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ABSTRACT

We explore a striped pattern generated by a general Turing model in three different

geometries. We look at the square, disk, and hemisphere and make connections

between the stripes in each spatial direction. In particular, we gain a greater under-

standing of when perfect stripes can be generated and what causes defects in their

patterns. In this investigation, we look at the difference between the solutions due

to the different domain shapes. In the end, we propose a reason why stripes from

a reaction-diffusion system with zero-flux boundary conditions can be perfect on a

square or hemisphere, but not on a disk.
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CHAPTER 1

INTRODUCTION

A reaction-diffusion model is a system of partial differential equations that describe

the evolutionary change in concentration of two or more chemicals in a solution. It

was first suggested by Alan Turing in 1952 [7] that while reaction-diffusion equa-

tions generally describe a stable process leading to a homogeneous solution, under

certain circumstances an instability could occur leading instead to an inhomogeneous

solution. If one could see the different levels of concentration that developed in the

solution, they would note a pattern had formed. Because chemical reactions are often

very fast, it was difficult to demonstrate, experimentally, the patterns in solution that

Turing’s mathematical model had demonstrated. As a result, not much attention was

paid to Turing’s ideas about diffusion-driven instabilities until the late 1970s and into

the 1980s when his ideas were revived. Over the course of that decade and into

the 1990s, chemists were able to show pattern formations in an actual Turing-type

chemical reaction. Maini et al. report, in their overview of the research done on

spatial patterns in chemical and biological systems, that De Kepper and group were

first to present experimental evidence of Turing patterns [4]. During the 80s and 90s,

many scholars from chemistry to biology to mathematics studied this phenomenon

both in the lab and through numerical simulation. Maini et al. have written a

complete review of the work that was done in both chemistry and biology over this
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period of time [4]. The application of Turing structures was not limited to just these

fields, but the ideas spread to many areas of science including ecology, semiconductor

physics, material science, hydrodynamics, astrophysics, and economics.

In 2009, Calhoun and Helzel [3] developed a finite volume method for solving

parabolic equations on curved surfaces. They demonstrated their technique on a

Turing model applying the pattern formation to different surfaces. While their

numerical method was robust, it was noticed that the same model could generate clear

stripes on a hemisphere, but show defects in the stripes when applied to a circular

disk or a sphere. Much of the research of Turing models has focused on different

model types, the kinds of patterns formed, and their application to the development

of patterned structures in living organisms. Controlling the pattern formation has

received less attention. Sanderson et al. [6] addressed this issue for two types of

Turing models from the perspective of texture synthesis and scientific computing.

In this thesis, we show how to choose the number of stripes formed in various

geometries using a general Turing model. We will also look at how the striped

patterns interact in rectangular and circular domains. First, we will discuss how

an instability can occur in a reaction-diffusion system, then we will briefly look

at several Turing models before introducing a specific model and discussing our

parameter selections. We will present our numerical methods and show the results

of our numerical simulations. Through this process, we propose an explanation why

perfect stripes can be produced on a square grid or on a hemisphere, but not on a

disk.
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CHAPTER 2

DIFFUSION-DRIVEN INSTABILITY

2.1 A Picture of Diffusion-Driven Instability

Diffusion describes the movement of particles from an area of higher concentration to

an area of lower concentration to bring about equilibrium. It is normally thought of

as a smooth and stable process. When Alan Turing [7] suggested that a solution

of two or more chemicals in a homogeneous state could become inhomogeneous

specifically because of diffusion, it was a revelation. Turing showed that if the

chemicals worked in opposition to each other, for example, in a growth and decay

relationship or an activator-inhibitor relationship, and if the reaction rate of the

decay or inhibitor agent is significantly faster than the growth or activator rate,

then this homogeneous state would become inhomogeneous because the diffusion

would carry this asymmetry throughout the solution. This is what Turing coined

as “diffusion-driven instability [7].” While most reaction-diffusion models are stable,

when the kinetics of the reactions fall within a narrow parameter regime, these

instabilities cause the formation of patterned concentrations.

The mathematical model Turing proposed was

∂U

∂t
= D∇2U + F (U) (2.1)
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where U = U(x, t) ∈ <n represents the concentrations of n chemicals in space at a

particular time, and D is a diagonal matrix of diffusion coefficients for each chemical.

The chemical reactions are modeled by the function F (U), which is usually non-

linear. This system would have as many equations as chemicals in the solution.

Typically, to keep the model simple, we consider a system of two chemicals, U and

V , on a bounded domain with Neumann, Dirichlet, or periodic boundary conditions.

Rewriting Equation (2.1) as a coupled system gives

Ut = DU∇2U + f(U, V )

Vt = DV∇2V + g(U, V ).
(2.2)

We begin by giving some meaning to the above equation. The partial derivatives,

Ut and Vt, express the change in the concentration of the chemicals over time. The

functions f and g describe the reaction kinetics taking place in the solution and

DU∇2U andDV∇2V model the diffusion process. If there are no reaction kinetics (i.e.,

no f and g), then we have a diffusion equation that does not display an instability. The

behavior of this system is demonstrated in one dimension in Figure 2.1. The initial

Figure 2.1: Diffusion of species U without reaction kinetics for various times

conditions are random values between [−0.5, 0.5] where these values are considered as

deviations about a homogeneous state, to be made precise later. Almost immediately,
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the concentration diffuses to a smooth, uniform solution. Alternatively, we can look at

the behavior of the levels of concentration in the absence of diffusion. In this case, we

have D = 0, and there is no transport of the chemicals in the domain. In Figure 2.2,

we show the concentration levels for a system in one dimension. In particular, we

notice that the evolution of the system is not smooth.

Figure 2.2: Reaction kinetics without diffusion for various times

Finally, we show that for a particular choice of parameters, we can get an instabil-

ity with diffusion. In Figure 2.3, we see that the solution reaches a final steady-state

in which the concentration varies in the spatial domain, revealing a specific smooth

pattern. This is the result of a diffusion-driven instability. This type of instability

Figure 2.3: Diffusion-driven instability for various times

relies on species working in opposition to each other. While we have focused our

attention in these diagrams on the activator or growth element, U , the opposition

chemical or inhibitor, V , will always exhibit similar behavior. In Figure 2.4, we

show both U and V as a result of diffusion-driven instability. While the level of
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Figure 2.4: Comparison of activator and inhibitor at steady-state

concentrations are not exactly opposite, the maximums of one occur at the minimums

of the other. It was noted above that only a narrow set of parameters could bring

about diffusion-driven instability in a reaction-diffusion model. In the next section,

we look at the analysis that defines this set of parameters.

