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ABSTRACT

Radial basis functions (RBFs) were originally developed in the 1970s for interpo-

lating scattered topographic data. Since then they have become increasingly popular

for other applications involving the approximation of scattered, scalar-valued data in

two and higher dimensions, especially data collected on the surface of a sphere. In

the late 2000s, matrix-valued RBFs were introduced for approximating divergence-free

and curl-free vector fields on the surface of a sphere from scattered samples, which

arise naturally in atmospheric and oceanic sciences. The intriguing property of these

RBFs is that the resulting vector-valued approximations analytically preserve the

divergence-free or curl-free properties of the field.

The most commonly used RBFs feature a shape parameter that controls how

peaked or flat the basis functions are, with the choice of this parameter greatly

affecting the accuracy of the RBF approximation to the underlying data. Flatter

basis functions, which correspond to small shape parameters, generally result in more

accurate approximations when the sampled data comes from a smooth function or

vector-field. However, the direct method for computing the resulting RBF approxi-

mation becomes horribly ill-conditioned as the basis functions are made flatter and

flatter. For scalar-valued RBF approximation, this was a fundamental issue until

the mid-2000s when researchers started to develop stable algorithms for “flat” RBFs.

One of the most successful of these is the RBF-QR algorithm, which completely

bypasses the ill-conditioning associated with flat scalar-valued RBFs on the sphere

using a clever change of basis. In this thesis, we extend the RBF-QR algorithm to

vi



flat matrix-valued RBFs for approximating both divergence-free and curl-free vector

fields on the sphere. We give numerical results illustrating the effectiveness of this

new algorithm and also show that in the limit where the matrix-valued RBFs become

entirely flat, the resulting approximations converge to vector spherical harmonic

approximants. This is the first algorithm that allows for stable computations of

divergence-free and curl-free matrix-valued RBFs in the flat limit.

vii



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Radial Basis Function (RBF) Interpolation . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 RBF Interpolation of Scalar-valued Functions . . . . . . . . . . . . . . 4

1.2.2 RBF Interpolation of Vector Fields . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 RBF Interpolation of Surface Divergence-Free and Curl-Free fields on

the Sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.1 Surface Differential Operators for Vector Fields in R3 . . . . . . . . 14

1.3.2 Vector RBF Interpolation on the Sphere . . . . . . . . . . . . . . . . . . . 15

1.4 Spherical Harmonics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.4.1 Scalar Spherical Harmonics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.4.2 Vector Spherical Harmonics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.5 Overview of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2 The RBF-QR Algorithm for Stable Scalar-Valued RBF Interpolation

on the Sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

viii



2.1 Scalar-Valued RBF Interpolation in the Flat Limit . . . . . . . . . . . . . . . . 28

2.2 Scalar RBF-QR Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.1 Spherical Harmonic Expansion of RBF Kernels . . . . . . . . . . . . . 31

2.2.2 Matrix Representation and QR Factorization . . . . . . . . . . . . . . . 33

2.2.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2.4 The Size of n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Vector RBF-QR Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1 Vector-Valued RBF Interpolation in the Flat Limit . . . . . . . . . . . . . . . . 41

3.2 Vector RBF-QR Algorithm for Surface Divergence-Free RBFs . . . . . . . . 42

3.2.1 Vector Spherical Harmonic Expansion . . . . . . . . . . . . . . . . . . . . 42

3.2.2 Matrix Representation and QR Factorization . . . . . . . . . . . . . . . 43

3.3 Vector RBF-QR Algorithm for Surface Curl-Free RBFs . . . . . . . . . . . . . 49

3.4 Vector RBF-QR Algorithm for the Helmholtz-Hodge Decomposition of

Surface Vector Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Numerical Results from the Vector RBF-QR Algorithm . . . . . . . . 53

4.1 Surface Divergence-Free Vector Fields . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Surface Curl-Free Vector Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

A Proof of Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

ix



LIST OF TABLES

1.1 Commonly used radial kernels, where the first three are positive defi-

nite, r = ‖x− y‖, and ε is the shape parameter. . . . . . . . . . . . . . . . . . . 7

2.1 SPH expansion coefficients for various radial kernels on the sphere. In

the formula for the IQ kernel, 2F 1(. . . ) denotes the hypergeometric

function, and in the formula for the GA kernel, Iµ+1/2 denotes the

Bessel function of the second kind. Note that the apparent singularity

of the cµ,ε for the GA kernel is a removable one due to the identity

Iµ+1/2(2ε2)

ε2µ+1 = 1
Γ(µ+1)

√
π

∫ 1

−1
e2ε2t (1− t2)

k
dt. . . . . . . . . . . . . . . . . . . . . . . . . 32

x



LIST OF FIGURES

1.1 The process of using RBFs to interpolate a set of scattered data in

2D. (a) a target function f sampled at some set of distinct nodes, (b)

a set of radial basis functions interpolating the data (c) a reconstructed

surface resulting from the interpolation . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 (a)The Gaussian (ε = 2), (b) inverse quadric (ε = 3.5), (c) inverse

multiquadric (ε = 6), and (d) multiquadric radial kernels (ε = 2). . . . . . 8

1.3 The columns of a divergence-free kernel: (a) Φdiv(x, 0)[1 0]T (b) Φdiv(x, 0)[0 1]T

based on the Gaussian radial kernel. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 (a) The samples of a divergence-free vector field and (b) the interpolant

of the field using the Gaussian kernel with ε = 4.5. . . . . . . . . . . . . . . . . 12

1.5 The columns of a curl-free kernel: (a) Φcurl(x, 0)[1 0]T (b) Φcur(x, 0)[0 1]T

based on the Gaussian radial kernel. . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.6 (a) The samples of a curl-free vector field and (b) the interpolant of

the field using the Gaussian kernel with ε = 4.5. . . . . . . . . . . . . . . . . . . 13

1.7 The two components of the tangent vector basis at yj: (a) Zonal basis,

Ψdiv(x,yj)ej (b) Meridional basis, Ψdiv(x,yj)dj . . . . . . . . . . . . . . . . . . 18

1.8 (a) The scattered samples of a surface divergence-free vector field in

blue and (b) the interpolant of the field using the surface divergence-

free RBF interpolant in black. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

xi



1.9 The two components of the tangent vector basis at yj: (a) Zonal basis,

Ψcurl(x,yj)ej (b) Meridional basis, Ψcurl(x,yj)dj . . . . . . . . . . . . . . . . . 20

1.10 (a) The scattered samples of a surface curl-free vector field in red

and (b) the interpolant of the field using the surface curl-free RBF

interpolant in black. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.11 Pseudocolor plot of the scalar spherical harmonics basis functions of

degrees µ = 0, 1, 2, 3, 4 and orders ν = −µ, . . . , µ. The colors range

from blue to red, which correspond to negative and positive values,

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1 The inverse multiquadric kernel for (a) ε = 10, (b) ε = 5, and (c) ε = 1 28

2.2 A problem illustrating ill-conditioning that enters the interpolation

process in the RBF Direct method for an interpolation problem on

the sphere consisting of (a) n = 529 quasi-uniformly distributed nodes

and (b) the target function f = sin(xyz) on the sphere. (c) Condition

number of the AY matrix in (1.6) vs ε. (d) Max norm error vs ε in

the resulting RBF interpolant over the sphere computed with the RBF

Direct approach. The IMQ kernel was used here. . . . . . . . . . . . . . . . . . . 30

2.3 Log-log plot of the max norm error vs. values of ε for the target

function f = sin(xyz). Here n = 529, and the IMQ RBF kernel was

used. Note that for larger values of ε, the RBF Direct and RBF-QR

methods give equivalent results. Though not clearly visible in the

figure, this equivalence is demonstrated where the black line lies on

top of the dashed red line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

xii



3.1 A problem illustrating the ill-conditioning that enters the interpola-

tion process in the RBF Direct method for n = 528 quasi-uniformly

distributed nodes and target function Ψ used in the second numerical

test in Chapter 4. (a) Condition number of theAΨdiv matrix from (1.23)

vs. ε (b) Max norm error vs ε in the surface divergence-free RBF

interpolant using the RBF Direct approach . . . . . . . . . . . . . . . . . . . . . . 42

4.1 Minimum energy node sets used in the numerical experiments: (a) 120

nodes and (b) 528 nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 The surface divergence-free vector field to be interpolated for test 1. . . . 54

4.3 Numerical test 1: Log-log plot of the max-norm error in the approxi-

mation of the true field vs values of ε for both the RBF Direct method

and the Vector RBF-QR method with the (a) MQ and (b) IMQ kernels. 55

4.4 The surface divergence-free vector field to be interpolated in test 2. . . . 56

4.5 Numerical test 2: Log-log plot of the max-norm error in the approxi-

mation of the true field vs values of ε for both the RBF Direct method

and the Vector RBF-QR method with the (a) MQ and (b) IMQ kernels. 57

4.6 The surface divergence-free vector field to be interpolated for test 3. . . . 58

4.7 Numerical test 3: Log-log plot of the max-norm error in the approxi-

mation of the true field vs values of ε for both the RBF Direct method

and the Vector RBF-QR method with the (a) MQ and (b) IMQ kernels. 58

4.8 The surface curl-free vector field to be interpolated for test 1. . . . . . . . . 59

xiii



4.9 Curl-free numerical test 1: Log-log plot of the max-norm error in the

approximation of the true field vs values of ε for both the RBF Direct

method and the Vector RBF-QR method with the (a) MQ and (b)

IMQ kernels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.10 The surface curl-free vector field to be interpolated for test 2. . . . . . . . . 61

4.11 Curl-free numerical test 2: Log-log plot of the max-norm error in the

approximation of the true field vs values of ε for both the RBF Direct

method and the Vector RBF-QR method with the (a) MQ and (b)

IMQ kernels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

xiv



1

CHAPTER 1

BACKGROUND

1.1 Introduction

The interpolation of scattered data is a problem that emerges in multiple scientific dis-

ciplines and applications, such as meteorology, electronic imaging, computer graphics,

medicine, and the Earth sciences [1,9,19,25,27]. Radial Basis Functions (RBFs) were

first introduced in 1968 by R.L. Hardy to solve a 2D scattered data interpolation

problem in cartography [15, 16]. Named for their use of linear combinations of

shifts of radially symmetric functions to interpolate data and approximate surfaces,

these scalar-valued RBFs have been used for various applications in fields ranging

from geophysics to statistics [10, 24]. Part of the usefulness behind RBFs is their

inclusion of a “shape parameter,” which controls the peakedness of the basis functions.

Researchers have observed that this shape parameter directly impacts the accuracy

of the target function approximation. Specifically, they noted that smaller values

of the shape parameter result in better approximations to a point at which severe

ill-conditioning enters into the system of equations for determining the interpolation

coefficients. While there is a substantial amount of literature dedicated to finding the

“optimal” shape parameter for scalar-valued RBFs [4, 26], these methods have been

restricted by this ill-conditioning that is introduced into the system when the shape

parameter approaches zero (named the “flat limit”) [5].
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In 2007, Fornberg and Piret developed the RBF-QR algorithm, which bypassed

the ill-conditioning of scalar RBF interpolation on the sphere in the flat limit [7].

They achieved this through a clever use of spherical harmonic expansions and the

QR factorization to create a new set of basis functions that span the same space as

the RBF basis, but are well-conditioned in the flat limit. While this method allowed

for the full range of the shape parameter to be explored for scalar-valued RBFs on

the sphere, it did not directly apply to vector-valued RBF interpolants, which are

used to approximate vector fields.

Vector fields arise in many scientific applications, as they describe certain fun-

damental physical quantities. Specifically, there are two properties of vector fields

that are useful when representing physical data: divergence (sources and sinks in a

field) and curl (rotational movement of a field). RBF interpolation theory has been

extended for use of interpolating both divergence-free and curl-free vector fields in

Rd [11, 22] and on the sphere [13, 23], but these vector-valued interpolants suffer the

same dependence on the shape parameter.

This thesis introduces the first stable numerical method for calculating vector-

valued RBF interpolants on the sphere in the flat limit. Our method, which we

call the Vector RBF-QR algorithm, synthesizes existing derivations of vector-valued

RBF interpolation on the sphere [13] and Fornberg and Piret’s stable algorithm for

scalar-valued RBF interpolation in the flat limit [7]. Similar to the Scalar RBF-QR al-

gorithm, the Vector RBF-QR algorithm utilizes vector spherical harmonic expansions

and a QR factorization in order to create a better conditioned set of basis functions

that span the same space as the standard vector basis used to construct the vector

RBF interpolant.

The structure of this thesis is as follows. The remainder of this chapter gives an
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overview of the background material needed for the algorithms presented in Chapters

2 and 3. This includes details of both scalar-valued and vector-valued RBF interpola-

tion, as well as relevant information on scalar and vector spherical harmonics. Chapter

2 offers extensive detail of Fornberg and Piret’s RBF-QR algorithm for scalar-valued

RBF interpolation, including numerical results. The main result of this thesis, the

Vector RBF-QR algorithm, is presented in Chapter 3. We include numerical results

from this algorithm in Chapter 4 and conclude with comments on future work in

Chapter 5.

