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ABSTRACT

If used cautiously, numerical methods can be powerful tools to produce solutions

to partial differential equations with or without known analytic solutions. The

resulting numerical solutions may, with luck, produce stable and accurate solutions

to the problem in question, or may produce solutions with no resemblance to the

problem in question at all. More such numerical computations give no hope of solving

this troublesome feature and one needs to resort to investing time in a theoretical

approach. This thesis is devoted not solely to computations, but also to a theoretical

analysis of the numerical methods used to generate computationally the approximate

solutions. After deriving theoretical results for a wide class of problems, I use them

to validate that my numerical computations produce reliable solutions.

The fundamentals of this work are based on mathematical analysis with which

the application of analysis to PDEs in a numerical and computational framework was

possible.
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CHAPTER 1

INTRODUCTION

Vast parts of real-world physical systems are described by nonlinear partial differential

equations. Such equations arise in various fields of applications, for example, fluid

mechanics, gas dynamics, combustion theory, relativity, elasticity, thermodynamics,

biology, ecology, neurology, and many others.

For this thesis, we study numerical solutions for a general class of nonlinear

parabolic differential equations. We discretize the partial differential equations in

the spatial variable and obtain systems of ordinary differential equations, which we

then integrate in time and compute numerical solutions. In order to validate our

computations, we analyze the stability of the numerical method and convergence

of the numerical solutions of the semi-discrete systems derived for nonlinear partial

differential equations. The analysis is provided for the general class of nonlinear

parabolic differential equations. We also present our results of numerical experiments

with examples of partial differential equations that belong to the general class. We use

our theoretical results to validate that our numerical computations produce reliable

results.

Specifically, we devote our study to nonlinear partial differential equations of

evolution, which are written in the form

∂u

∂t
(x, t) = f

(
x, t, u(x, t),

∂2u

∂x2
(x, t)

)
. (1.1)



2

Using appropriate definitions for the function f from (1.1), we can obtain a huge

variety of nonlinear partial differential equations. Here x ∈ [xa, xb] and t ∈ [t0, T ]

represent the space and time variables, respectively. The equation (1.1) is supple-

mented by the boundary conditions

u(xa, t) = a(t),

u(xb, t) = b(t), t ∈ [t0, T ],
(1.2)

and the initial condition

u(x, t0) = u0(x), x ∈ [xa, xb]. (1.3)

Here, xa < xb and t0 < T are arbitrary constants and a, b, and u0 are functions of t

and x, accordingly.

If we define

f(x, t, p, q) = Dq − p(1− p)(α− p),

where D and α are constants such that D > 0 and 0 ≤ α ≤ 1, then (1.1) generates

the Fitzhugh-Nagumo equation

∂u

∂t
(x, t) = D

∂2u

∂x2
(x, t)− u(x, t)

(
1− u(x, t)

)(
α− u(x, t)

)
, (1.4)

which arises in population genetics. This equation models the transmission of nerve

impulses. More details about (1.4) are provided in [10], [13], [14], [6], and [3].

If the function f is defined by

f(x, t, p, q) = Dq + αp+ βpm,
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where α, β, and m are all different than 1, then (1.1) generates the Kolmogorov-

Petrovskii-Piskunov equation

∂u

∂t
(x, t) = D

∂2u

∂x2
(x, t) + αu(x, t) + β

(
u(x, t)

)m
. (1.5)

This equation arises in heat and mass transfer, combustion theory, biology, and

ecology. More details about (1.5) are provided in [11], [14], and [2].

If the function f is defined by

f(x, t, p, q) = q + p(1− pr),

where r > 0, then (1.1) generates the Fisher-Kolmogorov equation

∂u

∂t
(x, t) =

∂2u

∂x2
(x, t) + u(x, t)

(
1−

(
u(x, t)

)r)
, (1.6)

with applications in biology [12].

More equations (also linear) can be generated from (1.1) by defining the function

f in infinitely many ways.

The goal of the thesis is to analyze stability and convergence of numerical solutions

to equations written in the general form (1.1) with a general function f , which can

be used to generate more examples (not only (1.4), (1.5), and (1.6)). The analysis is

presented in Chapters 3 and 4. The goal of presenting numerical computations for

the above particular examples is realized in Chapter 5 where numerical solutions to

(1.4), (1.5), and (1.6) are illustrated graphically. The reliability of these graphical

results (used for illustration only) is validated by the analysis and theorems proved

in the previous Chapters 3 and 4. Finally, Chapter 6 includes concluding remarks.
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CHAPTER 2

NUMERICAL SOLUTIONS TO NONLINEAR PARTIAL

DIFFERENTIAL EQUATIONS

In many cases, exact solutions of nonlinear partial differential equations are unknown

and numerical solutions provide valuable information in the study of the physical pro-

cesses. In this chapter, we investigate numerical solutions constructed for nonlinear

partial differential equations.

In order to solve (1.1) numerically, we first consider the numerical method of

lines and discretize the spatial domain [xa, xb]. We consider discrete sets included

in the continuum set [xa, xb] and, on each discrete set, we replace the differential

operator with respect to x by a finite difference operator. This process is also called

semi-discretization as, at this stage, the time variable stays in the continuum set

[t0, T ].

In order to discretize (1.1) in the spatial domain, we introduce the grid-points

xi = xa + i"x, i = 0, 1, . . . , N + 1, (2.1)

where "x =
xb − xa

N + 1
is called a spatial step-size and xN+1 = xb. Here, N + 1 is the

number of subintervals [xi, xi+1] ⊂ [xa, xb]. We will consider the following family of

meshes
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{
{xi}N+1

i=0 ⊂ [xa, xb] : "x ∈ (0, 1)
}

and, in order to analyze convergence of numerical solutions, we will also consider the

meshes for "x → 0.

