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ABSTRACT

Although valuable understanding of real-world phenomena can be gained ex-

perimentally, it is often the case that experimental investigations can be found to be

limited by financial, ethical, or other constraints making such an approach impractical

or, in some cases, even impossible. To nevertheless understand and make predictions

of the natural world around us, countless processes encountered in the physical and bi-

ological sciences, engineering, economics, and medicine can be e�ciently described by

means of mathematical models written in terms of ordinary or/and partial di↵erential

equations or their systems. Fundamental questions that arise in the modeling process

need care that relies on the use of mathematical analysis. It is also the case that more

realistic models directly relevant to the specific area of application are often nonlinear,

calling for a robust treatment of general classes of di↵erential equations. This thesis

is devoted to developing a range of proof techniques for the mathematical analysis of

general classes of both linear and nonlinear and both ordinary and partial di↵erential

equations that help in gaining an understanding of the fundamental properties of

their solutions.
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CHAPTER 1

INTRODUCTION

A broad range of phenomena occurring throughout nature can be modeled by making

the assumption that the particles forming the system exist as a continuum. In this

macroscopic approach, the resulting theoretical description of the physical system

involves functions of one or more continuous independent variables. Even in simple

cases, such functions are unknown and have to be determined by considering a

mathematical model consisting of ordinary or partial di↵erential equations. Such

equations involve derivatives of the unknown functions and have for many years been

broadly applied in a variety of disciplines including the physical sciences and biological

life sciences, engineering, economics, and medicine. Various studies that can give an

outlook of the depth and breadth of the use of both ordinary and partial di↵erential

equations used in a broad range of fields can be found in monographs, such as [9], [3],

[4], [5], [11].

To form a complete mathematical formulation, di↵erential equations are supple-

mented by initial and/or boundary conditions, which can be decisive in determining

the qualitative structure of the corresponding solutions. When constructing problems

described by di↵erential equations, one should make sure that the problems, consisting

of di↵erential equations together with the corresponding initial and/or boundary

conditions, as appropriate, are well-posed, see e.g., [5]. Well-posedness, or more
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precisely a lack of it, has for years ba✏ed physicists, engineers, and others using

mathematical models to formulate real-world problems, as well as computational

mathematicians trying to solve them. It is, therefore, important to understand what

well-posedness is and to mathematically quantify models that possess this property

and those that do not. To do so, it is necessary to engage in mathematical analysis.

There are three natural questions concerning di↵erential equations

• existence: does the problem have a solution?

• uniqueness: does the problem have exactly one solution?

• stability: is the problem stable, that is, do all solutions that are close to each

other initially remain close for all time?

Answers to these questions are often non-trivial and, depending on the form of the

di↵erential equations, need special investigation that relies on the use of mathematical

analysis and a range of related proof techniques. Although numerical computations

are helpful and can be informative when faced with a well-posed problem, they may

lead nowhere and often may be a waste of time because of ill-posedness. It is also

the case that many results on numerical methods for di↵erential equations would not

be possible to obtain without the use of mathematical analysis. Rigorous, analytical

approaches, therefore, help in gaining understanding that is otherwise not possible to

gain through computations alone.

To proceed, we define general classes of di↵erential equations that will aid in

formulating the subject of this thesis. A general ordinary di↵erential equation can be

written concisely in the form

F

⇣

t, u,

du

dt

,model parameters
⌘

= 0,
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involving the continuous independent and dependent variables and its ordinary deriva-

tive. Importantly, the di↵erential equation may also depend on model parameters,

which can decisively change the qualitative form of the solution and may influence

well-posedness properties. A general partial di↵erential equation can be written in

the form

F

⇣

t, x1, x2, . . . , xn, u,
@u

@t

,

@u

@x1
,

@u

@x2
, . . . ,

@

k
u

@x

k1
i . . . @x

km
j

,model parameters
⌘

= 0,

where t represents time, x = (x1, x2, . . . , xn) usually represents space, the function

u = u(t, x1, x2, . . . , xn)

is the unknown solution to be determined and k = k1 + · · · + km. As in the case of

ordinary di↵erential equations, the given function F often depends on unknown model

parameters that have to be estimated according to experimental, field, or clinical data,

which can greatly influence the behavior of the resulting problem. In this thesis, we

investigate general classes of both ordinary and partial di↵erential equations written

in the forms
du

dt

= f(t, u(t))

and

@u

@t

= f

⇣

t, x1, x2, . . . , xn, u,
@u

@x1
,

@u

@x2
, . . . ,

@u

@xn
,

@

2
u

@x

2
1

,

@

2
u

@x1@x2
, . . . ,

@

2
u

@x

2
n

⌘

and proceed with developing proof techniques and applying methods of mathemat-

ical analysis to obtain results critical to the understanding of a range of important



4

properties of both classes of di↵erential equations.

The techniques employed in this thesis, and more generally the techniques of

mathematical analysis, present an important and necessary tool not only for non-

mathematicians and mathematical modelers as an aid in formulating well-posed mod-

els for real-world phenomena, but also for numerical analysts as it is often necessary

to understand the fundamental structure of the di↵erential problem in question and

the qualitative behavior of its solutions before attempting quantitative computations.

These techniques can also be used in studies of yet more generalized equations beyond

the scope of the above general classes of di↵erential questions. The more generalized

equations arise as a result of a curiosity observed in nature involving past phases.

In many cases, ordinary and partial di↵erential equations depend not only on the

behavior of their solutions at a present stage but also at some past stage or stages.

Many of these natural phenomena are described by such more general di↵erential

equations as investigated, for example, in [1], [2], [6], [7], [8], [10], [12], [13].

This thesis builds on results presented in the monograph [11]. Not all of the results

have been proved in [11] and those that have been proved have in many cases been

proved under di↵erent assumptions. Moreover, the proofs presented in this thesis

include significantly more intermediate steps and helpful explanations needed for a

full understanding and to increase accessibility to a broader range of readers.
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CHAPTER 2

THEOREMS FOR NONLINEAR ORDINARY

DIFFERENTIAL EQUATIONS AND THEIR SYSTEMS

In this chapter, we present and prove a selection of theorems on nonlinear ordinary

di↵erential equations and their systems. The results of the theorems and central ideas

behind some of the proofs will be applied in the remaining chapters.

The first of these theorems involves the relationship between di↵erent di↵erentiable

functions and will be helpful in classifying the di↵erence in behavior between di↵erent

solutions of di↵erential equations.

Theorem 2.1. Suppose u, v : (0, T ] ! R are di↵erentiable functions that satisfy the

following condition for all t0 2 (0, T ]:

u(t0) = v(t0) implies u

0(t0) < v

0(t0). (2.1)

Then, u and v satisfy exactly one of the cases:

(I) u(t) < v(t), for all t 2 (0, T ],

(II) there exists t̄ 2 (0, T ] such that u(t) � v(t), for all 0 < t < t̄.

Proof. Suppose case (I) is not true. Then, there exists t̄ 2 (0, T ] such that u(t̄) � v(t̄).

We now want to show that, in this case, there is no t⇤ < t̄ that would satisfy the
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inequality u(t⇤) < v(t⇤). By contradiction, suppose that such t⇤ exists. Then, there

would exist t0 > t⇤ such that

u(t0) = v(t0) and u(t) < v(t) for all t⇤  t < t0.

Then,
u(t)� u(t0)

t� t0
>

v(t)� v(t0)

t� t0
, t⇤  t < t0

and taking the limit with t ! t0, we get

u

0(t0) � v

0(t0). (2.2)

Since u(t0) = v(t0), inequality (2.2) contradicts the assumption (2.1). Therefore,

u(t) � v(t), for all 0 < t  t̄, which proves (II). Since there are only two cases: either

(I) is satisfied or (I) is not satisfied, the proof of the Theorem 2.1 is finished.

In the next step, we apply Theorem 2.1 and show strict inequality between two

functions.

Theorem 2.2. Suppose f : R2 ! R is continuous and u, v : [0, T ] ! R are

continuous on [0, T ] and di↵erentiable on (0, T ]. Moreover, the following conditions

are satisfied:

(1) there exists ✏ > 0 such that u(t) < v(t) for all t 2 (0, ✏),

(2) u

0(t)� f(t, u(t)) < v

0(t)� f(t, v(t)) for all t 2 (0, T ].

Then, u(t) < v(t) for all t 2 (0, T ].
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Proof. We apply Theorem 2.1. Suppose t0 2 (0, T ] is such that u(t0) = v(t0). Then,

f(t0, u(t0)) = f(t0, v(t0)) and from (2 ) we get

u

0(t0)� f(t0, u(t0)) < v

0(t0)� f(t0, v(t0)).

Therefore, u

0(t0) < v

0(t0) and the assumptions of Theorem 2.1 are satisfied. By

Theorem 2.1, either case (I ) or case (II ) is true. From (1 ), it is seen that case (II )

does not hold. Therefore, case (I ) is valid and u(t) < v(t) for all t 2 (0, T ], which

finishes the proof.

We now apply Theorem 2.2 to prove the following result on lower and upper

bounds for solutions of initial value problems, useful in evaluating stability properties

of the corresponding class of ordinary di↵erential equations.

Theorem 2.3. Suppose f : R2 ! R is continuous, ⌘ 2 R, and w : [0, T ] ! R solves

the problem
8

>

<

>

:

w

0(t) = f(t, w(t)), t 2 (0, T ],

w(0) = ⌘.

Moreover, suppose that u, v : [0, T ] ! R are continuous on [0, T ] and di↵erentiable

on (0, T ], and satisfy the conditions:

(1) u(0) < ⌘ < v(0),

(2) u

0(t) < f(t, u(t)), v

0(t) > f(t, v(t)), for all t 2 (0, T ].

Then, the strict inequalities

u(t) < w(t) < v(t) (2.3)

hold for all t 2 (0, T ].
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Proof. We apply Theorem 2.2 twice with u and w for the first time and with w and

v for the second time. Since u(0) < w(0) and the functions u and w are continuous,

there exists ✏ > 0 such that u(t) < w(t) for all t 2 [0, ✏) and condition (1 ) of Theorem

2.2 is satisfied. Moreover, from (2 ), we get

u

0(t)� f(t, u(t)) < 0 = w

0(t)� f(t, w(t)),

for all t 2 (0, T ], and condition (2 ) of Theorem 2.2 is satisfied. Therefore, by Theorem

2.2, we conclude that u(t) < w(t), for t 2 (0, T ], and the first inequality in (2.3) is

proved. In a similar way, it can be shown that w(t) < v(t), for t 2 (0, T ], and the

proof of (2.3) is finished.

The central idea behind the proof relies on the use of the previous theorem,

which in turn can be traced back to rely on Theorem 2.1. Although not immediately

relevant, we have seen through the sequence of proofs how the results of Theorem 2.1

contribute to the development of a useful result for evaluating stability properties of

a class of initial value problems.

The next theorem presents relations between functions that satisfy generalized

Lipschitz conditions.

