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Abstract

Models of ZFC are ubiquitous in modern day set theoretic research. There are

many different constructions that produce countable models of ZFC via techniques

such as forcing, ultraproducts, and compactness. The models that these techniques

produce have many different characteristics; thus it is natural to ask whether or not

models of ZFC are classifiable. We will answer this question by showing that models

of ZFC are unclassifiable and have maximal complexity. The notions of complexity

used in this thesis will be phrased in the language of Borel complexity theory.

In particular, we will show that the class of countable models of ZFC is Borel

complete. Most of the models in the construction as it turns out are ill-founded. Thus,

we also investigate the sub problem of identifying the complexity for well-founded

models. We give partial results for the well-founded case by identifying lower bounds

on the complexity for these models in the Borel complexity hierarchy.
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Chapter 1

INTRODUCTION

Mathematical structures exist in many varieties. Thus, it is natural to ask, given a

particular class of structures, whether or not we can provide a means of classification.

Borel complexity theory is an active area that provides a framework for classifying

mathematical structures. Using this framework, we are able to gauge the complexity

of mathematical structures. In particular, we will focus on the complexity of models

of Peano arithmetic and set theory.

The classification problem for models of Peano arithmetic was addressed in a paper

of Coskey and Kossak [1]. In this paper, they showed that models of Peano arithmetic

have maximal complexity. The result is proved by establishing that models of Peano

arithmetic are just as complex as the class of countable linear orders which have

maximal complexity, which was addressed by Friedman and Stanley in the article [3].

We will make the notion of maximal complexity precise in section 1.2.

1.1 Models of LO, PA, and ZFC

1.1.1 Models of LO

In Chapter 2 we will relate countable models of PA to models of countable linear

orders. Here we will formally define the axioms for a linear ordering.
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Definition 1.1.1. Let I be a set, and ≤ be a binary relation. Then, I ′ = (I,≤) is

a linear order, denoted I ′ |= LO with language LLO = {≤} if the following axioms

are satisfied:

(1) ∀a, b ∈ I(a ≤ b ∧ b ≤ a⇒ a = b) (Antisymmetry)

(2) ∀a, b, c ∈ I(a ≤ b ∧ b ≤ c⇒ a ≤ c) (Transitivity)

(3) ∀a, b ∈ I(a ≤ b ∨ b ≤ a) (Comparability)

Example 1.1.1. Let N = (N,≤) where ≤ is interpreted in the usual way. It is clear

that N |= LO, using properties of N.

1.1.2 Models of PA

In this section, we will state precisely what we mean by a model of Peano arithmetic.

Informally, a model of Peano arithmetic or PA is a structure in which all of classical

number theory can be carried out. Formally, a model of PA is defined as follows:

Definition 1.1.2. A countable model M of PA, denoted M |= PA, is a first order

structure with underlying domain N and language LPA = {+,×, <, 0, 1} satisfying

the following axioms:

(1) ∀x∀y∀z((x+ y) + z = x+ (y + z))

(2) ∀x∀y(x+ y = y + x)

(3) ∀x∀y∀z((x× y)× z = x× (y × z)

(4) ∀x∀y(x× y = y × x)
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(5) ∀x∀y∀z(x× (y + z) = x× y + x× z)

(6) ∀x((x+ 0 = x) ∧ (x× 0 = 0))

(7) ∀x(x× 1 = x)

(8) ∀x∀y∀z((x < y ∧ y < z)→ x < z)

(9) ∀x(x 6< x)

(10) ∀x∀y(x < y ∨ x = y ∨ y < x)

(11) ∀x∀y∀z(x < y → x+ z < y + z)

(12) ∀x∀y∀z(0 < z ∧ x < y → x× z < y × z)

(13) ∀x∀y(x < y → ∃z(x+ z = y))

(14) 0 < 1 ∧ ∀x(0 < x→ 1 ≤ x)

(15) ∀x(0 ≤ x)

(16) If ϕ is a formula in the language LPA then,

∀ȳ(ϕ(0, ȳ) ∧ ∀x(ϕ(x, ȳ → ϕ(x+ 1, ȳ))→ ∀xϕ(x, ȳ)).

We note that the standard model of PA is the structure (N,+,×, <, 0, 1) in

which each symbol is interpreted with its usual meaning, and satisfies the axioms

of Definition 1.1.2. On the other hand, there are so called nonstandard models of

PA which are those structures M |= PA that are not isomorphic to N. Nonstandard

models of PA where first exhibited by Skolem in the 1930’s using the compactness

theorem of first order logic. For reference we also note that M |= PA− simply means

that M is a model of axioms (1)− (15) only.