We will consider exact and numerical solutions on lines determined by the spatial

grid-points (2.1). For each "x, let

Xp = {xi : i = 0, 1, . . . , N + 1}, Rp = Xp × [t0, T ],

u be the exact solution to problem (1.1)-(1.3), up : Rp → R be the projection of the

exact solution u to the lines Rp, and v!x : Rp → R be a numerical solution computed

on the lines. For an index i = 1, 2, . . . , N and the step-size "x, we define an operator

φ(i)
!x : C([t0, T ],RN+2)× [t0, T ] → R in the following way

φ(i)
!x(w, t) =

1

"x2

(
wi+1(t)− 2wi(t) + wi−1(t)

)
,

where w ∈ C([t0, T ],RN+2) and t ∈ [t0, T ].

In order to construct semi-discrete systems for (1.1), we define a vector function

V!x ∈ C([t0, T ],RN+2) in the following way

V!x(t) =





V (0)
!x (t)

V (1)
!x (t)

...

V (N)
!x (t)

V (N+1)
!x (t)





, V (i)
!x(t) = v!x(xi, t), i = 0, 1, . . . , N,N + 1,

where
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V (0)
!x (t) = a(t), V (N+1)

!x (t) = b(t). (2.2)

For the general problem (1.1)-(1.3), we consider the semi-discrete system






d

dt
V (i)
!x(t) = f

(
xi, t, V

(i)
!x(t),φ

(i)
!x

(
V!x, t

))
,

V (i)
!x(t0) = u0(xi),

(2.3)

where t ∈ [t0, T ] and i = 1, 2, . . . , N . The problem of solving (1.1)-(1.3) is now

transformed into the problem of solving (2.3).

The purpose of the thesis is to analyze if

lim
!x→0

v!x(xi, t) = up(xi, t),

for all i = 1, 2, . . . , N and t ∈ [t0, T ]. It is worth pointing out that (2.3) is a family of

initial-value problems with a system of N nonlinear ordinary differential equations,

where N depends on the parameter "x and taking smaller "x results in larger

systems.

In order to solve (2.3) for each "x, we transform (2.3) into the form





y′(t) = F

(
t, y(t)

)

y(t0) = y0,
(2.4)

where F depends on "x and
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y(t) =





y0(t)

y1(t)

...

yN(t)

yN+1(t)





, F (t, y(t)) =





F0(t, y(t))

F1(t, y(t))

...

FN(t, y(t))

FN+1(t, y(t))





, y0 =





u0(x0)

u0(x1)

...

u0(xN)

u0(xN+1)





.

For this transformation, we define

Fi(t, y(t))
def
= f

(
xi, t, yi(t),φ

(i)
!x

(
y, t

))
,

y
def≡ V!x,

and apply numerical methods for ordinary differential equations, e.g. Runge-Kutta

methods (see [1], [4], [5], [16], and [17]), to solve the resulting system in t and compute

numerical approximations to v!x(xi, tn), where tn ∈ [t0, T ] are temporal grid-points.

The numerical solutions to the problems (1.4), (1.5), and (1.6) are presented in

Chapter 5.

Finite difference operators are used, e.g., by Iserles [8], where the stability and

convergence of the finite difference method is thoroughly presented for linear partial

differential equations. In this thesis, we present a stability and convergence analysis

of the method applied to more challenging problems, namely, the nonlinear partial

differential equations written in the form (1.1).

Nonlinear partial differential equations and finite difference methods are also

investigated by Strikwerda [18], Hundsdorfer and Verwer [7], and LeVeque [9] but the

stability and convergence analysis presented in this work for (1.1) is not considered

in these references.
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CHAPTER 3

STABILITY ANALYSIS FOR NONLINEAR PARTIAL

DIFFERENTIAL EQUATIONS

In this chapter, we investigate stability of the method (2.3) and prove the following

stability theorem.

Theorem 3.0.1. Let xa < xb, t0 < T be real constants and assume that the function

f : [xa, xb]× [t0, T ]× R× R → R is continuous, satisfies the Lipschitz condition

∣∣f(x, t, p, q)− f(x, t, p̄, q)
∣∣ ≤ Lp|p− p̄|, (3.1)

and
∂f

∂q
(x, t, p, q) ≥ 0, (3.2)

for x ∈ [xa, xb], t ∈ [t0, T ], p, p̄, q ∈ R. Moreover, suppose that the functions

V!x,W!x ∈ C([t0, T ],RN+2) satisfy the following conditions

• V!x are solutions of (2.3) and satisfy (2.2)

• W!x satisfy (2.2) and the inequalities

∣∣∣∣∣
d

dt
W (i)

!x(t)− f
(
xi, t,W

(i)
!x(t),φ

(i)
!x

(
W!x, t

))
∣∣∣∣∣ ≤ η("x)

∣∣∣W (i)
!x(t0)− u0(xi)

∣∣∣ ≤ λ("x),

(3.3)
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for i = 1, 2, . . . , N and t ∈ [t0, T ] with η("x), λ("x) > 0 such that lim
!x→0

η("x) =

0 and lim
!x→0

λ("x) = 0.

Then there exist ξ("x) > 0 such that

∣∣V (i)
!x(t)−W (i)

!x(t)
∣∣ ≤ ξ("x), (3.4)

for i = 1, 2, . . . , N , t ∈ [t0, T ], and lim
!x→0

ξ("x) = 0.

In the next part of the thesis, we will need the following lemma.

Lemma 3.0.2. The operator φ(i)
!x : C([t0, T ],RN+2)× [t0, T ] → R, i = 1, 2, . . . , N , is

linear with respect to the functional argument.