2.2 Linear Stability Analysis

Turing reaction-diffusion models are generally non-linear. As such, it can be difficult

to understand how a particular solution will develop over time and space. We can

gain some understanding of the behavior of the solution by looking at one solution

over time. We first linearize the reaction function about the homogeneous steady-

state solution. Then, the linear stability analysis looks at the time component of

a particular solution to see what growth rates will converge to zero, producing a

stable-state much as we saw in Figure 2.1. From this, we can look at the conditions

for which instabilities can occur. For simplicity, we carry out the analysis in one

spatial dimension.
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The uniform stationary state solution (U0, V0) satisfies f(U0, V0) = g(U0, V0) = 0.

Using a Taylor expansion about (U0, V0), we find a linear approximation of f and g

to be

f(U, V ) ≈ f(U0, V0) + fU(U0, V0)(U − U0) + fV (U0, V0)(V − V0)

g(U, V ) ≈ g(U0, V0) + gU(U0, V0)(U − U0) + gV (U0, V0)(V − V0).
(2.3)

Since f and g are both zero at the steady-state, we can rewrite Equation (2.3) in

vector form for simplicity. Let u = U − U0 and v = V − V0, then w = [u, v]T . The

partial derivatives of f and g with respect to U and V at (U0, V0) can be collected

into a matrix, which we will call A. The linear approximation of the reaction function

is then Aw. From this, we can rewrite the linearized reaction-diffusion system as

∂w

∂t
= D∇2w + Aw, A =

 fU fV

gU gV

.

 (2.4)

We now seek a particular solution corresponding to wavenumber k in the form

wk = Cke
λkteikx (2.5)

where Re(λk) is the growth rate and k is the wavenumber of our particular solution.

The vector, Ck ∈ <2×1, is the Fourier constants for the system. Substituting this

solution into Equation (2.4) gives

∂

∂t
Cke

λkteikx = D
∂2

∂x2
Cke

λkteikx + ACke
λkteikx.

or
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λkCke
λkteikx = −k2DCke

λkteikx + ACke
λkteikx.

This leads to the expression λkI = −Dk2 + A where I is the identity matrix. From

here on, we will let the matrix, Ak, be defined as

Ak = A−Dk2 =

 fU −DUk
2 fV

gU gV −DV k
2

 .
Thus, our eigenvalue problem is (Ak − λkI)w = 0, which leads to the characteristic

equation

λ2k − trace(Ak)λk + det(Ak) = 0. (2.6)

This can also be expressed as

λ2k − (fU + gV − k2(DU +DV ))λk + (fU −DUk
2)(gV −DV k

2)− fV gU = 0.

This implicitly defines λk as a function of k2. This dispersion relation is discussed

further in Section 4.1. For each wavenumber k, there will be a λ1k and λ2k satisfying

this equation. The solution will be stable when the growth rate is negative. Therefore,

when both λ1k < 0 and λ2k < 0, the solution will remain stable. From Equation (2.6)

then, we can conclude

trace(Ak) = fU + gV − k2(DU +DV ) < 0 (2.7)

det(Ak) = (fU −DUk
2)(gV −DV k

2)− fV gU > 0. (2.8)

Diffusion-driven instability refers to the situation where the solution is stable in the

absence of diffusion, but unstable in the presence of diffusion. Setting DU = DV = 0,
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the initial conditions for diffusion-driven instability become clear:

trace(A) = fU + gV < 0 (2.9)

det(A) = fUgV − fV gU > 0. (2.10)

How can the solution become unstable in the presence of diffusion? In light of Equa-

tion (2.9) and the fact that the diffusion coefficients are always positive, Equation (2.7)

will always be negative. So, for instability to occur, we must look at Equation (2.8).

That is, when is Equation (2.8) negative while maintaining Equation (2.10)?

det(Ak) = DUDV k
4 − (fUDV + gVDU)k2 + fUgV − fV gU < 0

This is quadratic in k2. It is a parabola that opens up since DUDV is positive. To

find the minimum value of the detAk, we set the derivative with respect to k2 equal

to zero:

d

d(k2)
(detAk) = 2DUDV k

2 − (fUDV + gVDU) = 0

or

k2 =
fUDV + gVDU

2DUDV

. (2.11)

To find the minimum value, substitute this expression for k2 into the detAk. This is

the third condition required for diffusion-driven instability to occur.

DUDV (
fUDV + gVDU

2DUDV

)2 − (fUDV + gVDU)(
fUDV + gVDU

2DUDV

) + fUgV − fV gU < 0

DUDV (
fUDV + gVDU

2DUDV

)2 − 2DUDV (
fUDV + gVDU

2DUDV

)2 + fUgV − fV gU < 0
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−(fUDV + gVDU)2

4DUDV

+ fUgV − fV gU < 0

(fUDV + gVDU)2 > 4DUDV (fUgV − fV gU)

Because of Equation (2.10), it follows that

fUDV + gVDU > 2
√
DUDV (fUgV − fV gU).

This further implies

fUDV + gVDU > 0,

which also follows from Equation (2.11). For clarity, we restate all four conditions

here for which diffusion-driven instability will occur:

Condition I: trace(A) = fU + gV < 0 (2.12)

Condition II: det(A) = fUgV − fV gU > 0 (2.13)

Condition III: fUDV + gVDU > 0 (2.14)

Condition IV: fUDV + gVDU > 2
√
DUDV (fUgV − fV gU). (2.15)
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CHAPTER 3

TURING MODELS

3.1 Common Turing Models

When Turing presented his study of diffusion-driven instability, it was in support of his

hypothesis of the existence of “morphogens.” This was a term he coined to represent

the idea of shape development. When he demonstrated that a mathematical model of

a chemical reaction could produce patterns of stripes and spots, it led him to wonder if

this could be the basis for morphogenesis [7]. Since then, a number of biologists have

studied reaction-diffusion systems in an attempt to understand the connection be-

tween patterns observed in life forms and those that can be produced mathematically

through computer simulation. Chaplain et al. [9] used the Schnakenberg system to

simulate pattern formation on a sphere. They were able to identify specific chemicals

that are produced by tumor cells and are also known to produce growth and inhibit

growth in a chemical system. Through their computer simulations, they were able

to demonstrate the plausibility of pattern development in tumor growth modeled as

a reaction-diffusion system. The Schnakenberg model is shown here as an example

of a Turing model that has been studied to gain greater understanding of pattern

development in biological systems. This model is
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ut = ∇2u+ γ(a− u+ u2v),

vt = d∇2v + γ(b− u2v),

where the parameters a, b, d, γ are all positive.

