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ABSTRACT

The first mention of joint inversion came in [22], where the authors used the

singular value decomposition to determine the degree of ill-conditioning in inverse

problems. The authors demonstrated in several examples that combining two models

in a joint inversion, and effectively stacking discrete linear models, improved the

conditioning of the problem. This thesis extends the notion of using the singular value

decomposition to determine the conditioning of discrete joint inversion to using the

singular value expansion to determine the well-posedness of joint linear operators. We

focus on compact linear operators related to geophysical, electromagnetic subsurface

imaging.

The operators are based on combining Green’s function solutions to differential

equations representing different types of data. Joint operators are formed by extend-

ing the concept of stacking matrices to one of combining operators. We propose that

the effectiveness of joint inversion can be evaluated by comparing the decay rate of the

singular values of the joint operator to those from the individual operators. The joint

singular values are approximated by an extension of the Galerkin method given in

[9, 18]. The approach is illustrated on a one-dimensional ordinary differential equation

where slight improvement is observed when naively combining differential equations.

Since this approach relies primarily on the differential equations representing data, it

provides a mathematical framework for determining the effectiveness of joint inversion

methods. It can be extended to more realistic differential equations in order to better

inform the design of field experiments.
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CHAPTER 1

INTRODUCTION

This thesis is motivated by electromagnetic imaging of the Earth’s subsurface

using two data collection methods – ground penetrating radar (GPR) and electrical

resistivity (ER), both depicted in Figure 1.1. The ER survey on the left uses electrodes

to introduce and measure current within the Earth’s subsurface, from which the

electrical conductivity can be estimated within a localized region. The GPR survey

on the right involves a transmitter emitting radar pulses into the subsurface. The

energy reflected back by dielectric interfaces within the subsurface is recorded by the

receiver, and conductivity can also be inferred. Joint inversion of these data can give

conductivity estimates on a vast range of frequency bands from 100 to 109 Hz. A

comprehensive introduction to geophysical electromagnetic imaging can be found in

[19, 23].

Figure 1.1: Electrical resistivity setup [4] (left) and ground penetrating radar
[5] (right)
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Maxwell’s equations govern the behavior of both ER and GPR, relating input

sources to observable responses [14]. If we assume the domain we are interested in

imaging is linear and isotropic, Maxwell’s equations can be decoupled into the wave

equation and the diffusion equation. Under these assumptions, the damped wave

equation governs GPR:

ε
∂2E

∂t2
+ σ

∂E

∂t
=

1

µ
∇2E + f,

where E is the electric field component, f is the source; while the parameters µ, ε,

and σ are scalar functions of space representing magnetic permeability, dielectric per-

mittivity and conductivity, respectively. The forward problem takes the parameters

as input and produces the electric field as a function of space and time. The inverse

problem takes discrete measurements of the electric field and produces parameter

estimates that can be used to image the Earth’s subsurface.

Alternatively, the diffusion equation governs ER and assumes no time dependence

of the electric field:

−∇ · σ∇φ = ∇ · Js,

where Js is the source current density and φ is the electric field potential. Similar

to GPR, given discrete measurements of the electric field potential, the conductivity

can be estimated through an inversion.

In the early 1900s, French mathematician Jacques Hadamard introduced the

concept of a well-posed problem of mathematical physics [21]. He proposed that

mathematical models of physical phenomena should have the properties that for

every set of inputs, a solution exists, the solution is unique, and the problem is

stable. i.e., the solutions behavior changes continuously with the inputs. A problem

that does not satisfy these conditions is said to be ill-posed. Problems failing to meet
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these conditions arise with great frequency in many areas of science and engineer-

ing, including electromagnetic subsurface imaging [11]. Since inverse problems are

notoriously ill-posed, approaches to solving them will be the focus of this thesis.

The primary tools we will use for the analysis of inverse problems are the singular

value decomposition (SVD) and its continuous analogue, the singular value expansion

(SVE). We begin in Chapter 2 with a brief introduction to the solutions of discrete

inverse problems using the SVD. Green’s functions are then introduced since they

continuously describe the solution of differential equations as a function of unknown

parameters or sources. The corresponding operators are consequently decomposed

using the SVE. A simple example is given with the focus on the behaviors of the

corresponding singular values. Tikhonov regularization in the context of the SVE is

also described.

In Chapter 3 we extend the concepts in Chapter 2 to joint inversion. Analysis

of discrete joint inverse problems is somewhat straightforward because we simply

view two models as one stacked matrix. However, in the continuous setting, the

joint operator requires more careful consideration. Therefore we extend notions

of Tikhonov regularization found in [6] to the more general direct sum of integral

operators on Hilbert spaces, as in [8]. Approaches to calculating the continuous

joint singular values are then given, and they include both analytical and numerical

methods. Finally, in Chapter 4 we illustrate the approaches on a one-dimensional

ODE. The singular values of the individual operators are found analytically, while

those for the joint operator are found numerically. The singular values are compared

and slight improvement with joint inversion is observed qualitatively through the

decay rate of the singular values.
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CHAPTER 2

INVERSION

2.1 Discrete inversion

Data collection is typically represented as a finite number of measurements taken

at discrete points in space and time. It is therefore natural to first consider a discrete

inverse problem, with observations denoted b = (b1, b2, . . . bm) and parameters we seek

to recover denoted x = (x1, x2, . . . xn). Then, with g being the model relating x and

b, we attempt to solve the system g(x) = b, or



g1 (x1, x2, . . . , xn)

g2 (x1, x2, . . . , xn)

...

gm (x1, x2, . . . , xn)


=



b1

b2

...

bm


for the parameter vector x. As previously mentioned, such problems may be ill-posed.

A careful analysis of the model g can reveal if the problem has any solutions, a unique

solution and if it is stable. Such insights can inform methods that allow us to proceed

in any case.

Discrete inverse problems are well studied and general introductions to them can

be found in [1, 10, 11, 12]. This section gives a brief overview of discrete inverse
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problems as well as the methods used to analyze and solve them. This background

will set the stage for the continuous analogues developed in this thesis.

2.1.1 Linear problems

The simplest case of discrete inverse problems occurs when the model and param-

eters are related linearly. That is,



g1 (x1, x2, . . . , xn)

g2 (x1, x2, . . . , xn)

...

gm (x1, x2, . . . , xn)


=



a11x1 + a12x2 + · · ·+ a1nxn

a21x1 + a22x2 + · · ·+ a2nxn
...

am1x1 + am2x2 + · · ·+ amnxn


In this case, the model can be represented as matrix, and we solve Ax = b to recover

the parameters. We will devote our attention to linear problems. The assumption

of linearity is not so restrictive, since most non-linear methods involve iteratively

solving a linear problem. Therefore this thesis is devoted to analyzing and solving

linear problems.

2.1.2 Singular value decomposition

The primary tool used for the analysis of linear inverse problems is the singular

value decomposition (SVD). This algebraic decomposition represents a special case

of the singular value expansion (SVE), which will be discussed in 2.2.2.