Proof of Lemma 3.0.2. Let w, w̃ ∈ C([t0, T ],RN+2), t ∈ [t0, T ], and α, β ∈ R. Note

that, according to the notation introduced in Chapter 2, w, w̃ are vector functions

with zero as the index for their first components. Then

φ(i)
!x(αw + βw̃, t) =

1

"x2

((
αwi+1(t) + βw̃i+1(t)

)
− 2

(
αwi(t) + βw̃i(t)

)

+
(
αwi−1(t) + βw̃i−1(t)

))

=
1

"x2

(
α
(
wi+1(t)− 2wi(t) + wi−1(t)

)

+ β
(
w̃i+1(t)− 2w̃i(t) + w̃i−1(t)

))

= α
1

"x2

(
wi+1(t)− 2wi(t) + wi−1(t)

)

+β
1

"x2

(
w̃i+1(t)− 2w̃i(t) + w̃i−1(t)

)

= αφ(i)
!x(w, t) + βφ(i)

!x(w̃, t),

for i = 1, 2, . . . , N , which finishes the proof of the lemma.
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In the proof of the stability result stated in Theorem 3.0.1, we will also apply the

following lemma.

Lemma 3.0.3. Suppose that F : [α, β] → R is such that its derivative F ′ is integrable

on [α, β]. Then

F(β) = F(α) + (β − α)

∫ 1

0

F ′
(
α + s(β − α)

)
ds.

Proof of Lemma 3.0.3. We apply the Fundamental Theorem of Calculus [15] and

obtain

F(β) = F(α) +

∫ β

α

F ′(t)dt. (3.5)

We now use the substitution

t = α + s(β − α),

which gives dt = (β − α)ds and

∫ β

α

F ′(t)dt = (β − α)

∫ 1

0

F ′(α + s(β − α))ds.

This together with (3.5) proves the lemma.

We now apply both auxiliary Lemmas 3.0.2 and 3.0.3 and prove the stability

theorem.

Proof of Theorem 3.0.1. Let Γ!x = V!x −W!x. Then
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d

dt
Γ(i)
!x(t) =

d

dt
V (i)
!x(t)−

d

dt
W (i)

!x(t)

= f
(
xi, t, V

(i)
!x(t),φ

(i)
!x

(
V!x, t

))
− f

(
xi, t, V

(i)
!x(t),φ

(i)
!x

(
W!x, t

))

+ f
(
xi, t, V

(i)
!x(t),φ

(i)
!x

(
W!x, t

))
− f

(
xi, t,W

(i)
!x(t),φ

(i)
!x

(
W!x, t

))

+ f
(
xi, t,W

(i)
!x(t),φ

(i)
!x

(
W!x, t

))
− d

dt
W (i)

!x(t).

Let

Θ(i)
f (t) =

∫ 1

0

∂f

∂q

(
xi, t, V

(i)
!x(t),φ

(i)
!x

(
W!x, t

)
+ s

(
φ(i)
!x

(
V!x, t

)
− φ(i)

!x

(
W!x, t

))
)
ds.

Then, by Lemmas 3.0.2 and 3.0.3, we obtain

f
(
xi, t, V

(i)
!x(t),φ

(i)
!x

(
V!x, t

))
− f

(
xi, t, V

(i)
!x(t),φ

(i)
!x

(
W!x, t

))

= Θ(i)
f (t)

(
φ(i)
!x

(
V!x, t

)
− φ(i)

!x

(
W!x, t

))

= Θ(i)
f (t)φ(i)

!x

(
Γ!x, t

)
.

From this, the Lipschitz condition (3.1), the triangle inequality, and (3.3) we obtain

∣∣∣
d

dt
Γ(i)
!x(t)−Θ(i)

f (t)φ(i)
!x

(
Γ!x, t

)∣∣∣

=
∣∣∣f
(
xi, t, V

(i)
!x(t),φ

(i)
!x

(
W!x, t

))
− f

(
xi, t,W

(i)
!x(t),φ

(i)
!x

(
W!x, t

))

+f
(
xi, t,W

(i)
!x(t),φ

(i)
!x

(
W!x, t

))
− d

dt
W (i)

!x(t)
∣∣∣

≤
∣∣∣f
(
xi, t, V

(i)
!x(t),φ

(i)
!x

(
W!x, t

))
− f

(
xi, t,W

(i)
!x(t),φ

(i)
!x

(
W!x, t

))∣∣∣

+
∣∣∣
d

dt
W (i)

!x(t)− f
(
xi, t,W

(i)
!x(t),φ

(i)
!x

(
W!x, t

))∣∣∣

≤ Lp

∣∣Γ(i)
!x(t)

∣∣+ η("x).

We now define

Ψ(t) = sup
{∣∣Γ(i)

!x(τ)
∣∣ : t0 ≤ τ ≤ t, i = 1, 2, . . . , N

}
,
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for t ∈ [t0, T ]. The supremum exists because
∣∣Γ(i)

!x(τ)
∣∣ is a continuous function on

the compact (closed and bounded) interval [t0, t] and, therefore,
∣∣Γ(i)

!x(τ)
∣∣ is bounded.