1.1.3 Models of ZFC

We now provide a formal definition of a model of set theory which we will also refer

to as a model of ZFC.
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Definition 1.1.3. A model M of ZFC, denoted M |= ZFC is a first order structure

with language LZFC = {E} where E is a binary relation symbol satisfying the following

axioms:

(1) Extensionality: ∀x∀y(∀z(zEx↔ zEy)→ x = y)

(2) Foundation: ∀x(∃y(yEx)→ ∃y(yEx ∧ ¬∃z(zEx ∧ zEy))

(3) Comprehension: For each formula ϕ in the language LZFC with free variables

x, z, w̄

∀z∀w̄∃y∀x(xEy ↔ xEz ∧ ϕ(x, z, w̄))

(4) Pairing: ∀x∀y∃z(xEz ∧ yEz)

(5) Union: ∀u∃y∀s∀x(xEs ∧ sEu→ xEy)

(6) Replacement: For each formula ϕ in the language LZFC with free variables x, y, z, w̄,

∀z∀w̄(∀x(xEz∃!y(ϕ(x, y, z, w̄)→ ∃v∀x(xEz)∃y(yEv)ϕ(x, y, z, w̄)))

(7) Infinity: ∃x(∅Ex ∧ ∀y(yEx)(S(y)Ex))

(8) Power set: ∀x∃y∀z(∀w(wEz → wEx)→ zEy)

(9) Choice: ∀x∃y y well orders x.

As with models of PA, there are both standard and non standard models of ZFC.

A standard model of ZFC is one in which the E relation from Definition 1.1.3 is the

actual ∈ set membership relation. Furthermore, by the Mostowski Collapse lemma we

know that every well-founded model is isomorphic to a standard model of set theory.

Thus we refer to standard models sometimes as well-founded models.

1.2 Borel Classification Theory

In this section, we will introduce some aspects of Borel Classification theory that

allow us to assess the complexity of the classification of countable models of PA and
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ZFC. To study the complexity of a countable class of structures satisfying a complete

theory T , we first look at the space XT = {M : dom(M) = ω ∧M |= T}. By a

complete theory we mean a theory that has a model, and any two models of this

theory are elementarily equivalent. The classification problem for models M |= T is

determined by studying the isomorphism equivalence relation ∼=T on the space XT .

We note that if a(R) is the arity of logical symbol in the language LT then we can

view XT as a Borel subset of the space
∏

R∈L 2Na(R)
of all countable L-structures.

In order to discuss the complexity of the isomorphism relation ∼=T , we need the

notion of Borel reducibility. Thus, we provide the following definition.

Definition 1.2.1. Let X and Y be standard Borel spaces, and E and F be equivalence

relations on X and Y respectively. Then, E is Borel Reducible to F , denoted

E ≤B F if there is a Borel function f : X → Y such that x E y ↔ f(x) F f(y).

Relating this definition to our specific context, this means that if E is Borel reducible

to F then the classification problem for structures in the space Y up to F is at

least as complex as the classification problem for structures in the space X up to

E. Later we will show that the isomorphism relation for certain classes of structures

is maximally complex among countable structures, or Borel complete. Formally, we

have the following definition:

Definition 1.2.2. The class of countable models of a theory T is Borel Complete

if and only if for any other class of countable models of a theory T ′ there is a Borel

reduction ∼=T ′ ≤B ∼=T .



6

Example 1.2.1. The class (XLO,∼=LO) of countable linear orders under isomorphism

is Borel complete [3].

In general there are many other notions of complexity that are “less”complex than

Borel complete. Other complexities that will arise in this thesis are =, E0, and Eω1 .

Definition 1.2.3. The identity relation on a space X which we denote id(X) is

defined as id(X) = {(x, y) ∈ X ×X : x = y}.

In particular, we will examine the identity relation on 2ω in Chapter 4. We next

define the relation of eventual agreement on 2ω.

Definition 1.2.4. Let x, y ∈ 2ω. Then, the relation E0 is defined as follows, x E0 y ⇔

∃m∀n ≥ m x(n) = y(n).

We finally define the Eω1 equivalence relation. This relation is designated for

classes of structures with ω1 many equivalence classes.

Definition 1.2.5. Consider the space XWO ⊂ XLO of countable well ordered struc-

tures. Then, Eω1 is the isomorphism relation on the space XWO.