Leppänen et al. used the Gray-Scott Model computed in three dimensions to

study the inductive signaling mechanism for neuronal growth. This model has been

studied extensively and numerous animated demonstrations can be found quickly

through the internet. The Gray-Scott model is given by

ut = Du∇2u− uv2 + F (1− u),

vt = Dv∇2v + uv2 − (F +K)v.

In looking at Equation (2.2), one can see the basic model shown in the above systems.

In particular, note the linear terms and the cubic terms in each model. The reaction

functions are typically non-linear and vary by model in their non-linearity. Some

display an inverse non-linearity, such as the CIMA reaction discussed by Maini et

al. [4], while others have quadratic or cubic terms.

Biologists have developed a generic Turing model that has been used to imitate

the pigmentation pattern of fish and sea urchins as well as the plate diagrams of

caerate crinoids. This generic model is the subject of the rest of this paper and is

introduced below [1, 2, 8, 10].

3.2 A General Turing Model

In 1999, Barrio et al. [1] proposed a general Turing system that met the conditions

stated in Equations (2.12 - 2.15). While this model was not based on specific chemical
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reactions, it has proved useful for the study of different aspects of pattern formation.

Barrio et al. have looked at boundary conditions, domain shape, non-linearities,

and the coupling of systems [1]. Varea et al. have also explored this model on a

sphere [8] and Barrio et al. studied its symmetry breaking properties in a circular

domain [2]. Leppänen named this general Turing model the BVAM model in his

Doctoral dissertation in which he studied this system in depth [11].

The BVAM model was created by taking generic reaction functions, f and g, and

expanding them in a Taylor series about the homogeneous stationary state, (U0, V0),

up to the third-order term.

f(U, V ) ≈ f(U0, V0) + fU(U0, V0)(U − U0) + fV (U0, V0)(V − V0)

+
1

2
(fUU(U0, V0)(U − U0)

2 + 2fUV (U0, V0)(U − U0)(V − V0) + fV V (U0, V0)(V − V0)2)

+
1

6
(fUUU(U0, V0)(U − U0)

3 + 3fUUV (U0, V0)(U − U0)
2(V − V0)

+3fUV V (U0, V0)(U − U0)(V − V0)2 + fV V V (U0, V0)(V − V0)3)

The expansion for g is the same. Not all of the terms from the expansion are useful

in the model. The typical reaction kinetics between the activator and inhibitor are

expressed in the uv term and the uv2 term, which express the effect of the inhibitor

on the activator. The u2v term expresses the reverse-reaction kinetics and is not used

in the model. Replacing u = (U − U0) and v = (V − V0), we will assume from now

on that the partial derivatives are all evaluated at the stationary state, (U0, V0). The

functions f and g become



14

f(U, V ) ≈ fUu+ fV v − fUV uv − fUV V uv2

g(U, V ) ≈ gUu+ gV v + gUV uv + gUV V uv
2.

(3.1)

The function f describes the reaction kinetics for the activator and g for the inhibitor.

Each of the coefficients is represented by a parameter value and the BVAM model is

now stated:

ut = Dδ∇2u+ αu+ v − r2uv − αr1uv2 (3.2)

vt = δ∇2u+ γu+ βv + r2uv + αr1uv
2. (3.3)

This may also be written

ut = Dδ∇2u+ αu(1− r1v2) + v(1− r2u)

vt = δ∇2v + βv(1 +
αr1
β
uv) + u(γ + r2v).

(3.4)

as done in Barrio et al. [1]. In this system, D = DU/DV is the ratio between the

diffusion coefficients. We must have D < 1 since the diffusion of the inhibitor must

be significantly greater than the activator in order for diffusion-driven instability to

occur. The value of δ acts to scale the diffusion by speeding it up or slowing it down.

The faster the diffusion, the greater the amount of patterning for the same domain

size. In essence, varying δ effectively varies the viewing area.

The coefficients, α, β, and γ describe changes in the reaction rates with respect to

the concentrations of u and v (i.e., the partial derivatives from the Taylor expansion).

The parameters r1 and r2 affect the interaction of the activator and inhibitor and

ultimately determine if the pattern at a final steady-state will be spots or stripes.

When r1 and r2 are both non-zero, the cubic and quadratic terms are present, and
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the pattern will result in spots. The absence of quadratic terms will lead to stripes [1].

This general Turing model has two solutions at the uniform stationary state where

f = g = 0. Rearranging the equation below

αu(1− r1v2) + v(1− r2u) = βv(1 +
αr1
β
uv) + u(γ + r2v) = 0 (3.5)

shows that one solution is u = v = 0 and the other is −(α+γ)
β+1

u = v. We keep

the investigation limited to only one homogeneous steady-state solution at (0, 0) by

letting γ = −α. Based on the linear stability analysis from Section 2.2, our A matrix

becomes:

A =

 α 1

γ β

 .
Therefore, the four conditions for diffusion-driven instability are stated here for the

BVAM model.

α + β < 0 (3.6)

α(β + 1) > 0 (3.7)

α + βD > 0 (3.8)

α + βD > 2
√
αD(β + 1) (3.9)

3.3 Parameter Selection

It is our goal to explore the pattern created by stripes from the BVAM on a square,

a disk, and the surface of a hemisphere. The parameters used by Calhoun and

Helzel [3] will be our starting point. For all our experiments, the boundary conditions
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are Neumann, zero-flux, which has the effect of isolating the system from outside

influences. We let α = 0.899, β = −0.91, and D = 0.516 for all our tests. It can

be confirmed that these parameters meet the above conditions for diffusion-driven

instability. We let δ vary in our experiments. Since we are only interested in stripes,

we let r1 = 3.5 and r2 = 0. We begin our simulations in one spatial dimension and

then expand it to two dimensions.
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CHAPTER 4

NUMERICAL SIMULATIONS

4.1 The Dispersion Relation and a Pattern in 1-D

In Section 2.2, we identified the conditions for which a diffusion-driven instability

would take place in a Turing type reaction-diffusion system. It turns out that the

dispersion relation, Equation (2.6), is a key element in this understanding. This

relationship between λ and k2 reveals the range of wavenumbers leading to a positive

growth rate. Because we solve the reaction-diffusion system on a discrete domain, the

range of wavenumbers is finite. The wavenumber that gives the largest possible posi-

tive λ becomes the dominant wavenumber. Thus, it is called the critical wavenumber.