Theorem 2.1.1 (Singular Value Decomposition). Let A ∈ Rm×n be a matrix of rank

r. Then, there exist orthogonal matrices U ∈ Rm×m and V ∈ Rn×n such that
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A = UΣV T , Σ =

Σr 0

0 0

 ,

where Σ ∈ Rm×n, Σr = diag(σ1, σ2, . . . σr) and

σ1 ≥ σ2 ≥ . . . σr > 0.

Letting vj and uj be the jth columns of V and U respectively, we have that

Avj = σjuj, ATuj = σjvj, for j = 1, . . . , n

ATuj = 0, for j = n+ 1, . . . ,m

Proof. See [15].

This decomposition is enormously useful. For example, the norm of a vector is

invariant under multiplication by an orthogonal matrix. So when considering Ax =

UΣV Tx, the scaling affect of the model can be isolated to Σ. This allows us to

classify if solutions will exist and the conditioning of the model. Additionally, this

can yield insights into the importance of each parameter, xi. Parameters associated

with large singular values will have a significantly greater influence on the outcome

of the forward problem and can therefore be classified as more important [22].

In the case of a square matrix with full rank, r = m = n, we can very easily

formulate the inverse of A using the SVD, and therefore the solution to Ax = b:

A−1 = V Σ−1UT , x = V Σ−1UT b.

However, most applications result in non-square and or non-full rank matrices and
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the inverse does not exist. In the case of full rank, overdetermined systems we can

find the least squares solution to the problem; that is, the parameter vector that

minimizes

||b− Ax||22.

The solution estimate in this case is

x̂ =
(
ATA

)−1
AT b.

The generalized inverse allows us to define the solution estimate in terms of the

SVD when A is not invertible. We construct the generalized inverse by first defining

Σ† ∈ Rn×m as

Σ† =

Σ−1
r 0

0 0

 .

Then we can define the generalized inverse A† as

A† = V Σ†UT .

Further, we can define a generalized (or pseudo) inverse solution x† by

x† = A†b

= V Σ†UT b

=
r∑
i=1

uTi b

σi
vi.

It can be shown that x† is the solution that minimizes ||b− Ax||22, [1].
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2.1.3 Conditioning and Regularization

As stated previously, the third property that a well-posed problem should pos-

sess is stability, i.e., the solutions behavior changes continuously with the initial

conditions. Typically, discrete problems are solved computationally. Therefore, the

property we are interested in becomes numerical stability or conditioning. Given the

SVD of a model, we are able to determine to what degree the inverse solution will

be affected by perturbations in the inputs. The metric by which ill-conditioning is

measured is called the condition number.

Definition 2.1.1. (Condition number) The condition number of A is defined to be

κ(A) = σ1/σr, where r = rank(A).

As can be seen above, the generalized solution, x†, is dependent on the inverse

of the singular values of A. If σ−1
1 << σ−1

p , for some p where 1 < p ≤ r, then the

portion of the summation
r∑
i=p

uTi b

σi
vi

will dominate the solution. The ratio of the largest singular value to the smallest

quantifies this effect. For κ(A) large, the values in b associated with σr will be

scaled by a much greater amount than the values associated with σ1. Therefore,

small perturbations in b can result in large changes to the solution. There are a vast

number of regularization methods for addressing this issue of ill-conditioning [1, 11,

10]. We will focus on two in particular, the truncated singular value decomposition

and Tikhonov regularization.

Ill-conditioning occurs when κ(A) = σ1/σr is large. This encourages us to truncate

the smallest singular values of A up to σk for some k < r, so that σ1/σk << σ1/σr.

More precisely, let
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Ak = UΣV T , Σ =

Σk 0

0 0

 ,

where Σk = diag(σ1, σ2, . . . , σk). Then the solution using this truncated matrix is

xk† = A†kb

=
k∑
i=1

uTi b

σi
vi.

The matrix Ak is the best rank k approximation to A [10]. If we cut off a small number

singular values, we will have a very good approximation of the original matrix, and our

inverse solution will be less susceptible to perturbations in b. The choice of truncation

value is challenging and not within the scope of this thesis. Though, in general, it is

advantageous to keep as many singular values as possible, while maintaining stability.

Tikhonov regularization is another method of combating ill-conditioning. Here,

we solve a damped least squares problem

min
x
||b− Ax||22 + α2||x||22,

or equivalently

min
x

∥∥∥∥∥∥∥
b

0

−
A
αI

x
∥∥∥∥∥∥∥

2

2

.

For large enough α, this damped least squares problem always has a solution. The

solution xα† , is dependent on α and can be expressed in terms of the SVD of A [1].

Namely,

xα† =
r∑
i=1

σ2
i

σ2
i + α2

uTi b

σi
vi.
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By writing the solution in this form, we see that the contribution of singular values

smaller than alpha are damped out. However, we still have the challenge of choosing

an α that improves the conditioning, but does not significantly change the problem.

Methods for choosing the regularization parameter include the discrepancy principle,

L-curve and generalized cross validation (GCV) [1], but these fall outside the scope

of this thesis.

2.2 Inversion with compact operators

In this section, we extend the notions in 2.1 to continuous functions and compact

linear operators. Since we are interested in physical phenomena modeled by differen-

tial equations, we wish to consider operators with some physical significance. Green’s

functions solutions of inhomogeneous differential equations determine the response

of the physical system for given a source. The integral operators corresponding to

Green’s functions are therefore the compact operators we will investigate. They

provide a physically motivated, yet abstract paradigm in which we may consider

inverse problems. A thorough discussion of Green’s functions and their applications

can be found in [3].

2.2.1 Green’s functions

Let LA = LA(t) be a linear differential operator. Then the corresponding Green’s

function, KA(t, s) satisfies

LAKA(t, s) = δ(t− s), (2.1)

where δ denotes the delta function. We solve for the Green’s function as a function of

s over the same domain Ω as t to determine the response of the system to an impulse
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(delta function).

Given the Green’s function, we can find the solution to the inhomogeneous equa-

tion LAu(t) = f(t) for a given specific, f . This is accomplished by integrating both

sides of equation (2.1) against f(s) over s in the domain Ω,

∫
Ω

LAKA(t, s)f(s)ds =

∫
Ω

δ(t− s)f(s)ds.

Since LA is a an operator acting only on t, it can be moved outside of the integral.

Therefore we have,

LA
(∫

Ω

KA(t, s)f(s)ds

)
= f(t).

Thus the solution to LAu(t) = f(t) for a given source f is

u(t) =

∫
Ω

KA(t, s)f(s)ds.

In other words, integrating the Green’s function against the source gives the response

of the system to that source.

If we define the operator A to be

Ah(t) =

∫
Ω

KA(t, s)h(s)ds,

then A maps a source h to the response of the system. In a physically motivated

scenario, this equation describes how a model A relates sources h(t) to a response

u(t). The forward problem predicts the response for a given source, while the inverse

problem recovers a source, given the response. To analyze Green’s functions, we must
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first work through some general results concerning compact operators.

2.2.2 Singular value expansion

When considering discrete inverse problems, the singular value decomposition is

the tool of choice for rigorous analysis of the problem and its least squares solution.