We note that that the space XWO is not Borel, and thus does not technically

exists in the Borel equivalence relation hierarchy. This limitation will not effect our

results in Chapter 4.

1.3 Summary of results

As stated in the introduction, models of PA are known to be Borel complete. In

Chapter 2, we will examine the argument used in [1] showing that models of PA are

Borel complete. The idea is that we can find a Borel reduction from the isomorphism
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relation on the class of countable linear orders to the isomorphism relation on the

class of countable models of PA. In particular, the chapter focuses on constructing a

model of PA from a linear order in such a way that we can identify the order type of

the original linear order.

In Chapter 3, we show that the class of countable models of ZFC is Borel complete.

Again, we show that the isomorphism relation on the class of countable linear orders

is Borel reducible to the isomorphism relation on countable models of ZFC. The

argument we use in Chapter 3 is similar to the construction outlined in Chapter 2.

We adapt this construction by adjoining witnesses of a minimal type with parameters

from the ω of our fixed model of ZFC.

Note that the models we produce in Chapter 3 are generally ill-founded. It is then

natural to ask whether we can find complexity within just the well-founded models of

ZFC. In Chapter 4, we provide three constructions of such models. We first construct

ω1 many models using the inner model L. Then, we generate 2ω many using mutual

Cohen generics, and finally E0 many by adapting the construction for 2ω many.
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Chapter 2

BOREL COMPLEXITY OF COUNTABLE MODELS OF

PA

This chapter will establish the following result due to Coskey-Kossak: the class of

countable models of PA is Borel complete [1]. We know that the class of countable

linear orders is Borel complete. Thus, it suffices to show that the isomorphism relation

for countable linear orders is Borel reducible to the isomorphism relation on countable

models of PA. The presentation of the material on Ehrenfeucht-Mostowski models was

borrowed from [6]. The presentation for constructing the models M(I) was borrowed

from [7], [8], [5], and [9].

2.1 Ehrenfeucht-Mostowski Models

In this section we will briefly discuss Ehrenfeucht-Mostowski models. The results in

this section will be applied in the last section of this chapter to show that models of

PA are Borel complete.

We begin by defining order indiscernibles. For convenience, we will fix a language L

and an L-structure M with domain M ; and refer to this structure in the following

definitions and theorems in the section.
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Definition 2.1.1. Consider the ordered set (I,<), and a sequence 〈ai : i ∈ I〉 such

that each ai ∈ M . The sequence 〈ai : i ∈ I〉 is a sequence of order indiscernibles

if M |= ϕ(ai1 , ..., ain) ↔ ϕ(aj1 , ..., ajn) whenever i1 < ... < in and j1 < ... < jn are

elements of the index set I.

Let T be an L theory of our fixed language. The following theorems require our

theory to contain built in Skolem functions. Using theorems from elementary model

theory, we can always extend our theory T ∗ ⊇ T and language L∗ ⊇ L that contains

built in Skolem functions.

Definition 2.1.2. Let M |= L∗, and consider a subset X ⊆ M . Then, we define

the smallest elementary L∗-substructure generated by X to be the Skolem hull. We

denote this substructure by H(X).

Definition 2.1.3. An Ehrenfeucht-Mostowski model is any Skolem hull of a

sequence of order indiscernibles of any model M |= T ∗. We denote this model by

H(I) where I is a set of order indiscernibles.

We finally introduce the notion of the type of a sequence of order indiscernibles.

Definition 2.1.4. Consider a sequence of order indiscernibles X = 〈ai : i ∈ I〉 of

the model M. Then, the type of the sequences of indiscernibles is defined as

tp(X) = {ψ(x1, ..., xn) : M |= ψ(ai1 , ..., ain)whenever i1 < ... < in ∈ I}

The following lemma shows us that if our theory has built in Skolem functions, then

isomorphisms of linear orderings can be extended to isomorphisms of Eurenfeucht-

Mostowski models. We will apply this result in a later section to models of PA. This
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is possible since models of PA have built in Skolem functions.

Lemma 2.1.1. Let T ∗ be an L∗-theory with built in Skolem functions. Let I be a

sequence of order indiscernibles in a model M |= T ∗ and J be sequence of order

indiscernibles in a model N |= T ∗ such that tp(I) = tp(J). Then, if f : I → J is an

isomorphism, we can extend f to an isomorphism g : H(I)→ H(J).

Proof. Let a ∈ H(I) and a1, ..., an ∈ I such that a = t(a1, ..., an) for a Skolem term

t. Define g(a) = t(f(a1), ..., f(an)). We claim that the map g is well defined and an

isomorphism.

