now examine the sensitivity of the parameters in our two-sex model. Recall

that the matrix is not a Leslie matrix and that the egg population equation is nonlinear

with a two-year recurrence relation; therefore, the population growth rate is not know

a priori. Hence, to examine the sensitivity of the parameters in the two-sex model, we

adjust each parameter individually, calculate the geometric mean of the year-to-year
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Figure 3.7: Temperature profiles for the heat transfer coefficient.

Table 3.2: Parameter values in the two-sex model baseline run.

Parameter Value
s1 and g1 .33
s2 .375
g2 .225
s3 and s4 .4118
g3 and g4 .2882
s5 .9
p .5
q .7
k 14
h 1.7

growth rate, and then compare the results to the baseline run. The baseline values

are shown in Ta. 3.2. We adjust each parameter within biologically measured values

(Ta. 3.3).

The baseline simulation is shown in Fig. 3.8. In the baseline plot, although it

appears at first that the population is rapidly increasing (because of the scale), it

is actually remaining nearly constant with an average growth rate of 1.0012. The

female population only increases by about 40 individuals and the egg population only
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Table 3.3: Biologically measured values for each two-sex model parameter

Parameter Tinkle et. al. (1981) Mitchell (1988) Wilbur (1975)
s1 and g1 0.67 0.19 0.08
s2 and g2 0.76 0.46 0.82
s3, s4, g3 and g4 0.76 0.94 0.82
s5 0.76 0.96 0.82
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Figure 3.8: Two-sex model baseline run.

increases by 100 eggs. Note that, because we are using 0.5 as the proportion of males,

the male and female populations will be the same; so, we only show the plot of the

female population.

• Egg Survivorship and Hatchling Graduation

We adjust both the annual egg survivorship, s1, and hatchling graduation rates,

g1, between 0.06 and 0.6 incrementing by 0.06. The growth rates for egg sur-

vivorship are shown in Ta. 3.4, and the growth rates for hatchling graduation

are shown in Ta. 3.5.

• Survivorship and Graduation Rates for 2-3 Year-olds
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Table 3.4: Egg survivorship growth rates.

Egg Survivorship Growth Rate
.06 0.9179
.12 0.9425
.18 0.9625
.24 0.9795
.30 0.9944
.36 1.0077
.42 1.0197
.48 1.0308
.54 1.0410
.6 1.0506

Table 3.5: Hatchling graduation growth rates.

Hatchling Graduation Rate Growth Rate
.06 0.9236
.12 0.9462
.18 0.9648
.24 0.9808
.30 0.9948
.36 1.0073
.42 1.0187
.48 1.0291
.54 1.0387
.6 1.0477

The annual survivorship and graduation rates in the 2-3 year age class were

examined within the interval 0.46 to 0.82, incrementing by 0.04. We adjusted

for the 2 year time period as described in section 2.3. The growth rates ranged

from 0.995 to 1.0102 (Ta. 3.6). The growth rates for the graduation are given

in Ta. 3.7.

• Survivorship and Graduation Sensitivity for 4-5 and 6-7 Year-olds

The annual survivorship and graduation rates for the 4-5 and 6-7 year age

classes were examined within an interval 0.76 to 0.92, incrementing by 0.04,
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Table 3.6: 2-3 year olds survivorship growth rates.

Yearly Survivorship Growth Rate
.46 0.9950
.50 0.9968
.54 0.9986
.58 1.0004
.62 1.0021
.66 1.0038
.7 1.0054
.74 1.0070
.78 1.0086
.82 1.0102

Table 3.7: 2-3 year olds graduation growth rates

Yearly Survivorship Growth Rate
.46 0.9753
.5 0.9830
.54 0.9904
.58 0.9977
.62 1.0047
.66 1.0116
.7 1.0183
.74 1.0248
.78 1.0311
.82 1.0373

again adjusting for the two year time period as described in section 2.3. The

growth rates are shown in Tables 3.8, 3.9, 3.10 and 3.11.

• 8+ Year-Old Survivorship Sensitivity

The annual survivorship rates for the 8+ year age classes were examined within

the interval 0.76 to 0.96, incrementing by 0.04. The growth rates are given in

Ta. 3.12.

• Probability of Using Current Year’s Sperm Sensitivity
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Table 3.8: 4-5 year olds survivorship growth rates.

Yearly Survivorship Growth Rate
.76 1.0035
.80 1.0050
.84 1.0064
.88 1.0078
.92 1.0092

Table 3.9: 4-5 year olds graduation growth rates.

Yearly Survivorship Growth Rate
.76 1.0093
.80 1.0146
.84 1.0196
.88 1.0246
.92 1.0294

Table 3.10: 6-7 year olds survivorship growth rates.

Yearly Survivorship Growth Rate
.76 1.0033
.80 1.0047
.84 1.0061
.88 1.0074
.92 1.0087

Table 3.11: 6-7 year olds survivorship growth rates.

