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ABSTRACT

This thesis describes a new approach to computing mean curvature and mean

curvature normals on smooth logically Cartesian surface meshes. We begin by de-

riving a finite-volume formula for one-dimensional curves embedded in two- or three-

dimensional space. We show the exact results on curves for specific cases as well

as second-order convergence in numerical experiments. We extend this finite-volume

formula to surfaces embedded in three-dimensional space. Exact results are again

derived for special cases and second-order convergence is shown numerically for more

general cases. We show that our formula for computing curvature is an improvement

over using the “cotan” formula on a triangulated quadrilateral mesh and is concep-

tually much simpler than the formula proposed by Liu et al. (“A discrete scheme of

Laplace-Beltrami operator and its convergence over quadrilateral meshes,” Computers

and Mathematics with Applications, 2008), and is equivalent in performance.
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CHAPTER 1

INTRODUCTION

The calculation of mean curvature and mean curvature normals on surfaces is an

important task in discrete differential geometry [5]. It is used in signal processing,

surface smoothing, image processing, and although we will not consider the solving

of partial differential equations in this thesis, curvature plays an important role in

the dynamics between fluid interfaces [9].

We will extend the work of D. A. Calhoun and C. Helzel [3] to the computing of

mean curvature and mean curvature normals on quadrilateral surface meshes. In that

paper, a finite-volume method for solving parabolic equations was introduced, which

derived a nine-point stencil for the Laplace-Beltrami operator. We apply the ideas

behind the stencil along with results from discrete differential geometry to obtain a

new finite volume scheme for calculating curvature on quadrilateral surface meshes.

After explaining the background and previous work, we will first derive a finite-

volume scheme for calculating curvature and normals on one-dimensional planar

curves. We then extend this to calculating binormals and torsion for non-planar

curves, in addition to normals and curvature. Then, we derive a finite-volume form

of calculating mean curvature and the mean curvature normals on surfaces. We then

give the results for the surface scheme and compare it to the well-known “cotan”

formula for calculating curvature on triangular meshes and a quadrilateral scheme
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proposed by D. Liu et al. [7].

1.1 Background

1.1.1 Overview of Curves and Surfaces

Curvature is a measure of how much a curve or surface deviates from being straight

or flat with respect to the underlying space. On a surface, every curve that can

be traced through a point on the surface will have its own curvature at that point.

The maximum and minimum values of these curvatures are known as the principle

curvatures of the surface. An equivalent way of considering principle curvatures is

that they are the eigenvalues of the metric tensor [5]. On a surface, mean curvature

is the average of the two principle curvatures and it locally describes the embedded

surface in the underlying space, which for us will always be Euclidean space. Gaussian

curvature, not examined in this paper, is the product of the principle curvatures.

For one-dimensional curves we can use the Frenet-Serret formulas, or Frenet frame,

to relate the tangent vector, the surface normal, ns, the binormal b, along with the

scalar quantities curvature, κ, and torsion, τ . In presenting the formulas here, we

will use the arc-length parameterization, although later we will relax this and allow

for more general parameterizations. Given a mapping r(s) = (X(s), Y (s), Z(s)),

mapping R → R3 where s is assumed to be arc length, the tangent vector to the

curve is computed as

t =
dr(s)

ds
, (1.1)

where d/ds is the derivative with respect to arc length. The Frenet-Serret formulas
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relating t,ns, and b are given by

dt

ds
= κns

dns
ds

= −κt + τb

db

ds
= −τns.

(1.2)

One direct consequence of the first equation is that κ = ‖r′′(s)‖, since ns has unit

length. For surfaces, an analogous frame is the Darboux frame.

For surfaces, the Laplace-Beltrami operator (LBO) leads directly to the mean

curvature normal. The LBO is a generalization of the Laplace operator to surfaces

and can be expressed as the divergence of the gradient of a function defined on the

surface. We let ∇2 be the LBO, H be the mean curvature normal, and ns the surface

normal. Given a surface mapping T(ξ, η), R2 → R3, the surface analog of equation

(1.2) is given by

1

2
∇2T(ξ, η) = H = κns

κ ≡ ‖H‖,
(1.3)

where κ is the mean curvature on the surface. Below, we define what the Laplacian

of the vector T means.

1.1.2 Previous Work

Because of the importance of computing curvature and normals in various application

domains and in solving partial differential equations involving the Laplacian, as

equation (1.3) shows is the same task as computing curvature, there have been several

approaches proposed for computing the LBO. Many of these schemes, especially those
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from computer graphics, assume a triangulated mesh and as shown in G. Xu [9] many

of these schemes do not converge generally.

A result from Xu et al. [10] is that one cannot build a discrete scheme for mean

curvature or the LBO that converges over general triangulated surfaces, though

second-order accuracy can be obtained under specific conditions. While the result of

Xu et al. does extend to quadrilateral meshes, a scheme built of quadrilateral meshes

will converge more generally over the same points than under a triangularization

scheme, demonstrated numerically both in this paper and in D. Liu et al. [7]. A

heuristic argument for this is that a quadrilateral does not have to exist on a plane

while a triangle always exists on a plane, allowing a quadrilateral to more closely

capture the surface curvature than does a triangulated mesh produced from the

quadrilateral mesh.

Though triangulated surfaces are the most common type of surface meshes used

in surface processing and other applications, quadrilateral meshes are also frequently

used. For solving partial differential equations, logically Cartesian meshes are con-

sidered more desirable than triangular meshes. Recent research efforts are directed

towards designing logically Cartesian surface meshes from more general surface tri-

angularizations [6]. The LBO is often used when solving partial differential equations

on surfaces, but in many cases the particular discrete operator is not formally con-

sistent. As a result, use of that operator for computing curvature may not lead to an

approximation that converges as the mesh is refined. There are multiple options for

creating triangularizations of quadrilateral meshes, each of which produce different

results when using the cotan formula, as shown in [7]. Due to this, new methods for

approximating the LBO on quadrilateral meshes are needed. In [7], a form of the

LBO is presented that converges at a quadratic rate on mesh refinement. We will
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compare our results to those of both the cotan formula and the formula from [7].
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CHAPTER 2

CALCULATING CURVATURE ON ONE-DIMENSIONAL

SPATIAL CURVES

2.1 Finite Volume Schemes for Computing Curvature on a

One-Dimensional Planar Curve

The basis for our work is the use of finite-volume discretizations for computing the

surface normals and curvature. In this section, we describe these ideas using a one-

dimensional planar curve. In Chapter 3, we extend the one-dimensional case to surface

meshes embedded in three-dimensional space.

We begin by assuming that we have a one-dimensional smooth planar curve

described parametrically by the mapping T : R→ R2

T(ξ) = (X(ξ), Y (ξ)). (2.1)

The basis vector, t(1), is given by

t(1) = (Xξ, Yξ), t(1) ∈ R2, (2.2)

and the metric tensor, a, is
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a = [t(1) · t(1)] ≡ [a11], a ∈ R, (2.3)

leading to an inverse metric tensor of

a−1 =

[
1

a11

]
≡ [a11], a−1 ∈ R. (2.4)

We define a conjugate vector field

t(1) = a11t(1), t(1) ∈ R2 (2.5)

from which we get that

t(1) · t(1) = 1 (2.6)

and

t(1) · t(1) = a11. (2.7)

Given any vector w ∈ R2, we can write

w = w1t(1) (2.8)

or

w = w1t
(1) (2.9)

where w1 is the contravariant component of w and w1 is the covariant component.

