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Chapter 1

Introduction

1.1 Where to start?

A few years ago, I was looking for something to watch on the television. While flipping

through the channels, I came across a program on Wyoming PBS on fractal geometry.

Combined with a distance of time and only seeing the program once, all I can remember

is being introduced to the Mandelbrot set. In any case, my curiosity was aroused and I

wanted to learn more about fractal geometry.

Casual learning led me to the fact that fractal geometry and chaos related. I also learned

that iteration of some functions can create sets of fractal shapes as well as leading to

chaos.

Unfortunatley, I had no access to formally learning about fractal geometry. However, in

a class called ’Communication in the Mathematical Sciences’ at Boise State University,

I was able to explore a little about iteration and its relation to chaos. That will be the

focus on this thesis.

There are volumes of information regarding chaos. This is my attempt at paring down

that information into a sort of introduction to iteration and chaos. We will first look at

special function called logistic map and then compare that information with what I will

call the ’double-humped’ logisitc map.

1



Chapter 1. Introduction 2

1.2 Definitions

Before beginning this discussion on iteration and chaos, I need to present some defini-

tions.

Definition 1. Given a function f : R→ R and a fixed point x0, iteration is the process

of evaluating the function at f(x0) and re-evalation of the previous results as input.

f(x0) = x1

f(x1) = x2

f(x2) = x3

...

In regards to notation, fn represents the nth iteration of f .

The period of a point is the minimum number of iterations needed for fn(x0) = x0.

Definition 2. Given a function f : R → R, an initial value x0 is a periodic point of f

if fn(x0) = x0. The period of a point is the minimum number of iterations needed for

fn(x0) = x0.

observe that fixed points are periodic points with a period of 1.

Definition 3. Given a function f : R→ R and an initial value x0, the orbit of x0 is the

set of iterations:

O(x0) = fn(x0) : n = 1, 2, 3, · · ·.

Other definitions will be given as the thesis progresses.
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The Logistic Map

2.1 What is the logisitic map?

The logistic map is defined as f(x) = ax−ax2 where a > 0 is a constant parameter This

function is used in a variety of ways such as describing seasonal breeding populations

in which generations do not overlap. Other areas that the logistic function provides a

good model include epidemiology, economics, and social sciences.

Figure 2.1: f(x) = x− x2

Let us look at some basic properties of the logistic function. To find the roots of the

function, set it equal to 0 and solve for x.

ax− ax2 = 0

ax(1− x) = 0

x = 0

or

x = 1

3



Chapter 2. Logistic Map 4

To find the maximum or minimum, we need to take the derivative of the logistic function,

set it equal to 0 and solve for x.

f ′(x) = 0

a− 2ax = 0

x = 1/2

Now to determine if x = 1/2 is a maximum or minimum, we determine concavity by

looking at the sign of f ′′(1/2).

f ′′(1/2) = −2a

Remember that a > 0, so the sign of f ′′ is negative. Because the graph is concave down

at the critical point x = 1/2, then the point (1/2, a/4) is the maximum for the logistic

map.

2.2 Graphical analysis of the logistic map

A reasonably precise graph of the logistic function will allow us to analyze graphically

the orbits of elements of the domain. We add the line y = x to the graph of the map

function.

Figure 2.2: Adding the line y = x to the graph of f(x) = 3.7x− 3.7x2

Immediately, we see that the line y = x intersects the logistic map. Finding the inter-

section points:

x = ax− ax2

0 = −ax2 + ax− x

0 = x(−ax+ a− 1)
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x = 0 or x = 1− 1/a

We can visually represent iterations on this graph. Starting at x0 on the x-axis, draw a

vertical line to f(x). For the next iteration, draw a horizontal line to the line y = x and

then again vertically to t of x0.

Figure 2.3: Graphical representation of the iterations of f(x) = 2x−2x2 with x0 = 0.2

Earlier, we determined the points of intersection of the logistic map and the line y = x.

In Figure 2.4, we see just a vertical line. This is a graphical representation of the orbit

of a fixed point.