Moreover, since Γ(i)
!x(τ) is continuous, Ψ ∈ C([t0, T ],R+), where R+ = [0,∞). Since

V (i)
!x(t0) = u0(xi) and

∣∣∣u0(xi) − W (i)
!x(t0)

∣∣∣ ≤ λ("x), we obtain Ψ(t0) ≤ λ("x). We

will show that

Ψ(t) ≤ γ(t), (3.6)

for t ∈ [t0, T ], where γ(t) is the solution to the initial-value problem






γ′(t) = Lpγ(t) + η("x)

γ(t0) = λ("x).
(3.7)

There exists ε̃ > 0 such that for all 0 < ε < ε̃ the solution γ̃ε(t) of






γ̃′
ε(t) = Lpγ̃ε(t) + η("x) + ε

γ̃ε(t0) = λ("x) + ε.

satisfies the property

lim
ε→0

γ̃ε(t) = γ(t)

uniformly with respect to t ∈ [t0, T ]. Let 0 < ε < ε̃. We will show that

Ψ(t) < γ̃ε(t), (3.8)

for t ∈ [t0, T ]. By contradiction, suppose it is false. Then, since

Ψ(t0) ≤ λ("x) < λ("x) + ε = γ̃ε(t0)
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and Ψ, γ̃ε ∈ C([t0, T ],R+), there exists t1 ∈ (t0, T ] such that

Ψ(t1) = γ̃ε(t1)

and

Ψ(τ) < γ̃ε(τ),

for all τ ∈ [t0, t1). Since γ̃′
ε is positive, γ̃ε is increasing and we get

Ψ(τ) < γ̃ε(τ) ≤ γ̃ε(t1) = Ψ(t1)

for all τ ∈ (t0, t1). From this strict inequality and by the definition of Ψ, there exists

an index i ∈ {1, 2, . . . , N} such that

Ψ(t1) = |Γ(i)
!x(t1)|.

Therefore, there are two cases, either

Case I : Ψ(t1) = Γ(i)
!x(t1)

or

Case II : Ψ(t1) = −Γ(i)
!x(t1).

We will show the proof for Case I. The proof for Case II is similar. Suppose Case I

and that i ∈ {1, 2, . . . , N}. For h < 0, we obtain

Ψ(t1 + h) ≥ Γ(i)
!x(t1 + h)
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and hence
Ψ(t1 + h)−Ψ(t1)

h
≤

Γ(i)
!x(t1 + h)− Γ(i)

!x(t1)

h
.

We now take h → 0− and get D−Ψ(t1) ≤
d

dt
Γ(i)
!x(t1). Then

D−Ψ(t1) ≤ d

dt
Γ(i)
!x(t1) ≤ Θ(i)

f (t1)φ
(i)
!x

(
Γ!x, t1

)
+ LpΓ

(i)
!x(t1) + η("x)

=
1

"x2
Θ(i)

f (t1)
(
Γ(i+1)
!x (t1)− 2Γ(i)

!x(t1) + Γ(i−1)
!x (t1)

)

+LpΓ
(i)
!x(t1) + η("x)

= Γ(i)
!x(t1)

(
Lp −

2

"x2
Θ(i)

f (t1)
)

+
1

"x2
Θ(i)

f (t1)
(
Γ(i+1)
!x (t1) + Γ(i−1)

!x (t1)
)
+ η("x).

From (3.2), we get Θ(i)
f (t1) ≥ 0, which implies further that

D−Ψ(t1) ≤ Γ(i)
!x(t1)

(
Lp −

2

"x2
Θ(i)

f (t1)
)
+

1

"x2
Θ(i)

f (t1)
(
Ψ(t1) +Ψ(t1)

)

+η("x)

= Ψ(t1)
(
Lp −

2

"x2
Θ(i)

f (t1)
)
+

2

"x2
Θ(i)

f (t1)Ψ(t1) + η("x)

= LpΨ(t1) + η("x) = Lpγ̃ε(t1) + η("x)

< Lpγ̃ε(t1) + η("x) + ε = γ̃′
ε(t1)

and

D−Ψ(t1) < γ̃′
ε(t1). (3.9)

On the other hand, take h < 0 such that the value |h| is small enough to satisfy

t0 ≤ t1 + h < t1. Then

Ψ(t1 + h) < γ̃ε(t1 + h)

and since
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Ψ(t1 + h)−Ψ(t1) < γ̃ε(t1 + h)− γ̃ε(t1),

we get
Ψ(t1 + h)−Ψ(t1)

h
>

γ̃ε(t1 + h)− γ̃ε(t1)

h

and taking h → 0− we obtain

D−Ψ(t1) ≥ D−γ̃ε(t1) = γ̃′
ε(t1). (3.10)

The equality in (3.10) is true because γ̃ε is differentiable. The relations (3.10)

contradict (3.9) and show the inequality (3.8) for all t ∈ [t0, T ] in Case I with

i ∈ {1, 2, . . . , N}. The proof is similar in Case II. We now take ε → 0 in (3.8)

and get (3.6). Finally, since γ solves (3.7), we get an analytic solution for γ:

γ(t) = exp
(
Lp(t− t0)

)
λ("x) +

1

Lp

(
exp

(
Lp(t− t0)

)
− 1

)
η("x)

so by (3.6),

Ψ(t) ≤ exp
(
Lp(t− t0)

)
λ("x) +

1

Lp

(
exp

(
Lp(t− t0)

)
− 1

)
η("x)

≤ exp
(
Lp(T − t0)

)
λ("x) +

1

Lp

(
exp

(
Lp(T − t0)

)
− 1

)
η("x)

and (3.4) is satisfied with

ξ("x) = exp
(
Lp(T − t0)

)
λ("x) +

1

Lp

(
exp

(
Lp(T − t0)

)
− 1

)
η("x). (3.11)

Moreover, by the properties of λ and η we obtain lim
!x→0

ξ("x) = 0, which finishes the

proof.
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CHAPTER 4

CONVERGENCE ANALYSIS FOR NONLINEAR

PARTIAL DIFFERENTIAL EQUATIONS

This chapter deals with nonlinear problems written in the general forms (1.1) and

(2.3). The purpose of the analysis presented in this chapter is to answer the question

whether the solutions V!x of the general scheme (2.3) converge to the solution u of

(1.1)-(1.3). The following theorem states a property about their convergence.

Theorem 4.0.4. Let u be a solution of (1.1)-(1.3) and V!x be a solution of (2.3).

