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ABSTRACT

The Dehn complex of prime, alternating virtual links has been shown to be

non-positively curved in the paper “Generalized knot complements and some aspher-

ical ribbon disc complements” by J. Harlander and S. Rosebrock (2003) [7]. This

thesis investigates the geometry of an arbitrary alternating virtual link. A method

is constructed for which the Dehn complex of any alternating virtual link may be

decomposed into Dehn complexes with non-positive curvature. We further study

the relationship between the Dehn space and Wirtinger space, and we relate their

fundamental groups using generating curves on surfaces. We conclude with interesting

examples of Dehn complexes of virtual link diagrams, which illustrate our findings.
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CHAPTER 1

INTRODUCTION

The topological and geometric aspects of classical knot complements have been in-

tensely studied. First results related to this thesis include work by Aumann [2], who

used combinatorial topological techniques on the Dehn complex to show the aspheric-

ity of alternating knots, and work by Weinbaum [16], who studied knot complements

in terms of small cancellation theory. Modern treatments of the curvature of knot

complements have been given by D. T. Wise [18] in terms of non-positively curved

squared complexes, and this viewpoint was developed by Bridson and Haefliger [4].

This thesis investigates the topological and geometric aspects of the Dehn complex

of a virtual knot. We are particularly interested in when a virtual knot admits a

Dehn complex that is a non-positively curved squared complex. There are various

descriptions of the fundamental group of the Dehn complex. One is obtained by

collapsing an edge in the Dehn complex, and the other is obtained by coning off a

surface in the Wirtinger complex. All these descriptions can be read off the virtual

knot drawn on its projection surface.

The Dehn groups and the Wirtinger groups of classical knots have properties that

are not present in Dehn groups of virtual knots. A simple example is the “virtual

trefoil” (see Example 2.1.5 for details). The presentation of the Wirtinger group of

the virtual trefoil,
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〈
a1, a2

∣∣a1a1 = a1a2, a2a1 = a1a1
〉

is infinite cycle, which is not unusual. However, the presentation of the Dehn group

of the virtual trefoil,

〈
A1, A2

∣∣A1 = 1, A2A
−1
2 A2A

−1
1 = 1, A2A

−1
2 A2A

−1
1 = 1

〉
is the trivial group. Dehn groups that are trivial or that have torsion do not occur in

the classical case. We will illustrate the exotic behavior of Dehn groups with further

examples later.

Using the close relationship between the Wirtinger complex and the Dehn com-

plex, we use curves on the surface of the Wirtinger space to obtain the Dehn group

from the Wirtinger group.

Theorem (Main Theorem I). The fundamental group of the Dehn complex π1(D(`))

is isomorphic to the quotient π1(W (`))
/
K , where K is normally generated by words

yε11 y
ε2
2 · · · yεnn that arise when reading along the curves that generate the fundamental

group of the projection surface F .

Consider the following result of Bridson and Haefliger [4, p. 220], included in their

treatment of the Dehn complex of the classical knot complement.

Theorem (Bridson/Haefliger [4]). If K ⊂ R3 is an alternating link then π1(R3 −K)

is the fundamental group of a compact 2-dimensional piecewise-Euclidean 2-complex

of non-positive curvature.

Harlander and Rosebrock [7] extended this result to prime alternating virtual

links. They used a strong version of primeness.



3

Theorem (Harlander/Rosebrock [7]). A virtual link diagram ` is prime, alternating

if and only if the Dehn complex of ` is a non-postively curved squared complex.

In this thesis, we study arbitrary alternating virtual links. The existence of torsion

in the Dehn groups presents obstacles in obtaining a result identical to the classical

one. Our result is a method for decomposing the Dehn complex of an alternating

virtual link into non-positively curved squared complexes.

Theorem (Main Theorem II). If ` is an alternating virtual link diagram drawn on

a projection surface F , then we can cut along a finite number of reducing circles to

obtain a collection of prime, alternating links, `1, · · · , `n. This gives a decomposition

of the Dehn complex of `, D(`), into non-positively curved squared complexes, and a

decomposition of the fundamental group of D(`) into CAT(0) groups.

We conclude with examples of virtual knots with various reducing circles to

illustrate the method of Main Theorem II.
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CHAPTER 2

THE DEHN COMPLEX OF A VIRTUAL KNOT

2.1 The Virtual Knot and Various Complements

Virtual knots and links are an extension of classical knot theory and were first

introduced by Kauffman [13].

Definition 2.1.1 (Virtual Link Diagrams). A virtual link diagram ` is a 4-regular

graph in the plane, with over-crossing and under-crossing information at some nodes.

The nodes with this additional information are crossings, and the remaining nodes

are called virtual crossings. The latter are indicated by a circle around the node.

From a virtual link diagram in the plane, we construct a closed, orientable surface

Figure 2.1: A usual crossing and a virtual crossing.

F of minimal genus in which ` embeds, so that only crossings appear as nodes. The

virtual crossings disappear because we can run the edges of the graph over handles.

The details of this construction are as follows. Start with the graph and embed it in

R3 so that the virtual crossings disappear. We obtain a 2-manifold with boundary

by thickening every edge of the graph into a band. For every boundary component,
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glue in a disc to obtain the desired surface. We call the surface thus obtained the

projection surface F of ` (see Figure 2.2).

Figure 2.2: The construction of the projection surface of a virtual knot diagram.
(This is an imitation of the original image found in Kauffman [12].)

Definition 2.1.2 (Various Virtual Link Complements). Given a virtual link diagram

`, let F be a projection surface. We can push the diagram into the interior of the

thickened surface F × I, and thus obtain an embedding of circles in F × I. We

denote the image of this embedding by ˆ̀. If we remove an open neighborhood of ˆ̀

from F ×I, then we obtain a compact manifold with boundary, which we will call the

manifold space,M(`). If we cone off the bottom surface F×{0} ofM(`), we obtain a

compact pseudomanifold with boundary, which we call the Wirtinger space,W(`). It

turns out thatW(`) can be collapsed to the 2-dimensional Wirtinger complex, W (`).

If we cone off the top surface in the Wirtinger space, we obtain another compact

pseudomanifold with boundary, which we call the Dehn space, D(`). The Dehn space

can be collapsed down to the 2-dimensional Dehn complex, D(`). See Harlander and
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Rosebrock [7] for details on this collapsing procedure on the Wirtinger space and the

Dehn space.

We will now give detailed descriptions of the cell structure of these various com-

plements.

Definition 2.1.3 (Dehn Complex). There are two vertices, v+ and v−, which are the

cone points. The edges are in 1-1 correspondence with the connected components,

A1, A2, . . . , An, of F − `. Each edge Ai is oriented from v+ to v−. The connected

components of a classical knot are simply the connected components of R2 − `, since

` is a planar graph. However, for a non-planar virtual link diagram, we have to take

the virtual crossings into consideration. To find the connected component Ai, follow

along on a particular side of any edge in the virtual link diagram. If we encounter a

crossing, label that quadrant of the crossing as Ai and turn at the crossing to stay

within the Ai component. If we encounter a virtual crossing, it is not an actual

crossing. Thus, we continue straight through the virtual crossing without turning

or labeling. We can continue in this fashion untill we have found each connected

component and hence labeled every quadrant of each crossing of `. The faces are in

1-1 correspondence with the crossings of `. Considering a particular crossing of `:

proceed counterclockwise around the crossing x ∈ `, starting at the end of an edge of

` that is an over-crossing, and read off the four (not necessarily distinct) components

encountered, say Ax(1), Ax(2), Ax(3), and Ax(4). A 2-cell is attached to the edge-path,

Ax(1)A
−1
x(2)Ax(3)A

−1
x(4) (see Figure 2.3).

Without loss of generality, we may choose the tree of the 1-skeleton of D(`) to be

the edge A1. If we collapse the tree to a point, choosing it to be our basepoint d0, we

can write down the canonical presentation of π1(D(`), d0), the Dehn group, from the
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Ax(1)

Ax(2)

Ax(4)

Ax(3)

Ax(1)

Ax(2) Ax(3)

Ax(4)

v−

v−

v+

v+

Figure 2.3: A crossing of a knot with connected components labeled and the corre-
sponding boundary of a 2-cell in the Dehn complex.

edges (the generators) A1, . . . , An and from the faces (the relations) with boundaries

read-off from ` (see Hog-Angeloni and Metzler [10]).