1.2 Radial Basis Function (RBF) Interpolation

As mentioned in the introduction, interpolating scattered data is a problem that

arises in many disciplines, including engineering, hydrology, and geophysics. Several

established techniques, like polynomial and trigonometric interpolation, have been

used to solve this problem in one dimension. These methods typically use linear

combinations from a fixed set of basis functions {ψj(x)}nj=1 to form a function s(x)

that will interpolate the data points {xj}nj=1 at the values {fj}nj=1. The resulting

function is of the form

s(x) =
n∑
j=1

cjψj(x) (1.1)

and must satisfy the interpolation conditions s(xj) = fj, for j = 1, . . . , n. These con-

ditions lead to linear constraints on the expansion coefficients, cj. These coefficients

can be determined by solving the linear system of equations A

c
 =

f
 , (1.2)
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where the entries of A are given by aj,k = ψk(xj) j, k = 1, . . . , n, c is a vector contain-

ing the cj’s, and f is a vector containing the fj’s. Many of these methods, including

polynomial and trigonometric interpolation, work well in the one-dimensional case

because this linear system is guaranteed to be non-singular whenever the given data

are distinct [31]. However, this is not always the case for data in more than one

dimension. The Mairhuber-Curtis theorem shows that for any set of basis functions

that are independent of the data, there exist sets of distinct data points such that

the linear system in (1.2) becomes singular [29]. In 1968, R.L. Hardy pioneered a

solution to interpolating two-dimensional, scattered data in a way that bypasses the

Mairhuber-Curtis theorem. He achieved this by developing a type of basis function

that depends on the data rather than on a grid. This technique is known as the radial

basis function (RBF) method.

1.2.1 RBF Interpolation of Scalar-valued Functions

The RBF method used today is a generalization of Hardy’s multiquadric (MQ)

method. The MQ method solved a common problem in cartography of finding a

continuous function that accurately represents a surface given sparse measurements.

Much of the motivation behind this investigation was twofold: to create contour maps

of topographic surfaces and to use methods of calculus on the representative function

to determine characteristics of the surface [15, 16]. Before working on a solution

to this problem, Hardy first chose to investigate the one-dimensional version, i.e.

finding a continuous function that accurately represents a curve given scattered data

measurements. He first realized that a piecewise linear interpolating function provided

a satisfactory representation of the curve, but discontinuities of the first derivative

of the interpolating function prevented him from using calculus to analyze the curve.
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After some trial and error, he finally chose to use the continuously differentiable basis

function
√
a2 + x2, where a 6= 0 is an arbitrary constant that affects the peakedness

of the quadric [15]. This choice leads to the interpolating function

s(x) =
n∑
j=1

cj

√
a2 + (x− xj)2, (1.3)

where the cj’s are determined as discussed in the previous section. Note that for

a = 0, the basis function becomes piecewise linear.

Hardy found that there were many benefits to this MQ method beyond the

fact that it accurately represented the desired curve. Specifically, he noticed that

calculus techniques could be applied to the interpolating function (when a 6= 0) to

gain meaningful information about the curve and more importantly, that this new

approach could carry over to data in more than one dimension. This key property

is what allowed Hardy to find a solution to his original cartography problem of

approximating a surface with a mathematical function.

Hardy extended his one-dimensional interpolating technique first for data in 2D.

He achieved this by instead using a linear combination of quadric basis functions that

were translated to be centered at each data point. For distinct points {(xj, yj)}nj=1 in

R2, the new interpolant is given by

s(x, y) =
n∑
j=1

cj

√
a2 + (x− xj)2 + (y − yj)2. (1.4)

Hardy found that (1.4) performed well when used to approximate topographic surfaces

from sparse data measurements. He named this technique the “multiquadric method”

due to its most notable feature of “superpositioning quadric surfaces” [16]. While

Hardy’s initial goal was achieved, he noted that his method could be easily extended

for scattered data in many dimensions. His work, combined with the work of those
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after him in the 1970s and 1980s, lead to the formal definition for scalar interpolation

using RBFs:

Definition 1.2.1. (Scalar RBF Method) Given a distinct set of scattered nodes

Y = {yj}nj=1 ⊂ Rd≥1 and some scalar-valued target function f sampled at Y , the

scalar-valued RBF interpolant of f |Y is given by

s(x) =
n∑
j=1

cjφ
(
||x− yj||

)
, (1.5)

where x ∈ Rd, ||·|| is the d-dimensional Euclidean norm, and φ(r) is some radial kernel

(see Table 1.1 for examples). The expansion coefficients cj can be determined by

solving the symmetric linear system formed by enforcing the interpolation conditions

s(yj) = fj, j = 1, . . . , n :
φ(||y1 − y1||) φ(||y1 − y2||) · · · φ(||y1 − yn||)
φ(||y2 − y1||) φ(||y2 − y2||) · · · φ(||y2 − yn||)

...
...

. . .
...

φ(||yn − y1||) φ(||yn − y2||) · · · φ(||yn − yn||)


︸ ︷︷ ︸

AY


c1

c2
...
cn


︸ ︷︷ ︸
c

=


f1

f2
...
fn

 .
︸ ︷︷ ︸
f

(1.6)

We note here that determining the interpolation coefficients in this manner will

be referred to as “RBF Direct” in this thesis. Geometrically, the RBF Direct method

can be viewed as interpolating the data with a linear combination of translates of a

single basis function, φ(r), that is radially symmetric about its center. This process

can be seen graphically in Figure 1.1. Several options for these radial kernels have

been developed since Hardy’s multiquadric kernel, and this thesis will use those with

the following property.

Definition 1.2.2. (Positive Definite Kernel) Let Ω ⊂ Rd≥1. φ is a positive definite

kernel on Ω if the matrix AY is positive definite for any distinct Y = {yj}nj=1 ⊂ Ω,
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(a) (b) (c)

Figure 1.1: The process of using RBFs to interpolate a set of scattered data in 2D.
(a) a target function f sampled at some set of distinct nodes, (b) a set of radial
basis functions interpolating the data (c) a reconstructed surface resulting from the
interpolation

i.e.
n∑
i=1

n∑
j=1

biφ(yi,yj)bj > 0, provided bi 6= 0, i = 1, . . . , n.

Table 1.1 lists some of the most commonly used, positive definite radial kernels,

and Figure 1.2 shows plots of these kernels. Using these kernels guarantees that the

AY matrix in (1.6) will be unconditionally nonsingular, i.e., that the RBF Direct

method will be uniquely solvable [20]. Notice that the MQ kernel is precisely the one

Radial Kernel φ(r)

Gaussian (GA) e−(εr)2

Inverse quadratic (IQ)
1

1 + (εr)2

Inverse multiquadric (IMQ)
1√

1 + (εr)2

Multiquadric (MQ)
√

1 + (εr)2

Table 1.1: Commonly used radial kernels, where the first three are positive definite,
r = ‖x− y‖, and ε is the shape parameter.

that Hardy developed with the transformation a = 1
ε
. Here, ε is a free parameter

that controls the flatness or peakedness of the functions, giving it the name “shape
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parameter.” The shape parameter plays a central role in this thesis and will be

discussed in more detail in subsequent chapters.

Since its introduction by Hardy, the scalar-valued RBF interpolation method

has been studied extensively for approximating scattered data in two and higher

dimensions. RBFs have become increasingly popular and are now being used for

(a) (b)

(c) (d)

Figure 1.2: (a)The Gaussian (ε = 2), (b) inverse quadric (ε = 3.5), (c) inverse
multiquadric (ε = 6), and (d) multiquadric radial kernels (ε = 2).

applications such as computer animation, medical imaging, and fluid dynamics. This

section has given a brief overview of scalar-valued RBF interpolation, including their

origins in cartography. In the next section, we will cover how to use the radial kernels

in Table 1.1 for approximating vector-valued functions, i.e. vector fields, with certain

inherent properties.
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1.2.2 RBF Interpolation of Vector Fields

Vector fields arise naturally in many applications, as they describe certain fundamen-

tal physical quantities. Two specific properties of vector fields are particularly useful

when representing physical data: divergence (sources and sinks in a field) and curl

(rotational movement of a field). For example, divergence-free vector fields represent

incompressible fluid flows and (static) magnetic fields, while curl-free vector fields

represent gravity fields and (static) electric fields. Since these properties play a key

role in many applications, interest was stirred in finding a method that used the

established scalar-valued radial kernels to construct vector-valued approximations to

vector fields with divergence-free or curl-free properties. We note here that many

people consider a näıve approach for using RBFs to interpolate data collected from

vector fields: using the scalar-valued RBF method to interpolate each component of

the vector field individually. The disadvantage to this technique is that it does not

allow certain properties of the vector field to be preserved. In order to properly utilize

scalar-valued kernels to approximate vector fields while still preserving divergence-free

and curl-free properties, researchers worked to extend the RBF theory for interpo-

lating all components of a vector field together. Narcowich and Ward accomplished

this in 1994 when they introduced matrix-valued kernels that can be used to produce

divergence-free interpolants at scattered points [22]. In 2006, Fuselier did the same

for curl-free interpolants [11].

The interpolation process for matrix-valued kernels is similar to that of the scalar

case. We begin with divergence-free interpolation. Let φ be any scalar-valued radial

kernel that is twice continuously differentiable, then we consider the matrix-valued,

divergence-free kernel formed from φ as
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Φdiv(x,y) = −I∆φ(x,y) +∇∇Tφ(x,y), (1.7)

where ∇ is the gradient operator in Rd, ∇∇T is the Hessian operator, and ∆ is the

Laplacian operator. In 2D, for example,

−I∆ =

[
−∆ 0

0 −∆

]
and ∇∇T =

[
∂xx ∂xy
∂yx ∂yy

]
.

Narcowich and Ward showed that Φdiv is a d×dmatrix-valued function with divergence-

free columns [22]. In order to demonstrate why the columns of this kernel are

divergence-free, we utilize the standard basis vectors ej ∈ Rd. The jth column of

Φdiv is given by

Φdiv(x,y)ej =
[
−I∆φ(x,y) +∇∇Tφ(x,y)

]
ej

= ∇× (∇× (φ(x,y)ej)) = ∇× g,
(1.8)

where g is a vector field. Thus we see that each column of Φdiv is the curl of a vector

field, so they are divergence-free; see Figure 1.3 for an illustration of the columns of

Φdiv in R2. Additionally, Narcowich and Ward showed how to use Φdiv to produce a

divergence-free vector-valued interpolant.

Given a distinct set of scattered nodes Y = {yj}nj=1 on Rd and a target vector

field u : Rd → Rd sampled at Y , the divergence-free vector RBF interpolant of u is

given by

s(x) =
n∑
j=1

Φdiv(x,yj)cj, cj ∈ Rd. (1.9)

Similar to the scalar-valued interpolation method, the interpolation coefficients cj

are determined by solving the linear system formed by enforcing the interpolation

conditions, which can be written as
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(a) (b)

Figure 1.3: The columns of a divergence-free kernel: (a) Φdiv(x, 0)[1 0]T (b)
Φdiv(x, 0)[0 1]T based on the Gaussian radial kernel.


Φdiv(y1,y1) Φdiv(y1,y2) · · · Φdiv(y1,yn)
Φdiv(y2,y1) Φdiv(y2,y2) · · · Φdiv(y2,yn)

...
...

. . .
...

Φdiv(yn,y1) Φdiv(yn,y2) · · · Φdiv(yn,yn)


︸ ︷︷ ︸

AY,Φdiv


c1

c2
...

cn


︸ ︷︷ ︸

c

=


u1

u2
...

un


︸ ︷︷ ︸

u

. (1.10)

Due to the symmetric structure of Φdiv, the matrix AY,Φdiv is also symmetric. It can

also be shown to be positive definite for appropriately chosen φ [11], such as those

in Table 1.1. This guarantees that (1.10) has a unique solution. Figure 1.4 shows a

divergence-free vector field sampled at distinct points and the resulting divergence-free

RBF interpolant.

The curl-free matrix-valued kernels are developed in a similar manner as the

divergence-free ones. As before, we let φ be any scalar-valued radial kernel that

is twice continuously differentiable and act on it with the appropriate differential

operator. We define a curl-free matrix-valued kernels as [11]
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(a) (b)

Figure 1.4: (a) The samples of a divergence-free vector field and (b) the interpolant
of the field using the Gaussian kernel with ε = 4.5.

Φcurl(x,y) = −∇∇Tφ(x,y). (1.11)

As in the divergence-free case, we utilize the standard basis vectors ej ∈ Rd to show

that the columns of this kernel are curl-free. The jth column of Φcurl is given by

Φcurl(x,y)ej = −∇∇Tφ(x,y)ej = ∇
(
−∇T (φ(x,y)ej)

)
= ∇g, (1.12)

where g = −∂φ/∂x(j), and x(j) refers to the jth coordinate of x. Since g is a scalar

function, we see that each column of Φcurl is the gradient of a scalar, so they are

curl-free; see Figure 1.5 for an illustration of the columns of Φcurl in R2. With this

established, the curl-free vector RBF interpolant is given as

s(x) =
n∑
j=1

Φcurl(x,yj)cj, (1.13)

where the interpolation coefficients cj are found by solving the linear system as

in (1.10), but with the matrixAY,Φcurl , whose (j, k)th d×d block is given by Φcurl(yj,yk).

Similar to the divergence-free case, Φcurl is symmetric, which means the matrix
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(a) (b)

Figure 1.5: The columns of a curl-free kernel: (a) Φcurl(x, 0)[1 0]T (b) Φcur(x, 0)[0 1]T

based on the Gaussian radial kernel.