Figure 2.4: f(x) = 2.7x− 2.7x2 with x0 = 1− 1
2.7

From this image, we can make a conjecture that the intersections of the line y = x and

the logistic map are fixed points for the logistic map.

Evaluating the logistic map at the intersection x0 = 0 gives us

f(0) = a(0)− a(0)2

= 0.
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Then evaluating at the second intersection x0 = 1− 1
a gives us

f(1− 1

a
) = a(1− 1

a
)− a(1− 1

a
)2

= (a− 1)− a(1− 2

a
+

1

a2

= a− 1− a+ 2− 1

a

= 1− 1

a
.

Both intersection points are fixed points.

Fixed points can be classified into different types. They can be attracting, repelling, or

neither.

Definition 4. Given a function f : R→ R and an ε > 0,

1. a fixed point p is said to be attracting if there is an ε > 0, for all x ∈ (p− ε, p+ ε),

fn(x)→ p as n increases without bound.

2. a fixed point p is said to be repelling if there is an ε > 0, for all x ∈ (p−ε, p+ε), x 6=
p, |f(x)− p| > |x− p|.

Intuitively, points that are close to a fixed point p are either converge to p or diverge

from p as the number of iterations increase without bound.

Theorem 1. Suppose that f is differentiable at a fixed point p.

1. If |f ′(p)| < 1, then p is attracting.

2. If |f ′(p)| > 1, then p is repelling.

Proof. We will prove both cases by induction

(1) Given any ε > 0, we want to show that lim
n→∞

fn(x) = p for all x ∈ (p − ε, p + ε)

when |f ′(p) < 1|. Suppose that |f ′(x)| < M < 1 for some M > 0. Then as implied

by the definiton of derivative, there is an open interval I = (p − ε, p + ε) such that

|f ′(x)| ≤M < 1 for all x ∈ I. Then we have∣∣∣∣f(x)− f(p)

x− p

∣∣∣∣ ≤M
or |f(x)−f(p)| ≤M |x−p|. Since p is a fixed point we have |f(x)−p| ≤M |x−p|. Since

M < 1, this inequality tells us that M |x− p| is small but |f(x)− p| is smaller, therefore

f(x) is closer to p than x. Also, since x ∈ I and since f(x) is closer to p than x, then

f(x) is also in I. Assume |fn(x)− p| ≤ Mn|x− p| for all n > 0 holds. Then fn(x) ∈ I



Chapter 2. Logistic Map 7

because 0 < Mn < M < 1. We just showed the case for n = 1 yields f(x) ∈ I. Now we

want to show that |fn+1(x)− p| ≤Mn+1|x− p| holds for n > 1.

|fn+1(x)− p| = |f(fn(x))− p| ≤M |fn(x)− p| ≤M(Mn|x− p|) = Mn+1|x− p|

Since lim
n→∞

Mn = 0, fn(x) has to arbitrarily close to p. Thus lim
n→∞

fn(x) = p for all

x ∈ (p− ε, p+ ε) when |f ′(p) < 1|.

(2) Now we want to show that given an ε > 0, fn(x) moves away from p when x ∈
(p− ε, p+ ε) and x 6= p. Suppose |f ′(x)| > M > 1 for some M > 0. Then we have∣∣∣∣f(x)− f(p)

x− p

∣∣∣∣ > M

or |f(x) − f(p)| > M |x − p|. With M > 1, this implies that |f(x) − p| > |x − p|
and that f(x) is farther away from p than x. Assume |fn(x) − p| > Mn|x − p| is

true for n > 0. We just showed that this true for n = 1. Now we want to show that

|fn+1(x)− p| > Mn+1|x− p| holds for n > 1.

|fn+1 − p| = |f(fn(x))− p| > M |fn(x)− p| > M(Mn)|x− p| = Mn+1|x− p|.

This implies then that as n increases without bound fn(x), when x ∈ (p− ε, p+ ε) and

x/nep, fn(x) moves farther away from p, thus p is repelling.

What happens if |f ′(x) = 1|? It turns out that the fixed point may be attracting or

repelling or both. This will need to be evaluated on a case by case basis.

