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ABSTRACT

While constructive insight for a multitude of phenomena appearing in the physical

and biological sciences, medicine, engineering and economics can be gained through

the analysis of mathematical models posed in terms of systems of ordinary and

partial di↵erential equations, it has been observed that a better description of the

behavior of the investigated phenomena can be achieved through the use of functional

di↵erential equations (FDEs) or partial functional di↵erential equations (PFDEs).

PFDEs or functional equations with ordinary derivatives are subclasses of FDEs.

FDEs form a general class of di↵erential equations applied in a variety of disciplines

and are characterized by rates of change that depend on the state of the system.

As opposed to traditional partial di↵erential equations (PDEs), the formulation of

PFDEs, and hence, their methods of solution, are generally significantly complicated

by the functional dependence of the system. Consequently, mathematical analysis

has become essential to address important questions on PFDEs, their properties and

solutions. This thesis is devoted to a general class of parabolic PFDEs and works

out the details of the proof techniques of a related paper that help to address these

questions. In particular, we examine error bounds of approximate solutions with the

aim to address whether or not they converge to the exact solutions as a result of

refining the associated discretizations.
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CHAPTER 1

INTRODUCTION

Many real-life problems can be adequately modeled in terms of systems of di↵erential

equations, creating a general class into which all ordinary and partial di↵erential

equations fall. A variety of models written in terms of di↵erential equations feature

the independent time variable t, which plays a significant role in predicting the future

behavior of certain phenomena in question with the aid of a variety of di↵erent

available data, such as clinical, experimental, or field data. Although it is collected in

a limited period of time, this data can be used in tandem with systems of di↵erential

equations to provide information about the future.

However, in the context of mathematical models formulated in terms of di↵erential

equations, the derivative of the solution with respect to the time variable t depends

only on the solution at the present time. To obtain more realistic models that better

approximate the behavior of the investigated phenomena, models written in terms

of di↵erential equations are very often improved by incorporating information about

the past history of the solution, giving rise to functional di↵erential equations. As

opposed to traditional di↵erential equations, in models written in terms of functional

di↵erential equations, the derivative of the solution depends on its values at earlier

times in addition to its value at the present time. This flexible property provides

an important tool in mathematical modeling with functional di↵erential equations
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broadly applied in many scientific disciplines such as biology, medicine, physics, engi-

neering, economics, etc. Throughout its long history, functional di↵erential equations

have been investigated by many authors with respect to a multitude of aspects, about

which we refer the reader to [1], [2], [5]-[10], [12], [14]-[21], [23]-[28], [30], [31], [38]

for ordinary functional di↵erential equations and [3], [4], [11], [13], [22], [29]-[38]

for partial functional di↵erential equations. Aspects connected with modeling with

functional di↵erential equations are presented in [3], [4], [13], [14], [24]. One of the

main problems is that many of the equations have no analytical formulae for the exact

solutions and it has become essential to study their approximations in order to gain

insight about the solutions to the model equations and to conduct numerical simula-

tions. In order to get reliable approximate solutions, careful mathematical analysis of

their errors has to be conducted. In this thesis, we expand on the development of [37]

by filling in the details of the proofs to investigate errors of approximate solutions to

a class of parabolic partial functional di↵erential equations. For similar developments

and proof techniques for partial functional di↵erential equations as well as numerical

experiments for this class of equations, we refer the reader to [4, 22, 34, 35, 36, 38].

Originating from a multitude of areas of application to the real world around us,

partial functional di↵erential equations form a general class of problems that includes

partial di↵erential equations as one if its subclasses.

This thesis is devoted to partial functional di↵erential equations written in the

form
@u

@t

(x, t) = f

⇣

x, t, u(x,t),
@u

@x

(x, t),
@

2
u

@x

2
(x, t)

⌘

, (1.1)

where u 2 C(B,R) is an unknown function (see below for B), x 2 [�L,L], t 2 [0, T ]

and f : [�L,L] ⇥ [0, T ] ⇥ C(D,R) ⇥ R ⇥ R ! R, represents any given continuous
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function. Another generalization in (1.1) is introduced by the argument u(x,t); for any

fixed x 2 [�L,L] and t 2 [0, T ], u(x,t) is a function. Such a functional argument allows

to generate di↵erential equations with e.g. a time delay and shift in space. Unlike for

classical partial di↵erential equations, the third argument u(x,t) in (1.1) is not a real

value but a real function defined on D (see Figure 1 for D) and called a functional

argument. The functional argument u(x,t) 2 C(D,R) for x 2 [�L,L], t 2 [0, T ], and

u 2 C(B,R), with L, T > 0, B = [�L̂, L̂]⇥ [�⌧0, T ], D = [�⌧̂ , ⌧̂ ]⇥ [�⌧0, 0], ⌧̂ , ⌧0 � 0,

L̂ = L+ ⌧̂ , is defined as

u(x,t)(s, ⌧) = u(x+ s, t+ ⌧), (s, ⌧) 2 D.

Equation (1.1) is supplemented with the following initial conditon

u(x, t) = u0(x, t), t 2 [�⌧0, 0], x 2 [�L̂, L̂], (1.2)

and boundary condition

u(x, t) = g(x, t), t 2 [0, T ], x 2 [�L̂,�L] [ [L, L̂]. (1.3)

Here, f : [�L,L] ⇥ [0, T ] ⇥ C(D,R) ⇥ R ⇥ R ! R is a continuous function, and

u0, g are given initial and boundary functions, respectively.

The partial di↵erential equation (1.1) describes a general class of problems. For

example, if f is defined by

f(x, t, �, p, q) = ✏q + �(0, 0)(1� �(0,�⌧0)), (1.4)

where ✏ is a positive constant, then (1.1) can be written in the following form
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@u

@t

(x, t) = ✏

@

2
u

@x

2
(x, t) + u(x, t)(1� u(x, t� ⌧0)).

Here, the functional argument is given by t � ⌧0. Another class of examples can be

generated by defining f by

f(x, t,!, p, q) = a(t)q + a(t)

Z 0

�⌧0

Z

⌧̂

�⌧̂

!(s, ⌧)dsd⌧, (1.5)

where a 2 C([0, T ],R+). Then, (1.1) can be written in the general form

@u

@t

(x, t) = a(t)
@

2
u

@x

2
(x, t) + a(t)

Z 0

�⌧0

Z

⌧̂

�⌧̂

u(x+ s, t+ ⌧)dsd⌧.

An important subclass of the class of partial functional di↵erential equations

captured by (1.1) that may be most familiar to most readers is the entire class of

partial di↵erential equations written in the form

@u

@t

(x, t) = f̃

⇣

x, t, u(x, t),
@u

@x

(x, t),
@

2
u

@x

2
(x, t)

⌘

,

where f̃ : [�L,L] ⇥ [0, T ] ⇥ R3 ! R is any given function. This entire subclass is

another example that can be generated from the general class of equations (1.1) by

suitably defining f appearing on the right-hand side.

We have seen that not only do partial functional di↵erential equations o↵er a mod-

eling approach that more realistically portrays a wide class of real-world phenomena,

but also that their generality encompasses wide classes of subproblems, some of which

many readers have been acquainted with already in various real-world contexts.

The following figure illustrates the domain of the functional argument.
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Figure 1.1: Graphical illustration of initial and boundary sets.
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CHAPTER 2

NUMERICAL SOLUTIONS FOR A GENERAL CLASS OF

SYSTEMS OF ORDINARY FUNCTIONAL

DIFFERENTIAL EQUATIONS: APPROXIMATIONS AND

DEFINITIONS

The general class of equations given by (1.1) is written in terms of arbitrary functions

f and, in many cases, analytic solutions to these equations defined in the continuum

sense are unknown and approximated by numerical solutions computed on discrete

subsets. For any element of any of the discrete subsets (such elements are referred

to as grid-points), there exists an open neighborhood that is disjoint from the other

grid-points. The discrete subsets are finite and determined by parameters, a↵ecting

the coarseness of the corresponding discretizations. In the literature, the process of

semi-discretization has been also referred to as the Method of Lines. Letting the

values of these parameters approach zero causes the corresponding discretizations

to become finer. The goal of the thesis is to study error bounds of the approximate

solutions defined on the discrete subsets and to address the question of whether or not

they get closer to the exact solutions as the discretization becomes finer – a property

desired of discretization.

In this chapter, we construct approximate solutions to the general problem (1.1)–

(1.3). With this aim, we introduce spatial grid-points x
j

that we will use to replace
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the spatial derivatives in (1.1) by discrete operators. Let the spatial step-size h > 0

and M , M̂ be such that Mh = L, M̂h = ⌧̂ and M, M̂ 2 N. Then, we define x

j

= jh,

for j = 0,±1,±2, ..,±M̃ , where M̃ = M + M̂ . Henceforth, we also use the notation

M

0 = M � 1 and n = 2M � 1.

For each discretization parameter h, we define the vector function F = (F�M

0
, . . . , F

M

0) :

[0, T ] ⇥ Rn ⇥ C([�⌧0, 0],Rn) ! Rn, the initial function ũ0 : [�⌧0, 0] ! Rn, and the

initial value problem

8

>

<

>

:

�̇(t) = F (t, �(t), �
t

), t 2 [0, T ],

�(t) = ũ0(t), t 2 [�⌧0, 0],
(2.1)

whose solution �(t) 2 Rn depends on h and (as it will be shown in the next chapters)

converges to (u(x�M

0
, t), ..., u(x

M

0
, t)), as h ! 0. Note that n ! 1, as h ! 0, and

that the dimension of the system (2.1) increases as the discretization becomes finer.

The third input �
t

2 C([�⌧0, 0],Rn) in (2.1) is defined by

�

t

(⌧) = �(t+ ⌧),

for ⌧ 2 [�⌧0, 0], where t 2 [0, T ] and � 2 C([�⌧0, T ],Rn).

The vector function F in (2.1) can be defined as follows

F

i

(t, z,!) = f(x
i

, t,L
i,t

!, �

i,t

z, �

2
i,t

z), (2.2)

where i = 0,±1, ...,±M

0, t 2 [0, T ], z 2 Rn, and ! = (!�M

0
, ...,!