The continuous extension of this tool is the singular value expansion (SVE) [6, 9,

16, 17]. When originally developed by Smith, the singular value decomposition of a

matrix was treated a special case of the more general singular value expansion. A

history of the early development of the SVD/SVE can be found in [20]. Our study

of general linear inverse problems will proceed with the singular value expansion as

our primary tool. In particular, we will use the SVE for compact operators acting on

Hilbert spaces. This is the analogous concept of a matrix acting on a finite dimensional

vector space.

Definition 2.2.1. (Compact operator) Let H and HA be Hilbert spaces and let

A : H → HA be a linear operator. We say A is compact if the image under A of a

bounded subset of H is a precompact subset of HA.

With the assumption of compactness, a significant amount of matrix theory can

be extended to continuous operators. In particular, using the SVE we decompose an

operator into orthogonal functions as we would decompose a matrix into orthogonal

vectors in the SVD.

Note that we do not wish to consider the case where A has only finitely many

singular values, nor the case where A is not compact.

Theorem 2.2.1 (Singular Value Expansion). Let H, HA be Hilbert spaces, and let

A : H → HA be a compact linear operator. Then there exists orthonormal sequences
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{φk} ⊂ H and {ψk} ⊂ HA and positive numbers σ1 ≥ σ2 ≥ · · · converging to zero,

such that

A =
∞∑
k=1

σkψk ⊗ φk, and A∗ =
∞∑
k=1

σkφk ⊗ ψk.

We define ψk ⊗ φk as

(ψk ⊗ φk)h = 〈h, φk〉Hψk,

for all h ∈ H. Note that A∗ is also a compact linear operator and denotes the adjoint

of A. Furthermore,

Aφk = σkψk for all k

and

Ah =
∞∑
k=1

σk〈φk, h〉Hψk for all h ∈ H.

Additionally, {φk} is a complete orthonormal set for N (A)⊥ and {ψk} is a complete

orthonormal set for R(A).

Proof. See [6] or [7].

To derive the singular values analytically, we typically consider solving

A∗Aφ = σ2φ.

This yields a family of singular function, singular value pairs {(σk, φk)}∞k=1. As we will

see, this is not at all trivial. However, the singular values in the continuous setting

give analogous insights as those in the discrete setting. In particular, the singular

values of an operator can define a metric for ill-posedness. A goal of this thesis is to

define and understand how this metric can quantify ill-posedness in the inversion of

Green’s function solutions of differential equations.
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In section 2.1.2 we defined the discrete generalized inverse for a matrix A that

operates on real, finite dimensional Hilbert spaces with A : Rn → Rm. Written as a

summation,

A† =
r∑
i=1

σ−1
i vi ⊗ ui =

r∑
i=1

viu
T
i

σi
.

The solution that minimizes ‖Ax− b‖2
2 is given by

x† = A†b =
r∑
i=1

uTi b

σi
vi.

Now suppose H and HA are infinite dimensional Hilbert spaces, with A : H → HA

a compact linear operator having singular system {σi, φi, ψi} as defined in Theorem

2.2.1. The generalized inverse is expressed in an analogous manner,

A† =
∞∑
k=1

σ−1
k φk ⊗ ψk. (2.2)

It is clear from this formulation that A† is not a compact operator, since σ−1
k increase

in an unbounded manner [13, 16].

As with the discrete case, it will most likely be the case that we cannot solve

Ah = f exactly. we again find the least squares solution that minimizes ‖Ah− f‖2
HA

.

In terms of the SVE, this gives,

h = A†f =
∞∑
k=1

σ−1
k (φk ⊗ ψk) f =

∞∑
k=1

〈ψk, f〉HA

σk
φk for all f ∈ D

(
A†
)
.

2.2.3 Conditioning and ill-posedness

The condition number of compact linear operators is still defined as σ1/σr, however

in infinite dimensions the operator can have an infinite sequence of singular values
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decaying towards zero. The condition number is therefore not a sufficient metric

by which to measure ill-posedness. As in the discrete case, it is clear that small

singular values (relative to σ1) will disproportionately amplify the contribution from

corresponding singular vectors or functions. If there is noise in the data, this too will

be amplified, perhaps to an unacceptable level.

We characterize the ill-posedness of the problem in terms of the decay rate of its

singular values. In particular, if σk(A) decays like k−q, we call q the degree of ill-

posedness. Thus larger values of q indicate larger degrees of ill-posedness. In Chapter

3, we will use this metric to determine how joint inversion improves single inversions.

Let us consider the following example to illustrate this measure of ill-posedness.

Example

Define the compact linear operator A : H → HA, where H = HA = L2(0, 1), by

Ah(t) =

∫ t

0

h(s)ds,

Then, the adjoint operator A∗ : HA → H is

A∗f(t) =

∫ 1

t

f(s)ds

and the self-adjoint operator A∗A : H → H is

A∗Ah(t) =

∫ 1

t

(∫ s

0

h(τ)dτ

)
ds.

Now we solve A∗Aφ = σ2φ for σ the singular values and φ the right-singular functions

of A. If we let λ = σ2, we may write the problem as
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A∗Aφ = λφ(t) =

∫ 1

t

(∫ s

0

φ(τ)dτ

)
ds.

Notice, that substituting in t = 1 to both sides of the integral equation gives us

φ(1) = 0 for λ 6= 0. Differentiating both sides of the equation with respect to t and

applying a Leibniz integral rule yields

λφ′(t) =
d

dt

∫ 1

t

(∫ s

0

φ(τ)dτ

)
ds

=

∫ 1

t

(
∂

∂t

∫ s

0

φ(τ)dτ

)
ds−

∫ t

0

φ(τ)dτ

= −
∫ t

0

φ(τ)dτ.

Substituting in t = 0 to both sides of the above equation gives us φ′(0) = 0 for λ 6= 0.

Differentiating both sides of the equation again with respect to t yields

λφ′′(t) = − d

dt

∫ t

0

φ(τ)dτ

= −φ(t).

We can now observe that the original problem is equivalent to

λφ′′ + φ = 0, with φ(1) = φ′(0) = 0.

To find the solution of this boundary value problem, consider the roots of the auxiliary

equation λr2 + 1 = 0. They are

r1 =
1i√
λ
, r2 =

−1i√
λ
.
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This gives us the general solution to the ODE and its derivative as

φ(t) = c1 cos

(
t√
λ

)
+ c2 sin

(
t√
λ

)
,

φ′(t) = − c1√
λ

sin

(
t√
λ

)
+

c2√
λ

cos

(
t√
λ

)
.

Using the boundary conditions φ(1) = φ′(0) = 0, we deduce that

c2 = 0, and

λk =
4

(2k − 1)2 π2
.

Thus the singular functions are of the form

φk(t) = c1 cos
2k − 1

2
πt,

where c1 must be chosen to satisfy the orthonormality condition 〈φk, φk〉H = 1, for

k = 1, 2, . . . ,∞. This yields a family of functions,

φk(t) =
√

2 cos
2k − 1

2
πt, k ∈ N, and λk =

4

(2k − 1)2 π2
, k ∈ N.