These are computed as

w1 = w · t(1) = (w1t(1)) · t(1) (2.10)

and
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w1 = w · t(1) = (w1t
(1)) · t(1). (2.11)

The gradient of a scalar function φ(ξ) defined on the curve can be expressed in terms

of its covariant component,

∇̃φ = φξt
(1). (2.12)

We can use these ideas in a finite-volume setting to obtain expressions for normal

vectors and the surface curvature.

For the planar curve, we will actually use the one-dimensional analogue of equation

(1.3) rather than that suggested by the Frenet frame. One reason for this is that we

can then easily extend these ideas to two dimensions without disruptive changes to

notation. The one-dimensional analogue to equation (1.3) is given by

∇2T = ∇ · ∇̃T = H, (2.13)

where the operator ∇ · () is the surface divergence and H is a vector normal to

the planar curve with its magnitude equal to the curvature. The gradient of T is

understood to be

∇̃T =

 ∇̃X
∇̃Y

 . (2.14)

where ∇̃X and ∇̃Y are defined as in equation (2.12).

We would like to use this formalism to approximate the surface curvature and

mean curvature normal using a finite-volume approximation. We begin by using the

divergence theorem to approximate the average value of the Laplacian of T over a

cell, C. From this we get
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∫
C

∇ · ∇̃TdA = ∇̃T · n

∣∣∣∣∣
right

left

= ∇̃T · nr − ∇̃T · nl, (2.15)

where nr and nl are the “edge normals”, or tangents to the curve at mesh cell edges,

calculated at the left and right edges respectively. This leads to ∇̃T · n in equation

(2.15), which we understand as

∇̃T · n =

 ∇̃X
∇̃Y

 · n =

 ∇̃X · n
∇̃Y · n

 . (2.16)

We can now evaluate the integral in equation (2.15) by writing the “edge normal,” n

as

n =
t(1)

‖t(1)‖
=

t(1)

‖t(1)‖
. (2.17)

This, when combined with equation (2.16), leads to

∇̃X · n = (Xξt
(1)) ·

t(1)

‖t(1)‖
=

1

‖t(1)‖
Xξ (2.18)

and

∇̃Y · n = (Yξt
(1)) ·

t(1)

‖t(1)‖
=

1

‖t(1)‖
Yξ (2.19)

From equation (2.17), we now get the result that

∇̃T · n =
1

‖t(1)‖

 Xξ

Yξ

 ≡ n. (2.20)

To compute the curvature normal vector, we will be interested in the average value

of ∇2T over a finite volume. Letting L(C) be the length of a one-dimensional “cell,”
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C, we can write

1

L(C)

∫
C

∇ · ∇̃Td` =
1

L(C)
{∇̃T · nr − ∇̃T · nl}

=
1

L(C)
{nr − nl}.

(2.21)

The curvature normal vector can then be written as

H =
1

L(C)
{nr − nl}. (2.22)

From this, we have the surface normal and curvature given by

ns =
H

‖H‖
=

H

κ
, (2.23)

where

κ ≡ ‖H‖. (2.24)

2.1.1 Computational Scheme

Figure 2.1: Curve showing primal and dual grid points with cell centers and edges.

We now refer to Figure 2.1 to show the computational grid consisting of dual points,

Td, which are put down first and are considered to be the edges of cells, and primal
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points, Tp, which are at the midpoints of cells. This allows us to computationally

approximate the basis vectors as in equation (2.2). Our approximation of these basis

vectors begins by differencing the primal points along the grid,

t(1),j = Tp,j −Tp,j−1. (2.25)

This directly gives us the ability to calculate at each primal grid point j,

a11,j = t(1),j · t(1),j (2.26)

a11
j =

1

a11,j

(2.27)

and

t
(1)
j = a11

j · t(1),j. (2.28)

Edge normals, which are tangents in one-dimension, are then just

nj =
t(1),j

‖t(1),j‖
. (2.29)

From the edge normals, we can compute the surface normals, ns,j, and curvature κj

at cell centers, which are again the primal points. We approximate the length of a

cell by differencing the dual points Xd, which are at the edge of a cell

L(Cj) ≈ ‖Td,j+1 −Td,j‖. (2.30)

The surface normals are given as
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ns,j =
t(1),j

‖t(1),j‖
=

Tp,j −Tp,j−1

‖Tp,j −Tp,j−1‖
. (2.31)

Applying the approximation of the cell length and the normals into equation

equation (2.22) gives the following formula for κj for the one-dimensional case

κj =
1

‖Td,j+1 −Td,j‖

∥∥∥∥ Tp,j+1 −Tp,j

‖Tp,j+1 −Tp,j‖
− Tp,j −Tp,j−1

‖Tp,j −Tp,j−1‖

∥∥∥∥. (2.32)

This is the formula we will use to approximate curvature on one-dimensional curves.

2.1.2 Scheme on a Linear Equation

Having defined our scheme for calculating curvature and normals, it is important to

investigate the accuracy of the scheme. The easiest case to consider is that of a linear

equation, which has a curvature of zero. Given a linear mapping

T(ξ) = (X(ξ), Y (ξ))

X(ξ) = aξ + b

Y (ξ) = cξ + d

(2.33)

then, defining hj = ξp,j+1 − ξp,j, we get

‖Tp,j+1 −Tp,j‖ =
√

(aξp,j+1 + b− aξp,j − b)2 + (cξp,j+1 + d− cξp,j − d)2

=
√

(ahj)2 + (chj)2

= hj
√
a2 + c2.

(2.34)

Similarly,

‖Tp,j −Tp,j−1‖ = hj−1

√
a2 + c2, (2.35)
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and

Tp,j+1 −Tp,j = (ahj, chj)

Tp,j −Tp,j−1 = (ahj−1, chj−1)

(2.36)

Only the x-coordinate is given here, as the y direction is the same,

[
Tp,j+1 −Tp,j

‖Tp,j+1 −Tp,j‖
− Tp,j −Tp,j−1

‖Tp,j −Tp,j−1‖

]
=

ahj

hj
√
a2 + c2

− ahj−1

hj−1

√
a2 + c2

= 0

(2.37)

It follows that the curvature of the straight line, as computed using our formula, is

zero. This formula cannot be used to compute a normal to the line, since even in

general the normal to a straight line is not uniquely defined (although the addition

of the right hand rule defines the normal in 2d).

2.1.3 Scheme on the Circle

Given that the zero curvature case is captured exactly, we now consider the case of

constant curvature, which occurs in the circle in one dimension.