Yearly Survivorship Growth Rate
.76 1.0091
.80 1.0141
.84 1.0190
.88 1.0238
.92 1.0284
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Table 3.12: 8+ years survivorship growth rate.

Yearly Survivorship Growth Rate
.76 0.9364
.8 0.9610
.84 0.9865
.88 1.0127
.92 1.0398
.96 1.0677

Table 3.13: Probability of using current year’s sperm growth rates.

Probability of Using Current Year’s Sperm Growth Rate
.1 1.0003
.2 1.0005
.3 1.0006
.4 1.0008
.5 1.0009
.6 1.0011
.7 1.0012
.8 1.0014
.9 1.0015
1 1.0017

We adjusted the probability of using the current year’s sperm between 10% and

100% incrementing by 10%. The growth rates vary from 1.0003 to 1.0017 (Ta.

3.13).

• Total Eggs Laid Per Female Sensitivity

The total eggs laid per female per year is examined for 6 to 24 eggs.The growth

rates vary between 0.9506 and 1.0447 (Ta. 3.14).

• Number of Females Mated With Per Male Sensitivity

We examine the average number of females mated with per male for values

between 1.2 to 3 incrementing by 0.2. The growth rates range between 0.9954

and 1.0077 (Ta. 3.15).
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Table 3.14: Total eggs laid sensitivity growth rates.

Total Eggs Laid Growth Rate
6 0.9506
8 0.9655
10 0.9787
12 0.9905
14 1.0012
16 1.0111
18 1.0203
20 1.0289
22 1.0370
24 1.0447

Table 3.15: Number of females mated with per male sensitivity growth rates

Females per Male Growth Rate
1.2 0.9954
1.4 0.9982
1.6 1.0003
1.8 1.0020
2.0 1.0034
2.2 1.0046
2.4 1.0056
2.6 1.0064
2.8 1.0071
3.0 1.0077

• Proportion of Male Eggs

We look at the proportion of male eggs in the range of 20% to 80% incrementing

by 10%. The growth rates varied from 0.9656 to 1.0078 (Ta. 3.16). We have

included the graph of the population curves for this case (Fig. 3.9). Notice

in this case that as the proportion of male eggs increases, the male population

acutally decreases. This is due to the fact that the total number of eggs depends

upon the number of females as well as the number of males. The fewer females

there are to lay eggs, the fewer males there will be in the long term.
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Figure 3.9: Two-sex model proportion of male eggs sensitivity.

Table 3.16: Proportion of male eggs sensitivity growth rates.

Proportion of Males Growth Rate
0.2 1.0010
0.3 1.0078
0.4 1.0067
0.5 1.0012
0.6 0.9925
0.7 0.9808
0.8 0.9656

To further complete our analysis, we look at the population growth rates when we

parameterize the model using each set of data individually (Wilbur, 1975a; Tinkle et al.,

1981; Mitchell, 1988) . These values are given in Ta. 3.3. In the cases of Tinkle et. al.

(1981) and Mitchell (1988), the population is increasing with growth rates of 1.1597

and 1.0074 respectively. In contrast, using the values given in Wilbur (1975), the

population is decreasing with a growth rate of 0.8628.
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3.3 Model Results

Now we examine the behavior of the population under nine different scenarios. In the

baseline run, the average year temperature is 10◦C and the average year amplitude is

13.75◦C. In the remaining scenarios, we increase the average temperature and ampli-

tude by 2◦C and 4◦C, and for each average temperature, we increase the amplitude by

0, 2, and 4◦C. We denote each scenario by the temperature followed by the amplitude

increase from the baseline run. For example, T4A2 has the average year temperature

4◦C above the baseline temperature and the average year amplitude 2◦C above the

baseline amplitude. Recall that for each scenario, we observe the population dynam-

ics over a period of thirty years and make 50 total observations. In each scenario, we

assume that the mean of the data for each year is normally distributed. We feel that

this is an appropriate assumption because the median and the mean for each year

within a scenario were approximately the same, differing at most by 43.24 individuals

(in T4A4 year 19) and on average differing by fewer than 14 individuals. For each

scenario, two plots are shown. The first shows the total sample average (not including

the eggs) of the 50 runs as a solid line along with dotted lines showing two sample

standard deviations away from the sample mean. The second shows the average male

and average female population profiles. The male population is shown with a dashed

line and the female population is shown with a solid line. One should note that the

first few years for each run look similar because it takes 5 years for the temperature

variations to affect the whole population. As with the sensitivity profiles, we compute

the growth rate for the total population average by calculating the geometric mean

of the year-to-year growth rate. The growth rates are shown in table 3.17.
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Figure 3.10: Population profile for the baseline scenario (T0A0).
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Figure 3.11: Population profile for average yearly temperature 10◦C and average
yearly amplitude 15.75◦C (T0A2).
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Table 3.17: The mean growth rate for each scenario.