(a) (b)

Figure 1.6: (a) The samples of a curl-free vector field and (b) the interpolant of the
field using the Gaussian kernel with ε = 4.5.
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AY,Φcurl is also symmetric. AY,Φcurl can also be shown to be positive definite for

appropriately chosen φ, like those listed in Table 1.1 [11]. Figure 1.6 shows a curl-free

vector field sampled at distinct points and the resulting curl-free RBF interpolant.

1.3 RBF Interpolation of Surface Divergence-Free and Curl-

Free fields on the Sphere

The results from Section 1.2.2 dealt with the interpolation of divergence-free or curl-

free vector fields in Rd, but there are many applications, particularly in geophysics,

where vector fields tangent to the surface of the sphere arise. For example, in the

atmospheric sciences, horizontal wind fields are modeled as tangent vector fields, while

the same is true of surface ocean currents in the oceanic sciences. In this section, we

discuss how RBFs can be further customized for surface divergence-free or curl-free

interpolation on the domain of the sphere. We denote the matrix-valued kernels used

for defining these interpolants as Ψdiv and Ψcurl, respectively. Note that while these

kernels are the respective spherical analogues of Φdiv and Φcurl, we cannot simply

restrict Φdiv and Φcurl to the surface of the sphere because this would not result in

surface divergence-free/curl-free kernels.

1.3.1 Surface Differential Operators for Vector Fields in R3

In order to aid our discussion in subsequent sections, we will define tangential differ-

ential operators for vector fields on the two-sphere, S2. Since S2 is a two-dimensional

domain, we can define the (surface-) curl of a scalar function analogously to the curl

of a scalar function in R2, where curl should be understood as n×∇. The surface-curl

of a scalar-valued function f : S2 → R, expressed in Cartesian coordinates, is given
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as Qx∇xf , where x ∈ S2, ∇x is the usual gradient on R3 applied to x, and Qx is the

matrix that represents the cross product with the normal vector, i.e.

Qx :=

 0 −z y
z 0 −x
−y x 0

 . (1.14)

Additionally, the surface-gradient of a scalar-valued function f : S2 → R, expressed in

Cartesian coordinates, is given as Px∇xf , where Px projects vectors onto the tangent

space on S2 at x:

Px := I − xxT =

1− x2 −xy −xz
−xy 1− y2 −yz
−xz −yz 1− z2

 . (1.15)

Both the surface-curl and surface-gradient operators produce vector fields that are

tangent to S2 at x and are expressed with respect to the standard Cartesian coordinate

basis. We also note here that the surface-curl of a scalar function on S2 is divergence-

free, and fields that are surface-gradients of scalar functions on S2 are surface curl-

free [13]. With these surface operators defined, we can now discuss vector RBF

interpolation on the surface of the sphere.

1.3.2 Vector RBF Interpolation on the Sphere

We will begin with the derivation for the surface divergence-free matrix-valued RBF

kernel for vector fields tangent to the sphere, which was first developed by Narcowich,

Ward, and Wright [23]. Note that we will use extrinsic (Cartesian) coordinates

because they do not suffer from pole singularities, unlike surface-based coordinate

systems on the sphere. Let x,y ∈ S2 and consider a scalar-valued radial kernel

centered at y, φ (‖x− y‖). We then construct the 3-by-3 matrix-valued kernel, Ψdiv,

using the surface-curl operator from Section 1.3.1 as follows:
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Ψdiv(x,y) = (Qx∇x) (Qy∇y)T φ (‖x− y‖)
= Qx

(
∇x∇T

yφ (‖x− y‖)
)
Qy.

(1.16)

Notice that the matrix Qy eliminates the normal component of a vector, so for any

c = (c1, c2, c3)T , Ψdiv(x,y)c is tangent to S2 at x. Furthermore

Ψdiv(x,y)c =
[
Qx

(
∇x∇T

yφ (‖x− y‖)
)
Qy

]
c

= Qx∇x

[
∇T

y (φ (‖x− y‖))Qyc
]︸ ︷︷ ︸

f

= Qx (∇xf) ,

(1.17)

where f is a scalar-valued function. Since Ψdiv(x,y)c is equivalent to the surface-curl

of a scalar function, we know that it is surface divergence-free. With this kernel, we

can now construct an interpolant to a divergence-free tangent vector field on S2.

Similar to the interpolation process described in Section 1.2.2, we begin with

distinct nodes Y = {yj}nj=1 = {(xj, yj, zj)}nj=1 ⊂ S2 and a surface divergence-free

tangent vector field f sampled on Y , {fj}nj=1 = {[fj,1fj,2fj,3]T}nj=1; see Figure 1.8 (a)

for an illustration. The surface divergence-free RBF interpolant takes the form

t(x) =
n∑
j=1

Ψdiv(x,yj)cj, (1.18)

where the interpolation coefficients cj are tangent to S2 at yj. This assumption is

needed to make the interpolation problem well-posed. We note here that solving for

these interpolation coefficient vectors is a two-dimensional problem since fj are really

two-dimensional vectors, since they can be written as a sum of two orthonormal vec-

tors. This creates an issue due to the terms in the sum (1.18) being three-dimensional

vectors. A näıve approach to solving for the cj’s will lead to a singular system

of equations. Therefore we will explain how to set up the vector interpolant so

that the corresponding matrix for determining the interpolation coefficient vectors is

non-singular.
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We denote an orthonormal coordinate system at each node, yj, as {dj, ej,nj},

where nj is the outward normal to S2, ej is a unit tangent vector, and dj = nj × ej.

Then we see that nj = yj (since on the unit sphere the outward normal at yj is just yj)

and choose dj and ej to be the standard meridional and zonal vectors, respectively:

dj =
1√

1− z2
j

−zjxj−zjyj
1− z2

j

 , ej =
1√

1− z2
j

−yjxj
0

 . (1.19)

It is important to note here that dj and ej form an orthonormal basis for the

tangent space of S2 at yj. Additionally, if y = [0, 0, 1] or y = [0, 0,−1], e.g.

at one of the poles, we can pick any orthogonal vectors in the plane z = 1 or

z = −1, respectively. Then the surface divergence-free vector RBF interpolant to

the samples of f is constructed from linear combinations of the tangent vector basis

{(Ψdiv(x,yj)dj,Ψdiv(x,yj)ej)}nj=1, i.e. the interpolant is of the form

t(x) =
n∑
j=1

Ψdiv(x,yj) [αjdj + βjej]︸ ︷︷ ︸
cj

, (1.20)

where the unknowns αj and βj are determined by solving t(yi) = fi, i = 1, . . . , n.

Illustrations of the zonal and meridional basis vectors formed from Ψdiv are displayed

in Figure 1.7.

Now solving for the interpolation coefficient vectors cj in (1.20) is equivalent to

solving the linear system of equations,

n∑
j=1

Ψdiv(yi,yj)[αjdj + βjej] = fi, 1 ≤ i ≤ n, (1.21)

for αj and βj. However, since fi has three components, (1.21) is not a square system.

We note that we can make (1.21) a square system by expressing fi in terms of di and

ei as fi = γidi + δiei, where
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(a) (b)

Figure 1.7: The two components of the tangent vector basis at yj: (a) Zonal basis,
Ψdiv(x,yj)ej (b) Meridional basis, Ψdiv(x,yj)dj

[
γi
δi

]
=

[
dTi
eTi

]
fi. (1.22)

Using this, we can rewrite (1.21) as the 2n-by-2n linear system

n∑
j=1

([
dTi
eTi

]
Ψdiv(yi,yj)

[
dj ej

])
︸ ︷︷ ︸

AΨdiv ,(i,j)

[
αj
βj

]
=

[
γi
δi

]
, 1 ≤ i ≤ n. (1.23)

The (i, j)th 2-by-2 block of this interpolation matrix is denoted by AΨdiv ,(i,j) and is

given explicitly as [13]:

AΨdiv ,(i,j) =

[
−ei · ej ei · dj
di · ej −di · dj

]
η(rij) +

[
ei · nj
−di · nj

] [
ni · ej −ni · dj

]
ζ(rij), (1.24)

where rij = ‖yi − yj‖, η(r) = φ′(r)/r, and ζ(r) = η′(r)/r. The interpolation matrix

that arises from these entries is of size 2n-by-2n and is positive definite (and thus,

invertible) if Ψdiv is constructed from any of the scalar kernels in Table 1.1 [23].

Figure 1.8 (b) illustrates an interpolated surface divergence-free vector field on S2
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using the surface divergence-free RBF interpolant.

(a) (b)

Figure 1.8: (a) The scattered samples of a surface divergence-free vector field in blue
and (b) the interpolant of the field using the surface divergence-free RBF interpolant
in black.

We note that the construction of a surface curl-free interpolant using Ψcurl for

scattered samples of a surface curl-free field is similar to that of the divergence-free

process. So we discuss the curl-free case less extensively, highlighting the differences

from the divergence-free case.

As before, we let x,y ∈ S2 and consider the scalar-valued radial kernel centered

at y, φ (‖x− y‖). We then construct the 3-by-3 matrix-valued kernel, Ψcurl, using

the surface-gradient operator from Section 1.3.1 as follows:

Ψcurl(x,y) = (Px∇x) (Py∇y)T φ (‖x− y‖)
= −Px

(
∇x∇T

yφ (‖x− y‖)
)
Py.

(1.25)

Again due to the operator Py acting on a vector c = (c1, c2, c3)T , Ψcurl(x,y)c is

tangent to S2 at x. Furthermore,
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Ψcurl(x,y)c =
[
−Px

(
∇x∇T

yφ (‖x− y‖)
)
Py

]
c

= Px∇x

[
−∇T

y (φ (‖x− y‖))Pyc
]︸ ︷︷ ︸

g

= Px (∇xg) ,

(1.26)

where g is a scalar-valued function. Since Ψcurl(x,y)c is equivalent to the surface-

gradient of a scalar function, we know that it is surface curl-free. With this kernel,

we can now construct an interpolant to a surface curl-free tangent vector field on S2.

As before, we begin with distinct nodes Y = {yj}nj=1 = {(xj, yj, zj)}nj=1 ⊂ S2,

but now we have a surface curl-free tangent vector field f sampled on Y , {fj}nj=1 =

{[fj,1fj,2fj,3]T}nj=1; see Figure 1.10 for an illustration. The surface curl-free RBF

interpolant takes the form

t(x) =
n∑
j=1

Ψcurl(x,yj)cj, (1.27)

where cj is tangent to S2 at yj. We make the same modification as in (1.20) but with

(a) (b)

Figure 1.9: The two components of the tangent vector basis at yj: (a) Zonal basis,
Ψcurl(x,yj)ej (b) Meridional basis, Ψcurl(x,yj)dj
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the tangent vector basis {(Ψcurl(x,yj)dj,Ψcurl(x,yj)ej)}nj=1 in order to get the 2n-

by-2n linear system for determining the interpolation coefficients cj = [αjej βjdj] :

n∑
j=1

([
dTi
eTi

]
Ψcurl(yi,yj)

[
dj ej

])
︸ ︷︷ ︸

AΨcurl,(i,j)

[
αj
βj

]
=

[
γi
δi

]
, 1 ≤ i ≤ n. (1.28)

Illustrations of the zonal and meridional basis vectors formed from Ψcurl are displayed

in Figure 1.9. The (i, j)th 2-by-2 block of this interpolation matrix is denoted by

AΨcurl,(i,j), and is given explicitly as [13]:

AΨcurl,(i,j) =

[
di · dj di · ej
ei · dj ei · ej

]
η(rij) +

[
di · nj
ei · nj

] [
ni · dj ni · ej

]
ζ(rij), (1.29)

where rij, η(r), and ζ(r) are defined as in (1.24). The interpolation matrix that

arises from these entries is size 2n-by-2n and is positive definite (and thus, invertible)

if Ψcurl is constructed from any of the scalar kernels in Table 1.1 [13]. Figure 1.10

(b) illustrates an interpolated surface curl-free vector field on S2 using the surface

curl-free RBF interpolant.

(a) (b)

Figure 1.10: (a) The scattered samples of a surface curl-free vector field in red and
(b) the interpolant of the field using the surface curl-free RBF interpolant in black.
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We conclude by noting that according to the Helmholtz-Hodge decomposition,

any vector field can be decomposed into a divergence-free component, a curl-free

component, and a harmonic component. Since tangent vector fields on the sphere

do not have harmonic components, we can decompose every tangent vector field

on S2 uniquely into divergence-free and curl-free components. Fuselier and Wright

introduced a technique for decomposing tangent vector fields on S2 using the Ψdiv and

Ψcurl kernels [13]. They demonstrated that the kernel for interpolating any tangent

vector field on S2 is simply defined as Ψ := Ψdiv + Ψcurl. Then given distinct nodes

Y = {yj}nj=1 ⊂ S2 and a surface tangent vector field f sampled on Y , the interpolant

is thus of the form

t(x) =
n∑
j=1

Ψ(x,yj)cj =
n∑
j=1

Ψdiv(x,yj)cj︸ ︷︷ ︸
Div. free

+
n∑
j=1

Ψcurl(x,yj)cj.︸ ︷︷ ︸
Curl free

(1.30)

Fuselier and Wright furthermore showed that t not only approximates the tangent

vector field being interpolated, but also that the divergence-free and curl-free terms

in the decomposition of t approximate the corresponding parts of the underlying

field [13].

1.4 Spherical Harmonics

In the algorithms presented in Chapters 2 and 3, we make heavy use of spherical har-

monic expansions, both scalar and vector ones. We therefore give a brief introduction

to these functions.