Theorem 2.4. Suppose u, v, ⇢, ⇢̄ : [0, T ] ! R are continuous on [0, T ] and di↵eren-

tiable on (0, T ]. Moreover, suppose that the following conditions are satisfied:

(1) there exists ✏ > 0 such that the inequalities

� ¯
⇢(t) < v(t)� u(t) < ⇢(t) (2.4)

hold for all t 2 (0, ✏),
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(2) the function u solves the di↵erential equation

u

0(t) = f(t, u(t)) (2.5)

and the function v solves it with a defect no less than ��̄(t) and no greater than

�(t); that is,

��̄(t)  v

0(t)� f(t, v(t))  �(t), (2.6)

for all t 2 (0, T ], where �, �̄ : (0, T ] ! R are continuous functions,

(3) suppose that !, !̄ : [0, T ]⇥ R ! R and ⇢, ⇢̄ satisfy

8

>

<

>

:

⇢

0(t) > !(t, ⇢(t)) + �(t),

⇢̄

0(t) > !̄(t, ⇢̄(t)) + �̄(t),
(2.7)

for all t 2 (0, T ],

(4) the function f satisfies the inequalities

f(t, v(t))� f(t, v(t)� ⇢(t))  !(t, ⇢(t))

f(t, v(t) + ⇢̄(t))� f(t, v(t))  !̄(t, ⇢̄(t)),
(2.8)

for t 2 (0, T ].

Then, the inequalities

�⇢̄(t) < v(t)� u(t) < ⇢(t) (2.9)

hold for all t 2 (0, T ].
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Proof. We apply Theorem 2.1 with u replaced by v � u and v replaced by ⇢ for the

right-hand side inequality in (2.9). Suppose t0 2 (0, T ] is such that v(t0) � u(t0) =

⇢(t0). Then, from (2.4)-(2.8), we get

v

0(t0)� u

0(t0)  �(t0) + f(t0, v(t0))� u

0(t0)

= �(t0) + f(t0, v(t0))� f(t0, u(t0))

= �(t0) + f(t0, v(t0))� f(t0, v(t0)� ⇢(t0))

 �(t0) + !(t0, ⇢(t0)) < ⇢

0(t0)

and the assumptions of Theorem 2.1 are satisfied. Therefore, from the assertion of

Theorem 2.1, either case (I ) or case (II ) is true. If case (II ) holds, then for all t 2 (0, t̄]

the inequality v(t)� u(t) � ⇢(t) holds, where t̄ > 0 is a certain point in (0, T ], which

contradicts condition (2.4). Therefore, case (I ) holds and v(t) � u(t) < ⇢(t), for all

t 2 (0, T ], which finishes the proof of the right-hand side inequality in (2.9). The

proof of the left-hand side inequality in (2.9) is similar.

Although the last theorem involves more assumptions and therefore narrows down

the class of functions that the theorem applies to, the result of the theorem gives useful

information about the ‘closeness’ of a class of functions - a result useful in evaluating

one of the properties of well-posedness.

We now present a generalization of Theorem 2.1 to higher dimensional functions.

Rather than being relevant for problems composed of a single ordinary di↵erential

equation, the results of the following theorem will be useful in determining the

properties of systems of two or more ordinary di↵erential equations. We will follow

and expand on the proof techniques of Theorem 2.1 to generalize to higher dimensions

and prove the following:
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Theorem 2.5. Suppose u = (u1, u2, . . . , un) : (0, T ] ! Rn, v = (v1, v2, . . . , vn) :

(0, T ] ! Rn, and uj, vj are di↵erentiable functions that satisfy the following condition.

Let t0 2 (0, T ] and i 2 {1, 2, . . . , n} be arbitrary and the following implication be

satisfied:

if ui(t0) = vi(t0) and uj(t0)  vj(t0) for all j 2 {1, 2, . . . , n}, then u

0
i(t0) < v

0
i(t0).

Then, either

(I) uj(t) < vj(t) for all t 2 (0, T ] and all j 2 {1, 2, . . . , n} or

(II) there exists t̄ > 0 such that for all t 2 (0, t̄] there exists i 2 {1, 2, . . . , n} such

that ui(t) � vi(t)

and both cases do not hold together.

Proof. By contradiction, suppose neither (I ) nor (II ) is true. Then, by a continuity

argument, there exists t0 2 (0, T ] such that the following three conditions are satisfied:

• ui(t0) = vi(t0) for a certain i 2 {1, 2, . . . , n},

• uj(t0)  vj(t0) for all j 2 {1, 2, . . . , n},

• uj(t) < vj(t) for all t 2 (0, t0) and all j 2 {1, 2, . . . , n}.

This is because the negation of (I) or (II) gives that there is at least one value of i

for which there exist two corresponding values of t such that ui�vi is positive for the

larger value of t and strictly negative for the smaller value of t. Hence, by continuity,

there must exist a value of t for which ui = vi. To prove the remaining two bullet

points, we take the smallest such t across all such i.
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From this we get,
ui(t)� ui(t0)

t� t0
>

vi(t)� vi(t0)

t� t0
,

for t 2 (0, t0). We now take t ! t0 in the above inequality and get

u

0
i(t0) � v

0
i(t0),

which contradicts the assumption of the theorem. Therefore, we conclude that either

(I ) or (II ) holds, which finishes the proof.

We now apply Theorem 2.5 to prove results on the relationship between two

functions of time in R, which will be useful in determining the relationship between

two di↵erent solutions of a system of ordinary di↵erential equations.

Theorem 2.6. Suppose u = (u1, u2, . . . , un) : [0, T ] ! Rn
, v = (v1, v2, . . . , vn) :

[0, T ] ! Rn and uj, vj are continuous on [0, T ] and di↵erentiable on (0, T ] for all

j 2 {1, 2, . . . , n}. Moreover, the following conditions are satisfied:

(1) there exists ✏ > 0 such that the inequality

uj(t) < vj(t) (2.10)

holds for all t 2 (0, ✏) and all j 2 {1, 2, . . . , n},

(2) for any t 2 [0, T ], if z = (z1, z2, . . . , zn) is such that uj(t)  zj  vj(t), for all

j 2 {1, 2, . . . , n}, and zi = ui(t) for a certain i 2 {1, 2, . . . , n}, then

u

0
i(t)� fi(t, z) < v

0
i(t)� fi(t, v(t)). (2.11)
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Then, the inequality uj(t) < vj(t) holds for all t 2 (0, T ] and all j 2 {1, 2, . . . , n}.

Proof. Either the conclusion of the theorem is true or (since u and v are continuous)

there exists t0 2 (0, T ] such that the following two conditions are satisfied:

• uj(t0)  vj(t0) for all j 2 {1, 2, . . . , n},

• ui(t0) = vi(t0) for a certain i 2 {1, 2, . . . , n}.

Then, from (2.11) with z = v(t0), we get

u

0
i(t0)� fi(t0, v(t0)) < v

0
i(t0)� fi(t0, v(t0))

thus

u

0
i(t0) < v

0
i(t0) (2.12)

and the assumptions of Theorem 2.5 are satisfied. Therefore, by Theorem 2.5, either

case (I ) or case (II ) is true. If case (I ) is true, then we get the assertion of Theorem

2.6. On the other hand, condition (2.10) contradicts and eliminates case (II ), which

finishes the proof of Theorem 2.6.

Remark 2.1. Theorem 2.6 is valid also if the condition (2 ) is replaced by the

following condition:

(3) for any t 2 [0, T ], if z = (z1, z2, . . . , zn) is such that uj(t)  zj  vj(t), for all

j 2 {1, 2, . . . , n}, and zi = vi(t) for a certain i 2 {1, 2, . . . , n}, then

u

0
i(t)� fi(t, u(t)) < v

0
i(t)� fi(t, z). (2.13)

generalizing the scope of the theorem.
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The di↵erence between the two conditions (2) and (3) resides in the arguments

of the functions fi for i 2 {1, 2, . . . , n} on either the left-hand side or the right-hand

side of the strict inequality.

To see how the proof of Theorem 2.6 changes if these two conditions are inter-

changed, we first consider such a replacement and then we apply the inequality (2.13)

with the value z = u(t0). We then get the following

u

0
i(t0)� fi(t0, u(t0)) < v

0
i(t0)� fi(t0, u(t0)),

which implies the inequality (2.12), that is, we arrive at the result of the theorem.

After this modification to the proof of Theorem 2.6, the rest of the proof remains as

before.

Finally, we apply Theorem 2.6 to prove the following theorem giving upper and

lower bounds to the solution of a higher dimensional initial value problem consisting

of a system of two or more ordinary di↵erential equations. This result on the upper

and lower bounds is useful in determining stability properties of such systems of

di↵erential equations.

Theorem 2.7. Suppose f : R1+n ! Rn, ⌘ 2 Rn, and w : [0, T ] ! Rn is a solution to

the initial value problem

8

>

<

>

:

w

0
i(t) = fi(t, w1(t), . . . , wn(t)), t 2 (0, T ]

wi(0) = ⌘i, i = 1, 2, ..., n.

Moreover, suppose u = (u1, u2, . . . , un) : [0, T ] ! Rn
, v = (v1, v2, ..., vn) : [0, T ] !

Rn, uj, vj are continuous on [0, T ] and di↵erentiable on (0, T ] for all j = 1, 2, . . . , n
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and satisfy the following conditions:

(1) there exists ✏ > 0 such that the inequalities

uj(t) < wj(t) < vj(t) (2.14)

hold for all t 2 (0, ✏) and all j 2 {1, 2, . . . , n},

(2) for any t 2 [0, T ] and z = (z1, z2, . . . , zn) 2 Rn the two conditions are satisfied:

• if zi = ui(t) and zj � uj(t), for all j 2 {1, 2, . . . , n}, then u

0
i(t) < fi(t, z),

• if zi = vi(t) and if zj  vj(t), for all j 2 {1, 2, . . . , n}, then v

0
i(t) > fi(t, z).

Then,

uj(t) < wj(t) < vj(t) (2.15)

for all t 2 (0, T ] and all j 2 {1, 2, . . . , n}.

Proof. From (2.14), condition (1 ) of Theorem 2.6 is satisfied. We now verify condition

(2 ) for u and w. Let z = (z1, z2, ..., zn) 2 Rn be such that

• uj(t)  zj  wj(t), for all j 2 {1, 2, . . . , n}, and

• zi = ui(t), for a certain i 2 {1, 2, . . . , n}.

Then, by assumptions of Theorem 2.7, we get u0
i(t) < fi(t, z) and

u

0
i(t)� fi(t, z) < 0 = w

0
i(t)� fi(t, w(t)),

which shows that condition (2 ) of Theorem 2.6 is satisfied. By Theorem 2.6, uj(t) <

wj(t), for all t 2 (0, T ] and all j 2 {1, 2, , n}. Therefore, the first inequality in (2.15)
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is satisfied. We now verify condition (2 ) for w and v. Let z = (z1, z2, ..., zn) 2 Rn be

such that

• wj(t)  zj  vj(t), for all j 2 {1, 2, . . . , n}, and

• zi = vi(t) for a certain i 2 {1, 2, . . . , n}.