Scenario Growth Rate
T0A0 0.99943
T0A2 0.99205
T0A4 0.99569
T2A0 0.98836
T2A2 0.99544
T2A4 1.00039
T4A0 0.99299
T4A2 1.00019
T4A4 0.97942
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Figure 3.12: Population profile for average yearly temperature 10◦C and average
yearly amplitude 17.75◦C (T0A4).
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Figure 3.13: Population profile for average yearly temperature 12◦C and average
yearly amplitude 13.75◦C (T2A0).

0 10 20 30
0

200

400

600

800

1000

1200
T2A2 Total Population Average

Years

Po
pu

lat
ion

0 10 20 30
0

100

200

300

400

500

600

700
T2A2 Males and Females Average

Years

Po
pu

lat
ion

Figure 3.14: Population profile for average yearly temperature 12◦C and average
yearly amplitude 15.75◦C (T2A2).
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Figure 3.15: Population profile for average yearly temperature 12◦C and average
yearly amplitude 17.75◦C (T2A4).
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Figure 3.16: Population profile for average yearly temperature 14◦C and average
yearly amplitude 13.75◦C (T4A0).
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Figure 3.17: Population profile for average yearly temperature 14◦C and average
yearly amplitude 15.75◦C (T4A2).
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Figure 3.18: Population profile for average yearly temperature 14◦C and average
yearly amplitude 17.75◦C (T4A4).
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Chapter 4

Discussion

4.1 Conclusions

Finally, we discuss the implications of the sensitivity analysis and computational

model cases. From the analysis of the nest temperature model, we find that it is most

sensitive to the change in the thermal conductivity of the soil (Fig. 3.2) and the heat

transfer coefficient (Fig. 3.7) . It follows from the fact that these two parameters have

the greatest impact on the nest temperature because these parameters greatly affect

the rate at which the heat is transfered through the soil to the nest. We expected

that the model would be sensitive to the ratio of air-to-egg thermal conductivity (Fig.

3.4) inside the egg layer because of the very low thermal conductivity of air, however

the model showed only a change of at most 0.2821◦C from the baseline run.

In the two-sex model the parameters most sensitive to change were the total eggs

laid, k (Ta. 3.14), adult survivorship, s5 (Ta. 3.12), egg survivorship, s1 (Ta. 3.4)

and hatchling graduation rate, g1 (Ta. 3.5). We also observe that in the analysis

done using each set of data (Wilbur (1975a), Tinkle et al. (1981), Mitchell (1988))

separately (3.2), that the egg survivorship and hatchling graduation rates seem to
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strongly influence the survival of the population because they are the only rates that

differ significantly among the data sets.

Next, we can make three important observations about the behavior of the com-

putational model (Figs: 3.10-3.12):

1. As the male population increases or decreases, the female population decreases

or increases the exact same amount respectively. The reason for this is an

artifact of the model. Each year the proportion of males is determined from the

nest temperature profile; then, as this proportion increases, the proportion of

females decreases. Hence, we would expect to see similar trends in real data.

2. The first five years’ output is similar in all cases because it takes five iterations

for the effects of the varying temperature profiles to transfer through all five

age classes.

3. Even in the most severe case (T4A4), the population growth rate is very close to

one; this may explain the buffering of temperature effects and why the species

has survived so long.

We now turn our attention to the individual cases. Observe that in our baseline run

( T0A0 Fig. 3.10), the growth rate is essentially one. Perturbations from the steady

state cause the population to return to the steady state. Hence, if the temperature

trajectory remains at its current levels, the painted turtle population will continue in

its steady state.

In contrast to Janzen (1994), our model requires not just an increase of 4◦C, but

also an increase in temperature variance of 4◦C. The case T4A4 is the only case

where we suggest there is a good possibility of extinction (Fig. 3.18). In this case,

approximately 95% of the runs were at or below the steady state. The growth rate for
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T4A4 is 0.97942. Neither the cases of T4A0 or T4A2 (Figs. 3.16 and 3.17), produced

a growth rate small enough to consider it significant. Infact, the case of T4A2 has

growth rate above one (1.00019).

4.2 Future Directions

There are several problems that may be the focus of further investigation:

1. Variable thermal conductivity with soil moisture

In the model herein the effects of variable soil moisture were not included, nor

were rain events. The moisture content of the soil changes the thermal conduc-

tivity of the soil (Buonanno et al., 1995) as well as the development time of the

eggs (Ackerman et al., 1985a). Thus, the effects of moisture may play a role in

the population dynamics of the painted turtles.

2. Variable sperm storage

Several questions concerning sperm storage remain unanswered at this time

because there is little information or data concerning the storage of sperm.

