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ABSTRACT

In 1964, Paul Cohn showed that if F is a �nitely-generated free group, and Q a

�eld, then all ideals in the group ring Q[F ] are free as Q[F ]-modules. In particular,

all �nitely-generated submodules of free Q[F ]-modules are free. In 1990, Cynthia

Hog-Angeloni reproved this theorem using techniques from geometric group theory.

Leaning on Hog-Angeloni�s methods, we prove an analogous statement for crossed

products D � F , with D a division ring.

With this result in hand, we prove that if G = HoF , the semi-direct product ofH

with F , so that the group ring D[G] may be localized at the sub-group ring k[H]�f0g,

then the resulting localized group ring also has the property that �nitely-generated

submodules of free modules are free.
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CHAPTER 1

INTRODUCTION

In 1964, Paul Cohn proved in [1] that, if Q is a �eld and F a �nitely-generated

free group, then all ideals in the group ring Q [F ] are free as Q [F ]-modules, with

unique rank. In particular, this shows that all �nitely-generated submodules of free

Q [F ]-modules are free. This theorem was used by algebraic topologists to obtain

a complete homotopy classi�cation for compact, connected 2-complexes with free

fundamental group (see [13]). Cohn�s argument is technically di¢ cult, and in 1990,

Cynthia Hog-Angeloni ([3]) o¤ered an alternate proof of this fact, relying on geometric

arguments related to the free action of F on a tree.

In this thesis, we lean on Hog-Angeloni�s methods to generalize this result. Let

k be a division ring. If G the semidirect product H o F , where k[H] is a domain

satisfying the Ore condition, then the group ring k[G] can be localized at k[H]�f0g,

and the resulting localized group ring, call it R, has the property that all �nitely-

generated submodules of free R-modules are free.

Chapter 2 takes an informal tone to remind readers of the basic ideas of group

actions and trees. Content in Chapter 2 potentially new to the reader includes the

crossed product structure, which may be viewed as a generalized group ring.

Chapter 3 adapts Hog-Angeloni�s arguments to the crossed product D �F , where

D is a division ring and F is a �nitely-generated free group. Using the arguments,
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we conclude that �nitely-generated submodules of free D � F -modules are free.

Chapter 4 provides the basic theory of the localization of noncommutative rings,

focusing speci�cally upon the Ore localization of domains.

Chapter 5 applies the Ore localization theory to group rings. Given H � G, the

chapter gives su¢ cient conditions for the localization of k[G] at k[H] � f0g to be

possible, and explores the consequences of this localization, as discussed above.

Here we make a short comment about terms that will be used throughout the

text. All groups are written multiplicatively, with identity e. The term �ring�refers

to a ring with identity. A �domain�is a ring which is free from zero divisors, with no

assumption made about commutativity. The term �division ring�is used to describe

a ring where all non-zero elements are invertible, while the term ��eld� is reserved

for commutative division rings. �Modules�are assumed to be left modules.
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CHAPTER 2

BASIC NOTIONS

This chapter gives basic de�nitions and constructions that will be important in later

chapters. Most of the information presented here should be familiar to the reader,

including the notions of group actions and trees. The crossed product structure,

which can be viewed as a generalized group ring, is potentially new to the reader.

Readers interested in further reading on crossed products are directed to [9].

2.1 Group Actions

The concept of group action is fundamental in the study of group theory. Here is a

de�nition, which may be found in [10]:

De�nition 2.1. Let X be a set, and G a group. A group action of G on X is

a function � : G �X ! X, usually denoted by juxtaposition, where we write gx in

place of � (g; x). The group action must satisfy:

1. ex = x for all x 2 X.

2. (gh)x = g (hx) for all g; h 2 G and x 2 X.

Example 2.2. Take X = f1;2;3;4;5g and G = S5, the symmetric group on 5

elements. The action of G on X is easily de�ned by letting the elements of G act in
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their natural way. For example, the permutation (12) (34) 2 S5 would act on 1 2X

by (12) (34)1 = 2 2 X.

Given an element x 2 X, we de�ne the orbit of x (under the action of G) as

OG (x) = fgx : g 2 Gg. It is easily veri�ed that the collection fOG (x) : x 2 Xg

forms a partition of X. De�ne the stabilizer of x in G, denoted by Gx, as the set of

elements of G that �x x. That is, Gx = fg 2 G : gx = xg. It is apparent that Gx is

a subgroup of G. The following terms are important in describing how G acts on X.

� The action of G on X is transitive if every element of X is contained in the

same orbit under the action of G. This is equivalent to the statement that for

every x; y 2 X, there exists a g 2 G such that gx = y.

� The action of G on X is trivial if for every g 2 G and x 2 X, we have that

gx = x. Given some x0 2 X, we may say that G acts trivially on x0 if gx0 = x0

for every g 2 G.

� The action of G on X is faithful if the only element of G that �xes every x 2 X

is the identity.

� Suppose that whenever there exists g 2 G and x 2 X such that gx = x, this

implies that g = e. Thus, the identity e is the only element of G that �xes any

element of X. Such an action is called free.

It is common for the set X to possess some structure (say, as a ring or a graph).

In these situations, we want the group action to respect that structure. As a result,

the action of G on X will be subject to other requirements. For example, when

working with crossed products (which will be introduced later in this chapter), it will
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be important to consider actions of a group G on a ring D, where the action respects

the ring structure of D. In particular, we will be interested in actions � : G�D ! D

where for each �xed g 2 G, the map � (g; �) : D ! D is an automorphism. Thus,

the action � assigns to every g 2 G an automorphism of D, and we can view such

an action as a map � : G ! Aut (D) given by � : g 7! � (g; �). In this case, we

might say that G acts on D via the map �. If � is truly a group action, then the

second condition of De�nition 2.1 shows that the map � must be a homomorphism.

However, we will consider situations where � is not a homomorphism, so the map

G�X ! X does not strictly adhere to the de�nition of a group action.

2.2 Trees

In this paper, we make use of group actions upon trees to prove results about group

rings and crossed products. Here, we brie�y introduce graphs and trees, and provide

a basic result about groups acting on trees. For the reader unfamiliar with these

topics, [7] provides an excellent introduction to the topic of geometric group theory,

which includes these ideas. We begin with a de�nition:

De�nition 2.3. A graph � consists of a set V (�) of vertices, and another set

E (�) of edges. To each edge e 2 E (�), we associate two (not necessarily distinct)

vertices, say u; v 2 V (�), called the ends of e. Write Ends (e) = fu; vg.

Graphs are usually visualized as a collection of points (the vertices of the graph),

with lines (edges) connecting the points. An line is drawn between two points u

and v if the graph contains an edges f with Ends (f) = fu; vg. If u;w 2 V (�),

an edge path (or just path) from u to w is a �nite sequence that alternates

between vertices and edges of �, such that each edge is preceded and followed by
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its ends. For example, the sequence (u = v0; f1; v1; f2; :::; vn�1; fn; vn = w) forms an

edge path,where v0; :::; vn 2 V (�), f1; :::; fn 2 E (�) ; and Ends (fi) = fvi; vi�1g.

An edge path can be visualized as a walk taken from one vertex to another, when

one is only allowed to walk along edges joining vertices. A path is reduced if it

contains no subsequence of the form (:::; u; f; v; f; u; :::), where the edge f was taken

from the vertex u to v, and then immediately taken back to u. We can reduce an

edge path by removing all backtracks. An edge path is trivial if it contains exactly

one vertex and no edges, so that the walk taken along the edge path does not move

from the initial vertex. A non-trivial, reduced path that starts and ends at the same

vertex is called a cycle. Given any two vertices of �, there is no guarantee that

a path between them exists. We say that � is connected if an edge path exists

between any pair of vertices in �.

A tree is a connected graph that contains no cycles. This is equivalent to the

assertion that, given any vertices u; v in a tree �, there is a unique, reduced edge path

joining u to v. This property will be exploited in the next chapter, where much of

the work is done by considering the geometry of trees.

Given a graph �, a symmetry of � is a bijection �, which takes V (�) into V (�),

and E (�) into E (�). This function must respect the graph structure of �. That is,

if f 2 E (�) with Ends (f) = fu; vg, then we must have Ends (� (f)) = f� (u) ; � (v)g.

The set of all symmetries of � is written Sym (�), which is easily seen to be a group

under composition. If G is a group acting on a tree �, then there is a map � : G!

Sym (�). Typically, we will write the function � (g) as �g. Moreover, the action

of G on � is usually expressed by juxtaposition, so that, for g 2 G, f 2 E (�) ; and

v 2 V (�), we write gf in place of �g (f) and gv in the place of �g (v).

Given a group G and a generating set faig, we may form the Cayley graph of
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Figure 2.1: The �gure on the left shows the Cayley graph of F2, which F2 acts freely
upon. Several vertices labeled. The �gure on the right shows the image of these
vertices under the action of a on the tree.

G. The group G always acts freely upon its Cayley graph, and the vertices of � are

in one-to-one correpsondence with the elements of G. If G is a free group, and the

generating set is a basis, then the Cayley Graph of G is a tree. In fact, we have

the following well-known result, which will be important in the next chapter. The

theorem may be found in [7], Theorem 3.20.

Theorem 2.4. If G is a group, then G is free if and only if G acts freely on a tree.

Example 2.5. Let F2 = ha; bi be the free group on generators a and b. Then, F2

acts its Cayley graph �, which is an in�nite tree. Part of � is pictured in Figure

2.1. From any vertex v 2 V (�), we see four edges leaving v. The upward vertical

edge is identi�ed with the b, the generator of F2, and the downward edge with b�1.

Similarly, we identify a with the horizontal edges leaving v in the rightward direction,

and identify a�1 with the horizontal edge leaving the vertex in the leftward direction.

In fact, in this tree we can identify every vertex of � with some element of F2.

Starting at the vertex corresponding to the identity e, if we pass along the edge



8

identi�ed with a, we obtain the vertex ea = a. Similarly, the vertex a�1 is obtained

from moving from e to the left by one edge. If we travel upward from a�1, along a

b edge, we obtain the vertex a�1b. Then, moving rightward along a, we obtain the

vertex a�1ba, and moving upward again transports us to the vertex a�1bab, as labeled

in Figure 2.1.

How does F2 act on �? Given some v 2 V (�), remember that we can identify v

with an element of F2, call it h. Then, given some a 2 F2, we de�ne the action of a on

v by av = ah, where ah is the vertex of � associated to the element ah 2 F2. As an

example, given the vertex a�1bab, the action of a on this vertex results in the vertex

a (a�1bab) = bab. Geometrically, we may view the action as shifting the vertices of

� to the right, as in Figure 2.1.

Once we de�ne the action of F2 on the vertices of �, the action of F2 on the edges

of � is completely determined. The fact that F2 acts freely on � follows easily, when

we keep in mind that the vertices of � are in one-to-one correspondence with the

elements of F2.