Then, from condition (2 ) of Theorem 2.7, we get v0i(t) > fi(t, z). Therefore,

v

0
i(t)� fi(t, z) > 0 = w

0
i � fi(t, w(t))

and condition (2 ) is satisfied. By Theorem 2.6, we find that wj(t) < vj(t), for all

j 2 {1, 2, ..., n} and t 2 (0, T ], which proves the assertion of Theorem 2.7 and finishes

the proof.
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CHAPTER 3

NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS:

STRICT INEQUALITIES

The following notation, definitions, and assumptions will be used in the next chapters.

Suppose u : Rn⇥R ! R is twice di↵erentiable with respect to x and once di↵erentiable

with respect to t. Then,

@u

@x

=
⇣

@u

@x1
,

@u

@x2
, . . . ,

@u

@xn

⌘

,

@

2
u

@x

2
=

 

@

2
u

@xi@xj

!n

i,j=1

.

Suppose M, M̃ 2 Rn,n are symmetric matrices. Then,

M  M̃ if and only if
n
X

i,j=1

(M̃ij �Mij)↵i↵j � 0, for all ↵ 2 Rn
.

The nonlinear partial di↵erential equation

@u

@t

= f

⇣

x1, x2, ..., xn, t, u,
@u

@x1
,

@u

@x2
, ...,

@u

@xn
,

@

2
u

@x

2
1

,

@

2
u

@x1@x2
, . . . ,

@

2
u

@x

2
n

⌘

will be shortly written in the form

@u

@t

= f

⇣

x, t, u,

@u

@x

,

@

2
u

@x

2

⌘

,
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where f : Rn ⇥ R⇥ R⇥ Rn ⇥ Rn,n ! R.

Let b = (b1, . . . , bn) 2 Rn
+ and T 2 R+ be fixed, where R+ = (0,1). Then, we

define the set

S =
n

(x, t) : 0 < t < T, �bi < xi < bi, i = 1, . . . , n
o

and its boundaries

�0S = [�b, b]⇥ {0},

�1S = {(x, t) : 0 < t < T, xi = ±bi, i = 1, . . . , n},

�2S = [�b, b]⇥ {T},

B = �0S [ �1S,

and closure S̄ = S [ B [ �2S, where [�b, b] = [�b1, b1]⇥ · · ·⇥ [�bn, bn].

Throughout this chapter and the following chapters, we will make the assumption

that the function f (a function of several variables) is continuous and satisfies the

condition

f(x, t, p, q,M)  f(x, t, p, q, M̃), (3.1)

for all M, M̃ 2 Rn,n such that M  M̃ , and all (x, t) 2 S̄, p 2 R, q 2 Rn.

The following results will be applied to prove subsequent theorems. The first of

these specifies the relationship between two higher dimensional functions under a set

of constraints on their partial derivatives.

Theorem 3.1. Suppose that

(1) u, v : S̄ ! R are continuous functions and have continuous first order partial

derivatives with respect to t and first and second order partial derivatives with
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respect to x in S [ �2S

(2) if (x, t) 2 S [ �2S, u(x, t) = v(x, t),
@u

@x

(x, t) =
@v

@x

(x, t), and

@

2
u

@x

2
(x, t)  @

2
v

@x

2
(x, t) then

@u

@t

(x, t) <
@v

@t

(x, t).

Then, u and v satisfy exactly one of the following cases:

(I) u(x, t) < v(x, t), for all (x, t) 2 S [ �2S,

(II) there is a maximal t̄ 2 [0, T ) such that

u(x, t) < v(x, t),

for all (x, t) 2 S [ �2S with t  t̄; t̄ is maximal in the sense that there is a

sequence
n

(xk, tk)
o1

k=1
✓ S [ �2S with tk > t̄ and u(xk, tk) � v(xk, tk), k =

1, 2, . . . , such that

lim
k!1

(xk, tk) = (x̄, t̄) 2 �0S [ �1S

(the points (xk, tk) tend to a boundary point).

Proof. Suppose t̄ is the largest number such that

u(x, t) < v(x, t), for all (x, t) 2 S [ �2S with t < t̄.

Since u and v are continuous,

u(x, t̄)  v(x, t̄), for all x such that (x, t̄) 2 S [ �2S.

Define St̄ = {(x, t̄) 2 S [ �2S : u(x, t̄)  v(x, t̄)}. Since it may happen that t̄ = 0, it

is possible that St̄ = ;. We now want to prove that
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u(x, t̄) < v(x, t̄), for all (x, t̄) 2 St̄. (3.2)

Suppose that there exists (x̄, t̄) 2 St̄ such that u(x̄, t̄) = v(x̄, t̄). Then, '(x̄, t̄) =

v(x̄, t̄)� u(x̄, t̄) = 0 and '(x, t̄) � 0, for (x, t̄) 2 St̄. Therefore, '(·, t̄) has a minimum

at x̄, which implies that

'(x̄, t̄) = 0,
@'

@x

(x̄, t̄) = 0,
@

2
'

@x

2
(x̄, t̄) � 0;

that is,

u(x̄, t̄) = v(x̄, t̄),
@u

@x

(x̄, t̄) =
@v

@x

(x̄, t̄),
@

2
u

@x

2
(x̄, t̄)  @

2
v

@x

2
(x̄, t̄)

and by assumption (2), we get

@u

@t

(x̄, t̄) <
@v

@t

(x̄, t̄). (3.3)

From the definition of t̄, we get

u(x̄, t) < v(x̄, t), for all t < t̄, and u(x̄, t̄) = v(x̄, t̄),

which, as in the proof of Theorem 2.1, imply
@u

@t

(x̄, t̄) � @v

@t

(x̄, t̄) and contradict

inequality (3.3). From this contradiction, we conclude that inequality (3.2) is true. If

t̄ = 0, that is St̄ = ;, then inequality (3.2) is satisfied in a trivial way. If t̄ = T , then

from the inequality between the functions u and v given by (3.2) and the definition

of t̄, we get

u(x, t) < v(x, t), for all (x, t) 2 S [ �2S,
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which finishes the proof of (I). If t̄ < T , then from the definition of t̄ and by

compactness, there exists a sequence

n

(xk, tk)
o1

k=1
✓ S [ �2S

such that tk > t̄, u(xk, tk) � v(xk, tk), for all k,
�

tk

 1
k=1

is strictly decreasing and

lim
k!1

tk = t̄, lim
k!1

xk = x̄ . Therefore, u(x̄, t̄) � v(x̄, t̄) and (x̄, t̄) 2 �0S [ �1S, which

finishes the proof of (II).

The following result determines the relationship between two continuous functions

that satisfy suitable di↵erentiability conditions and a class of partial di↵erential

inequalities.

Theorem 3.2. Suppose f : Rn ⇥ R⇥ R⇥ Rn ⇥ Rn,n ! R satisfies assumption (3.1)

and u, v : S̄ ! R are continuous, have continuous partial derivatives
@

@t

,

@

@x

,

@

2

@x

2
in

S [ �2S, and satisfy the conditions

(1) u(x, t)� v(x, t)  0, for all (x, t) 2 B,

(2) the strict inequality

@u

@t

(x, t)� f

⇣

x, t, u(x, t),
@u

@x

(x, t),
@

2
u

@x

2
(x, t)

⌘

<

@v

@t

(x, t)� f

⇣

x, t, v(x, t),
@v

@x

(x, t),
@

2
v

@x

2
(x, t)

⌘

is satisfied for all (x, t) 2 S [ �2S.

Then,

u(x, t) < v(x, t), for all (x, t) 2 S [ �2S.
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Proof. We apply Theorem 3.1. Note that assumption (1) of Theorem 3.1 is satisfied.

We now verify whether assumption (2) of Theorem 3.1 is satisfied. Let (x, t) 2 S[�2S

be such that

u(x, t) = v(x, t),
@u

@x

(x, t) =
@v

@x

(x, t),
@

2
u

@x

2
(x, t)  @

2
v

@x

2
(x, t).

Then, from (2 ) and assumption (3.1), we get

0 <

@v

@t

(x, t)� @u

@t

(x, t) + f

⇣

x, t, u(x, t),
@u

@x

(x, t),
@

2
u

@x

2
(x, t)

⌘

�f

⇣

x, t, v(x, t),
@v

@x

(x, t),
@

2
v

@x

2
(x, t)

⌘

=
@v

@t

(x, t)� @u

@t

(x, t) + f

⇣

x, t, v(x, t),
@v

@x

(x, t),
@

2
u

@x

2
(x, t)

⌘

�f

⇣

x, t, v(x, t),
@v

@x

(x, t),
@

2
v

@x

2
(x, t)

⌘

 @v

@t

(x, t)� @u

@t

(x, t);

that is,
@u

@t

(x, t) <

@v

@t

(x, t), which shows that condition (2 ) of Theorem 3.1 is

satisfied. By Theorem 3.1, only one of the two cases (I), (II) is true. If (II) is true,

lim
k!1

sup
h

u(xk, tk)�v(xk, tk)
i

� 0, which contradicts assumption (1 ) of Theorem 3.2.

Therefore, only (I) is true; that is, u(x, t) < v(x, t), for all (x, t) 2 S [ �2S, which

finishes the proof of Theorem 3.2.

Theorems and proof techniques involving partial di↵erential inequalities underly

fundamental results addressing partial di↵erential equations and the behavior of

their solutions. Obtaining a grasp of the analysis of partial di↵erential inequalities,

therefore, is central to gaining an understanding of the many partial di↵erential

equations that model nature and help in addressing fundamental questions raised
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by the modeling process. A variety of the main concepts and questions are discussed

in the following chapter by using this technique.
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CHAPTER 4

NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS:

WEAK INEQUALITIES

We now apply Theorem 3.1 and variations of it to prove a sequence of results in-

volving partial di↵erential inequalities under suitable continuity and di↵erentiability

conditions. The first result classifies the di↵erence in the behavior between two

di↵erent functions of n+1 independent variables satisfying specified partial di↵erential

inequalities. The result holds for the full domain of interest.

Theorem 4.1. Suppose u, v : S̄ ! R are continuous and have continuous first order

partial derivatives with respect to t and first and second order partial derivatives with

respect to x in S [ �2S. Suppose also that f : Rn ⇥ R⇥ R⇥ Rn ⇥ Rn,n ! R satisfies

assumption (3.1) and the condition

f

⇣

x, t, v(x, t) + z,

@v

@x

(x, t),
@

2
v

@x

2
(x, t)

⌘

� f

⇣

x, t, v(x, t),
@v

@x

(x, t),
@

2
v

@x

2
(x, t)

⌘

 !(t, z),
(4.1)

for all (x, t) 2 S[ �2S and all z > 0, with ! : (0, T ]⇥ [0,1) ! R (being a function of

only t and z), such that for all " > 0, there exist � > 0 and a continuous function ⇢ :

[0, T ] ! [0,1), which is di↵erentiable in (0, T ], and for all t 2 (0, T ] the inequalities

�  ⇢(t)  ", ⇢0(t) > !(t, ⇢(t)) are satisfied. Moreover, suppose that

(1) u(x, t)  v(x, t), for all (x, t) 2 B,
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(2) and that the inequality

@u

@t

(x, t)� f

⇣

x, t, u(x, t),
@u

@x

(x, t),
@

2
u

@x

2
(x, t)

⌘



@v

@t

(x, t)� f

⇣

x, t, v(x, t),
@v

@x

(x, t),
@

2
v

@x

2
(x, t)

⌘

(4.2)

holds for all (x, t) 2 S [ �2S.