To show that g is well defined, consider a Skolem term s 6= t where a = s(a1, ..., an) =

t(a1, ..., an). So, M |= t(a1, ..., an) = s(a1, ..., an). Since tp(I) = tp(J) and f is an

isomorphism, it follows that N |= t(f(a1), ..., f(an)) = s(f(a1), ..., f(an)). Hence,

g(t(a1, ..., an)) = g(s(a1, ..., an)) and thus g is well defined.

Now we will show that g is an elementary embedding. We claim that g is injective.

Let a = t(a1, ..., an) and b = t′(a1, ..., an). Suppose g(a) = g(b). Since g(a) = g(b),

it follows that N |= t(f(a1), ..., f(an)) = t′(f(a1), ..., f(an)). Since tp(I) = tp(J), it

follows that M |= a = t(a1, ..., an) = t′(a1, ..., an) = b. Hence, g is injective.

Now, we will show that g preserves relation symbols. Fix R ∈ L such that R

is a relation symbol and consider b1, ..., bn ∈ H(I). Let bi = tk(bi,1, ..., bi,n) such

that k ∈ {1, ..., n} and bi,j ∈ I for each i, j ∈ {1, .., n}. We need to show that

(b1, ..., bn) ∈ RH(I) ⇔ (g(b1), ..., g(bn) ∈ RH(J). Observe the following chain of logical

equivalences
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(g(b1), ..., g(bn)) ∈ RH(J) ⇔ (t1(f(b1,1), .., f(b1,n)), .., tn(f(bn,1), .., f(bn,n))) ∈ RH(J)

⇔ (t1(b1,1, .., b1,n), .., tn(bn,1, .., bn,n)) ∈ RH(I)

⇔ (b1, .., bn) ∈ RH(I).

Hence, g preserves relation symbols.

Now we will show that g preserves function symbols. Let h be a function symbol

in our fixed language, and b1, ..., bn ∈ H(I). We know that M |= hH(I)(b1, ..., bn) =

c for some c ∈ H(I). Since g preserves relation symbols, it follows that N |=

hH(J)(g(b1, ..., bn)) = g(c) = g(hH(I)(b1, ..., bn)). Thus, g preserves function symbols.

We will now show that g maps constant symbols in H(I) to constants in H(J).

Let c ∈ L∗ be a constant symbol. We can write c = t(a1, ..., an) where each ai ∈ I

for all i ∈ {1, ..., n}. Then, by definition of g, g(cH(I)) = t(f(a1, ..., f(an))). Since

t(f(a1, ..., f(an))) is a constant in H(J), it follows that g maps constant symbols in

H(I) to constant symbols in H(J).

Finally, we show that g is surjective. Fix b ∈ H(J). We can write b = t(b1, ..., bn)

for some Skolem term t such that b1, ..., bn ∈ J . Since f is surjective we can find

a1, ..., an ∈ I such that f(ai) = bi for all i ∈ {1, ..., n}. Then, by definition of g we

have that t(f(a1), .., f(an) = g(t(a1, .., an)). Hence, g is surjective. Thus, we have

shown that g is an isomorphism.

2.2 Building canonical extensions for models of PA

In this section we will discuss extensions of models of PA that are generated by

unbounded strongly definable complete types. We begin this section by defining
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items concerning types.

2.2.1 Types

We will now discuss the notion of a type. A type is simply a consistent collection of

formulas, that is a collection of formulas satisfied by some model. We will also define

types with special properties that will be used to construct extensions of models of PA.

Definition 2.2.1. Let T be an L-theory and M |= T . Then, we say an n-type p(v)

is a collection of formulas in the language L with n-many free variables v such that

parameters of p come from M.

We will only consider 1 − types for the rest of this paper, and refer to these simply

as types M -types.

Remark 2.2.1. The set Def(M) will refer to the definable sets in M .

Definition 2.2.2. Let p(v) be an M − type. We say p(v) is a complete type over

M if for all θ(v) ∈ L(M) either θ(v) ∈ p(v) or ¬θ(v) ∈ p(v).

Definition 2.2.3. Let M |= PA. An M-type p(v) over the model M is unbounded

if p(v) ⊇ {v > x : x ∈M}.

Definition 2.2.4. Let M |= PA. Then a complete M−type p(v) is strongly definable

if for every formula ϕ(v, z) ∈ L, we can find a formula θ(v) ∈ p(v) with the following

property,

M |= ∀z(∀∞v(θ(v)→ ϕ(v, z)) ∨ ∀∞v(θ(v)→ ¬ϕ(v, z))).