2.3 Crossed Products

If G is a group and D is a ring with identity, then the (ordinary) group ring D [G]

is formed by taking sums of the form
P

g2G qgg, where only �nitely many of the

qg 2 D are non-zero. Addition in the group ring is given in the obvious way, and

multiplication is given by

 X
g2G

qgg

! X
h2G

rhh

!
=
X
g2G

 X
h2G

qgrhgh

!
;
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where gh denotes the product of g with h in G. It is easy see that the D [G] is a ring

with identity 1e, where 1 is the identity of D, and e is the identity of G. Typically,

the multiplicative identity of D [G] is simply written as 1.

In studying group rings, other algebraic objects arise by altering the multiplication

in the group ring. An algebraic structure arising in this manner is the crossed product,

which is de�ned as follows. Suppose G is a group acting on a ring D so that there

is a map � : G ! Aut (D), which is not necessarily a homomorphism. Denote the

automorphism � (g) by �g. Let �G = f�g : g 2 Gg be a copy of G, which will be used

to de�ne multiplication in what follows. Then, we can form the crossed product

D � G by taking sums of the form
P

g2G rg�g, where only �nitely many of the rg are

non-zero. Addition is taken in the obvious way, and we can view D � G as a free,

left D-module with basis �G. In order to make D �G a ring, multiplication in D �G

is de�ned using two unexpected rules:

1. (Skewing) For g 2 G and r 2 D, we have �gr = �g (r) �g.

2. (Twisting) If g; h 2 G, then �g�h = � (g; h) gh, where �g�h denotes their product

in D � G, gh is the product in G, and � (g; h) is some unit in D. Thus, when

multiplying �g�h, the result di¤ers from gh by some unit.

Using this de�nition, it is not apparent that multiplication in D �G is associative.

In fact, additional assumptions must be imposed in order to guarantee the associa-

tivity of D � G, assumptions on the twisting function � : G � G ! U (D), the units

of D. For our purposes, however, D � G will always constructed beginning with a

group ring R [G], so that associativity will not be a concern.

The notation D � G is ambiguous, because the crossed product is not uniquely

determined by D and G. That is, given a ring D and a group G, it is certainly
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possible to de�ne multiple crossed product structuresD�G, with each crossed product

essentially di¤erent. Therefore, to be precise, we would need to specify the skewing

function � and twisting � whenever introducing a crossed product. However, this

ambiguity rarely leads to confusion, and we often say �a crossed product D � G�

rather than �the crossed product D �G�in order to emphasize this fact.

It is clear that every unit in D is a unit in D � G. Does the same follow for the

elements of G? That is, given some g 2 G, is the �g 2 D �G invertible? The answer

is in the a¢ rmative. Before showing this, we need to �nd the multiplicative identity

of D �G. Our �rst thought is that 1�e should be the identity. In fact, we have that

for any x =
P

g2G qgg 2 D �G;

1�e

 X
g2G

qg�g

!
=

X
g2G

1�eqg�g

=
X
g2G

1�e (qg) �e�g

=
X
g2G

qg� (e; g) �g.

Combining this will a similar equality for right-multiplication by 1�e, we see that 1�e

is the identity of D � G if and only if � (e; g) = � (g; e) = 1 for every g 2 G. In

fact, we lose no generality in making such an assumption (see [9], p. 3), so that we

will always assume in our crossed products that 1�e is the identity of D � G. We

will typically abbreviate this element as 1 or �1. It is interesting to note that using

a slightly di¤erent twisting function would yield a di¤erent multiplicative identity in

D � G. After setting our multiplicative identity, we may embed D into D � G via

the map d 7! d�1. In general, the twisted multiplication prevents G from embedding

into D �G. Now that we have a multiplicative identity in D �G, we may prove the
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following.

Proposition 2.6. If g 2 G, then �g 2 D � G is invertible, with �g�1 = ug�1 for some

unit u 2 D.

Proof. One can verify that the �g
�
��1g (� (g; g�1)) g�1

�
= 1�e, and

�
� (g�1; g)

�1
g�1
�
�g =

1�e, so �g is invertible on both sides. The associativity of D � G asserts that the left

and right inverse must be equal, so that ��1g (� (g; g�1)) = � (g�1; g)
�1. Note that

their common value is a unit in D.

If the skewing in D �G is trivial, so that �g 2 Aut (D) is the identity function for

each g 2 G, D � G is known as a twisted group ring, denoted by Dt [G]. When

the twisting is trivial, so that � (g; h) = 1 for each g; h 2 G, the crossed product is a

skew group ring, denoted by DG. In the case of skew group rings, G embeds into

DG, so that we may remove the overbars and write elements of DG as
P

g2G qgg. If

both the skewing and twisting are trivial, then D�G is just D [G], the ordinary group

ring.1

Where would these objects arise in the study of group rings? The following

construction can be found in [9], p. 2, and will be important in Chapter 5. Let R

be a ring and G be a group, with N a subgroup. We wish to relate the group ring

R [G] in some way to N and the collection of cosets G=N . Set H = G=N . Because

H is a collection of cosets, to each coset x 2 H �x some coset representative �x 2 G,

so that x = N �x. Then, let �H = f�x : x 2 Hg � G be the collection of all coset

representatives. It follows that G is the disjoint union
S
x2H N �x. Therefore, R [G] is

the direct sum
P

x2H R [N ] �x, and every element of R [G] can be expressed uniquely

in the form
P

x2H fx�x where fx 2 R [N ]. This means that R [G] can be viewed as

1While there does not seem to be a consensus, the notation used here (Dt [G], DG, and D [G])
is common in the literature.
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a free R [N ]-module with basis �H. If N C G, then H = G=N is a group. Setting

D = R [N ], the structure relating R [G] with N and H is a crossed product D �H.

To verify that multiplication in this structure is skewed and twisted, we begin by

investigating the twisted multiplication of elements in �H. Given �x and �y 2 �H, we

have N �xN �y = Nxy. This means that �x�y 2 Nxy, and therefore �x�y = nxy for some

n 2 N , which is a unit in D. Beginning with elements of H and passing to their

corresponding preimages in �H, we then have a function � : H � H ! N � U (D),

where U (D) denotes the set of units in D. It follows that �x�y = � (x; y)xy, which

gives the twisting.

To study the skewing, note that because N / G, we have gDg�1 = D for each

g 2 G. Thus, every element of G induces an automorphism on D via conjugation.

In particular, the elements of �H induce an automorphism on D. This gives a map

� : H ! Aut (D) de�ned by � : x 7! �x, where �x is the automorphism that

conjugates by �x. It follows that

�xf =
�
xfx�1

�
x

= �x (f) �x;

which is the crossed product�s skewing. Note that, because of the twisting in

the crossed product, the map � is not necessarily a group homomorphism. Also,

the crossed product D � H is actually a twisted group ring if the elements of N

commute with the elements of G, and the crossed product is a skew group ring if the

coset representatives �x can be chosen so that the product of any of our chose coset

representatives is another chose coset representative. This happens when the exact

sequence e! N ! G! H ! e splits, i.e., when G is the semidirect product N oH.
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CHAPTER 3

D � F -MODULES

3.1 Introduction

Suppose Q is a �eld and F a �nitely-generated free group. In 1964, Paul Cohn proved

that all �nitely-generated ideals in the group ring Q [F ] are free as Q [F ]-modules.

Using this result, we may also deduce that �nitely-generated submodules of free

Q [F ]-modules are free. Cohn�s proof was technical and di¢ cult, using what he

termed a �weak reduction algorithm.� In 1990, Hog-Angeloni proved the same result

in [3], using the geometry of Q [F ] to greatly simplify the arguments. This chapter

generalizes these ideas to crossed products D � F , with D a division ring and F a

�nitely-generated free group.

By borrowing ideas from Hog-Angeloni, we o¤er a geometric interpretation for the

elements of D �F . Using these geometric notions, we implement a method to reduce

the collective �diameter�of collections of elements from D � F . By doing this, we

are able to prove that �nitely-generated submodules of free D � F -modules are free.

Section 3.2 introduces the geometric notions that will be important in the rest

of this chapter. Then, Section 3.3 builds on these ideas to also give a geometric

interpretation for linear combinations of elements from D � F , which we view as a

D � F -module. Then, Section 3.4 introduces a way to replace linearly dependent

generating sets with linearly independent generating sets.
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It is worth noting that we are primarily interested inD�F -modules in this chapter.

For this reason, if M is a D �F -module, then we use bold faced font for the elements

x 2 M to distinguish them from elements of D � F (the �scalars�) and elements of

F . This has the potential to be confusing when M = D � F . In this case, we use

bold font for the elements of D � F that we consider to be in the module, and we do

not bold the elements of D � F that are �scalars.�

3.2 The Geometry of D � F

In what follows, let D be a division ring, and F a �nitely-generated free group with

identity e. If T is the Cayley graph of F , then F acts freely on T , and T is a tree.

Further, in T , there is a bijective correspondence between F and V (T ), the vertices

of T . Thus, we may view the elements of F as vertices in T , and vice versa.

In any tree �, any two u; v 2 V (�) have a unique reduced path de�ned between

them. For what follows, we will use the term geodesic to describe that path. This

path includes a number of edges of �, so we can de�ne the length of a path to be the

number of edges in that path. We can measure the distance between two vertices

u; v 2 V (�) by calculating the length of the geodesic between the vertices. In

addition, if w is the midpoint of an edge in T , then we can measure the distance

betwen w and a vertex u by drawing a geodesic from w to u, and counting the

half-edge traversed by taking w to its neighboring vertex as 1=2 of an edge.

The following situation will arise frequently in the geometric arguments later this

chapter. For this reason, we deal with it once in order to avoid reproving the

statement several times.



15

Figure 3.1: An illustration of Proposition 3.1.

Proposition 3.1. Suppose p; q; u; v are four distinct vertices or midpoints of edges

in a tree �. Let � denote the geodesic between p and q,  the geodesic betwen q and

u, and � the geodesic between u and v. Given that � is disjoint from , and � is

disjoint from , consider the path from p to v obtained by following � from p to q,

then  from q to u, and �nally � from u to v. This path is reduced, so that it is the

unique geodesic from p to v.

Proof. Figure 3.1 gives a graphical intepretation for the hypotheses of the proposition.

Suppose on the contrary that the path is not reduced. Because  is disjoint from �

and �, and all three of these paths are reduced. Because the path from p to v is not

reduced, it must be due to cancelling edges coming from � and �. It follows that �

and  share an edge, and in addition, the paths share a vertex, call it z.