π1(D(`)) =
〈
A1, A2, A3, . . . , An

∣∣A1 = 1, Ax(1)A
−1
x(2)Ax(3)A

−1
x(4) = 1

for every crossing x ∈ `
〉

Definition 2.1.4 (Wirtinger Complex). The edges of any virtual link diagram `

may be oriented, and each un-broken edge of the link diagram–the edge encounters

no under-crossings–may be labeled from the set, {a1, a2, . . . , an}. These are the

generators of the fundamental group of the Wirtinger complex. The faces are in

one-to-one correspondence with the crossings of `. Using the “right hand rule,”

we can orient the boundary of the faces based upon the orientation of the edges

corresponding to a particular crossing in the virtual link diagram, as done in Figure

2.4. There is only one vertex in the Wirtinger complex–the cone point–which we

choose as our basepoint, w0. We can now write down the canonical presentation of

the fundamental group of the Wirtinger complex, the Wirtinger group.
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ai
ajak

Figure 2.4: The Wirtinger relation aiaj = ajak given by a crossing of a virtual knot
diagram.

π1(W (`)) =
〈
a1, a2, . . . , an

∣∣R1, . . . , Rm

〉
where every relation, Ri, is of the form aiaj = ajak, corresponding to a crossing in

the virtual knot diagram.

A1A1
A2A2

A2A2

A2 A2

a2a1

Figure 2.5: (The “virtual trefoil”). The connected components of the Dehn complex
of the virtual knot diagram are labeled A1 and A2, and an orientation of the diagram
is indicated with the generators of the Wirtinger complex, labeled a1 and a2.

Example 2.1.5 (Virtual knot with π1(D(k)) trivial). Consider the virtual knot dia-

gram, k, with two crossings, in Figure 2.5. We have labeled the connected components

of the projection surface, and an orientation has been given to the edges, in order to

label the Wirtinger generators. The projection surface is a torus, as seen in Figure
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2.2. We also can count the Euler characteristic of the projection surface by using the

virtual knot diagram in Figure 2.5 and obtain, χ = 2− 4 + 2 = 0.

We have the following presentation of the Dehn group given by k, where the

labeling is defined in Figure 2.5. The 2-cells corresponding to each crossing are drawn

in Figure 2.6. We perform Tietze transformations to simplify the group presentation

(see Hog-Angeloni and Metzler [10]).

π1(D(k)) =
〈
A1, A2

∣∣A1 = 1, A2A
−1
2 A2A

−1
1 = 1, A2A

−1
2 A2A

−1
1 = 1

〉
≈
〈
A1, A2

∣∣A1 = 1, A2 = A1

〉
≈
〈
A1

∣∣A1 = 1
〉

≈ {1}

v−v+
A1

A2

A2

A1 A2

A2

v+ v−

v− v+

A2

A1 A2

A2

v+ v−

v− v+

Figure 2.6: The 1-skeleton and 2-cells of the Dehn complex of the virtual knot diagram
in Figure 2.5.

We also have the following presentation of the Wirtinger group given the orienta-

tion of the edges of the virtual knot diagram.

π1(W (k)) =
〈
a1, a2

∣∣a1a1 = a1a2, a2a1 = a1a1
〉

≈ 〈a1〉

≈ Z
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We observe that the Wirtinger group is infinite cyclic, while the Dehn group is trivial

{1}.

As the preceding example shows, the Dehn complex of virtual link diagrams can

frequently produce unusual fundamental groups such as the trivial group or groups

with torsion, which cannot occur with the Wirtinger complex.

2.2 Link Graphs of the Dehn Complex

The link graph (or Whitehead graph) of a complex describes the local curvature of

the complex (see Bridson and Haefliger [4]). This geometric approach can be useful

over using a metric approach. We will use the link graphs later to define non-positive

curvature in a squared 2-complex (Definition 3.1.1).

Ax(1)

Ax(2) Ax(3)

Ax(4)

v−

v−

v+

v+
−Ax(1) −Ax(4)

−Ax(2) −Ax(3)

+Ax(1)

+Ax(2)

+Ax(4)

+Ax(3)
−Ax(1) −Ax(2) −Ax(3) −Ax(4)

Vertices and Edges of Lk(v+, D(`))
corresponding to the crossing.

Figure 2.7: The red arcs in the 2-cell (left side) indicate the edges that this 2-cell
contributes to the v+ link graph (right side) of the Dehn complex.

Definition 2.2.1 (Link Graphs). The link graph of a vertex of the Dehn complex

of a virtual link diagram ` is the boundary of a neighborhood of that vertex in

the 2-dimensional Dehn complex. Denote the link graph of, say v+ of D(`), by
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Lk(v+, D(`)). Each edge, Ai, in the 2-complex contributes a +Ai vertex and a −Ai

vertex to the link graph. However, by virtue of the consistent orientation of each

edge in D(`) (each edge is oriented v+ to v−), for each end of an edge that is an

over-crossing, there is one edge in Lk(v+, D(`)) connecting the −vertices with the

labels of the adjacent connected components of that edge. The +vertices are not used

in Lk(v+, D(`)). In parallel, for each end of an edge in ` that is an under-crossing,

there is a single edge in Lk(v−, D(`)) that connects the +vertices with the labels of

the adjacent connected components of that edge. This is all shown, for one 2-cell of

D(`) for Lk(v+, D(`)), in Figure 2.7.

Definition 2.2.2 (Dual Tessellation). Let F be a projection surface constructed

from a virtual link diagram ` as in Definition 2.1.1. Denote the 1-skeleton of F also

by ` (slight abuse of notation). The dual tessellation is constructed by placing a

vertex in each connected component, A0, A1, . . . An, of F − `. Every edge of ` has

a connected component on either side, forming a pair, say (Ai, Aj). In the dual, we

connect the pair of vertices, (Ai, Aj), with an edge that transversally intersects that

edge of ` between the pair (Ai, Aj). We remark that the vertices of the dual are in

1-1 correspondence with the connected components of F − ` and that the edges of

the dual are in 1-1 correspondence with the edges of `.

Proposition 2.2.3. Let ` be an alternating virtual link diagram with a projection

surface F . Then, the graphs Lk(v+, D(`)) = Lk(v−, D(`)) = X, where X is the

1-skeleton of the dual tessellation of the projection surface F .

Proof. The connected components, the edges of D(`), are in 1-1 correspondence with

the vertex sets of Lk(v+, D(`)) and Lk(v−, D(`)), as we stated in the Definition

2.2.1. Since ` is alternating, each edge has one end labeled an over-crossing and the
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other labeled an under-crossing. For each edge, there is a pair (Ai, Aj) of connected

components that abut either side of the edge. Consequently, each edge with pair

(Ai, Aj) contributes one edge connecting vertices −Ai and −Aj in Lk(v+, D(`)) and

one edge connecting vertices +Ai and +Aj in Lk(v−, D(`)). Hence, the edges of the

virtual link diagram ` are in 1-1 correspondence with the edges of each link graph.

Thus, Lk(v+, D(`)) = Lk(v−, D(`)).

In the dual tessellation X, there is a vertex for each connected component of F−`,

as there is for Lk(v+, D(`)) and Lk(v−, D(`)). Each edge in ` contributes an edge to

X connecting the vertices with the labels of the adjacent connected components, as

there is for Lk(v+, D(`)) and Lk(v−, D(`)). Therefore, the vertex set and edge set of

X, Lk(v+, D(`)), and Lk(v−, D(`)) are equivalent.

For the alternating case, we will use the notation, Lk(v±, D(`)), to indicate either

Lk(v+, D(`)) or Lk(v−, D(`)) works, since the graphs are equivalent.

Lemma 2.2.4. If a virtual link diagram ` is not alternating, then there is at least

one 2-cycle in the link graphs of `.