13

In other words, strongly definable types contain formulas that “eventually”settle the

truth value of any formula in a given language.

Fact 2.2.1. In any model M of Peano arithmetic, there is an unbounded strongly

definable type [5].

Definition 2.2.5. Let p(v) be a complete M − type. Then, p(v) is definable if the

set {z ∈M : ∀ϕ(v, z) ∈ L ϕ(v, z) ∈ p(v)} is in Def(M).

2.2.2 End extensions of models of PA generated by types

Definition 2.2.6. Let M |= T where T is a complete and consistent extension of

PA. Then, the model M is prime if for any other model N |= T we can find an

elementary embedding from M to N .

Definition 2.2.7. Let L be a language andM an L structure. Now, we the expanded

language LM by adding a new constant symbol for each element of the domain of M.

Thus, we say the elementarydiagram of M, denoted Diagel(M), is the set of LM

sentences that are true in M.

Definition 2.2.8. Let M |= PA and p(v) be a complete M − type, then M(p/d) is

the prime model of Diagel(M) ∪ p(d).

Remark 2.2.2. We will write M(p) if a priori we are not referring to a specific

element satisfying the type p.

Question 2.2.1. What do these extensions actually look like?
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We can characterize extensions of models of PA as the “ground”model M |= PA in

addition to a convex set that live within the new model. These convex sets are called

gaps, and are generated by the new constant symbol d. We will later find that if we

assume a minimal type, then the gaps will all lie above the original model.

Definition 2.2.9. Let d ∈ M |= PA. M(d) = {x ∈ M : x < t(d) for some Skolem

function t}.

In other words, M(d) is the smallest elementary initial segment that contains d.

Definition 2.2.10. Let d ∈ M |= PA. M [d] = {x ∈ M : t(x) < d for every Skolem

function t}.

We can think of M [d] as all possible ways of applying Skolem functions in the model

that are still less than d. One can also think of this set as the largest elemtary initial

segment excluding the element d.

We now arrive at the definition of gap by deleting elements that cannot reach d via

any Skolem function.

Definition 2.2.11. Let d ∈M |= PA. Now, we define gap(d) = M(d)\M [d].

We can characterize gaps using the following fact. That is, a gap of a point d is

characterized by finding a Skolem function that “jumps” over d from some other

point c in the gap, and vice versa.
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Fact 2.2.2. Let c, d ∈M |= PA. c ∈ gap(d) if and only if there are Skolem functions

t, s such that t(c) ≥ d and s(d) ≥ c.

Proof. Let c ∈ gap(d). Then, c ∈ M(d) and c 6∈ M [d]. Since c ∈ M(d), c < t(d)

for some Skolem function t, and c 6∈ M [d] it follows that d ≤ s(c) for some Skolem

function s.

Remark 2.2.3. One can easily show that the relation of being in the same gap is an

equivalence relation. Thus, it follows that gaps in any model of PA are disjoint.

The next four lemmas we state will be used in the proof of Proposition 2.2.1.

Lemma 2.2.1. If x < y ∈M [d], then for every Skolem function t, t(x) ≤ max{t(y′) :

y′ ≤ y} < d.

Proof. Let x < y ∈ M [d]. Fix a Skolem function t. Since x < y ∈ M [d], it follows

that t(y) < d and t(x) < d. Notice that t(x) ≤ max{t(y′) : y′ ≤ y}. Consider any

y′ ≤ y. Since y ∈ M [d], y′ ∈ M [d]. Hence, t(y′) < d. Thus, t(x) ≤ max{t(y′) : y′ ≤

y} < d.

The next several lemmas show that definable types generate end extensions of mod-

els of PA. We prove this fact by first showing that definable types generate what

are known as conservative types, and then show that conservative types are end

extensional.
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Definition 2.2.12. We say that an extension M ⊆ K of a model M |= PA is

conservative, if for any set X definable with parameters from K, then X ∩M ∈

DEF (M).

Lemma 2.2.2. M |= PA, and p(v) a complete M − type. If p is a definable type,

then M(p) is a conservative extension of M .

Proof. Let d ∈M(p) realizing the type p. We want to show that M(p) is a conserva-

tive extension. Let X ∈ Def(M(p)). Then, X = {z ∈ M(p) : M(p) |= θ(c, z)} such

that θ is a formula in the language of arithmetic and c ∈ M(p). Since c ∈ M(p), we

have that x = min(x)η(x, d) for some formula η in the language of arithmetic. We

must show that X ∩M ∈ Def(M(p)).