We do not know if the sperm becomes less viable over time or if the use of

stored sperm is greater if the population is male limited. We tested the second

hypothesis crudely by assuming that the proportion of stored sperm usage is

large when the male population is small. We adjusted our two-sex model such

that the proportion of sperm used from the current year is a function of the

male population. That is,

q(mn) = 1/(1 + e−10( m
200

−.5)),
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where mn is the number of males in year n. Because there is no data available,

we chose a function that satisfies two criteria; first, it is an increasing function

with range [0, 1] and second, we require that it give an output of approximately

0.7 at the baseline steady state.

In this scenario, to cause a population to crash, we need to resort to extreme

cases. The proportion of males in the starting population needs to be less than

30% and the percentage of males from each clutch must be less than 20%. In

the case where the starting male to female ratio is 30 : 70 and the percentage of

males from each clutch is 10%, the average growth rate of the male population

is 0.96665 and the average growth rate of the female population is 0.98018.

We also examined what would happen if there were no sperm storage. Using the

same starting ratios as above (male to female ratio of 30 : 70 and the percentage

of males from each clutch being 10%), we have that the average growth rate of

the male population is 0.96333 and the female average growth rate is 0.97687.

Thus the compuataional model supports the hypothesis that there is an adaptive

advantage to sperm storage.

In these test simulations we ignored the survivorship of the eggs as accounting

for the possibility of less viability in the older sperm. Much more experimen-

tal research in this area is needed to provide accurate models of population

dynamics.

3. Variable absorption of solar radiation

We assumed that the nest was on flat ground and the soil absorbed 80% of

the solar radiation. We could make our model more realistic by assuming that

the ground is not flat, that the soil has more reflective properties, or the nest
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is shaded. Either of these cases would change the absorption coefficient. We

could also assume variations for each nest in the multiple simulations.

4. Nest geometry, metabolic heat and clutch size

In our model, we assumed that the soil inside and outside the nest had the

same porosity and that the heat traveling horizontally between the nest and

the surrounding soil does not affect the temperature of the nest. Thus, for

example, we could change the geometry of the nest to be a bounded cylinder

and then perform the calculations; however, the determination of heat flow in

three dimensions, and time, would be computationally intensive.

If we take into account the metabolic heat generated by the eggs, which is a

source term in the diffusion equation, the temperature inside the nest would be

affected. As we noted earlier, the nest temperature in this case is more likely to

be effected when the clutch size is larger. Also, we may want to consider that

the sex of the turtle eggs depend upon not only the depth of the egg, but also

upon the location within the nest. The eggs near the center may be warmer

than those on the outer edges.

5. Different birth function

We have chosen a birth function given by a harmonic mean. Equally, we could

investigate the affects of using a different birth function on population growth.

We would be interested to see if this change causes a significant difference in

the results.

6. Female choice in nest site and nesting time selection

In all of the cases, we assume that the female does not consider the sex of

her offspring when choosing her nesting site and that the mean date of first
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nest is June 1. It is hypothesized that if the average temperature shifts that the

females may be able to nest earlier or later in the season or that they may choose

different nesting sites to compensate for the thermal shift and thus maintain

the current nest temperature conditions (Valenzuela and Lance, 2004).

Finally, because of its flexibility, the model we present in this dissertation can

also be of great benefit to other researchers in the field who want to examine the

effects of different temperatures and their variations on other species with TSD, e.g.,

crocodilians, as well as other turtle species. For example, the temperature, solar

radiation, and conductivity are inputs into the model, and they can be adapted to

specialized environmental conditions, including temperature levels, nest location, soil

type, and rain events. The TSD model easily accommodates different temperature

ranges that apply to other species during their egg incubation period. The model also

offers the opportunity to study density effects, for example, the dependence of the

mating function on the ratio of males to females and each’s contribution to the sex

of the hatchlings. Other modifications of the two-sex population model are possible

as well, in order to fit the species life history traits. The model is a beginning step in

understanding the long term high fitness shown by many species with TSD.
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Appendix A

Parameter Descriptions

Parameter Description Units
A cross-sectional area cm2

a depth cm
b depth cm
ce specific heat egg layer J

kgC

cs specific heat soil layer J
kgC

h heat transfer coefficient J
cm2hC

Ke thermal conductivity egg layer W
cmhC

Ks thermal conductivity soil layer W
cmhC

L depth cm
α heat absorption proportion

ρe density egg layer kg

cm3

ρs density soil layer kg

cm3

Table A.1: Diffusion Equation and Boundary Conditions

Parameter/Function Description
d(θ) development rate function
θ(t) temperature function
TSPbegin beginning of thermal sensitive period
TSPend end of thermal sensitive period

Table A.2: Degree Hour Model
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Parameter Description
Af adult females
Am1 adult males 4-5 years
Am2 adult males 6-7 years
Am3 adult males 8+ years
am(n) total number of males in year n
E eggs
gi graduation proportion
Hm male hatchlings
Hf female hatchlings
h number of females mated with per male
Jf1 juvenile females 2-3 years
Jf2 juvenile females 4-5 years
Jf3 juvenile females 6-7 years
Jm juvenile males
k number of eggs laid by a female
p proportion male
si survivorship proportion