Moreover, suppose that u is of class C4
(
[xa, xb] × [t0, T ],R

)
and the function f ∈

C
(
[xa, xb]× [t0, T ]× R× R,R

)
satisfies the Lipschitz condition

∣∣f(x, t, p, q)− f(x, t, p̄, q̄)
∣∣ ≤ Lp|p− p̄|+ Lq|q − q̄|, (4.1)

and the condition
∂f

∂q
(x, t, p, q) ≥ 0, (4.2)

for x ∈ [xa, xb], t ∈ [t0, T ], p, p̄, q, q̄ ∈ R, where xa < xb, t0 < T are real constants.

Then there exists µ("x) > 0 such that

|u(xi, t)− V (i)
!x(t)| ≤ µ("x), (4.3)
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for i = 1, 2, . . . , N , t ∈ [t0, T ], and lim
!x→0

µ("x) = 0.

In the proof of Theorem 4.0.4, we will need the following lemma.

Lemma 4.0.5. Suppose that u ∈ C4([xa, xb]×[t0, T ],R) and u(xa, t) = a(t), u(xb, t) =

b(t). Let u!x : [t0, T ] → RN+2 be defined by

u(i)
!x(t) = u(xi, t), (4.4)

for i = 0, 1, . . . , N,N + 1 and t ∈ [t0, T ]. Then there exists a positive constant C > 0

such that ∣∣∣∣∣
∂2u

∂x2
(xi, t)− φ(i)

!x(u!x, t)

∣∣∣∣∣ ≤ C"x2 (4.5)

for i = 1, 2, . . . , N and t ∈ [t0, T ].

Proof of Lemma 4.0.5. Let i = 2, 3, . . . , N − 1. Using Taylor’s expansion at (xi, t) we

have

u(xi +"x, t) = u(xi, t) +"x
∂u(xi, t)

∂x
+

"x2

2!

∂2u(xi, t)

∂x2

+
"x3

3!

∂3u(xi, t)

∂x3
+

"x4

4!

∂4u(θi, t)

∂x4

(4.6)

and

u(xi −"x, t) = u(xi, t)−"x
∂u(xi, t)

∂x
+

"x2

2!

∂2u(xi, t)

∂x2

−"x3

3!

∂3u(xi, t)

∂x3
+

"x4

4!

∂4u(λi, t)

∂x4
,

(4.7)

where θi and λi are some points between xi −"x and xi +"x. Adding both sides of

(4.6) and (4.7) and subtracting 2u(xi, t), we obtain
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u(xi +"x, t)− 2u(xi, t) + u(xi −"x, t) =

"x2∂
2u(xi, t)

∂x2
+

"x4

4!

[
∂4u(θi, t)

∂x4
+

∂4u(λi, t)

∂x4

]
.

Then, dividing by "x2 and subtracting
∂2u(xi, t)

∂x2
from both sides we get

∣∣∣∣∣
u(xi +"x, t)− 2u(xi, t) + u(xi −"x, t)

"x2
− ∂2u(xi, t)

∂x2

∣∣∣∣∣

=
"x2

4!

∣∣∣∣∣
∂4u(θi, t)

∂x4
+

∂4u(λi, t)

∂x4

∣∣∣∣∣

≤ "x2

4!
· 2C̃ = C"x2,

(4.8)

where the constant C̃ is defined by

C̃ = max
{∣∣∣

∂4u

∂x4
(x, t)

∣∣∣ : (x, t) ∈ [xa, xb]× [t0, T ]
}

(4.9)

and C = C̃/12. Since
∂4u

∂x4
is continuous on the compact set [xa, xb] × [t0, T ], it

is bounded and the maximum in (4.9) exists, [15], and C̃ is well defined. Since

u(xa, t) = a(t) and u(xb, t) = b(t), using a property similar to (4.8) at the boundaries

x = xa and x = xb corresponding to i = 1 and i = N , we can derive the following

inequalities

∣∣∣∣∣
u(x1 +"x, t)− 2u(x1, t) + a(t)

"x2
− ∂2u(x1, t)

∂x2

∣∣∣∣∣ ≤
"x2

4!
· 2C̃ = C"x2 (4.10)

and
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∣∣∣∣∣
b(t)− 2u(xN , t) + u(xN −"x, t)

"x2
− ∂2u(xN , t)

∂x2

∣∣∣∣∣ ≤
"x2

4!
· 2C̃ = C"x2 (4.11)

for i = 1 and i = N , respectively. Now (4.8), (4.10), and (4.11) imply (4.5), which

finishes the proof.

Proof of Theorem 4.0.4. We define u(i)
!x ∈ C4([t0, T ],R) for i = 0, 1, . . . , N,N + 1 by

(4.4). Then, since u is a solution of (1.1)-(1.3), we get

∂u

∂t
(xi, t) = f

(
xi, t, u(xi, t),

∂2u

∂x2
(xi, t)

)
− f

(
xi, t, u(xi, t),φ

(i)
!x(u!x, t)

)

+ f
(
xi, t, u(xi, t),φ

(i)
!x(u!x, t)

)
.