M

0) 2 C([�⌧0, 0],Rn).

The operators L
i,t

: C([�⌧0, 0],Rn) ! C(D,R) are defined in the following way
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[L
i,t

!](s, ⌧) =
x

k+1 � s

h

!

t

k+i

(⌧) +
s� x

k

h

!

t

k+1+i

(⌧),

where s 2 [�⌧̂ , ⌧̂ ], ⌧ 2 [�⌧0, 0], and k 2 N is such that x
k

6 s 6 x

k+1 and

!

t

j

(⌧) =

8

>

<

>

:

!

j

(⌧), for j = 0,±1, ...,±M

0
,

g(x
j

, t+ ⌧), for j = ±M, . . . ,±M̃,

where g is defined in (1.3). The discrete operators �
i,t

and �

2
i,t

in (2.2) are defined for

t 2 [0, T ], i = 0,±1, ...,±M

0, and z = (z�M

0
, ..., z

M

0) 2 Rn, by

�

i,t

z =
z

t

i+1 � z

t

i�1

2h
, (2.3)

�

2
i,t

z =
z

t

i+1 � 2zt
i

+ z

t

i�1

h

2
, (2.4)

where the vector zt = (zt�M

, ...z

t

M

) 2 Rn+2 is defined by

z

t

i

=

8

>

<

>

:

g(x
i

, t), for i = ±M,

z

i

, for i = 0,±1, . . . ,±(M � 1).

As it will be shown in Chapter 4, the operators (2.3) and (2.4) approximate the first

and second order derivatives (respectively) at the point x
i

.

The initial function ũ0 : [�⌧0, 0] ! Rn in (2.1) is defined by

ũ0(t) = (u0(x�M

0
, t), . . . , u0(xM

0
, t)),

for t 2 [�⌧0, 0], where u0 : [�L̂, L̂] ⇥ [�⌧0, 0] ! R is the initial function given in the

original problem. The goal of this thesis is to work through the proof techniques of

[37] to help address the question of whether or not the components of the solution
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�(t) 2 Rn to (2.1) converge, as h ! 0, to the values u(x
i

, t) of the exact solution to

the problem (1.1) with (1.2), (1.3).
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CHAPTER 3

ITERATIVE PROCESSES WITH GENERAL SPLITTING

FUNCTIONS FOR SEMI-DISCRETE DIFFERENTIAL

FUNCTIONAL SYSTEMS

In this chapter, we construct iterative procedures for solving the general problem

(2.1) and thus (1.1)–(1.3). The process is summarised in the form of the following

algorithm. Let �(0) : [�⌧0, T ] ! Rn be an arbitrary function. We define the sequence

of vector functions �(k) : [�⌧0, T ] ! Rn, where k = 0, 1, 2, . . . , recursively, by

�̇

(k+1)(t) = G(t, �(k+1)(t), �(k)(t), �(k)
t

), t 2 [0, T ],

�

(k+1)(t) = ũ0(t), t 2 [�⌧0, 0].
(3.1)

The functions G are chosen according to the given F and are referred to as splitting

functions. The function �

(0) is referred to as a starting function, and the functions

�

(k) are referred to as the successive iterates.

For example, if G is defined by

G

i

(t, ⇣, z, w) = F

i

(t, z1, . . . , zi�1, ⇣i, zi+1, . . . , zn, w),

for i = 1, 2, . . . , n, where F
i

is defined, for example, by (2.2), then (3.1) generates the

following iterative process of the Picard type in the functional sense
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�̇

(k+1)
i

(t) = F

i

⇣

t, �

(k)
1 (t), ..., �(k)

i�1, �
(k+1)
i

(t), �(k)
i+1(t), ..., �

(k)
n

(t), �(k)
t

⌘

(3.2)

or if G is defined by

G

i

(t, ⇣, z, w) = F

i

(t, ⇣1, . . . , ⇣i, zi+1, . . . , zn, w),

then (3.1) generates another iterative process of the Picard type in the functional

sense

�̇

(k+1)
i

(t) = F

i

⇣

t, �

(k+1)
1 (t), ..., �(k+1)

i�1 (t), �(k+1)
i

(t), �(k)
i+1(t), ...�

(k)
n

(t), �(k)
t

⌘

. (3.3)

A common feature of these two processes is that the functional argument in F is

given by the previous iterate denoted by the superscript k, as is the case for standard

Picard iterations. The first of these processes has been referred to in the literature also

by terms such as Jacobi-Picard scheme, Jacobi-Picard waveform relaxation scheme,

Jacobi-Picard waveform method, Jacobi-Picard iteration scheme, or simply Jacobi

waveform relaxation. The second of these processes has been referred to in the

literature also by terms such as Gauss-Seidel-Picard scheme, Gauss-Seidel-Picard

waveform relaxation scheme, Gauss-Seidel-Picard waveform method, Gauss-Seidel-

Picard iteration scheme, or simply Gauss-Seidel waveform relaxation . Both of these

processes have also been collectively referred to by terms such as waveform relaxation,

dynamic iteration or simply, iterative processes. See e.g. [26], [35] for di↵erent naming

conventions. If the equaton in question is a classical equation without the functional

argument, then the name ‘Picard’ is not used in the above terms. The two iterative

processes of the Picard type in the functional sense di↵er in the dependence of the
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indices of the successive iterates, and one may be preferable to the other depending

on the problem.

In our error analysis, we will use the following definitions:

e(t) = U(t)� �(t),

e

(k)(t) = �(t)� �

(k)(t),

E

(k)(t) = U(t)� �

(k)(t),

where t 2 [�⌧0, T ], k = 0, 1, . . . , U(t) =
�

U1(t), . . . , Un

(t)
�

, U
i

(t) = u(x
i

, t), and

the functions u(x, t), v(t), v

(k)(t) are solutions to the three problems (1.1)–(1.3),

(2.1), (3.1), respectively. Notice that e(t) is the error of semi-discretization (2.1)

and e

(k)(t) is the error of iterative process (3.1), while E

(k)(t) is the error of both

the semi-discretization (2.1) and iterative process (3.1). The prefix semi indicates

that the discretization corresponds to the spatial variable only. As mentioned earlier,

another name for the process of semi-discretization is the Method of Lines.

Henceforth, we will use the following assumptions. Suppose that, for

F : [0, T ]⇥ Rn ⇥ C([0, T ],Rn) ! Rn

,

there exist positive continuous functions �
n

2 C([0, T ],R+) such that

lim
n!1

�

n

(t) = 0 (3.4)

and
�

�

U̇

i

(t)� F

i

(t, U(t), U
t

)
�

�  �

n

(t), (3.5)

for all t 2 [0, T ] and i = �M

0
, . . . ,M

0. Moreover, suppose that u 2 C

(4)(B,R) (class
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of 4-times continuously di↵erentiable funtions from B to R) and that for the given

function

f : [�L,L]⇥ [0, T ]⇥ C(D,R)⇥ R⇥ R ! R,

there exist positive continuous functions 1,2,3 2 C([0, T ],R+) such that

|f(x, t,!, p, q)� f(x, t, !̄, p̄, q̄)|  1(t)|p� p̄|+ 2(t)|q � q̄|
+ 3(t) max

(s,⌧)2D
|!(s, ⌧)� !̄(s, ⌧)|,

(3.6)

for all x 2 [�L,L], t 2 [0, T ], !, !̄ 2 C(D,R), p, q, p̄, q̄ 2 R.

For the iterative processes applied to (2.1), we assume that the functions

G : [0, T ]⇥ Rn ⇥ Rn ⇥ C([�⌧0, 0],Rn) ! Rn

satisfy

G(t, r(t), r(t), r
t

) = F (t, r(t), r
t

), (3.7)

for all t 2 [0, T ], r 2 C([�⌧0, T ],Rn) (note that for any t 2 [0, T ], r
t

2 C([�⌧0, 0],Rn))

and there exist continuous functions µ1 2 C([0, T ],R), µ2, µ3 2 C([0, T ],R+) such that

k& � &̄ � "[G(t, &, z,!)�G(t, &̄, z,!)]k
n

� (1� "µ1(t))k& � &̄k
n

, (3.8)

kG(t, &, z,!)�G(t, &, z̄,!)k
n

 µ2(t)kz � z̄k
n

, (3.9)

kG(t, &, z,!)�G(t, &, z, !̄)k
n

 µ3(t)k! � !̄k0
n

, (3.10)

for " � 0, t 2 [0, T ], &, &̄, z, z̄ 2 Rn, !, !̄ 2 C([�⌧0, 0],Rn), where k · k
n

is an arbitrary

norm in Rn and
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k!k0
n

= max
⌧2[�⌧0,0]

k!(⌧)k
n

,

for ! 2 C([�⌧0, 0],Rn).

In the following chapters, we will show that the conditions (3.7)–(3.10) are satisfied

for the iterative processes (3.2) and (3.3) of the Picard type in the functional sense

and we will use them to derive error bounds for the general numerical schemes (2.1)

and (3.1).
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CHAPTER 4

CONSISTENCY PROPERTIES OF NUMERICAL

SCHEMES FOR PARTIAL FUNCTIONAL

DIFFERENTIAL EQUATIONS

In this chapter, we present results that we will apply to derive error bounds for numer-

ical solutions to partial functional di↵erential equations. In the theorem below, the

notation C

(4)(B,R) refers to the class of 4-times continuously di↵erentiable functions

from B to R.

Theorem 4.1 ([37], Lemma 3.1). If u 2 C

(4)(B,R) and f satisfies condition (3.6),

then F defined by (2.2) satisfies condition (3.5) with

�

n

(t) =
c

n

2

�

1(t) + 2(t) + 3(t)
�

, (4.1)

for t 2 [0, T ], where c is a positive constant that is independent on n.