Spherical harmonics have many applications in the physical sciences, including

computing atomic electron configurations, representing gravitational and magnetic

fields of planetary bodies, and defining quantities of light transport in computer
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graphics [3, 14, 30]. These expansions are the spherical analog of Fourier expansions,

which can be used to represent functions defined on the unit circle. Since we are

working specifically with functions on a sphere, we will be using scalar spherical

harmonics and their vectorial analogue, vector spherical harmonics. The usefulness

of the spherical harmonics for representing functions on the sphere is due in part to

their inherent properties of orthogonality and completeness.

1.4.1 Scalar Spherical Harmonics

We denote the scalar spherical harmonic of degree µ ≥ 0 and order ν (see Figure 1.11

for illustrations) on S2 by Y ν
µ . These functions are the eigenfunctions of the Laplace-

Beltrami operator, which can be expressed in spherical coordinates on the unit sphere

(x = sin θ cosλ, y = sin θ sinλ, z = cos θ) as

∇2
S2 ≡

∂2

∂θ2
+ cot θ

∂

∂θ
+

1

sin2 θ

∂2

∂λ2
, 0 ≤ θ ≤ π, −π ≤ λ ≤ π. (1.31)

Each spherical harmonic satisfies ∇2
S2Y

ν
µ = −µ(µ + 1)Y ν

µ , and for each µ there are

2µ + 1 harmonics with the eigenvalue −µ(µ + 1), enumerated by −µ ≤ ν ≤ µ [21].

This thesis will use the real-form of the spherical harmonics functions in Cartesian

coordinates. For (x, y, z) ∈ S2, they are as follows

Y ν
µ (x, y, z) =


√

2µ+1
4π

√
(µ−ν)!
(µ+ν)!

P ν
µ (z) cos

(
ν tan−1

(
y
x

))
, ν = 0, 1, . . . , µ,√

2µ+1
4π

√
(µ−ν)!
(µ+ν)!

P ν
µ (z) sin

(
−ν tan−1

(
y
x

))
, ν = −µ, . . . ,−1

. (1.32)

Here P ν
µ (z) are the associated Legendre functions of degree µ and order ν. The

spherical harmonics form a complete, orthonormal set of basis functions for the

space of square-integrable functions on S2, which we denote by L2(S2) [2]. Thus,

any function f ∈ L2(S2) can be uniquely represented as
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µ = 4

µ = 3

µ = 2

µ = 1

µ = 0

ν = 0ν = −3 ν = −2 ν = −1ν = −4 ν = 1 ν = 2 ν = 3 ν = 4

Figure 1.11: Pseudocolor plot of the scalar spherical harmonics basis functions of
degrees µ = 0, 1, 2, 3, 4 and orders ν = −µ, . . . , µ. The colors range from blue to red,
which correspond to negative and positive values, respectively.

f(x, y, z) =
∞∑
µ=0

µ∑
ν=−µ

cµ,νY
ν
µ (x, y, z), (1.33)

where cµ,ν are found using the usual L2-inner product for scalar functions on the

sphere, cµ,ν = 〈f, Y ν
µ 〉 [2].

1.4.2 Vector Spherical Harmonics

Vector spherical harmonics are the vectorial analogue of scalar spherical harmonics,

and they are used for representing vector-valued functions on the sphere. There are

three L2-orthogonal types of these functions: one type that is normal to the sphere,

and two types that are tangent to the sphere [28]. In this thesis, we are working with

vector fields that are tangent to the sphere. Therefore, we are interested in deriving

the tangential vector spherical harmonics, which are separated into divergence-free



25

and curl-free terms. For the following derivations, we use the real-form of the scalar-

valued spherical harmonic functions in Cartesian coordinates, as defined in (1.32).

We obtain the normalized surface divergence-free vector spherical harmonics by

applying the surface-curl operator to the scalar spherical harmonic functions at x,

Y ν
µ (x):

w̃ν
µ =

Qx∇xY
ν
µ (x)

µ(µ+ 1)
, (1.34)

provided that µ 6= 0 [28]. Since these are expressed as the surface-curl of scalar-valued

functions, they are surface divergence-free. Similarly, we obtain the surface curl-free

vector spherical harmonics by applying the surface-gradient to Y ν
µ (x):

z̃νµ =
Px∇xY

ν
µ

µ(µ+ 1)
. (1.35)

We see that these are surface curl-free since they are the surface-gradient of scalar-

valued functions. They can also be shown to be orthonormal in L2(S2) [28]. We

will denote the non-normalized surface divergence-free and curl-free vector spherical

harmonics as wν
µ and zνµ, respectively. The surface divergence-free and curl-free vector

spherical harmonics are the eigenfunctions of the vector Laplace-Beltrami operator,

which operates on vector fields tangent to S2. Additionally, they form a complete

orthonormal set of basis functions for the spectral representation of vector functions

on S2 [28]. We denote this space again by L2(S2), but we define it using the inner

product for vector functions f and g on S2:

〈f ,g〉 =

∫
S2

fTgdS,

where the dot product is taken in local coordinates [28]. With this inner product, we

define the vector spherical harmonic expansion of a vector function f ∈ L2(S2) as
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f =
∞∑
µ=1

µ∑
ν=−µ

(
f̂div(µ, ν)wν

µ + f̂curl(µ, ν)zνµ

)
,

where

f̂div(µ, ν) := 〈f ,wν
µ〉 and f̂curl(µ, ν) := 〈f , zνµ〉.

Note here that the outer sum excludes µ = 0. This is due to the fact that the

constant spherical harmonic term, Y 0
0 (x), is annihilated by the surface-curl and

surface-gradient operators.

As discussed in Section 1.3.2, the interpolation problem on the sphere requires

that we utilize the tangent basis vectors at x ∈ S2, dx and ex. Therefore, it is

relevant to introduce the notation for the non-normalized surface divergence-free and

curl-free vector spherical harmonics in terms of these basis vectors:

Gν
µ(x) = dTx ·Qx∇xY

ν
µ (x) (meridional, divergence-free),

Hν
µ(x) = eTx ·Qx∇xY

ν
µ (x) (zonal, divergence-free),

Kν
µ(x) = dTx · Px∇xY

ν
µ (x) (meridional, curl-free),

Lνµ(x) = eTx · Px∇xY
ν
µ (x) (zonal, curl-free).

1.5 Overview of the Thesis

As discussed in this chapter, RBF interpolation is an effective method for approxi-

mating scalar functions and vector fields given only scattered data. However, we see

in Table 1.1 that the radial kernels used in this interpolation process are dependent

on the shape parameter ε, which controls the peakedness of the kernels. The shape

parameter is the focus of this thesis because of how it affects the accuracy of RBF

approximations. Specifically, it has been observed that smaller values of ε result in

better approximations to a point at which ill-conditioning enters into the interpolation
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system (1.6). After this point as ε→ 0, the RBF Direct method becomes numerically

unstable and the resulting approximations become highly inaccurate.

Fornberg and Piret developed an algorithm that bypasses the ill-conditioning of

scalar RBF interpolation on the sphere in this flat limit [7]. Titled the RBF-QR

algorithm, their work is the foundation on which we conducted the research of this

thesis. Vector-valued RBF interpolants on the sphere have the same dependency on

the shape parameter as scalar-valued interpolants, because of their direct relation to

the scalar-valued radial kernels. In this thesis, we develop the first numerically stable

algorithm for vector-valued RBF interpolation on the sphere in the flat limit.

The rest of the thesis is structured as follows. In Chapter 2 we give an extensive

explanation of the Scalar RBF-QR algorithm of Fornberg and Piret [7], concluding

with numerical results. In Chapter 3 we present the main result of the thesis, namely

the Vector RBF-QR algorithm. As this is an extension of the Scalar RBF-QR algo-

rithm, the Vector RBF-QR algorithm with be derived in a similar manner. Finally,

we will end the thesis with numerical results from the Vector RBF-QR algorithm in

Chapter 4, followed by conclusions in Chapter 5.
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CHAPTER 2

THE RBF-QR ALGORITHM FOR STABLE

SCALAR-VALUED RBF INTERPOLATION ON THE

SPHERE

2.1 Scalar-Valued RBF Interpolation in the Flat Limit

As discussed in the previous chapter, RBFs are used in many disciplines for scattered

data approximation on surfaces. Recall that the linear system in (1.6), used to

solve for the interpolation coefficients, is guaranteed to be nonsingular for the φ(r)

functions listed in Table 1.1. Researchers observed that the conditioning of the linear

system (1.6) and the accuracy of the resulting interpolant (1.5) are greatly dependent

on the shape parameter, ε. Specifically, they noted that (1.6) is well-conditioned for

(a) (b) (c)

Figure 2.1: The inverse multiquadric kernel for (a) ε = 10, (b) ε = 5, and (c) ε = 1

large values of ε, but the interpolant gives a poor approximation of the underlying

target function. This is due to the fact that ε controls the peakedness of the radial
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kernels, where larger values of ε cause the functions to become more spiked. For

example, as ε → ∞ in the 1-D multiquadric function, the corresponding RBF in-

terpolant converges to a piecewise linear interpolant. In contrast, the radial kernels

become flatter and flatter as the shape parameter ε→ 0, hence the name “flat limit.”

This is illustrated in Figure 2.1 for the inverse multiquadric function. Researchers also

observed that for smaller values of ε, the interpolant (1.5) gives a better approximation

of the underlying target function to a point at which ill-conditioning of the linear

system (1.6) sets in. Figure 2.2 illustrates this phenomenon between ill-conditioning

and accuracy for an interpolation problem on S2.

There is extensive literature dedicated to finding the “optimal” shape parameter,

i.e. the value of ε that results in the best approximation of the target function [4,26].

However, the proposed methods are limited because of the disastrous ill-conditioning

that enters the RBF Direct interpolation process in the flat limit. As researchers

investigated the flat limit, they hypothesized that the error trend seen in Figure 2.2

would not increase rapidly, provided that this ill-conditioning was eliminated. The

first step toward confirming this conjecture was recognizing where the ill-conditioning

enters the problem. As ε → 0, the basis functions all become 1, causing the linear

system used to solve for the coefficients to become singular. In other words, the

columns of AY become linearly dependent, and the condition number grows without

bound, causing the coefficients to blow-up. They noticed that while the expansion

coefficients blow-up as ε → 0, the RBF interpolant remains well-behaved. In fact,

Driscoll and Fornberg showed that for 1-D scattered data, the RBF interpolant

converges to the Lagrange interpolating polynomial as ε → 0 for all of the φ listed

in Table 1.1 (and many others). They explained this convergence by first noting

the interpolant (1.5), which we denote now by s(x, ε) in order to emphasize the
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(a) (b)

(c) (d)

Figure 2.2: A problem illustrating ill-conditioning that enters the interpolation
process in the RBF Direct method for an interpolation problem on the sphere
consisting of (a) n = 529 quasi-uniformly distributed nodes and (b) the target function
f = sin(xyz) on the sphere. (c) Condition number of the AY matrix in (1.6) vs ε.
(d) Max norm error vs ε in the resulting RBF interpolant over the sphere computed
with the RBF Direct approach. The IMQ kernel was used here.

dependence on ε, can be rewritten as

s(x, ε) =
[
φ(‖x− y1‖) φ(‖x− y2‖) · · · φ(‖x− yn‖)

]
c

= b(x, ε)A−1
Y (ε)f,

(2.1)

where AY (ε) now denotes the matrix in (1.6). They then showed that vast amounts
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of cancellations occur when multiplying b(x, ε)T by A−1
Y (ε) that compensate for the

divergence of the entries of A−1
Y (ε). In other words, computing c directly via (1.6)

and then from that the interpolant (1.5) is an ill-conditioned step in an otherwise

well-conditioned interpolation process.

The first stable algorithm to bypass the inherent ill-conditioning of RBF Direct

was the contour-Padé method, developed by Fornberg and Wright in 2004 [8] (see

also [33]). Fornberg and Piret later developed a different stable algorithm for interpo-

lation on the sphere [7], which they termed RBF-QR (see also the extensions to R2 and

R3 [6]). This algorithm is the basis for the stable algorithm we develop in Chapter 3

for surface divergence-free and curl-free interpolation with RBFs. The remainder of

this chapter gives an overview of the Scalar RBF-QR algorithm of Fornberg and Piret.

2.2 Scalar RBF-QR Algorithm

One of the ways to bypass the ill-conditioning of the scalar-valued RBF Direct

interpolation system (1.6) in the flat limit is to replace the flat RBF basis with a

well-conditioned one that spans the same space. By doing this, we get an equivalent

interpolation result, but with a completely stable process. This is the key idea behind

the Scalar RBF-QR method. Fornberg and Piret achieved this in their algorithm by

first using scalar spherical harmonics to expand radial kernels. Then with some clever

linear algebra, they were able to create a well-conditioned and equivalent basis.

2.2.1 Spherical Harmonic Expansion of RBF Kernels

In order to transform the RBF basis into a spherical harmonic basis, we can use the

following formula (derived from the spherical harmonic addition theorem [2, 21]) for
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the spherical harmonic expansion of each basis function [7]:

φ(‖x− yj‖) =
∞∑
µ=0

µ∑′

ν=−µ

{cµ,εε2µY ν
µ (yj)}Y ν

µ (x), (2.2)

where the symbol
∑′ denotes that the ν = 0 term is halved. Table 2.1 lists the

expansion coefficients for many common radial kernels. These were first worked out by

Hubbert and Baxter [18] for the radial kernels listed in Table 1.1. It is also important

Radial Kernel Expansion Coefficient, cµ,ε

MQ
−2π(2ε2 + 1 + (µ+ 1/2)

√
1 + 4ε2)

(µ+ 3/2)(µ+ 1/2)(µ− 1/2)

(
2

1 +
√

4ε2 + 1

)2µ+1

IMQ
4π

(µ+ 1/2)

(
2

1 +
√

4ε2 + 1

)2µ+1

IQ
4π3/2µ!