The singular values of the compact operator A are the square roots of λ, that is

σk =
2

(2k − 1) π
, k ∈ N.

We can see from Figure 2.1 that the singular values of the operator A decay like

k−1. This is classified as a mildly ill-posed problem [1]. Alternatively, the problem

would be severely ill-posed if the singular values decayed at an exponential rate. The
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(a) (b)

Figure 2.1: Singular values of A on a semi-log scale (a), and a log-log scale (b)

diffusion equation is an example of a severely ill-posed problem.

2.2.4 Regularization

The negative effect decaying singular values have on the parameter estimates in an

ill-posed problem can be alleviated with regularization. In infinite dimensional Hilbert

spaces, a truncated SVE approximation to the operator A can be formed analogously

to the truncated SVD of a matrix. This requires the truncation of infinitely many sin-

gular values, and we will not investigate this finite sum approximation. Alternatively,

we focus on Tikhonov regularization for compact operators.

Tikhonov regularization

The operators of interest can be expressed as an infinite summation and often do

not have a well-defined inverse. Similar to the discrete case, Tikhonov regularization

changes the problem to one which has an invertible operator, and therefore well-

defined inverse solution. The definition of this new, invertible operator will require us
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to consider the space HA ×H = {(hA, h) : hA ∈ HA, h ∈ H} which is a Hilbert space

under the inner product

〈(hA,1, h1), (hA,2, h2)〉HA×H = 〈hA,1, hA,2〉HA
+ 〈h1, h2〉H .

Now we may define a new operator Tλ : H → HA ×H by

Tλh = (Ah,
√
λh).

In place of ‖Ah− f‖2
HA

, we instead consider minimizing

‖Tλh− (f, 0)‖2
HA×H = ‖Ah− f‖2

HA
+ λ ‖h‖2

H .

Note that λ is being used as a regularization parameter, and not an eigenvalue.

Theorem 2.2.2. Suppose λ > 0. Then R(Tλ) is closed and N (Tλ) is trivial. Therefore

Tλh = (f, 0) has a unique least squares solution for all f ∈ HA, [6].

Proof. Consider the normal equation for this problem:

T ∗Th = T ∗(f, 0)

T ∗(Ah,
√
λh) = T ∗(f, 0)

A∗Ah+ λh = A∗f +
√
λ · 0

(A∗A+ λI)h = A∗f.

It is straightforward to show that (A∗A + λI) is invertible with a bounded inverse.

Therefore a unique solution to the normal equations exists.
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Tikhonov regularization replaces the not necessarily invertible operator A∗A with

the necessarily invertible (A∗A+λI) in the normal equations. A solution is guaranteed

for appropriate λ, however we have restricted the space of acceptable solutions.

We now examine the regularized solutions expressed in terms of the singular value

expansion of A. Given the singular value expansion of A and its adjoint A∗, A∗A

applied to h can be expressed as

A∗Ah = A∗

(
∞∑
k=1

σk〈φk, h〉Hψk

)

=
∞∑
k=1

σk〈φk, h〉HA∗ψk

=
∞∑
k=1

σ2
k〈φk, h〉Hφk.

Equivalently,

A∗A =
∞∑
k=1

σ2
kφk ⊗ φk.

Recall that {φk} is an orthonormal set for the N (A)⊥. So, h ∈ H can be expressed

as

h = projN (A)⊥h+ projN (A)h

=
∞∑
k=1

〈h, φk〉Hφk + projN (A)h

We may now consider writing the Tikhonov operator (A∗A+ λI) applied to h in

terms of the SVE of A. Namely,
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(A∗A+ λI)h = A∗A

(
∞∑
k=1

〈h, φk〉Hφk + projN (A)h

)
+ λ

(
∞∑
k=1

〈h, φk〉Hφk + projN (A)h

)

= A∗A

(
∞∑
k=1

〈h, φk〉Hφk

)
+ λ

∞∑
k=1

〈h, φk〉Hφk + λprojN (A)h

=
∞∑
k=1

〈h, φk〉HA∗Aφk +
∞∑
k=1

λ〈h, φk〉Hφk + λprojN (A)h

=
∞∑
k=1

σ2
k〈h, φk〉Hφk +

∞∑
k=1

λ〈h, φk〉Hφk + λprojN (A)h

=
∞∑
k=1

(
σ2
k + λ

)
〈h, φk〉Hφk + λprojN (A)h.

Equivalently,

(A∗A+ λI) =
∞∑
k=1

(
σ2
k + λ

)
φk ⊗ φk + λprojN (A).

This allows us to consider solutions h(λ) ∈ H satisfying (A∗A+λI)h(λ) = A∗f in terms

of the SVE of A. From our above expansions, we can see that h(λ) must equivalently

satisfy

∞∑
k=1

(
σ2
k + λ

)
〈h(λ), φk〉Hφk + λprojN (A)h

(λ) =
∞∑
k=1

σk〈ψk, f〉HA
φk.

Since the two summations are linear combinations of {φk}, they represent elements

in N (A)⊥ . Therefore, it must be the case that λprojN (A)h
(λ) = 0, and h(λ) lies in

N (A)⊥. So we have that h(λ) must satisfy

∞∑
k=1

(
σ2
k + λ

)
〈h(λ), φk〉Hφk =

∞∑
k=1

σk〈ψk, f〉HA
φk
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=⇒
(
σ2
k + λ

)
〈h(λ), φk〉H = σk〈ψk, f〉HA

for all k ∈ N

=⇒ 〈h(λ), φk〉H =
σk

σ2
k + λ

〈ψk, f〉HA
for all k ∈ N

=⇒ h(λ) =
∞∑
k=1

σk
σ2
k + λ

〈ψk, f〉HA
φk.

This implies that the generalized inverse operator for the modified least squares

problem is

A†λ = (A∗A+ λI)−1A∗ =
∞∑
k=1

σk
σ2
k + λ

φk ⊗ ψk.

Notice that

σk
σ2
k + λ

→ 0, as k →∞.

Therefore the operator A†λ is bounded, and inverse solutions depend continuously on

f .

These solution estimates depend strongly on the regularization parameter λ, which

restricts the space of acceptable solutions. In this thesis we study the impact of using

physics and corresponding observations to restrict the solution space. This will allow

more physically relevant solutions and is typically called simultaneous joint inversion.

Joint inversion restricts the parameters to ones that satisfy two or more models. Joint

inversion may not necessarily result in a well posed problem, but should require less

regularization.
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CHAPTER 3

JOINT INVERSION

3.1 Discrete joint inversion

3.1.1 Linear problems

The earliest mention of joint inversion comes from Vozoff and Jupp in their

1975 paper [22]. Here the authors considered combining several different kinds of

geophysical measurements to avoid some of the ambiguity inherent in the individual

methods. Mathematically speaking, they looked at a problem of two linear models

A and B dependent on the same set of unknown parameters x, with corresponding

data d1 and d2 respectively:

Ax = d1 and Bx = d2.