Beginning at the point q, we may follow � until we come to the point z. Then, we

may take the path � from z to u, and �nally take  from u back to q. This produces

a loop in the tree �. Further, the loop may not fully reduce to a trivial path, because

the geodesic  is disjoint from � and �. Thus, we have a contradiction to the fact

that � is a tree, and the edge path from p to v; described in the statement of the

proposition, must be reduced.

Choose some element x 2 D � F . Then, x =
P

g2F qgg, where only �nitely many

of the qg are non-zero. Geometrically, we can view x as a �nite collection of vertices

in T , with each vertex assigned a non-zero coe¢ cient. Keeping in mind that the
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Figure 3.2: A geometric representation for x =2�a� 4ab+ 6b2 2 D � F .

vertices of T are identi�ed with the elements of F , the vertices included in x are

those vertices g with qg 6= 0. The coe¢ cient assigned to each vertex is qg. The

summands qgg with qg 6= 0 will be called points of x. Alternatively, if qg 6= 0, we

might also refer to the vertex g as a point in x. Using this interpretation for elements

of D � F , we may view D � F as the set of all �nite collections of vertices in T , each

with an assigned non-zero coe¢ cient in D.

Example 3.2. Taking D as the rationals, and F as the free group on two generators

a and b, suppose x =2�a � 4ab + 6b2. Figure 3.2 o¤ers the geometric interpretation

for x.

We de�ne the distance of x, written dist (x), as the length of the longest geodesic

from a point of x to the identity vertex e. Intuitively, this is a measure of how far

x lies from the vertex e. With this de�nition, for any q 2 D, we have dist (q�e) = 0.

We de�ne dist (0) = �1. The collection of points of x must contain some point that
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attain this maximal distance to the vertex e. Such points will be called extreme

points of x.

The diameter of x, written diam (x), is the length of the longest geodesic from

one point of x to another, where it is understood that the coe¢ cients assigned to the

endpoints are non-zero. Under this de�nition, for any g 2 G we have diam (q�g) = 0,

so the elements ofD�F containing only one point have diameter 0: De�ne diam (0) to

be �1. We might also use the term diameter to refer to a reduced geodesic between

points in x that attains the length diam (x). The de�nition of diameter also provides

a notion of a radius for x, by de�ning the radius of x to be diam (x) =2.

Remark 3.3. Let us phrase these terms in a slightly more familiar context. If we

let D = Q, and F = Z, then we may take D � F to be the ordinary group ring

Q [Z]. Given some x 2 Q [Z], we have x =
P1

i=�1 qit
i, where only �nitely many qi

are non-zero. In fact, the ring Q [Z] is a Laurent polynomial ring. Then, points of

x would be those terms qiti with qi 6= 0. The term dist (x) would be the maximum

of the set fjij : qi 6= 0g. Further, diam (x) would be max fji� jj : qi; qj 6= 0g, the

di¤erence between the highest and lowest degree terms of x.

Example 3.4. Let x be as in Example 3.2. Then, dist (x) = 2, because the maximal

number of edge paths between a vertex in x and the vertex e is 2. In fact, 2 is the

distance between ab and e, and it is also the distance between b2 and e. Therefore,

the points �4ab and 6b2 are extreme points of x. We also have that diam (x) = 4,

which is the distance between the vertices b2 and ab. The reduced edge path between

b2 and ab is a diameter of x.

Now that diameter has been de�ned, we may also obtain a notion of the center

of an element of D � F . Given x 2D � F , de�ne the barycenter of x, denoted by
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x̂, as the midpoint of the geodesic between two points in x whose length attains the

diameter of x. If diam (x) is even, then x̂ is a vertex in T (whose assigned coe¢ cient

might be zero). If diam (x) is odd, then x̂ is a midpoint of an edge in T . If u is the

endpoint of a diameter with x̂ as a midpoint, we call the geodesic joining x̂ to u a

radius of x. Note that the radius has length diam (x) =2.

Example 3.5. This continues Examples 3.2 and 3.4. Because the geodesic between

b2 and ab has the vertex e as a midpoint, it follows that e is the barycenter of x. That

is, x̂ =e. Note that e is the barycenter of x̂, even though the coe¢ cient assigned to

e by x 2 D � F is zero. Then, the geodesics joining e to b2 and e to ab are radii of

x, and they have length 2 = diam (x) =2.

Given the de�nition of barycenter, it is not immediately clear that the barycenter

of x is well-de�ned. Is it possible that x would contain two diameters with distinct

midpoints? We prove this cannot happen by using the following propositions:

Proposition 3.6. Let y be the midpoint of a diameter of x. Suppose q is any vertex

in the tree T , and let � be the geodesic from q to y. If we set r = diam (x) =2, then

there is some other point of x, call it p, so that: (1) The distance from p to y is r,

and (2) The geodesic from p to y is disjoint from �.

Proof. As C is the midpoint of a diameter in x, there exists points u and v of x so

that the geodesic between u and v is a diameter, and C is a midpoint of that geodesic.

Then, the distance between C and u is r, as is the distance between C and v. Let 

denote the radius between C and u, and � the radius between y and v. Note that 

must be disjoint from �, because they are each half of the geodesic between u and v.

In addition, the radii  and � both have length r.
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Figure 3.3: The relationship between the points and paths decribed in the proof of
Proposition 3.6

Given some point q of x, consider the geodesic � running between q and C. As �

leaves C, it cannot use the same edge as both  and �, because  and � are disjoint

Without loss of generality, suppose that � does not leave C using the same edge as

. Then, � must be totally disjoint from , because if � intersected  at some point,

the edge path beginning at C formed by following � to the intersection with , and

 back to C would be a cycle in the tree T . Thus, � and  must be totally disjoint.

By setting p = u, we are done.

An immediate consequence of this proposition that if q is a point of x, and C

a midpoint of a diameter, then the distance from q to y must be no larger than

diam (x) =2. Otherwise, we could �nd some point p of x so that the geodesic from

p to q is longer than diam (x), which contradicts the maximality of diam (x). We

exploit this in the following proposition.

Proposition 3.7. If x 2D � F , then the barycenter of x is well-de�ned.

Proof. Suppose x contains two diameters, with respective midpoints w1 and w2.

Then, w1 and w2 are two possible candidates for the barycenter of x, and we want to

show that w1 = w2. Set r = diam (x) =2, so that r is the radius of x.
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Figure 3.4: The relationship between the points described in the proof of Proposition
3.7.

Let � denote the edge path between w1 and w2, and suppose the length of � is

l > 0. We want to arrive at a contradiction, and it will follow that l = 0, so w1 = w2.

Using the Proposition 3.6 with C = w1 and q = w2, we can �nd some point p so that

the distance from w1 to p is r, and the geodesic from w1 to p, call it , is disjoint from

�. Applying the proposition again, this time with C = w2 and q = w1, we can �nd

some other point, call it u, so that the distance from w2 to u is r, and the geodesic

from w2 to u, call it � is disjoint from �. See Figure 3.4 for an illustration.

The edge path from p to w1 is reduced and disjoint from �. Further, the edge

path between w2 and u is reduced and disjoint from �. It follows from Proposition

3.1 that the edge path from p to u obtained by traveling from p to w1 (distance r)

and then from w1 to w2 via � (distance l) and �nally from w2 to u (distance r) gives

a reduced edge path with length 2r + l > diam (x). This is a contradiction, and it

follows that l = 0. Thus w1 = w2, and the barycenter is well-de�ned.

Given that x̂ is well-de�ned, we prove the following result, which will be useful in

the proof of several lemmas in Section 3.4.

Proposition 3.8. If p is an extreme point of x, then the geodesic from p to the vertex

e passes through x̂, and p is the endpoint of a diameter of x.

Proof. Suppose that the distance from an extreme point to the vertex e is s. Set

r = diam (x) =2. Let � denote the geodesic between p and the vertex e. If we
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Figure 3.5: An illustration of the proof of Proposition 3.8.

consider the geodesic from x̂ to e, it must intersect � at some point (possibly only at

e). Then, let v denote the point where these two geodesics intersect, and  the edge

path from x̂ to v. If the length of  is 0, then x̂ lies on the edge path �. Thus, we

need to show that the length of  is 0.

Note that because of our choice of v, the path obtained by following  from x̂ to v,

and then � from v to p is reduced, and therefore, the geodesic from x̂ to p. Because

r is the length of any radius of x, the distance betwen x̂ and p must be at most r.

Because v lies on this geodesic, its distance from p must be at most r. Further,

because the distance from p to e is s, it follows that the distance from v to e must be

at least s � r. By Proposition 3.6, we can �nd a point q of x so that the geodesic

between q and x̂ has length r, and is disjoint from the geodesic between p and x̂.

Therefore, the path between q and x̂ is disjoint from . See Figure 3.5.

Suppose that x̂ 6=v, so the length of  is larger than 0. We may form a geodesic

from q to e by passing from q to x̂ (length r), and then from x̂ to v via  (length > 0)

and �nally from v to e (length � s� r) along the path �. This edge path is reduced

by Proposition 3.1. Thus, the distance from q to e is larger than s, which contradicts
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the maximality of s. We conclude that the length of  must be 0, so x̂ =v, and x̂

lies on the geodesic �, as desired.

What is the distance from x̂ to e? If this distance were larger than s � r, then

using the same logic above, the distance from the point q to e would be larger than

s. Thus, the distance from x̂ to e is s � r. Because the distance from p to e is s,

and x̂ lies on the geodesic between p and e, it follows that the distance from p to x̂

is exactly r. Then, the distance from p to q is 2r = diam (x), p is the endpoint of a

diameter of x.

The group F acts on T , and in particular, F acts on the vertices of T . Let

x 2D �F . Because x is a can be viewed as a collection of vertices in T , so we obtain

an action of F on x by letting F act on the vertices of x. Algebraically, for �h 2 �F

and x =
P

g2F qg�g, we have

�hx =
X
g2F

�h (qg) � (h; g)hg

where �h is some automorphism of D, and � (h; g) is some invertible element of D.

Thus, we notice that the coe¢ cient associated to hg by �hx is non-zero if and only if

the coe¢ cient assigned to �g by x is non-zero.

The vertex hg is simply the vertex g under the action of h. Therefore, given some

�h 2 �F , a geometric interpretation for �hx can be obtained by letting h act on the

vertices of x, and slightly altering the coe¢ cients at each resulting vertex. In fact,

the vertices used in �hx are precisely the collection of vertices obtained by letting h

act on the vertices of x.

For each h 2 F , the action of h on T is a symmetry of T . It follows that

the distances between the vertices of x is preserved in the action by �h on x, and
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diam
�
�hx
�
= diam (x). In addition, it is also clear that the barycenters of x and �hx

satisfy the relationship c�hx = hx̂, where hx̂ is the action of h 2 F on the vertex or

edge midpoint x̂.

Figure 3.6: A geometric interpretation for the action of a�1 on x.