From this and the Lipschitz condition (4.1) and by Lemma 4.0.5 we obtain

∣∣∣∣∣
∂u

∂t
(xi, t)− f

(
xi, t, u(xi, t),φ

(i)
!x(u!x, t)

)∣∣∣∣∣

=

∣∣∣∣∣f
(
xi, t, u(xi, t),

∂2u

∂x2
(xi, t)

)
− f

(
xi, t, u(xi, t),φ

(i)
!x(u!x, t)

)∣∣∣∣∣

≤ Lq

∣∣∣∣∣
∂2u

∂x2
(xi, t)− φ(i)

!x(u!x, t)

∣∣∣∣∣ ≤ LqC"x2,

for some positive constant C. Therefore, since

d

dt
u(i)
!x(t) =

∂u

∂t
(xi, t),

and (4.4), we obtain
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∣∣∣∣∣
d

dt
u(i)
!x(t)− f

(
xi, t, u(xi, t),φ

(i)
!x(u!x, t)

)∣∣∣∣∣

=

∣∣∣∣∣
d

dt
u(i)
!x(t)− f

(
xi, t, u

(i)
!x(t),φ

(i)
!x(u!x, t)

)∣∣∣∣∣ ≤ η("x),

with

η("x) = LqC"x2, (4.12)

and u!x satisfies the first inequality in (3.3). From (1.3) and (4.4) we obtain u(i)
!x(t0) =

u0(xi) and conclude that u!x also satisfies the second inequality in (3.3) with

λ("x) ≡ 0. (4.13)

We now apply Theorem 3.0.1 and from (3.4) obtain

∣∣V (i)
!x(t)− u(i)

!x(t)
∣∣ ≤ ξ("x),

for i = 1, 2, . . . , N , t ∈ [t0, T ], with lim
!x→0

ξ("x) = 0. Therefore, from (4.4), we get

(4.3) with µ("x) = ξ("x) and the proof is finished.

Note that the error estimation (4.3) is given with µ("x) = ξ("x), where ξ("x)

is defined by (3.11). Therefore,

|u(xi, t)− V (i)
!x(t)| ≤ exp

(
Lp(T − t0)

)
λ("x) +

1

Lp

(
exp

(
Lp(T − t0)

)
− 1

)
η("x)

with η("x) and λ("x) defined by (4.12) and (4.13), respectively. From this we obtain

|u(xi, t)− V (i)
!x(t)| ≤

1

Lp

(
exp

(
Lp(T − t0)

)
− 1

)
LqC"x2
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and the following corollary.

Corollary 4.0.6. Suppose that the assumptions of Theorem 4.0.4 are satisfied. Then

there exists a positive constant C such that

|u(xi, t)− V (i)
!x(t)| ≤ C

(
exp

(
Lp(T − t0)

)
− 1

)
"x2,

for i = 1, 2, . . . , N , t ∈ [t0, T ].

In the next chapter, we present numerical examples with partial differential equa-

tions (1.1). The results of the numerical experiments are validated by the theoretical

results proved in Chapters 3 and 4.
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CHAPTER 5

NUMERICAL COMPUTATIONS

This chapter is devoted to numerical examples and computations. The numerical

results presented in this chapter are validated by the theoretical results obtained in

the previous chapters.

We consider four examples with problems written in the form (1.1)-(1.3). We

transform the problems into the form (2.3) with different step-sizes "x. Next, we

transform (2.3) into the form (2.4) and apply Runge-Kutta methods to integrate the

resulting systems of ODEs in time using the time step-sizes "t.

Since the general form (1.1) includes also linear partial differential equations,

to demonstrate the efficiency of the numerical approach for both cases, linear and

nonlinear, we choose a linear partial differential equation for our first example. For

the next numerical examples, we test the method with nonlinear PDEs.

Example 1

For this example, we investigate the linear equation

∂u

∂t
(x, t) = D

∂2u

∂x2
(x, t) + ν(x, t)u(x, t) + µ(x, t) (5.1)

for x ∈ [0, L] and t ≥ 0. Here, D is a diffusion coefficient and ν(x, t), µ(x, t) are
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given functions. The equation (5.1) is supplemented with the boundary conditions

(1.2) with xa = 0 and xb = L and the initial condition (1.3) with t0 = 0. Figure

5.1 illustrates numerical solutions V (i)
!x(tj) obtained with different functions ν(x, t),

µ(x, t) and different initial and boundary conditions.

Figure 5.1: Numerical solutions to (5.1).

The numerical solution to (5.1), (1.2), (1.3) with

ν(x, t) = 2(t− c) + (2− c)2 − 3, µ(x, t) = (x− c) exp
(
− (t− c)2 − (x− c)2

)
,

c = 2.5, D = 0.5 and L = 5 with the initial function
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u0(x) = c(x− c) exp
(
− c2 − (x− c)2

)
(5.2)

and the boundary functions

a(t) = c(t− c) exp
(
− c2 − (t− c)2

)
, b(t) = −a(t), (5.3)

is presented in Figure 5.2(A).

Figure 5.2: (A) Numerical solution to (5.1), (5.2), (5.3) computed with"x = 0.05 and
"t = 1

2"x2; (B) numerical error (5.4); (C) maximum error (5.5); and (D) maximum
error (5.6).

The exact solution of the problem is given by the formula
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u(x, t) = (c− x)(t− c) exp
(
− (x− c)2 − (t− c)2

)

and we can compute the errors of numerical solutions. The errors are presented in

Figures 5.2(B), (C), (D) and 5.3.

Figure 5.3: Numerical error (5.4) with decreasing stepsizes "x.

Figures 5.2(B) and 5.3 present the error

E(xi, tj) =
∣∣u(xi, tj)− V (i)

!x(tj)
∣∣, (5.4)

where xi and tj are spatial and temporal grid-points, Figure 5.2(C) presents the
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maximum error

E(t)(xi) = max
{∣∣u(xi, tj)− V (i)

!x(tj)
∣∣ : tj ∈ [0, T ]

}
, (5.5)

with T = 5 and for all spatial grid-points xi, and Figure 5.2(D) presents the maximum

error

E(x)(tj) = max
{∣∣u(xi, tj)− V (i)

!x(tj)
∣∣ : xi ∈ [0, L]

}
, (5.6)

for all temporal grid-points tj. Figure 5.3 compares the errors (5.4) for different

step-sizes "x = 5/10, 5/14, 5/20, 5/50 in (A),(B),(C),(D), respectively. The chosen

time step-sizes "t are significantly smaller and the error of the integration in time is

negligible.