Proof. Let i 2 {0,±1, . . . ,±M

0} and t 2 [0, T ] be arbitrary. From the definition of

U(t), equation (1.1), and definition (2.2), we have
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�

�

�

U̇

i

(t)� F

i

(t, U(t), U
t

)
�

�

�

=
�

�

�

@u

@t

(x
i

, t)� F

i

(t, U(t), U
t

)
�

�

�

=
�

�

�

f

⇣

x

i

, t, u(xi,t),
@u

@x

(x
i

, t),
@

2
u

@x

2
(x

i

, t)
⌘

� F

i

�

t, U(t), U
t

�

�

�

�

=
�

�

�

f

⇣

x

i

, t, u(xi,t),
@u

@x

(x
i

, t),
@

2
u

@x

2
(x

i

, t)
⌘

�f

�

x

i

, t,L
i,t

U

t

, �

i,t

U(t), �2
i,t

U(t)
�

�

�

�

.

Hence

�

�

�

U̇

i

(t)� F

i

(t, U(t), U
t

)
�

�

�

 1(t)

�

�

�

�

@u

@x

(x
i

, t)� �

i,t

U(t)

�

�

�

�

+ 2(t)

�

�

�

�

@

2
u

@x

2
(x

i

, t)� �

2
i,t

U(t)

�

�

�

�

+ 3(t) max
(s,⌧)2D

�

�

u(xi,t)(s, ⌧)� L
i,t

U

t

(s, ⌧)
�

�

.

(4.2)

By Taylor’s Theorem applied to u(x
i+1, t) and u(x

i�1, t), since u 2 C

(4)(B,R), we

have,

u(x
i+1, t) = u(x

i

, t) +
h

1!
· @u
@x

(x
i

, t) +
h

2

2!
· @

2
u

@x

2
(x

i

, t) +
h

3

3!
· @

3
u

@x

3
(✓

i

, t), (4.3)

with ✓

i

2 (x
i

, x

i+1), and

u(x
i�1, t) = u(x

i

, t)� h

1!
· @u
@x

(x
i

, t) +
h

2

2!
· @

2
u

@x

2
(x

i

, t)� h

3

3!
· @

3
u

@x

3
(⇠

i

, t), (4.4)

with ⇠

i

2 (x
i�1, xi

). From (4.3) and (4.4), we have
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�

�

�

�

@u

@x

(x
i

, t)� �

i,t

U(t)

�

�

�

�

=

�

�

�

�

@u

@x

(x
i

, t)� U

i+1(t)� U

i�1(t)

2h

�

�

�

�

=

�

�

�

�

@u

@x

(x
i

, t)� u(x
i+1, t)� u(x

i�1, t)

2h

�

�

�

�

=

�

�

�

�

@u

@x

(x
i

, t)� 1

2h

✓

2h · @u
@x

(x
i

, t) +
h

3

6
· @

3
u

@x

3
(✓

i

, t) +
h

3

6
· @

3
u

@x

3
(⇠

i

, t)

◆

�

�

�

�

=
h

2

12

�

�

�

�

@

3
u

@x

3
(✓

i

, t) +
@

3
u

@x

3
(⇠

i

, t)

�

�

�

�

.

Since u 2 C

(4)(B,R), there exists a constant C > 0 such that

�

�

�

@

3
u

@x

3
(x, t)

�

�

�

 C,

for all (x, t) 2 B, and

�

�

�

�

@u

@x

(x
i

, t)� �

i,t

U(t)

�

�

�

�

 Ch

2

6
.

From this and n+ 1 =
2L

h

, we get

�

�

�

�

@u

@x

(x
i

, t)� �

i,t

U(t)

�

�

�

�

 C

6
· 4L2

(n+ 1)2
<

2CL

2

3n2
. (4.5)

For the second term of (4.2), we obtain

�

�

�

�

@

2
u

@x

2
(x

i

, t)� �

2
i,t

U(t)

�

�

�

�

=

�

�

�

�

@

2
u

@x

2
(x

i

, t)� U

i+1(t)� 2U
i

(t) + U

i�1(t)

h

2

�

�

�

�

=

�

�

�

�

@

2
u

@x

2
(x

i

, t)� u(x
i+1, t)� 2u(x

i

, t) + u(x
i�1, t)

h

2

�

�

�

�

(4.6)

and apply
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u(x
i+1, t) = u(x

i

, t) +
h

1!
· @u
@x

(x
i

, t) +
h

2

2!
· @

2
u

@x

2
(x

i

, t) +
h

3

3!
· @

3
u

@x

3
(x

i

, t)

+
h

4

4!
· @

4
u

@x

4
(✓̃

i

, t),

u(x
i�1, t) = u(x

i

, t)� h

1!
· @u
@x

(x
i

, t) +
h

2

2!
· @

2
u

@x

2
(x

i

, t)� h

3

3!
· @

3
u

@x

3
(x

i

, t)

+
h

4

4!
· @

4
u

@x

4
(⇠̃

i

, t),

(4.7)

with ✓̃

i

2 (x
i

, x

i+1) and ⇠̃

i

2 (x
i�1, xi

), respectively. From (4.6) and (4.7), we have

�

�

�

�

@

2
u

@x

2
(x

i

, t)� �

2
i,t

U(t)

�

�

�

�

=

�

�

�

�

@

2
u

@x

2
(x

i

, t)� 1

h

2

✓

h

2@
2
u

@x

2
(x

i

, t) +
h

4

24

@

4
u

@x

4
(✓̃

i

, t) +
h

4

24

@

4
u

@x

4
(⇠̃

i

, t)

◆

�

�

�

�

=
h

2

24

�

�

�

�

@

4
u

@x

4
(✓̃

i

, t) +
@

4
u

@x

4
(⇠̃

i

, t)

�

�

�

�

.

Since u 2 C

(4)(B,R), there exists a constant C > 0 such that

�

�

�

@

4
u

@x

4
(x, t)

�

�

�

 C,

for all (x, t) 2 B. From this and h =
2L

n+ 1
, we get

�

�

�

�

@

2
u

@x

2
(x

i

, t)� �

2
i,t

U(t)

�

�

�

�

 Ch

2

12
=

4L2
C

12(n+ 1)2
<

L

2
C

3n2
. (4.8)

Finally, for the third term in (4.2), we get
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�

�

�

�

�

u(xi,t)(s, ⌧)� [L
i,t

U

t

](s, ⌧)

�

�

�

�

�

=

�

�

�

�

�

u(x
i

+ s, t+ ⌧)� (x
k+1 � s)

h

· (U
t

)t
k+i

(⌧)

�(s� x

k

)

h

· (U
t

)t
k+1+i

(⌧)

�

�

�

�

�

,

(4.9)

for (s, ⌧) 2 D and k 2 N such that x

k

 s  x

k+1. Since (U
t

)t
j

(⌧) = (U
t

)
j

(⌧) =

U

j

(t+ ⌧) = u(x
j

, t+ ⌧), for j = k + i and j = k + 1 + i, from (4.9), we get

�

�

�

�

�

u(xi,t)(s, ⌧)� [L
i,t

U

t

](s, ⌧)

�

�

�

�

�

=

�

�

�

�

�

u(x
i

+ s, t+ ⌧)� (x
k+1 � s)

h

u(x
k

+ x

i

, t+ ⌧)� (s� x

k

)

h

u(x
k+1 + x

i

, t+ ⌧)

�

�

�

�

�

and, by Taylor’s Theorem, we obtain

�

�

�

�

�

u(xi,t)(s, ⌧)� [L
i,t

U

t

](s, ⌧)

�

�

�

�

�

=

�

�

�

�

�

u(x
i

+ s, t+ ⌧)� (x
k+1 � s)

h

"

u(x
i

+ s, t+ ⌧) +
(x

i

+ x

k

� x

i

� s)

1!

@u

@x

(x
i

+ s, t+ ⌧)

+
(x

i

+ x

k

� x

i

� s)2

2!

@

2
u

@x

2
(✓̂

i

, t+ ⌧)

#

� (s� x

k

)

h

"

u(x
i

+ s, t+ ⌧)

+
(x

i

+ x

k+1 � x

i

� s)

1!

@u

@x

(x
i

+ s, t+ ⌧) +
(x

i

+ x

k+1 � x

i

� s)2

2!

@

2
u

@x

2
(⇠̂

i

, t+ ⌧)

#

�

�

�

�

�

=

�

�

�

�

�

u(x
i

+ s, t+ ⌧)

"

1� x

k+1 � s

h

� s� x

k

h

#

�@u

@x

(x
i

+ s, t+ ⌧)

"

x

k+1 � s

h

(x
k

� s) +
s� x

k

h

(x
k+1 � s)

#

�@

2
u

@x

2
(✓̂

i

, t+ ⌧)
(x

k

� s)2

2

(x
k+1 � s)

h

� @

2
u

@x

2
(⇠̂

i

, t+ ⌧)
(s� x

k

)

h

(x
k+1 � s)2

2

�

�

�

�

�

.
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Upon rearranging this and using the inequality

�

�

�

@

2
u

@x

2
(x, t)

�

�

�

 C,

with C > 0, we get

�

�

�

�

�

u(xi,t)(s, ⌧)� [L
i,t

U

t

](s, ⌧)

�

�

�

�

�

 C

2h

"

(x
k

� s)2(x
k+1 � s) + (s� x

k

)(x
k+1 � s)2

#

 C

2h

"

h

2(x
k+1 � s) + h

2(s� x

k

)

#

=
Ch

2

"

x

k+1 � s+ s� x

k

#

=
Ch

2

2

Therefore, since h =
2L

n+ 1
, we get

�

�

�

�

�

u(xi,t)(s, ⌧)� [L
i,t

U

t

](s, ⌧)

�

�

�

�

�

 2CL

2

(n+ 1)2
<

2CL

2

n

2
. (4.10)

From (4.2), (4.5), (4.8), and (4.10), we get

|U̇
i

(t)� F

i

(t, U(t), U
t

)|  1(t)
2CL

2

3n2
+ 2(t)

CL

2

3n2
+ 3(t)

2CL

2

n

2
,

which shows that (3.5) holds with, for example, c = 2CL

2 in (4.1), and finishes the

proof.

Corollary 4.1 ([37], Corollary 3.1). Suppose that there exists a constant d > 0 such

that

max
n

�

�

u(x, t)
�

� : x 2 [�L,L], t 2 [0, T ]
o

 d
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where u is a solution of equation (1.1) with f defined by (1.4) for a class of functions

w 2 C(D,R) such that max{|w(s, ⌧)| : (s, ⌧) 2 D}  d. Then the function f satisfies

condition (3.6). Moreover, if u is of class C

4(B,R), then F defined by (2.2) satisfies

condition (3.5).