Then, u(x, t)  v(x, t) for all (x, t) 2 S̄.

Proof. Let " > 0 be arbitrary and ⇢ : [0, T ] ! [0,1) be chosen for this " according

to condition (4.1). We now want to prove that u(x, t) < v(x, t) + ⇢(t) for all (x, t) 2

S [ �2S. For this, we apply for Theorem 3.1 with u and v + ⇢. We note that it is

possible to verify that condition (1 ) of Theorem 3.1 is satisfied with u and v + ⇢. To

verify condition (2 ) of Theorem 3.1, suppose that (x, t) 2 S [ �2S is such that

u(x, t) = v(x, t) + ⇢(t),
@u

@x

(x, t) =
@v

@x

(x, t),
@

2
u

@x

2
(x, t)  @

2
v

@x

2
(x, t).

Then, from condition (2 ) of Theorem 4.1 and assumptions (3.1) and (4.1), we get

0  @v

@t

(x, t)� @u

@t

(x, t) + f

⇣

x, t, u(x, t),
@u

@x

(x, t),
@

2
u

@x

2
(x, t)

⌘

�f

⇣

x, t, v(x, t),
@v

@x

(x, t),
@

2
v

@x

2
(x, t)

⌘

=
@v

@t

(x, t)� @u

@t

(x, t) + f

⇣

x, t, v(x, t) + ⇢(t),
@v

@x

(x, t),
@

2
u

@x

2
(x, t)

⌘

�f

⇣

x, t, v(x, t) + ⇢(t),
@v

@x

(x, t),
@

2
v

@x

2
(x, t)

⌘

+f

⇣

x, t, v(x, t) + ⇢(t),
@v

@x

(x, t),
@

2
v

@x

2
(x, t)

⌘

� f

⇣

x, t, v(x, t),
@v

@x

(x, t),
@

2
v

@x

2
(x, t)

⌘

 @v

@t

(x, t)� @u

@t

(x, t) + f

⇣

x, t, v(x, t) + ⇢(t),
@v

@x

(x, t),
@

2
v

@x

2
(x, t)

⌘

�f

⇣

x, t, v(x, t),
@v

@x

(x, t),
@

2
v

@x

2
(x, t)

⌘
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and

0  @v

@t

(x, t)� @u

@t

(x, t) + !(t, ⇢(t))

<

@v

@t

(x, t)� @u

@t

(x, t) + ⇢

0(t) =
@

@t

⇣

v(x, t) + ⇢(t)
⌘

� @

@t

u(x, t).

Therefore,
@

@t

u(x, t) <
@

@t

�

v(x, t) + ⇢(t)
�

, and Theorem 3.1 applies. If case (II ) from

Theorem 3.1 is true, then taking k ! 1, we get u(x̄, t̄) � v(x̄, t̄)+⇢(t̄), for (x̄, t̄) 2 B.

Since ⇢(t̄) > 0, u(x̄, t̄) > v(x̄, t̄), for (x̄, t̄) 2 B, which contradicts assumption (1 ) of

Theorem 4.1. Therefore, only case (I ) is true; that is,

u(x, t) < v(x, t) + ⇢(t), for all (x, t) 2 S [ �2S.

Since lim
"!0

⇢(t) = 0, when taking "! 0 in the above inequality, we get

u(x, t)  v(x, t), for all (x, t) 2 S [ �2S,

which finishes the proof of Theorem 4.1 as from (1 ), the above inequality is satisfied

on B.

Remark 4.1. The inequality in condition (4.1) of Theorem 4.1 can be replaced by

the inequality

f

⇣

x, t, v(x, t),
@v

@x

(x, t),
@

2
v

@x

2
(x, t)

⌘

� f

⇣

x, t, v(x, t)� z,

@v

@x

(x, t),
@

2
v

@x

2
(x, t)

⌘

 !(t, z),

for all (x, t) 2 S [ �2S and all z > 0.

Assumption 4.1. Suppose f : Rn⇥R⇥R⇥Rn⇥Rn,n ! R satisfies condition (3.1)

and ⌘ : B ! R is continuous. We consider the initial-boundary value problem
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8

>

<

>

:

@u

@t

(x, t) = f

⇣

x, t, u(x, t),
@u

@x

(x, t),
@

2
u

@x

2
(x, t)

⌘

, (x, t) 2 S [ �2S,

u(x, t) = ⌘(x, t), (x, t) 2 B,

(4.3)

where the solution u : S̄ ! R is continuous on S̄ and has continuous partial deriva-

tives
@

@t

,

@

@x

,

@

2

@x

2
in S [ �2S.

The following theorem derives upper and lower bounds for problem (4.3) given

in terms of a system of partial di↵erential equations supplemented by appropriate

boundary conditions. The bounds are derived by considering a relevant system of

partial di↵erential inequalities.

Theorem 4.2. Suppose

(1) f : Rn ⇥ R⇥ R⇥ Rn ⇥ Rn,n ! R satisfies assumption (3.1) and

f(x, t, z, p, q)� f(x, t, z̃, p, q)  !(t, z � z̃), for all z � z̃,

where ! : (0, T ]⇥ [0,1) ! R is as in condition (4.1) of Theorem 4.1,

(2) ⌘ : B ! R is as in Assumption 4.1

(3) ', : S̄ ! R are continuous and have continuous derivatives
@'

@t

,
@ 

@t

,
@'

@x

,

@ 

@x

,
@

2
'

@x

2
,
@

2
 

@x

2
in S [ �2S,

(4) '(x, t)  ⌘(x, t)   (x, t), for all (x, t) 2 B,

(5) the inequalities

@'

@t

(x, t)  f

⇣

x, t,'(x, t),
@'

@x

(x, t),
@

2
'

@x

2
(x, t)

⌘

@ 

@t

(x, t) � f

⇣

x, t, (x, t),
@ 

@x

(x, t),
@

2
 

@x

2
(x, t)

⌘

,
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hold for all (x, t) 2 S [ �2S.

Then, the solution u of problem (4.3) satisfies the inequalities

'(x, t)  u(x, t)   (x, t),

for all (x, t) 2 S̄.

Proof. To prove the inequality '(x, t)  u(x, t), we apply Theorem 4.1 with u replaced

by ' and v replaced by u. To verify condition (1 ) of Theorem 4.1, from condition (4 )

and (4.3), we get '(x, t)  ⌘(x, t) = u(x, t), for (x, t) 2 B. We now verify condition

(2 ) of Theorem 4.1:

@'

@t

(x, t)� f

⇣

x, t,'(x, t),
@'

@x

(x, t),
@

2
'

@x

2
(x, t)

⌘

 0

=
@u

@t

(x, t)� f

⇣

x, t, u(x, t),
@u

@x

(x, t),
@

2
u

@x

2
(x, t)

⌘

,

where the equality comes from the fact that u solves (4.3). Therefore, by Theorem

4.1, '(x, t)  u(x, t), for all (x, t) 2 S[�2S. To prove the inequality u(x, t)   (x, t),

we apply Theorem 4.1 with u and v replaced by  . As before, the condition (4 )

implies that condition (1 ) of Theorem 4.1 is satisfied. To verify condition (2 ) of

Theorem 4.1, we get

@u

@t

(x, t)� f

⇣

x, t, u(x, t),
@u

@x

(x, t),
@

2
u

@x

2
(x, t)

⌘

= 0

 @ 

@t

(x, t)� f

⇣

x, t, (x, t),
@ 

@x

(x, t),
@

2
 

@x

2
(x, t)

⌘

and, by Theorem (4.2), u(x, t)   (x, t) for all (x, t) 2 S [ �2S, which finishes the

proof as (1 ) and (3 ) imply the rest of the assumptions of Theorem 4.2.
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We now prove a result on the ‘closeness’ of a set of exact and approximate solutions

to a system of partial di↵erential equations.

Theorem 4.3. Suppose u, v : S̄ ! R are continuous, have continuous partial deriva-

tives
@

@t

,
@

@x

,
@

2

@x

2
in S [ �2S, ⇢, ⇢̄ : [0, T ] ! [0, T ] are continuous on [0, T ] and

di↵erentiable on (0, T ], and the functions �, �̄ : [0, T ] ! R, !, !̄ : (0, T ] ⇥ [0, T ] ! R

satisfy the conditions:

(1) �⇢̄(t) < v(x, t)� u(x, t) < ⇢(t), for all (x, t) 2 B,

(2) u and v are exact and approximate solutions, respectively; that is,

8

>

>

<

>

>

:

@u

@t

(x, t) = f

⇣

x, t, u(x, t),
@u

@x

(x, t),
@

2
u

@x

2
(x, t)

⌘

,

��̄(t)  @v

@t

(x, t)� f

⇣

x, t, v(x, t),
@v

@x

(x, t),
@

2
v

@x

2
(x, t)

⌘

 �(t),

for all (x, t) 2 S [ �2S,

(3) the strict inequalities

8

>

<

>

:

⇢

0(t) > !

�

t, ⇢(t)
�

+ �(t),

⇢̄

0(t) > !̄

�

t, ⇢̄(t)
�

+ �̄(t),

hold for all t 2 (0, T ],

(4) f : Rn ⇥ R⇥ R⇥ Rn ⇥ Rn,n ! R satisfies assumption (3.1) and the conditions
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f

⇣

x, t, v(x, t),
@v

@x

(x, t),
@

2
v

@x

2
(x, t)

⌘

� f

⇣

x, t, v(x, t)� ⇢(t),
@v

@x

(x, t),
@

2
v

@x

2
(x, t)

⌘

 !(t, ⇢(t)),

f

⇣

x, t, v(x, t) + ⇢̄(t),
@v

@x

(x, t),
@

2
v

@x

2
(x, t)

⌘

� f

⇣

x, t, v(x, t),
@v

@x

(x, t),
@

2
v

@x

2
(x, t)

⌘

 !̄(t, ⇢̄(t)),

for all (x, t) 2 S [ �2S.

Then,

�⇢̄(t) < v(x, t)� u(x, t) < ⇢(t), (4.4)

for all (x, t) 2 S̄.

Proof. To prove the right-hand side inequality in (4.4), we apply Theorem 3.1 with u

replaced by v � ⇢ and v replaced by u, which satisfy condition (1 ) of Theorem (3.1).

To verify whether they satisfy condition (2 ) of Theorem 3.1, we take (x, t) 2 S [ �2S

(arbitrary) and assume that

v(x, t)� ⇢(t) = u(x, t),
@v

@x

(x, t) =
@u

@x

(x, t),
@

2
v

@x

2
(x, t)  @

2
u

@x

2
(x, t).