In the next three examples, we investigate partial differential equations (1.1) with

nonlinear functions f(x, t, p, q).

Example 2

For this example, we solve the nonlinear Fitzhugh-Nagumo equation (1.4) supple-

mented by the boundary conditions (1.2) with xa = −L and xb = L and the initial

condition (1.3) with t0 = 0. The boundary functions are defined by the formulas

a(t) =

(
1 + exp

( −L√
2D

+
(
α− 1

2

)
t
))−1

,

b(t) =

(
1 + exp

( L√
2D

+
(
α− 1

2

)
t
))−1

(5.7)

and the initial function is defined by
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u0(x) =
1

1 + exp

(
x√
2D

) .
(5.8)

Figure 5.4: Solutions and errors for the Fitzhugh-Nagumo equation (1.4) solved

with the step-sizes "t = 0.005 and "x = 0.1: (A) numerical solution V (i)
!x(tj); (B)

numerical error (5.4); (C) exact solution u(x, t); (D) maximum error (5.5).

The numerical solution V (i)
!x(tj) to the Fitzhugh-Nagumo equation (1.4) with D =

0.03 and α = 0.139 is presented in Figure 5.4(A). This solution was computed with

the step-sizes "x = 0.1 and "t = 0.005. For comparison, we also present (in Figure

5.4(C)) the exact solution to (1.4), (1.2), (1.3) with a(t), b(t), and u0(x) defined by

(5.7) and (5.8), respectively.
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The exact solution is written in the form

u(x, t) =

(
1 + exp

( x√
2D

+
(
α− 1

2

)
t
))−1

and we can use it to compute the errors of the numerical solutions. The errors

obtained after computations with "x = 0.1 and "t = 0.005 are presented in Figure

5.4(B) and (D). The error (5.4) is presented in Figure 5.4(B) and the maximum error

(5.5) is presented in Figure 5.4(D).

Figure 5.5: Numerical errors for the Fitzhugh-Nagumo equation (1.4): (A) (5.4) with
"x = 0.2, (B) (5.4) with "x = 0.02, (C) (5.5) with "x = 0.2, (D) (5.5) with
"x = 0.02. The time step-size "t = 0.005 was applied for all the subplots.
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Figure 5.5 (A) and (C) illustrates the errors (5.4) and (5.5), respectively. These

errors were obtained with "x = 0.2 and "t = 0.005. Similarly, the errors obtained

with"x = 0.02 and"t = 0.005 are presented in Figure 5.5 (B) and (D). The subplots

in Figure 5.5 show that the errors decrease with decreasing "x, thus confirming the

order of the finite difference operator used for the spatial derivative.

From the proofs of Theorems 3.0.1 and 4.0.4, we observe that if the assumptions of

Theorem 4.0.4 are satisfied then, from Corollary 4.0.6, we obtain the following error

estimation

u(xi, tj) = V (i)
!x(tj) +O("x2). (5.9)

The estimation (5.9) is illustrated by the numerical experiments. Figure 5.5 (A) and

(C) show that, for "x = 2 · 10−1, the errors are less than 10−2, thus satisfying (5.9).

Figure 5.5 (B) and (D) also illustrate (5.9) and show that the errors for "x = 2 ·10−2

are less than 10−4.

The errors presented in Figures 5.2(B)(C)(D) were obtained with "x = 0.05 and

the plots show that they are less than 2.5 ·10−3, which illustrates the estimation (5.9).

Furthermore, the error from Figures 5.3(A) was obtained with "x = 1/2 and is less

than 2.5 · 10−1 illustrating (5.9). The error from Figures 5.3(B) was obtained with

"x = 5/14 and is less than 10−1, the error from Figures 5.3(C) was obtained with

"x = 5/20 and is less than 5 · 10−2, the error from Figures 5.3(D) was obtained with

"x = 5/50 and is less than 10−2, and parts (B), (C), and (D) also illustrate the

estimation (5.9).

Numerical experiments for the next examples agree with (5.9) as well.
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Example 3

We solve the Kolmogorov-Petrovskii-Piskunov equation (1.5) supplemented by the

boundary conditions (1.2) with

a(t) =
(
γ + exp

(
λt− µL/

√
D
))2/(1−m)

b(t) =
(
γ + exp

(
λt+ µL/

√
D
))2/(1−m) (5.10)

where
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Figure 5.6: Numerical solutions V (i)
!x(tj) to the Kolmogorov-Petrovskii-Piskunov

equation (1.5) for the indicated temporal grid-points tj and all spacial grid-points
xi.
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λ =
α(1−m)(m+ 3)

2(m+ 1)
, µ =

√
α(1−m)2

2(m+ 1)
, γ =

√
−β

α
,

and the initial condition (1.3) with

u0(x) =
(
γ + exp

(
µx/

√
D
))2/(1−m)

(5.11)

for x ∈ [−L,L]. Figures 5.6, 5.7, and 5.8 (A) illustrate the numerical solution V (i)
!x(tj)

to (1.5) with α = 1, β = −1, m = 2, D = 0.1, and L = 10. The solution V (i)
!x(tj) was

computed with "x = 0.2 and "t = 0.02. Figure 5.6 presents V (i)
!x(tj) at the temporal
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Figure 5.7: Numerical solutions V (i)
!x(tj) to the Kolmogorov-Petrovskii-Piskunov

equation (1.5) for the indicated spacial grid-points xi and all time grid-points tj.
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grid-points tj = 0.98, 2.98, 4.98, 6.98, 8.98, and for all spacial grid-points xi showing

the evolution of u(·, tj) in space. Figure 5.7 presents the numerical solution V (i)
!x(tj)

at the spacial grid-points xi = −1.8,−0.2, 1.4, 3, 4.6 showing the evolution of u(xi, ·)

in time. Figure 5.8(A) presents V (i)
!x(tj) for all spacial and temporal grid-points.