Notice thatX∩M = {z ∈M : M(p) |= θ(min(x)η(x, d), z)} since c = min(x)η(x, d).

So, we have that {z ∈M : M(p) |= θ(min(x)η(x, d), z)} = {z ∈M : θ(min(x)η(x, d), z) ∈

p(v)}. Finally, since p is a definable type it follows that X ∩M ∈ Def(M). Hence,

M(p) is a conservative extension.

Remark 2.2.4. The converse of Lemma 2.2.2 is also true [9].

Lemma 2.2.3. Conservative extensions K ⊇ M |= PA with K |= PA− are end

extensional.

Proof. Let K be a conservative extension of a model M |= PA where K |= PA−. Fix

a ∈ K\M . Consider the set X = {x ∈ K : x < a}. Note that the set X is definable



17

in K. Since K is a conservative extension, it follows that X ∩M = {x ∈ M : x <

a} ∈ Def(M). The set X ∩M is contains the“0” element. Furthermore, for any

y ∈ M , the successor s(y) ∈ M . Thus, we conclude by induction that X ∩M = M

and M < a. Hence, K is an end extension.

Lemma 2.2.4. If M |= PA− then any unbounded strongly definable complete M −

type is definable.

The following proposition is due to Gaifman, and provides us with a way to visualize

end extensions generated by unbounded strongly definable complete M − types [7].

These extensions consist of the ground model of arithmetic, as well as the gap

generated by some element d over the given type. It should also be noted that

the gap of d is generated above the ground model.

Proposition 2.2.1. M |= PA, and p(v) be an unbounded strongly definable complete

M − type. Then, M(p/d) is the disjoint union of M and gap(d).

Proof. We know that p(v) is unbounded. So, in particular p(d) ⊃ {d > x : x ∈ M}

and thus d > M . By Lemma 2.2.1 we know that t(x) < d for any Skolem function t

and x ∈ M . We now claim that M ⊆ M(p/d)[d] where M(p/d)[d] = {x ∈ M(p/d) :

t(x) < d for any Skolem function t}.

Let x ∈ M . Then x ∈ M(p/d). Since t(x) < d for any Skolem function t and

x ∈M , it follows that x ∈M(p/d)[d]. Hence, M ⊆M(p/d)[d].

Now we claim that M ∩gap(d) = ∅. If not, then we can find x ∈M ∩gap(d). Note

that x ∈M(p/d)[d] implies that t(x) < d for every t. On the other hand, x ∈ gap(d)

implies that d ≤ t(x) for some t which is a contradiction. Hence, M ∩ gap(d) = ∅.
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Observe that if c ∈ gap(d) then c ∈M(p/d), and if c ∈M then c ∈M(p/d). So, it

remains to show that M(p/d) ⊂M ∪ gap(d). Let c ∈M(p/d). We claim that c ∈M

or c ∈ gap(d).

Since c ∈ M(p/d) it follows that there is a ∈ M and η ∈ LA so that c =

min(x)η(x, a, d). We can without loss of generality assumeM(p/d) |= ∀v, z∃!xη(x, z, v).

Since p(v) was assumed to be strongly definable, we can find a formula θ(v, w) ∈ p(v)

with θ ∈ LA and b ∈M with the property

M |= ∀x, z(∀∞v(θ(v, w)→ η(x, z, v)) ∨ ∀∞v(θ(v, w)→ ¬η(x, z, v))).

We proceed by considering each case. First, we assume thatM |= ∀x∀∞v(θ(v, w)→

¬η(x, z, v)). Suppose c 6∈M . By Lemmas 2.2.2, 2.2.3, and 2.2.4 it follows that c > M .

Since c ∈M(p) and c > M we have that M(p) is an end extension.

Define t(c) = max{max(v)(θ(v, w) ∧ η(c, z, v)) : w, z ≤ c}. Notice that this

definition makes sense given that a, b ∈ M and thus a, b < d. Also, M |= η(c, a, d)

and θ(v, w) ∈ p(v) which implies that θ(v, w)∧η(c, z, v) is true in M for any w, z ≤ c.

Notice that we are considering the maximum v such that θ(v, w)∧ η(c, z, v) holds for

all w, z ≤ c, and d is a valid input for v. So, it follows that t(c) ≥ d. Now define

s(d) = max{min(x)η(x, z, d) : z ≤ d}. Since a < d and c = min(x)η(x, a, d), it

follows that s(d) ≥ c. So, we have that c ∈ gap(d) by Fact 2.2.2.