Proof. In order for Theorem 4.1 to be applied, it su�ces to show (3.6). Let x 2
[�L,L], t 2 [0, T ], w, w̄ 2 C(D,R), p, q, p̄, q̄ 2 R be arbitrary. From the definition of

f , we get

f(x, t, w, p, q)� f(x, t, w̄, p̄, q̄)

= "q + w(0, 0)
�

1� w(0,�⌧0)
�� "q̄ � w̄(0, 0)

�

1� w̄(0,�⌧0)
�

= "(q � q̄) + w(0, 0)� w̄(0, 0)� w(0, 0)w(0,�⌧0) + w(0, 0)w̄(0,�⌧0)

�w(0, 0)w̄(0,�⌧0) + w̄(0, 0)w̄(0,�⌧0)

= "(q � q̄) +
�

w(0, 0)� w̄(0, 0)
�� w(0, 0)

�

w(0,�⌧0)� w̄(0,�⌧0)
�

�w̄(0,�⌧0)
�

w(0, 0)� w̄(0, 0)
�

.

and

|f(x, t, w, p, q)� f(x, t, w̄, p̄, q̄)|

 "|q � q̄|+ ��w(0, 0)� w̄(0, 0)
�

�+
�

�

w(0, 0)
�

� · ��w(0,�⌧0)� w̄(0,�⌧0)
�

�

+
�

�

w̄(0,�⌧0)
�

� · ��w(0, 0)� w̄(0, 0)
�

�

 "|q � q̄|+
⇣

1 +
�

�

w̄(0,�⌧0)
�

�+
�

�

w(0, 0)
�

�

⌘

max
(s,⌧)2D

�

�

w(s, ⌧)� w̄(s, ⌧)
�

�

 "|q � q̄|+ (1 + 2d) max
(s,⌧)2D

�

�

w(s, ⌧)� w̄(s, ⌧)
�

�

.

Therefore, f satisfies (3.6) with
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1(t) = 0, 2(t) = ", 3(t) = 1 + 2d.

We now apply Theorem 4.1 and conclude that F defined by (2.2) satisfies (3.5) with

�

n

(t) =
c

n

2
("+ 1 + 2d),

which finishes the proof.

Corollary 4.2 ([37], Corollary 3.2). Let d > 0 be as in Corollary 4.1 with f defined

by (1.5). Then f satisfies condition (3.6). Moreover, if u is of class C

4(B,R), then

F defined by (2.2) and (1.5) satisfies condition (3.5).

Proof. We apply Theorem 4.1 with f defined by (1.5). Let x 2 [�L,L], t 2 [0, T ],

!, !̂ 2 C(D,R), p, q, p̂, q̂ 2 R be arbitrary. Since a is a positive function, from (1.5),

we get

|f(x, t,!, p, q)� f(x, t, !̂, p̂, q̂)| =
�

�

�

�

�

a(t)q + a(t)

Z 0

�⌧0

Z

⌧̂

�⌧̂

!(s, ⌧)dsd⌧

�a(t)q̂ � a(t)

Z 0

�⌧0

Z

⌧̂

�⌧̂

!̂(s, ⌧)dsd⌧

�

�

�

�

�

 a(t)|q � q̂|+ a(t)

�

�

�

�

�

Z 0

�⌧0

Z

⌧̂

�⌧̂

(!(s, ⌧)� !̂(s, ⌧))dsd⌧

�

�

�

�

�

 a(t)|q � q̂|+ a(t)

Z 0

�⌧0

Z

⌧̂

�⌧̂

|!(s, ⌧)� !̂(s, ⌧)| dsd⌧

 a(t)|q � q̂|+ a(t)

Z 0

�⌧0

Z

⌧̂

�⌧̂

max
(s,⌧)2D

|!(s, ⌧)� !̂(s, ⌧)| dsd⌧

= a(t)|q � q̂|+ a(t) max
(s,⌧)2D

|!(s, ⌧)� !̂(s, ⌧)|
Z 0

�⌧0

Z

⌧̂

�⌧̂

dsd⌧

= a(t)|q � q̂|+ 2⌧̂ ⌧0a(t) max
(s,⌧)2D

|!(s, ⌧)� !̂(s, ⌧)| ,
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which shows that f satisfies (3.6) with

1(t) = 0, 2(t) = a(t), 3(t) = 2⌧̂ ⌧0a(t).

By Theorem 4.1, the function F defined by (2.2) satisfies (3.5) with

�

n

(t) =
c a(t)

n

2
(1 + 2⌧0⌧̂)

and the proof is finished.

We have proved some preliminary results that will provide useful stepping stones in

deriving error bounds for numerical solutions to general partial functional di↵erential

equations in the next chapters.
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CHAPTER 5

GENERALIZED LIPSCHITZ CONDITIONS FOR

NUMERICAL SCHEMES APPLIED TO PARTIAL

FUNCTIONAL DIFFERENTIAL EQUATIONS

In this chapter, we will show that the iterations (3.2) of the Picard type in the

functional sense satisfy conditions (3.7)–(3.10), which will be useful in deriving error

bounds for the general numerical schemes (2.1) and (3.1). The proof for iterations of

the type (3.3) is similar.

The main result can be summarised by the following theorem.

Theorem 5.1 ([37], Lemma 3.2). Suppose that f satisfies condition (3.6) and

@f

@q

(x, t,!, p, q) � 0, (5.1)

where x 2 [�L,L], [0, T ], ! 2 C(D,R), p, q 2 R. Moreover, suppose that ⌫ 2
C([0, T ],R) is a function such that

⌫(t)  @f

@q

(x, t,!, p, q) (5.2)

for all inputs as in (5.1). Then, G defined by
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G

i

(t, &, z,!) = f

✓

x

i

, t,L
i,t

!,

z

t

i+1 � z

t

i�1

2h
,

z

t

i+1 � 2&
i

+ z

t

i�1

h

2

◆

satisfies condition (3.7). Moreover, if additionally k · k
n

is the infinity norm, then G

satisfies conditions (3.8)–(3.10).

Proof. First, we apply the definition of G
i

and (2.2), obtaining

G

i

(t, r(t), r(t), r
t

) = f

⇣

x

i

, t,L
i,t

r

t

,

r

i+1(t)� r

i�1(t)

2h
,

r

i+1(t)� 2r
i

(t) + r

i�1(t)

h

2

⌘

= f

⇣

x

i

, t,L
i,t

r

t

, �

i,t

r(t), �2
i,t

r(t)
⌘

= F

i

(t, r(t), r
t

),

where t 2 [0, T ] and r 2 C([�⌧0, T ],R) are arbitrary. This shows that (3.7) holds.

In order to prove (3.8), we begin by using the definition of G
i

and then we apply

the mean value theorem

G

i

(t, &, z,!)�G

i

(t, &̄, z,!) = f

⇣

x

i

, t,L
i,t

r

t

,

z

t

i+1 � z

t

i�1

2h
,

z

t

i+1 � 2& t
i

+ z

t

i�1

h

2

⌘

� f

⇣

x

i

, t,L
i,t

r

t

,

z

t

i+1 � z

t

i�1

2h
,

z

t

i+1 � 2&̄ t
i

+ z

t

i�1

h

2

⌘

=
@f

@q

(Q)
⇣

z

t

i+1 � 2& t
i

+ z

t

i�1

h

2
� z

t

i+1 � 2&̄ t
i

+ z

t

i�1

h

2

⌘

=
�2(& t

i

� &̄

t

i

)

h

2

@f

@q

(Q) =
�2(&

i

� &̄

i

)

h

2

@f

@q

(Q),

where t 2 [0, T ], &, &̄, z 2 Rn, ! 2 C([�⌧0, 0],Rn) and Q 2 [�L,L]⇥ [0, T ]⇥C(D,R)⇥
R2. From (5.1), we get

@f

@q

(Q) � 0

and conclude further that
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�

�

�

&

i

� &̄

i

� "

�

G

i

(t, &, z,!)�G

i

(t, &̄, z,!)
�

�

�

�

=
�

�

�

�

1 +
2"

h

2

@f

@q

(Q)
��

&

i

� &̄
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�

�

�

�

=
�

1 +
2"

h

2

@f

@q

(Q)
�

�

�

&

i

� &̄

i

�

�

,

where " � 0. Upon taking the infinity norm on both sides of the above equation, we

deduce that

�

�

�

& � &̄ � "

�

G(t, &, z,!)�G(t, &̄, z,!)
�

�

�

�

n

=
�

1 +
2"

h

2

@f

@q

(Q)
�

�

�

& � &̄

�

�

n

.

From this and (5.2), we obtain

�

�

�

& � &̄ � "

�

G(t, &, z,!)�G(t, &̄, z,!)
�

�

�

�

n

� �

1 +
2"⌫(t)

h

2

�

�

�

& � &̄

�

�

n

=
�

1� "µ1(t)
�

�

�

& � &̄

�

�

n

,

with

µ1(t) = �2⌫(t)

h

2
,

which shows that (3.8) holds.

In order to prove (3.9), we apply (3.6) and obtain

�

�

G

i

(t, &, z,!)�G

i

(t, &, z̄,!)
�
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�
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⇣
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i�1

2h
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z

t

i+1 � 2&
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i�1

h

2

⌘
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⇣

x
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, t,L
i,t
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t

i+1 � z̄

t

i�1

2h
,

z̄

t

i+1 � 2&
i

+ z̄

t

i�1

h

2

⌘

�

�

�

�

�
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 1(t)
�

�

�

z

t

i+1 � z

t

i�1

2h
� z̄

t

i+1 � z̄

t

i�1

2h

�

�

�

+ 2(t)

�

�

�

�

�

z

t

i+1 � 2&
i

+ z

t

i�1

h

2
� z̄

t

i+1 � 2&
i

+ z̄

t

i�1

h

2

�

�

�

�

�

 1(t)

2h

⇣

|zt
i+1 � z̄

t

i+1|+ |zt
i�1 � z̄

t

i�1|
⌘

+
2(t)

h

2

⇣

|zt
i+1 � z̄

t

i+1|+ |zt
i�1 � z̄

t

i�1|
⌘

=
⇣

1(t)

2h
+

2(t)

h

2

⌘⇣

|zt
i+1 � z̄

t

i+1|+ |zt
i�1 � z̄

t

i�1|
⌘

where t 2 [0, T ], &, z, z̄ 2 Rn, ! 2 C([�⌧0, 0],Rn). Since

1(t)

2h
+

2(t)

h

2
� 0,

upon taking the infinity norm (with i = 1, . . . , n) on both sides of the above inequality,

we get

kG(t, &, z,!)�G(t, &, z̄,!)k
n

 2

 

1(t)

2h
+

2(t)

h

2

!

kz � z̄k
n

,

which shows that (3.9) holds with

µ2(t) = 2

 

1(t)

2h
+

2(t)

h

2

!