Earlier, we found the fixed points of the logistic map to be 0 and 1− 1/a. We can now

use Theorem 1 to detemine whether these fixed points are attracting or repelling. First

find the derivative of the logistic function, f ′(x) = a − 2ax and evaluate the aboslute

value of f ′(x) at the fixed points.

x = 0

1.

|f ′(0)| < 1

−1 < a− 2a(0) < 1

−1 < a < 1

2.

|f ′(0)| > 1
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a− 2a(0) > 1 or a− 2a(0) < −1

a > 1 or a < −1

Now that a ∈ [0, 4] we can say x = 0 is attracting when a ∈ the open interval (0, 1) and

repelling when a ∈ the semi-open interval (1, 4].

x = 1− 1/a

1.

|f ′(1− 1/a)| < 1

−1 < −a+ 2 < 1

3 > a > 1

2.

|f ′(1− 1/a)| > 1

−a+ 2 > 1 or − a+ 2 < −1

a < 1 or a > 3

Since a ∈ [0, 4] we can say x = 1 − 1/a is attracting when a ∈ (1, 3) (Figure 2.5) and

repelling when a ∈ (0, 1) ∪ (3, 4) (Figure 2.6).

Figure 2.5: attracting fixed pointa = 2.2, x0 = 0.1
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Figure 2.6: repelling fixed point a = 3.2, x0 = 0.68

2.3 Bifurcation

Consider the map f(x) = 3.2x − 3.2x2 with an initial value x0 = 0.5. The fixed points

are 0 and 0.6875, both of which are repelling since |f ′(x)| > 0 at both fixed points.

Notice what happens to x0 = 0.5 as f(x) is iterated, (Figure 2.7). This image represents

a 2-period graph. For example, with an initial value x0 = 0.5, repeated iterations of

f(x) = 3.2x−3.2x2 alternates between two values. We can also say that 0.5 is a period-2

point for the map f(x) = 3.2x− 3.2x2 with an orbit O = {0.513, 0.799}.

Figure 2.7: f(x) = 3.2x− 3.2x2
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A series of questions can arise. Are there other initial values that have period-2? Are

there initial values having period-3, period-4, etc.? Then what happens when we change

the parameter a?

These questions can be answered by creating a bifurcation diagram for the logistic map.

First is to fix x0. Then we are going to vary the parameter a from 0 to 4. Using a

computer program, we will compute 1000 iterations of the logistic map evaluated at x0

while a varies between 0 and 4. On a Cartesian plane, we will plot a along the x-axis

and the last 50 values of f1000(x0) along the y-axis. Figure 2.8 represents this graph.

Figure 2.8: a on x-axis, fn(x0) on y-axis

This is called the bifurcation diagram for the logistic map. Here’s the information we

can read from this diagram:

1. When 0 ≤ a ≤ 1, fn(x0)→ 0.

2. When 1 < a < 3, fn(x0) converges to a single value ranging from 0 to approxi-

mately 0.625.

Remember Figure 2.7 demonstrated a point having period-2. The parameter a in this

case was 3.2. In Figure 2.8, notice there is a split (or bifurcation) when a > 3. this

bifurcation represents the number of periods an initial value has when a is a certain

value.

A zoom on the bifrucation diagram is seen in Figure 2.9. Notice that some more bi-

furcations have become visible. In fact, the more we zoom in on the graph, the more

bifurcations become visible. At each value of a where there is a bifurcation, the number

of periods for an initial value doubles.
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Figure 2.9: a on x-axis, fn(x0) on y-axis

A question arises as to the rate of bifurcation as a increases. A possible way to determine

the rate is to compare the ratios of distances between the bifurcations.

The first bifurcation occurs appears to occur at a = 3. Zooming in on the diagram will

tell us the value for a at the next bifurcation. For ease, we will be just looking at the

bifurcations on the lower part of the graph.

Figure 2.10: Second bifurcation at 3.4485
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Figure 2.11: third bifurcation at 3.5438

Figure 2.12: fourth bifurcation at 3.5645

Admittedly, this is not the most precise method. Perhaps an algebraic version may be

better.