Example 3.9. This continues the previous examples. The action of a�1 on x gives

a�1x =�a�1 (2) �
�
a�1; a

�
e� �a�1 (4) �

�
a�1; ab

�
b+ �a�1 (6) �

�
a�1; b2

�
ab2:

For simplicity, write a�1x as �1e + �2b + �3a�1b2. Then, by looking at Figure 3.6,

we see that the action of a�1 on x shifts vertices of x to the left, and changes the

coe¢ cients. Further, we observe that diam
�
a�1x

�
= diam (x) = 4, and that the

barycenter [a�1x is a�1. Notice that this is the same as a�1x̂, because x̂ = e.

3.3 Linear Combinations in D � F

Using the geometric language discussed in the previous section, we may study the

geometry of linear combinations of elements in D � F . Let x1; :::;xn 2 D � F (the
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module) and �1; :::; �n 2 D � F (the ring). Then, consider the linear combinationPn
i=1 �ixi. By writing �i =

P
g2F qi;g�g, we may rewrite the linear combination asPn

i=1

�P
g2F qi;g�gxi

�
. Consider each summand qi;g�gxi with qi;g 6= 0, and �nd the

summand(s) such that dist (qi;g�gxi) is maximized. These summands will be called

extreme summands, because they are the summands with the maximal distance

from the vertex e. Each extreme summand each contain at least one point qg�g that

realizes this maximum distance. Call such points extreme points of the linear

combination.

Remark 3.10. Let us try to phrase these terms in a more familiar context: the ring

Q [x] of polynomials in one variable over the rationals, which we view as a Q-module.

Given a linear combination q1p1 (x) + � � � + qnpn (x), with qi 2 Q and pi 2 Q [x],

the analogue for extreme summands of the linear combination are those qipi (x) with

maximal degree. Then, the extreme points are the terms of each qipi (x) that realize

this maximal degree.

3.4 D � F -modules

Consider the left D �F -module J generated by the �nite collection x1; :::xn 2 J . We

write M = hx1; :::;xni. We would like to replace this set with a linearly independent

set y1; :::;ym, with m � n, so that hy1; :::;ymi = M . In this section, we present an

algorithm that allows us to do this.

First, we present an algorithm for �nitely-generated submodules of D � F , which

are simply ideals in D � F . Given a collection x1; :::xn 2 D � F , the algorithm

repeatedly decreases
P
diam (xi) until the non-zero elements of the collection are
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linearly independent. At that point, we may remove all zero elements to obtain a

basis for �nitely-generated ideals in D � F .

Our eventual goal is to prove that all �nitely-generated submodules of free D �F -

modules are free. By using the result in D � F (which is free with rank 1), we may

translate the result to modules with higher rank. Because we will eventually work

in free modules with rank larger than 1, it will be useful to introduce matrices into

our discussion.

Given an m� n matrix M , with entries in D � F , each row of M corresponds to

an elements of the module (D � F )n. Then, we de�ne the row space of M to be

the submodule of (D � F )n generated by the rows of M . We also have the following

de�nition.

De�nition 3.11. A n� n matrix A, with entries in D �F , is called an elementary

matrix if A is either the n� n identity matrix In, or A may be obtained from In in

one of the following ways:

1. A is obtained by interchanging two rows of In.

2. A is obtained by multiplying one row of In by a unit.

3. A is obtained by changing one o¤-diagonal entry of In from a 0 to some non-zero

element of D � F .

Under these requirements, it is easy to see that the elementary matrices are

invertible matrices, and generate a group under multiplication. Let En (D � F )

denote the group of n� n matrices generated by the elementary matrices.

Left-multiplication by elements of En (D � F ) preserves the row space of a given

matrix, as we prove in the following proposition.
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Proposition 3.12. Let A 2 Em (D � F ) and M be an m� n matrix with entries in

D � F . If J is the row space of M , then the row space of of AM is also J .

Proof. Let x1; :::;xm 2 (D � F )n denote the rows of M . Then, J = hx1; :::;xmi.

It su¢ ces to show that if A is an elementary m � m matrix, then the rows of AM

generate J , because every element of Em (D � F ) is a �nite product of elementary

matrices.

If A is an elementary matrix, then A has one of the three forms given in De�nition

3.11. For the �rst two forms, it is obvious that the rows of AM also generate the

module J , so suppose that A has the third form. Then, A is identical to the identity

matrix, except for having some r 2 D � F in some non-diagonal entry, say the k-th

row and the l-th column. If y1; :::;ym denote the rows of AM , then we have the

relationship yi = xi for i 6= k, and yk = xk + rxl. In this case, though, it is clear

that hy1; :::;ymi = hx1; :::;xmi, and the result follows.

With the de�nition of elementary matrices and this proposition in hand, we are

prepared to prove the following result.

Theorem 3.13. Given a linearly dependent collection x1; :::;xn 2 D � F , with each

xi 6= 0, there exists y1; :::;yn 2 D � F and a matrix A 2 En (D � F ) so that

A

266664
x1
...

xn

377775 =
266664
y1
...

yn

377775 ,

and
Pn

i=1 diam (yi) <
Pn

i=1 diam (xi).

Note that, by Proposition 3.12, we also have the equality hx1; :::;xni = hy1; :::;yni.
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The proof of the theorem is long and involved, so it will be broken into smaller

pieces. First, we set up the proof: because x1; :::;xn are linearly dependent, there

exists �1; :::; �n 2 D � F , not all zero, such that
Pn

i=1 �ixi = 0. Writing �i =P
g2F qi;g�g, we may rewrite the linear combination as

Pn
i=1

�P
g2F qi;g�gxi

�
. For

what follows, we only consider summands with qi;g 6= 0. Moreover, because we care

about the geometry of this situation, and not the coe¢ cients qi;g (except that they are

non-zero), we will omit qi;g from our discussion. Consider the set of extreme points

of the linear combination (those points of maximal distance from the identity vertex

e) and extreme summands (those �gxi with qi;g 6= 0 containing an extreme point of

the linear combination). Set s as the distance from extreme points of the linear

combination to the vertex e. Of the extreme summands, choose one with maximal

diameter. Without loss of generality, we will call this �hxk, for some h 2 F and a �xed

k 2 f1; :::; ng. Set r = diam
�
�hxk
�
=2. This means that the greatest distance any

point of �hxk may have from the barycenterd�hxk is r. Among the extreme summands,
let R be the set of those summands that contain an extreme point p, such that the

geodesic from p to the vertex e passes through d�hxk, the barycenter of �hxk. Such

extreme points with this property will be called special extreme points, and R is

the collection of summands containing special extreme points.

The proof of the theorem proceeds with the following lemmas.

Lemma 3.14. The extreme summand �hxk is in the collection R, and the distance

from d�hxk to the vertex e is s� r. Further, every special extreme point is at distance

r from d�hxk.
Proof. In order to show that �hxk is in R, we show that any extreme point of �hxk is

a special extreme point. Let p be an extreme point of �hxk. Then, Proposition 3.8
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shows that the geodesic from p to e passes through d�hxk, and p is a special extreme
point. Because �hxk contains a special extreme point, it is a member of the collection

R.

Furthermore, in the proof of Proposition 3.8, we showed that p must be the

endpoint of a diameter of �hxk, so the distance between p and d�hxk is r. Because

the geodesic between p and e passes through d�hxk, it follows that the distance fromd�hxk to e is s � r. From this, we may conclude that the distance from any special

extreme point to d�hxk is r.
Lemma 3.15. If p is any extreme point of some �gxi 2 R, then p is special. Moreover,

if �gxi 2 R, and r0 = diam (�gxi) =2, then the distance from c�gxi to d�hxk is r � r0.

Proof. Notice that, due to our choice of r = diam
�
�hxk
�
=2, we must have r � r0.

Because �gxi 2 R, it follows that �gxi has a special extreme point, call it q. Then,

Proposition 3.8 shows that the geodesic from q to emust pass through c�gxi. Moreover,
q is the endpoint of a diameter in �gxi, its distance from �gxi is r0. From these two

facts, it follows that the distance from c�gxi is s� r0.

Because q is special, the geodesic from q to e must also pass through d�hxk. Note
that the distance from q to c�gxi is r0, and the distance from q tod�hxk is r (by Lemma
3.14). Thus, starting at q and moving to the vertex e, we �rst pass through c�gxi, and
then throughd�hxk. This shows thatd�hxk lies on the geodesic between c�gxi and e, and
using the fact that the distance from d�hxk to e is s � r, it follows that the distance

betweend�hxk and c�gxi is r � r0.

Let p be any extreme point of c�gxi. Then, the geodesic from p to e passes through

c�gxi. After passing through c�gxi, our work above shows that the geodesic must also
pass through d�hxk. This shows that p is a special extreme point.
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Lemma 3.16. If q is any point of some �gxi 2 R, then the distance from q to d�hxk is
at most r.

Proof. Let r0 = diam (�gxi) =2. Lemma 3.15 shows that the distance from c�gxi tod�hxk
is r � r0. If q is any point of some �gxi, its distance to d�gxk must be at most r0.
Because the distance from c�gxi to d�hxk is r � r0, it follows that the distance from q tod�hxk is at most r.
Lemma 3.17. The extreme summand �hxk is the only copy of xk appearing in R.

That is, if �gxk 2 R, then g = h.

Consider the subtree of T formed by taking all vertices with distance at most r

away from d�hxk. Note that any diameter of this subtree must have midpoint d�hxk,
using the same arguments to show that the barycenter is well-de�ned (Proposition

3.7). By Lemma 3.16, every �gxi 2 R must be contained in this subtree. Moreover,

if any �gxi 2 R has diameter 2r, then it must be true that c�gxi =d�hxk. Suppose that
there is some g 2 F so that �gxk 2 R. Then, because the action of �g on xk preserves

the diameter of xk, we have

diam (�gxk) = diam (xk) = diam
�
�hxk
�
= 2r.

Thus, d�gxk = d�hxk. This implies that gx̂k = hx̂k (see the remarks on p. 23), and

h�1gx̂k = x̂k. Thus, the action of h�1g on x̂k is trivial. However, because the action

of F on T is free, we have h�1g = e, and g = h. An important consequence of this

is that X
�gxi2R

qi;g�gxi = qk;h�hxk +
X

�gxi2R, i6=k

qi;g�gxi:

Thus, if we gather all xk terms in the sum, the coe¢ cient on xk is a unit in D � F .
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Lemma 3.18. The summands in R satisfy diam
�P

�gxi2R qi;g�gxi

�
< diam (xk) :

Proof. The sum
P

�gxi2R qi;g�gxi is formed by taking a collection of summands from the

linear combination
Pn

i=1 �ixi = 0. Furthermore, the de�nition of R is the collection

of all summands containing special extreme points. Because
Pn

i=1 �ixi = 0 and R

contains all special extreme points, the coe¢ cients of all special extreme points must

vanish in the sum
P

�gxi2R qi;g�gxi. For simplicity, set w =
P

�gxi2R qi;g�gxi.