.

In order to prove (3.10), we apply (3.6) with 1(t) = 2(t) = 0 and obtain

�

�

G

i

(t, &, z,!)�G

i

(t, &, z, !̄)
�
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�
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⇣
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, t,L
i,t
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i+1 � z
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i�1

2h
� z

t

i+1 � 2&
i

+ z

t

i�1

h

2

⌘

� f

⇣

x

i

, t,L
i,t

!̄,

z

t

i+1 � z

t

i�1

2h
� z

t

i+1 � 2&
i

+ z

t

i�1

h

2

⌘

�

�

�

�

�

 3(t) max
(s,⌧)2D

�

�

�

L
i,t

!(s, ⌧)� L
i,t

!̄(s, ⌧)
�

�

�

,

for t 2 [0, T ], &, z 2 Rn, !, !̄ 2 C([�⌧0, 0],Rn). Then, from the definition of the
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operator L
i,t

we get

L
i,t

!(s, ⌧)� L
i,t

!̄(s, ⌧) = L
i,t

(! � !̄)(s, ⌧)

=
x

k+1 � s

h

⇣

!

t

k+i

(⌧)� !̄

t

k+i

(⌧)
⌘

+
s� x

k

h

⇣

!

t

k+i+1(⌧)� !̄

t

k+i+1(⌧)
⌘

,

where x

k

 s  x
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�

�

�

L
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!̄(s, ⌧)
�

�

�
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k+1 � s

h

�
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�

!

t

k+i

(⌧)� !̄

t

k+i

(⌧)
�

�

�

+
s� x

k

h

�

�

�

!

t

k+i+1(⌧)� !̄

t

k+i+1(⌧)
�

�
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 x

k+1 � s

h

max
⌧2[�⌧0,0]

k(! � !̄)(⌧)k

+
s� x

k

h

max
⌧2[�⌧0,0]

k(! � !̄)(⌧)k

=
x

k+1 � s+ s� x

k

h

k! � !̄k0
n

= k! � !̄k0
n

Upon taking the maximum over D on both sides of the above relations, we get

max
(s,⌧)2D

�

�

�

L
i,t

!(s, ⌧)� L
i,t

!̄(s, ⌧)
�

�

�

 k! � !̄k0
n

.

Therefore,
�

�

G(t, &, z,!)�G(t, &, z, !̄)
�

�

n

 3(t)k! � !̄k0
n

,

which shows that (3.10) holds with

µ3(t) = 3(t),

and finishes the proof of the theorem.

Having proven that G satisfies the conditions (3.7)–(3.10) under the assumptions
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of Theorem 5.1, we are now in a position to investigate the numerical schemes (2.1)

and (3.1) designed to find numerical solutions to general partial functional di↵erential

equations and to derive appropriate bounds on their errors, from which we can deduce

important convergence properties of the numerical algorithm.



30

CHAPTER 6

THEOREMS ON ERROR BOUNDS FOR NUMERICAL

SOLUTIONS TO GENERAL PARTIAL FUNCTIONAL

DIFFERENTIAL EQUATIONS

In this chapter, we prove a sequence of results that can be used to deduce appropriate

bounds on the errors that we can expect to get numerically by applying the numerical

schemes (2.1) and (3.1) to solve a class of general partial functional di↵erential

equations.

The first of these results is a main theorem specifying a bound on the norm of

the error in terms of an integral that holds as long as the right-hand-side function f

satisfies an appropriate condition. In particular, we require a sharper condition than

(5.1).

Theorem 6.1 ([37], Theorem 4.1). Suppose the given function f satisfies conditions

(3.6) and (5.1), the step-size h > 0 is chosen in such a way that

@f

@q

(x, t,!, p, q)� h

2

�

�

�

@f

@p

(x, t,!, p, q)
�

�

�

� 0, (6.1)

for all x 2 [�L,L], t 2 [0, T ], ! 2 C(D,R), p, q 2 R, and @f

@p

(x, t,!, ·), @f

@q

(x, t,!, ·)
are continuous functions for each x 2 [�L,L], t 2 [0, T ], and ! 2 C([0, T ],R).

Moreover, suppose that F satisfies (2.2) and u 2 C

(4)(D,R). Then the errors e(t)
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satisfy

ke(t)k
n
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t

0

�

n

(s)exp

 

Z

t

s

3(⌧)d⌧

!

ds,

for t 2 [0, T ], where k · k
n

is the infinity norm in Rn

.

Proof. We apply Theorem 6.7 from the Appendix with ⇢(x
i

, t) = e

i

(t) = U

i

(t)��

i

(t),

t 2 [�⌧0, T ] and i = 0,±1, ...,±M̃ , where v

i

(t) = g(x
i

, t), for i = ±M, . . . ,±M̃ .

Then,
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(x
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(t)� �̇
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(t). We want to show that
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t

) = f

�

x

i

, t,L
i,t

�

t

, �

i,t

�(t), �2
i,t

�(t)
�

,

we get
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.

From this and from the Mean Value Theorem, we get
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where �̃⇢(x
i

, t), �̃(2)⇢(x
i

, t) are defined by (6.12) in the Appendix and

Q
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= (x
i
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v
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v(t) + s�̃⇢(x
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, t), �2
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(2)
⇢(x
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is a point from the domain of the function f . We now apply conditions (3.5) and

(3.6) to obtain
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= max
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+ x
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= max{|⇢(x
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j

, t+ ⌧)| : j = 0,±1, . . . ,±M̂, ⌧ 2 [�⌧0, 0]}

= k⇢(xi,t)khn,

where k is such that x
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 s  x

k+1, we have

�

�

�

@⇢

@t

(x
i
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i
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@p

(Q
s

)ds� �̃

(2)
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@f
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s

)ds
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�

�

 �

n

(t) + 3(t)k⇢(xi,t)khn.

We now apply Theorem 6.7 from the Appendix with

G(x
i

, t, ⇢(xi,t)) =

1
Z

0

@f

@p

(Q
s

)ds, H(x
i

, t, ⇢(xi,t)) =

1
Z

0

@f

@q

(Q
s

)ds,

and from the above inequality combined with (6.1), we get

ke(t)k
n

= max
i=0,±1,...,±M

0
|e

i

(t)| = max
i=0,±1,...,±M

0
|⇢(x

i

, t)|  ⌘(t), (6.2)

for t 2 [0, T ], where ⌘ is the solution to the initial value problem

8

>

<

>

:

⌘̇(t) = 3(t)⌘(t) + �

n

(t),

⌘(0) = 0.
(6.3)
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From (6.2) and (6.3), we have

ke(t)k
n


Z

t

0

exp

 

Z

t

s

3(r)dr

!

· �
n

(s)ds

and the proof is finished.

The next theorem will be applied to derive an error bound for iterative processes

applied to problem (1.1)–(1.3).

Theorem 6.2 ([37], Lemma 5.1). Suppose F and G satisfy conditions (3.5) and

(3.7)–(3.10). Then,

kE(k+1)(t)k
n


Z

t

0

exp

 

Z

t

⌧

µ1(s)ds

!

⇣

�

µ2(⌧) + µ3(⌧)
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⌧
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n

+ �

n

(⌧)
⌘

d⌧, (6.4)

for all t 2 [0, T ] and k = 0, 1, 2, . . . , where k · k
n

is the infinity norm in Rn

.

Proof. From the definition of the error E(k+1)(t), we get

Ė

(k+1)(t) = U̇(t)� �̇

(k+1)(t)

= U̇(t)�G(t, �(k+1)(t), �(k)(t), �(k)
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= U̇(t)� F (t, U(t), U
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)�G(t, �(k+1)(t), U(t), U
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)

We now multiply both sides of the above relation by an arbitrary " < 0 and evaluate

the following infinity norm
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U̇(t)� F (t, U(t), U
t

) +G(t, �(k+1)(t), U(t), U
t

)�G(t, �(k+1)(t), �(k)(t), U
t

)

+G(t, �(k+1)(t), �(k)(t), U
t

)�G(t, �(k+1)(t), �(k)(t), �(k)
t

)
⌘

�

�

�

n

.

Since �" > 0, we use the scaling property of the norm and further conclude that the

following inequality holds:

�

�

E

(k+1)(t) + "Ė

(k+1)(t)
�

�

n

� ��E(k+1)(t)
�

�

n

� "µ1(t)
�

�

E

(k+1)(t)
�

�

n

+"

�

�

�

U̇(t)� F (t, U(t), U
t

) +G(t, �(k+1)(t), U(t), U
t

)�G(t, �(k+1)(t), �(k)(t), U
t

)

+G(t, �(k+1)(t), �(k)(t), U
t

)�G(t, �(k+1)(t), �(k)(t), �(k)
t

)
�

�

�

n

.