Proof. If the virtual link diagram ` is not alternating, then ` has at least one edge,

say y, whose ends have the same label. Suppose the pair of connected components

(Ai, Aj) abut along the edge y. For non-alternating, we may assume that the ends of

y are both labeled as over-crossings. Hence, y contributes two edges to Lk(v+, D(`)),

each connecting the vertex −Ai to the vertex −Aj. These two edges form a 2-cycle

in Lk(v+, D(`)).

However, a 2-cycle in the link graphs does not imply that a virtual knot diagram

is not alternating.
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2.3 Reducing Circles

In this section, we will develop the definition of the strong version of primeness, as

used by Harlander and Rosebrock [7]. On a surface of genus ≥ 1, there exist closed

curves on the surface that separate the surface and also closed curves that do not

separate the surface (i.e. non-separating cut a handle open).

Definition 2.3.1 (Reducing Circle). Let ` be a virtual link diagram with a projection

surface F . A simple, closed curve on F that intersects ` exactly twice is a reducing

circle. When the reducing circle is separating, we require that crossings are contained

on both sides of the separating reducing circle.

Figure 2.8: Example of a reducing circle (the blue circle) on a 2-sphere and also a
separating reducing circle (the blue circle) on a double torus.

Separating reducing circles lead to decompositions of the link diagram. If we cut

a virtual link diagram ` along a reducing circle and connect the four new endpoints

with two new small arcs, we obtain two virtual link diagrams, `1 and `2, and ` is called

the composition of `1 and `2, ` = `1#`2 (see Adams [1], and Bridson and Haefliger

[4]).
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Cutting along a non-separating reducing circle also simplifies the virtual link

diagram, and this often leads to a virtual link diagram whose projection surface

is of smaller genus. However, this is not a decomposition as with separating reducing

circles (for an example, see Figure 2.11).

Definition 2.3.2 (Prime Virtual Link). A virtual link diagram is prime if there are

no reducing circles, separating or non-separating.

Lemma 2.3.3. If a virtual link diagram ` is not prime, then there is at least one

2-cycle in the link graphs of `.

Proof. If the virtual link diagram ` is not prime, then ` admits a reducing circle.

A separating or non-separating reducing circle does not signify. The reducing circle

intersects ` transversally twice, say along the edges y1 and y2 in `. The reducing circle

lies in the connected components that abut along y1 and y2, say the pair, (Ai, Aj),

as we diagram in Figure 2.9. The edges, y1 and y2, are distinct since we defined

y1

Ai

Aj

Aj

y2

Figure 2.9: A reducing circle lying on a portion of a virtual knot diagram.

the reducing circle to not be trivial. If ` is alternating, then y1 and y2 with both

contribute one edge, each, to Lk(v+, D(`)), connecting the vertex −Ai to the vertex

−Aj, a 2-cycle. If ` is not alternating, y1 and y2 may still have one end labeled

as an over-crossing and the other as an under-crossing, in which case we are in the
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alternating situation. If either y1 or y2 have both ends with the same label, without

loss of generality, say y1 has both ends labeled as an over-crossing, then y1 contributes

a 2-cycle connecting the vertices −Ai and −Aj in Lk(v+, D(`)).

However, 2-cycles in the link graphs do not imply that a virtual link is not prime.

A 2-cycle may indicate non-alternating.

2.4 Checkerboard Colorings and Closed Curves

A tessellated orientable surface has a checkerboard coloring if the faces can be colored

alternately black or white so that every edge bounds faces of different color. For an

example, see Figure 2.10.

Figure 2.10: An alternating virtual knot diagram (see Example 3.2.4) on a projection
surface, the torus, with a checkerboard coloring.

Theorem 2.4.1 (Kamada [11]). The projection surface of an alternating virtual link

diagram has a checkerboard coloring.

Following the convention used by Bridson and Haefliger [4, p 223] for coloring

the connected components alternately black or white: let ` be an alternating virtual

link diagram with a projection surface F . For each connected component of F − `,

each edge that lies on the boundary of a connected component has one end labeled
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as an over-crossing and the other end labeled as an under-crossing. Hence, the closed

edge-path that makes up the boundary of each connected component has a consistent

orientation of the crossing labels on each edge. We will label a connected component

“white” if all the edges bounding the component are labeled as an under-crossing end

to an over-crossing end when we trace the boundary in a counterclockwise fashion.

Conversely, we will label a connected component “black” if instead the edges are

labeled as an over-crossing end to an under-crossing end, counterclockwise. Any edge

on the boundary of a connected component that runs around the outermost position

of the virtual link diagram (lying on the plane) is colored in an opposite fashion to

the convention stated. The boundary of a connected component may run along the

outermost position and also the inner positions of the diagram.

Proposition 2.4.2. Given an alternating virtual link diagram ` with a projection

surface F , then any closed curve intersects ` at an even number of points.

Proof. The connected components of F − ` has a checkerboard coloring (Theorem

2.4.1). Each time a closed curve intersects ` (this is a transversal intersection, not at

a crossing of `) the curve passes from one colored component to a different colored

component, say black to white. Hence, any closed curve runs through 2n components

and intersects ` 2n times, for some n ∈ N.

Lemma 2.4.3. Given an alternating virtual link diagram ` with a projection surface

F : there exists a closed curve in F that intersects ` n times if and only if there exists

an edge cycle in Lk(v±, D(`)) of n edges. In particular, Lk(v±, D(`)) contains cycles

only of even length.

Proof. We may just consider Lk(v+, D(`)) in the proof since Lk(v+, D(`)) = Lk(v−, D(`))

for ` alternating (Proposition 2.2.3).
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Suppose a closed curve intersects ` on its projection surface F n times. By

Proposition 2.4.2, n is even. Let {y1, . . . , yn} be the set of edges of ` that the

closed curve transversally intersects. For ease of notation, let the pair of connected

components on either side of edge yi be the pair (Ai, Ai+1). Using that ` is alternating,

yi contributes an edge connecting vertices −Ai and −Ai+1 in Lk(v+, D(`)). Hence,

we have an edge cycle of n edges connecting vertices −A1 to −A2, . . . , −An−1 to

−An, and −An to −A1 in Lk(v+, D(`)).

For an edge path in Lk(v+, D(`)) that connects vertices −A1 to −A2, . . ., −An−1

to −An, and −An to −A1, each edge is contributed because of an edge yi in ` that

has the pair of connected components (Ai, Ai+1) on either side. Hence, there is a

closed curve on F that runs through the connected components A1, A2, . . . , An and

intersects the edges y1, y2, . . . , yn of ` on F . By Proposition 2.4.2, n must be an even

number.

In particular, we have shown that any closed curve on F corresponds to an edge

path in X.

Lemma 2.4.4. A cut along any reducing circle on an alternating virtual link diagram

yields an alternating virtual link diagram(s).

Proof. Suppose ` is an alternating virtual link diagram with a non-trivial reducing

circle. As shown in Figure 2.11, the reducing circle lies in two distinct connected

components, say Ai and Aj. Since ` has a checkerboard coloring, we may assume

that Ai is “white”, i.e. the edges forming the boundary are oriented under-crossing

to over-crossing in a counterclockwise orientation around the boundary. This forces

the labeling of the top edge, in Figure 2.11, to be over-crossing to under-crossing

and the bottom edge to be under-crossing to over-crossing, when we read the labels
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Figure 2.11: A portion of an alternating virtual link diagram with a non-separating
reducing circle on a torus projection surface, and the resulting projection surface
(the 2-sphere) after cutting along the reducing circle. Note that “o” stands for an
over-crossing label and that “u” stands for an under-crossing label.

left-to-right, respectively. After we cut along the reducing circle and connect the

new endpoints with new small arcs, the left-hand-side edge is alternating and the

right-hand-side edge is alternating. Since we did not alter any of the over-crossings or

under-crossings, nor did we alter any edges besides the two shown, the link, resulting

from `, is alternating.

Note that a cut along a separating reducing circle of a virtual link results in two

new virtual links, while a cut along a non-separating reducing circle results in just

one new virtual link.

Lemma 2.4.5. For any alternating virtual link diagram `, there are only finitely many

reducing circles. Moreover, if we cut along a separating or non-separating reducing

circle, the number of reducing circles decreases by at least one.