Then, from conditions (2 ), (3.1), (4 ), and (3 ), respectively, we get

@v

@t

(x, t)� @u

@t

(x, t)  f

⇣

x, t, v(x, t),
@v

@x

(x, t),
@

2
v

@x

2
(x, t)

⌘

+ �(t)

� f

⇣

x, t, u(x, t),
@u

@x

(x, t),
@

2
u

@x

2
(x, t)

⌘

= f

⇣

x, t, v(x, t),
@v

@x

(x, t),
@

2
v

@x

2
(x, t)

⌘

+ �(t)

� f

⇣

x, t, v(x, t)� ⇢(t),
@v

@x

(x, t),
@

2
u

@x

2
(x, t)

⌘
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 f

⇣

x, t, v(x, t),
@v

@x

(x, t),
@

2
v

@x

2
(x, t)

⌘

+ �(t)

� f

⇣

x, t, v(x, t)� ⇢(t),
@v

@x

(x, t),
@

2
v

@x

2
(x, t)

⌘

 !(t, ⇢(t)) + �(t) < ⇢

0(t).

Thus,
@v

@t

(x, t)�⇢0(t) < @u

@t

(x, t) and Theorem 3.1 applies. Case (II) from the assertion

of Theorem 3.1 means that there exists (x̄, t̄) 2 B such that v(x̄, t̄) � ⇢(t̄) � u(x̄, t̄),

which contradicts (1 ) and shows that case (II) is not possible. Therefore, case (I)

holds, which means that

v(x, t)� ⇢(t) < u(x, t), for all (x, t) 2 S [ �2S.

To prove the inequality �⇢̄(t) < v(x, t) � u(x, t), we apply Theorem 3.1 with u and

v replaced by v + ⇢̄, which satisfy condition (1 ) of Theorem 3.1. To verify whether

they satisfy condition (2 ) of Theorem 3.1, we take (x, t) 2 S [ �2S (arbitrary) and

assume that

u(x, t) = v(x, t) + ⇢̄(t),
@u

@x

(x, t) =
@v

@x

(x, t),
@

2
u

@x

2
(x, t)  @

2
v

@x

2
(x, t).

Then,
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@u

@t

(x, t)� @v

@t

(x, t)  f

⇣

x, t, u(x, t),
@u

@x

(x, t),
@

2
u

@x

2
(x, t)

⌘

+ �̄(t)

� f

⇣

x, t, v(x, t),
@v

@x

(x, t),
@

2
v

@x

2
(x, t)

⌘

= f

⇣

x, t, v(x, t) + ⇢̄(t),
@v

@x

(x, t),
@

2
u

@x

2
(x, t)

⌘

+ �̄(t)

� f

⇣

x, t, v(x, t),
@v

@x

(x, t),
@

2
v

@x

2
(x, t)

⌘

 f

⇣

x, t, v(x, t) + ⇢̄(t),
@v

@x

(x, t),
@

2
v

@x

2
(x, t)

⌘

+ �̄(t)

� f

⇣

x, t, v(x, t),
@v

@x

(x, t),
@

2
v

@x

2
(x, t)

⌘

 !̄(t, ⇢̄(t)) + �̄(t) < ⇢̄

0(t).

Therefore,
@u

@t

(x, t) <
@v

@t

(x, t) + ⇢̄

0(t) and Theorem 3.1 applies. Case (II) from the

assertion of Theorem 3.1 means that there exists (x̄, t̄) 2 B such that u(x̄, t̄) �

v(x̄, t̄) + ⇢̄(t̄); that is, �⇢̄(t̄) � v(x̄, t̄)� u(x̄, t̄), which contradicts (1 ) and shows that

(II) is impossible. Therefore, case (I) is true, which shows that u(x, t) < v(x, t)+ ⇢̄(t),

for all (x, t) 2 S [ �2S. In summary, v(x, t) � ⇢(t) < u(x, t) < v(x, t) + ⇢̄(t), for all

(x, t) 2 S [ �2S, and the proof is finished.

Example. Note that if, for n = 1, we take f(x, t, r, p, q) = q + p + r � x � t,

u(x, t) = x + t, v(x, t) = x, ⇢(t) = exp(2t), ⇢̄(t) = exp(3t), �(t) = t + 1, �̄(t) = t + 2,

and !(t, y) = !̄(t, y) = y, then all assumptions of Theorem 4.3 are satisfied. To verify

condition (1 ), note that

�⇢̄(t) = � exp(3t) < v(x, t)� u(x, t) = x� x� t = �t < exp(2t) = ⇢(t),

for all (x, t) 2 B. To verify condition (2 ) of Theorem 4.3, note that
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@u

@t

(x, t) = 1 =
@

2
u

@x

2
(x, t) +

@u

@x

(x, t) + u(x, t)� x� t

and u satisfies the partial di↵erential equation. Moreover,

� �̄(t) = �t� 2  �1� x+ x+ t =

@v

@t

(x, t)� f

⇣

x, t, v(x, t),
@v

@x

(x, t),
@

2
v

@x

2
(x, t)

⌘

 t+ 1 = �(t).

To verify condition (3 ) of Theorem 4.3, note that

⇢

0(t) = 2 exp(2t) > exp(2t) + t+ 1 = ⇢(t) + �(t) = !

�

t, ⇢(t)
�

+ �(t)

and

⇢̄

0(t) = 3 exp(3t) > exp(3t) + t+ 2 = ⇢̄(t) + �̄(t) = !

�

t, ⇢(t)
�

+ �(t).

To verify condition (4 ) of Theorem 4.3, note that f satisfies assumption (3.1). More-

over,

f

⇣

x, t, v(x, t),
@v

@x

(x, t),
@

2
v

@x

2
(x, t)

⌘

� f

⇣

x, t, v(x, t)� ⇢(t),
@v

@x

(x, t),
@

2
v

@x

2
(x, t)

⌘

=

v(x, t) + ⇢(t)� v(x, t) = ⇢(t) = !

�

t, ⇢(t)
�

and

f

⇣

x, t, v(x, t) + ⇢̄(t),
@v

@x

(x, t),
@

2
v

@x

2
(x, t)

⌘

� f

⇣

x, t, v(x, t),
@v

@x

(x, t),
@

2
v

@x

2
(x, t)

⌘

=

v(x, t) + ⇢̄(t)� v(x, t) = ⇢̄(t) = !

�

t, ⇢̄(t)
�

confirming the result of the theorem.

Theorem 4.4. Suppose u, v : S̄ ! R are continuous, have continuous partial deriva-

tives
@

@t

,

@

@x

,

@

2

@x

2
in S [ �2S, ⇢ : [0, T ] ! [0,1) is continuous on [0, T ] and di↵eren-

tiable on (0, T ], and the functions � : [0, T ] ! R, ! : (0, T ] ⇥ [0,1) ! R satisfy the
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conditions:

(1) |u(x, t)� v(x, t)| < ⇢(t), for all (x, t) 2 B,

(2)
8

>

>

>

>

<

>

>

>

>

:

@u

@t

(x, t) = f

⇣

x, t, u(x, t),
@u

@x

(x, t),
@

2
u

@x

2
(x, t)

⌘

,

�

�

�

�

�

@v

@t

(x, t)� f

⇣

x, t, v(x, t),
@v

@x

(x, t),
@

2
v

@x

2
(x, t)

⌘

�

�

�

�

�

 �(t),

for all (x, t) 2 S [ �2S,

(3) ⇢0(t) > !(t, ⇢(t)) + �(t), for all t 2 (0, T ],

(4) f : Rn ⇥ R⇥ R⇥ Rn ⇥ Rn,n ! R satisfies assumption (3.1) and

f

⇣

x, t, z + ⇢(t),
@v

@x

(x, t),
@

2
v

@x

2
(x, t)

⌘

� f

⇣

x, t, z,

@v

@x

(x, t),
@

2
v

@x

2
(x, t)

⌘

 !(t, ⇢(t)),

for all z 2 R.

Then,

|u(x, t)� v(x, t)| < ⇢(t),

for all (x, t) 2 S [ �2S.

Proof. We apply Theorem 4.3 with ⇢̄ = ⇢, �̄ = �, and !̄ = !. Then, assumptions

(1 ), (2 ), (3 ) of Theorem 4.3 are satisfied. To verify assumption (4 ) of Theorem 4.3, we

take z = v(x, t)�⇢(t) in (4 ) and get the first inequality in (4 ) of Theorem 4.3. Taking

z = v(x, t) in (4 ), we get the second inequality in (4 ) of Theorem 4.3. Therefore,

Theorem 4.3 applies and its assertion finishes the proof of Theorem 4.4.
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Example. Note that if, for n = 1, f(x, t, r, p, q) = q + p+ r � x� t, u(x, t) = x+ t,

v(x, t) = x, ⇢(t) = exp(2t), �(t) = t + 1, and !(t, y) = y, then all assumptions of

Theorem 4.4 are satisfied. To verify condition (1 ), note that

|u(x, t)� v(x, t)| = |t| = t < exp(2t) = ⇢(t),

for all (x, t) 2 B. To verify condition (2 ), note that

@u

@t

(x, t) = 1 =
@

2
u

@x

2
(x, t) +

@u

@x

(x, t) + u(x, t)� x� t

and u satisfies the partial di↵erential equation. Moreover,

�

�

�

�

�

@v

@t

(x, t)� f

⇣

x, t, v(x, t),
@v

@x

(x, t),
@

2
v

@x

2
(x, t)

⌘

�

�

�

�

�

= |t� 1|  t+ 1 = �(t).

To verify condition (3 ) of Theorem 4.4, note that

⇢

0(t) = 2 exp(2t) > exp(2t) + t+ 1 = ⇢(t) + �(t) = !

�

t, ⇢(t)
�

+ �(t).

To verify condition (4 ) of Theorem 4.4, note that f satisfies assumption (3.1) and

that

f

⇣

x, t, z + ⇢(t),
@v

@x

(x, t),
@

2
v

@x

2
(x, t)

⌘

� f

⇣

x, t, z,

@v

@x

(x, t),
@

2
v

@x

2
(x, t)

⌘

=

z + ⇢(t)� z = ⇢(t) = !

�

t, ⇢(t)
�

,

confirming the validity of the theorem in this case.

In what follows, we prove a theorem that addresses both the question of uniqueness
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of solutions and the question of continuous dependence of the solution on initial and

boundary values. The proof of this important theorem cumulates previous concepts

and uses the results developed thus far.

Theorem 4.5. Suppose f : Rn ⇥ R⇥ R⇥ Rn ⇥ Rn,n ! R satisfies assumption (3.1)

and the condition

f(t, x, z, p, r)� f(t, x, z̃, p, r)  !(t, z � z̃), (4.5)

for all z � z̃, where ! : (0, T ]⇥ [0,1) ! R is such that for all ✏ > 0 there exist � > 0

and a function ⇢ : [0, T ] ! [0,1) continuous on [0, T ] and di↵erentiable on (0, T ]

such that for all t 2 (0, T ] the inequalities

8

>

<

>

:

�  ⇢(t)  ✏

⇢

0(t) > !