Figure 4.1 shows the dispersion relation between Re(λ) and k for the example shown

in Figure 2.3 from Section 2.1 run with parameters from Section 3.3 and δ = 0.0021.

We can see in the graph of the dispersion relation that the range of wavenumbers

that give a positive λ is approximately [11,16]. It can also be seen that the critical

wavenumber is approximately 14.

The value of k can also be determined by using Equation (2.11), which came from

finding the minimum value of the determinant of Ak, the point at which instability

occurs. We restate this equation applying the parameters from the BVAM model,

k2 =
1

δ

(
α + βD

2D

)
. (4.1)
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Figure 4.1: The dispersion relation and Turing patterns in one dimension

To illustrate the importance of this equation, we substitute the parameters in Sec-

tion 3.3 and find that k ≈ 14. We can use Equation (4.1) then to predict the critical

wavenumber for a particular set of parameters.

The wavenumber has a reciprocal relationship to the wavelength, ω. If we look at

our particular solution, Equation (2.5), from Section 2.2 for k = 14,

w14 = C14e
λ14tei(14)x (4.2)

we can expand this as

w14 = C14e
λ14t[cos(14x) + i sin(14x)]. (4.3)

Because of the format we have chosen for our solution and the fact that sine and

cosine have a period of 2π, the specific reciprocal relationship between wavenumber

and wavelength is ω = 2π/k. It follows for k calculated from Equation (4.1) that

ω ≈ 0.44635. We can determine the number of waves, N , which should result in

our given domain length, L. Since the domain is [−1, 1], L = 2. It follows that
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N = L/ω = 2/0.44635 ≈ 4.5. We can see from the diagram on the right in Figure 4.1

that the pattern formed has the determined 4.5 waves. From this understanding, we

turn to two-dimensional domains beginning with the square domain.

4.2 Square Domain

In this thesis, it is our goal to understand why perfect stripes can develop in a

square or hemisphere domain but not in a disk. At this point, we have laid out the

important elements for a solution in one dimension. We now apply this understanding

to two dimensions bounded by a square. The first question that might arise is if our

equation defining the critical wavenumber will apply in two dimensions. Looking back

at Section 2.2, we can see that the solution, Equation (2.5), in two spatial dimensions

would be

wk = Cke
λkteik·x

where k now represents a vector of two wavenumbers, (k1,k2). This will result in the

same characteristic equation, Equation (2.6), where k2 is replaced by ‖ k ‖2= k · k.

As a result, our critical wavenumber equation, Equation (4.1), will remain the same.

However, we will look at the dominant wavenumber to see if it is always the same in

each spatial dimension.

In all the numerical simulations run in one dimension and the two-dimensional

square grid, we used a MATLAB code written specifically for these experiments.

These codes are available in Appendix A. The initial conditions were always a

randomly generated set of values between [-0.5,0.5]. For some experiments, we seeded

the random number generator using a prescribed seed for each test and at other

times we didn’t initialize the random seed generator. After many experiments, it was
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determined that seeding or not seeding did not change the overall results.

In all the tests, we maintain a zero-flux boundary condition. This has the effect

of isolating the solution from outside influences. We used the Forward Euler method

to evolve the solution in time and we used a second-order central finite difference

approximation to evaluate the diffusion term. In one dimension, we used 100 grid

points, and in two dimensions it was always a 50 × 50 grid. Since we are interested

in the final steady-state, each test was run for 25000 time steps where ∆t = 0.04 in

one dimension and at least 37,500 time steps in two dimensions with ∆t = 0.08. In

all cases, the number of time steps chosen was enough to see no discernible change in

the solution.

As shown in the last section, we can pick the number of waves we want to appear

in our grid and from this calculate the proper δ using Equation (4.1). For example,

ω = L/N and k = 2π/ω, so k = 2πN/L. Since the length of the domain in the square

grid is 2, then k = πN . Therefore, if we want 5 waves, we let k = 5π and calculate δ

by rearranging Equation (4.1) to be

δ =
1

k2

(
α + βD

2D

)
.

In Figure 4.2, we show two simulations where the one on the left is run for 5 waves

and the one on the right is run for 5.25 waves. The wave seen in the one-dimensional

case in Figure 4.1 is the variation in levels of concentration of the activator, U . In the

two-dimensional picture, the change in concentration is represented by colors where

red is high concentration and blue is low concentration. The red stripes, then, show

the peaks of the waves while the blue stripes show the valleys of the waves. In the

picture on the left, we can count the waves by counting the number of red stripes. We
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Figure 4.2: The two dimensional BVAM model in a square domain with 5 waves
(stripes) on the left and 5.25 waves (stripes) on the right.

see a red stripe along the left boundary so we know the wave starts at its maximum.

To count the number of waves, we begin counting from the boundary with the first

wave being the first stripe completely inside the square. In this way, we see that there

are 5 waves (or stripes) in the horizontal direction across the square. The picture on

the right, which was run for 5.25 waves (or stripes), shows 5 vertical stripes across

the top of the square, but it also shows horizontal stripes near the bottom of the grid.

There are clearly three stripes formed by waves in the vertical direction, with some

form of undulation showing in the stripes from the horizontal direction. Because we

impose a zero-flux on the boundary, the wave is forced to have a peak or valley at

the boundary. If the wavenumber that is imposed does not allow for an integer or

half-integer number of waves, we expect to see defects of the sort shown in Figure 4.2

on the right. As a result, in all our testing, we only choose integer or half-integer

number of waves to test.

We ran tests for consecutive integer and half-integer values from 3 stripes to 6.5

stripes each with the same random seed. Table B.1 in Appendix B records the k value

and δ value for each test. In Figure 4.3, we show two results. Typically, the waves

aligned, giving either all vertical or all horizontal stripes. We can see in Figure 4.3 the
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Figure 4.3: The result of integer number of stripes on the left and half-integer number
of stripes on the right.

difference between an integer number of stripes and a half-integer number of stripes.

If the stripes are either red on both sides or blue on both the sides parallel to the

stripes, this is an integer number of stripes. If the stripes begin with red and end

with blue, this would be an example of a half-integer number of stripes.