Figure 5.8: Solutions and errors for the Kolmogorov-Petrovskii-Piskunov equation
(1.5) solved with "x = 0.2 and "t = 0.02: (A) numerical solution V (i)

!x(tj); (B)
numerical error (5.4); (C) exact solution u(x, t); (D) maximum error (5.5).

The exact solution to (1.5), (1.2), (1.3) with the boundary functions (5.10) and

the initial function (5.11) is written in the form

u(x, t) =
(
γ + exp

(
λt+ µx/

√
D
))2/(1−m)

(5.12)
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and, for comparison with the numerical solution V (i)
!x(tj), the exact solution u(x, t) is

presented in Figure 5.8 (C). From parts (A) and (C), we conclude that the numerical

solution properly expresses all features of the exact solution.

Furthermore, we use the formula (5.12) to compute the numerical errors and

compare them with the error estimation (5.9) derived from Theorems 3.0.1 and 4.0.4.

The errors (5.4) and (5.5) are presented in Figure 5.8 (B) and (D), respectively. They

were obtained with "x = 0.2 and illustrate the estimation (5.9).

Example 4

For this example, we solve the Fisher-Kolmogorov equation (1.6) supplemented by

the boundary conditions (1.2) with

a(t) =
1(

1 + αeβ(xa−ct)
)s , b(t) =

1(
1 + αeβ(xb−ct)

)s , (5.13)

where, as suggested in [12], α =
√
2− 1 and

s =
2

q
, β =

q
(
2(q + 2)

)1/2 , c =
q + 4

(
2(q + 2)

)1/2 .

The initial function for (1.3) is written in the form

u0(x) =
1(

1 + αeβx
)s . (5.14)

The numerical solution V (i)
!x(tj) to this problem with xa = −5, xb = 10, and q = 1

is presented in Figure 5.9 (A) for tj = 0.245, 0.745, 1.245, 1.745, 2.245, and all spacial

grid-points xi. The exact solution u(x, t) is written in the form
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u(x, t) =
1(

1 + αeβ(x−ct)
)s

and we use it to compute numerical errors.

Figures 5.10 and 5.11 present the errors (5.4) and (5.5) for different spacial step-

sizes "x. Parts (A) and (B) of Figure 5.10 present errors obtained with "x = 0.25.

The errors are less than 3 · 10−3, which agrees with the error estimation (5.9). The

errors presented in Parts (C) and (D) were obtained with "x = 0.2 and are less than

2 · 10−3, again in agreement with (5.9).
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Figure 5.9: Numerical solutions V (i)
!x(tj) to the Fisher-Kolmogorov equation (1.6) for

the indicated temporal grid-points tj and all spacial grid-points xi.
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The errors presented in Figure 5.11 were obtained with "x = 1/6 (Parts (A) and

(C)) and "x = 1/8 (Parts (B) and (D)). From Figure 5.11, we observe that the errors

obtained with "x = 1/6 are less than 6 · 10−4, which is in agreement with (5.9), and

the errors obtained with "x = 1/8 are less than 2 · 10−4, which is also in agreement

with the error estimation (5.9).

Figure 5.10: Numerical errors (5.4) and maximum errors (5.5) obtained with "x =
0.25, in (A) and (B), and with "x = 0.2 in (C) and (D).
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Figure 5.11: Numerical errors (5.4) and maximum errors (5.5) obtained with "x =
1/6, in (A) and (B), and with "x = 1/8 in (C) and (D).
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CHAPTER 6

CONCLUDING REMARKS

In this work, we have investigated nonlinear partial differential equations written

in the general form (1.1). In this form, the function f(x, t, p, q) can be defined in

many different ways generating a wide class of nonlinear problems. We consider

the semi-discrete scheme (2.3) for this general class of problems and address the

questions about its stability and convergence. We state and prove Stability and

Convergence Theorems for the general scheme (2.3) and provide an error estimation

for its numerical errors.

We have investigated four examples with four problems written in the form (1.1).

Since the general form (1.1) includes also linear problems, one of our examples is

with a linear equation. The other three examples are nonlinear equations: the

Fitzhugh-Nagumo equation, the Kolmogorov-Petrovskii-Piskunov equation, and the

Fisher-Kolmogorov equation. Our numerical experiments with four partial differen-

tial equations are validated by the stability and convergence results as well as the

estimation for the numerical errors, thus confirming their reliability.

The analysis of the stability and convergence properties of the numerical scheme

(2.3) derived for (1.1) can be utilized for constructions of numerical schemes for yet

more general nonlinear partial differential equations written in the form

∂u

∂t
(x, t) = f

(
x, t, u(x, t),

∂2u

∂x2
(x, t), u(x,t)

)
, (6.1)



38

where the last argument u(x,t) differs from the first four arguments. This difference

is significant as the arguments x, t, u(x, t),
∂2u

∂x2
(x, t) are real values while the last

argument u(x,t) is a function defined in the following way

u(x,t)(y, s) = u(x+ y, t+ s),

where s ≤ 0 and y belongs to a certain spatial subdomain. Therefore, u(x,t) is called

a functional argument.

The functional argument u(x,t) in (6.1) allows to generate a more general (than

(1.1)) class of problems, where the partial differential equations depend not only on

the values of the solution at the present state u(x, t) (third argument in (6.1) and

(1.1)) but also on its values at some previous state or stages. More details about such

problems and numerical methods for solving them are provided by Zubik-Kowal [19],

[20], [21], and [22].

The stability and convergence analysis presented in this work provides confidence

that our computationally obtained numerical solutions can be trusted and are reliable.
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