The circle is defined by the mapping

T(θ) = (R cos(θ), R sin(θ)). (2.38)

As above, we define hj = θp,j+1−θp,j and proceed to apply the scheme to this mapping.
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‖Tp,j+1 −Tp,j‖ =
√

(R cos(θp,j + hj)−R cos(θp,j))2 + (R sin(θp,j + hj)−R sin(θp,j))2

=

(
2R sin

(
2θp,j + hj

2

)
sin

(
hj
2

))2

+

(
2R cos

(
2θp,j + hj

2

)
sin

(
hj
2

))2

= 2R sin

(
hj
2

)
(2.39)

using the sum-to-product formulas

cos(a)− cos(b) = −2 sin

(
a+ b

2

)
sin

(
a− b

2

)
(2.40)

and

sin(a)− sin(b) = 2 cos

(
a+ b

2

)
sin

(
a− b

2

)
. (2.41)

Using the law of cosines leads to the same result. Similarly, using the sum-to-product

formulas leads to

Tp,j+1 −Tp,j =

(
−2R sin

(
2θp,j + hj

2

)
sin

(
hj
2

)
, 2R cos

(
2θp,j + hj

2

)
sin

(
hj
2

))
.

(2.42)

Rather than write the analogous formula for j − 1, we write

Tp,j −Tp,j−1 =

(
−2R sin

(
2θp,j − hj−1

2

)
sin

(
hj−1

2

)
, 2R cos

(
2θp,j − hj−1

2

)
sin

(
hj−1

2

))
(2.43)

and so, focusing on the X component,
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Figure 2.2: Ellipse with calculated mean curvature normals H.

[
Tp,j+1 −Tp,j

‖Tp,j+1 −Tp,j‖
− Tp,j −Tp,j−1

‖Tp,j −Tp,j−1‖

]
=
−2R sin

(
2θp,j+hj

2

)
sin
(
hj
2

)
2R sin

(
hj
2

)
−
−2R sin

(
2θp,j−hj−1

2

)
sin
(
hj−1

2

)
2R sin

(
hj−1

2

)
= sin

(
2θp,j − hj−1

2

)
− sin

(
2θp,j + hj

2

)
= 2 cos

(
4θp,j + hj − hj−1

4

)
sin

(
hj + hj−1

4

)
.

(2.44)

Similar calculations on the Y component give the combined expression as,
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[
Tp,j+1 −Tp,j

‖Tp,j+1 −Tp,j‖
− Tp,j −Tp,j−1

‖Tp,j −Tp,j−1‖

]
=

 2 cos
(

4θp,j+hj−hj−1

4

)
sin
(
hj+hj−1

4

)
−2 sin

(
4θp,j+hj−hj−1

4

)
sin
(
hj+hj−1

4

)
 .

(2.45)

The norm of this is given as

= 2 sin

(
hj + hj−1

4

)
. (2.46)

Then, for our approximation of L(C), we define hdj as the difference between dual

points to get

‖Td,j+1 −Td,j‖ = 2R sin

(
hdj
2

)
. (2.47)

Noting that since primal points are halfway between any two dual points, we get

hj + hj−1

2
= hdj . (2.48)

Then, κ is just

κ =
2 sin

(
hj+hj−1

4

)
2R sin

(
hdj
2

)
=

sin
(
hdj
2

)
R sin

(
hdj
2

)
=

1

R

(2.49)

which is the exact solution.

2.1.4 Results of the Scheme on an Ellipse

Given that we have shown that the scheme is accurate for the case of zero curvature

and constant curvature, we then implemented the scheme in Matlab in order to test
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Figure 2.3: This figure shows second-order convergence of the curvature computation
of our finite-volume scheme on an ellipse. The convergence rate is computed as the
slope of the best fit line through the points between the vertical dashed lines.

it for cases in which proving convergence results is harder. We obtained second-order

accurate results on mesh refinement.

The base test case is then the ellipse, as we have an exact formula for the curvature

and the curvature varies over the ellipse. Since calculating the mesh for the ellipse

is straightforward and calculating the curvature is also straightforward then we are

able to test the scheme itself on mesh refinement, rather than running into precision

of the points or curvature calculation.

The curvature of the ellipse is given by

κ =
ab

(b2 cos(ξ)2 + a2 sin(ξ)2)3/2
, (2.50)

where a, b, and ξ are from the parametric equations of the ellipse



18

Figure 2.4: The Euler spiral from t = (-30, 30) with equal spacing in t.

X(ξ) = a cos(ξ),

Y (ξ) = b sin(ξ) − π ≤ ξ < π.

(2.51)

The results of the comparison, where a = 5, b = 2, are as shown in Figure 2.3 and a

plot of the normals in Figure 2.2.

2.1.5 Results on the Euler Spiral

The Euler spiral, as seen in Figure 2.4, is a curve whose curvature changes linearly

with the length of the curve making it an interesting test case for our scheme. It is

defined in terms of Fresnel integrals given as

S(x) =

∫ x

0

sin(t2)dt

C(x) =

∫ x

0

cos(t2)dt.

(2.52)
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The Euler spiral is then (C(t), S(t)). It can be shown that the curvature is κ = 2t,

where t is the arc-length. As t→∞ then κ→∞ giving two points around which the

spiral infinitely winds. As t gets large, equally spaced values of t will fail to resolve

the curve, and so any discrete curvature formula will have difficulty converging. If

t is too large, then the limitations on floating point precision will make convergence

impossible. The second issue is the ability to accurately compute the Fresnel integrals.

Here, we use the method, and code for C(t), S(t), presented by Alazah et al. [1] with

the accuracy set to be about 10−15 for each integral, the standard Matlab functions

are less accurate than the functions used. We surprisingly found that our scheme

converged at a near quartic rate instead of the expected quadratic rate, see Figure

2.5. We think this likely due to the fact that the spiral locally approximates a circle

causing cancellation of terms as in the circle. The last point on the plot diviates from

the trend due to the precision of calculating the Fresnel integral.

Figure 2.5: The quartic convergence of our scheme on the Euler spiral. For small
numbers of grid points, the spiral is under-resolved. The convergence rate is the
slope of the best fit line through the points between the vertical dashed lines.
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Figure 2.6: The helix and computed normals H.

2.2 Extending the Scheme to Curves in R3

The previous derivations extend directly to a non-planar curve,

T(ξ) = (X(ξ), Y (ξ), Z(ξ)) . (2.53)

The curvature and the mean curvature formulas derived in this section can be applied

directly. A new quantity, torsion, denoted τ , and its vector, the binormal, apply for

such curves. Neither torsion nor the binormal are interesting in the case where the

curve exists logically on a plane.

To start, we approximate the derivative of the normals as

dns
ds
≈ nj − nj−1

‖t(1)
j ‖

. (2.54)
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Figure 2.7: Convergence of curvature and torsion on the helix. The convergence rate
is the slope of the best fit line through the points between the vertical dashed lines.

From the Frenet frame, equation (1.2), we have

τb =
dns
ds

+ κ
t(1)

‖t(1)‖
(2.55)

The torsion is then extracted by normalizing the binormal, the quantity on the right

hand side of equation (2.55).