�

t, ⇢(t)
�

(4.6)

are satisfied. Moreover, suppose that ⌘ : B ! R is continuous.

Then, the initial-boundary value problem (4.3) has at most one solution u : S̄ ! R

such that it is continuous on S̄ and has continuous partial derivatives
@

@t

,
@

@x

,
@

2

@x

2

in S [ �2S. Moreover u depends continuously on the initial and boundary values.

Proof. Let u and v be two solutions to (4.3). Then, u and v satisfy the assumptions

of Theorem 4.4 with � ⌘ 0 and ⇢ defined in (4.6) with ✏ ! 0. Since lim
✏!0

⇢(t) = 0, for

each t 2 (0, T ], from the assertion of Theorem (4.4), we get v ⌘ u and uniqueness

of the solution is proved. Continuous dependence of u on the initial and boundary

values is defined in the following way: for all ✏ > 0 there exists � > 0 such that for

all functions v : S̄ ! R continuous on S̄ and with continuous partial derivatives
@

@t

,
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@

@x

,
@

2

@x

2
in S [ �2S if

@v

@t

(x, t) = f

⇣

x, t, v(x, t),
@v

@x

(x, t),
@

2
v

@x

2
(x, t)

⌘

,

for all (x, t) 2 S [ �2S, and if

|u(x, t)� v(x, t)| < �,

for all (x, t) 2 B, then

|u(x, t)� v(x, t)| < ✏,

for all (x, t) 2 S̄.

Let ✏ > 0 be arbitrary and � chosen from (4.6). We now take v : S̄ ! R continuous

on S̄ and with partial derivatives
@

@t

,
@

@x

,
@

2

@x

2
continuous on S [ �2S and such that

the sentence before the above implication is satisfied. Below, we verify point by point

that the assumptions of Theorem 4.4 are satisfied with ⇢ defined in (4.6):

(1) |u(x, t)� v(x, t)| < �  ⇢(t), for all (x, t) 2 B,

(2) is satisfied as both u and v satisfy the partial di↵erential equation on S [ �2S,

here �(t) ⌘ 0,

(3) is satisfied as, from (4.6), ⇢0(t) > !(t, ⇢(t)). Since �(t) ⌘ 0, we get ⇢0(t) >

!(t, ⇢(t)) + �(t),

(4) from (4.5), we get

f

⇣

x, t, z + ⇢(t),
@v

@x

(x, t),
@

2
v

@x

2
(x, t)

⌘

� f

⇣

x, t, z,

@v

@x

(x, t),
@

2
v

@x

2
(x, t)

⌘

 !(t, z + ⇢(t)� z) = !(t, ⇢(t)),
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for all z 2 R.

Therefore, Theorem 4.4 applies, and from its assertion and from (4.6), we get

|u(x, t)� v(x, t)| < ⇢(t)  ✏, for all (x, t) 2 S [ �2S,

which proves the continuous dependence of u on the initial and boundary values (as

in the inequality with � it may be defined as 0 < � < ✏ and |u(x, t) � v(x, t)| < ✏ is

satisfied for (x, t) 2 S̄).
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CHAPTER 5

NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS:

FURTHER ANALYSIS

In this chapter, we build on the results and proof techniques of the previous chap-

ters and formulate and prove theorems on the well-posedness of classes of partial

di↵erential equations under a range of natural conditions.

The first result characterizes when one can expect to have uniqueness and contin-

uous dependence on initial data given certain regularity conditions and assumptions

on the right-hand side function f .

Theorem 5.1. Suppose f : Rn ⇥ R⇥ R⇥ Rn ⇥ Rn,n ! R satisfies assumption (3.1)

and the condition

f(x, t, z, p, r)� f(x, t, z̃, p, r)  !(t, z � z̃), (5.1)

for all z � z̃, where ! : (0, T ]⇥ [0,1) ! R is such that for all ✏ > 0 there exist � > 0

and a function ⇢ : [0, T ] ! [0,1) continuous on [0, T ] and di↵erentiable on (0, T ]

such that for all t 2 (0, T ] the inequalities

8

>

<

>

:

�  ⇢(t)  ✏

⇢

0(t) > !

�

t, ⇢(t)
�

+ �

(5.2)
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are satisfied. Moreover, suppose that ⌘ : B ! R is continuous.

Then, the initial-boundary value problem (4.3) has at most one solution u : S̄ ! R

such that it is continuous on S̄ and has partial derivatives
@

@t

,
@

@x

,
@

2

@x

2
that are

continuous in S [ �2S. Moreover, u depends continuously on the initial and boundary

values and the right-hand side function f ; that is, for all ✏ > 0 there exists � > 0 such

that for all functions v : S̄ ! R continuous on S̄ and with partial derivatives
@

@t

,
@

@x

,

@

2

@x

2
continuous in S [ �2S if

�

�

�

�

�

@v

@t

(x, t)� f

⇣

x, t, v(x, t),
@v

@x

(x, t),
@

2
v

@x

2
(x, t)

⌘

�

�

�

�

�

< �,

for all (x, t) 2 S [ �2S, and if

|u(x, t)� v(x, t)| < �,

for all (x, t) 2 B, then

|u(x, t)� v(x, t)| < ✏,

for all (x, t) 2 S̄.

Proof. Uniqueness comes from the same arguments as in the proof of Theorem 4.5.

To prove that u depends continuously on the initial and boundary values and the

right-hand side function f , we apply Theorem 4.4. Condition (1 ) of Theorem 4.4 is

satisfied as it is shown in the proof of Theorem 4.5. Condition (2 ) of Theorem 4.4 is

satisfied with �(t) ⌘ �. Condition (3 ) is satisfied because of (5.2). To verify condition

(4 ), we use (5.1) and, for z 2 R, we get

f

⇣

x, t, z + ⇢(t),
@v

@x

(x, t),
@

2
v

@x

2
(x, t)

⌘

� f

⇣

x, t, z,

@v

@x

(x, t),
@

2
v

@x

2
(x, t)

⌘

 !(t, ⇢(t)).
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Therefore, by the assertion of Theorem 4.4, we get |v(x, t) � u(x, t)| < ⇢(t), for

(x, t) 2 S [ �2S, and from (5.2), we get |v(x, t) � u(x, t)| < ✏, which is also satisfied

for (x, t) 2 B and � may be defined as 0 < �  ✏.

We now apply Theorem 3.1 to prove a series of results on the solutions of a class

of partial di↵erential equations and their relation to approximate solutions defined in

a weak sense.

Theorem 5.2. Suppose the functions f,!, !̄ : Rn ⇥ R⇥ R⇥ Rn ⇥ Rn,n ! R satisfy

assumption (3.1), the functions u, v, ⇢, ⇢̄ : S̄ ! R are continuous and have continuous

partial derivatives
@

@t

,
@

@x

,
@

2

@x

2
in S [ �2S, �, �̄ : S [ �2S ! R. Suppose also that the

following four conditions are satisfied:

(1) the strict inequalities

�⇢̄(x, t) < v(x, t)� u(x, t) < ⇢(x, t),

hold for all (x, t) 2 B,

(2) u is a solution of the following partial di↵erential equation and v satisfies the

weak inequalities

8

>

>

<

>

>

:

@u

@t

(x, t) = f

⇣

x, t, u(x, t),
@u

@x

(x, t),
@

2
u

@x

2
(x, t)

⌘

,

��̄(x, t)  @v

@t

(x, t)� f

⇣

x, t, v(x, t),
@v

@x

(x, t),
@

2
v

@x

2
(x, t)

⌘

 �(x, t),

for all (x, t) 2 S [ �2S,
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(3) ⇢ and ⇢̄ satisfy the strict inequalities

8

>

>

<

>

>

:

@⇢

@t

(x, t) > �(x, t) + !

⇣

x, t, ⇢(x, t),
@⇢

@x

(x, t),
@

2
⇢

@x

2
(x, t)

⌘

@⇢̄

@t

(x, t) > �̄(x, t) + !̄

⇣

x, t, ⇢̄(x, t),
@⇢̄

@x

(x, t),
@

2
⇢̄

@x

2
(x, t)

⌘

,

for all (x, t) 2 S [ �2S,

(4) v satisfies the two weak inequalities

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

f

⇣

x, t, v(x, t),
@v

@x

(x, t),
@

2
v

@x

2
(x, t)

⌘

�f

⇣

x, t, v(x, t)� ⇢(x, t),
@v

@x

(x, t)� @⇢

@x

(x, t),
@

2
v

@x

2
(x, t)� @

2
⇢

@x

2
(x, t)

⌘

 !

⇣

x, t, ⇢(x, t),
@⇢

@x

(x, t),
@

2
⇢

@x

2
(x, t)

⌘

,

f

⇣

x, t, v(x, t) + ⇢̄(x, t),
@v

@x

(x, t) +
@⇢̄

@x

(x, t),
@

2
v

@x

2
(x, t) +

@

2
⇢̄

@x

2
(x, t)

⌘

�f

⇣

x, t, v(x, t),
@v

@x

(x, t),
@

2
v

@x

2
(x, t)

⌘

 !̄

⇣

x, t, ⇢̄(x, t),
@⇢̄

@x

(x, t),
@

2
⇢̄

@x

2
(x, t)

⌘

,

for all (x, t) 2 S [ �2S.

Then,

�⇢̄(x, t) < v(x, t)� u(x, t) < ⇢(x, t), (5.3)

for all (x, t) 2 S [ �2S.

Proof. We first prove the right-hand side inequality in (5.3). For this, we apply

Theorem 3.1 with u replaced by v � ⇢ and v replaced by u. Both functions satisfy
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condition (1 ) of Theorem 3.1. We now verify whether they satisfy condition (2 ) of

Theorem 3.1. Let (x, t) 2 S [ �2S be arbitrary such that

v(x, t)� ⇢(x, t) = u(x, t),
@v

@x

(x, t)� @⇢

@x

(x, t) =
@u

@x

(x, t),

@

2
v

@x

2
(x, t)� @

2
⇢

@x

2
(x, t)  @

2
u

@x

2
(x, t).

We need to show that
@v

@t

(x, t)� @⇢

@t

(x, t) <
@u

@t

(x, t).

From (2 ), (3.1), (4 ), and (3 ), we get

@v

@t

(x, t)  @u

@t

(x, t) + f

⇣

x, t, v(x, t),
@v

@x

(x, t),
@

2
v

@x

2
(x, t)

⌘

+ �(x, t)

� f

⇣

x, t, u(x, t),
@u

@x

(x, t),
@

2
u

@x

2
(x, t)

⌘

= f

⇣

x, t, v(x, t),
@v

@x

(x, t),
@

2
v

@x

2
(x, t)

⌘

+ �(x, t)

� f

⇣

x, t, v(x, t)� ⇢(x, t),
@v

@x

(x, t)� @⇢

@x

(x, t),
@

2
u

@x

2
(x, t)

⌘

 f

⇣

x, t, v(x, t),
@v

@x

(x, t),
@

2
v

@x

2
(x, t)

⌘

+ �(x, t)

� f

⇣

x, t, v(x, t)� ⇢(x, t),
@v

@x

(x, t)� @⇢

@x

(x, t),
@

2
v

@x

2
(x, t)� @

2
⇢

@x

2
(x, t)

⌘

 !