Γ(µ+ 3
2
)(1 + 4ε2)µ+1 2F 1(µ+ 1, µ+ 1; 2µ+ 2; 4ε2

1+4ε2
)

GA
4π3/2

ε2µ+1
e−2ε2Iµ+1/2(2ε2)

Table 2.1: SPH expansion coefficients for various radial kernels on the sphere. In
the formula for the IQ kernel, 2F 1(. . . ) denotes the hypergeometric function, and in
the formula for the GA kernel, Iµ+1/2 denotes the Bessel function of the second kind.
Note that the apparent singularity of the cµ,ε for the GA kernel is a removable one

due to the identity
Iµ+1/2(2ε2)

ε2µ+1 = 1
Γ(µ+1)

√
π

∫ 1

−1
e2ε2t (1− t2)

k
dt.

to mention that the coefficients listed in Table 2.1 can be calculated without the loss

of any significant digits caused by numerical cancellations, even for vanishingly small

ε [7].

We note that the expansion coefficients in Table 2.1 depend solely on µ, as opposed

to those in (1.33), which depend on both µ and ν. This follows from the Funk-

Hecke formula [2, 21]. In the next section, we will show that the Scalar RBF-QR

algorithm avoids numerical underflow from the ε2µ terms in (2.2) by performing matrix

manipulations that introduce analytical cancellations of these powers of ε.
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2.2.2 Matrix Representation and QR Factorization

Using the spherical harmonic expansion formula (2.2), we can rewrite each radial

kernel in the RBF basis as an infinite sum:

φ(‖x− y1‖) = c0,ε
2
Y 0

0 (y1)Y 0
0 (x)+

+ε2c1,ε{Y −1
1 (y1)Y −1

1 (x) + 1
2
Y 0

0 (y1)Y 0
0 (x) + Y 1

1 (y1)Y 1
1 (x)}+

+ε4c2,ε{. . . . . . }+ ε6c3,ε{. . . . . . }+ ε8c4,ε{. . . . . . }+ . . .
φ(‖x− y2‖) = c0,ε

2
Y 0

0 (y2)Y 0
0 (x)+

+ε2c1,ε{Y −1
1 (y2)Y −1

1 (x) + 1
2
Y 0

0 (y2)Y 0
0 (x) + Y 1

1 (y2)Y 1
1 (x)}+

+ε4c2,ε{. . . . . . }+ ε6c3,ε{. . . . . . }+ ε8c4,ε{. . . . . . }+ . . .
...

...
φ(‖x− yn‖) = c0,ε

2
Y 0

0 (yn)Y 0
0 (x)+

+ε2c1,ε{Y −1
1 (yn)Y −1

1 (x) + 1
2
Y 0

0 (yn)Y 0
0 (x) + Y 1

1 (yn)Y 1
1 (x)}+

+ε4c2,ε{. . . . . . }+ ε6c3,ε{. . . . . . }+ ε8c4,ε{. . . . . . }+ . . .
(2.3)

We note here that the Scalar RBF-QR algorithm is easiest to describe and implement

when the number of interpolation nodes, n, is a perfect square, i.e. n = (µ0 + 1)2 for

some µ0 > 0. This restriction allows for a unique way to split the RBF-QR system.

The summations in (2.3) are equivalent to the infinite matrix-vector product
φ(‖x− y1‖)
φ(‖x− y2‖)

...
φ(‖x− yn‖)

 =

=


c0,ε
2 Y 0

0 (y1)
c1,ε
1 Y −1

1 (y1)
c1,ε
2 Y 0

1 (y1)
c1,ε
1 Y 1

1 (y1) · · ·
c0,ε
2 Y 0

0 (y2)
c1,ε
1 Y −1

1 (y2)
c1,ε
2 Y 0

1 (y2)
c1,ε
1 Y 1

1 (y2) · · ·
...

...
...

... · · ·
c0,ε
2 Y 0

0 (yn)
c1,ε
1 Y −1

1 (yn)
c1,ε
2 Y 0

1 (yn)
c1,ε
1 Y 1

1 (yn) · · ·



ε0

ε2

ε2

ε2

. . .



Y 0

0 (x)

Y −1
1 (x)

Y 0
1 (x)

Y 1
1 (x)

...


=B∞E∞Y ∞.

(2.4)

The first step of the Scalar RBF-QR algorithm truncates these infinite matrices based

on the degree µ of the scalar spherical harmonics in order to make the method
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computable. This truncation degree, µ = k, must satisfy two conditions. First, k

must be at least as large as the degree, µtrunc, that would ensure each row on the

left-hand side of (2.4) is approximated to machine precision by the corresponding row

on the right-hand side. Second, the choice of k must also be at least as big as µ0,

so that the matrix resulting from truncating B∞ is at least square. Thus, we pick

k ≥ max [µtrunc, µ0]. We denote the truncated system (2.4) as


φ(‖x− y1‖)
φ(‖x− y2‖)

...
φ(‖x− yn‖)


︸ ︷︷ ︸

p̃

≈

 B

 E

Y
 , (2.5)

where B is now size n-by-m, E is size m-by-m, and Y is size m-by-1 for m = (k+1)2.

Before describing the second step of the Scalar RBF-QR algorithm, we establish

dimensions and structures of the matrices involved. The system (2.5) is of the form

[
B0 B1 · · · Bµ0 Bµ0+1 · · · Bk

]︸ ︷︷ ︸
B

EY,

where Bµ, 0 ≤ µ ≤ k, are the block matrices of size n-by-(2µ+ 1) with entries

{Bµ}i,j =

{
cµ,εY

j−(µ+1)
µ (yi) j 6= µ+ 1,

cµ,ε
2
Y 0
µ (yi) j = µ+ 1,

j = 1, . . . , 2µ+ 1, i = 1, . . . , n.

The diagonal E matrix can be written as two square, diagonal blocks, E1 and E2

E =

[
E1

E2

]
,

where
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E1 =



1

ε2I3

ε4I5

. . .

ε2µ0I2µ0+1


, (2.6)

E2 =



ε2µ0+2I2µ0+3

ε2µ0+4I2µ0+5

. . .

ε2kI2k+1


, (2.7)

and Iµ is the identity matrix of size µ-by-µ. Due to the truncation and restriction

on n, we see that E1 is of size n-by-n, and E2 is of size (m− n)-by-(m− n). Finally,

the Y vector is given by

Y =

[
Y0 Y1 · · · Yµ0 Yµ0+1 · · · Yk

]T
,

{Yµ}j = Y j−(µ+1)
µ (x), j = 1, . . . , 2µ+ 1.

The second step of the Scalar RBF-QR algorithm is to compute a QR factorization of

the B matrix. It is important to note that the goal of this is to form new linear

combinations of the existing basis functions so that the new basis will span the

same space (we will address the well-conditioned nature of this new basis in the next

section). A QR factorization is ideal for this goal because it operates on the columns

of the matrix without combining terms in successive columns. In other words, the

QR factorization will produce an upper triangular matrix that is composed of new

linear combinations of the rows of B. This upper triangular matrix is exactly what

the algorithm utilizes to create the new, stable basis. We let p̃ denote the vector

containing the elements of the RBF basis on the left-hand side of (2.5) so that the
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QR-factorization of B leads to

p̃ ≈ Q [R1 |R2]︸ ︷︷ ︸
R

[
E1

E2

]
Y, (2.8)

where R1 is an n-by-n upper-triangular matrix, and R2 is an n-by-(m−n) full matrix.

Note that in terms of powers of ε, all entries of R1 and R2 are O(1) since these powers

have been factored out into E.

The third step now proceeds by some clever factoring of the expression (2.8).

Assuming that the diagonal entries of R1 are non-zero so that it is invertible1, we can

re-write this system as

p̃ ≈ QR1

[
In |R−1

1 R2

] [ E1

E2

]
Y.

Exploiting the structure of E given in (2.6) and (2.7), we can re-write this expression

again as

p̃ ≈ QR1

[
E1 |R−1

1 R2E2

]
Y

= QR1E1

[
In |E−1

1 R−1
1 R2E2

]︸ ︷︷ ︸
B̃

Y. (2.9)

It follows from this new expression that any element in the span of the rows of p̃ can

be represented to machine precision by a linear combination of the rows of B̃Y .

The fourth and final step of this algorithm is to reformulate B̃ using properties

of the Hadamard product of diagonal matrices. We will also use this to support the

claim that this new basis is much better conditioned than the original for small ε,

and thus much more suitable for numerical work. To begin the final step, we consider

the product in the second block-column of B̃ from (2.9). Using the properties of

1This will be true if the nodes are unisolvent with respect to the spherical harmonic basis.
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multiplication of a matrix on the left and right by diagonal matrices (see Appendix A),

we have

E−1
1 R−1

1 R2E2 =
(
R−1

1 R2

)
◦ (E−1

1 Jn,m−nE2)︸ ︷︷ ︸
Ẽ

, (2.10)

where Jn,m−n is the n-by-(m − n) matrix whose entries are all 1, and ◦ denotes the

Hadamard product, or entry wise multiplication. After considering the structure of

E1 and E2 given in (2.6) and (2.7), respectively, we see that the entries of Ẽ are given

explicitly by

Ẽ =



ε2µ0+2J1,2µ0+3 ε2µ0+4J1,2µ0+5 · · · · · · ε2kJ1,2k+1

ε2µ0J3,2µ0+3 ε2µ0+2J3,2µ0+5 · · · · · · ε2k−2J3,2k+1

ε2µ0−2J5,2µ0+3 ε2µ0J5,2µ0+5 · · · · · · ε2k−4J5,2k+1

...
...

. . . . . .
...

ε4J2µ0−1,2µ0+3 ε6J2µ0−1,2µ0+5 · · · · · · ε2k−2µ0+2J2µ0−1,2k+1

ε2J2µ0+1,2µ0+3 ε4J2µ0+1,2µ0+5 · · · · · · ε2k−2µ0J2µ0+1,2k+1


. (2.11)

Rewriting B̃Y as

B̃Y =
[
In |

(
R−1

1 R2

)
◦ Ẽ
]
Y,

and recalling R−1
1 R2 is O(1) in terms of the powers of ε, we see that each term in

this new basis is now a spherical harmonic function with an O(ε2) perturbation. This

follows from the property that the last block in the first column of (2.11) has an ε2

term with the rest being ε2j, j ≥ 2. This shows that the new basis converges to the

spherical harmonic basis as ε → 0 and hence the RBF interpolant will converge to

the spherical harmonic interpolant as ε→ 0 whenever the point set is unisolvent with

respect to the spherical harmonics.

Note that with the above derivation, it is also possible to include the spherical

harmonic coefficients cµ,ε in the diagonal E1 and E2 matrices, and generate a similar

analytical simplification for Ẽ. This has the added advantage of removing all ε de-
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pendence in the actual QR numerical computation, and thus removing any numerical

contamination for small ε. This approach unifies the Scalar RBF-QR method for all

radial kernels since, for the same set of nodes, the only thing that would change is

the Ẽ matrix.

2.2.3 Numerical Results

The numerical results from the Scalar RBF-QR algorithm confirmed the original

hypothesis of researchers: with the ill-conditioning removed from the interpolation

problem, the errors of the approximation did not blow up as ε → 0. As a means

of testing the algorithm, we present numerical results for the test problem described

in Figure 2.2. Figure 2.2.3 shows the results of the RBF-QR algorithm on this test

Figure 2.3: Log-log plot of the max norm error vs. values of ε for the target function
f = sin(xyz). Here n = 529, and the IMQ RBF kernel was used. Note that for larger
values of ε, the RBF Direct and RBF-QR methods give equivalent results. Though
not clearly visible in the figure, this equivalence is demonstrated where the black line
lies on top of the dashed red line.

problem together with the RBF Direct method. We see in this figure that around
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ε = 1, the direct RBF interpolation method becomes numerically unstable, and the

error quickly spikes. The errors from the Scalar RBF-QR approximations continue to

decay beyond ε = 1 before increasing slightly in the flat limit. The increase in error

as ε → 0 corresponds to the basis functions converging to the spherical harmonics

basis. We can infer from this that the Scalar RBF-QR algorithm can provide smaller

errors than both the RBF direct and spherical harmonic interpolation processes for

ε→ 0.

2.2.4 The Size of n

We conclude by commenting on the case when n is not a perfect square, which was

not discussed with much detail in [7]. To illustrate the issues, consider the case when

n = (µ0 + 1)2 − 2, with µ0 > 0. The QR procedure proceeds almost entirely as

described above, with the only change being in the E1 and E2 matrices, and thus the

Ẽ matrix. E1 and E2, for this case, are given by

E1 =



1

ε2I3

. . .

ε2µ0−2I2µ0−1

ε2µ0I2µ0+1−2


, (2.12)

E2 =



ε2µ0I2

ε2µ0+2I2µ0+3

. . .