When A and B are ill-conditioned, the individual problems require regularization.

Alternatively, Vozoff and Jupp explored the potential of using less regularization by

solving the joint inversion problem

A
B

x =

d1

d2

 .
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To measure the effectiveness of this approach, the authors considered the decay rate

of the singular values of A, B, and

A
B

. In several examples, they demonstrated

that the singular value decomposition of

A
B

 yielded a significant increase in the

number of usable values, as compared to A and B individually.

In this thesis we extend the discrete results of Vozoff and Jupp to a continuous

setting. In particular, we measure the effectiveness of combining operators in an

analogous way; the decay rate of singular values from individual and joint compact

operators will be compared.

3.1.2 Green’s functions example

First, we apply the ideas presented by Vozoff and Jupp to a pair of discretized

Green’s functions. As motivated by the imaging example in the introduction, we

choose the Green’s functions for the wave and diffusion equations in time and one

spatial variable.

The Green’s function for the wave and diffusion equations for homogeneous media

in x and t are

Kw =
1

2
H((t− τ) + (x− ξ))H((t− τ)− (x− ξ)),

Kd =
H(t− τ)√
4π2(t− τ)

exp

(
−(x− ξ)2

4(t− τ)

)

respectively, where H denotes the Heaviside function [3].

Given each kernel K, a solution u to the corresponding differential equation with

source term f can be expressed as
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u(x, t) =

∫ ∫
K(x, t, ξ, τ)f(ξ, τ)dξdτ.

Using a two dimensional midpoint quadrature rule, we can approximate our solution

on an m× n grid as

u(xi, tj) ≈
m∑
l=1

n∑
k=1

K(xi, tj, ξk, τl)f(ξk, τl)∆ξ∆τ.

With some simple reshaping, we approximate the operation of double integration

against K as a matrix multiplication so that we solve Af = u for the source function.

The resulting singular values of the matrices from the discretized individual and joint

operators are plotted in Figure 3.1. The wave equation in (a) had singular values decay

slowly until the ninetieth. Then the singular values rapidly approached zero. The

diffusion equation in (b) had singular values that decayed more rapidly than the wave

equation, exhibiting noticeable drops every ten values past the forty-fifth, eventually

dropping to machine precision. The joint operator in (c) had singular values that

tapered off far less dramatically than either the wave or diffusion equation. It is

significantly better conditioned than either individual model.

It must be noted that even though this simple discretization resulted in improved

decay rates of singular values in joint inversion this will not always be the case. Having

run many numerical experiments, it is still unclear what underlying features cause

discrete models to interact well in a joint inversion. For this reason, we explore the

more general notion of joint inversion on compact operators. In so doing, we more

deeply understand what properties in physical models improve inverse estimates in

ill-posed problems.
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(a) σ (Kw) (b) σ (Kd)

(c) σ (Kw,d) (d) overlayed

Figure 3.1: Singular values of individual operators and joint operator

3.2 Joint inversion with compact operators

Vozoff and Jupp vertically concatenated two discrete linear models into one stacked

matrix. We now define a joint operator that combines two compact operators in an

analogous way. The decay rate of the singular values of this joint operator compared to

the decay rate of the singular values of the individual operators will give an indication

of the effectiveness of joint inversion.



27

3.2.1 Joint operators

As with Tikhonov regularization, our joint operator will map into the Cartesian

product of two Hilbert spaces. However, rather than consider the mathematically

defined space H in Tikhonov regularization, we introduce the new physical space HB

defined by an additional data collection technique.

Definition 3.2.1. (Hilbert space direct sum) Let HA and HB be Hilbert spaces and

HA ⊕HB = {(hA, hB) : hA ∈ HA, hB ∈ HB} .

Define an inner product 〈·, ·〉 on HA ⊕HB by

〈(hA,1, hB,1) , (hA,2, hB,2)〉HA⊕HB
= 〈hA,1, hA,2〉HA

+ 〈hB,1, hB,2〉HB
.

With respect to this inner product, HA ⊕ HB is a Hilbert Space called the Hilbert

space direct sum of HA and HB.

Remark. Let A : H → HA and B : H → HB be compact operators from the Hilbert

space H to the Hilbert spaces HA and HB respectively. Define C : H → HA⊕HB as

Ch = (Ah,Bh), for all h ∈ H. Then C is a compact operator between two Hilbert

spaces, [2]. Therefore, C admits a singular value expansion.

As mentioned previously, the decay rate of the singular values provide a metric for

the ill-posedness of an operator. With A,B, and C defined as above, we will compare

the singular value decay rates of the three operators to see if the joint operator

yielded any improvement. For the purposes of visualization, it is helpful to think of

C as defining a parametric curve in the space HA ⊕ HB. Then it is clear that if A

and B are compact, so is C.
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Example

Define the Hilbert spaces H = L2 (0, 2π), and HA = HB = R. Define the compact

operators A : H → HA and B : H → HB as

Ah =

∫ 2π

0

h(y)δ(y − 5)dy, Bh =

∫ 2π

0

h(y)δ(y − 7)dy.

Define C : H → HA ⊕HB as

Ch = (Ah,Bh) =

(∫ 2π

0

h(y)δ(y − 5)dy,

∫ 2π

0

h(y)δ(y − 7)dy

)
.

Now let us consider the image of a subset ofH under C. Define S = {cos kx : k ∈ R, x ∈ [0, 2π]},

a continuum of cosine functions of each possible frequency. So for each frequency

k ∈ R the mapping of cos kx under C is

C(cos kx) =

(∫ 2π

0

cos(ky)δ(y − 5)dy,

∫ 2π

0

cos(ky)δ(y − 7)dy

)
(3.1)

= (cos(k · 5), cos(k · 7)) . (3.2)

Since the codomain of C is HA⊕HB = R2, we can represent the image of S under C

graphically; see Figure 3.2.

3.2.2 Singular values

The singular values of the joint operator are found by solving C∗Cφ = σ2φ. With

C defined as in the remark above, hA ∈ HA and hB ∈ HB, the adjoint C∗ : HA⊕HB →

H is

C∗ (hA, hB) = A∗hA +B∗hB.
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Figure 3.2: Parametric curve defined by C(cos kx) for k ∈ [−5, 5]

Expanding we get

σ2φ = C∗Cφ

= C∗ (Aφ,Bφ)

= A∗Aφ+B∗Bφ. (3.3)

It is a challenge to solve this equation for the singular values and functions

analytically. In the case where A and B are Green’s function operators associated

with the differential operations LA and LB respectively, we can see that this is an

integral equation. For our motivating imaging problem,
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Ah =

∫
Ω

Kwh and, Bh =

∫
Ω

Kdh,

where h ∈ H, and Kw, Kd are the Green’s functions solutions to the wave and

diffusion equations respectively. Since we are better equipped to solve differential

equations, we take steps to transform equation (3.3) into an equivalent ODE. The

following properties are what allows us to do so.