⇣

x, t, ⇢(x, t),
@⇢

@x

(x, t),
@

2
⇢

@x

2
(x, t)

⌘

+ �(x, t) <
@⇢

@t

(x, t).

Therefore, condition (2 ) of Theorem 3.1 is satisfied and from its assertion v � ⇢ and

u satisfy only one of the cases (I ), (II ). Case (II ) means that there is (x̄, t̄) 2 B

such that v(x̄, t̄) � ⇢(x̄, t̄) � u(x̄, t̄) but it contradicts condition (1 ) of Theorem 5.2.

Therefore, only case (I ) is valid, which implies that v(x, t) � ⇢(x, t) < u(x, t), for
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all (x, t) 2 S [ �2S, and finishes the proof of the right-hand side inequality in (5.3).

We now prove the inequality �⇢̄(x, t) < v(x, t)� u(x, t) and apply Theorem 3.1 with

u and v replaced by v + ⇢̄, which satisfy condition (1 ) of Theorem 3.1. To verify

whether they also satisfy condition (2 ), we take an arbitrary (x, t) 2 S [ �2S and

assume that

u(x, t) = v(x, t) + ⇢̄(x, t),
@u

@x

(x, t) =
@v

@x

(x, t) +
@⇢̄

@x

(x, t),

@

2
u

@x

2
(x, t)  @

2
v

@x

2
(x, t) +

@

2
⇢̄

@x

2
(x, t).

Then, from (2 ), (3.1), (4 ), and (3 ), we get

@u

@t

(x, t)  @v

@t

(x, t) + f

⇣

x, t, u(x, t),
@u

@x

(x, t),
@

2
u

@x

2
(x, t)

⌘

+ �̄(x, t)

� f

⇣

x, t, v(x, t),
@v

@x

(x, t),
@

2
v

@x

2
(x, t)

⌘

= f

⇣

x, t, v(x, t) + ⇢̄(x, t),
@v

@x

(x, t) +
@⇢̄

@x

(x, t),
@

2
u

@x

2
(x, t)

⌘

� f

⇣

x, t, v(x, t),
@v

@x

(x, t),
@

2
v

@x

2
(x, t)

⌘

+ �̄(x, t)

 f

⇣

x, t, v(x, t) + ⇢̄(x, t),
@v

@x

(x, t) +
@⇢̄

@x

(x, t),
@

2
v

@x

2
(x, t) +

@

2
⇢̄

@x

2
(x, t)

⌘

� f

⇣

x, t, v(x, t),
@v

@x

(x, t),
@

2
v

@x

2
(x, t)

⌘

+ �̄(x, t)

 !̄

⇣

x, t, ⇢̄(x, t),
@⇢̄

@x

(x, t),
@

2
⇢̄

@x

2
(x, t)

⌘

+ �̄(x, t) <
@⇢̄

@t

(x, t).

Therefore, �@⇢̄
@t

(x, t) <

@v

@t

(x, t) � @u

@t

(x, t) and Theorem 3.1 applies. From the

assertion of Theorem 3.1, case (II ) means that �⇢̄(x̄, t̄) � v(x̄, t̄) � u(x̄, t̄), for a

certain (x̄, t̄) 2 B, but this contradicts condition (1 ) of Theorem 5.2. Therefore,

case (I ) is true; that is, �⇢̄(x, t) < v(x, t) � u(x, t), for all (x, t) 2 S [ �2S, and the
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left-hand side inequality in (5.3) is proved.

In what follows we prove a result on upper and lower bounds to solutions of

partial di↵erential inequalities, useful in the context of proving stability properties

or continuous dependence to initial data for solutions to classes of partial di↵erential

equations.

Theorem 5.3. Suppose f : Rn ⇥R⇥R⇥Rn ⇥Rn,n ! R satisfies assumption (3.1),

v : S̄ ! R are continuous and has continuous partial derivatives
@

@t

,
@

@x

,
@

2

@x

2
in

S [ �2S. Let

Ā(v) = inf{A : A > v(x, t), for all (x, t) 2 B},

A(v) = sup{A : A < v(x, t), for all (x, t) 2 B}.

Then, the following two properties hold:

(i) if

@v

@t

(x, t)  f

⇣

x, t, v(x, t),
@v

@x

(x, t),
@

2
v

@x

2
(x, t)

⌘

,

for all (x, t) 2 S [ �2S, and there exists ✏ > 0 such that

8z Ā(v) < z < Ā(v) + ✏ =) f(x, t, z, 0, 0)  0

then v  Ā(v),

(ii) if

@v

@t

(x, t) � f

⇣

x, t, v(x, t),
@v

@x

(x, t),
@

2
v

@x

2
(x, t)

⌘

,

for all (x, t) 2 S [ �2S, and there exists ✏ > 0 such that
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8z A(v)� ✏ < z < A(v) =) f(x, t, z, 0, 0) � 0

then v � A(v).

Proof. (i) Suppose

v(x, t) < A, for all (x, t) 2 B. (5.4)

We want to show that

v(x, t)  A, for all (x, t) 2 S [ �2S. (5.5)

We apply Theorem 3.1 with u replaced by v and v replaced by A + �t, where � > 0

and A and � are chosen in such a way that

A+ �T < Ā(v) + ✏,

where ✏ > 0 is as in (i). Note that A � Ā(v) + �T can be arbitrarily small. The

functions v(x, t) and A+ �t satisfy condition (1 ) of Theorem 3.1. To verify condition

(2 ), suppose that (x, t) 2 S [ �2S and

v(x, t) = A+ �t,

@v

@x

(x, t) = 0,
@

2
v

@x

2
(x, t)  0.

Then,

@v

@t

(x, t)  f

⇣

x, t, v(x, t),
@v

@x

(x, t),
@

2
v

@x

2
(x, t)

⌘

= f

⇣

x, t, v(x, t), 0,
@

2
v

@x

2
(x, t)

⌘

 f(x, t, v(x, t), 0, 0) = f(x, t, A+ �t, 0, 0)  0 < � =
d

dt

�

A+ �t

�

.
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Therefore, by Theorem 3.1, there are two cases (I ) and (II ) and only one of them

is true. If (II ) is true, then there is (x̄, t̄) 2 B such that v(x̄, t̄) � A + �t̄, which

contradicts assumption (5.4). Therefore, (II ) is not satisfied and (I ) is true, which

means that

v(x, t) < A+ �t, for all (x, t) 2 S [ �2S.

Taking � ! 0, gives v(x, t)  A and (5.5) is proved. Since A can be arbitrarily close

to Ā(v), we get

v(x, t)  Ā(v), for all (x, t) 2 S [ �2S,

and (i) is proved. The proof of (ii) is similar.

In the subsequent parts of this chapter, we will be making use of the following

definition:

Definition 5.1. Let (x̄, t̄) 2 �1S. Then,

@u

@na
(x̄, t̄) = � lim

k!1

u(xk, t̄)� u(x̄, t̄)

kxk � x̄k

is an outer normal derivative, where (xk, t̄) 2 S [ �2S, lim
k!1

xk = x̄, and k · k is the

Euclidean norm. The minus sign reflects the convention that we work with outer

normal derivatives.

In the next part of the chapter, we will use the following notation:

�

+
1 S = {(x, t) 2 �1S : there exists i 2 {1, 2, ..., n} such that xi = bi},

�

�
1 S = {(x, t) 2 �1S : there exists i 2 {1, 2, ..., n} such that xi = �bi}.



48

Suppose f : Rn ⇥ R ⇥ R ⇥ Rn ⇥ Rn,n ! R satisfies the assumption (3.1) and that

⌘ : B \ �+1 S ! R and ⇠ : �+1 S⇥R ! R are both continuous functions. If u : S̄ ! R is

continuous, has continuous partial derivatives
@u

@t

,
@u

@x

,
@

2
u

@x

2
in S [ �2S, and satisfies

the following problem

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

@u

@t

(x, t) = f

⇣

x, t, u(x, t),
@u

@x

(x, t),
@

2
u

@x

2
(x, t)

⌘

, (x, t) 2 S [ �2S,

u(x, t) = ⌘(x, t), (x, t) 2 B \ �+1 S,

@u

@na
(x, t) + ⇠

�

x, t, u(x, t)
�

= 0, (x, t) 2 �

+
1 S,

(5.6)

then u is called a solution of the initial-boundary value problem (5.6).

Using the above formulations and definitions, we are able to prove a result charac-

terizing the relationship between two solutions that satisfy natural partial di↵erential

inequalities and boundary inequalities at their modified boundaries. The assertion of

the theorem holds for the entire domain of interest.

Theorem 5.4. Suppose that the function f : Rn ⇥ R⇥ R⇥ Rn ⇥ Rn,n ! R satisfies

assumption (3.1) and that the functions u, v : S̄ ! R are continuous, have continuous

partial derivatives
@

@t

,
@

@x

,
@

2

@x

2
in S[ �2S, and that their outer normal derivatives at

points in the boundary set �+1 S exist. Suppose also that the function ⇠ : �+1 S⇥R ! R

is continuous, and that the following conditions in the form of strict inequalities on

the functions u and v are satisfied:

(1) u and v satisfy the following strict inequalities at the boundaries

8

>

>

<

>

>

:

u(x, t) < v(x, t), for all (x, t) 2 B \ �+1 S

@u

@na
(x, t) + ⇠

�

x, t, u(x, t)
�

<

@v

@na
(x, t) + ⇠

�

x, t, v(x, t)
�

, for all (x, t) 2 �

+
1 S,
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(2) u and v satisfy the following strict di↵erential inequality

@u

@t

(x, t)� f

⇣

x, t, u(x, t),
@u

@x

(x, t),
@

2
u

@x

2
(x, t)

⌘

<

@v

@t

(x, t)� f

⇣

x, t, v(x, t),
@v

@x

(x, t),
@

2
v

@x

2
(x, t)

⌘

,

for all (x, t) 2 S [ �2S.

Then, u(x, t) < v(x, t) for all (x, t) 2 S [ �2S [ �+1 S.