Proof. For a given virtual link diagram ` with a projection surface F , we can use the

graph of the dual tessellation to determine how many distinct reducing circles exist,

up to isotopy. If there is a 2-cycle in the graph of the dual tessellation, then there are

two connected components of F −` that share two distinct edges of ` as in Figure 2.9.

This admits a reducing circle corresponding to that 2-cycle in the dual tessellation.
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Likewise, every reducing circle corresponds to a single 2-cycle in the graph of the

dual tessellation. The dual tessellation is a finite graph. Hence, there are only a finite

number of reduced 2-cycles in the dual tessellation that correspond to the number of

reducing circles.

Suppose there is a reducing circle on F and the corresponding 2-cycle in the graph

of the dual tessellation is two edges {y1, y2} connecting the vertices Ai and Aj. When

we cut and re-direct the edges of ` intersected by the reducing circle, we gain two

components in the projection surface and hence two vertices {A′i, A′j} in the graph

of the dual tessellation. The vertices {Ai, Aj} are connected by the edge y1 and the

vertices {A′i, A′j} are connected by the edge y2. According to the nature of the cut

on the particular surface, there is a partition of the edges connected to the vertex

Ai between the new Ai and A′i after the cut. The edges connected to Aj are also

partitioned between the new Aj and A′j after the cut.

There have been no additional edges added, nor have we changed any part of the

graph except sharing the edges ending at the vertices Ai and Aj with the new vertices

A′i and A′j and altering the edges y1 and y2. Hence, we have decreased the number of

2-cycles by at least 1.

Lemma 2.4.6. Every alternating virtual link diagram ` is a composition of finitely

many links, each of which is alternating with no separating reducing circles.

Proof. The alternating virtual link diagram ` with a projection surface F has only

finitely many separating reducing circles (Lemma 2.4.5). If there are n separating

reducing circles, then we have the composition of (n+ 1) virtual link diagrams,

` = `0#`1# · · ·#`n
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where each virtual link diagram `i is alternating (Lemma 2.4.4). Each `i has no

separating reducing circles, otherwise, ` on F would have had (n + 1) separating

reducing circles. Therefore, the only reducing circles each `i can possibly have are

non-separating reducing circles.
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CHAPTER 3

NON-POSITIVE CURVATURE OF THE DEHN

COMPLEX

3.1 Non-Positive Curvature

A squared 2-complex is a complex where every 2-cell has four edges. The Dehn

2-complex and the Wirtinger 2-complex are examples of a squared 2-complex.

Definition 3.1.1 (Non-Positive Curvature). A squared 2-complex is non-positively

curved if there are at least four squares grouped around each vertex. That is, if every

reduced edge cycle in the link graph of each vertex in the 2-complex has length at

least four.

We are now ready to prove Theorem 3.1.2 from Harlander and Rosebrock [7].

However, we do not give their proof of the theorem. The proof given follows from our

development of virtual knots in the previous chapter.

Theorem 3.1.2 (Harlander/Rosebrock [7]). A virtual link diagram ` is prime, alter-

nating if and only if the Dehn complex of ` is a non-postively curved squared complex.

Proof. Suppose that ` is alternating with a projection surface F . By Lemma 2.4.3,

all edge cycles in Lk(v±, D(`)) are of even length. We have a 2-cycle in Lk(v±, D(`))

only if a pair of connected components of F −`, (Ai, Aj), abut two distinct edges in `.
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However, we would be in the situation shown in Figure 2.9, which admits a reducing

circle. Hence, Lk(v±, D(`)) has cycles of even length greater than 2, and D(`) is a

non-positively curved squared complex (Definition 3.1.1).

If D(`) is a non-positively curved squared complex, then all the cycles in the link

graphs have length of at least four. By Lemma 2.2.4, ` admits a 2-cycle in the link

graphs if it is not alternating, and by Lemma 2.3.3, ` also admits a 2-cycle in the link

graphs if it is not prime. Therefore, ` is prime, alternating.

Example 3.1.3 (Classical links). Every classical link that is prime, alternating has

a Dehn complex that is a non-positively curved squared complex.

Example 3.1.4 (Virtual knot with a non-positively curved Dehn complex). By

identifying the indicated edges in Figure 3.1, we obtain an alternating virtual knot

diagram on a torus. The Dehn complex of the virtual knot is non-positively curved

as there are no reducing circles.

a

b

a

b

Figure 3.1: An alternating virtual knot diagram with a torus projection surface
obtained by identifying the indicated edges in the figure.
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3.2 Closed Curves in the Dehn Complex

Reducing circles present a barrier to obtaining a Dehn complex that is a non-positively

curved squared complex. Consequently, we are interested in the relation a reducing

circle forms in the fundamental group of D(`) and of W(`).

Since the Dehn space is obtained from the Wirtinger space by coning off the

top surface (Definition 2.1.2), we have a quotient map ϕ : W(`) → D(`), which

takes the basepoint w0 ∈ W(`) to the basepoint d0 ∈ D(`). The map ϕ induces

a homomorphism between the fundamental groups of the 2-dimensional spines (the

following arguments can be found in Hatcher [9]),

ϕ∗ : π1 (W (`), w0)→ π1 (D(`), d0) (3.1)

where ϕ∗ is a mapping of composed loops f : I → W(`) at the basepoint w0 such

that ϕ∗[f ] = [ϕf ]. For any homotopy of loops ft : I → W(`) based at w0, we have

that ϕ∗[f0] = [ϕf0] = [ϕf1] = ϕ∗[f1]. Hence, ϕ∗ is well-defined. The map ϕ is a

homomorphism since the composition of the loops f, g : I →W(`) based at w0 is:

f � g =

 f(2t), 0 ≤ t ≤ 1/2

g(2t− 1), 1/2 ≤ t ≤ 1

Hence, ϕ(f � g) = ϕ(f) � ϕ(g), and it follows that ϕ∗ is also a homomorphism. Since

ϕ is quotient map, in the topological sense, Theorem 3.2.3 will use a van Kampen

argument to show that ϕ∗ is a surjection. In particular, π1(D(`)) is a quotient of

π1(W (`)),

π1(D(`)) ≈ π1(W (`))
/
K
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where the generators of K result from closed curves on W(`)).

Suppose we place some consistent orientation on virtual link diagram `. Any

separating reducing circle on the projection surface of ` has opposing orientations

on the edges of ` that are cut by the reducing circle (see Figure 2.8). However,

the edges of ` cut by a non-separating reducing circle has two possible orientations,

as shown in Figure 3.2. We will call them N− reducing circles and N+ reducing

circles. Cutting along a N− reducing circle changes the orientations of the virtual

link diagram, while cutting along a N+ reducing circle preserves the orientation of

the virtual link diagram.

Figure 3.2: The two possible orientations of non-separating reducing circles, N− and
N+.

Proposition 3.2.1. Using the notation of Figure 3.2 and Figure 3.3, and utilizing

Equation 3.1. For separating or N+ reducing circles, the relation y1 = y2 holds in

π1(D(`)) (i.e. y1y
−1
2 ∈ K). For N− reducing circles, y1 = y−12 in π1(D(`)) (i.e.

y1y2 ∈ K).

Proof. Suppose the virtual link diagram ` has a reducing circle, either separating or

non-separating. Slice the manifold space, M(`), along the reducing circle. The slice

made by the reducing circle is an annulus with two oriented punctures. Figure 3.3

shows how the orientations of the punctures, y1 and y2, differ between the N− case

and the N+ case.
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N−

B2B1

y1 y2

N+

B2B1

y1 y2

Figure 3.3: The slice ofM(`) made along the non-separating reducing circles, for the
N− case and the N+ case.

The top boundary, B1, and the bottom boundary, B2, of the slice are each coned

off in the Dehn space, and the result is homeomorphic to a 2-sphere with two oriented

punctures made by y1 and y2. The 2-sphere with two punctures is homeomorphic to

a circle, S1. Figure 3.4 shows, for a N− non-separating reducing circle, how the

orientations of the boundaries, y1 and y2, are opposite on the cylinder. We can

conclude that for a N+ reducing circle, y1 = y2, and that for a N− reducing circle,

y1 = y−12 .

y1 y2

∼=

y1

y2

Figure 3.4: A continuous deformation of the twice punctured 2-sphere. We collapse
all the 2-cell material by pushing in the boundary components y1 and y2.