Once again, consider the subtree formed in the proof of Lemma 3.17. The element

w is contained in the subtree, because every summand in the de�nition of w is con-

tained in the subtree. We want to show that diam (w) < diam (xk) = 2r. Suppose

on the contrary that this were not the case. Then, we would have diam (w) = 2r, and

the barycenter ŵ would bed�hxk (by arguments in the proof of Lemma 3.17). Consider
a geodesic � between two points of w with the length of � as 2r. Note that, by the

de�nition of diameter, if we view the endpoints of � as points of w, the coe¢ ecients

on the endpoints must be non-zero. We will show that one of the endpoints must

have distance s from the vertex e, so the endpoint is an extreme point. By 3.15, this

point must be a special extreme point, which contradicts the fact that the coe¢ cient

assigned to special extreme points must vanish in w.

Because d�hxk is the barycenter of w, it must be the midpoint of �, so that the
distance from d�hxk to the endpoints is r. Futhermore, the radii extending from d�hxk
to the endpoints of � are disjoint, so at least one of these radii must be disjoint from

the edge path fromd�hxk to e. Call the end of this radius u. Then, traveling from u

to d�hxk (distance r), and then traveling to e (distance s � r) show that the distance

from u to e is s. Thus, u is a special extreme point, which is a contradiction. It

follows that diam (w) < diam (xk), as desired.
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We are now ready to prove Theorem 3.13:

Proof. For 1 � k � n, de�ne yk =
P

�gxi2R qi;g�gxi, and yi = xi for i 6= k. Note

that it is possible to have yk = 0. Clearly,
P
diam (yi) <

P
diam (xi), because

diam (yk) < diam (xk), and diam (yi) = diam (xi) for i 6= k.

In the sum de�ning yk, we may pull the xk term out, as in the proof of Lemma

3.17. Then, collecting all terms in the sum using the same xi, we can write

yk = qk;h�hxk +
X

i2f1;:::;ng
i6=k

fixi

for some fi 2 D �F . Then, form the n�n matrix A in the following way. For every

1 � i � n, i 6= k, let the i-th row of A have a 1 on the diagonal, a zero in every other

entry. For the k-th row, put fi in the i-th column, where i 6= k, and qk;h�h in the

k-column. It follows that A
�
x1 � � � xn

�T
=

�
y1 � � � yn

�T
. It is not di¢ cult to

see that the matrix A is generated by elementary matrices, so A 2 En (D � F ). This

completes the proof.

Repeated applications of Theorem 3.13 can take a linearly dependent generating

set, and transform it into a generating set whose non-zero elements are linearly

independent. We prove this in the following theorem.

Theorem 3.19. If x1; :::;xn 2 D � F , then there exists y1; :::;yn 2 D � F and a

matrix B 2 En (D � F ) so that

B

266664
x1
...

xn

377775 =
266664
y1
...

yn

377775 ;
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and the collection of non-zero yi are linearly independent.

Again, by Proposition 3.12, the statement also implies that hx1; :::;xni = hy1; :::;yni.

Proof. We prove the result via the following inductively-de�ned algorithm, which

begins with a collection x1; :::;xn. In order to track of the iterations of our algorithm,

we will relabel each xi with the index x0;i. Each step of the algorithm will increase

the �rst index value by 1.

Step 1. Given the collection x0;1;x0;2:::;x0;n, if the non-zero elements of this collection

are linearly independent over D � F , then we set yi = x0;i for each 1 � i � n,

and take B to be the identity n� n matrix, and we are done. In particular, if

x0;1 = x0;2 = � � � = x0;n = 0, then we are done. Otherwise, let x0;1; :::;x0;k be

the non-zero elements of the collection (if need be, relabel), with k � n. By

Theorem 3.13, because the non-zero x0;1; :::;x0;k are linearly dependent, there

exists x1;1; :::;x1;k 2 D � F and a matrix A 2 Ek (D � F ) such that

A

�
x0;1 � � � x0;k

�T
=

�
x1;1 � � � x1;k

�T

and
Pk

i=1 diam (x1;i) <
Pk

i=1 diam (x0;i). We can expand A to an n�n matrix

A1 2 En (D � F ), by adding rows and columns so that a 1 occurs in the diagonal

of the new rows and columns, and zeros everywhere else. For k < i � n, we

set x1;i = 0 (= x0;i, by assumption) and we have the equation

A1

�
x0;1 � � � x0;n

�T
=

�
x1;1 � � � x1;n

�T

Further,
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nX
i=1

diam (x1;i) <

nX
i=1

diam (x0;i) .

The next step is de�ned inductively. After completing the �rst j steps, we have

a matrix Aj 2 En (D � F ), so that

Aj

�
x0;1 � � � x0;n

�T
=

�
xj;1 � � � xj:n

�T
; (3.1)

where xj;1; :::;xj;n 2 D�F are such that
Pn

i=1 diam (xj;i) <
Pn

i=1 diam (xj�1;i). Then,

the j + 1-th step is:

Step j + 1. Given the collection xj;1; :::;xj;n, we may permute the xj;i so that the non-zero

elements of the collection occur at the beginning of the list. This permuation of

the xj;i must also be accompanied by permuting that n rows of Aj in the same

manner, so we maintain the relationship given in Equation (3.1) Then, after

permuting, suppose that xj;1; :::;xj;r are the non-zero elements of the collection,

where r � n. If xj;1; :::;xj;r are linearly independent, we can set yi = xj;i for

each i, and and B = Aj, and halt the algorithm. Otherwise, by Theorem 3.13,

there exists xj+1;1; :::;xj+1;r 2 D � F and a matrix A 2 Er (D � F ) so that

A

�
xj;1 � � � x0;r

�T
=

�
xj+1;1 � � � xj+1;r

�T

and
Pr

i=1 diam (xj+1;i) <
Pr

i=1 diam (xj;i). Then, we can expand A to an n�n

matrix A0 2 En (D � F ), by adding rows and columns that are 1 only on the

diagonal of A0, and zero everywhere else. For r < i � n, set xj+1;i = xj;i (= 0,

by assumption). We have:
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A0
�
xj;1 � � � xj;n

�T
=

�
xj+1;1 � � � xj+1;n

�T
,

where
Pn

i=1 diam (xj+1;i) <
Pn

i=1 diam (xj+1;i). De�ne the matrix Aj+1 2

En (D � F ) as A0Aj. Then,

Aj+1

�
x0;1 � � � x0:n

�T
=

�
xj+1;1 � � � xj+1;n

�T
.

We proceed to the next step of the algorithm.

The claim is that this algorithm must eventually halt. To justify the claim,

notice that for any step j,
Pn

i=1 diam (xj;i) is bounded below by �n, in which case

diam (xj;i) = �1 for each i, and xj;i = 0. Because the sum of the diameters of the

generators is �nite, strictly decreasing after each step, the algorithm must halt.

We are now ready to present the main result from the chapter:

Theorem 3.20. Suppose that D is division ring with F a �nitely-generated free group.

If N is a �nitely-generated submodule of a free D �F -module J , then N is also a free

module.

Proof. Every generator of N may only use a �nite number of basis elements from J .

Because N is �nitely-generated, say with m generators, without loss of generality, we

may assume that J is free with �nite rank, say with rank n Writing each generator

of N as a row vector, we may form an m � n matrix M , where each row of M is

the row vector for a generator for of J . We may assume that every column of M

contains at least one non-zero entry, otherwise we may disregard that column. The

argument continues by applying Theorem 3.19 to each column of M .



35

If the non-zero elements of the �rst column of M are not linearly independent,

then 3.19 says that we can �nd some A1 2 Em (D � F ) so that the non-zero entries

of the �rst column of A1M is linearly independent. If the non-zero entries of the

second column of A1M are not linearly independent, we can �nd a matrix A2 so that

the non-zero entries of the second column of A2A1M are linearly independent.

Our concern at this point is that, while the non-zero entries of the �rst column

of A1M are linearly independent, is this also true for the non-zero entries of the

�rst row of A2A1M? In fact, this is the case. By multiplying on the left by

A2 2 Em (D � F ), we are essentially performing row operations on the matrix A1M .

Thus, the entries of the �rst column of A2A1M are linear combinations of the entries

of the �rst column of A1M . Because the non-zero entries of the �rst column of A1M

are linearly independent, this must also be true of A2A1M .

We continue this process of multiplying by matrices from Em (D � F ) to ensure

that the non-zero entries of each column column are linearly independent. If we do

this for each of the n columns, we obtain a matrixM 0 = AnAn�1 � � �A1M , so that for

each �xed column ofM 0, the non-zero entries of that column are linearly independent.

Because M 0 is obtained from M by elementary matrices, it follows from Proposition

3.12 that the rows of M 0 generate the same D �F -module as the rows of M , which is

the module J .

It is possible that M 0 contains rows of zeros. By discarding zero rows, and

reordering the remaining rows of M , we can bring M 0 to the following form:
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M 0 =

266666666664

�

�
...

�

�

377777777775
where � represents the �rst non-zero entry of a given row. Because the non-zero

entries of each column are linearly independent, it follows that the rows of M 0 are

linearly independent, and form a basis for J . Thus, J is a free module.

The following is an easy corollary. Recall that a right zero divisor is an element

x 2 D � F , x 6= 0, so that there is some non-zero a 2 D � F with ax = 0.

Corollary 3.21. D � F is a domain.

Proof. It su¢ ces to show that D�F contains no right zero divisors. Let x 2 D�F be

non-zero. We show that x 2 D �F is not a right zero divisor. The left ideal J = hxi

can be viewed as a left D � F -module, which is a submodule of D � F . Thus, by the

theorem, we can �nd some y 2 D � F such that y serves as a basis for J . Notice

that y cannot be a right zero divisor, otherwise the set fyg would not be linearly

independent. Because x 2 J , there are some a; b 2 D � F with ax = y and by = x.

By substituting, we notice that aby = y, and because y is not a right zero divisor,

a and b are units in D � F . Thus, x and y di¤er by a unit, and because y is not a

right zero divisor, it easily follows that x is also not a right zero divisor.
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CHAPTER 4

ORE LOCALIZATION

4.1 Introduction

Suppose k is a division ring, and G a group. If we could embed the ordinary group

ring k [G] into a division ring Q, then all modules over Q would be free. In particular,

submodules of free Q-modules would be free. Sometimes it is not necessary to invert

every element of k [G] in order to ensure that �nitely-generated submodules of free

modules are free. For example, in the group ring Q [F ], with F a �nitely free group,

submodules of free Q [F ]-modules are free, even though Q [F ] clearly has elements

that are not units.