In Section 2.2, we found the fixed points for the logistic function. Suppose we try to

find the fixed points for f2(x). First, let’s evaluate f2(x).

f2(x) = a(ax(1− x))(1− (ax(1− x))

= a2x(1− x)(ax2 − ax+ 1)

= a2x− (a3 + a2)x2 + 2a3x3 − a3x4
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n bifurcations an an−1 − an−2 an−1−an−2

an−an−1

2 2 3 NA NA

3 4 3.4485 NA NA

4 8 3.5438 0.4485 4.706

5 16 3.5645 0.0953 4.603

Table 2.1: Table of bifurcations where an is the value of a where we see a bifurcation.

Now we’ll set this equation equal to x and solve.

a2x− (a3 + a2)x2 + 2a3x3 − a3x4 = x

a2x− (a3 + a2)x2 + 2a3x3 − a3x4 − x = 0

x(a2 − 1− a2x(1 + a) + 2a3x2 − a3x3) = 0

−x(x− 1 + 1/a)(a2x2 − (a2 + a)x+ a+ 1) = 0

x = 0, 1− 1/a,
±
√
a2 − 2a− 3 + a+ 1

2a

We want x to be real, so we need the discriminant to be bigger than or equal to 0. So

a2 − 2a− 3 ≥ 0

(a− 3)(a+ 1) ≥ 0

a ≥ 3 or a ≤ −1

However, we need a > 0. Notice in the bifurcation graph, the first bifurcation begins at

a = 3.

When the next bifurcation occurs, we get initial values with period-4 cycles. Hence, we

need to solve f4(x) = 0. This process continues at each bifurcation as a gets bigger.

Mitchell Feigenbaum worked on this process and came up withthe following table. What

n bifurcations an an−1 − an−2 an−1−an−2

an−an−1

1 2 3 NA NA

2 4 3.449490 NA NA

3 8 3.544090 0.44949 4.7515

4 16 3.564407 0.09460 4.6562

5 32 3.568759 0.020317 4.6684

6 64 3.56989 0.004352 4.6692

7 128 3.56993 0.001131 4.6694

Table 2.2: Table of bifurcations where an is the value of a calculated algebraically.
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he discoverd is now called the Feigenbaum constant and is defined by

limn→∞ an−1an−2
an − an−1

≈ 4.669...

This number can be used to predict subsequent values of a where there is a split on the

bifurcation diagram. In other words, we can predict the values of a where we can find

a period doubling.

Returning to the questions at the beginning of this section, we can deduce answers from

the bifurcation diagram. Period-2 points of f appear when 3 < a < 3.44. Period-4

points appear when 3.44 < a < 3.54. Period-3 points appear in the small strip of open

space that appears before a = 4. There will be more on this in the next section.

2.4 Chaos

We have looked at fixed points, periodic points and the bifurcation graph of the logistic

function. Now there is one more characteristic of the logistic map to consider: chaos.

Consider the natural numbers. Alexander Sharkovsky re-ordered the natural numbers

in the following way:

1. Start listing the odd numbers, starting with 3

2. Then list the odd numbers again, this time multiplied by 2

3. Again, list the odd numbers, this time multiplied by 22

4. continue until all odd numbers and powers of 2 are exhausted

5. list in descending order the powers of 2

6. end the list with the number 1

3 B 5 B 7 B · · ·B 2 · 3 B 2 · 5 B 2 · 7 B · · ·B 22 · 3 B 22 · 5 B 22 · 7 B · · ·B 23 B 22 B 2 B 1

where mB l is read as m is to the left of l.

Theorem 2 (Sharkovsky). Let f : R → R be continuous. If f has a periodic point with

period-m and mB l, then f also has a periodic point with period-l.

Sharkovsky published his theorem in the Ukranian Mathematics Journal in 1964. Un-

fortunately, it was not widely known until Li and Yorke published their theorem in

1975.
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Theorem 3 (Li and Yorke). Let f : R → R be continuous. If there exists a periodic

point with period-3 in f , then all periods exist in f .