τ = ‖τb‖. (2.56)

The exact results obtained for the circle do not extend in an obvious way to curves

with non-zero torsion, as seen in the helix, Figure 2.6. However, second-order con-

vergence in curvature and torsion are observed, as in Figure 2.7.
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CHAPTER 3

FINITE-VOLUME SCHEME FOR COMPUTING METRIC

TERMS ON A TWO-DIMENSIONAL SURFACE

3.1 Derivation of the Scheme

We now extend the finite-volume discretization from the last chapter to certain two-

dimensional surfaces. We start by assuming that we have a two-dimensional smooth

surface described parametrically by the smooth mapping T : R2 → R3 where

T(ξ, η) = (X(ξ, η), Y (ξ, η), Z(ξ, η)). (3.1)

The basis vectors are given by

t(1) = (Xξ, Yξ, Zξ), t(1) ∈ R3

t(2) = (Xη, Yη, Zη), t(2) ∈ R3

(3.2)

and the metric tensor is given by

a =

 t(1) · t(1) t(1) · t(2)

t(2) · t(1) t(2) · t(2)

 =

 a11 a12

a21 a22

 , a ∈ R2×2. (3.3)

The inverse metric tensor is given by
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a−1 =
1

det(a)

 a22 −a21

−a12 a11

 =

 a11 a12

a21 a22

 , a−1 ∈ R2×2, (3.4)

where det(a) is the determinant of a in equation (3.3).

We can now define a conjugate vector field

t(1) = a11t(1) + a12t(2), t(1) ∈ R3

t(2) = a12t(1) + a22t(2), t(2) ∈ R3.

(3.5)

This field gives us

t(i) · t(j) =

 1 i = j

0 i 6= j

t(i) · t(j) = aij.

(3.6)

Given any vector w ∈ R3, we can write

w = w1t(1) + w2t(2) (3.7)

or

w = w1t
(1) + w2t

(2) (3.8)

where again w1, w2 are the contravarient components of w and w1, w2 are the covariant

components.

This gives the relations

w1 = w · t(1) = (w1t(1)) · t(1) (3.9)

and
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w1 = w · t(1) = (w1t
(1)) · t(1). (3.10)

So given any w we can always find its covariant or contravariant components. The

surface gradient of a scalar function φ(ξ, η) can be expressed in terms of its covariant

components as

∇̃φ = φξt
(1) + φηt

(2) (3.11)

As in the one-dimensional case, we now seek to formulate an expression for the

surface normal and curvature using a finite-volume approach. We proceed here as in

the one-dimensional case, but where now the formula for the curvature normal is the

standard result from differential geometry

∇2T = ∇ · ∇̃T = 2H, (3.12)

where T(ξ, η) is our mapping , ∇ · () is the surface divergence operator and H is the

surface curvature vector. From the divergence theorem on the surface, we can use the

above to write ∫
S

∇ · ∇̃TdS =

∫
∂S

∇̃T · n ds (3.13)

where S is a quadrilateral surface patch, defined in terms of coordinate directions,

∇̃T is

∇̃T =


∇̃X

∇̃Y

∇̃Z

 (3.14)

and, as in the one-dimensional case,
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∇̃T · n =


∇̃X

∇̃Y

∇̃Z

 · n =


∇̃X · n

∇̃Y · n

∇̃Z · n

 . (3.15)

There are two “edge normals”, n(1) and n(2), which can be written as

n(1) =
t(1)

‖t(1)‖

n(2) =
t(2)

‖t(2)‖
.

(3.16)

Focusing on n(1), we can write

∇̃X · n(1) = (Xξt
(1) +Xηt

(2)) · t(1)

‖t(1)‖
=
a11Xξ + a12Xη

‖t(1)‖

∇̃Y · n(1) = (Yξt
(1) + Yηt

(2)) · t(1)

‖t(1)‖
=
a11Yξ + a12Yη
‖t(1)‖

∇̃Z · n(1) = (Zξt
(1) + Zηt

(2)) · t(1)

‖t(1)‖
=
a11Zξ + a12Zη
‖t(1)‖

,

(3.17)

from which we get

∇̃T · n(1) =
a11t(1) + a12t(2)

‖t(1)‖
=

t(1)

‖t(1)‖
≡ n(1). (3.18)

Similar calculations lead to

∇̃T · n(2) =
a12t(1) + a22t(2)

‖t(2)‖
=

t(2)

‖t(2)‖
≡ n(2). (3.19)

Given a quadrilateral surface patch, S, aligned with the coordinate directions, we can

now write
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1

Area(S)

∫
S

∇ · ∇̃TdA =
1

Area(S)

∫
∂S

∇̃T · nds =
1

Area(S)

∫
∂S

n · ds

≈ 1

Area(S)

{
4∑

k=1

nk

} (3.20)

where Area(S) is the area and the nk are the four edge normals, taken in a counter

clockwise direction, of the quadrilateral, S.

The curvature normal vector can then be written as

H ≈ 1

2Area(S)

{
4∑

k=1

nk∆sk

}
, (3.21)

where ∆sk is the length of the k-th edge of the patch S. From this, we have the

surface normal and curvature given by:

ns =
H

‖H‖
=

H

κ
, (3.22)

where

κ = ‖H‖. (3.23)

3.2 The Computational Scheme on a Surface Mesh

Computationally, we can approximate the basis vectors. We set up two sets of points

on the surface: the primal points {Tp,i,j} and the dual points {Td,i,j} as in Figure

3.1. Then

t(1),i,j = Tp,i,j −Tp,i,j−1 (3.24)

and

t(2),i,j = Td,i+1,j −Td,i,j. (3.25)
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Figure 3.1: Computational grid showing primal and dual points. Dual points are the
cell nodes and primal points are the cell centers.

This leads to the construction of the a matrix as

a =

 (Tp,i,j −Tp,i,j−1) · (Tp,i,j −Tp,i,j−1) (Tp,i,j −Tp,i,j−1) · (Td,i+1,j −Td,i,j)

(Tp,i,j −Tp,i,j−1) · (Td,i+1,j −Td,i,j) (Td,i+1,j −Td,i,j) · (Td,i+1,j −Td,i,j)

 .
(3.26)

Since a is a two-by-two matrix, the inverse is easily computed. The determinant,

which will always be positive for non-degenerate meshes, is

det(a) = a1,1a2,2 − a1,2a2,1 (3.27)

leading to the inverse as
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a−1 =
1

det(a)
·

 (Td,i+1,j −Td,i,j) · (Td,i+1,j −Td,i,j) −(Tp,i,j −Tp,i,j−1) · (Td,i+1,j −Td,i,j)

−(Tp,i,j −Tp,i,j−1) · (Td,i+1,j −Td,i,j) (Tp,i,j −Tp,i,j−1) · (Tp,i,j −Tp,i,j−1)

 .
(3.28)

Edge normals are then given by

nξi,j =
a11(Tp,i,j −Tp,i,j−1) + a22(Td,i+1,j −Td,i,j)

‖a11(Tp,i,j −Tp,i,j−1) + a22(Td,i+1,j −Td,i,j)‖
(3.29)

and ∆sk, the length of the k-th edge of the patch S, is approximated as

∆sk ≈ ‖Td,k+1 −Td,k‖. (3.30)

From the edge normals, we can compute the surface normals, ns,i,j, and curvature

κi,j at cell centers. We approximate the area of a cell by assuming the surface spanning

the mesh cell has the bilinear function, as done in Calhoun and Helzel [3],

S(u, v) = c00 + c01u+ c10v + c11uv (3.31)

where coefficients ck` ∈ R3 are computed from the known locations of the mesh cell

corners. Using these corner points for Td,i+k,j+` for k, ` = 0, 1, we get

c00 = Td,i,j,

c01 = Td,i+1,j −Td,i,j,

c10 = Td,i,j+1 −Td,i,j,

c11 = Td,i+1,j+1 −Td,i+1,j −Td,i,j+1 + Td,i,j.