If G is a group of the form H o F , then our work on p. 11 shows that the group

ring k [G] can be viewed as a crossed product k [H] � F . If we can embed k [G] into

a larger ring Q so that the elements of k [H] are invertible, then it seems reasonable

that this resulting structure would have the form D �F , where D is a ring containing

the multiplicative inverses of k [H]. In the previous chapter, we proved that D � F

satis�es the property that all �nitely-generated submodules of free D�F -modules are

free. Thus, if M is a �nitely-generated submodule of a free k [G]-module, then M

has a basis when viewed as module over D � F .

In this chapter, we consider the following problem: Given a ring R and S � R,

what conditions guarantee the existence of a ring Q so that R embeds into Q and the
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elements of S are invertible when mapped into Q? A special case for this problem

comes from taking S = R � f0g, in which case Q would be a division ring (and

because R ! Q is an embedding, R must be a domain). The process of creating

inverses for the elements of a ring R is called localization. If S � R; and we wish

to only construct inverses for the elements of S, then this process is referred to as the

localization of R at S. In this chapter, we present the theory of Ore localization,

which o¤ers the most intuitive way to localize R at S.

Ring theorists often study localization in a more general setting. By not requiring

that the map R ! Q to be an embedding, a ring theorist also does not need the

assumption that the elements of S do not divide zero in R. However, because we are

primarily interested in embeddings, we do assume that S contains no zero divisors.

The theory contained in this chapter can be found in many texts on localization

and noncommutative rings. References include [12] and [4].

4.2 Conditions to Localize R at S

Given a ring R with some subset S, we wish to construct a ring Q and a map

' : R ! Q so that for each s 2 S, the element ' (s) 2 Q is invertible. Further,

wish the map ' to be an embedding, so that we can view R � Q. The most obvious

way to construct Q is to mimic the construction of the rationals from the integers.

Thus, we will construct Q from �fractions�with elements of R in the numerator and

elements of S in the denominator.

What should the fractions in Q look like? Mimicking the construction of Q from Z,

we might �rst attempt to de�ne Q as the set of fractions of the form a
b
with a 2 R and

B 2 S, where the fractions are equipped with some equivalence relation. However,
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this notation is ambiguous because a
b
could mean b�1a or a�1b. In the commutative

setting, this makes little di¤erence, but because R might not be commutative (and

therefore Q might not be commutative), we must specify which �side�of the fraction

should contain the denominator. Because it seems more intuitive to write the

denominator on the right, as in a=b = ab�1, we will write our fractions in this manner,

although we could do the following construction with denominators on the left in a

similar manner. We now turn our attention to �nding conditions on R and S that

guarantee that such a ring Q exists.

What must be true of S if such a ring Q exists? An element r 2 R is said to be

regular if it is not a zero divisor. If there were some s 2 S which divides zero in R,

then it is clear that map R! Q cannot be an embedding. Thus, every element of S

must be regular. Further, we must guarantee that 0 =2 S to avoid trying to invert 0.

In addition, we need 1 2 S, so that every element of R can embed into Q via the map

r 7! r1�1. Lastly, the product of invertible elements in Q needs to be invertible, so

S should be multiplicatively closed. A set S that satis�es these conditions is called

a multiplicative1 subset of R. We now give a de�nition for our ring Q.

De�nition 4.1. Let R be a ring with S a multiplicative subset of R. Suppose that

a ring Q exists, along with an embedding ' : R! Q, so that every element of Q can

be written in the form ' (a)' (b)�1, with a 2 R and b 2 S. Then, Q is called the

right ring of fractions for R with respect to S. The ring Q is usually written as

RS�1.

Given this de�nition, it is not immediately clear that the right ring of fractions is

unique in anyway. Is it possible for there to be two right rings of fractions for R with

1In the more general theory, the de�nition of multiplicative sets does not include the assumption
that the elements of S do not divide zero in R.
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respect to S, say Q and Q0, which are not isomorphic? The following propositions,

the �rst of which may be found in [12], can be used to show that this may not occur.

Proposition 4.2. Let R be a ring with S a multiplicative subset, so that a right ring

of fractions exists with respect to S, call the ring of fractions Q. Further, suppose

that ' : R ! Q is an embedding. Then, whenever there is a ring homomorphism

 : R ! Q0 such that  (s) is invertible in Q for every s 2 S, there exists a unique

homomorphism � : RS�1 ! Q such that � � ' =  .

Proof. Given a 2 R and b 2 S, de�ne � : Q! Q0 by �
�
' (a)' (b)�1

�
=  (a) (b)�1.

We need to show that � is well-de�ned on the elements of Q. To show this, suppose

that ' (a)' (b)�1 = ' (r)' (s)�1. Then, we have the following equation in R:

' (a)' (s) = ' (r)' (b)

' (as) = ' (rb) .

Beause ' is an embedding, it follows that

as = rb.

From this, we conclude that

 (as) =  (rb)

 (a) (s) =  (r) (b)

 (a) (b)�1 =  (r) (s)�1

�
�
ab�1

�
= �

�
rs�1

�
.



41

Thus, � is well-de�ned. It is also not di¢ cult to show that � is a homomorphism.

Further, the fact that � � ' =  and that � also follows quickly.

Proposition 4.3. Suppose Q and Q0 are both right rings of fractions for R with

respect to S, with embeddings ' : R ! Q and  : R ! Q0. Then, there is an

isomorphism between Q and Q0.

Proof. The previous proposition gives us a unique map � : Q ! Q0, which is a

homomorphism, so that � � ' =  . Reversing the roles of Q and Q0, we also obtain

a unique map �0 : Q0 ! Q, where �0 �  = '. Then, we have the equations

�0 � � � ' = '

� � �0 �  =  .

Thus, �0 � � : Q ! Q. By the previous proposition (taking Q0 = Q), �0 � � is the

unique homomorphism so that (�0 � �)�' = '. Because idQ is another such function,

we have that idQ = �0 � �. Similarly, idQ0 = � � �0, and it follows that � and �0 are

the desired isomorphisms.

In light of this proposition, every right ring of fractions for R with respect to S is

essentially the same. For this reason, we can say �the right ring of fractions�rather

than �a right ring of fractions,�and use the notation RS�1 to denote this ring with

no ambiguity.

Given S a multiplicative subset of R, we wish to construct the ring RS�1. We

know that when RS�1 exists, it is unique. However, at this point, it is not clear

when RS�1 exists. If S is a multiplicative subset of R, we say that S is right

permutable if for every s 2 S and r 2 R we have rS \ sR 6= ;. Equivalently, S
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is right permutable if and only if for every s 2 S and r 2 R, there exists t 2 S and

x 2 R such that sx = rt. Thus, right permutability can be viewed as a weak version

of commutativity, because it allows us to take an element of S and an element of R,

and �nd a common multiple. Notice that right permutability is trivially satis�ed if

R is a commutative.

A similar notion can be de�ned for left permutability2, although it is not true that

left and right permutability are equivalent in general settings. We will see in the

next chapter that left and right permutability are equivalent in group rings, though.

If S is a right permutable, multiplicative subset of R, then S is sometimes called a

right denominator set in R. The following well-known thereom justi�es this term,

and gives necessary and su¢ cient conditions for the existence of RS�1. The proof of

this theorem (without making the assumption that the elements of S are regular in

R) may be found in [12].

Theorem 4.4. Suppose that R is a ring with S a multiplicative subset of R Then,

the right ring of fractions RS�1 exists if and only if S is right permutable.

Proof. As this is an �if and only if�statement, we need to prove two directions.

(RS�1 exists implies right permutable) To prove this direction, if RS�1 exists,

pick any s 2 S and r 2 R. Then, by the de�nition of RS�1, the product s�1r must

have the form ab�1 for some a 2 R and b 2 S. By clearing denominators, we obtain

s�1r = ab�1

rb = sa.

This shows that S is right permutable.
2The left permutability replaces rS \ sR 6= ; with Sr \Rs 6= ;.
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(Right permutable implies RS�1 exists) We prove this direction by de�ning an

equivalence relation � on R� S, and then de�ning operations on R� S= � to make

this set form a ring.

When considering elements ofR�S, we view the �rst coordinate as the numerators

and the second as the denominators of the fractions we wish to form. Then, de�ne

a relation � on R � S by (r; s) � (p; q) if there exists x; y 2 R such that sx; qy 2 S

and (rx; sx) = (py; qy), where equality means that the �rst coordinates are equal,

and the second coordinates are equal. Essentially, the de�nition of � means that we

can regard two �fractions�as the same under � if they can be brought to the same

denominator, and after bringing them to the same denominator, the numerators are

also equal.

We can show that � is an equivalence relation. Re�exivity and symmetry of

� are trivial, so we will only prove transitivity. Suppose that (r; s) � (p; q) and

(p; q) � (a; b). Then, there exists x1; y1; x2; y2 2 R such that sx1; qy1; qx2; by2 2 S

and (rx1; sx1) = (py1; qy1), (px2; qx2) = (ay2; by2). Because S is right permutable,

there exists c 2 R and d 2 S such that (qy1) c = (qx2) d 2 S. Because q 2 S, and

elements of q are not zero divisors, we cancel the q�s to obtain y1c = x2d. Then,

(rx1c; sx1c) = (py1c; qy1c)

= (px2d; qx2d)

= (ay2d; by2d) .

This shows that (r; s) � (a; b), and � is an equivalence relation. Then, consider the

collection of equivalence classes R� S= �. Looking toward our end goal, we denote

R � S= � by RS�1, and write the equivalence class associated to (a; b) 2 R � S as
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a=b 2 RS�1. An important observation is that, by the de�nition of �, if a=b 2 RS�1

and c 2 R is such that bc 2 S, then a=b = (ac) = (bc).

We de�ne addition on RS�1 as follows:

r=s+ p=q = (rc+ pd) =u

where u = sc = qd 2 S, for some c 2 R and d 2 S. We can �nd such a u by the

right permutability of S. Essentially, to add two elements of RS�1, we bring them

to a common denominator and then add the numerators. Multiplication is de�ned

in RS�1 by:

r=s � p=q = (rd) = (qc)

where c 2 S and d 2 R satisfy sd = pc, and the existence of such c and d is guaranteed

by the right permutability of S. The motivation for this de�nition makes more sense

if we proceed through some intermediate steps. Suppose that sd = pc. Momentarily

ignoring the fact that sd; pc might not be in S, we have

r=s � p=q = (rd) = (sd) � (pc) = (qc)

= (rd) = (pc) � (pc) = (qc)

Then, because pc occurs in the denominator of the �rst fraction and the numerator

of the second, we can �cancel�it to obtain

r=s � p=q = (rd) = (qc)

Here, we skip over some details. One can verify that these operations are well-
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de�ned on the equivalence classes of RS�1. Further, equipped with these operations,

RS�1 forms a ring with additive identity 0=1, and multiplicative identity 1=1.