Sometimes the waves would not end up fully aligned in one direction in which

case we can see stripes forming in each direction. Figure 4.4 shows two examples of

this. Both tests were run with the unseeded random initial conditions. We can see

Figure 4.4: Predicted number of waves in each direction: 4.5 stripes on the left and
6 stripes on the right.

that we get 4.5 stripes in each direction for the figure on the left and 6 stripes in each

direction for the figure on the right.
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While the process of getting a predicted number of stripes was robust in at least

one direction, there were times when the competition betweens waves in the different

directions produced mixed results. In Figure 4.5, we show two examples of this. We

Figure 4.5: Competition between horizontal waves and vertical waves can cause
defects.

can count 6 stripes across the top of the left-hand figure while the one on the right

has 6.5 stripes down the right side of the square, but a count of the stripes on the

other boundaries does not give the predicted amount.

In the last set of examples for the square grid, we show that straight stripes with

no defects (i.e., perfect) can be formed for various numbers of stripes and in different

directions. Figure 4.6 shows perfect stripes from random initial conditions for both

3.5 stripes and 5.5 stripes.

We have shown that perfect stripes can be formed in a square grid. We have also

confirmed that the number of stripes can be chosen for a two-dimensional solution

based on the length of the domain and the critical wavenumber equation; see (4.1).

We chose values for k that would give us waves that would fit exactly into the domain

length, keeping the zero-flux boundary conditions from causing avoidable defects. We

now apply this understanding to the two-dimensional circular domain.
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Figure 4.6: Perfect Stripes

4.3 Circular Domain

4.3.1 Analysis of the BVAM Model on a Disk

We begin by exploring how the solution to the BVAM Turing system is affected by the

shape of the domain. While a square domain lends itself to solutions in rectangular

coordinates, a circular domain lends itself to polar coordinates. The two spatial

dimensions are the radial dimension r, and the angular dimension θ. Our analysis

here follows the analysis laid out by Aragón et al. [10]. In what follows, we assume

our disk has radius one.

The solution on a disk applies a Fourier series in the angular dimension and

a Bessel series in the radial dimension. The form of the solution for a particular

wavenumber, k is

wk = Cme
λktJm(kr)eimθ (4.4)

where Cm ∈ <2×1 are the Fourier coefficients and Jm are the Bessel functions of the

first kind of order m where m is an integer mode. The solutions w = [u, v]T are

u = u(r, θ, t) and v = v(r, θ, t). Substituting this solution into Equation (2.4), we get

the same characteristic equation as we did in Section 2.2 and Equation (2.6). Aragón
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et al. [10] show that for a normalized k and a unit disk, the dispersion relation leads

to the same critical wavelength. We again state this critical wavelength, kc, at which

at least one λ becomes positive, producing the necessary diffusion-driven instability:

k2c =
1

δ

(
α + βD

2D

)
. (4.5)

While k can be calculated from Equation (4.5), the mode m cannot be determined

this way. We must decompose the solution to find the values of m.

The solutions u and v at a final steady-state under zero-flux boundary conditions

can be expanded in a Fourier-Bessel series. For example:

u(r, θ) =
∞∑
m=0

∞∑
n=1

CmnJm(kmnr)e
imθ (4.6)

where kmn = κmn/a, κmn is the nth zero of the derivative of the Bessel function J ′m,

and a is the radius of the disk. The solution can be decomposed to reveal the principal

modes by computing the magnitude of the complex coefficient, Cmn [10].

Cmn =
k2mn

π[(kmna)2 −m2][Jm(kmna)]2

∫ a

0

∫ 2π

0

u(r, θ)rJm(kmnr)e
−imθdθdr. (4.7)

From the decomposition, we can reconstruct the solution to show that the decompo-

sition retains the same key features as the original solution.

In Figure 4.7, we show a solution and its reconstructed form, which is a trun-

cated series solution, using coefficients Cmn computed from a numerical solution, as

described in Section 4.3.2 below. The figure on the left is the numerical solution and

the one on the right is the reconstructed figure. The key features are the areas of

high concentration and low concentration. The original solution has darker reds and
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Figure 4.7: Solution on a disk and its reconstructed form from Fourier-Bessel
coefficients where q(1) corresponds to activator species U .

blues, indicating the levels of concentrations in the reconstructed figure are not as

high or as low. However, the peaks and valleys are in the same place, showing the

same pattern in the reconstructed result as in the original. It should also be noted

here, that this particular solution reveals the type of waves generated in a circular

domain. We can see the rings from the center out indicating waves in the radial

direction. We can also see the spoke-like formation formed by waves in the angular

direction. This solution does not reveal the stripes we are looking for, but it is an

example of some of the unusual patterns that we came across. As we go on to look

at stripes formed on the disk, this picture is useful for understanding the nature of

the solutions on the circular domain.

4.3.2 Numerical Method and Results

The solution to the BVAM model on a disk was solved using a Runge-Kutta Cheby-

shev method for the time step and the finite volume method developed by Calhoun

and Helzel [3] solved over a mesh grid of 100 × 100. The boundary conditions are

zero-flux given by,
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n · ∇u(r, θ) = n · ∇v(r, θ) = 0

for all θ ∈ [0, 2π) and r at the boundary with n the unit outward normal. For each

test, ∆t = 1 and 10,000 time steps were performed.

To approximate the integral needed to compute the Fourier-Bessel coefficients, we

use the fact that the numerical solution to our finite volume scheme is a cell averaged

value. The discrete solution satisfies

unij ≈
1

Area(Cij)

∫
Cij

q(x, y, tn) dA (4.8)

where Cij is mesh cell ij, Area(Cij) is the area of mesh cell Cij, and q(x, y, tn) is the

exact solution at time level tn. This approximation is second order for a second-order

scheme. To approximate our Fourier-Bessel coefficients, we can replace the integral

in Equation(4.7) with a discrete sum over an M ×N mesh, using approximate mesh

cell areas as weights for the sum. We have then

Cmn ≈
k2mn

π[(k2mn −m2][Jm(kmn)]2

M∑
i=1

N∑
j=1

uijJm(kmnrij)e
(−imθij)dAij (4.9)

where the area element dAij ≈ rdrdθ, and (rij, θij) are computed by converting the

Cartesian components of the mesh cell centers to polar coordinates.

The stripes on the disk tend to align in one direction. As with the square domain,

we can calculate the number of stripes, Nr, that go across the diameter. The domain

length, Lr, is twice the radius, so we have k/π = Nr. From this, δ can be determined

by Equation (4.5). The modal decomposition gives m, which from Equation (4.6)

can be seen to be the wavenumber in the angular direction. We take the length of

the domain, Lθ, in this direction to be the circumference so that Lθ = 2π. Therefore,



28

the relationship between m and the number of waves, Nθ, around the boundary is

m = Nθ. In all the pictures of the circular figures, the time at steady-state is listed

above the circle. Table B.2 gives the number of stripes across the diameter and the

number of waves around the circumference based on choosing k as an integer from

10 to 18. We do not show all of the pictures here, but select ones in this section for

discussion. They are all shown together in Section B.2, Appendix B.