(3.32)

We can write down the exact area of a mesh cell with surface mapping S(u, v) as
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∫
[0,1]x[0,1]

‖Su×Sv‖dudv. For our purposes, we approximate this area using a midpoint

rule to evaluate the integral and obtain

Area(Si,j) ≈ ‖(c01 +
c11

2
)× (c10 +

c11

2
)‖. (3.33)

Using equation (3.21), we then have

H ≈ 1

2‖(c01 + c11
2

)× (c10 + c11
2

)‖

{
4∑

k=1

t(1)
i,j

‖t(1)
i,j‖
‖Td,k+1 −Td,k‖

}
, (3.34)

and from equation (3.23)

κ ≈

∣∣∣∣∣
∣∣∣∣∣ 1

2‖(c01 + c11
2

)× (c10 + c11
2

)‖

{
4∑

k=1

t(1)
i,j

‖t(1)
i,j‖
‖Td,k+1 −Td,k‖

}∣∣∣∣∣
∣∣∣∣∣. (3.35)

3.3 Results of the Scheme in Two Dimensions

We implemented the scheme in Fortran and obtained second-order accurate results

for smooth surface mappings and first-order for piecewise smooth mappings. The

base case was the sphere as exact results were obtained on the cylinder. We also

investigated hyperboloids, cylinders, paraboloids, and hyperbolic tangent sheets. All

showed second-order convergence or better.

3.3.1 The Scheme on a Cylinder

Since the circle is exact in one dimension, we checked if the cylinder has the same

properties as the circle in one dimension. Indeed, numerical testing of the scheme

shows the results on the cylinder are precisely the same as that of a circle in one-
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Figure 3.2: Cylinder mapping, in the left figure f(θ) = sin(2θ) and in the right
f(θ) = 0. The color and lighting in this figure is to show the shape and otherwise has
no meaning.

dimension. Working through the equations should likewise lead to the exact result as

it did for the circle.

In order for the mapping to be more general we introduce f(θ), a function operat-

ing in the Z direction, which depends only on θ. This gives us our general parametric

mapping as

X(θ, ζ) = R cos(θ)

Y (θ, ζ) = R sin(θ)

Z(θ, ζ) = ζ + f(θ).

(3.36)

We use the notation from the circle proof with the added notation of ∆Zi−1/2,j =

Zi,j − Zi−1,j, which depends solely on θ, while noting that differences ∆X and ∆Y

can be assumed to be 1. Also note that θd,i,j = θd,i,j−1, which leads to
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t(1),i,j =


R cos(θp,i,j)−R cos(θp,i−1,j)

R sin(θp,i,j)−R sin(θp,i−1,j)

ζp,i,j − ζp,i−1,j



=


−2R sin

(
2θp,i,j+hp,i,j

2

)
sin
(
hp,i,j

2

)
2R cos

(
2θp,i,j+hp,i,j

2

)
sin
(
hp,i,j

2

)
∆Zi−1/2,j

 .
(3.37)

Likewise, for the other basis vector we get

t(2),i,j =


R cos(θd,i,j)−R cos(θd,i,j−1)

R sin(θd,i,j)−R sin(θd,i,j−1)

ζd,i,j − ζd,i,j−1

 =


0

0

1

 . (3.38)

For the a, we have

a11 = (−2R sin

(
2θp,i,j + hp,i,j

2

)
sin

(
hp,i,j

2

)
)2

+ (2R cos

(
2θp,i,j + hp,i,j

2

)
sin

(
hp,i,j

2

)
)2

+ ∆Z2
i−1/2,j

= 4R2 sin2

(
hp,i,j

2

)
+ ∆Z2

i−1/2,j

(3.39)

and

a12 = a21 = ∆Zi−1/2,j (3.40)

and
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a22 = 1. (3.41)

The determinant is then given as

det(a) = a11a22 − a12a21, (3.42)

which is best calculated in pieces and then combined as follows:

a12a21 = ∆Z2
i−1/2,j

a11a22 = 4R2 sin2

(
hp,i,j

2

)
+ ∆Z2

i−1/2,j.
(3.43)

Combining these two parts leads to det(a) as

a11a22 − a12a21 = 4R2 sin2

(
hp,i,j

2

)
. (3.44)

For the a−1 matrix we get

a11 =
1

4R2 sin2
(
hp,i,j

2

) (3.45)

a22 = 1 +
∆Z2

i−1/2,j

4R2 sin2
(
hp,i,j

2

) (3.46)

a12 = −
∆Zi−1/2,j

4R2 sin2
(
hp,i,j

2

) . (3.47)

This leads to
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t
(1)
1 = −

2R sin
(

2θp,i,j+hp,i,j
2

)
sin
(
hp,i,j

2

)
4R2 sin2

(
hp,i,j

2

) = −
sin
(

2θp,i,j+hp,i,j
2

)
2R sin

(
hp,i,j

2

)

t
(1)
2 =

2R cos
(

2θp,i,j+hp,i,j
2

)
sin
(
hp,i,j

2

)
4R2 sin2

(
hp,i,j

2

) =
cos
(

2θp,i,j+hp,i,j
2

)
2R sin

(
hp,i,j

2

)

t
(1)
3 =

∆Zi−1/2,j

4R2 sin2
(
hp,i,j

2

) − ∆Zi−1/2,j

4R2 sin2
(
hp,i,j

2

) = 0.

(3.48)

Then t(2) follows

t
(2)
1 =

2R∆Zi−1/2,j sin
(

2θp,i,j+hp,i,j
2

)
sin
(
hp,i,j

2

)
4R2 sin2

(
hp,i,j

2

) = −
∆Zi−1/2,j sin

(
2θp,i,j+hp,i,j

2

)
2R sin

(
hp,i,j

2

)
(3.49)

t
(2)
2 = −

2R∆Zi−1/2,j cos
(

2θp,i,j+hp,i,j
2

)
sin
(
hp,i,j

2

)
4R2 sin2

(
hp,i,j

2

) = −
∆Zi−1/2,j cos

(
2θp,i,j+hp,i,j

2

)
2R sin

(
hp,i,j

2

)
(3.50)

t
(2)
3 = −

∆Z2
i−1/2,j

4R2 sin
(
hp,i,j

2

) + 1 +
∆Z2

i−1/2,j

4R2 sin
(
hp,i,j

2

) = 1. (3.51)

The norm of t(1) is

‖t(1)‖ =
1

2R sin
(
hp,i,j

2

) . (3.52)