Note that we can read the relation y1y
−1
2 = 1 or y1y2 = 1 directly off the projection

surface. To do so, we put an orientation on the reducing circle and use the “right

hand rule” to read off the correct signs.
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Lemma 3.2.2. Given a virtual link diagram ` with a projection surface F , any simple

closed curve that intersects ` n times gives a relation that holds in π1(D(`)) under

the map ϕ∗ (from Equation 3.1).

Proof. Suppose a simple closed curve on F intersects ` exactly n times at the edges

y1, y2, . . . , yn. We consider the edges, y1, y2, . . . , yn, to be the (not necessarily distinct)

generators of π1(W (`)). Now proceed as we did in Proposition 3.2.1: look at the slice

made by the simple closed curve on M(`). It is an annulus with n punctures, each

puncture corresponding to a generator in the Wirtinger group. In the Dehn space,

we cone off the top boundary of the slice and we cone off the bottom boundary of

the slice. The result is a 2-sphere with n punctures, which is homeomorphic to a

bouquet of (n − 1) circles. We can determine the orientation of each generator if

we place an orientation on the simple closed curve and use the “right hand rule”

to read off the ± orientation of each generator. We obtain a relation of the form:

yε11 y
ε1
2 · · · yεnn = 1, for εi = ±1. Moreover, yε11 y

ε1
2 · · · yεnn = 1 is in K, the kernel of

ϕ∗ : π1(W (`))→ π1(D(`)).

Theorem 3.2.3 (Main Theorem I). The fundamental group of the Dehn complex

π1(D(`)) is isomorphic to the quotient π1(W (`))
/
K where K is normally generated

by words yε11 y
ε2
2 · · · yεnn that arise when reading along the curves that generate the

fundamental group of the projection surface F .

Proof. Recall from Definition 2.1.2 that the Dehn complex of a virtual link D(`) is

obtained by collapsing down the Dehn space D(`), ergo π1(D(`)) ≈ π1(D(`)). The

Dehn space is obtained from the Wirtinger space by coning off the top surface, a

projection surface F of `. Denote C as this cone space, so that D(`) = W(`) ∪ C.

By considering a small open neighborhood of each W(`) and C, we can apply van
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Kampen to this decomposition of D(`). Choose d0, the collapsable tree of D(`), to

be the basepoint. Affix d0 to the decomposition of D(`).

D(`) = (W(`) ∪ {d0}) ∪ (C ∪ {d0})

The basepoint d0 collapses to the basepoint w0, since w0 ⊂ d0. Thus, π1(W(`) ∪

{d0}, d0) is isomorphic to π1(W (`), w0). Every cone is contractible to its vertex point.

Thus, π1(C∪{d0}, d0) is isomorphic to {1}. As the intersection space (W(`)∪{d0})∩

(C ∪ {d0}) is homotopy equivalent to F ∪ {d0}, we consider the inclusion map

F ∪ {d0} ↪→ (W(`) ∪ {d0}), which induces the homomorphism

i∗ : π1(F ∪ {d0}, d0)→ π1(W (`), w0))

The fundamental group π1(F∪{d0}, d0) is isomorphic to π1(F, x0) for any basepoint x0

on the projection surface, since d0 is collapsible. Hence, the homomorphism i∗ projects

each generating curve of π1(F, x0) to W(`). By Lemma 3.2.2, these curves give rise

to words yε11 y
ε2
2 · · · yεnn , for εi = ±1, that hold in π1(D(`)). Therefore, K is generated

as desired, and by van Kampen, π1(D(`)) is isomorphic to π1(W (`))
/
K .

Example 3.2.4 (Virtual knot with finite π1(D(k))). The alternating virtual knot

diagram k in Figure 3.5 has Euler characteristic: χ = 3 − 6 + 3 = 0. Hence, the

projection surface of k is a torus. An orientation and appropriate labeling of the

edges and connected components is shown in Figure 3.5. Therefore, we can write

down the presentations of the Wirtinger group and of the Dehn group.
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A2 A1

A2A1

A1

A1

A2
A3

A1

A1

A2
A3

a1

a2

a3

Figure 3.5: A fully labeled and oriented alternating virtual knot diagram with three
crossings. The dashed red line represents a non-separating reducing circle. (Virtual
knot number 3.7 from Green and Bar-Natan [6].)

π1(W (k)) =
〈
a1, a2, a3

∣∣a2a1 = a1a3, a3a2 = a2a1, a2a3 = a3a1
〉

π1(D(k)) =
〈
A1, A2, A3

∣∣A1 = 1, A1A
−1
2 A1A

−1
3 = 1,

A1A
−1
2 A1A

−1
3 = 1,

A1A
−1
2 A1A

−1
2 = 1

〉
≈
〈
A2, A3

∣∣A3 = A−12 , A2
2 = 1

〉
≈
〈
A2

∣∣A2
2 = 1

〉
≈ Z2

In Harlander and Rosebrock [8], the Wirtinger group of this virtual knot was shown

to have torsion.

A non-separating reducing circle is indicated in Figure 3.5. The reducing circle

gives the relation a1 = a−13 in π1(D(k)) under the surjective homomorphism ϕ∗

(Proposition 3.2.1).
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π1(W (k))
/{

a1 = a−13

} ≈ 〈a3∣∣a23 = 1
〉

≈ Z2

≈ π1(D(k))

Our conclusion is that when the groups are small, the number of generating curves

necessary to obtain the Dehn group from the Wirtinger group may be less than as

stated in Theorem 3.2.3.

3.3 Decomposition of the Dehn Complex

To obtain non-positive curvature in the Dehn complex–in light of Theorem 3.1.2– all

reducing circles must be eliminated. We do this by cutting along the reducing circles

and examining the affect on the fundamental group. An analog for classical knots of

Theorem 3.3.1 can be found in Bridson and Haefliger [4].

Theorem 3.3.1. Let ` be an alternating virtual link diagram with a projection surface

F . If ` has a separating reducing circle on F which gives the composition ` = `1#`2,

then π1(D(`)) is isomorphic to a quotient of a free product of alternating links

π1(D(`1)) ∗ π1(D(`2))
/
N

where N =
〈〈
AiA

−1
j = A′iA

′−1
j

〉〉
. The reducing circle lies in the connected compo-

nents, Ai and Aj, of F . We gain the connected components, A′i and A′j, when we cut

along the reducing circle (see Figures 3.6 and 3.7).

Proof. By Lemma 2.4.4, `1 and `2 are alternating virtual link diagrams. We will use

van Kampen to determine the fundamental group of D(`) in terms of this composition
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Figure 3.6: A double torus with a separating reducing circle indicated.

(see Hatcher [9]). Suppose the reducing circle cuts the edges y1 and y2. Cut along the

reducing circle, renderingM(`) into two pieces. The intersection of these pieces is an

annulus A with two oriented punctures, y1 and y2. Let the left-hand side be X1 and

the right-hand side be X2 so that M(`) = X1 ∪A X2. This induces a decomposition

of the Dehn space, D(`′1) ∪S D(`′2), where S = ΣA, and ΣA is A with the boundary

circles coned off. The virtual link `′1 is the left-hand side of `, and `′2 is the right-hand

side of `. The virtual link `1 is obtained from `′1 by gluing together the cut ends. In

the same way, `2 is obtained from `′2. Note that S is a twice-punctured 2-sphere and

that y1 and y2 are the boundaries of those punctures. As shown in Proposition 3.2.1,

y1 = y2 in π1(D(`)), and then also y1 = y2 in π1(D(`′i)). Hence, π1(D(`′i)) = π1(D(`i)).

Now van Kampen’s theorem yields the decomposition of π1(D(`)),

π1(D(`1)) ∗ π1(D(`2))
/
{y1 = y2}

We can also express this in terms of the Dehn complexes rather than the Dehn
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Figure 3.7: M(`1) and M(`2) obtained from M(`).

spaces. Note that in the Dehn complex D(`1), y1 = AiA
−1
j , and in the Dehn complex

D(`2), y2 = A′iA
′
j
−1 (see Figure 3.7). Hence, we have the decomposition of π1(D(`)),

π1(D(`1)) ∗ π1(D(`2))
/
N

where N =
〈〈
AiA

−1
j = A′iA

′−1
j

〉〉
. If π1(D(`1)) and π1(D(`2)) are torsion free, it

follows that π1(D(`)) is an an amalgamated free product, where N ≈ Z.