Proof. The functions u and v satisfy assumptions (1 ) and (2 ) of Theorem 3.1, which

implies that there are two cases (I ) and (II ) and only one of them is true. If (II )

is true, then u(x̄, t̄) = v(x̄, t̄), for some (x̄, t̄) 2 B. If (x̄, t̄) 2 B \ �+1 S, then we

get a contradiction as, from (1 ), u(x̄, t̄) < v(x̄, t̄). Therefore, (x̄, t̄) 2 �

+
1 S and

u(x̄, t̄) = v(x̄, t̄). Also, u(x, t̄) < v(x, t̄), for (x, t̄) 2 S [ �2S. Therefore,

@

@na

�

v(x̄, t̄)� u(x̄, t̄)
�

= � lim
k!1

v(xk, t̄)� v(x̄, t̄)� u(xk, t̄) + u(x̄, t̄)

kxk � x̄k

= � lim
k!1

v(xk, t̄)� u(xk, t̄)

kxk � x̄k  0,

where (xk, t̄) 2 S [ �2S and lim
k!1

xk = x̄. Thus, we find the following relation between

the outward normal derivatives of u and v

@v

@na
(x̄, t̄)  @u

@na
(x̄, t̄). (5.7)

Since ⇠
�

x̄, t̄, u(x̄, t̄)
�

= ⇠

�

x̄, t̄, v(x̄, t̄)
�

, from assumption (1 ),
@u

@na
(x̄, t̄) <

@v

@na
(x̄, t̄),

which contradicts (5.7). Therefore, case (I ) is true and, by Theorem (3.1), we get

u(x, t) < v(x, t), for all (x, t) 2 S [ �2S. (5.8)
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To finish the proof, all that remains to be shown is that the inequality holds over a

larger domain; that is,

u(x, t) < v(x, t), for all (x, t) 2 �

+
1 S.

Suppose, for the sake of contradiction, that there in fact exists some (x̄, t̄) 2 �

+
1 S such

that

u(x̄, t̄) � v(x̄, t̄). (5.9)

If u(x̄, t̄) > v(x̄, t̄), then, since u and v are continuous, we would have a contradiction

with (5.8). Therefore, the inequality u(x̄, t̄) > v(x̄, t̄) cannot hold, and from (5.9) we

get that u(x̄, t̄) = v(x̄, t̄), which is shown to be impossible. Therefore, we conclude

with the following inequality

u(x, t) < v(x, t), for all (x, t) 2 S [ �2S [ �+1 S,

and the proof is finished.

Having developed the necessary proof techniques and collection of results proved

so far in the previous parts of this chapter and in earlier chapters, we conclude with

a theorem that classifies the inequality between two di↵erent solutions of partial

di↵erential inequalities and boundary inequalities, providing the underlying core to

understanding the stability and uniqueness properties relevant to a general class of

partial di↵erential equations.

Theorem 5.5. Suppose u, v : S̄ ! R are continuous, have continuous partial deriva-

tives
@

@t

,

@

@x

,

@

2

@x

2
in S[ �2S, and that their outer normal derivatives at points in �+1 S
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exist. Suppose also that the function ⇠ : �+1 S ⇥ R ! R is continuous and that it

satisfies the condition

⇠(x, t, z) < ⇠(x, t, z̄),

for z < z̄ and (x, t) 2 �

+
1 S. Suppose also that the function

f : Rn ⇥ R⇥ R⇥ Rn ⇥ Rn,n ! R

satisfies assumption (3.1) and the inequality

f

⇣

x, t, v(x, t) + z,

@v

@x

(x, t),
@

2
v

@x

2
(x, t)

⌘

� f

⇣

x, t, v(x, t),
@v

@x

(x, t),
@

2
v

@x

2
(x, t)

⌘

 !(t, z),

(5.10)

for all z > 0 and (x, t) 2 S[�2S. Here, the function ! : (0, T ]⇥ [0,1) ! R is defined

such a way that for all ✏ > 0 there exists � > 0 and a function ⇢ : [0, T ] ! [0,1),

which is both continuous in [0, T ] and di↵erentiable in (0, T ], and satisfies the both of

the inequalities
8

>

<

>

:

�  ⇢(t)  ✏,

⇢

0(t) > !(t, ⇢(t)),
(5.11)

for all t 2 (0, T ]. Moreover, suppose that the following conditions are satisfied

(1) u and v satisfy the following inequalities at the boundaries

8

>

>

<

>

>

:

u(x, t)  v(x, t), for all (x, t) 2 B \ �+1 S,

@u

@na
(x, t) + ⇠

�

x, t, u(x, t)
�

 @v

@na
(x, t) + ⇠

�

x, t, v(x, t)
�

, for all (x, t) 2 �

+
1 S,
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(2) u and v satisfy the following di↵erential inequalities

@u

@t

(x, t)� f

⇣

x, t, u(x, t),
@u

@x

(x, t),
@

2
u

@x

2
(x, t)

⌘

 @v

@t

(x, t)� f

⇣

x, t, v(x, t),
@v

@x

(x, t),
@

2
v

@x

2
(x, t)

⌘

,

for all (x, t) 2 S [ �2S.

Then, u(x, t)  v(x, t), for all (x, t) 2 S [ �2S [ �+1 S.

Proof. For an arbitrary ✏ > 0, we take � > 0 and ⇢ : [0, T ] ! [0,1) as in (5.11). The

goal is to show that:

u(x, t) < v(x, t) + ⇢(t),

for all (x, t) 2 S [ �2S [ �+1 S. We apply Theorem 3.1 with u and v + ⇢, which satisfy

condition (1 ) of Theorem 3.1. We now verify condition (2 ) of Theorem 3.1. Let

(x, t) 2 S [ �2S be such that

u(x, t) = v(x, t) + ⇢(t),
@u

@x

(x, t) =
@v

@x

(x, t),
@

2
u

@x

2
(x, t)  @

2
v

@x

2
(x, t).

Then, from condition (2 ) of Theorem 5.5, assumption (3.1), and (5.10), we get

0  @v

@t

(x, t)� @u

@t

(x, t) + f

⇣

x, t, u(x, t),
@u

@x

(x, t),
@

2
u

@x

2
(x, t)

⌘

�f

⇣

x, t, v(x, t),
@v

@x

(x, t),
@

2
v

@x

2
(x, t)

⌘
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=
@v

@t

(x, t)� @u

@t

(x, t) + f

⇣

x, t, v(x, t) + ⇢(t),
@v

@x

(x, t),
@

2
u

@x

2
(x, t)

⌘

�f

⇣

x, t, v(x, t) + ⇢(t),
@v

@x

(x, t),
@

2
v

@x

2
(x, t)

⌘

+f

⇣

x, t, v(x, t) + ⇢(t),
@v

@x

(x, t),
@

2
v

@x

2
(x, t)

⌘

� f

⇣

x, t, v(x, t),
@v

@x

(x, t),
@

2
v

@x

2
(x, t)

⌘

 @v

@t

(x, t)� @u

@t

(x, t) + f

⇣

x, t, v(x, t) + ⇢(t),
@v

@x

(x, t),
@

2
v

@x

2
(x, t)

⌘

�f

⇣

x, t, v(x, t),
@v

@x

(x, t),
@

2
v

@x

2
(x, t)

⌘

 @v

@t

(x, t)� @u

@t

(x, t) + !

�

t, ⇢(t)
�

<

@v

@t

(x, t)� @u

@t

(x, t) + ⇢

0(t)

=
@

@t

�

v(x, t) + ⇢(t)
�

� @u

@t

(x, t)

and condition (2 ) of Theorem 3.1 is proved. From the assertion of Theorem 3.1, there

are two cases, (I ) and (II ), and only one is true. If (II ) is true, then

u(x̄, t̄) = v(x̄, t̄) + ⇢(t̄),

for a certain (x̄, t̄) 2 B. Since ⇢(t̄) > 0, u(x̄, t̄) > v(x̄, t̄). From condition (1 ) (first

inequality), we conclude that (x̄, t̄) 2 �

+
1 S. Then, from the second inequality in

condition (1 ) and the assumption for ⇠, we get

@u

@na
(x̄, t̄) + ⇠

�

x̄, t̄, u(x̄, t̄)
�

 @v

@na
(x̄, t̄) + ⇠

�

x̄, t̄, v(x̄, t̄)
�

<

@

@na

�

v(x̄, t̄) + ⇢(t̄)
�

+ ⇠

�

x̄, t̄, v(x̄, t̄) + ⇢(t̄)
�

,

(5.12)

where the latter inequality comes from the fact that
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@

@na

�

v(x̄, t̄) + ⇢(t̄)
�

= � lim
k!1

v(xk, t̄) + ⇢(t̄)� v(x̄, t̄)� ⇢(t̄)

kxk � x̄k

= � lim
k!1

v(xk, t̄)� v(x̄, t̄)

kxk � x̄k =
@v

@na
(x̄, t̄).

On the other hand,

@

@na

⇣

v(x̄, t̄) + ⇢(t̄)� u(x̄, t̄)
⌘

= � lim
k!1

v(xk, t̄) + ⇢(t̄)� u(xk, t̄)� v(x̄, t̄)� ⇢(t̄) + u(x̄, t̄)

kxk � x̄k  0,

where (xk, t̄) 2 S [ �2S are such that lim
k!1

xk = x̄ and u(xk, t̄) < v(xk, t̄) + ⇢(t̄).

Therefore,
@

@na

�

v(x̄, t̄) + ⇢(t̄)
�

 @

@na
u(x̄, t̄)

and since u(x̄, t̄) = v(x̄, t̄) + ⇢(t̄), we get

@

@na

�

v(x̄, t̄) + ⇢(t̄)
�

+ ⇠

�

x̄, t̄, u(x̄, t̄)
�

 @

@na
u(x̄, t̄) + ⇠

�

x̄, t̄, u(x̄, t̄)
�

,

@

@na

�

v(x̄, t̄) + ⇢(t̄)
�

+ ⇠

�

x̄, t̄, v(x̄, t̄) + ⇢(t̄)
�

 @

@na
u(x̄, t̄) + ⇠

�

x̄, t̄, u(x̄, t̄)
�

,

which contradicts (5.12). Therefore, case (I ) is true and we get

u(x, t) < v(x, t) + ⇢(t), (5.13)

for all (x, t) 2 S [ �2S. We want to show this inequality also for all (x, t) 2 �

+
1 S. By

contradiction, suppose that there exists (x̄, t̄) 2 �

+
1 S such that

u(x̄, t̄) � v(x̄, t̄) + ⇢(t̄).
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The strong inequality u(x̄, t̄) > v(x̄, t̄) + ⇢(t̄) contradicts (5.13) so we get u(x̄, t̄) =

v(x̄, t̄)+⇢(t̄), which is the case considered above and as seen above this case implies the

above contradiction. Therefore, u(x, t) < v(x, t) + ⇢(t), for all (x, t) 2 S [ �2S [ �+1 S.

Taking ✏! 0 in the above inequality, we get u(x, t)  v(x, t), for all (x, t) 2 S[�2S[

�

+
1 S, as lim✏!0

⇢(t) = 0, for all t 2 [0, T ], and the proof is finished.

The above theorem as well as the collection of results proved in this thesis and

the proof techniques developed and elaborated in order to do so have come to the

core of understanding important theoretical questions raised as mathematical models

get built and analyzed. The results often rely on and get constructed by considering

auxiliary systems of partial di↵erential inequalities, which can, as we have seen in

this thesis, provide useful insight into the behavior of ordinary and partial di↵erential

equations.
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