The norm of t(2) is
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‖t(2)‖ =

√√√√√√
∆Zi−1/2,j sin

(
2θp,i,j+hp,i,j

2

)
2R sin

(
hp,i,j

2

)
2

+

∆Zi−1/2,j cos
(

2θp,i,j+hp,i,j
2

)
2R sin

(
hp,i,j

2

)
2

+ (1)2

(3.53)

=

√√√√√
 ∆Zi−1/2,j

2R sin
(
hp,i,j

2

)
2

+ 1 =

√
∆Z2

i−1/2,j + 4R2 sin2
(
hp,i,j

2

)
2R sin

(
hp,i,j

2

) . (3.54)

From this, we can now normalize t(1) and t(2). This again must be done component-

wise

t
(1)
1

‖t(1)‖
= −

sin
(

2θp,i,j+hp,i,j
2

)
2R sin

(
hp,i,j

2

)
1

2R sin
(
hp,i,j

2

) = − sin

(
2θp,i,j + hp,i,j

2

)
(3.55)

t
(1)
2

‖t(1)‖
=

cos
(

2θp,i,j+hp,i,j
2

)
2R sin

(
hp,i,j

2

)
1

2R sin
(
hp,i,j

2

) = cos

(
2θp,i,j + hp,i,j

2

)
(3.56)

t
(1)
3

‖t(1)‖
= 0, (3.57)

which is convenient. The normalization of t(2) is

t
(2)
1

‖t(2)‖
=

∆Zi−1/2,j sin
(

2θp,i,j+hp,i,j
2

)
2R sin

(
hp,i,j

2

)
√

∆Z2
i−1/2,j

+4R2 sin2
(
hp,i,j

2

)
2R sin

(
hp,i,j

2

)
=

∆Zi−1/2,j sin
(

2θp,i,j+hp,i,j
2

)
√

∆Z2
i−1/2,j + 4R2 sin2

(
hp,i,j

2

) (3.58)
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t
(2)
2

‖t(2)‖
=

∆Zi−1/2,j cos
(

2θp,i,j+hp,i,j
2

)
2R sin

(
hp,i,j

2

)
√

∆Z2
i−1/2,j

+4R2 sin2
(
hp,i,j

2

)
2R sin

(
hp,i,j

2

)
=

∆Zi−1/2,j cos
(

2θp,i,j+hp,i,j
2

)
√

∆Z2
i−1/2,j + 4R2 sin2

(
hp,i,j

2

) (3.59)

t
(2)
3

‖t(2)‖
=

1√
∆Z2

i−1/2,j
+4R2 sin2

(
hp,i,j

2

)
2R sin

(
hp,i,j

2

)
=

2R sin
(
hp,i,j

2

)
√

∆Z2
i−1/2,j + 4R2 sin2

(
hp,i,j

2

) . (3.60)

An interesting point to notice here is that if ∆Zi−1/2,j = 0, as is the case in the

traditional parametric mapping of the cylinder, then t(2) and its norm would be

greatly simplified. Now ‖Xk−Xk−1‖ can be either the norm of t(1) or t(2) depending

on the side being examined, just as t(1) and t(2) are used for different portions of the

grid. So doing first one direction and then the other

‖Tk −Tk−1‖ = ‖t(1)‖ =
√
a1,1 =

√
4R2 sin2

(
hp,i,j

2

)
+ ∆Z2

i−1/2,j
(3.61)

or

‖Tk −Tk−1‖ = ‖t(2)‖ =
√
a2,2 = 1 (3.62)

These are convenient as they lead to

t(1)

‖t(1)‖
‖Tk −Tk−1‖ =

t(1)

‖t(1)‖
, (3.63)

which was given previously and
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t
(2)
1

‖t(2)‖
‖Tk −Tk−1‖ =

∆Zi−1/2,j sin
(

2θp,i,j+hp,i,j
2

)
√

∆Z2
i−1/2,j + 4R2 sin2

(
hp,i,j

2

)
√

4R2 sin2

(
hp,i,j

2

)
+ ∆Z2

i−1/2,j

= ∆Zi−1/2,j sin

(
2θp,i,j + hp,i,j

2

)
,

(3.64)

t
(2)
2

‖t(2)‖
‖Tk −Tk−1‖ =

∆Zi−1/2,j cos
(

2θp,i,j+hp,i,j
2

)
√

∆Z2
i−1/2,j + 4R2 sin2

(
hp,i,j

2

)
√

4R2 sin2

(
hp,i,j

2

)
+ ∆Z2

i−1/2,j

= ∆Zi−1/2,j cos

(
2θp,i,j + hp,i,j

2

)
,

(3.65)

t
(2)
3

‖t(2)‖
‖Tk −Tk−1‖ =

2R sin
(
hp,i,j

2

)
√

∆Z2
i−1/2,j + 4R2 sin2

(
hp,i,j

2

)
√

4R2 sin2

(
hp,i,j

2

)
+ ∆Z2

i−1/2,j

= 2R sin

(
hp,i,j

2

)
.

(3.66)

We are now looking at four “edge normals,” two in each direction, as well as the four

dual points, making up a grid, which are used to calculate the area of the cell. The

major point to notice is that while the derivations are the same, the numbering is

not. First notice that

c01 = Td,i+1,j −Td,i,j = t((2),i+1,j), (3.67)



37

which becomes, using the simplification assumptions,

t((2),i+1,j) =


0

0

1

 . (3.68)

Then, note that

c10 = Td,i,j+1 −Td,i,j = t((1),i,j+1), (3.69)

which is given previously, and then

c11 = Td,i+1,j+1 −Td,i+1,j −Td,i,j+1 + Td,i,j

= (Td,i+1,j+1 −Td,i,j+1)− (Td,i+1,j −Td,i,j)

= t((1),i+1,j+1) − t((1),i+1,j) = 0.

(3.70)

The last simplification comes from noticing that the change is only in the Z direction

and that t(1) does not vary in Z. Then, the area calculation becomes

‖(c01)× (c10)‖ = ‖(t(2) × t(1))‖ (3.71)

=

√(
2R sin

(
2θp,i,j + hp,i,j

2

)
sin

(
hp,i,j

2

))2

+

(
2R cos

(
2θp,i,j + hp,i,j

2

)
sin

(
hp,i,j

2

))2

(3.72)

= 2R sin

(
hd,i,j

2

)
. (3.73)

Now clearly the t(2) portions of the summation simplifies as ∆Zi−1/2,j = ∆Zi−1/2,j+1
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which leaves just the t(1) portion, which is very similar to the circle case. For X we

get

sin

(
2θp,i,j + hp,i,j

2

)
− sin

(
2θp,i,j + hp,i,j

2

)
=

2 cos

(
2θp,i,j + 2θp,i+1,j + hp,i,j − hp,i+1,j

4

)
sin

(
hp,i+1,j + hp,i,j

4

)
,

(3.74)

while similar calculation for Y give

{
4∑

k=1

t(1)
i,j

‖t(1)
i,j‖
‖Td,k+1 −Td,k‖

}
=


2 cos

(
2θp,i,j+2θp,i+1,j+hp,i,j−hp,i+1,j

4

)
sin
(
hp,i+1,j+hp,i,j

4

)
2 sin

(
2θp,i,j+2θp,i+1,j+hp,i,j−hp,i+1,j

4

)
sin
(
hp,i+1,j+hp,i,j

4

)
0


(3.75)