If we de�ne a map ' : R! RS�1 by ' : r 7! r=1, then ' is easily veri�ed to be a

ring homomorphism. Furthermore, if r=1 = 0=1, then there is some x; y 2 R so that

1x = 1y 2 S (so x 2 S), and (rx; x) = (0; y), where equality is taken in R�S. Thus,

rx = 0 2 R, and because x 2 S, which does not contain zero divisors, it follows that

r = 0. This shows that the map ' is an embedding, and we can view R as a subring

of RS�1 by identifying elements of R with their image under '.

If we view S � RS�1, then every s 2 S can be written s = s=1. Using the

de�nition of multiplication on S�R= �, we have s=1 �1=s = 1=1 = 1=s � s=1, so every

element of S is invertible in RS�1. Additionally, every element RS�1 has the form

ab�1 for a 2 R and b 2 S.

We have shown that the ring RS�1 is a right ring of fractions for the ring R with

respect to S, and it follows that the right ring of fractions exists. Further, every

right ring of fractions is isomorphic to RS�1 as above.

The process of creating a right ring of fractions for a ring R is called Ore

localization, after Oystein Ore. Concentrating the case where R is a domain, and

S = R� f0g, Ore introduced the right permutability condition to solve the problem

of embedding a domain R into a division ring Q. For this reason, if R is a domain

so that for every r 2 R and s 2 R � f0g, we have sR \ r (R� f0g) 6= ;, then R is

said to satisfy the right Ore condition. Equivalently, a domain R satis�es the right

Ore condition if for every non-zero s; r 2 R, we have sR \ rR 6= f0g. Any domain

that satis�es the right Ore condition is called a right Ore domain. Essentially, the

Ore condition means that any �nite collection of non-zero elements from R can be
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brought to a common, non-zero multiple by multiplying on the right, as shown in the

following proposition.

Proposition 4.5. If R is a right Ore domain, given a �nite collection of non-zero

r1; :::; rn 2 R, there exists non-zero s1; :::; sn 2 R, such that r1s1 = r2s2 = � � � = rnsn.

Proof. The proof will be by induction on n. For n = 2, this is just the right Ore

condition on R. Then, we assume that any collection of n non-zero elements of

R can be brought to a common multiple, and consider the collection of non-zero

r1; :::; rn; rn+1 2 R. By assumption, there exists non-zero t1; :::; tn 2 R so that

r1t1 = � � � = rntn. Denote their common value by u. Then, u 6= 0. Because R

satis�es the Ore condition, there exists non-zero s and s0 2 R so that us = rn+1s
0.

Then, r1t1s = r2t2s = � � � = rntns = rn+1s
0. By writing si = tis for 1 � i � n, and

sn+1 = s0, the proof is complete.

Besides Ore domains, another special case of Theorem 4.4 is the case where S =

R�, the regular elements of R. In this case, the ring RS�1 is called the right

classical ring of quotients for R. This ring has the interesting property that

every element is either a zero divisor or a unit.

4.3 Some Examples and Properties of Ore Localization

At this point, while we have necessary and su¢ cient conditions for the existence of

the ring RS�1, we do not have any examples of rings R with multiplicative subsets S

satisfying the hypotheses of Theorem 4.4. Let us �nd some examples. It is trivial to

prove that taking R to be any commutative domain and S any multiplicative subset

of R, then S is right permutable, so that RS�1 exists. For example, if I is a prime

ideal in R, then we could take S = R� I, and we could form RS�1.
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As another example, if we take R to be a division ring and S a multiplicative

subset, S is easily veri�ed to be right permutable, so RS�1 exists. We can also

see that R is a right ring of fractions for itself, so Proposition 4.3 shows RS�1 is

isomorphic to R.

The following proposition shows that if R contains ideals that are free with rank

larger than 1, then R is not an Ore domain.

Proposition 4.6. Let R be a right Ore domain. Then, a right ideal I 6= f0g in R

is a free right R-module if and only if it is principal.

Proof. Suppose that I is a free, right R-module. If the rank of I were larger than

one, pick two distinct basis elements from I, call them x and y. Note that x and

y must both be non-zero. Because R is a right Ore domain, there exists non-zero

s; t 2 R so that xs = yt. Then, xs�yt = 0, and x and y are not linearly independent.

This is a contradiction, and it follows that the rank of I cannot be larger than one.

Thus, I is principal.

If I is non-zero, right, principal ideal in the domain R, then it is clear that the

generator for I serves as a basis for I as a right R-module. Thus, I is free.

The following proposition shows that Ore domains are common in the study of

ring theory.

Proposition 4.7. If R is a right Noetherian domain, then R is a right Ore domain.

Proof. We will prove this by contrapositive. Assume that R is a domain that is not

a right Ore domain, so R does not satisfy the right Ore condition. Thus, there exists

x 2 R and y 2 S so that xR\ yR = ;. We will produce a strictly increasing chain of
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right ideals, and deduce that R is not right Noetherian. For n � 0, de�ne the right

ideal In = xR + yxR + y2xR + � � �+ ynxR. Then, we have the ascending chain

I0 � I1 � � � � :

The claim is that In ( In+1 for every n, so the chain does not stabilize. If this were

not case, let n be the smallest natural number for which In = In+1. It follows that

yn+1x 2 In, and we can write

yn+1x =
nX
i=0

yixai

where not every ai = 0. Let r be the smallest natural number so that ar 6= 0, so that

ar 2 S. Note that r < n+1. Then, because we are in a domain, we can cancel a yr

from both sides to obtain:

yn+1�rx =
nX
i=r

yi�rxai

yn+1�rx = xar +
nX

i=r+1

yi�rxai

yn+1�rx�
nX

i=r+1

yi�rxai = xar

y

 
yn�rx�

nX
i=r+1

yi�r�1xai

!
= xar.

This contradicts the assumption that x and y are such that xR \ yR = f0g, and it

follows that In ( In+1 for every n. Thus, R is not Noetherian.

Because right Artinian rings are also right Noetherian (see [2], Corollary 2.28) this
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implies the following:

Proposition 4.8. If R is a right Artinian domain, then R is a right Ore domain.

Everything we have done above has been for right rings of fractions, and the right

Ore condition. One might ask whether there are rings that have a right ring of

fractions, but not a left ring of fractions, or equivalently, whether there are rings

where right permutability does not imply left permutability. In fact, such rings do

exist. An example can be constructed from a skew polynomial ring. See [2], Theorem

5.4, for the construction.
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CHAPTER 5

LOCALIZED GROUP RINGS

In this chapter, we apply the theory of Ore localization to group rings, and then

deduce an interesting result about modules over localized group rings, for groups of

the form HoF , where F is a �nitely-generated free group. Because we would like to

avoid zero divisors, we also make the standing assumption that all groups we consider

are such that k [G] is a domain, unless noted otherwise.

5.1 The Ore Condition and Group Rings

Given a group G, when can we embed k [G] into a division ring? While other forms

of localization might be possible, the Ore condition says that k [G] has a right ring of

fractions (taking S = k [G]�f0g) if and only if for every x 2 S and y 2 k [G], we have

x (k [G])\ yS 6= f0g. In a domain, this is equivalent to the statement that for every

x; y 6= 0, we have x (k [G]) \ y (k [G]) 6= f0g. In the previous chapter, we noted that

the existence of a right ring of fractions does not guarantee the existence of a left ring

of fractions. However, in the case of group rings, it is true that k [G] has a right ring

of fractions if and only if it also has a left ring of fractions. To prove this fact, we

introduce the function � : k [G]! k [G] given by �
�P

g2G agg
�
=
P

g2G;ag 6=0 a
�1
g g�1.

We notice that � is self-inverting and if x 2 k [G] is non-zero, then � (x) is also

non-zero.
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Proposition 5.1. The function � reverses the multiplication of k [G]. That is, if

x; y 2 k [G], then � (xy) = � (y)� (x).

Proof. Write x =
P

g2G agg and y =
P

g2G bgg. Then,

xy =

0@ X
g2G;ag 6=0

agg

1A X
h2G

bhh

!

=
X
g2G

"X
h2G

agbhgh

#
:

Therefore,

� (xy) = �

 X
g2G

"X
h2G

agbhgh

#!

=
X

h2G;bh 6=0

0@ X
g2G;ag 6=0

(agbh)
�1 (gh)�1

1A
=

X
h2G;bh 6=0

0@ X
g2G;ag 6=0

b�1h h�1a�1g g�1

1A
=

 X
h2G;bh 6=0

b�1h h�1

!0@ X
g2G;ag 6=0

a�1g g�1

1A
= � (y)� (x) .

If H is a subgroup of G, then � maps k [H] into k [H]. The following proposition

shows that whenever � maps S � k [G] into itself, then right and left permutability

are equivalent for S. In particular, they are equivalent for k [H].

Proposition 5.2. Let k be a division ring and G a group so that k [G] is a domain.

Suppose that S is a multiplicative subset of k [G] so that � (S) � S. Then, the ring
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(k [G])S�1 exists if and only if S�1 (k [G]) also exists. Moreover, these two rings of

fractions are isomorphic.

Proof. For the �rst part of the statement, it su¢ ces to show that S is right permutable

if and only if it is left permutable.

Assume S is right permutable. Then, given x 2 S and y 2 k [G], we need to

show that there exists s 2 S and r 2 k [G] such that rx = sy. By assumption, S is

invariant under �, so that � (x) 2 S and � (y) 2 k [G]. Because S is right invertible,

there exists s0 2 S and r0 2 k [G] such that � (x) r0 = � (y) s0. Then,

� (� (x) r0) = � (� (y) s0)

� (r0)� (� (x)) = � (s0)� (� (y))

� (r0)x = � (s0) y.

This shows that k [G] also satis�es the left Ore condition. The proof that left

permutability implies right permutability is nearly identical, and it follows that the

ring (k [G])S�1 exists if and only if S�1 (k [G]) also exists. These rings are naturally

isomorphic.

In particular, the above proposition implies that k [G] satis�es the left Ore condi-

tion (that is, k [G]�f0g is left permutable) if and only if k [G] satis�es the right Ore

condition. It follows that k [G] is a left Ore domain if and only if k [G] is a right Ore

domain. For this reason, we often omit �right�or �left�in our discussion, because

the two are equivalent.

It is known that for some groups G, the group ring k [G] does not satisfy the Ore

condition. For example, if F2 = hx; yi, the free group on two generators, then it is
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well-know that k [F2] does not satisfy the Ore condition. A full proof of this fact

may be found in [5]. However, this statement is obvious to those readers familiar

with the augmentation ideal of the group ring k [F2], which can be viewed as a free

right k [F2]-module with basis x� 1; y � 1 2 k [F2]. Then, by Proposition 4.6, k [F2]

is not an Ore domain. In fact, if G is any group with F2 as a subgroup, then k [G]

does not satisfy the Ore condition.