Now assume that M |= ∃x∃∞v(θ(v, w) ∧ η(x, z, v)). Let a0 ∈ M be given from

the previous sentence. Then, M |= ∀∞v(θ(v, w) → η(a0, a, v). So for a fixed v0,

M |= ∀v(θ(v, b)∧v ≥ v0 → η(a0, a, v)). So, M(p) |= ∀v(θ(v, w)∧v ≥ v0 → η(a0, a, v)).

We know by assumption that θ(v, w) ∈ p(v), and d ∈M(p)\M . Then, it follows that
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since d > vo, M(p) |= θ(d, w) ∈ p(d). Now, we have that M(p) |= η(a0, a, d). Finally,

since M(p) |= ∀v, z∃!xη(x, z, v), it follows that a0 = c ∈ M as they both witness

η.

2.3 Extensions of Models of PA along linear orders

In this section we will show how to build an extension of a model of PA along a fixed

linear order. The resulting model is similar to the model obtained in Proposition 2.2.1

however the model contains gaps for every element in our linear order sitting above

the ground model. This extension was also created by Gaifman. In Proposition 2.2.1,

we generated the extension using unbounded strongly definable complete M − types.

We will now use what are known as minimal types to construct our new extension.

Definition 2.3.1. Let M |= PA. A complete M− type p is rare, if for any elements

a, b ∈ K realizing p such that K is an extension of M , then the elements a, b ∈ K are

in different gaps.

Definition 2.3.2. A type p(v) is minimal in a model M of PA, if p(v) is unbounded,

strongly definable and rare.

Fact 2.3.1. In any model M of Peano arithmetic, there is an unbounded strongly,

definable, rare, complete M − type.

Definition 2.3.3. Let p(v) be a type of a linearly ordered model M . Then p(v) is

indiscernible whenever c0, ..., cn, d0, ..., dn ∈ K <M which realize the type p(v) such

that c0 < ... < cn and d0 < ... < dn then tpK(c0, ..., cn) = tpK(d0, ..., dn)
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It turns out that we can characterize the notion of minimal type as being unbounded

and indiscernible.

Lemma 2.3.1. Given a model M of PA, if each M−type p is complete and minimal,

then p is also indiscernible and unbounded.

The following lemma shows us that indiscernible types can decide formulas that are

definable in a model of PA. This will be important in our main result, as we will use

indiscernible types to generate an elementary extention of a given model of PA.

Lemma 2.3.2. Let L = {<} and M be a model linearly ordered by <. If p(v) is an

indiscernible M − type then for every ϕ(v0, ..., vn) ∈ L(M), we can find a formula

θ(v) ∈ p(v) such that

M |= ∀v

(∧
i≤n

θ(vi) ∧
∧
i≤n

vi < vi+1 → ϕ(v)

)
∨

(
∀v
∧
i≤n

θ(vi) ∧
∧
i≤n

vi < vi+1 → ¬ϕ(v)

)
.

We now state and prove the main theorem of this section. The result was initially

proved by Gaifman and provides a way to construct an end extension of a model of

PA along an arbitrary linear order [8]. We will refer to these extensions from now on

as cannonical I-models, and they will be denoted M(I).

Theorem 2.3.1. M |= PA and a minimal complete M − type p(v). Let (I,<) be a

linear order; then there is an extension K <M such that K = M ∪
⋃
i∈I gapK(di).
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Proof. First we need to find the extension K of M . Let T = Diagel(M)∪
⋃
i∈I p(di)∪

{di < dj : i, j ∈ I ∧ i < j} be a theory where each di is a new constant symbol. Since

p(v) is a minimal complete M − type, we have by Lemma 2.3.1 and Lemma 2.3.2 that

T is a complete theory. We take K to be the LA reduct of the prime model of T . So,

it follows that K <M since p(v) ⊃ Diagel(M).

We now aim to show that K = M ∪
⋃
i∈I gapK(di). Note that for each i ∈ I,

gapK(di) is defined with respect to the extension K. Hence, M ∪
⋃
i∈I gapK(di) ⊆ K.