Since the waves generated in a circular domain occur in the angular and radial

directions, we are interested in the waves around the boundary compared to the

waves (stripes) across the diameter. In Figure 4.8, we compare the stripes across the

diameter to the waves around the circumference and look at the values for k and

m. We count the stripes across by counting along a diameter perpendicular to the

Figure 4.8: Stripes on a disk for k = 10, m = 8 on the left and k = 12, m = 10 on
the right

stripes. The figure on the left has 3 stripes and the one on the right has almost 4 full

stripes. To calculate the number of stripes across, we use Nr = k/π. In this way, we

calculate 3.1 stripes when k = 10 and 3.8 when k = 12. To count the waves around

the boundary, we look at all the high points where red either touches the boundary

or is close enough to cause a high spot on the rim. We can see the picture on the
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left has 8 waves around the perimeter and the one on the right has 10 waves at the

edge. In Figure 4.9, we show the chart of decomposed coefficients up to m = 40 and

n = 39 for k = 10 and k = 12. Since our grid size was 100× 100. we calculated more

coefficients than are shown here, choosing to cut off the lowest modes which are not

relevant to this discussion. We present all of the highest modes in the diagram. The

Figure 4.9: Fourier-Bessel coefficients for k = 10 on the left and k = 12 on the right

darker the red, the larger the value of the coefficient. In Figure 4.9, the largest mode

in the left-hand figure is the darkest red square at m,n = 8, 1. The right-hand figure

shows the darkest red square at 10, 1. We note here that the number of waves on

the boundary for each figure in Figure 4.8 agrees with the value of m for the largest

Fourier-Bessel coefficient from Figure 4.9

It is not easy to tell the largest coefficient from the above charts. It is evident

that there are many modes that are playing a role in the solution on a disk. As k

gets larger, the number of modes that are somewhat dominant increases so that the

primary mode, m, is not always equal to the number of waves on the perimeter. In

Figure 4.10, we show the solution for k = 17 and the corresponding Fourier-Bessel

coefficient chart. We also show the actual numerical values in Table B.3, Appendix B.

There are 5 stripes across and 10 clear high points or waves around the boundary.
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Figure 4.10: The solution and the corresponding Fourier-Bessel coefficients for k = 17

Table B.3, Appendix B shows 6 modes all within 0.02 of each other in size. We can

see, k0,5, k2,5, k7,3, k10,2, k12,1, and k15,1 are the modes that have the largest effect on

the solution with k0,5 and k15,1 being the two dominant modes. Since the number of

waves on the boundary is 10, it is clear the largest modes are not significantly large

enough to force the number of waves on the boundary to be 15.

Looking at Table B.2, we can see a pattern developing between Nr and Nθ. As k

increases, the number of stripes across and waves around also increases at a similar

rate. The stripes in the middle are less wavy and more straight. We can see from

Figure 4.11 below just how nice the stripes look for k = 18. But even here, the stripes

on the ends remain very wavy. From these tests, we can see that given a k value, the

number of stripes predicted is accurate. For most of the tests, the dominant m mode

was also the same as the waves on the boundary. We now look to the hemisphere and

the patterns formed on it.
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Figure 4.11: Solution for k = 18

4.4 Hemisphere

For both the square and the disk, we focused on the number of waves in each

spatial dimension. As we apply the BVAM model to the hemisphere, we want

to continue focusing on the number of waves in each spatial dimension. For the

hemisphere, the two spatial dimensions are around the boundary and over the top

of the hemisphere. We use the RKC method combined with a finite volume scheme

and the code generated by Calhoun and Helzel [3]. The solution is solved on a

100 × 100 grid with ∆t = 1 and 10,000 time steps. We again apply Neumann

boundary conditions and use the same random initial conditions. We use most of

the same values for k and δ as we did for the disk. Table B.4 in Appendix B shows

the results for the number of stripes over the top and the number of waves on the

boundary. We show all the figures in Appendix B and select a few here to discuss.

Figure 4.12 shows the solutions for k = 8 and k = 11. To count the stripes over

the top, count each full red stripe. If there is a red circle at the end, this counts as

half a stripe. To count the waves around simply count each time the red touches the

boundary. The figure on the left has 3.5 stripes over the top and 7 waves around the
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Figure 4.12: Hemisphere with k = 8 and k = 11

boundary. The figure on the right has 5 stripes over the top and 10 waves around the

boundary. The stripes are perfect. In fact, the stripes are perfect for each test up

through k = 14. The last test revealed a slight defect for k = 15. Figure 4.13 shows

k = 15 from both sides. The solution to the BVAM model on a hemisphere robustly

Figure 4.13: Hemisphere with slight defect

produces stripes. Each stripe meets the boundary in two places, thus the number of

waves around is always twice as many as the number of waves over the top.
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CHAPTER 5

CONCLUSIONS

5.1 Perfect Stripes in Different Geometries

We have shown that perfect stripes can be formed on a square and hemisphere.

We have shown good stripes on a disk can be obtained, but only in the middle

of the domain. We have shown that the number of stripes on a square and disk

can be predicted by connecting the critical wavenumber equation to the length of

the domain in each spatial dimension. While each geometry produces some defects,

producing stripes in general is dependable in all domains. And, in all geometries, we

can produce a chosen number of stripes. But we are most interested in determining

if it is possible to produce perfect (i.e., straight with no defect) stripes on a disk

from this general Turing model, starting from random initial conditions and applying

zero-flux boundary conditions.

Table 5.1 shows a comparison of the lengths, L, of the domains in each spatial

dimension for each type of geometry. It also compares the number, N , of waves in

one spatial dimension with the number of waves in the other spatial dimension. The

length of the domain in the square is 2 in each dimension. In general, there were two

main results from the solution on a square. Either the waves aligned in predominantly

one direction or they filled half with horizontal stripes and half with vertical stripes.

In general, when the waves did not align in one direction, the number of stripes in
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Table 5.1: Modal comparison by geometry

Geometry L1 : L2 N1 : N2

Square 1 : 1 1 : 1
Disk 1 : π 1 : 2.6

Hemisphere 1 : 2 1 : 2

each spatial dimension was the same. Thus, the ratios from Table 5.1 for the square

show that the ratios for each are 1 : 1.