Remark. Let L be a linear differential operator, and K be the corresponding Green’s

function which satisfies LK(t, s) = δ(t−s). Let A be defined as Ah =
∫

Ω
K(t, s)h(s)ds

for all h in the relevant Hilbert space H. Then we have

∫
Ω

LK(t, s)h(s)ds =

∫
Ω

δ(t− s)h(s)ds

L
∫

Ω

K(t, s)h(s)ds = h(t)

LAh(t) = h(t), (3.4)

for all h ∈ H. Similarly we have,

L∗A∗hA(t) = hA(t). (3.5)

for all hA in the relevant codomain HA.

We begin the process of transforming equation (3.3) by applying the adjoint

differential operator, L∗A to both sides and simplifying using the property in equation

(3.5):
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L∗A
(
σ2φ
)

= L∗A (A∗Aφ+B∗Bφ) ,

σ2L∗Aφ = Aφ+ L∗AB
∗Bφ.

Now we apply the differential operator LA to both sides and simplify using the

property in equation (3.4):

LA
(
σ2L∗Aφ

)
= LA (Aφ+ L∗AB

∗Bφ) ,

σ2LAL
∗
Aφ = φ+ LAL

∗
AB
∗Bφ.

This eliminated the integrals associated with the operator A∗ and A. We must also

apply L∗B and LB in the same way to eliminate the integrals associated with B∗ and

B.

Certain linear differential operators commute, for instance, linear differential op-

erators in one dimension, with constant coefficients. Below we use the assumption of

commutativity so that we can define an ODE from which we can find the singular

values of the joint operator. It is not a realistic assumption for the application that

motivates this work. However, we view this as preliminary work that can be extended

to more realistic settings.

Assuming LAL
∗
A and LBL

∗
B commute and applying LBL

∗
B to both sides of the

equation, we find
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LBL
∗
B

(
σ2LAL

∗
Aφ
)

= LBL
∗
B (φ+ LAL

∗
AB
∗Bφ) ,

σ2 (LBL
∗
BLAL

∗
A)φ = LBL

∗
Bφ+ LAL

∗
ALBL

∗
BB
∗Bφ,

σ2 (LBL
∗
BLAL

∗
A)φ = LBL

∗
Bφ+ LAL

∗
Aφ,

σ2 (LBL
∗
BLAL

∗
A)φ = (LBL

∗
B + LAL

∗
A)φ.

Though not necessarily aesthetically pleasing, this is clearly an ODE in φ. Namely,

σ2 (LBL
∗
BLAL

∗
A)φ = (LBL

∗
B + LAL

∗
A)φ. (3.6)

This produced an ODE with much higher order than that of the given differential

operators LA or LB, and introduced many more boundary conditions. In cases where

equation (3.6) is too difficult to solve, we turn to a numerical approximation as

described in Section 3.2.3.

3.2.3 Approximation of SVE with SVD

The singular value expansion of an individual integral kernel, such as a Green’s

function, can be approximated using the Galerkin method. It has been shown that

the singular values derived using the Galerkin method converge to the true singular

values. For further details concerning the results pertaining to individual operators,

see [9, 18]. Here, we describe the algorithm for computing the SVE approximation

and its convergence properties. We then extend the methods to joint operators, and

prove the corresponding convergence properties.

Given a Green’s function or other integral kernel, KA(s, t) defined over Ωs×Ωt and

associated integral operator A, we choose orthonormal bases {pj(t)}nj=1 and {qi(s)}ni=1

for L2(Ωt) and L2(Ωs) respectively. The matrix A(n) with entries a
(n)
ij approximates
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the operator A, and is defined by

a
(n)
ij = 〈qi, Apj〉

= 〈qi, 〈KA, pj〉〉

=

∫
Ωs

∫
Ωt

qi(s)KA(s, t)pj(t)dtds. (3.7)

The SVD A(n) is denoted U (n)Σ(n)
(
V (n)

)T
with Σ(n) = diag

(
σ

(n)
1 , σ

(n)
2 , . . . σ

(n)
n

)
con-

taining the discrete singular values σ
(n)
i which approximate the continuous singular

values σi.

Theorem 3.2.1. (SVE-SVD, [9, 18]) Define

(
∆

(n)
A

)2

= ‖KA‖2 − ‖A(n)‖2
F

=
∞∑
i=1

σ2
i −

n∑
i=1

(σ
(n)
i )2.

Then the following hold for all i and n, independent of the convergence of ∆
(n)
A to 0:

1. σ
(n)
i ≤ σ

(n+1)
i ≤ σi

2. 0 ≤ σi − σ(n)
i ≤ ∆

(n)
A

Thus if limn→∞(∆
(n)
A )2 = 0, the singular values σi of KA are accurately approxi-

mated.

We extend this method to joint operators in the following fashion. LetKA(s, t) and

KB(s, t) be Green’s functions or other integral kernels, over Ωs × Ωt with associated

integral operator A and B respectively, and KA ⊕KB is the kernel of the direct sum

integral operator C = A ⊕ B, [8]. Compute A(n) and B(n) separately as described

in equation (3.7). Now that we are in a discrete setting we can stack these matrices



34

found to form C(n) =

A(n)

B(n)

. We now show that the singular values of this matrix

σi(C
(n)) converge to the singular values σi(C) of the operator C. We will begin by

using an equivalent definition for the singular values and a Lemma which can be

found in [9].

Definition 3.2.2. The singular values of an integral operator A with a real, square

integrable kernel KA are the stationary values of the functional

F [φ, ψ] =
〈ψ,Aφ〉
‖φ‖‖ψ‖

,

with the corresponding left and right singular functions given by φ/‖φ‖ and ψ/‖ψ‖

respectively.

The idea is then to approximate A with an integral operator whose kernel is

degenerate. We accomplish this by restricting φ and ψ to a the span of finitely many,

n, orthonormal basis functions.

Theorem 3.2.2 ([9]). The approximate singular values σi(C
(n)), where n is the number

of basis functions, are increasingly better approximations to the true singular values

σi(C),

σi(C
(n)) ≤ σi(C

(n+1)) ≤ σi(C), i = 1, 2, . . . n.

Proof. The theorem follows from the facts that the basis functions {φi}ni=1 and {ψi}ni=1

are orthonormal and that the singular values σi(C
(n)) and σi(C

(n+1)) are the station-

ary values of F [φ, ψ] with φ and ψ restricted to n-dimensional and n+ 1-dimensional

function subspaces respectively.

Now we consider the error of joint approximation.
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Theorem 3.2.3. Define

(
∆

(n)
C

)2

= ‖KA ⊕KB‖2 −

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
A(n)

B(n)


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

F

(3.8)

=
∞∑
i=1

σi(C)2 −
n∑
i=1

σi(C
(n))2.

(
∆

(n)
C

)2

is equivalent to
(

∆
(n)
A

)2

+
(

∆
(n)
B

)2

, the sum of the errors from the discretiza-

tion of A and B.