It is not di¢ cult to deduce that when A is an abelian group, k [A] satis�es the

Ore Condition. Besides the abelian groups, are there any classes of groups for k [G]

that satisfy the Ore condition, for every G in the class? To answer this question, we

�rst need to explain some terminology. A directed set I is a set equipped with a

preorder � such that for every a; b 2 I there exists a c 2 I such that a � c and b � c.

Let A be a collection of groups indexed by a directed set I, so that if Gi; Gj 2 A with

i � j, then Gi � Gj. Then, the directed union of A is
S
i2I Gi. Thus, directed

unions can be viewed as a generalization of countable, increasing unions. Let C

denote the class of elementary amenable groups, which is the the class of groups so

that:

1. C contains every abelian and �nite group.

2. C is closed under extensions.

3. C is closed under directed unions.

For example, the fundamental group of the Klein bottle is an elementary amenable

group, being the extension of Z by Z. We have the following results, which demon-

strate the nice properties of group rings of elementary amenable groups. The �rst

result comes from [6] and the second from [5].
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Theorem 5.3. If G is a torsion-free elementary amenable group, and k is a division

ring, with k �G a crossed product, then k �G is a domain. In particular, k [G] is a

domain.

Theorem 5.4. If G is a torsion-free elementary amenable group, then k [G] is a right

Ore domain.

Example 5.5. If G is the Klein bottle group G = hx; y j yx = xy�1i, the group ring

Q [G] is an Ore domain, as G is an extension of Z by Z.

When working with a group ring k [G], we often do not want to localize the entire

ring, but rather just some subset. We are primarily interested in examples where

G = H oF , so that k [H] is an Ore domain, and F is a �nitely-generated free group.

Then, the group ring k [G] has the form k [H] � F . From Corollary 3.21, we know

that D � F is a domain if D is a division ring. At this point, however, we can make

no statement about the group ring k [G]. For this reason, in order to localize k [G]

at S = k [H] � f0g, we need to �rst show that the elements of S do not divide zero

in k [G]. Then, the fact that S is multiplicative easily follows. In addition, we

also need to show that S is permutable subset of k [G]. We do this in the following

propositions, whose proofs are adapted from arguments used by Rosset in [11].

Proposition 5.6. If H/ G, so that k [H] is a domain, then the elements of k [H] do

not divide zero in k [G].

Proof. Pick some non-zero x 2 k [G] and non-zero y 2 k [H]. We will show yx 6= 0,

and xy 6= 0. To this end, write k [G] in the form k [H] � G=H, so that x can be

written uniquely in the form
P

�g2G=H fg�g.
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We have the following equation:

xy =

0@ X
g2G=H

fg�g

1A y =
X
g2G=H

fg�g (y) �g:

We have that �g (y) 2 k [H] for each g. Because x is non-zero, at least one of the fg

is non-zero. Because k [H] is a domain, it follows that fg�g (y) 6= 0 for some g 2 G,

and therefore xy 6= 0. Similarly,

yx = y

0@ X
g2G=H

fg�g

1A =
X
g2G=H

yfg�g.

Because k [H] is a domain, and y; fg 2 k [H], we may use similar reasoning to deduce

that yx 6= 0.

Proposition 5.7. Let k be a division ring and G a group, where k [G] is not neces-

sarily a domain. If H C G and k [H] is an Ore domain, then the set k [H]� f0g is

permutable as a subset of k [G].

This proof is also adapted from a proof by Rosset in [11].

Proof. Write S = k [H] � f0g and R = k [G]. It su¢ ces to show that S is right

permutable, because right and left permutability are equivalent for S. Write y =P
g2G qgg. Because qg 6= 0 for only �nitely many g, we can write y =

Pn
i=1 qigi,

where qi 6= 0 for each i.

For 1 � i � n, de�ne zi = (qigi)
�1 x (qigi). We know that each zi 2 S =

k [H] � f0g because x 2 k [H] � f0g and H / G. By assumption, k [H] satis�es

the Ore condition, and we can use Proposition 4.5 to �nd some s1; :::; sn such that
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z1s1 = z2s2 = � � � = znsn. Denote their common value by u, and note that u 2 S.

Then,

yu =
nX
i=1

qigiu

=

nX
i=1

qigizisi

=

nX
i=1i

qigi
�
(qigi)

�1 xqigi
�
si

=
nX
i=1

xqigisi

= x

 
nX
i=1

qigisi

!
.

Thus, yS \ xR 6= ;, and S = k [H]� f0g is a right permutable subset of k [G].

5.2 Localized Group Rings

From Proposition 5.7, we have the following. Suppose G is a group so that k [G] is a

domain, and H / G. Then, if k [H] is an Ore domain, we can form the right ring of

fractions (k [G])S�1, where S = k [H]� f0g. As an example, we can take H to be a

torsion-free elementary amenable group, and G to be any group. Then, even though

k [H oG] is not necessarily a domain, we may localize k [H oG] at k [H] � f0g.

Then, we may localize this group ring at k [H] � f0g. We show that the localized

group ring constructed in this way can be viewed as a crossed product D � (G=H),

where D = (k [H])S�1 is a division ring.

Theorem 5.8. Suppose k is a division ring and G a group. If H / G so that k [H]

is an Ore domain, then we may form the crossed product D � G=H, where D is the
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division ring k [H] (k [H]� f0g)�1.

Proof. Set S = k [H] � f0g. By Theorem 4.4, we can construct the right ring of

fractions (k [G])S�1. Set Z = G=H. Using the discussion on p. 11, we can write

k [G] as a crossed product k [H] � Z, with skewing function � : Z ! Aut (k [H]), and

twisting � : Z � Z ! U (k [H]), the units of k [H]. Every element of (k [G])S�1 =

(k [H] � Z)S�1 has the form
�P

z2Z fz�z
�
s�1, for fz 2 k [H] and some s 2 S. We

would like to move the s�1 to the other �side�of the linear combination, with the goal

to eventually view (k [H] � Z)S�1 as a crossed product D�Z, where D = k [H]S�1 is

a division ring. For any z 2 Z, we will show that the map �z 2 Aut (k [H]) extends

to a map ��z 2 Aut (D) so that �zd = ��z (d) �z for each d 2 D. From this, we will be

able to deduce that (k [G])S�1 is a crossed product D � Z.

Once we know that �z extends to ��z, how will we use this fact? First, given

element of (k [G])S�1 written in the form
�P

z2Z fz�z
�
s�1, we can rewrite this asP

z2Z fz��z (s)
�1 �z. Because fz��z (s)

�1 2 D, we again rewrite this as
P

z2Z dz�z,

where dz 2 D, and the elements of (k [G])S�1 can be written in the form of elements

from a crossed product D � Z. Moreover, we can show that (k [G])S�1 exhibits the

crossed product structure. For a twisting function, we may use the same twisting

� from k [H] � Z, because the multiplication of elements of �Z should be unchanged

in D � Z. Then, for a skewing function, we may use �� : Z ! Aut (Z) given by

�� (z) = ��z.

Using the arguments above, we need only prove that the function �z 2 Aut (k [H])

extends to ��z 2 Aut (D), and that ��z satis�es the skewing property �zd = ��z (d) �z.

Recall from the discussion on p. 11 that the �z 2 k [H] � Z = k [G] are actually

elements of G, which have been picked as preimages of z 2 G=H under the map
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G ! G=H. Then, we de�ned our skewing function �z to be the automorphism of

k [H] that arises from conjugating by �z, so that for r 2 k [H], we have

�zr =
�
�zr�z�1

�
�z

= �z (r) �z.

We would like to extend �z to ��z 2 Aut (D) by thinking of ��z as a function that

conjugates elements of D by �z. We do this by

��z (z) = �z
�
rs�1

�
�z�1

=
�
�zr�z�1

�
�z
�
s�1
�
�z�1

= �z (r) �zs
�1�z�1

= �z (r)
�
�zs�z�1

��1
= �z (r)�z (s)

�1

We have that �zd = (�zd�z�1) �z = ��z (d) �z, as desired. Moreover, as ��z is just a

map that conjugates by �z, it is evident that ��z is an automorphism of D. Further,

��z extends �z in the following way. Given some element r 2 k [H], we can view r as

an element of D as r � 1�1. Then, ��z (r � 1�1) = �z (r)�z (1)
�1 = �z (r) � 1�1, which is

the embedding of the element �z (r) into D. Thus, ��z extends �z. We have shown

that for each z 2 Z, the automorphism �z 2 Aut (k [H]) extends to an automorphism

��z 2 Aut (D), and that ��z is a skewing of D. Therefore, using the remarks above,

we have proven the theorem.

Theorem 5.9. If k is a division ring, F is a �nitely-generated free group, and H

is any group so that k [H] is an Ore domain. Set S = k [H] � f0g. Then, the
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localized group ring k [H o F ]S�1 can be viewed as a crossed product D � F , where

D = k [H]S�1. Moreover, if M is a �nitely-generated submodule of a free module

over the localized group ring, then M is free.

Proof. This follows from Theorem 5.8 and Theorem 3.20.

Now, suppose that G is a group that maps onto a �nitely-generated free group F .

Then, if H is the kernel of this map, we have the short exact sequence

e! H ! G! F ! e.

Because F is free, this short exact sequence splits, and it follows that G = H o F .

Thus, Theorem 5.9 applies to any group G mapping onto a free group, as long as the

kernel of this map satis�es the Ore condition.

Here are two corollaries.

Corollary 5.10. If H is a group so that k [H] is an Ore domain, then k [H o F ] is

a domain.

Proof. This follows from the fact that k [H o F ] embeds into a crossed product D�F ,

which we showed in Corollary 3.21 to be a domain.

Corollary 5.11. Given the hypotheses of Theorem 5.9, �nitely-generated projective

modules over the localized group ring R are free.

Proof. If P is a �nitely-generated projective R-module, then P is a direct summand

of a free R-module. Thus, P is a �nitely-generated submodule of a free R-module,

and P is free.
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Example 5.12. In 2010, Misseldine constructed �nitely-generated, non-free, stably

free modules over the Klein bottle group ha; b j aba�1bi = Z o Z in [8]. If we take

G = Z o Z, and H = hai �= Z, then H is torsion-free elementary amenable, normal

subgroup of G, and G=H is free. Therefore, we may form the localized group ring

(k [G]) (k [H]� f0g)�1. The localized group ring can be expressed in the form D �Z,

whereD is a division ring, and it follows that all �nitely-generated projective modules

over the localized group ring are free. In particular, the modules that Misseldine

constructed are free when viewed as modules over the localized group ring.
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