ε2qI2q+1


, (2.13)

where E1 is again of size n and E2 is of size (m−n)-by-(m−n). A direct computation

shows Ẽ takes the values



40

Ẽ =



ε2µ0J1,2 ε2µ0+2J1,2µ0+3 ε2µ0+4J1,2µ0+5 · · · · · · ε2qJ1,2q+1

ε2µ0−2J3,2 ε2µ0J3,2µ0+3 ε2µ0+2J3,2µ0+5 · · · · · · ε2q−2J3,2q+1

ε2µ0−4J5,2 ε2µ0−2J5,2µ0+3 ε2µ0J5,2µ0+5 · · · · · · ε2q−4J5,2q+1

...
...

. . . . . .
...

ε2J2µ0−1,2 ε4J2µ0−1,2µ0+3 ε6J2µ0−1,2µ0+5 · · · · · · ε2q−2µ0+2J2µ0−1,2q+1

ε0J2µ0−1,2 ε2J2µ0−1,2µ0+3 ε4J2µ0−1,2µ0+5 · · · · · · ε2q−2µ0J2µ0−1,2q+1


.

Note the block of all ones in the lower left corner. Thus, with this Ẽ in (2.2.2), each

term in the new basis B̃y consists of a spherical harmonic plus some perturbation,

except for the last 2µ0 − 1 terms which consist of an O(1) linear combination of

three spherical harmonics plus some small ε2 perturbation. The specific additional

spherical harmonics in these last 2µ0 − 1 terms will not differ per radial kernel, but

the weights in the linear combination will. Thus, in the ε → 0 limit, the resulting

RBF interpolant is not likely to be unique for different radial kernels.
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CHAPTER 3

VECTOR RBF-QR ALGORITHM

The main result of this thesis is the Vector RBF-QR algorithm. This work synthesizes

that of surface divergence-free RBF interpolation (Narcowich, Ward, & Wright [23]),

surface curl-free RBF interpolation (Fuselier & Wright [13]), and the RBF-QR algo-

rithm for scalar-valued functions on the sphere (Fornberg & Piret [7]). The Vector

RBF-QR algorithm is an extension of the RBF-QR algorithm of Fornberg and Piret

that allows for the stable computation of surface divergence-free and curl-free matrix-

valued RBF interpolants in the flat limit. We derive this algorithm in similar fashion

to the Scalar RBF-QR algorithm first for surface divergence-free RBF interpolants,

with the process for surface curl-free RBF interpolants being a direct result.

3.1 Vector-Valued RBF Interpolation in the Flat Limit

Recall from (1.16) that Ψdiv is constructed from the scalar-valued radial kernel,

φ, which is dependent on the shape parameter, ε. It is perhaps not surprising,

then, that the conditioning of the linear system (1.23) and the accuracy of the

interpolant (1.20) are dependent on the shape parameter in the same way as the

scalar RBF interpolant (1.5), i.e., larger values of ε lead to a poor approximation of

the target field while smaller values of ε provide better approximations of the target

field. Also similar to the case for scalar-valued interpolants, ill-conditioning enters
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the system (1.23) in the flat limit. As ε → 0, all of the entries in the interpolation

matrix become 0, causing the system to be singular. This relationship between

ill-conditioning and accuracy of an interpolation problem of a divergence-free vector

field on S2 when it is computed via (1.23) is illustrated in Figure 3.1. By extending

the Scalar RBF-QR algorithm for use with surface matrix-valued kernels, we develop

the first numerically stable algorithm for approximating divergence-free and curl-free

vector fields on S2 in the flat limit.

(a) (b)

Figure 3.1: A problem illustrating the ill-conditioning that enters the interpolation
process in the RBF Direct method for n = 528 quasi-uniformly distributed nodes
and target function Ψ used in the second numerical test in Chapter 4. (a) Condition
number of the AΨdiv matrix from (1.23) vs. ε (b) Max norm error vs ε in the surface
divergence-free RBF interpolant using the RBF Direct approach

3.2 Vector RBF-QR Algorithm for Surface Divergence-Free

RBFs

3.2.1 Vector Spherical Harmonic Expansion

Similar to the Scalar RBF-QR algorithm of Fornberg and Piret [7], the key idea behind

the Vector RBF-QR algorithm is to replace the ill-conditioned matrix-valued basis
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with a better basis built from vector spherical harmonic expansions; see Section 1.4.2.

These expansions arise naturally from the scalar spherical harmonic expansions of

φ(‖x−yj‖) given in (2.2). For example, the surface divergence-free kernel (1.16) can

be expanded as follows:

Ψdiv(x,yj) = Qx

(
∇x∇T

yφ(||x− yj||)
)
Qy

=
∞∑
µ=1

µ∑′

ν=−µ

{ε2µcµ,εQx∇xY
ν
µ (x)}

(
Qy∇yY

ν
µ (yj)

)T
=
∞∑
µ=1

µ∑′

ν=−µ

{ε2µcµ,εw
ν
µ(x)}

(
wν
µ(yj)

)T
,

(3.1)

where the expansion is now in terms of the non-normalized divergence-free vector

spherical harmonics defined in (1.34) and cµ,ε are as defined in Table 2.1.

As in the description of the Scalar RBF-QR algorithm, we will put a condition on

the number of interpolation nodes, n, to simplify the presentation of the algorithm

below. Since we removed the constant spherical harmonic function from the expan-

sion, we let n = (µ0 + 1)2 − 1, for some µ0 > 0, in order to ensure a unique way to

split the matrices involved in the algorithm.

3.2.2 Matrix Representation and QR Factorization

Recall from Section 1.3.2 that in order to interpolate divergence-free vector fields

tangent to the sphere with the matrix-valued divergence-free interpolant, we must

represent the coefficient vectors and target field samples in terms of the orthonormal

tangent basis vectors (1.19). In (1.23) we saw that this is equivalent to representing

the kernel Ψdiv in terms of these basis vectors. We will denote this kernel as Ψ̃div:

Ψ̃div(x,yj) =

[
dTx
eTx

]
Ψdiv(x,yj)

[
dj ej

]
. (3.2)

Using (3.1) on the right-hand side of (3.2) gives the expansion
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Ψ̃div(x,yj) =
∞∑
µ=1

µ∑′

ν=−µ

(
ε2µcµ,ε

[
dTx
eTx

]
wν
µ(x)

)(
wν
µ(yj)

)T [
dj ej

]
. (3.3)

This is a 2-by-2 matrix whose entries are in terms of the meridional and zonal

divergence-free vector spherical harmonics:

Ψ̃div(x,yj) =

[
(a) (b)
(c) (d)

]
, where (3.4)

(a)
∞∑
µ=1

µ∑′

ν=−µ
{ε2µcµ,εd

T
xw

ν
µ(x)}

(
wν
µ(yj)

)T
dj =

∞∑
µ=1

µ∑′

ν=−µ
{ε2µcµ,εG

ν
µ(x)}Gνµ(yj)

(b)
∞∑
µ=1

µ∑′

ν=−µ
{ε2µcµ,εd

T
xw

ν
µ(x)}

(
wν
µ(yj)

)T
ej =

∞∑
µ=1

µ∑′

ν=−µ
{ε2µcµ,εG

ν
µ(x)}Hν

µ(yj)

(c)

∞∑
µ=1

µ∑′

ν=−µ
{ε2µcµ,εe

T
xw

ν
µ(x)}

(
wν
µ(yj)

)T
dj =

∞∑
µ=1

µ∑′

ν=−µ
{ε2µcµ,εH

ν
µ(x)}Gνµ(yj)

(d)

∞∑
µ=1

µ∑′

ν=−µ
{ε2µcµ,εe

T
xw

ν
µ(x)}

(
wν
µ(yj)

)T
ej =

∞∑
µ=1

µ∑′

ν=−µ
{ε2µcµ,εH

ν
µ(x)}Hν

µ(yj).

As in (2.4) of the Scalar RBF-QR algorithm, we want to represent the vector contain-

ing the tangent basis functions Ψ̃div(x,yj), j = 1, . . . , n as an infinite matrix product

in terms of the divergence-free vector spherical harmonic expansions. Using (3.4), we

see that this “vector” is a 2n-by-2 system of the form

Ψ̃div(x,y1)
...

Ψ̃div(x,yn)

 =




∞∑
µ=1

µ∑′

ν=−µ
{ε2µcµ,εG

ν
µ(x)}Gνµ(y1)

∞∑
µ=1

µ∑′

ν=−µ
{ε2µcµ,εG

ν
µ(x)}Hν

µ(y1)

∞∑
µ=1

µ∑′

ν=−µ
{ε2µcµ,εH

ν
µ(x)}Gνµ(y1)

∞∑
µ=1

µ∑′

ν=−µ
{ε2µcµ,εH

ν
µ(x)}Hν

µ(y1)


...

∞∑
µ=1

µ∑′

ν=−µ
{ε2µcµ,εG

ν
µ(x)}Gνµ(yn)

∞∑
µ=1

µ∑′

ν=−µ
{ε2µcµ,εG

ν
µ(x)}Hν

µ(yn)

∞∑
µ=1

µ∑′

ν=−µ
{ε2µcµ,εH

ν
µ(x)}Gνµ(yn)

∞∑
µ=1

µ∑′

ν=−µ
{ε2µcµ,εH

ν
µ(x)}Hν

µ(yn)





.

(3.5)

We can rewrite this as the following infinite block matrix-vector product,



45

Ψ̃div(x,y1)
...

Ψ̃div(x,yn)

 =

=



cµ,εG
−1
1 (y1)

c0,ε
2
G0

1(y1) cµ,εG
1
1(y1) · · ·

cµ,εH
−1
1 (y1)

c0,ε
2
H0

1 (y1) cµ,εH
1
1 (y1) · · ·

...
...

...

cµ,εG
−1
1 (yN )

c0,ε
2
G0

1(yN ) cµ,εG
1
1(yN ) · · ·

cµ,εH
−1
1 (yN )

c0,ε
2
H0

1 (yN ) cµ,εH
1
1 (yN ) · · ·



ε2

ε2

ε2

. . .
. . .



G−11 (x) H−11 (x)

G0
1(x) H0

1 (x)

G1
1(x) H1

1 (x)
...

...


=B∞E∞Y ∞.

(3.6)

The first step of the Vector RBF-QR algorithm is to truncate these infinite matri-

ces using a vector spherical harmonic degree value µ = k. There are two stipulations

for this truncation degree. First, k must be at least as big as the degree needed to

ensure that there will be enough vector spherical harmonic terms in the expansion to

approximate our basis to machine precision (µtrunc). Additionally, k must be larger

than
√

2µ0+1 so that we have proper dimensions for partitioning the matrices involved

in the algorithm. In order to achieve this, we choose k ≥ max
[
µtrunc,

⌈√
2µ0 + 1

⌉]
.

We then denote the truncated matrix product from (3.5) asΨ̃div(x,y1)
...

Ψ̃div(x,yn)


︸ ︷︷ ︸

P̃div

≈

 B

 E

Y
 . (3.7)

By letting m = (k + 1)2 − 1, we have that the size of B is 2n-by-m.

Before describing the second step of the Vector RBF-QR algorithm, we establish

dimensions and structures of the matrices involved. The system (3.7) is of the form[
B1 B2 · · · Bµ0 Bµ0+1 · · · Bk

]︸ ︷︷ ︸
B

EY,

where Bµ, 1 ≤ µ ≤ k, are the block matrices of size 2n-by-(2µ+ 1) with block entries
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(Bµ)i,j =



[
cµ,εG

j−(µ+1)
µ (yi)

cµ,εH
j−(µ+1)
µ (yi)

]
j 6= µ+ 1,

[ cµ,ε
2
G0
µ(yi)

cµ,ε
2
H0
µ(yi)

]
j = µ+ 1,

j = 1, . . . , 2µ+ 1, i = 1, . . . , n.

The diagonal E matrix can be written as two square, diagonal blocks, E1 and E2

E =

[
E1

E2

]
,

where

E1 =



ε2I3

ε4I5

. . .

ε2µ0I2µ0+1


, (3.8)

E2 =



ε2µ0+2I2µ0+3

ε2µ0+4I2µ0+5

. . .

ε2kI2k+1


, (3.9)

and Iµ is the identity matrix of size µ-by-µ. Due to the truncation and restriction on

n, we see that E1 is of size n-by-n, and E2 is of size (m− n)-by-(m− n). Finally, the

Y vector is given by
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Y =



Y1

Y2

...

Yµ0

Yµ0+1

...

Yk


,

(Yµ)j,1 = Gj−(µ+1)
µ (x), (Yµ)j,2 = Hj−(µ+1)

µ (x), j = 1, . . . , 2µ+ 1.

In the flat limit, our new basis is still highly ill-conditioned because of the powers

of ε in (3.6). However, all of these powers of ε are confined to the E matrix. Recall

that the cµ,ε do not affect the conditioning of the system. In order to develop a better

conditioned basis, we move to the next step of the algorithm.

The second step of the Vector RBF-QR algorithm is to perform a QR factorization

on B. Recall that the QR factorization only operates on the columns of a matrix

without combining terms in successive columns. Computing a QR factorization of B

gives

P̃div ≈ Q [R1 |R2]︸ ︷︷ ︸
R

[
E1

E2

]
Y, (3.10)

With the goal of analytically removing the issues with small ε, we partition R into

R1 and R2, where R1 is 2n-by-2n upper-triangular, and R2 is an 2n-by-(m− 2n) full

matrix. Notice that R1 is 2n-by-2n as opposed to size n-by-n in the Scalar RBF-QR

algorithm since we are interpolating a vector field of n points, each with 2 components.