Table A.3: Two-Sex Model

Parameter/Function Description
Yamp yearly average amplitude
Yavg yearly average temperature
Ycor temperature autocorrelation
Z normal random variable
Φcor amplitude autocorrelation
φy stochastic daily amplitude
σy temperature standard deviation
σφ amplitude standard deviation
Θy stochastic daily temperature average
θavg(y) average daily temperature
θy(t) temperature profile on day y

Table A.4: Stochastic Temperature
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Appendix B

Programs

B.1 Nest Temperature Model

%This program calculates the temperature at requested depth given the

%surface temperature and solar radiation. This function solves the

%one dimensional case of Ut=KUzz z>0 U(0,t)+aUz(0,t)=h(t) where K

%depends upon depth using an implicit scheme. It takes as imput the

%surface temperature,solar radiation and the depth inside the nest one

%wants the temperature profile of.

function nestTemp=nestTemperature(surfaceTemp,

solarRad,NestDepth,day2start,startValue)

Pair=.4; %volume percentage for the air in the egg layer

Pegg=.6; %volume percentage for the eggs in the egg layer

ThermAir= .9252; %thermal conductivity of air

ThermEgg=21.5424;%thermal conductivity of the eggs
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%calculate effective thermal conductivity of the egg layer

Kegg=(Pair*(2*ThermAir-ThermEgg)+Pegg*(2*ThermEgg-ThermAir)

+sqrt((Pair*(2*ThermAir-ThermEgg)+Pegg*(2*ThermEgg-ThermAir))

^2+8*ThermAir*ThermEgg))/4; %effective thermal conductivity of egg

layer

Ksoil=14.6; %thermal conductivity of soil layer

cegg=Pegg*4181.8+Pair*1005; %specific heat of egg layer

cRhoSoil=3.8; %specific heat times density of soil

rhoEgg=Pegg*.00099821+Pair*.000001205; %density of egg layer

cRhoEgg=cegg*rhoEgg;

h=30; %heat transfer coefficient

alpha=.8; %percent of solar radiation abosrbed.

ke=Kegg/(cRhoEgg); %diffusivity of egg layer

ks=Ksoil/cRhoSoil; %diffusivity of soil layers

deltaT=.25; %change in time (hours)

deltaX=.5; %change in space

N=length(surfaceTemp); %number of time steps after start

T=deltaT*N; %number of hours total

depth=101;%915; %total depth in centimeters

depthS2E=6; %depth (cm) at which ks changes to ke

depthE2S=10; %depth (cm) at which ke changes back to ks
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beta=Ksoil/(2*h*deltaX);

rS=ks*deltaT/(deltaX^2);

rE=ke*deltaT/(deltaX^2);

J=1+depth/deltaX; %number of total space steps

JE=1+floor(depthS2E/deltaX); %space step where ks changes to ke

JS=1+floor(depthE2S/deltaX); %space step where ke changes back to ks

U=25*ones(J,N);

U(:,1)=startValue;%initial condition

t=[0:deltaT:T];

Uamb=surfaceTemp; %temperature profile on surface

W=solarRad;%.001*cos(pi.*t./12); %solar energy on surface

g=(rS/beta).*(Uamb+(alpha/h).*W);

%iii=fortyTemp(day2start,N/96);

%size(iii)

%size(U(J,:))

U(J,:)=fortyTemp(day2start,N/96);%15; %boundry condition at depth

%Initialize matrix "A"

A=zeros(J-1,J-1);

A(1,1)=1+2*rS+(rS/beta);

A(1,2)=-2*rS;

for ii=2:JE-1

A(ii,ii)=1+2*rS;
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A(ii,ii-1)=-rS;

A(ii,ii+1)=-rS;

end

A(JE,JE-1)=Ksoil;

A(JE,JE)=-(Ksoil+Kegg);

A(JE,JE+1)=Kegg;

for ii=JE+1:JS-1

A(ii,ii)=1+2*rE;

A(ii,ii-1)=-rE;

A(ii,ii+1)=-rE;

end

A(JS,JS-1)=Kegg;

A(JS,JS)=-(Kegg+Ksoil);

A(JS,JS+1)=Ksoil;

for ii=JS+1:J-2

A(ii,ii)=1+2*rS;

A(ii,ii-1)=-rS;

A(ii,ii+1)=-rS;

end

A(J-1,J-1)=1+2*rS;

A(J-1,J-2)=-rS;

for n=2:N
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f=U(1:J-1,n-1);

f(1)=f(1)+g(n);

%f(1)=f(1)+rS*g(n);

%f(1)=f(1);

f(J-1)=f(J-1)+rS*U(J,n);

f(JE)=0;

f(JS)=0;