Upon dividing the above inequality by " < 0, we obtain

1

"

⇣

�

�

E

(k+1)(t) + "Ė

(k+1)(t)
�

�

n

� ��E(k+1)(t)
�

�

n

⌘

 µ1(t)
�

�

E

(k+1)(t)
�

�

n

+
�

�

�

U̇(t)� F (t, U(t), U
t

) +G(t, �(k+1)(t), U(t), U
t

)�G(t, �(k+1)(t), �(k)(t), U
t

)

+G(t, �(k+1)(t), �(k)(t), U
t

)�G(t, �(k+1)(t), �(k)(t), �(k)
t

)
�

�

�

n

.
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Notice that the right-hand side of the above inequality does not depend on " and by

taking " ! 0� on both sides, we deduce that

D

�kE(k+1)(t)k
n

= lim
"!0�

1

"

⇣

�

�

E

(k+1)(t) + "Ė

(k+1)(t)
�

�

n

� ��E(k+1)(t)
�

�

n

⌘

 µ1(t)
�

�

E

(k+1)(t)
�

�

n

+
�

�

U̇(t)� F (t, U(t), U
t

)
�

�

n

+
�

�

G(t, �(k+1)(t), U(t), U
t

)�G(t, �(k+1)(t), �(k)(t), U
t

)
�

�

n

+
�

�

G(t, �(k+1)(t), �(k)(t), U
t

)�G(t, �(k+1)(t), �(k)(t), �(k)
t

)
�

�

n

,

where D� is the left-hand side derivative with respect to t. We now apply conditions

(3.5), (3.9), (3.10) to get that

D

�kE(k+1)(t)k
n

 µ1(t)
�

�

E

(k+1)(t)
�

�

n

+ �

n

(t) + µ2(t)
�

�

U(t)� �

(k)(t)
�

�

n

+ µ3(t)
�

�

U

t

� �

(k)
t

�

�

0

n

= µ1(t)
�

�

E

(k+1)(t)
�

�

n

+ �

n

(t) + µ2(t)
�

�

E

(k)(t)
�

�

n

+ µ3(t)
�

�

E

(k)
t

�

�

0

n

 µ1(t)
�

�

E

(k+1)(t)
�

�

n

+
�

µ2(t) + µ3(t)
�kE(k)

t

k0
n

+ �

n

(t).

Also, note that kE(k+1)(0)
�

�

n

= 0 as the successive iterates satisfy the same initial

condition as U(0). Therefore, we conclude that

kE(k+1)(t)
�

�

n

 �(t),

where �(t) solves the following problem

8

>

<

>

:

�

0(t) = µ1(t)�(t) + ⇠(t),

�(0) = 0,

and
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⇠(t) =
�

µ2(t) + µ3(t)
�kE(k)

t

k0
n

+ �

n

(t).

Notice that

�(t) =

Z

t

0

⇠(s) exp
⇣

Z

t

s

µ1(⌧)d⌧
⌘

ds,

for t 2 [0, T ]. Therefore,

kE(k+1)(t)
�

�

n


Z

t

0

⇠(s) exp
⇣

Z

t

s

µ1(⌧)d⌧
⌘

ds,

which implies (6.4) and finishes the proof.

In what follows, we will prove a sequence of preliminary results that will be useful

in proving Theorem 6.5.

Henceforth, we will use the following notation. Let t 2 [0, T ]. Then, the maximum

starting error will be denoted by

E(t) = max
⌧2[0,t]

kE(0)(⌧)k
n

.

We assume that the function µ1 has no roots in [0, T ], that is, either sign(µ1) = 1 or

sign(µ1) = �1, and we define

r(t) = sign(µ1) max
⌧2[0,t]

µ2(⌧) + µ3(⌧)

|µ1(⌧)| ,

�

n

(t) = sign(µ1) max
⌧2[0,t]

�

n

(⌧)

|µ1(⌧)| .

For the sake of simplicity of the subsequent proofs, we also introduce the following

definitions of four functions:
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A(t) =

Z

t

0

µ1(⌧)d⌧,

↵

k

(t) = 1� e

A(t)
k�1
X

j=0

�� A(t)
�

j

j!
,

S

k

(t) = ��� r(t)
�

k�1
↵

k

(t),

�

k

(t) = �

n

(t)
k

X

i=1

S

i

(t).

Theorem 6.3 ([37], Lemma 5.2). If µ1 has no roots in [0, T ], then all functions

�� sign(µ1)
�

k

↵

k

(t),

where k = 1, 2, . . . and t 2 [0, T ], are nondecreasing and nonnegative.

Proof. Throughout the proof, we use the notation

↵̃

k

(t) = (� sign
�

µ1)
�

k

↵

k

(t)

and firstly show that ↵̃0
k

(t) � 0, for all t 2 [0, T ]. From the definition of the function

A, we get

↵

0
k

(t) = � exp
�

A(t)
�

k�1
X

j=1

(�1)j
�

A(t)
�

j�1
A

0(t)

(j � 1)!
� exp

�

A(t)
�

A

0(t)
k�1
X

j=0

�� A(t)
�

j

j!

= � exp(A(t))A0(t)

 

k�2
X

j=0

(�1)j+1
�

A(t)
�

j

j!
+

k�1
X

j=0

(�1)j
�

A(t)
�

j

j!

!

= exp
�

A(t)
�

A

0(t)
(�1)k

�

A(t)
�

k�1

(k � 1)!
.

We now consider two opposite cases, sign(µ1) = 1 and sign(µ1) = �1. Suppose

firstly that sign(µ1) = 1. Then, from the definition, A(t) � 0 and A

0(t) = µ1(t) > 0.
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Since

↵̃

0
k

(t) =
�� sign(µ1)

�

k

↵

0
k

(t) = (�1)k exp
�

A(t)
�

A

0(t)
(�1)k

�

A(t)
�

k�1

(k � 1)!

= exp
�

A(t)
�

µ1(t)

�

A(t)
�

k�1

(k � 1)!
� 0,

↵̃

k

(t) is shown to be nondecreasing in the first case.

We now suppose that sign(µ1) = �1. Then, A(t)  0 and we get

↵̃

0
k

(t) =
�� sign(µ1)

�

k

↵

0
k

(t) = ↵

0
k

(t) = exp
�

A(t)
�

µ1(t)
(�1)k

�

A(t)
�

k�1

(k � 1)!

= exp
�

A(t)
��� µ1(t)

�

�� A(t)
�

k�1

(k � 1)!
� 0

showing that ↵̃
k

(t) is nondecreasing also in the second case.

Since A(0) = 0, ↵̃
k

(0) = ↵

k

(0) = 0 and since ↵̃

k

(t) is nondecreasing on [0, T ], we

conclude that ↵̃
k

(t) � 0, for t 2 [0, T ], which finishes the proof.

We now apply Theorem 6.3 to prove the next theorem on the nonnegativity and

monotonicity of r(t)S
k

(t) and �
n

(t)S
k

(t) for k = 1, 2, . . . .

Theorem 6.4 ([37], Corollary 5.1). If µ1 has no roots in [0, T ], then the functions

r(t)S
k

(t) and �
n

(t)S
k

(t), with k = 1, 2, . . . , are nondecreasing and nonnegative for all

t 2 [0, T ].

Proof. Let r̃(t) = r(t)S
k

(t). Then, from the definitions of r(t) and S

k

(t), we get
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r̃(t) = r(t) ·
⇣

� �� r(t)
�

k�1
↵

k

(t)
⌘

=
�� r(t)

�

k

↵

k

(t)

=

 

� sign(µ1) max
⌧2[0,t]

µ2(⌧) + µ3(⌧)

|µ1(⌧)|

!

k

· ↵
k

(t)

=
�� sign(µ1)

�

k

↵

k

(t) ·
 

max
⌧2[0,t]

µ2(⌧) + µ3(⌧)

|µ1(⌧)|

!

k

.

Notice that the function
 

max
⌧2[0,t]

µ2(⌧) + µ3(⌧)

|µ1(⌧)|

!

k

is nondecreasing and nonnegative for t 2 [0, T ]. Moreover, by Theorem 6.3, the

function (� sign(µ1))
k

↵

k

(t) is also nondecreasing and nonnegative for t 2 [0, T ].

Therefore, we conclude the same about r̃(t).

We now define �̃(t) = �
n

(t)S
k

(t). From the definitions of the functions �
n

(t) and

S

k

(t) we get

�̃(t) =

 

sign(µ1) max
⌧2[0,t]

�

n

(⌧)

|µ1(⌧)|

!

·
⇣

� �� r(t)
�

k�1
↵

k

(t)
⌘

=
�� sign(µ1)

��� r(t)
�

k�1
↵

k

(t)

 

max
⌧2[0,t]

�

n

(⌧)

|µ1(⌧)|

!

=
�� sign(µ1)

�

 

� sign(µ1)max
[0,t]

µ2(⌧) + µ3(⌧)

|µ1(⌧)|

!

k�1

↵

k

(t)

 

max
⌧2[0,t]

�

n

(⌧)

|µ1(⌧)|

!

=
�� sign(µ1)

�

k

↵

k

(t) ·
 

max
[0,t]

µ2(⌧) + µ3(⌧)

|µ1(⌧)|

!

k�1

·
 

max
⌧2[0,t]

�

n

(⌧)

|µ1(⌧)|

!

.

(6.5)

It can be observed that
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max
[0,t]

µ2(⌧) + µ3(⌧)

|µ1(⌧)|

!

k�1

and

max
⌧2[0,t]

�

n

(⌧)

|µ1(⌧)|

are nondecreasing and nonnegative as functions of t 2 [0, T ]. Moreover, by Theorem

6.3, we conclude that
�� sign(µ1)

�

k

↵

k

(t) is nondecreasing and nonnegative on [0, T ].

Therefore, we further conclude from (6.5), that �̃(t) has the same properties, which

finishes the proof.

The last result that is necessary in order to prove Theorem 6.5 can be summarised

by the following lemma.

Lemma 6.1 ([37], Lemma 5.3). The relation

Z

t

0

exp
�� A(⌧)

�

↵

k

(⌧)µ1(⌧)d⌧ = � exp
�� A(t)

�

↵

k+1(t),

is satisfied for all t 2 [0, T ] and k = 1, 2, . . . .