π1(D(`)) = π1(D(`1)) ∗N π1(D(`2))

A similar result may be obtained by induction for compositions of more than two

alternating virtual link diagrams (Lemma 2.4.6).

Theorem 3.3.2. Let ` be an alternating virtual link diagram with a projection surface

F . If ` has a N+ or N− reducing circle on F , then π1(D(`)) is a quotient of the

alternating virtual link diagram `′ resulting from cutting the reducing circle

π1(D(`)) = π1(D(`′))
/{

Ai = A′i, Aj = A′j
}
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where Ai and Aj are the connected components the reducing circle lies in on F , and

A′i and A′j are the two components that we have gained by cutting the reducing circle,

which cuts a handle in M(`).

Figure 3.8: A non-separating reducing circle on a handle of the projection surface of
the virtual link ` and the resulting cut surface and virtual link `′.

Proof. Recall from Definition 2.1.3 that the presentation of the Dehn group is of the

form

π1(D(`)) =
〈
A1, A2, . . . , An

∣∣A1 = 1, Ax(1)A
−1
x(2)Ax(3)A

−1
x(4) = 1

for every crossing x ∈ `
〉

When we cut along a reducing circle in the Dehn complex, we do not add or take

away any of the crossings of `. However, we do add two new components, A′i and A′j,

to the cut Dehn complex, D(`′) (see Figure 3.8). These two components will replace

Ai or Aj, respectfully, in some crossings of `′. Therefore, we have the quotient

π1(D(`)) = π1(D(`′))
/{

Ai = A′i, Aj = A′j
}

We now have fully described what happens to the fundamental group of the Dehn

complex of a virtual link diagram when we cut along certain reducing circles.
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Theorem 3.3.3 (Main Theorem II). If ` is an alternating virtual link diagram drawn

on a projection surface F , then we can cut along a finite number of reducing circles to

obtain a collection of prime, alternating links, `1, · · · , `n. This gives a decomposition

of the Dehn complex of `, D(`), into non-positively curved squared complexes, and a

decomposition of the fundamental group of D(`) into CAT(0) groups.

Proof. An alternating virtual link diagram ` with a projection surface F has a finite

number of separating and non-separating reducing circles on F (Lemma 2.4.5). The-

orem 3.3.1 shows how to cut along a single separating reducing circle and obtain a

composition of links, ` = `1#`2, and the free product

π1(D(`)) = π1(D(`1)) ∗ π1(D(`2))
/
N

where N is explicitly defined. We may repeat this process for each separating reducing

circle (Lemma 2.4.6).

Each piece, `i, of the composition of ` may have non-separating reducing circles.

Theorem 3.3.2 shows how to cut along a single non-separating reducing circle to

obtain an alternating virtual link, `′i, and the quotient

π1(D(`i)) = π1(D(`′i))
/{

Ai = A′i, Aj = A′j
}

Successive cuts would produce more connected components and further relations to

record. Therefore, after cutting along every reducing circle, the resulting pieces will

have non-positive curvature.
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3.4 Tripling a Virtual Knot

Reducing circles can be eliminated by sufficiently adding additional links to a virtual

link diagram. One method is tripling a link. An alternating example of a tripled

virtual knot diagram is shown in Figure 3.9.

Figure 3.9: An alternating triple of an alternating virtual knot diagram (Example
3.2.4).

Definition 3.4.1. We triple a virtual link diagram ` by adding additional links,

which run parallel on either side of all the original strands of the link. Denote the

tripled link by `T .
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Lemma 3.4.2. There exists one triple of an alternating virtual link diagram that is

alternating.

Proof. After tripling an alternating virtual link diagram, `, along every edge of `

there will be two additional crossings in between the original crossings of `, which

we may choose to alternate with the original crossings of ` (Figure 3.10). The only

Figure 3.10: A portion of the alternating virtual link diagram ` (black strands) and
the additional links from tripling ` (red strands). The new strands are chosen to
alternate with the original strands.

remaining crossings we have not determined are those four crossings around each

original crossing of ` made by the new links (the undetermined crossings in Figure

3.10). Immediately, these crossings may be chosen to alternate with the existing

crossings (Figure 3.11), establishing that `T is alternating.

Figure 3.11: The remaining crossings of `T are chosen to alternate with the existing
crossings.

Theorem 3.4.3. If `T is an alternating triple of any alternating virtual link diagram

`, then D(`T ) is a non-positively curved squared complex.
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Proof. Let `T be the triple of ` that is alternating (Lemma 3.4.2). If we can show `T

is prime, Theorem 3.1.2 implies D(`T ) is a non-positively curved squared complex.

The virtual link `T is prime if there are no reducing circles (Definition 2.3.2).

We do not change the genus of the projection surface F when we triple `. The

new links are added to the existing projection surface. The original ` may have some

reducing circles. When we triple `, any previously existing reducing circle will become

a closed curve that cuts the virtual link diagram in six places. A tripled link cannot

form any additional reducing circles since every strand runs in sets of three between

each square mesh of nine crossings.
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CHAPTER 4

VIRTUAL KNOT DIAGRAMS AND LABELED

ORIENTED GRAPHS

4.1 Labeled Oriented Graphs

Definition 4.1.1. A Labeled Oriented Graph, shortened to LOG, is a finite graph

with a finite set of vertices, say {a1, a2, . . . , an}. Each edge is oriented and labeled by

one of the vertices. A Labeled Oriented Circle, shortened to LOC, is a LOG, where

the graph forms a circle. Each edge in a LOG corresponds to a relation from which

we can build a crossing, orienting the edges according to the “right hand rule,” as in

Figure 4.1 (see Harlander and Rosebrock [7] and [8]).

aj

ai ak

ai
ajak

Figure 4.1: A single edge of a LOG and the knot diagram crossing associated to that
edge. The edge of the LOG gives the Wirtinger relation aiaj = ajak.

Every relation in the Wirtinger presentation corresponds to an oriented edge in a

LOG with labeled vertices as shown in Figure 4.1. Since every edge in the virtual link

must “start” and “end” in only two separate places, every edge occurs as a vertex

in the LOG just once, with an edge “coming in” and another edge “going out.” It
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follows that the LOG representing a vitual link diagram is a collection of LOCs. A

virtual knot diagram would have a single representing LOC. In fact, we have shown

the following proposition.

Proposition 4.1.2. Every virtual link diagram can be represented by a collection of

LOCs, whose edges give the relations of the Wirtinger presentation of the virtual link.

Or, we may state that every virtual knot group can be represented by a LOC

group (see Harlander and Rosebrock [8]).

If ` is an alternating virtual link diagram, every distinct edge corresponding to

a generator of the Wirtinger group occurs once as an over-crossing, and thus occurs

once as an oriented edge in the set of LOCs. If there are n distinct edges in the

alternating virtual link, i.e. n distinct generators in the Wirtinger group, then there

are n distinct edges and n distinct vertices in the corresponding set of LOCs labeled

by the set of generators. We call such LOGs injective.

4.2 Virtual Knots with Trivial Dehn Group

We can determine when a virtual knot diagram k will have trivial π1(D(k)) by the

simple closed curves on a projection surface of k.

Proposition 4.2.1. All generators in the canonical presentation of the Wirtinger

group of a virtual knot diagram are conjugate to one another.

Proof. For the virtual knot diagram k, there is a corresponding LOC that directly

gives the relations of the Wirtinger group in terms of the generators, {a1, . . . , an},

(Proposition 4.1.2). Each generator appears as a vertex in the LOC, though each

generator may not appear as an edge in the LOC. We may choose the generator a1

and show that a1 is conjugate to the arbitrary generator ai.
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Starting at the vertex a1, we will proceed in a clockwise direction around our LOC,

and we may assume a uniform orientation of the edges, since an opposite orientation

of any one edge in the LOC would only change some ajp = a−1jp in the body of the

proof. Let the vertex a1 be connected to the vertex ak1 by the edge aj1, which is given

by the relation

a1aj1 = aj1ak1

a1 = aj1ak1a
−1
j1

Also let the vertex ak1 be connected to the vertex ak2 by the edge aj2, which is given

by the relation

ak1aj2 = aj2ak2

ak1 = aj2ak2a
−1
j2

...