U(1:J-1,n)=A\f;

end

nestTemp=U(1+floor(NestDepth/deltaX),:);

B.2 Inverse Program

%This solves the inverse problem for K and k in the soil temperature

%profile.

function inverseSoilProbMess

clear all

tic

global AirTemp

global Solar07

global Two

global Four

global Eight



74

global Twenty

global Forty

load AirTemp

load Solar07

load Two

load Four

load Eight

load Twenty

load Forty

global dataVec

global h

global alpha

global deltaT

global deltaX

global depth

global depthS2E

global depthE2S

dataVec=[Two; Four; Eight; Twenty; Forty];

h=30; %heat transfer coefficient

alpha=.8; %percent of solar radiation abosrbed.

deltaT=1; %change in time (hours)

deltaX=.5; %change in space
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depth=915; %total depth in centimeters

depthS2E=914; %depth at which ks changes to ke

depthE2S=914; %depth at which ke changes back to ks

yy=[14.4,3.6];

theNorm=soilTemps(yy)

toc

end

%%%%%%%%%%%%%%%%%%%% soilTemps %%%%%%%%%%%%%%%%%%%%%%%%%

function vecNorm=soilTemps(yy)

global AirTemp

global Solar07

global dataVec

global h

global alpha

global deltaT

global deltaX

global depth

global depthS2E

global depthE2S

Ksoil=yy(1);
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cRhoSoil=yy(2);

Kegg=Ksoil;

cRhoEgg=cRhoSoil;%cegg*rhoEgg

ke=Kegg/(cRhoEgg); %diffusivity of egg layer

ks=Ksoil/cRhoSoil; %diffusivity of soil layers

N=length(AirTemp); %number of time steps after start

T=deltaT*N; %number of hours total

beta=Ksoil/(2*h*deltaX);

rS=ks*deltaT/(deltaX^2);

rE=ke*deltaT/(deltaX^2);

J=1+depth/deltaX; %number of total space steps

JE=1+floor(depthS2E/deltaX); %space step where ks changes to ke

JS=1+floor(depthE2S/deltaX); %space step where ke changes back to ks

U=AirTemp(1)*ones(J,N+1);%initial condition

t=[0:deltaT:T];

Uamb=AirTemp; %temperature profile on surface

W=Solar07;%.001*cos(pi.*t./12); %solar energy on surface

g=(rS/beta).*(Uamb+(alpha/h).*W);

U(J,:)=11.7; %boundry condition at depth
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%Initialize matrix "A"

A=zeros(J-1,J-1);

A(1,1)=1+2*rS+(rS/beta);

A(1,2)=-2*rS;

for ii=2:JE-1

A(ii,ii)=1+2*rS;

A(ii,ii-1)=-rS;

A(ii,ii+1)=-rS;

end

A(JE,JE-1)=Ksoil;

A(JE,JE)=-(Ksoil+Kegg);

A(JE,JE+1)=Kegg;

for ii=JE+1:JS-1

A(ii,ii)=1+2*rE;

A(ii,ii-1)=-rE;

A(ii,ii+1)=-rE;

end

A(JS,JS-1)=Kegg;

A(JS,JS)=-(Kegg+Ksoil);

A(JS,JS+1)=Ksoil;

for ii=JS+1:J-2

A(ii,ii)=1+2*rS;

A(ii,ii-1)=-rS;

A(ii,ii+1)=-rS;

end
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A(J-1,J-1)=1+2*rS;

A(J-1,J-2)=-rS;

for n=2:N

f=U(1:J-1,n-1);

f(1)=f(1)+g(n);

%f(1)=f(1)+rS*g(n);

%f(1)=f(1);

f(J-1)=f(J-1)+rS*U(J,n);

f(JE)=0;

f(JS)=0;

U(1:J-1,n)=A\f;

end

vector=(Uvec-dataVec);

vecNorm=norm(vector,inf);

end

B.3 Degree Hour Model

%This program calculates the total degree hours accumulated
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%within each class: [aa,bb]=female, [cc,dd]=mixed-low,

%[bb,ee]=male, [ff,gg]=mixed-high, [ee,40]=female. The program

%returns either 0, .5 or 1 depending on if it is an all male,

% mixed or female nest respectively

function female=degreeHours(TemperatureTrace)

Temp=TemperatureTrace;

deltat=1/96; %this assumes that the temperature trace

%gives values every 15 minutes

aa=19;

bb=22;

cc=21;

dd=23;

ee=28;%30;

ff=27.5;%29;

gg=28.5;%31;

devRate=.0544.*Temp-.6068;%.07251.*Temp-1.1818;

%identify the Thermal Sensitive Period (TSP)

S=0;

count=1;

while (S<33.3 && count<length(Temp))

%count=count+1;

RateEval=devRate(count)*deltat;
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S=S+RateEval;

count=count+1;

end

TSPbegin=count;

while (S<66.7 && count<length(Temp))

count=count+1;