Proof. Since A

0(t) = µ1(t), we get

Z

t

0

exp
�� A(⌧)

�

µ1(⌧)↵k

(⌧)d⌧ =

Z

t

0

exp
�� A(⌧)

�

A

0(⌧)↵
k

(⌧)d⌧

= �
Z

t

0

d

d⌧

⇣

exp
�� A(⌧)

�

⌘

· ↵
k

(⌧)d⌧

From ↵

k

(0) = 0, we further conclude that
Z

t

0

exp
�� A(⌧)

�

µ1(⌧)↵k

(⌧)d⌧
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= �
"

exp
�� A(⌧)

�

↵

k

(⌧)

#

⌧=t

⌧=0

+

Z

t

0

exp
�� A(⌧)

�

↵

0
k

(⌧)d⌧

= � exp
�� A(t)

�

↵

k

(t) + exp
�� A(0)

�

↵

k

(0) +

Z

t

0

exp
�� A(⌧)

�

↵

0
k

(⌧)d⌧

= � exp
�� A(t)

�

↵

k

(t) +

Z

t

0

exp
�� A(⌧)

�

↵

0
k

(⌧)d⌧.

Since

↵

0
k

(⌧) = exp
�

A(⌧)
�

A

0(⌧)(�1)k
�

A(⌧)
�

k�1

(k � 1)!
,

we get
Z

t

0

exp
�� A(⌧)

�

µ1(⌧)↵k

(⌧)d⌧

= � exp
�� A(t)

�

↵

k

(t) +

Z

t

0

A

0(⌧)(�1)k
�

A(⌧)
�

k�1

(k � 1)!
d⌧

= � exp
�� A(t)

�

↵

k

(t) +
(�1)k

(k � 1)!

Z

t

0

A

0(⌧)
�

A(⌧)
�

k�1
d⌧

= � exp
�� A(t)

�

↵

k

(t) +
(�1)k

(k � 1)!

"

�

A(⌧)
�

k

k

#

⌧=t

⌧=0

From A(0) = 0 and the definition of ↵
k

(t), we further conclude that

Z

t

0

exp
�� A(⌧)

�

µ1(⌧)↵k

(⌧)d⌧ = � exp(�A(t))↵
k

(t) +

�� A(t)
�

k

k!

= � exp
�� A(t)

�

 

↵

k

(t)� exp
�

A(t)
��� A(t)

�

k

k!

!

= � exp
�� A(t)

�

↵

k+1(t),

which finishes the proof.
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We now apply Lemma 6.1 and the previous two Theorems 6.3 and 6.4 to prove

the following theorem that supplies an explicit error bound for the successive iterates.

Theorem 6.5 ([37], Theorem 5.1). Suppose that the function F satisfies condition

(3.5) and G satisfies conditions (3.7)–(3.10). Moreover, suppose that the function µ1

has no roots in [0, T ]. Then,

�

�

E

(k)(t)
�

�

n

 r(t)E(t)S
k

(t) + �

k

(t), (6.6)

for t 2 [0, T ] and k = 1, 2, . . . .

Proof. We first show (6.6) for k = 1. By Theorem 6.2, we get

kE(1)(t)k
n


Z

t

0

exp

 

Z

t

⌧

µ1(s)ds

!

⇣

�

µ2(⌧) + µ3(⌧)
�kE(0)

⌧

k0
n

+ �

n

(⌧)
⌘

d⌧


Z

t

0

exp

 

Z

t

0

µ1(s)ds�
Z

⌧

0

µ1(s)ds

!

⇣

�

µ2(⌧) + µ3(⌧)
�

E(⌧) + �

n

(⌧)
⌘

d⌧.

Then, using the definition of the function A(t), we further get

kE(1)(t)k
n


Z

t

0

exp
�

A(t)� A(⌧)
�

⇣

�

µ2(⌧) + µ3(⌧)
�

E(⌧) + �

n

(⌧)
⌘

d⌧

= exp
�

A(t)
�

Z

t

0

exp
�� A(⌧)

�

�

�

µ1(⌧)
�

�

 

µ2(⌧) + µ3(⌧)
�

�

µ1(⌧)
�

�

E(⌧) +
�

n

(⌧)
�

�

µ1(⌧)
�

�

!

d⌧.

We now reduce the above integrand by considering its maximum and deduce that

kE(1)(t)k
n

 exp
�

A(t)
�

Z

t

0

exp
�� A(⌧)

�

�

�

µ1(⌧)
�

� max
s2[0,t]

 

µ2(s) + µ3(s)
�

�

µ1(s)
�

�

!

E(⌧)d⌧

+ exp
�

A(t)
�

Z

t

0

exp
�� A(⌧)

�

�

�

µ1(⌧)
�

� max
s2[0,t]

 

�

n

(s)
�

�

µ1(s)
�

�

!

d⌧.
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Therefore, since both maxima do not depend on ⌧ and the function E(t) is nonde-

creasing, we deduce that

kE(1)(t)k
n

 exp
�

A(t)
�

max
s2[0,t]

 

µ2(s) + µ3(s)
�

�

µ1(s)
�

�

!

E(t)

Z

t

0

exp
�� A(⌧)

�

�

�

µ1(⌧)
�

�

d⌧

+ exp
�

A(t)
�

max
s2[0,t]

 

�

n

(s)
�

�

µ1(s)
�

�

!

Z

t

0

exp
�� A(⌧)

�

�

�

µ1(⌧)
�

�

d⌧,

which further implies that

kE(1)(t)k
n

 exp
�

A(t)
�

sign(µ1)

 

max
s2[0,t]

 

µ2(s) + µ3(s)
�

�

µ1(s)
�

�

!

E(t) + max
s2[0,t]

 

�

n

(s)
�

�

µ1(s)
�

�

!!

·

·
Z

t

0

exp
�� A(⌧)

�

µ1(⌧)d⌧.

We now use the definitions of the functions r(t), �
n

to deduce that

kE(1)(t)k
n

 exp
�

A(t)
�

⇣

r(t)E(t) + �
n

(t)
⌘

Z

t

0

exp
�� A(⌧)

�

µ1(⌧)d⌧.

Therefore, since

Z

t

0

exp
�� A(⌧)

�

µ1(⌧)d⌧ =

Z

t

0

exp
�� A(⌧)

�

A

0(⌧)d⌧ =

"

� exp
�� A(⌧)

�

#

⌧=t

⌧=0

= 1� exp
�� A(t)

�

we find that

kE(1)(t)k
n

 exp
�

A(t)
�

⇣

r(t)E(t) + �
n

(t)
⌘⇣

1� exp
�� A(t)

�

⌘

=
⇣

r(t)E(t) + �
n

(t)
⌘⇣

exp
�

A(t)
�� 1

⌘

.

(6.7)
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On the other hand, notice that, for k = 1, the right-hand side of inequality (6.6) is

written in the form

r(t)E(t)S1(t) + �1(t) = �r(t)E(t)↵1(t) + �
n

(t)S1(t) = �↵1(t)
⇣

r(t)E(t) + �
n

(t)
⌘

.

Moreover, from the definition of the function ↵1(t), we get

↵1(t) = 1� exp
�

A(t)
�

.

Therefore, from (6.7), we have

kE(1)(t)k
n

 r(t)E(t)S1(t) + �1(t),

which shows that (6.6) is satisfied for k = 1.

We now suppose that (6.6) is satisfied for a certain k > 1. From the definition of

the maximum norm k · k0
n

, we have

kE(k)
⌧

k0
n

= max
s2[�⌧0,0]

kE(k)
⌧

(s)k
n

= max
s2[�⌧0,0]

kE(k)(⌧ + s)k
n

,

for ⌧ 2 [0, T ]. Therefore, from (6.6), we find that

kE(k)
⌧

k0
n

 max
s2[�⌧0,0]

⇣

r(⌧ + s)E(⌧ + s)S
k

(⌧ + s) + �

k

(⌧ + s)
⌘

.

Since, by Theorem 6.4, all functions �
n

(t)S
i

(t), where i = 1, 2, . . . , are nondecreasing,

from the definition of the function �

k

, we conclude that �

k

is also nondecreasing.

Moreover, the function E(t) is nondecreasing and, by Theorem 6.4, the functions

r(t)S
k

(t) have the same feature. Therefore, the function that is being maximized on
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the right-hand side of the above inequality is also nondecreasing, which implies that

kE(k)
⌧

k0
n

 r(⌧)E(⌧)S
k

(⌧) + �

k

(⌧).

Therefore, by Theorem 6.2, we find that

kE(k+1)(t)k
n


Z

t

0

exp

 

Z

t

⌧

µ1(s)ds

! 

�

µ2(⌧) + µ3(⌧)
�

⇣

r(⌧)E(⌧)S
k

(⌧)

+�

k

(⌧)
⌘

+ �

n

(⌧)

!

d⌧.

From this and the definition of the function A(t), we further deduce that

kE(k+1)(t)k
n

 e

A(t)

Z

t

0

e

�A(⌧)

 

µ2(⌧) + µ3(⌧)
�

�

µ1(⌧)
�

�

⇣

r(⌧)E(⌧)S
k

(⌧) + �

k

(⌧)
⌘

+
�

n

(⌧)
�

�

µ1(⌧)
�

�

!

�

�

µ1(⌧)
�

�

d⌧.

We now consider maxima of the two quotients in the above integrand and obtain that

kE(k+1)(t)k
n

 e

A(t) max
s2[0,t]

 

µ2(s) + µ3(s)
�

�

µ1(s)
�

�

!

Z

t

0

e

�A(⌧)
⇣

r(⌧)E(⌧)S
k

(⌧) + �

k

(⌧)
⌘

�

�

µ1(⌧)
�

�

d⌧ + e

A(t) max
s2[0,t]

 

�

n

(s)
�

�

µ1(s)
�

�

!

Z

t

0

e

�A(⌧)
�

�

µ1(⌧)
�

�

d⌧.

From this and the definitions of r(t) and �
n

(t), we deduce that

kE(k+1)(t)k
n

 e

A(t)
r(t)

Z

t

0

e

�A(⌧)
⇣

r(⌧)E(⌧)S
k

(⌧) + �

k

(⌧)
⌘

µ1(⌧)d⌧

+ e

A(t)�
n

(t)

Z

t

0

e

�A(⌧)
µ1(⌧)d⌧.