The obvious question is whether or not the logisitic map has period 3. Referring to

Figure 2.8, there is an relatively open gap shortly after a = 3.8. Zooming into this

section we see that there is a period-3 in this gap.

Figure 2.13: Zoom to 3.82 < a < 4.0

In Figure 2.13, it appears that period-3 points exist when a is approximately between

3.83 and 3.84.

nth iteration value

f992 0.156149315683605

f993 0.504666487408413

f994 0.957416597518873

f995 0.156149315683605

f996 0.504666487408413

f997 0.957416597518873

f998 0.1561493156836054

f999 0.504666487408413

f1000 0.957416597518873

Table 2.3: The last 9 iterations of a period-3 point for 3.83x− 3.83x2.

As we can see from Figure 2.13 and from Table 2.3, we safely say that the logistic map

has a periodic point with period 3.

Referring to Li and Yorke, since there is a periodic point for the d-h logisitic function,

then one can find periodic points with all periods. Sharkovsky’s Theorem reinforces that

idea.
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Visually, this can be seen in Figure 2.8 at a = 4. Points appear in a solid stripe above

a = 4. In a graphical analysis map, chaos fills in nearly the whole image.

Figure 2.14: 4x− 4x2 with x0 = .2

Let’s review what we have so far. When 3 ≤ a ≤ 3.4485, x is a period-2 point for the

logisitic map. The period doubles at a regular rate as determined by the Feigenbaum

number. When a is approximately between 3.83 and 3.84, x is a period-3 point and

begins period doubling again after a > 3.84. When a = 4, we have chaos. What this

means is that x has an infinite period for the logisitic map.

Different literature define chaos in different ways. One common feature, however, is the

idea of being sensitive initial conditions.

x0
1
3 0.333

f(x0)
8
9 ≈ 0.888 0.888

f2(x0)
32
81 ≈ 0.395 0.396

f3(x0)
6272
6561 ≈ 0.956 0.957

f4(x0)
7250432
43046721 ≈ 0.168 0.164

f5(x0) ≈ 0.560 0.549

Table 2.4: Five iterations of 4x− 4x2 with different representations of x0.

Notice what is happening in Table 2.4. Though 0.333 is an approximation of 1/3, we

start to see a difference in values in f2. From the table, we can infer that as the number

of iterations increase, the difference between the resulting values increases.

Definition 5. Let J be an interval and suppose that f : J → J . Then f has sensitive

dependence on initial conditions at x, or just sensitive dependence at x if there is an
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ε > 0 such that for each δ > 0 there is a y in J and a positive integer n such that

|x− y| < δ

and

|fn(x)− fn(y)| > ε.

Another way to state this is that if we fix ε, no matter how close we choose 2 inital

values, there will be an n where the difference of fn of the intial values will be greater

than ε.

In regards to Table 2.4, the difference between x and y is δ = 0.000333. If we choose

ε > 0.001, we see that the difference between the two values at f4 exceeds ε. Now say

we want x and y to be closer, say y = 0.3333. Then δ = 0.0000333. Remember that we

fixed ε = 0.001. At f7, the reulting difference between the values is 0.002, which exceeds

our ε. We can say that the logistic map is sensitive to initial conditions.

Considering that we have sensitivity to initial conditions for the logistic map, we can

assume that the logisitic map is a choatic system.



Chapter 3

The Double-Humped Logistic

Map

3.1 What is the double-humped logisitic map?

Previously,we have looked at the logistic map. For further investigation into iteration

and chaos, I was curious as to what happens when the logisitc map has an extra hump

added to it. What we get is what I will call the ’double-humped’ logistic map. It is

defined as

f(x) = a(x− 1)2(1− (x− 1)2)

Figure 3.1: f(x) = (x− 1)2(1− (x− 1)2)