RateEval=devRate(count)*deltat;

S=S+RateEval;

end

TSPend=count;

%length(Temp)

countF=0; %female count

countM=0; %male count

countX=0; %mix count

for ii=TSPbegin:TSPend

if (Temp(ii)>=aa && Temp(ii) <=bb)

countF=countF+devRate(ii);

end

if (Temp(ii)>=cc && Temp(ii) <=dd)

countX=countX+devRate(ii);

end

if (Temp(ii)>=bb && Temp(ii)<=ee)
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countM=countM+devRate(ii);

end

if (Temp(ii)>=ff && Temp(ii) <=gg)

countX=countX+devRate(ii);

end

if (Temp(ii)>=ee)

countF=countF+devRate(ii);

end

end

if (countF>countM && countF>=countX)

female=1;

elseif (countM>countF && countM>=countX)

female=0;

else

female=.5;

end

end

B.4 Daily Temperature Model

function DTemp=DailyTemp(day2Start,NumDays,t,r)

%Gives a stochastic daily temperature profile starting on

%the specified Julian calendar date (day2Start), extending
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%for NumDays days, with t being the time incriments during

%each day, and r is the seededrandom number to start with

d=[0:NumDays-1];

d=d+day2Start;

AvgDailyTemp=12-13.75*cos((2*pi/365)*(35-d));

%Baseline: 10-13.75*cos((2*pi/365)*(35-d))

%Avg Temp Up 2C: 12-13.75*cos((2*pi/365)*(35-d))

AvgAmp=13.75;

TempAutoCor=.9;

TempStdev=4.4;

randn(’state’,r);

Temp=AvgDailyTemp(1);

Temphist=Temp;

Amp=AvgAmp(1);

Amphist=Amp;

AmpAutoCor=.9;

AmpStdev=4.4;

%calculate random daily temperature average

for nn=2:NumDays

Temp=AvgDailyTemp(nn)+TempAutoCor*

(Temp-AvgDailyTemp(nn))+

TempStdev*randn*sqrt(1-TempAutoCor^2);

Temphist=[Temphist,Temp];

end
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%calculate random daily amplitude

for nn=2:NumDays

Amp=AvgAmp+AmpAutoCor*(Amp-AvgAmp)+AmpStdev

*randn*sqrt(1-AmpAutoCor^2);

Amphist=[Amphist,Amp];

end

%calculate daily stochastic temperature

DTemp=[];

for nn=1:NumDays

Temp=Temphist(nn)-Amphist(nn)*cos((pi/12)*(4-t));

DTemp=[DTemp,Temp];

end

B.5 Solar Radiation Model

%This program calculates the daily solar radiation.

%It takes as input the number of days to calculate

%and a number to seed the random number generator with

function dailyRadiation=solarRadiation(NumDays,r)

deltaT=.25; %fifteen minute incriments

Time=0:deltaT:23.75; %will need to change if delta T chages

a=6/deltaT+1;
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b=14/deltaT+1;

d=20/deltaT+1;

rand(’state’,r)

dailyRadiation=[];

for ii=1:NumDays

c=.8*rand;

RadToday=zeros(size(Time));

Matrix=[a^3, a^2, a, 1; b^3, b^2, b, 1; d^3, d^2, d, 1;

3*b^2, 2*b, 1, 0];

column=[0;c;0;0];

xx=Matrix\column;

for jj=a:d

RadToday(jj)=xx(1)*jj^3+xx(2)*jj^2+xx(3)*jj+xx(4);

end

dailyRadiation=[dailyRadiation,RadToday];

end

B.6 Computational Model

%This is the big massive program which calls all the smaller programs:

%DailyTemp - gives a stochastic daily temperature profile

%solarRadiation - gives a stochastic solar radiation profile
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%nestTemperature - gives the temperature profile at the

%requested depth truncNorm - picks a random date to lay the nest

%from a trucated distribution

%- determines the sex of the nest

%

function turtlePop

clear all

diary(’TurtlePopStocAvgUp4’)

NumYears=30;

NumRuns=25;

%Tpiv=27;

firstDay=121; %first day to lay eggs (May 1)

lastDay=197; %last day to lay eggs (July 15)

n=lastDay-firstDay+1; %number of days to lay eggs

t=96*n; %total number of time increments (96 quarter hours in a day)

dayT=0:.25:23.75; %a single day’s worth of time increments

gestationPeriod=150; %"maximum" number of days in gestation period

s1=.33; %egg survivorship

s2=.375; %age class 2-3 survivorship

s3=.4118; %age class 4-5 survivorship
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s4=.4118; %age class 6-7 survivorship

s5=.9; %age class 8+ survivorship

g1=.33; %age class 1 graduation rate

g2=.225; %age class 2-3 graduation rate

g3=.2882; %age class 4-5 graduation rate

g4=.2882; %age calss 6-7 graduation rate

q=.7; %probability of using sperm from this year

k=14; %number of eggs per female (2 clutches total)

h=1.7; %number of females mated with by one male

recH=1/h;