(6.8)
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We now consider the first term, T1, on the right-hand side of (6.8) and, from the

definitions of S
i

(t) and �

k

(t), we obtain the following expression for T1

T1 = e

A(t)(signµ1)r(t)

 

Z

t

0

e

�A(⌧)(� signµ1)
k

↵

k

(⌧)

 

max
s2[0,⌧ ]

µ2(s) + µ3(s)

|µ1(s)|

!

k

E(⌧)|µ1(⌧)|d⌧ +

Z

t

0

e

�A(⌧)
k

X

i=1

max
s2[0,⌧ ]

 

�

n

(s)

|µ1(s)|

! 

max
s2[0,⌧ ]

µ2(s) + µ3(s)

|µ1(s)|

!

i�1

(� signµ1)
i

↵

i

(⌧)|µ1(⌧)|d⌧
!

.

By extending the above maxima from [0, ⌧ ] to [0, t] and interchanging the order of

summation and integration, we deduce that

T1  e

A(t)(signµ1)r(t)

  

max
s2[0,t]

µ2(s) + µ3(s)

|µ1(s)|

!

k

E(t)

Z

t

0

e

�A(⌧)(� signµ1)
k

↵

k

(⌧)

|µ1(⌧)|d⌧ + max
s2[0,t]

 

�

n

(s)

|µ1(s)|

!

k

X

i=1

 

max
s2[0,t]

µ2(s) + µ3(s)

|µ1(s)|

!

i�1
Z

t

0

e

�A(⌧)(� signµ1)
i

↵

i

(⌧)|µ1(⌧)|d⌧
!

.

We now apply Lemma 6.1 and obtain

T1  e

A(t)
r(t)

  

max
s2[0,t]

µ2(s) + µ3(s)

|µ1(s)|

!

k

E(t)(� signµ1)
k(�1)e�A(t)

↵

k+1(t)

+ max
s2[0,t]

 

�

n

(s)

|µ1(s)|

!

k

X

i=1

 

max
s2[0,t]

µ2(s) + µ3(s)

|µ1(s)|

!

i�1

(� signµ1)
i(�1)e�A(t)

↵

i+1(t)

!

.

From the definitions of r(t), �
n

(t), and S

i

(t), we obtain
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T1  �� r(t)
�

k+1
E(t)↵

k+1(t) + �
n

(t)
k

X

i=1

(�1)
�� r(t)

�

i

↵

i+1(t)

= r(t)S
k+1(t)E(t) + �

n

(t)
k

X

i=1

S

i+1(t).

(6.9)

We now consider the second term, T2, on the right-hand side of (6.8) and obtain

the following expression for it:

T2 = e

A(t)�
n

(t)

Z

t

0

e

�A(⌧)
A

0(⌧)d⌧ = e

A(t)�
n

(t)
h

� e

�A(⌧)
i

⌧=t

⌧=0
= �

n

(t)
�

e

A(t) � 1
�

= ��
n

(t)↵1(t) = �
n

(t)S1(t).

(6.10)

From (6.8), (6.9), and (6.10), we deduce that

kE(k+1)(t)k
n

 T1 + T2  r(t)S
k+1(t)E(t) + �

n

(t)
k+1
X

i=2

S

i

(t) + �
n

(t)S1(t)

= r(t)S
k+1(t)E(t) + �

n

(t)
k+1
X

i=1

S

i

(t) = r(t)S
k+1(t)E(t) + �

k+1(t),

which shows that (6.6) holds and finishes the proof.

We now compare error bounds by means of the following theorem.

Theorem 6.6 ([37], Lemma 6.1). Suppose

1(t) = 0, 3(t) = %2(t), �

n

(t) = c0h
2(1 + %)2(t),

µ1(t) = ��h

�2
2(t), µ2(t) = �h

�2
2(t), µ3(t) = %2(t)

where %, �, c0 > 0. Then,

�

k

(t) <

Z

t

0

�

n

(s) exp
⇣

Z

t

s

3(⌧)d⌧
⌘

ds,
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for all t 2 [0, T ], k = 1, 2, . . . .

Proof. Let

⌘(t) =

Z

t

0

�

n

(s) exp

 

Z

t

s

3(⌧)d⌧

!

ds,

for t 2 [0, T ]. Then, from the definition of �
n

(t) and 3(t), we deduce that

⌘(t) = c0h
2(1 + %)

Z

t

0

2(s) exp

 

Z

t

0

%2(⌧)d⌧ �
Z

s

0

%2(⌧)d⌧

!

ds

= c0h
2(1 + %) exp

 

Z

t

0

%2(⌧)d⌧

!

Z

t

0

2(s) exp

 

�
Z

s

0

%2(⌧)d⌧

!

ds.

Since

Z

t

0

2(s) exp

 

�
Z

s

0

%2(⌧)d⌧

!

ds =
�1

%

"

exp

 

�
Z

s

0

%2(⌧)d⌧

!#

s=t

s=0

=
1

%

 

1� exp

 

�
Z

t

0

%2(⌧)d⌧

!!

,

we further obtain

⌘(t) = c0h
2(1 + %) exp

 

Z

t

0

%2(⌧)d⌧

!

1

%

 

1� exp

 

�
Z

t

0

%2(⌧)d⌧

!!

= c0h
21 + %

%

 

exp

 

Z

t

0

%2(⌧)d⌧

!

� 1

!

and
d⌘

dt

(t) = c0h
2(1 + %)2(t) exp

 

Z

t

0

%2(⌧)d⌧

!

.

Let

µ(t) = max
⌧2[0,t]

µ2(⌧) + µ3(⌧)

|µ1(⌧)| , �(t) = max
⌧2[0,t]

�

n

(⌧)

|µ1(⌧)| .

Then, from the definition of �
k

(t), �
n

(t), S
i

(t), and r(t), we find that
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�

k

(t) = �
n

(t)
k

X

i=1

S

i

(t) = � sign(µ1)�(t)
k

X

i=1

�� r(t)
�
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�
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↵

i
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Since

max
⌧2[0,t]

�

n

(⌧)

|µ1(⌧)| = c0h
4(1 + %)��1

, max
⌧2[0,t]

µ2(⌧) + µ3(⌧)

|µ1(⌧)| = 1 + %h

2
�

�1
,

the function �

k

(t) can be written in the form

�
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k

X
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c0h
4(1 + %)��1

�
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2
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�

i�1�� sign(µ1)
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Therefore, from the relation

�� sign(µ1)
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(i� 1)!

e
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⇣
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⌘
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we obtain
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2(1 + %)2(t) exp
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d�

k

dt

(t) < c0h
2(1 + %)2(t) exp

⇣

� �h

�2

Z

t

0

2(⌧)d⌧
⌘

exp
⇣

(�h�2 + %)
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t

0

2(⌧)d⌧
⌘
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2(1 + %)2(t) exp
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(6.11)

Notice that �

k

(0) = 0 and ⌘(0) = 0. Therefore, from (6.11), we conclude that

�

k

(t) < ⌘(t), for all t 2 [0, T ] and k = 1, 2, . . . , which finishes the proof.

In this last theorem, we have demonstrated a relation between error bounds,

specifically, that the latter bound is sharper. Particularly, we conclude from the form

of the error bounds that the numerical schemes indeed converge towards the exact

solutions as the step-size h tends to zero – a necessity for any numerical scheme –

from which we deduce that the schemes produce robust results.

In this thesis, we investigated general parabolic partial functional di↵erential equa-

tions and their approximate solutions constructed by means of spatial discretization

and iterative processes of the Picard type in the functional sense. We used di↵erential

inequalities and proved a variety of theorems on the approximate solutions and their

errors. Particularly, on the basis of the results that we have proved, we have arrived

at important convergence properties of the considered numerical schemes.
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APPENDIX

In this thesis, we apply the following one-dimensional version of [34, Theorem 1].

For this application, we use the symbol F
c

({x
i

: i = 0,±1, . . . ,±M̃} ⇥ [�⌧0, 0],R)

to denote a class of functions continuously di↵erentiable with respect to the second

argument. We also use similar notation for functions on similar domains.

Theorem 6.7. We assume that the following conditions are satisfied.

(i) � : [0, T ] ⇥ R+ ! R+ is continuous, nondecreasing with respect to the second

input and such that there exists the right-hand maximum solution ! on [0, T ] of

the initial-value problem

8

>

<

>

:

!̇(t) = �(t,!(t)),

!(0) = 0,

(ii) G,H : [0, T ] ⇥ {x
i

: i = 0,±1, . . . ,±M

0} ⇥ F
c

({x
i

: i = 0,±1, . . . ,±M̂} ⇥
[�⌧0, 0],R) ! R satisfy the inequality

h

2

�

�

�

G(P )
�

�

�

 H(P ),

where P is any point in the domain of G and H,

(iii) ⇢ 2 F
c

({x
i

: i = 0,±1, . . . ,±M̃} ⇥ [�⌧0, T ],R) is such that ⇢(x
i

, t) = 0 if

t 2 [�⌧0, 0] and i = 0,±1, . . . ,±M̃ or if t 2 [�⌧0, T ] and i = ±M, . . . ,±M̃ , is
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di↵erentiable with respect to the second input and satisfies the inequality

�

�

�

@⇢

@t

(x
i

, t)� �̃⇢(x
i

, t)G(x
i

, t, ⇢(xi,t))� �̃

(2)
⇢(x

i

, t)H(x
i

, t, ⇢(xi,t))
�

�

�

 �(t, k⇢(xi,t)khn),

for i = 0,±1, . . . ,±M

0
, where

�̃⇢(x
i

, t) =
1

2h

⇣

⇢(x
i+1, t)� ⇢(x

i�1, t)
⌘

,

�̃

(2)
⇢(x

i

, t) =
1

h

2

⇣

⇢(x
i+1, t)� 2⇢(x

i

, t) + ⇢(x
i�1, t)

⌘

,

k⇢(xi,t)khn = max{|⇢(x
i

+ x

j

, t+ ⌧)| : j = 0,±1, . . . ,±M̂, ⌧ 2 [�⌧0, 0]}.
(6.12)

Then,

|⇢(x
i

, t)|  !(t),

for all t 2 [0, T ], i = 0,±1, . . . ,±M

0
.

For clarity, we omit the proof, which is too technical for the purpose of this thesis.

We refer the reader to [34], where the proof is presented for the multi-dimensional

case.