18
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3.2 Properties

Visually, Figure 3.1 tells us the points of intersection are at x = 0, x = 1 and x = 2. To

verify algebraically:

a(x− 1)2(1− (x− 1)2) = 0

a(x− 1)2 = 0 or (1− (x− 1)2) = 0

x = 1 or 2x− x2 = 0

x = 1 or x = 0 or x = 2

In finding the maximums/minimums we take the derivative and set it equal to 0.

f ′(x) = 0

a(−4x3 + 12x2 − 10x+ 2) = 0

x = 1 or x = 1− 1√
2

or x = 1 +
1√
2

Now to check concavity, evaluate f ′′ at the three points.

f ′′(1) = −2a(6(1)2 − 12(1) + 5) = 2a

f ′′(1− 1√
2

) = −2a(6(1− 1√
2

)2 − 12(1− 1√
2

) + 5) = −4a

f ′′(1 +
1√
2

) = −2a(6(1 +
1√
2

)2 − 12(1 +
1√
2

) + 5) = −4a

Keeping 0 < a < 8, the signs do not change. Thus f is concave up at x = 1 and is a

minimum, while f is concave down at x = 1± 1√
2

signifies those points are maximums.

3.2.1 Graphical Analysis

As with the logistic function, we are going to add the line y = x to the graph of the

d-h-logistic function. Then we are going to determine the points of intersection which

tells us the fixed points.

This will be tricky to do for depending on the parameter a, there may be 1 or 2 or 3 or

4 points of intersection. However in all cases, we know that one point of intersection is

x = 0.
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It is possible to determine the points of intersection using the quartic formula. It is

even possible to factor out the root x = 0 and use the cubic formula on the result. In

this case, if there are three points of intersection, the cubic formula will return 3 real

numbers, two points of intersection will return 2 real rootss and 1 complex root, and

one point of intersection will return one real root and 2 complex roots. It may be easier

to break a ∈ (0, 8] into intervals.

1. 0 < a ≤ 0.5

There is one point of intersection: x = 0

2. .5 < a < 6.75

There are two points of intersection: x = 0 and a very ugly solution to a cubic

equation

3. a = 6.75

There are three points of intersection: x = 0, x = 2/3, x = 5/3

4. 6.75 < a ≤ 8

There are four points of intersection: x = 0 and very ugly solutions to a quartic

equation.

Figure 3.2: f(x) = 7(x− 1)2(1− (x− 1)2)

3.2.2 Bifurcation diagram

Once again, we repeat the process we did with the logisitc map and the resulting bifur-

cation diagram can be seen in Figure 3.3
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Figure 3.3: Bifurcation diagram for the double-humped logisitic map

The first thing noticed is that this is very similar to the bifurcation diagram for the

logistic function. We see that there is a possible repeated bifurcation and that there is

a large gap around a = 7. Let’s look at that first.

Figure 3.4: zoom to 6.5 < a < 7.5

It appears that when a is approximately between 6.75 and 7.0, fn converges to a single

point.

The next large gap appears to be around a = 5. If we zoom into that region (Figure 3.6),

we see that fn produces a 2-cycle.
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Figure 3.5: zoom to 4.5 < a < 5.5

Yet another gap to look at is around a = 3.6. Another zoom to this region appears to

a show a 3-cycle when 3.4 < a < 3.6. If this a true 3-cycle, then we can say that the

double-humped logistic map is a chaotic system.

Figure 3.6: zoom to 4.5 < a < 5.5

Table 3.1 shows that after multiple iterations, a period-3 point becomes evident, so we

can truly say that the d-h logistic map is chaotic.

Now let’s check the points of bifurcation
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nth iteration value

f992 0.0448213566327823

f993 0.283836996403593

f994 0.886910210588010

f995 0.0448213566327823

f996 0.283836996403593

f997 0.886910210588010

f998 0.0448213566327823

f999 0.283836996403593

f1000 0.886910210588010

Table 3.1: The last 9 iterations of a period-3 point for 3.55x2(1− x2).

Figure 3.7: First bifurcation: zoom to 2.20 < a < 2.2.26

n bifurcations an an−1 − an−2 an−1−an−2

an−an−1

2 2 2.219 NA NA

3 4 2.863 NA NA

4 8 3.019 0.644 4.117

5 16 3.053 0.156 4.588

6 32 3.061 0.034 4.250

Table 3.2: Table of bifurcations where an is the value of a where we see a bifurcation.