%The matrix

projMatrix=zeros(10,11);

projMatrix(2,2)=g1;

projMatrix(2,3)=s2;

projMatrix(3,3)=g2;

projMatrix(3,4)=s3;

projMatrix(4,4)=g3;

projMatrix(4,5)=s4;

projMatrix(5,5)=g4;

projMatrix(5,6)=s5;

projMatrix(7,7)=g1;

projMatrix(7,8)=s2;

projMatrix(8,8)=g2;
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projMatrix(8,9)=s3;

projMatrix(9,9)=g3;

projMatrix(9,10)=s4;

projMatrix(10,10)=g4;

projMatrix(10,11)=s5;

endingValues=[];

allValues=[];

for kk=1:NumRuns

kk

%start values

EHJA=ones(11,1);

EHJA(1)=1221;

EHJA(2)=197;

EHJA(3)=101;

EHJA(4)=38;

EHJA(5)=19;

EHJA(6)=55;

EHJA(7)=197;

EHJA(8)=101;

EHJA(9)=38;

EHJA(10)=19;

EHJA(11)=55;
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yy=EHJA;

for ii=1:NumYears

count=0;

%calculate the daily temperature and solar radiation

r=ceil(1000000*rand*kk+ii); %number to seed the generator with

Temp=DailyTemp(firstDay-20,n+gestationPeriod+20,dayT,r);

%n+gestationPeriod is the total number of days

Rad=solarRadiation(n+gestationPeriod+20,r);

%mmm=size(Rad)

%nnn=size(Temp)

NestProfileTemp=[];

MF=[];

%this calculates the initial temperature of the soil

soilTemp=soilTemperature(Temp,Rad,firstDay-20);

%this calculates the temperature inside the nest at 10cm when

%evaluated at different days

for jj=1:n

NestTemp=

nestTemperature(Temp(96*(jj-1)+1921:96*

(jj+gestationPeriod)+1920),
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Rad(96*(jj-1)+1921:96*(jj+gestationPeriod)+1920),

10,firstDay+jj-1,

soilTemp(:,96*(jj-1)+1921));

NestProfileTemp=[NestProfileTemp;NestTemp];

end

%these calculate the male/female ratio for this year

%this gives the first nest date for each female

numbFemales=yy(11);

nestDate=truncNorm(numbFemales);

%determines if it is a male or female nest for each day

%of the nesting period

for jj=1:n

[MorF,countMortality]=degreeHours(NestProfileTemp(jj,:));

MF=[MF,MorF];

end

counter=0;

for jj=1:numbFemales

MFDay=nestDate(jj);

if isnan(MF(MFDay))==0

count=count+MF(MFDay);%first nest M/F

counter=counter+1;
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if ((MFDay+17)<length(MF)&&isnan(MF(MFDay+17))==0)

count=count+MF(MFDay+17); %second nest M/F

counter=counter+1;

end

end

end

percentFemale=count/(counter)

if isnan(percentFemale)==1

percentFemale=1;

end

%this calculates the populations for the year

projMatrix(1,1)=s1*(1-percentFemale);

projMatrix(6,1)=s1*(percentFemale);

xx=projMatrix*yy;

adultm1=xx(3)+xx(4)+xx(5);

adultm2=yy(3)+yy(4)+yy(5);

E=q*(2*adultm1*xx(10)*k/(adultm1+xx(10)*recH))

+(1-q)*(2*adultm2*yy(11)*s5*k/(adultm2+yy(11)*s5*recH));

yy=[E;xx];

EHJA=[EHJA,yy];

end
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endingValues=[endingValues,EHJA(:,NumYears+1)];

allValues=[allValues;EHJA];

end

endingValues

allValues

%size(allValues(:,1))

figure

plot(endingValues’)

for jj=1:11

figure

for kk=0:NumRuns-1

plot(allValues(jj+11*kk,:)’)

hold on

title(jj)

end

hold off

end
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B.6.1 First Nesting Date Program

%This function takes as input the number of females and

%returns the date of first egg laying date drawn from a

%trucated normal distribution. May 1 -June 30

function date=truncNorm(numFemales)

XX=1:61;

mu=32;

sigma=7;

%calculate pdf

pdfTrunc=normpdf(XX,mu,sigma)./(normcdf(92,mu,sigma)

-normcdf(1,mu,sigma));

%calculate cdf

for jj=2:length(XX)

trunCdf(jj)=sum(pdfTrunc(1:jj));

end

%subplot(1,2,1),plot(pdfTrunc)

%subplot(1,2,2),plot(trunCdf)
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rand(’twister’,100) %picks the starting random value

date=[];

for ii=1:numFemales

rn=rand;

index=find(trunCdf>rn);

date=[date,index(1)];

end
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