The third step of the Vector RBF-QR algorithm is to perform a clever factoring of

the expression on the right-hand side of (3.10). We assume that the diagonal entries
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of R1 are non-zero so that it is invertible1, which allows us to re-write the system on

the right-hand side of (3.10) as

P̃div ≈ QR1

[
I2n |R−1

1 R2

] [ E1

E2

]
Y.

The diagonal structure of E allow us to again re-write this expression as

P̃div ≈ QR1

[
E1 |R−1

1 R2E2

]
Y

= QR1E1

[
I2n |E−1

1 R−1
1 R2E2

]
Y.︸ ︷︷ ︸

B̃div

(3.11)

It follows from this new expression that any element in the span of P̃div can be

represented to machine precision by a linear combination of the elements of B̃divY .

The fourth and final step of the Vector RBF-QR algorithm is to reformulate B̃div

using properties of the Hadamard product of diagonal matrices. We will also use this

to show that this new basis is much better conditioned than the original in the flat

limit. To begin the final step, we consider the product in the second block-column of

B̃div from (3.11). Using the properties of multiplication of a matrix on the left and

right by diagonal matrices (see Appendix A), we have

E−1
1 R−1

1 R2E2 =
(
R−1

1 R2

)
◦ (E−1

1 J2n,m−2nE2)︸ ︷︷ ︸
Ẽ

,

where J2n,m−2n is a matrix with all entries being 1 and ◦ denotes the Hadamard

product, or entry-wise multiplication. After considering the structure of E1 and E2

given in (3.8) and (3.9), respectively, we see that the entries of Ẽ are given explicitly

by

1This will be true if the nodes are unisolvent with respect to the divergence-free vector spherical
harmonic basis.
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ε2µ0J3,2µ0+3 ε2µ0+2J3,2µ0+5 · · · · · · ε2k−2J3,2k+1

ε2µ0−2J5,2µ0+3 ε2µ0J5,2µ0+5 · · · · · · ε2k−4J5,2k+1

...
...

. . . . . .
...

ε4J2µ0−1,2µ0+3 ε6J2µ0−1,2µ0+5 · · · · · · ε2k−2µ0+2J2µ0−1,2k+1

ε2J2µ0+1,2µ0+3 ε4J2µ0+1,2µ0+5 · · · · · · ε2k−2µ0J2µ0+1,2k+1

 . (3.12)

Rewriting B̃divY as

B̃divY =
[
I2n |

(
R−1

1 R2

)
◦ Ẽ
]
Y,

we see that the rows of B̃divY are a better basis for span {Ψ̃div(·,yj)}nj=1. Thus,

we have found a basis where the ill-conditioning associated with small ε has been

analytically removed. Note that the first 2k terms of B̃div are the vector spherical

harmonic basis functions and all subsequent terms are O(ε2). So the matrix-valued

divergence-free RBF interpolant converges to a divergence-free vector spherical har-

monic interpolant in the flat limit.

Note that just as with the Scalar RBF-QR algorithm, it is possible to include the

spherical harmonic coefficients cµ,ε in the diagonal matrices E1 and E2 and generate a

similar analytical simplification for Ẽ. This has the added advantage of removing all ε

dependence in the actual QR numerical computation, and thus removes any numerical

contamination for small ε. This approach unifies the Vector RBF-QR method for all

radial kernels since, for the same set of nodes, the only thing that would change is

the Ẽ matrix.

3.3 Vector RBF-QR Algorithm for Surface Curl-Free RBFs

We now briefly discuss the process for surface curl-free RBF kernels (1.26), noting only

the differences in notation. Just as before, we can expand the kernel Ψcurl utilizing

the tangential curl-free vector spherical harmonics:
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Ψcurl(x,yj) = Px

(
∇x∇T

yφ(||x− yj||)
)
Py

=
∞∑
µ=1

µ∑′

ν=−µ

{ε2µcµ,εPx∇xY
ν
µ (x)}

(
Py∇yY

ν
µ (yj)

)T
=
∞∑
µ=1

µ∑′

ν=−µ

{ε2µcµ,εz
ν
µ(x)}

(
zνµ(yj)

)T
,

(3.13)

where the expansion is now in terms of the non-normalized curl-free vector spherical

harmonics defined in (1.35) and cµ,ε are as defined in Table 2.1. We impose the same

restriction on n as before and represent the kernel Ψcurl in terms of the orthonormal

tangent basis vectors (1.19). We will denote this kernel as Ψ̃curl:

Ψ̃curl(x,yj) =

[
dTx
eTx

]
Ψcurl(x,yj)

[
dj ej

]
. (3.14)

Using (3.13) on the right-hand side of (3.14) gives the expansion

Ψ̃curl(x,yj) =
∞∑
µ=1

µ∑′

ν=−µ

(
ε2µcµ,ε

[
dTx
eTx

]
zνµ(x)

)(
zνµ(yj)

)T [
dj ej

]
. (3.15)

This is a 2-by-2 matrix whose entries are in terms of the meridional and zonal curl-free

vector spherical harmonics:

Ψ̃curl(x,yj) =

[
(a) (b)
(c) (d)

]
, where (3.16)

(a)
∞∑
µ=1

µ∑′

ν=−µ
{ε2µcµ,εd

T
xz

ν
µ(x)}

(
zνµ(yj)

)T
dj =

∞∑
µ=1

µ∑′

ν=−µ
{ε2µcµ,εK

ν
µ(x)}Kν

µ(yj)

(b)
∞∑
µ=1

µ∑′

ν=−µ
{ε2µcµ,εd

T
xz

ν
µ(x)}

(
zνµ(yj)

)T
ej =

∞∑
µ=1

µ∑′

ν=−µ
{ε2µcµ,εK

ν
µ(x)}Lνµ(yj)

(c)

∞∑
µ=1

µ∑′

ν=−µ
{ε2µcµ,εe

T
xz

ν
µ(x)}

(
zνµ(yj)

)T
dj =

∞∑
µ=1

µ∑′

ν=−µ
{ε2µcµ,εL

ν
µ(x)}Kν

µ(yj)

(d)

∞∑
µ=1

µ∑′

ν=−µ
{ε2µcµ,εe

T
xz

ν
µ(x)}

(
zνµ(yj)

)T
ej =

∞∑
µ=1

µ∑′

ν=−µ
{ε2µcµ,εL

ν
µ(x)}Lνµ(yj).

As in (2.4) of the Scalar RBF-QR algorithm, we want to represent our vector of
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tangent basis functions Ψ̃curl(x,yj), j = 1, . . . , n as an infinite matrix product in

terms of the curl-free vector spherical harmonic expansions. Using (3.16), we see that

this is a 2n-by-2 system of the form:

Ψ̃curl(x,y1)
...

Ψ̃curl(x,yn)

 =




∞∑
µ=1

µ∑′

ν=−µ
{ε2µcµ,εKν

µ(x)}Kν
µ(y1)

∞∑
µ=1

µ∑′

ν=−µ
{ε2µcµ,εKν

µ(x)}Lνµ(y1)

∞∑
µ=1

µ∑′

ν=−µ
{ε2µcµ,εLνµ(x)}Kν

µ(y1)

∞∑
µ=1

µ∑′

ν=−µ
{ε2µcµ,εLνµ(x)}Lνµ(y1)


...

∞∑
µ=1

µ∑′

ν=−µ
{ε2µcµ,εKν

µ(x)}Kν
µ(yn)

∞∑
µ=1

µ∑′

ν=−µ
{ε2µcµ,εKν

µ(x)}Lνµ(yn)

∞∑
µ=1

µ∑′

ν=−µ
{ε2µcµ,εLνµ(x)}Kν

µ(yn)

∞∑
µ=1

µ∑′

ν=−µ
{ε2µcµ,εLνµ(x)}Lνµ(yn)




.

(3.17)

This then gives us the infinite block matrix-vector product,

Ψ̃curl(x,y1)
...

Ψ̃curl(x,yn)

 =



cµ,εK
−1
1 (y1)

c0,ε
2
K0

1 (y1) cµ,εK
1
1 (y1) · · ·

cµ,εL
−1
1 (y1)

c0,ε
2
L0
1(y1) cµ,εL

1
1(y1) · · ·

...
...

...

cµ,εK
−1
1 (yN )

c0,ε
2
K0

1 (yN ) cµ,εK
1
1 (yN ) · · ·

cµ,εL
−1
1 (yN )

c0,ε
2
L0
1(yN ) cµ,εL

1
1(yN ) · · ·



ε2

ε2

ε2

. . .
. . .



K−11 (x) L−11 (x)

K0
1 (x) L0

1(x)

K1
1 (x) L1

1(x)
...

...

.
(3.18)

The system (3.18) is now of the same form as (3.6). Therefore, one can perform the

steps of the Vector RBF-QR algorithm in the same manner as for the divergence-free

case.

In the next chapter, we will provide numerical results for the Vector RBF-QR

algorithm for both surface divergence-free and surface curl-free RBF interpolation.
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3.4 Vector RBF-QR Algorithm for the Helmholtz-Hodge De-

composition of Surface Vector Fields

We conclude this chapter by providing the setup for the Vector RBF-QR algorithm

for the Helmholtz-Hodge decomposition of surface vector fields. We recall from

Section 1.3.2 the Fuselier and Wright found that the vector-valued RBF interpolant for

any given tangent vector field on S2 is of the form (1.30) [13]. This idea of decomposing

a tangent vector field interpolant into divergence-free and curl-free parts extends to

the Vector RBF-QR algorithm. Using (1.30), we can write the kernel, Ψ, in terms of

the tangent basis vectors (1.19) and thus in terms of Ψ̃div and Ψ̃curl:

Ψ̃(xi,yj) =

[
dTi
eTi

]
Ψ(xi,yj)

[
dj ej

]
=

[
dTi
eTi

]
[Ψdiv(xi,yj) + Ψcurl(xi,yj)]

[
dj ej

]
=

[
dTi
eTi

]
Ψdiv(xi,yj)

[
dj ej

]
+

[
dTi
eTi

]
Ψcurl(xi,yj)

[
dj ej

]
= Ψ̃div(xi,yj) + Ψ̃curl(xi,yj).

(3.19)

We can then decompose the vector of tangent basis functions Ψ̃(xi,yj), j = 1, . . . , n

accordingly, Ψ̃(xi,y1)
...

Ψ̃(xi,yn)

 =

Ψ̃div(xi,y1)
...

Ψ̃div(xi,yn)

+

Ψ̃curl(xi,y1)
...

Ψ̃curl(xi,yn)

 . (3.20)

With this, we can follow the steps detailed in Sections 3.2 and 3.3 in order to imple-

ment the Vector RBF-QR algorithm. The next chapter will provide numerical results

from the Vector RBF-QR algorithm for divergence-free tangent vector fields, curl-free

tangent vector fields, and tangent vector fields that are neither divergence-free nor

curl-free.
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CHAPTER 4

NUMERICAL RESULTS FROM THE VECTOR RBF-QR

ALGORITHM

In this chapter we report on various numerical tests that we performed with the new

Vector RBF-QR algorithm for both surface divergence-free and surface curl-free vector

field interpolation. The tests include vector fields of varying complexity, from a sum

of vector spherical harmonics, to divergence-free and curl-free fields we generate from

the respective surface curl and surface gradient of a sum of Gaussian bumps on the

sphere. For each test, we report the results for both the MQ and IMQ kernels as listed

in Table 1.1. We used minimum energy node sets in all tests as the sample points

Y [32]. The specific node sets we used, consisting of n = 120 and n = 528 nodes,

are illustrated in Figure 4.1. We first present the surface divergence-free results, then

follow this with the surface curl-free results.

4.1 Surface Divergence-Free Vector Fields

For the first numerical test, we used the n = 120 minimum energy node set, pictured in

Figure 4.1(a). The test field uses the non-normalized divergence-free vector spherical

harmonics introduced in Chapter 1:

u = Qx∇xΨ(x), where Ψ(x) = − 1√
3
Y 0

1 (x) +
8

3

√
2

385
Y 4

5 (x).
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(a) (b)

Figure 4.1: Minimum energy node sets used in the numerical experiments: (a) 120
nodes and (b) 528 nodes

Figure 4.2 illustrates this surface divergence-free field. In Figure 4.3, we present

log-log plots of the max-norm error in the approximation of the true field against

ε for the RBF Direct method and Vector RBF-QR method using the (a) MQ and

(b) IMQ kernels. In this figure, we see that the RBF Direct method becomes

Figure 4.2: The surface divergence-free vector field to be interpolated for test 1.

numerically unstable around ε = 0.1, and the max-norm error increases in the flat
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(a) (b)

Figure 4.3: Numerical test 1: Log-log plot of the max-norm error in the approximation
of the true field vs values of ε for both the RBF Direct method and the Vector
RBF-QR method with the (a) MQ and (b) IMQ kernels.

limit as a result. The RBF-QR method, however, eliminates this ill-conditioning in

the system. We see in Figure 4.3 that for both the MQ and IMQ kernels, the RBF-QR

method is stable as ε → 0 and achieves almost four more orders of accuracy than

the RBF Direct method. We note that we recover the surface divergence-free vector

spherical harmonic function to machine precision. This is to be expected since in

the flat limit, the vector RBF interpolant converges to a vector spherical harmonic

interpolant. Additionally, the node set used here is unisolvent with respect to the

vector spherical harmonics, so the vector spherical harmonic interpolant is unique.