Proof. Expanding equation (3.8),

(
∆

(n)
C

)2

= 〈KA ⊕KB, KA ⊕KB〉 −
[
‖A(n)‖2

F + ‖B(n)‖2
F

]
= 〈KA, KA〉+ 〈KB, KB〉 − ‖A(n)‖2

F − ‖B(n)‖2
F

= ‖KA‖2 − ‖A(n)‖2
F + ‖KB‖2 − ‖B(n)‖2

F

=
(

∆
(n)
A

)2

+
(

∆
(n)
B

)2

. (3.9)

Thus the joint error is the sum of the individual errors.

This quantity is important in bounding the error.

Theorem 3.2.4. The sum of squares error of the approximate joint singular values is

bounded by
n∑
i=1

[
σi(C)− σi(C(n))

]2 ≤ (∆
(n)
C

)2

.

Proof.
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n∑
i=1

[
σi(C)− σi(C(n))

]2
=

n∑
i=1

[σi(C)]2 +
n∑
i=1

[
σi(C

(n))
]2 − 2

n∑
i=1

σi(C)σi(C
(n))

≤
n∑
i=1

[σi(C)]2 +
n∑
i=1

[
σi(C

(n))
]2 − 2

n∑
i=1

[
σi(C

(n))
]2

≤
n∑
i=1

[σi(C)]2 +
n∑
i=1

[
σi(C

(n))
]2

=
(

∆
(n)
C

)2

=
(

∆
(n)
A

)2

+
(

∆
(n)
B

)2

Thus, if limn→∞(∆
(n)
A )2 = 0 and limn→∞(∆

(n)
B )2 = 0, the singular values σ(C) are

accurately approximated by σ(C(n)).
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CHAPTER 4

APPLICATION WITH COMPACT OPERATORS

In this chapter, we give an example of our approach to determining the effec-

tiveness of joint inversion by calculating the decay rate of singular values. Models

based on the wave and the diffusion equations give the motivation for this work,

but determining the corresponding singular values is outside the scope of this thesis.

Therefore we apply our approach to the one dimensional steady state versions of the

models.

4.1 Individual operators

The Green’s functions for the two differential operators

LAu = −u′′, u(0) = u(π) = 0,

LBu = u′′ + b2u, u(0) = u(π) = 0, and b /∈ Z

are well known, [3]. Let A : L2[0, π]→ L2[0, π] be defined by

Ah(x) =

∫ π

0

KA (x, y)h(y)dy,

where the kernel



38

KA =


1
π

(π − x) y, 0 ≤ y ≤ x ≤ π,

1
π

(π − y)x, 0 ≤ x ≤ y ≤ π.

Then Af = u where −u′′ = f with zero Dirichlet boundary conditions.

Similarly, let B : L2[0, π]→ L2[0, π] be defined by

Bh(x) =

∫ π

0

KB (x, y)h(y)dy,

where the kernel

KB =


− sin(by) sin[b(π−x)]

b sin(bπ)
, 0 ≤ y ≤ x ≤ π,

− sin(bx) sin[b(π−y)]
b sin(bπ)

, 0 ≤ x ≤ y ≤ π.

Then Bf = u, where u′′ + b2u = f with zero Dirichlet boundary conditions. Thus A

and B are the Green’s function operators associated with LA and LB, respectively.

A is a self-adjoint compact operator, and therefore admits an eigenvalue expansion.

In this case, the singular values of A are simply the absolute values of the eigenvalues.

The equation Aφ = λφ is equivalent to

λφ (x) =

∫ π

0

KA (x, y)φ(y)dy.

First notice that when evaluated at x = 0 or x = π, the integral of the kernel KA is

zero. This implies the conditions φ (0) = 0 and φ (π) = 0. Now, differentiating both

sides of the integral equation with respect to x and applying the Leibniz integral rule

yields
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λφ′(x) =
d

dx

∫ π

0

Kx(x, y)φ(y)dy

=

∫ π

0

∂

∂x
[K(x, y)φ(y)] dy

=

∫ x

0

∂

∂x
[K(x, y)]φ(y)dy +

∫ π

x

∂

∂x
[K(x, y)]φ(y)dy

=

∫ x

0

− 1

π
yφ(y)dy +

∫ π

x

1

π
(π − y)φ(y)dy.

Differentiating both sides with respect to x and applying the Leibniz integral rule

again gives

λφ′′(x) =
d

dx

(∫ x

0

− 1

π
yφ(y)dy +

∫ π

x

1

π
(π − y)φ(y)dy

)
= − 1

π
xφ(x)− 1

π
(π − x)φ(x)

= −φ(x).

We may now observe that the original eigenvalue problem is equivalent to the ODE

λφ′′ = −φ with φ(0) = φ(π) = 0.

Solutions to this boundary value problem are of the form

φ(x) = c1 cos

(
1√
λ
x

)
+ c2 sin

(
1√
λ
x

)
.

Using the boundary conditions, we deduce that
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c1 = 0, and

λk =
1

k2
, for k = 1, 2, . . . ,∞.

Thus solutions are of the form

φk(x) = c2 sin (kx) ,

where c2 must be chosen to satisfy the condition 〈φk, φk〉L2[0,π] = 1, for k = 1, 2, . . . ,∞.

This yields a family of solutions,

φk(x) =

√
2

π
sin (kx) , and λk =

1

k2
, for k = 1, 2, . . . ,∞.

Since λk > 0, the singular values for A are also σk = 1
k2

for k = 1, 2, . . . ,∞.

B is also a self-adjoint operator, so we need only compute its eigenvalues. Note

that we will reuse the φ, λ notation, but the solutions obtained here are not related to

A. We follow an approach similar to that for the computation of the singular values

of A, and we exploit the relationship between B and LB.

Applying LB to both sides, we find

LBBφ = LB(λφ)

φ = λLBφ

=⇒ φ = λ
(
φ′′ + b2φ

)
, φ(0) = φ(π) = 0.

So we are left with the following equations



41

(
1

λ
− b2

)
φ = φ′′, φ(0) = φ(π) = 0.

Solutions to this boundary value problem are of the form

φ(x) = c1 cos

(√
1

λ
− b2x

)
+ c2 sin

(√
1

λ
− b2x

)
.

Using the boundary conditions, we deduce that

c1 = 0, and

λk =
1

k2 + b2
, for k = 0, 1, . . . ,∞

Again, since λk > 0, the singular values are σk = 1
k2+b2

. We omit finding the

eigenfunctions since the decay rates of the singular values is the focus of this work.

The first 200 singular values for A and B are plotted in Figure 4.1 on a semi-log

scale. There we see how the early values decay quadratically. This decay continues

on for the infinitely many singular values approaching zero.

4.2 Joint operator

The joint operator C will not be self adjoint since it does not have the same

domain and codomain. i.e. C : H → HA ⊕ HB. Therefore we must compute the

singular values, as opposed to the eigenvalues as done in the previous two examples.

Namely, we solve
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(a) σ(A) (b) σ(B)

Figure 4.1: Singular values of individual operators

σ2φ = C∗Cφ

= C∗ (Aφ,Bφ)

= A∗Aφ+B∗Bφ.