The norm of which leads to

∥∥∥∥∥
{

4∑
k=1

t(1)
i,j

‖t(1)
i,j‖
‖Td,k+1 −Td,k‖

}∥∥∥∥∥ = 2 sin

(
hp,i+1,j + hp,i,j

4

)
, (3.76)

and this is, just like in the circle case

2 sin

(
hp,i+1,j + hp,i,j

4

)
= 2 sin

(
hd,i,j

2

)
. (3.77)

This leads directly to

κ =
2 sin

(
hd,i,j

2

)
4R sin

(
hd,i,j

2

)
=

1

2R
,

(3.78)

which is the exact analytical solution of the mean curvature for a cylinder.
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3.3.2 Results on Minimal Surfaces

Figure 3.3: The helicoid and the catenoid, two related minimal surfaces, having mean
curvature zero, colored by errors. The color bar applies to both figures.

A minimal surface is defined as one which has a constant mean curvature of zero.

The trivial example of a minimal surface is the plane, and exact results are trivially

obtained when calculating curvature on the plane.

The next two examples of minimal surfaces are catenoids and helicoids, as in

Figure 3.3, which are locally isometric surfaces. Both have relatively simple parame-

terizations. The catenoid is given by the mapping

X(ξ, η) = cosh(ξ) cos(η)

Y (ξ, η) = cosh(ξ) sin(η)

Z(ξ, η) = η

(3.79)

and the helicoid by the mapping

X(ξ, η) = ξ cos(η)

Y (ξ, η) = ξ sin(η)

Z(ξ, η) = η.

(3.80)
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Figure 3.4: Convergence rate for curvature on the catenoid.

The scheme has second-order convergence on both of these surfaces, as seen in Figure

3.5 and Figure 3.4.

The next two minimal surfaces are the Enneper surface and the Henneberg surface.

This scheme on the Henneberg surfaces fails to converge around the origin as the

Henneberg surface does not have a consistent choice of surface normals around that

point and is not continuous at that point. The Enneper surface is complete, with

no singularities, and the scheme shows second-order convergence (Figure 3.7). The

errors on the Enneper surface are centered on the area of the origin as seen in Figure

3.6. There are other implicit minimal surfaces we do not consider, since they do not

have parametric representations.

3.3.3 Results on the Sphere

The sphere, and other genus 0 orientable surfaces, is not able to be tiled with

quadrilaterals in a smooth fashion. The results of any scheme operating on the sphere
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Figure 3.5: Convergence rate for curvature on the helicoid

will depend on which discretization is used. In the mapping obtained from spherical

coordinates, there are discontinuities at the poles. There are other mappings that

treat the discontinuity in a different manner.

In [2], Calhoun, Helzel, and LeVeque introduced the ‘pillow grid mapping’ for the

sphere, which consists of two square logically Cartesian grids mapped to the northern

and southern hemispheres of the sphere, respectively. Discontinuities or “seams” in

this mapping occur along the equator and along the four diagonals leading from the

equator to the poles. Unlike the spherical grid, the pillow grid has the property that

the ratio of the area of the largest to smallest grid cells remains relatively fixed as the

mesh is refined. This makes this grid attractive for numerical computations, which

are restricted by the smallest mesh cells. The grid and the error can be seen in Figure

3.8. The curvature calculation of this scheme on the pillow mapping of the sphere

gives first-order accurate results in the infinity norm, demonstrating that we obtain

convergence even along cells that lie along the seams of the mapping. The scheme
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Figure 3.6: The portion of the Enneper surface on which errors in the curvature
calculation occur. The errors vanish outside of the area shown and the self intersection
of this complete surface hides the errors from view if a larger area is viewed. The
color scale is the same log scale used in Figure 3.3

is second-order accurate in the one-norm. Figure 3.9 shows the convergence in the

pillow grid sphere.

For spherical coordinates, second-order accurate results were obtained when the

poles were excluded as seen in Figure 3.10. The overall errors were greater on the

spherical coordinates over the pillow grid as seen by comparing the coloring of Figure

3.8 and Figure 3.11.

As shown above, the circle in one dimension was exact yet Figure 3.9 clearly shows

that these results do not fully extend to the sphere.

3.4 Computational Performance

Here we consider the computational complexity of our numerical scheme. That is, we

quantify the growth in the time it takes our scheme to run given an input size. The



43

Figure 3.7: Convergence rate of the errors on the Enneper surface

upper limit on this growth is known as big O, and in cases where an algorithm runs in

O(n2) it means that doubling the size of the input will roughly cause the algorithm to

take four times as long, subject to constants and lower-order terms. For non-square

matrix operations it is common to use m and n for the the two matrix directions,

here though we assume that m = n as the two directions are equivalent. This means

that calculating a single value at each grid point will be O(n2). It is also possible to

give the big Θ notation, which is the exact bound above and below. It is common to

only list the big O notation as the upper bound is of primary interest and it can be

assumed that it is the least upper bound known.

Due to the fact that we calculate curvature at every primal point, we must have

O(n2) in time. Specifically, it is 197n2 + C based on the counting of the floating point

operations, where C is very small. Figure 3.12 shows this O(n2) time complexity by

plotting timed runs and fitting a quadratic to these points.

Each curvature calculation only depends on the eight surrounding points, meaning
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Figure 3.8: The pillow mapping of the sphere showing the log of the computed errors

the scheme is easy to parallelize with the use of ghost points. Any parallelization will

add additional floating point operations, at the very least because of the ghost points.

For the serialized code, it is easy to minimize calculations by sharing calculations

between points, meaning that every edge between two points needs to be calculated

only once. In the case of MPI, Message Passing Interface, it is best to minimize

communication between nodes so some edges should be recalculated. In the case of

calculating on a GPU, Graphics Processing Unit, it would be best to actually calculate

the edge differences at each mesh point so as to maximize GPU performance and

minimize memory accesses, which in the case of the GPU is the primary consideration.
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Figure 3.9: Convergence rate of the errors on the pillow sphere grid, note the first
order convergence in the inf-norm along the seams

Figure 3.10: Convergence of the curvature errors using the spherical coordinate
mapping for the sphere, excluding the poles
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Figure 3.11: Curvature errors computed on the spherical coordinate mapping. The
color map used here is the same as that used for the pillow grid. The color bar shows
the log of the errors.

Figure 3.12: Graph showing the second-order time complexity of our scheme on a
surface.
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CHAPTER 4

COMPARISON WITH OTHER CURVATURE FORMULAS

We now compare our scheme with other schemes for computing curvature on quadri-

lateral and triangular surface meshes. Before doing so, we reformulate our scheme so

that it can be used without reference to primal and dual points.