The spatial domains for the hemisphere were over the top (the polar direction)

and around the boundary. The distance over the top is π and the distance around

the boundary is 2π. The ratio between the lengths of the domains then is 1 : 2. It

was also shown in Section 4.4 that the number of stripes around was always twice the

number over the top. Again, the ratio is 1 : 2.

The length of the domain in the radial direction for the disk is twice the radius

or 2. The length of the domain in the angular direction is the circumference of the

boundary or 2π. The ratio of the lengths then is 1 : π. Below in Table 5.2, we

show again values from Table B.2, adding a column with the ratio between the waves

around and the waves across. This shows an approximate ratio between the number

of waves in each spatial dimension on the disk to be 1 : 2.6.

If the ratio between the lengths of the domains is the same as the ratio between the

number of waves in each dimension, it is easy to see the waves should fit neatly into

the given lengths. Thus, for the square and hemisphere, we can get perfect stripes.

The ratios for the disk simply do not match up. The waves across the circle do not fit

neatly with the waves around the circle. The waves on the boundary keep the stripes

near the boundary from being perfect. Our numerical results strongly indicate that
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Table 5.2: Ratio between stripes across the disk and waves around the disk

Stripes across Nr Waves around Nθ Nθ/Nr

3.1 8 2.6
3.5 9 2.6
3.8 10 2.6
4.1 11 2.7
4.5 12 2.7
4.8 13 2.7
5.1 13 2.5
5.4 14 2.6
5.7 15 2.6

the solution to this general Turing model with zero-flux boundary conditions on a

disk will not generate perfect stripes.

5.2 Exploring Stripes on Other Domains

There is still more to explore regarding stripes in a circular domain. We need to

study the Fourier-Bessel solutions in greater detail, attempting to understand the

connection between k and m. We also need to explore different boundary conditions

and expand to other domain shapes.

When Turing first proposed the possibility of the existence of morphogens, it was

to propose a possible explanation for pattern development in living organisms. As

such, if one is to make a contribution toward this end, then it would be important to

explore this Turing model further in domains that are more similar to living organisms.

While the disk is the most relevant domain we studied, it would be good to also look

at the surface of a sphere and a torus. If we wanted to make any sort of connection

between stripes on the hide of a mammal, we would need an irregular type of domain
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that resembles the shape of the animal.

J. D. Murray wrote the textbook, “Mathematical Biology” [5], which deals ex-

tensively with the mathematical understanding needed to solve reaction-diffusion

equations. But even this understanding is often limited to the simplest mechanisms

and often in one spatial dimension because of the complexity of these models. There is

more to do in gaining a greater understanding of complex reaction-diffusion equations

and their solutions. We look forward to future developments in this area.
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APPENDIX A

MATLAB CODE

A.1 One-Dimension Code for Square Domain

%Solve a Turing model system of equations in 1-D space over time. Apply

%Euler’s Method to a semi-discretized Reaction-Diffusion system.

%clear all

%Grid size

Tf=3000;

a=-1; % Lower boundary

b=1; % Upper boundary

M=100; % M is the number of spaces between points a and b.

dx=(b-a)/M; % dx is delta x

x=linspace(a,b,M+1); % M+1 equally spaced x vectors including a and b.

%Time stepping

dt=0.04; %100*(dx^2)/2; % dt is delta t the time step

N=Tf/dt; % N is the number of time steps in the interval [-1,1]

%Constant Values

D=0.516; % D is the Diffusion coefficient Du/Dv

delta=0.0021; % sizes the domain for particular wavelengths

alpha=0.899; % a is alpha, a coefficient in f and g (-a is gamma)

beta=-0.91; % b is beta, another coefficient in f and g

r1=3.5; % r1 is the cubic term

r2=0; % r2 is the quadratic term

gamma=-alpha; % g is for gamma

%pre-allocation

unp1=zeros(M+3,1);
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vnp1=zeros(M+3,1);

%Initial Conditions

un=-0.5+rand(M+3,1); %Begin with a random point between [-0.5,0.5]

vn=-0.5+rand(M+3,1);

for n=1:N

un(1)=un(3); %Boundary conditions on left flux is zero

un(M+3)=un(M+1); %Boundary conditions on right

vn(1)=vn(3);

vn(M+3)=vn(M+1);

for j=2:M+2

%Source function for u and v

srcu=alpha*un(j)*(1-r1*vn(j)^2)+vn(j)*(1-r2*un(j));

srcv=beta*vn(j)*(1+(alpha*r1/beta)*un(j)*vn(j))+un(j)*(gamma+r2*vn(j));

Lapu=(un(j-1)-2*un(j)+un(j+1))/dx^2; %Laplacian u

Lapv=(vn(j-1)-2*vn(j)+vn(j+1))/dx^2; %Laplacian v

unp1(j)=un(j)+dt*(D*delta*Lapu+srcu);

vnp1(j)=vn(j)+dt*(delta*Lapv+srcv);

end

un=unp1;

vn=vnp1;

% Graphing

if mod(n,25000)==0

%subplot(2,1,2)

plot(x,un(2:M+2))

axis([ -1, 1, -1 ,1]);

fprintf(’Time t = %f\n’,n*dt);

input(’Hit enter to continue :’)

end

end
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A.2 Two-Dimension Code for Square Domain

%Solve a Turing model system of equations in 2-D space over time. Apply

%Euler’s Method to a semi-discretized Reaction-Diffusion system.