Continuing in this pattern, after some m ≤ n times, we will reach the vertex ai on

the LOC, giving us the relation

ak(m−1) = ajmaia
−1
jm

Therefore,

a1 = aj1aj2 · · · ajm ai a
−1
jm · · · a−1j2 a−1j1

= (aj1aj2 · · · ajm) ai (aj1aj2 · · · ajm)−1



40

The generator a1 is conjugate to the generator ai.

Corollary 4.2.2. If a virtual knot diagram k with a projection surface F has a simple

closed curve that intersects k on F only once, then π1(D(k)) = {1}.

Proof. This situation cannot occur for a classical knot with a projection surface of

genus 0. We only consider virtual knot diagrams with a projection surface F of genus

greater than or equal to 1.

Suppose that k has a simple closed curve that intersects the knot exactly once

along the edge of k that corresponds to the Wirtinger generator a. By Lemma 3.2.2,

this curve gives the relation a = 1, which holds in π1(D(k)) under the surjective

homomorphism ϕ∗ (defined by Equation (3.1)). All the Wirtinger generators are

conjugate (Proposition 4.2.1). Hence,

π1(W (k))
/
{a = 1} ≈ {1}

≈ π1(D(k))

Example 4.2.3 (Virtual knot with π1(D(k)) trivial). In Example 2.1.5, we computed

π1(D(k)) by hand to find that it is trivial. Alternately, π1(D(k)) is trivial by the

presence of the simple closed curve that intersects k on the projection surface, a

torus, exactly once. The presence of this curve also generates 1-cycles in the link

graphs of k.
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4.3 Examples of Decompositions of the Dehn Complex

Figure 4.2: An alternating virtual knot diagram with one non-separating reducing
circle, indicated by the red line, obtained by identifying the labeled edges.

Example 4.3.1 (Non-separating reducing circle on a torus). By identifying the

indicated edges in Figure 4.2, we obtain an alternating virtual knot diagram on a

torus. There is one non-separating reducing circle, thus the Dehn complex is not

a non-positively curved squared complex. However, we may apply Theorem 3.3.3

to eliminate the reducing circle and obtain a Dehn complex that is a non-positively

curved squared complex. By cutting along the indicated reducing circle in Figure

4.2, we cut the handle of the torus. The resulting prime knot lies on a 2-sphere (see

Figure 4.3).

Example 4.3.2 (Non-separating reducing circles and separating reducing circles).

The alternating virtual knot diagram k, in Figure 4.4, has Euler characteristic: χ =

4− 8 + 4 = 0. Hence, the projection surface of k is a torus.
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Figure 4.3: The alternating virtual link diagram of Figure 4.2 with the reducing circle
cut out. The new prime knot is planar.

From the virtual knot diagram in Figure 4.4, we can write down the Dehn group.

π1(D(k)) =
〈
A1, A2, A3, A4

∣∣A1 = 1, A2A
−1
1 A3A

−1
1 = 1,

A2A
−1
1 A3A

−1
1 = 1,

A3A
−1
1 A4A

−1
1 = 1,

A3A
−1
1 A4A

−1
1 = 1

〉
≈
〈
A2, A3, A4

∣∣A2 = A−13 , A4 = A−13

〉
≈ 〈A3〉

≈ Z

In Figure 4.5, k has been cut and re-directed along the non-separating reducing

circle indicated in Figure 4.4, resulting in the virtual knot k′. There are two new

connected components, A′1 and A′3, as shown.

This reducing circle we cut intersects the edges a1 and a4 in Figure 4.4. By

Proposition 3.2.1, a1 = a4 in the Dehn group. Therefore, in the LOC, we identify the
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A1

A1

A4A3

A4

A3

A3

A2

A2

A1A1

A1A1

A3

A1 A1

a1

a2

a3

a4

a1

a2 a4

a3

a3 a2

a4 a1

Figure 4.4: A labeled and oriented alternating virtual knot diagram with a non-
separating reducing circle indicated by the red dashed line. On the right side is the
corresponding LOC. (Virtual Knot number 4.105 from Green and Bar-Natan [6].)

vertices a1 and a4. Then, we separate the LOG at the vertex a1 = a4 into two LOCs,

thereby obtaining the LOCs of the virtual knot k′, as shown in Figure 4.5.

The fundamental group of the virtual knot k can be written as a quotient of the

fundamental group of the virtual knot k′ (Theorem 3.3.2),

π1(D(k)) ≈ π1(D(k′))
/
{A1 = A′1, A3 = A′3}

where the Dehn group of k′ is
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A1

A1

A4A′3

A4

A3

A′3

A2

A2
A′1A1

A′1A1

A′3

A1 A1

a1

a2

a3

a4

a1

a2 a4

a3

a3 a2

a4
a1

Figure 4.5: The resulting virtual knot diagram k′ and its corresponding LOCs after
cutting along the non-separating reducing circle indicated in Figure 4.4. The dashed
red lines indicate separating reducing circles.

π1(D(k′)) =
〈
A1, A

′
1, A2, A3, A

′
3, A4

∣∣A1 = 1, A2A
′
1
−1
A′3A

−1
1 = 1,

A2A
−1
1 A′3A

′
1
−1

= 1,

A′3A
−1
1 A4A

−1
1 = 1,

A3A
−1
1 A4A

−1
1 = 1

〉
≈
〈
A2, A3

∣∣A3A2A
−1
3 A−12 = 1

〉
≈ Z× Z

The projection surface of k′ is a 2-sphere. However, there are still reducing circles

present in the virtual knot diagram. Cutting along the two separating reducing circles

indicated in Figure 4.5 results in three prime virtual links, k′1, k
′
2 and k′3, as shown in

Figure 4.6, which have non-positive curvature.

Using Theorem 3.3.2 and Theorem 3.3.1, we can find the fundamental group of k
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A′′′1A′′′1
A′4

A′′3

A4

A3

A′3

A2

A2
A′1A1

A′1A1

A′3

A′′1 A′′1

a1

a2

a3

a4

k′1

k′2 k′3 a1 a2

a4 a3

a3 a2

a4 a1

Figure 4.6: The resulting virtual link diagram of k′1, k
′
2, and k′3 and their corresponding

LOCs after cutting along the separating reducing circles indicated in Figure 4.5.

in terms of k′1, k
′
2, and k′3. First, we find the Dehn groups of k′1, k

′
2 and k′3.

π1(D(k′1)) =
〈
A1, A

′
1, A2, A

′
3

∣∣A1 = 1, A2A
−1
1 A′3A

′
1
−1

= 1, A2A
′
1
−1
A′3A1

−1 = 1,
〉

≈ Z× Z

π1(D(k′2)) =
〈
A′′′1 , A

′′
3, A

′
4

∣∣A′′′1 = 1, A′′3A
′′′
1
−1
A′4A

′′′
1
−1

= 1
〉

≈ Z

π1(D(k′3)) =
〈
A′′1, A3, A4

∣∣A′′′1 = 1, A3A
′′
1
−1
A4A

′′
1
−1

= 1
〉

≈ Z

In this case, the virtual knot k′ can be written as an amalgamated product of the

fundamental groups of k′1, k
′
2, and k′3, where the normal subgroups are obtained as

described in Theorem 3.3.1.
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π1(D(k′)) ≈ π1(D(k′1)) ∗N1 π1(D(k′2)) ∗N2 π1(D(k′3))

N1 =
〈
A1A

′
3
−1

= A′′′1 A
′′
3
−1
〉

N2 =
〈
A′4A

′′′
1
−1

= A4A
′′
1
−1
〉

Note that instead of making further cuts on k′, we could have used Type I Reide-

meister moves, for planar and virtual knots (Kauffman [13]), to obtain a link with the

same fundamental group. The additional knots, k′2 and k′3, we obtained are equivalent

to the unknot. Moreover, it is easy to verify that π1(D(k′)) ≈ π1(D(k′1)) ≈ Z × Z.