The second numerical test used the n = 528 minimum energy node set, pictured

in Figure 4.1(b). In order to ensure that the vector field to be interpolated was

divergence-free, we again took the surface-curl of a scalar-valued function:

u = Qx∇xΨ(x), where
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Ψ(x) = exp

(
−0.01

[(
x− 1√

3

)2

+

(
y − 1√

3

)2

+

(
z − 1√

3

)2
])

+ exp

(
−0.01

[(
x+

1√
3

)2

+

(
y − 1√

3

)2

+

(
z − 1√

3

)2
])

+ exp

(
−0.01

[(
x+

1√
3

)2

+

(
y +

1√
3

)2

+

(
z − 1√

3

)2
])

+ exp

(
−0.01

[(
x− 1√

3

)2

+

(
y +

1√
3

)2

+

(
z +

1√
3

)2
])

+ exp
(
−0.01 (z − 1)

2
)

+ exp
(
−0.01 (z + 1)
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Figure 4.4 illustrates this surface divergence-free field. In Figure 4.5, we present

log-log plots of the max-norm error in the approximation of the true field against

ε for the RBF Direct method and Vector RBF-QR method using the (a) MQ and

(b) IMQ kernels. We see in this figure that ill-conditioning enters the RBF Direct

Figure 4.4: The surface divergence-free vector field to be interpolated in test 2.

method around ε = 1 and that the error increases rapidly as ε→ 0. We note here that

in addition to remaining numerically stable in the flat limit, the RBF-QR method

provides the smallest errors around ε = 1. Since we showed in the previous numerical

test that the vector RBF interpolant converges to a vector spherical harmonic inter-

polant in the flat limit, we can conclude that the RBF-QR method achieves the best

approximation of this target vector field for a value of ε that is untouchable for RBF

Direct.
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(a) (b)

Figure 4.5: Numerical test 2: Log-log plot of the max-norm error in the approximation
of the true field vs values of ε for both the RBF Direct method and the Vector
RBF-QR method with the (a) MQ and (b) IMQ kernels.

For the third numerical test, we again used n = 528 minimum energy nodes. The

field we interpolate here was first used by Narcowich, Ward, Fuselier, and Wright

as an example of a non-smooth surface divergence-free vector field [12]. In order to

describe the field, we begin by defining the function g(t) as

g(t) = (2− 2t)
3
2 .

Next we let x and xc be points on the unit sphere with respective spherical coordinates

(θ, λ) and (θc, λc). Then we define the dot product of these points as η, where

η = xTxc = cos(θ) cos(λ− λc) cos(θc) + sin(θ) sin(θc).

We let ηθc,λc denote this dot product at the point (θc, λc) and define the field as

u = Qx∇xΨ(x), where

Ψ(x) = g (η0,−π)− g
(
η 1

10
,−π

2

)
+ 0.7g

(
η−π

8
,0

)
− g

(
η− 1

10
,π
2

)
+ 0.3g

(
ηπ

2
− 1

10
,0

)
.

Figure 4.6 illustrates this field. The error plots in Figure 4.7 show that while the

RBF-QR method with a non-zero ε achieves better accuracy than the vector spherical
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Figure 4.6: The surface divergence-free vector field to be interpolated for test 3.

(a) (b)

Figure 4.7: Numerical test 3: Log-log plot of the max-norm error in the approximation
of the true field vs values of ε for both the RBF Direct method and the Vector
RBF-QR method with the (a) MQ and (b) IMQ kernels.

harmonic interpolant, it does not provide better errors than those that can be obtained

just using the RBF Direct method. This is due the roughness of the field used in

this test. We conclude that while the Vector RBF-QR method performs well when

interpolating smooth vector fields, it may not be preferable over the RBF Direct

method when the fields are rough.
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4.2 Surface Curl-Free Vector Fields

The first numerical test of the curl-free case used n = 120 minimum energy nodes.

The test field used the non-normalized curl-free vector spherical harmonics introduced

in Chapter 1:

u = Px∇xΨ(x), where Ψ(x) = Y 0
4 (x) + Y −6 3(x).

Figure 4.8 illustrates this surface curl-free field. In Figure 4.9, we present log-log

Figure 4.8: The surface curl-free vector field to be interpolated for test 1.

plots of the max-norm error in the approximation of the true field against ε for the

RBF Direct method and Vector RBF-QR method using the (a) MQ and (b) IMQ

kernels. Similar to the results from the first numerical test in the divergence-free

case, we see that the RBF-QR method achieves four orders of accuracy over the RBF

Direct method. We also note that we recover the surface curl-free vector spherical

harmonic function to machine precision. This is again what we would expect due to

the vector RBF interpolant converging to a vector spherical harmonic interpolant in

the flat limit. Additionally, the vector spherical harmonic interpolant is unique since

the node set used here is unisolvent with respect to the vector spherical harmonics.
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(a) (b)

Figure 4.9: Curl-free numerical test 1: Log-log plot of the max-norm error in the
approximation of the true field vs values of ε for both the RBF Direct method and
the Vector RBF-QR method with the (a) MQ and (b) IMQ kernels.

The second numerical test of the curl-free case used the n = 528 minimum energy

node set. In order to ensure that the vector field to be interpolated was curl-free, we

again took the gradient of a scalar-valued function:

u = Px∇xΨ(x), where

Ψ(x) = exp
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.

Figure 4.10 illustrates this surface curl-free field. We see in Figure 4.11 that the RBF

Direct method becomes numerically unstable around ε = 1 and that the error blows

up as ε → 0. We note here that the RBF-QR method not only remains numerically

stable in the flat limit, but it also provides the smallest errors around ε = 0.5. Since
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Figure 4.10: The surface curl-free vector field to be interpolated for test 2.

we showed in the previous numerical test that the vector RBF interpolant converges

to a curl-free vector spherical harmonic interpolant in the flat limit, we can conclude

that the RBF-QR method achieves the best approximation of this target vector field

for a value of ε that is untouchable for RBF Direct.

(a) (b)

Figure 4.11: Curl-free numerical test 2: Log-log plot of the max-norm error in the
approximation of the true field vs values of ε for both the RBF Direct method and
the Vector RBF-QR method with the (a) MQ and (b) IMQ kernels.
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4.3 Conclusions

We conclude this chapter with a brief summary of the numerical tests. First, we

showed that as ε→ 0, the RBF-QR method converges to vector spherical harmonics

in both the divergence-free and curl-free cases. Second, we showed that for smooth

vector fields, the RBF-QR method with a non-zero shape parameter can provide

better approximations of the target field than either the RBF Direct method or the

vector spherical harmonic functions. Finally, we note that the RBF-QR method does

not necessarily perform better than the RBF Direct method for rough vector fields.
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CHAPTER 5

CONCLUSIONS

This work developed the first stable numerical method for calculating vector-valued

RBF interpolants on the sphere in the flat limit. Modeled after the Scalar RBF-

QR algorithm of Fornberg and Piret, our method bypasses ill-conditioning that is

introduced into the interpolation system in the flat limit. We provide details of

this development in Chapter 3, where we utilize vector-valued spherical harmonic

expansions to create a new set of basis functions that both span the same space as the

original RBF basis and are well-conditioned. In Chapter 4, we offer various numerical

results that show the effectiveness of our algorithm in the flat limit. Additionally,

these results lead to conclusions that in some cases, a vector-valued RBF interpolant

with a small shape parameter can result in a better approximation of the target field

than both the RBF Direct interpolant and a vector spherical harmonic interpolant.

The Vector RBF-QR algorithm makes the full range of the shape parameter available

for vector RBF interpolation on the sphere without concern for ill-conditioning.

Future work for this research includes modifying the Vector RBF-QR algorithm

for interpolating divergence-free or curl-free vector fields without a restriction on the

number of interpolation nodes, i.e. for n 6= (µ0 + 1)2 − 1. We will also develop our

algorithm for computing the Helmholtz-Hodge decomposition of a vector field based

only on samples of the field at a set of n scattered points on the sphere, similar to
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the method introduced by Fuselier and Wright in [13]. Additionally, we would like

to develop a Vector RBF-QR algorithm for vector fields in R2 and R3 using similar

techniques to those by Fornberg, Larsson, and Flyer [6].
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[19] J. P. Lewis, F. Pighin, and K. Anjyo. Scattered data interpolation and approxi-
mation for computer graphics. In ACM SIGGRAPH ASIA 2010 Courses, page 2.
ACM, 2010.

[20] C. A. Micchelli. Interpolation of scattered data: distance matrices and condi-
tionally positive definite functions. Constr. Approx., 2:11–12, 1986.

[21] C. Müller. Spherical Harmonics: Lecture Notes in Mathematics, volume 17.
Springer Berlin Heidelberg, New York, 1966.

[22] F. J. Narcowich and J. D. Ward. Generalized hermite interpolation via matrix-
valued conditionally positive definite functions. Math. Comput., 63:661–687,
1994.

[23] F. J. Narcowich, J. D. Ward, and G. B. Wright. Divergence-free RBFs on
surfaces. Fourier Anal. Appl., 13:643–663, 2007.

[24] R. Nisbet, G. Miner, and J. Elder IV. Handbook of statistical analysis and data
mining applications. Academic Press, 2009.

[25] E. Oubel, M. Koob, C. Studholme, J. L. Dietemann, and F. Rousseau. Recon-
struction of scattered data in fetal diffusion mri. Medical Image Computing and
Computer-Assisted Intervention–MICCAI 2010, pages 574–581, 2010.



67

[26] S. Rippa. An algorithm for selecting a good value for the parameter c in radial
basis function interpolation. Adv. Comp. Math., 11:193–210, 1999.

[27] G. J. Streletz, G. Gebbie, O. Kreylos, B. Hamann, L. H. Kellogg, and H. J.
Spero. Interpolating sparse scattered data using flow information. Journal of
Computational Science, 16:156–169, 2016.

[28] P. N. Swarztrauber. The vector harmonic transform method fro solving partial
differential equations in spherical geometry. Mon. Wea. Rev., 121:3415–3437,
1993.

[29] H. Wendland. Scattered Data Approximation. Cambridge University Press,
Cambridge, 2004.

[30] J. Wojciech. Efficient Monte Carlo Methods for Light Transport in Scattering
Media. PhD thesis, UC San Diego, 2008.

[31] G. B. Wright. Radial Basis Function Interpolation: Numerical and Analytical
Developments. Phd thesis, University of Colorado, Boulder, 2003.

[32] G. B. Wright. SpherePts. https://github.com/gradywright/spherepts/, 2016.

[33] G. B. Wright and B. Fornberg. Stable computation with flat radial basis functions
using vector-valued rational approximations. J. Comput. Phys., 331:137–156,
2017.



68

APPENDIX A

PROOF OF LEMMA



Horn and Johnson’s book, Topics in Matrix Analysis [17], provides a Lemma

that we utilize in both Chapters 2 and 3 when describing the fourth step of the

Scalar RBF-QR and Vector RBF-QR algorithms, respectively. The proof is listed as

an exercise in the book, so we provide the relevant portion here for completeness.

Before we begin the proof, we must first formally define a Hadamard product, which

is informally described as entry-wise multiplication.

Definition A.0.1. (Hadamard Product [17, p. 298]) The Hadarmard product of

m-by-n real-valued matrices A and B is defined by A ◦B ≡ [aijbij], where aij and bij

are the ijth entries of A and B, respectively.

We now provide the part of the Lemma that is used in this thesis and continue with

the proof, which uses properties of diagonal matrices and commutativity.

Lemma A.0.1. ( [17, p. 304]) If A and B are m-by-n real-valued matrices, and if

D and E are real-valued diagonal matrices of size m-by-m and n-by-n, respectively,

then

D(A ◦B)E = A ◦ (DBE).

Proof. We consider the ijth entry of D(A ◦B)E and show that it is equivalent to the

ijth entry of A ◦ (DBE). First we have from the definition of matrix multiplication

[D(A ◦B)E]ij =
m∑
k=1

n∑
l=1

[D]ik[A ◦B]kl[E]lj.

Then by the definition of the Hadamard product,

m∑
k=1

n∑
l=1

[D]ik[A ◦B]kl[E]lj =
m∑
k=1

n∑
l=1

[D]ik[A]kl[B]kl[E]lj.

Since D and E are diagonal, we know that all non-diagonal entries are 0. This gives
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m∑
k=1

n∑
l=1

[D]ik[A]kl[B]kl[E]lj = [D]ii[A]ij[B]ij[E]jj.

We can then commute these values and again use the properties of diagonal matrices

to rewrite the expression as

[D]ii[A]ij[B]ij[E]jj = [A]ij[DBE]ij.

By the definition of the Hadamard product, we have the result

[A]ij[DBE]ij = [A ◦ (DBE)]ij.

Since each element of D(A ◦ B)E is equal to each element of A ◦ (DBE), we have

equality of the two matrices.

We conclude with a note explicitly showing how this Lemma applies in the thesis.

In (2.10), we state

E−1
1 R−1

1 R2E2 =
(
R−1

1 R2

)
◦ (E−1

1 Jn,m−nE2).

Notice that J is the identity matrix in Hadamard multiplication. Thus, if we let

A =
(
R−1

1 R2

)
, B = Jn,m−n, D = E−1

1 , and E = E2, we see that

E−1
1 R−1

1 R2E2 = E−1
1

(
R−1

1 R2 ◦ Jn,m−n
)
E2

= D(A ◦B)E

= A ◦ (DBE)

=
(
R−1

1 R2

)
◦ (E−1

1 Jn,m−nE2).