%clear all

%Grid size

Tf=1000000;

a=-1; % Lower boundary

b=1; % Upper boundary

M=50; % M is the number of spaces between points a and b.

dx=0.04; %(b-a)/M; % dx is delta x

dy=0.04; %(b-a)/M;

x=linspace(a,b,M+1); % M+1 equally spaced x vectors including a and b.

y=linspace(a,b,M+1);

%Time stepping

dt=0.08; %100*(dx^2)/2; % dt is delta t the time step

N=Tf/dt; % N is the number of time steps in the interval [0,1]

%Constant Values

D=0.516; % D is the Diffusion coefficient Du/Dv

delta=0.0021; % sizes the domain for particular wavelengths

alpha=0.899; % a is alpha, a coefficient in f and g (-a is gamma)

beta=-0.91; % b is beta, another coefficient in f and g

r1=3.5; % r1 is the cubic term

r2=0; % r2 is the quadratic term

gamma=-alpha; % g is for gamma

%pre-allocation

unp1=zeros(M+3,M+3);

vnp1=zeros(M+3,M+3);

%Initial Conditions

un=-0.5+rand(M+3,M+3); %Begin with a random point between [-0.5,0.5]

vn=-0.5+rand(M+3,M+3);

for n=1:N

for i=2:M+2
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un(i,1)=un(i,3); %Boundary conditions on left flux is zero

un(i,M+3)=un(i,M+1); %Boundary conditions on right

vn(i,1)=vn(i,3);

vn(i,M+3)=vn(i,M+1);

end

for j=2:M+2

un(1,j)=un(3,j); %Boundary conditions on left

un(M+3,j)=un(M+1,j); %Boundary conditions on right

vn(1,j)=vn(3,j);

vn(M+3,j)=vn(M+1,j);

end

for i=2:M+2

for j=2:M+2

%Source function for u and v

srcu=alpha*un(i,j)*(1-r1*vn(i,j)^2)+vn(i,j)*(1-r2*un(i,j));

srcv=beta*vn(i,j)*(1+(alpha*r1/beta)*un(i,j)*vn(i,j))+un(i,j)*(gamma+r2*vn(i,j));

uxx=(un(i-1,j)-2*un(i,j)+un(i+1,j))/dx^2; %Laplacian u

vxx=(vn(i-1,j)-2*vn(i,j)+vn(i+1,j))/dx^2; %Laplacian v

uyy=(un(i,j-1)-2*un(i,j)+un(i,j+1))/dy^2; %Laplacian u

vyy=(vn(i,j-1)-2*vn(i,j)+vn(i,j+1))/dy^2; %Laplacian v

Lapu=uxx+uyy;

Lapv=vxx+vyy;

unp1(i,j)=un(i,j)+dt*(D*delta*Lapu+srcu);

vnp1(i,j)=vn(i,j)+dt*(delta*Lapv+srcv);

end

end

un=unp1;

vn=vnp1;

% Graphing

if mod(n,6250)==0

%subplot(2,1,2)

hdl = surf(x,y,un(2:M+2,2:M+2));

set(hdl,’edgecolor’,’none’);

axis([ -1, 1,-1,1]);

%caxis([-10,15]);
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view(2);

colorbar;

fprintf(’Time t = %f\n’,n*dt);

ch = input(’Hit enter to continue :’,’s’);

if (strcmp(ch,’k’) == 1)

keyboard;

end

end

end
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APPENDIX B

TABLES AND FIGURES FROM NUMERICAL

SIMULATIONS

B.1 Square

Table B.1: Values of k and δ based on the number of stripes

Number of stripes k δ
3 9.4 0.0046846866

3.5 11.0 0.0034418106
4 12.6 0.0026351362

4.5 14.1 0.0020820829
5 15.7 0.0016864872

5.5 17.2 0.0013937911
6 18.8 0.0011711716

6.5 20.4 0.000997921405
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B.2 Disk

Table B.2: Values which correspond to Figure B.1

k δ Stripes across Nr Primary mode-kmn Waves around Nθ

10 0.0041612403 3.1 k8,1 8
11 0.0034390416 3.5 k9,1 9
12 0.0028897502 3.8 k10,1 10
13 0.0024622724 4.1 k11,1 11
14 0.0021230818 4.5 k12,1 12
15 0.0018494401 4.8 k13,1 13
16 0.0016254845 5.1 k13,1 13
17 0.0014398755 5.4 k05,1 14
18 0.0012843334 5.7 k15,1 15

Figure B.1 shows the results in order from k = 10 to k = 18 left to right and

top to bottom. To count the number of waves around the circumference, count the

number of times red touches the outside of the circle.
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Figure B.1: Results selecting k as an integer from k = 10 to k = 18

B.3 Hemisphere



Table B.3: Fourier-Bessel coefficients from k = 17 in Figure 4.10

kmn 1 2 3 4 5 6 7
0 1.67E-04 6.13E-05 3.06E-05 4.92E-03 1.69E-01 1.52E-02 9.50E-04
1 2.50E-05 3.26E-05 2.77E-05 9.35E-04 2.44E-02 5.95E-02 2.63E-03
2 1.39E-04 3.77E-05 8.67E-05 2.96E-03 1.54E-01 5.24E-03 2.35E-03
3 2.24E-04 1.25E-05 8.14E-04 2.66E-02 6.96E-03 1.66E-03 1.46E-04
4 2.40E-05 9.25E-05 4.87E-04 9.39E-02 1.79E-02 3.62E-03 2.65E-05
5 1.55E-04 3.14E-04 1.49E-02 9.06E-02 2.59E-03 4.51E-04 1.42E-03
6 9.49E-05 4.96E-04 1.09E-02 2.52E-02 2.68E-03 9.84E-05 3.74E-04
7 9.39E-05 1.38E-03 1.54E-01 1.49E-02 2.26E-03 7.81E-05 3.75E-04
8 7.55E-05 1.08E-02 3.44E-02 4.15E-04 3.00E-04 9.14E-04 2.04E-04
9 2.89E-04 6.17E-02 4.31E-02 4.72E-03 6.53E-04 9.63E-04 2.00E-05
10 1.28E-03 1.49E-01 1.06E-02 4.29E-03 1.72E-03 1.06E-04 5.71E-04
11 2.27E-03 3.48E-02 5.18E-03 1.73E-03 1.10E-03 4.48E-04 1.75E-04
12 3.62E-02 6.66E-02 5.49E-03 4.96E-04 1.44E-03 1.53E-03 1.24E-03
13 4.12E-02 1.10E-02 8.75E-04 9.10E-04 3.07E-04 1.05E-04 2.39E-04
14 1.58E-01 1.22E-03 1.64E-03 1.81E-03 1.53E-03 9.74E-04 6.19E-04
15 1.63E-01 1.67E-03 2.62E-03 1.50E-03 1.18E-03 8.88E-04 3.34E-04
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Table B.4: Number of stripes on a hemisphere given the k value

k δ Stripes over the top Nt Waves around boundary Nb

8 0.006501938 3.5 7
9 0.0051373337 4 8
10 0.0041612403 4.5 9
11 0.0034390416 5 10
12 0.0028897502 5.5 11
13 0.0024622724 6 12
14 0.0021230818 6.5 13
15 0.0018494401 7 14

Figure B.2: Hemisphere with k = 8, 9, 10 in row 1, k = 11, 12, 13 in row 2, and
k = 14, 15a, 15b in row 3.