4.1 Our Formula Applied to Prescribed Quadrilateral Sur-

face Meshes

Generally, quadrilateral meshes are not given as primal and dual points as we have

presented, but as a single mesh grid. We would like to still be able to use our scheme

and also to be able to calculate curvature at every mesh point. One obvious way of

doing so would be to assume double the mesh spacing and create sets of primal and

dual points. The problem with doing that is that on each calculation the nearest

neighbors are not all being used and so accuracy is reduced. An alternative is to use

the stencil in Figure 4.1, which allows for calculation at every mesh point and uses

all of the nearest neighbors of a point. In comparing with other schemes this is the

stencil used. This stencil does not assume any more information about the mesh grid

than do any of the other formulas.
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Figure 4.1: Diagram showing how we apply our scheme to a prescribed mesh

4.2 Cotan Formula

As defined in Meyer et al. [8], the cotan formula for mean curvature normal is given

as

K(xi) =
3

2Amixed

∑
(cotαi,j + cot βi,j)(Xi −Xj), (4.1)

where α and β are defined as the opposing angles from the vector formed by Xi−Xj

and the cotangent of these are found by

cot(u,v) =
u · v√

‖u‖2‖v‖2 − (u · v)2
, (4.2)

where u and v are the vectors defining the angle.
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The area 2Amixed in Meyer et al. [8] assumes that the triangles are acute, which

with our meshing is not guaranteed. Since the triangles may be obtuse, then the area

calculation reduces to being equivalent to the earlier formula by Desbrun et al. [4]

given as

3

4A

∑
(cotαi,j + cot βi,j)(Xi −Xj), (4.3)

where A is the full 1-ring area of the triangles. Finding κ is a simple case of taking the

norm of the vector formed from this formula. As shown by G. Xu [7] [9] these formulas

do not converge in the general case, but do in special cases. It was also shown that

they cannot converge in general [10]. Obviously, we are working on quadrilaterals and

not triangles, meaning that we must subdivide the mesh in order to be able to use

the “cotan” formula. There are a few possible ways of subdividing the quadilaterals:

there is a valence 4 triangulation based on the dual points, the valence 8 triangulation,

which uses all of the 1-ring points, and a valence 6 triangulation, which removes two

of the primal points [7]. As noted in [7], and seen in Figure 4.2, only the valence 6

triangulation actually converges while the valence 8 fails to converge to the correct

solution.

As proven earlier, our scheme returns the exact solution for the case of the cylinder

and gets second-order accurate results for the sphere. The cotan formula with valence

6 does converge on the cylinder but does not return the exact result. For the case

of the sphere, the cotan formula does not replicate our results, Figure 4.4 shows that

the valence 6 fails to converge in the inf-norm and in Figure 4.3 it has only first order

convergence in the one-norm.
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Figure 4.2: Convergence of the curvature errors computed on the cylinder for the
cotan formula using both valence 6 and valence 8 rings. Our scheme is exact for
the cylinder (see Section 3.3.1) and so is not shown. Inf-norm mirrors exactly the
one-norm.

4.3 Liu’s Formula

Here we consider and compare our scheme with that of D. Liu et al. [7]. The equations

are derived and proven to be convergent on smooth parametric surface meshes, which

are set up in a manner similar to what our scheme is derived on and for the one-

point integration formula. It was shown in that paper that little to no additional

accuracy is obtained by using higher-order integration formulas for the coefficients.

The one-point formula from that paper is now presented. Given a quadrilateral made

of points {pi,pj,p′j,pj+1}, we define two derivatives of a bilinear parametric surface

that interpolates the four vertices as
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Figure 4.3: Comparison of one-norm convergence rates for the cotan formula, our
quadrilateral scheme, and Liu’s formula.

Su =
1

2
(pj+1 − pi) +

1

2
(p′j − pj)

Sv =
1

2
(pj − pi) +

1

2
(p′j − pj+1).

(4.4)

We then use this to get the area of the quadrilateral

Aj =
√
‖Sv‖2‖Su‖2 − (Su · Sv)2. (4.5)

The full area surrounding pi is just the sum of the quadrilaterals surrounding that

point. With the area, we can continue to get the coefficients, as in equation (2.10)

of [7],
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Figure 4.4: Comparison of inf-norm convergence rates for our quadrilateral scheme,
the “cotan” formula, and D. Liu’s formula.

αj =
‖Su‖2 − ‖Sv‖2

4Aj

βj+1 =
‖Sv‖2 − ‖Su‖2

4Aj

γ′j =
‖Su − Sv‖2

4Aj
.

(4.6)

The mean curvature is given by equation (2.4) of [7] as

H(pi) =
2

A(pi)

∑
j

[αj(pj − pi) + βj+1(pj+1 − pi) + γ′j(p
′
j − pi)]. (4.7)

As seen in both Figure 4.3 and Figure 4.4, the convergence rate of this scheme mirrors

our own for the case of the pillow grid on the sphere. It is conceptually easier to

understand what our scheme is doing and how one gets to the surface normal when



53

compared to that of Liu, which is less clear as to the approximations being done.

Both schemes do use the concept of a bilinear parametric surface that interpolates

the quadrilateral mesh. In our scheme, the surface is used around the point in question

and approximates just the area while Liu’s scheme patches the surface around the

point in question and does all calculations on the patches.
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CHAPTER 5

CONCLUSION

We have constructed a finite-volume scheme for calculating curvature and surface

normals along a curve and shown this scheme to give the exact result for the line and

the circle. We then demonstrated it to be second-order accurate numerically along

the ellipse. Then, it was modified slightly to more general curves allowing for the

additional calculation of the torsion and the binormals.

An extension of the one-dimensional scheme was created for surfaces using quadri-

lateral meshes. This computational scheme was proven as exact for the case of the

cylinder and to be second-order accurate in the one-norm for two particular sphere

grids. Second-order accurate results were also seen on other surfaces, such as minimal

surfaces.

We compared our scheme to the “cotan” formula. This comparison showed that

our scheme is an improvement upon using the “cotan” formula on quadrilateral

meshes.

The scheme was shown to be numerically similar to that of Liu et al. Given a

complete meshing our scheme requires fewer calculations than Liu’s scheme. In the

listing of the faces, which is common in computer graphics applications, Liu’s scheme

does not require the assembling of the complete one-ring neighborhood and works

with mixed quadrilaterals and triangles. This makes Liu’s scheme more attractive
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in the processing of graphical surfaces. Neither scheme has been proven to converge

over such meshes and with additional design work it is possible to obtain results with

our scheme on listings of faces.

Future work should include a method for dealing with finite boundaries, which

have not been discussed, but which are an important issue.
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[8] M. Meyer, M. Desbrun, P. Schröder, and A.H. Barr. Discrete differential
geometry operators for triangulated 2-manifolds. International workshop on
visualization and mathematics, Berlin, Germany 2002.

[9] G. Xu. Discrete Laplace-Beltrami operators and their convergence. Computer
Aided Geometric Design, 21(8):767–784, 2004.

[10] Zhiqiang Xu, Guoliang Xu, and Jia-Guang Sun. Convergence analysis of discrete
differential geometry operators over surfaces. 11th IMA international conference
on Mathematics of Surfaces, pages 448–457, 2005.