Therefore, we can express the fundamental group of the Dehn complex of k in several

ways,

π1(D(k)) ≈ π1(D(k′1)) ∗N1 π1(D(k′2)) ∗N2 π1(D(k′3))
/
{A1 = A′1, A3 = A′3}

≈ π1(D(k′))
/
{A1 = A′1, A3 = A′3}

Further examples of virtual knot diagrams can be found online from Green Bar-

Natan [6] or can be produced on a surface as Figure 3.1 and Figure 4.2.
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CHAPTER 5

ASPHERICITY OF VIRTUAL KNOTS

In this chapter, we attempt to provide a summary of the results surrounding my

thesis topic and illustrate how my results fit into the overall picture.

The following conjecture has remained open in spite of intense work from various

approaches. Originally motivated by determining whether classical knot complements

were aspherical, the range of the conjecture has broadened considerably since then.

Is any subcomplex of an aspherical, 2-dimensional complex itself aspheri-

cal?

–J. H. C. Whitehead (1941) [17]

A connected 2-dimensional CW complex X is aspherical if π2(X) is the trivial group.

The classical knot complement–a knot k removed from a 3-sphere–is a 3-manifold with

boundary, and hence has the homotopy type of a 2-complex. If we add a meridianal

disc to the knot complement, we obtain a 3-sphere with a ball removed, which is

itself a ball. Thus, the classical knot complement is homotopic to a 2-complex that

embeds in a contractible 2-complex. Knot complements have since been shown to be

aspherical (Papakyriakopoulos [14]). For a complete overview of the work done on

the Whitehead conjecture, see Rosebrock [15] and Bogley [3].

With the introduction of virtual knots, there is the new question of whether virtual

knot complements are aspherical. For a virtual knot diagram k with a projection
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surface F , Definition 2.1.2 described three distinct knot complements–the manifold

spaceM(k), the Wirtinger space W(k), and the Dehn space D(k). We now consider

asphericity in regards to these various knot complements.

5.1 Classical Closed Knot

The projection surface of the classical closed knot is the 2-sphere. The manifold

space, which is S2 × I − k, and the Wirtinger space, which is B3 − k, are clearly

not aspherical because they admit non-trivial boundary spheres. However, the Dehn

space, which is S3 − k, has been shown to be aspherical.

When the Dehn complex of a classical knot is a non-positively curved squared

complex, then the complex is also diagrammatically reducible (Gersten [5]). Every

spherical diagram of a diagrammatically reducible complex is reducible, thus the

complex is combinatorially aspherical, which implies topological asphericity.

5.2 Virtual Closed Knot

When the projection surface of a closed knot is not the 2-sphere–strictly the virtual

case–the results on asphericity change dramatically. The manifold space is now,

F×I−k, an orientable 3-manifold with boundary. We can use 3-manifold techniques,

just like in the classical case, to show that M(k) is aspherical.

The Wirtinger space and the Dehn space of a virtual knot need not be aspherical.

The virtual knot given in Example 3.2.4 has a Wirtinger group and a Dehn group

with torsion, hence the Wirtinger space and the Dehn space of the virtual knot are

not aspherical.
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In this thesis, we studied the geometry of the 2-dimensional spine of D(k). In

attempting to adapt results of non-positive curvature for classical knots to virtual

knots, we have had to grapple with the consequence of looking at knots on surfaces

of higher genus. The existence of reducing circles that only cut a handle, rather than

separate the surface, create circumstances that are non-existent in the classical knot

world, as we have explored in this thesis. The results of Theorem 3.3.3 allow us to

eliminate the separating and the non-separating reducing circles and thereby obtain

non-positively curved pieces, having recorded the damage done to the fundamental

group of the original complex.

5.3 Virtual Long Knot

A virtual long knot is a collection of “knotted” arcs properly embedded in a fattened

projection surface with boundary, such that the endpoints of the embedded arcs lie

on the boundary of the surface.

In the case of a classical long knot, the complements M(k), W(k), and D(k) all

agree. In particular, they are all aspherical.

The manifold space of a virtual long knot is aspherical by 3-manifold techniques.

The results of this thesis may be applied to virtual long knots. The Dehn space

need not be aspherical for virtual long knots since π1(D) ≈ π1(D̂), where D̂ is the

Dehn space of the associated closed knot.

If we limit ourselves to alternating long virtual knots with no non-separating

reducing circles, then Harlander and Rosebrock [7] have shown that if the Dehn

complex of a long virtual knot, with genus(F ) ≥ 1, is diagrammatically reducible,

then the Wirtinger complex is aspherical. Moreover, Harlander and Rosebrock [7]
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also gave a “gluing lemma,” such that we may cut an alternating virtual knot along

its separating reducing circles, and then glue the pieces back together in such a way

that the result is diagrammatically reducible. Hence, we have the asphericity of the

Wirtinger complex.

It is still an open question whether the Wirtinger space of every virtual long

knot—more generally, every labelled oriented tree—is aspherical.



51

REFERENCES

[1] C. C. Adams. The Knot Book: an Elementary Introduction to the Mathematical
Theory of Knots. W. H. Freeman and Company, New York, 1994.

[2] R. J. Aumann. Asphericity of alternating knots. Annals of Mathematics,
64(2):374–392, 1956.

[3] W. A. Bogley. J. H. C. Whitehead’s asphericity question. In A. Sieradski
C. Hog-Angeloni and W. Metzler, editors, Two-dimensional Homotopy and
Combinatorial Group Theory, volume 197 of LMS Lecture Notes, pages 309–334.
Cambridge University Press, 1993.

[4] M. R. Bridson and A. Haefliger. Metric Spaces of Non-Positive Curvature.
Springer, Berlin, 1999.

[5] S. M. Gersten. Reducible diagrams and equations over groups. In Essays in
Group Theory, volume 8. Mathematical Science Research Institute Publications,
Springer Verlag, 1987.

[6] J. Green and D. Bar-Natan. A table of virtual knots.
http://www.math.toronto.edu/~drorbn/Students/GreenJ/, August 2004.

Accessed: June 15, 2011.

[7] J. Harlander and S. Rosebrock. Generalized knot complements and some as-
pherical ribbon disc complements. J. of Knot Theory and Its Ramifications,
12(7):947–962, 2003.

[8] J. Harlander and S. Rosebrock. On distinguishing virtual knot groups from knot
groups. J. of Knot Theory and Its Ramifications, 19(5):695–704, 2010.

[9] A. Hatcher. Algebraic Topology. Cambridge University Press, 2001.

[10] C. Hog-Angeloni and W. Metzler. Geometric aspects of 2-dimensional complexes.
In A. Sieradski C. Hog-Angeloni and W. Metzler, editors, Two-dimensional
Homotopy and Combinatorial Group Theory, volume 197 of LMS Lecture Notes,
pages 189–218. Cambridge University Press, 1993.



52

[11] N. Kamada. On the Jones polynomials of checkerboard colorable virtual links.
Osaka J. Mathematics, 39:325–333, 2002.

[12] L. H. Kauffman. Introduction to virtual knot theory.
http://arxiv.org/abs/1101.0665, 2011. Submitted.

[13] L.H. Kauffman. Virtual knot theory. Europ. J. Combinatorics, 20:663–691, 1999.

[14] C. D. Papakyriakopoulos. On Dehn’s lemma and the asphericity of knots. Annals
of Mathematics, 66:1–26, 1957.

[15] S. Rosebrock. The Whitehead conjecture - an overview. Siberian Electronic
Mathematical Reports, 4:440–449, 2007.

[16] C. M. Weinbaum. The word and conjugacy problems for the knot group of any
tame prime alternating knot. Proc. American Mathematical Society, 30:22–26,
1971.

[17] J. H. C. Whitehead. On adding relations to homotopy groups. Annals of
Mathematics, 42:409–428, 1941.

[18] D. T. Wise. Non-positively curved squared complexes, aperiodic tilings, and non-
residually finite groups. PhD thesis, Princeton University, 1996.