Using the analytical approach to calculating the singular values in Section 3.2.2,

we apply the differential operators and their adjoints to arrive at an ODE,

σ2 (LBL
∗
BLAL

∗
A)φ = (LBL

∗
B + LAL

∗
A)φ or,

σ2
(
φ(8) + 2b2φ(6) + b4φ(4)

)
= φ(4) + 2b2φ(2) + b4φ+ φ(4). (4.1)

As mentioned previously, some of our simplifications relied on the fact that LAL
∗
A

and LBL
∗
B commute. We show that fact explicitly for this particular example.

Since the operators are self adjoint, L∗A is equivalent to LA and L∗B is equivalent

to LB. We will show that
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LAL
∗
ALBL

∗
Bh = LBL

∗
BL
∗
ALAh,

for all h ∈ R (A∗A). Let us first expand the left hand side of the equation.

LAL
∗
ALBL

∗
Bh = LAL

∗
ALB

(
h(2) + b2h

)
= LAL

∗
A

(
h(4) + 2b2h(2) + b4h

)
= LA

(
h(6) + 2b2h(4) + b4h(2)

)
= h(8) + 2b2h(6) + b4h(4).

Now, we expand the right hand side of the equation.

LBL
∗
BLAL

∗
Ah = LBL

∗
BLA

(
h(2)
)

= LBL
∗
B

(
h(4)
)

= LB
(
h(6) + b2h(4)

)
= h(8) + 2b2h(6) + b4h(4).

Therefore, we can see that

LAL
∗
ALBL

∗
Bh = LBL

∗
BL
∗
ALAh,

and so LAL
∗
A and LBL

∗
B commute.

Notice that the application of the differential operators at the previous steps imply

the following boundary conditions:
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φ(0) = φ(π) = 0,

φ(2)(0) = φ(2)(π) = 0,

φ(4)(0) = φ(4)(π) = 0,

φ(6)(0) = φ(6)(π) = 0.

The singular function, singular value pairs {(φk, σk)}∞k=1 satisfy equation (4.1) and the

corresponding boundary conditions. Even though this is a linear constant coefficient

ODE, the eight roots of the characteristic polynomial make solving the boundary

value problem analytically outside of the scope of this thesis. We therefore turn to

the extension of the Galerkin method presented in section 3.2.3.

4.3 Joint singular values

The discretizations A(n) and B(n), described in Section 3.2.3, approximate the

operators A and B with orthonormal bases. Following the approach in [9, 11], we

use orthonormal box functions as our bases. The interval domains Ωs = [0, π] and

Ωt = [0, π] are divided into n subintervals {Ω(i)
s } and {Ω(i)

t } with equal lengths hs and

ht respectively. The orthonormal box functions are then

qi(s) =


h
−1/2
s , s ∈ Ω

(i)
s

0, else

pj(t) =


h
−1/2
t , t ∈ Ω

(j)
t

0, else

for i, j = 1, . . . n. Using these in equation (3.7) we have
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a
(n)
ij = h−1/2

s h
−1/2
t

∫
Ω

(i)
s

∫
Ω

(j)
t

KA(s, t)dtds,

and similarly

b
(n)
ij = h−1/2

s h
−1/2
t

∫
Ω

(i)
s

∫
Ω

(j)
t

KB(s, t)dtds.

For b = π the analytically derived singular values are plotted with the numerical

approximations on a semi-log scale in Figure 4.2. It should be noted that the use

of orthonormal box functions in this Galerkin process is most effective for smooth

kernels, as sharp features cannot be fully resolved with finitely many boxes.

(a) (b)

Figure 4.2: Analytical singular values and Galerkin method approximations
using orthonormal box functions

The approximation C(n) to the joint operator C = A ⊕ B is formed by stacking

the matrices A(n) and B(n). i.e.

C(n) =

A(n)

B(n)

 .
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We approximate the continuous singular values of C with the discrete singular values

of C(n). The values σ(C(n)) are shown in Figure 4.3 on both a semi-log and log-log

scale. Note that the first several singular values have a decay rate that is less than

quadratic. Eventually the later ones decay quadratically to zero, but if we wished to

consider a truncated SVD solution, we could include more singular values than if we

used either model A or B individually.

This modest improvement can clearly be seen in Figure 4.4, where we plot the

singular values of the joint operator and singular values of the individual operators.

We hypothesis that when we increase the complexity of the models under consider-

ation there will be more substantial gains from joint inversion. We expect this to

be especially true when considering models with complementary physics, such as ER

and GPR.

(a) (b)

Figure 4.3: Approximate singular values of the joint operator C on a semi-log
scale (a), and a log-log scale (b)

Chapter 3 and 4 define and demonstrate the extension of singular value analysis

of joint inversion problems to a continuous domain. This differs from the analysis
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(a) (b)

Figure 4.4: Approximate singular values of the individual operators A and B,
and the joint operator C on a semi-log scale (a), and a log-log scale
(b)

in [22], as there the authors began their study of ill-conditioning with the SVD of

already discretized PDEs. The study of ill-posedness in this thesis depends instead on

a discretization of the Green’s functions which we have shown yields an approximation

that converges to the SVE. To our knowledge, this has not been done previously for

joint inversion.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

In this thesis, we explored inverse problems in both discrete and continuous

settings with a focus on ill-conditioning and ill-posedness, respectively. We saw that

the primary tool for analysis of discrete linear problems, the singular value decompo-

sition, had an extension to continuous problems with compact linear operators, the

singular value expansion. Using the SVE we were able to quantify the ill-posedness

of continuous inverse problems by the decay rate of the singular values.

We then considered joint inverse problems. The first mention of joint inversion

came in [22], where the authors used the singular value decomposition to determine

the degree of ill-conditioning in discrete inverse problems. The authors demonstrated

in several examples that combining two models in a joint inversion, and effectively

stacking discrete linear models, improved the conditioning of the problem.

We extended these notions to continuous inverse problems with compact linear

operators. The analogous operation to stacking matrices is taking the direct sum

of operators. We specifically considered the direct sum Green’s function solutions

to differential equations representing different types of data, and investigated the

singular values of this joint operator. Analytical techniques for finding the singular

values were presented. These could be useful for simple cases, however, numerical

techniques will need to be used in general. To approximate the singular values of the
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joint operator, we extended the Galerkin method given in [9, 18]. We the conditions

necessary to capture the decay rate of the singular values by this approximation.

The results we have shown in this thesis are for simple cases. To increase the

usefulness of the techniques presented here, we will need to construct more realistic

and complicated models. The first step towards more realistic models will be the

addition of another dimension. Green’s function solutions for partial differential

equations will naturally require at least two variables related to the dimension of

the problem and two associated dummy variables. Therefore, we will need to further

extend our numerical techniques.

As we are able to handle more complex models, we can work towards informing

experimental design. Our intention is to mathematically test proposed joint inversion

schemes based on Green’s functions to see what will potentially be gained before

discretizing the PDEs. It may not be the case that joint inversion will give substantial

improvement over individual inversions. Therefore, these mathematical tests could

help prevent unnecessary waste of both experimental and computational resources.
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