In Table 3.2, I visually determined a by zooming in on sucessive bifurcations. Unfor-

tunately, there may be some human error in determining these values. These numbers

could also be found algebraically, but we will need advanced math analysis to determine

these ratios. I suspect will we will see Feigenbaum’s number again. For my visual num-

bers are close to what we have seen earlier in the logistic map. With better computers,

I may be able to get more precise images to better determine bifurcations.



Chapter 3. Double-Humped Logisitic Ma 24

Figure 3.8: Second bifurcation: zoom to 2.862 < a < 2.866

Figure 3.9: Third bifurcation: zoom to 3.018 < a < 3.022
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Figure 3.10: Fourth bifurcation: zoom to 3.052 < a < 3.055



Chapter 4

Conclusion

4.1 Conclusion

What I have just presented is a brief overview of deterministic chaos. We have learned

that the logisitic map is a good model for studying chaos. A slightly different map, the

double humped logistic map, can also be used to study chaos. There was also attracting

and repelling fixed points as well as periodic Finding points with a period of 3 indicate

that both maps are chaotic.

Then of course there is the sensitivity to initial conditions. This is a topic that arises

with computer calculations. Table 2.4 was calculated with the use of a computer. But

notice the error that arises after a few calculations. Using a decimal rfepresentation for

a fraction may lead to computing errors.

In my research, I found the Feigenbaum number appears in the quadratic class of func-

tions. With the double-humped logisitic function being a quadratic, this is why I sus-

pected we would see the Feigenbaum number appear in Table 3.2

I found that with the logisitic map, the Feigenbaum number is easier to calculate. This is

mainly because of the exponents involved do not increase as fast as with the d-h logistic

function. Graphical analyzation works to an extent, but numerical analysis would have

to be applied when exponents are larger than 4.

One question I would like to research more has to do with the period-3 window in the

bifurcation diagrams. I am curious as to why all of the sudden period doubling stops and

changes to a period-3 before and then restarts the period doubling. I am also curious

as to why the period-1 window appears in the d-h logisitc bifurcation diagram and then

explodes back into a number of bifurcations.

26



Appendix A

Coding

Below is a list of coding developed in SAGE for research in this thesis.

def iterquad(a,x0,N=100):

iterates = [x0]

for i in range(N):

iterates.append( a*iterates[-1]*(1-iterates[-1]) )

return iterates

def itergraph ( a, x0, n=1000 ):\\

iterates = iterquad( a,x0,n )\\

G = Graphics()\\

G += line( [ (iterates[0],0), (iterates[0],iterates[1]) ], color="red" )\\

for i in range(n-1):\\

G += line( [ (iterates[i],iterates[i+1]), (iterates[i+1],iterates[i+1]) ], color="red" )\\

G += line( [ (iterates[i+1],iterates[i+1]), (iterates[i+1],iterates[i+2]) ], color="red" )\\

G += plot ( x, G.xmin()-.2, G.xmax()+.2,xmin=-.1,ymin=-.1,xmax=1.1,ymax=1.1 )\\

G += plot ( a*x*(1-x), G.xmin(), G.xmax(),xmin=-.1,ymin=-.1,xmax=1.1,ymax=1.1 )\\

G.show()$

$def feigenbaum( x0 ):\\

output = []\\

for i in range(0,1000):\\

a = 4*i/1000\\

iterates = iterquad( a, x0, 1000 )\\

27
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for i in range(951,1000):\\

output.append( [a,iterates[i]] )\\

return point(output,size=1)$

$def feigenbaum_zoom( x0, l, r, y1, y2 ):\\

output = []\\

for i in range(0,100):\\

a = l + (r-l)*i/100\\

iterates = iterquad( a, x0, 1000 )\\

for i in range(950,1000):\\

output.append( [a,iterates[i]] )\\

return point(output,ymin=y1,ymax=y2,size=1)
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