Now we will show that K ⊆ M ∪
⋃
i∈I gapK(di). Let c ∈ K. We must show that

c ∈M ∪
⋃
i∈I gapK(di). Since c ∈ K and K is the prime model of M , we can find η ∈

LA(M) and d0, ..., dn ∈ D with c = min(x)(η(x, d)). Let K0 = clK(M ∪ {di : i ≤ n})

be the Skolem closure or set of elements which are definable with parameters from

M ∪ {di : i ≤ n}. Since p is a rare type, and gapK0(di) ∩ gapK0(dj) = ∅, it follows

that gapK0(d1) < ... < gapK0(dn). Since strongly definable types are preserved in

end extensions, it follows that each di realizes an unbounded strongly definable type

over clK0(M ∪ {dj : j < i}) for all i ≤ n. Now, we proceed by applying Proposition

2.2.1 n + 1 many times to obtain K0 = M ∪
⋃
i≤n gapK0(di). Clearly c ∈ K0 as c is

definable from K0. So, we have that either c ∈ M or c ∈ gapK0(di) for some i ≤ n.

Finally, since K0 and K have the same Skolem functions it follows by Fact 2.2.2 that

c ∈ gapK(di). Hence, c ∈M ∪
⋃
i∈I gapK(di).

2.4 Borel reducibility of linear orders to models of PA

In this section we will show that the isomorphism relation for countable linear orders

is Borel reducible to countable models of PA. To obtain the desired reduction we need

to show the following:
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1. Given two isomorphic linear orders I and I ′, the corresponding I models M(I)

and M(I ′) respectively are isomorphic.

2. Given two isomorphic I-models of PA M(I) and M(I ′), the corresponding linear

orders I and I ′ are isomorphic.

3. The mapping f : I →M(I) is Borel.

Theorem 2.4.1. Consider the isomorphism equivalence relation ∼=LO on the class

countable linear orders, and ∼=I the isomorphism equivalence relation on the class of

canonical I-models. Then, there is a Borel reduction f : I → M(I) where f maps a

given linear order to the corresponding I-model.

Proof. Suppose I and I ′ are isomorphic linear orders. Let M(I) and M(I ′) be the

corresponding I-models. We need to show that M(I) ∼= M(I ′).

By Lemma 2.1.1, we know that since I ∼= I ′, we can extend this isomorphism to

an isomorphism between the Skolem hull of I and I ′. Hence, we obtain the desired

isomorphism M(I) ∼= M(I ′).

Consider the canonical I-models M(I) ∼= M(I ′) generated along the linear orders

I and I ′ respectively. We must show that I ∼= I ′. By Theorem 2.3.1, we know that

M(I) = M ∪
⋃
i∈I gap(di)

∼= M ∪
⋃
i∈I gap(d

′
i). Since M(I) is generated by a rare

type, we know that there is only one witness di of the type p per gap. Thus, M(I)

has gaps of order type 1 + I. By similar reasoning, M(I ′) has gaps of order type
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1 + I ′. Furthermore, our isomorphism M(I) ∼= M(I ′) maps gaps of M(I) to gaps of

M(I ′). Hence, we obtain the induced isomorphism from I to I ′.

Finally, we will show that the map is Borel. We note that the model M(I) is

the prime model of a countable model of the theory T = Diagel(M) ∪
⋃
i∈I p(di) ∪

{di < dj : i, j ∈ I ∧ i < j}. The type of construction used to obtain M(I) is a

Henkin construction followed by a Skolem closure. It is a well known fact that these

constructions are both Borel. Thus, we conclude that the map f : I → M(I) is

Borel.
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Chapter 3

BOREL COMPLEXITY OF COUNTABLE MODELS OF

ZFC

In this chapter we will adapt the arguments from Chapter 1 to show that the class

of countable models of ZFGC is Borel complete. A model of ZFGC is a model that

satisfies the axioms of ZF and has a well ordering of its universe. Recall that every

model of PA supports built in Skolem functions. This fact was used implicitly in the

construction of the canonical I-models from Chapter 1. Thus, in order to adapt the

construction of cannonical I-models in a model of set theory, we will initially look at

models with global choice as they contain built in Skolem functions. It is not true,

in general, that any model of set theory possesses built in Skolem functions. We also

show how to modify this argument to show that countable models of any completion

T of ZFC are Borel complete.

3.1 Types with parameters from ω

In this section, we will redefine the types seen in Chapter 1 within models of ZFGC.

The following types p(v) will be defined using parameters from M , where M is a

fixed model of ZFGC. Additionally, all of the types in this chapter will contain the

formula v < ωM . We will refer to these types as ωM -types. Defining types in this
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way will allow us to obtain minimal types in models of ZFGC.

Definition 3.1.1. Let M |= ZFGC. Then, we say that the ωM -type p(v) is unbounded,

if p(v) ⊃ {α ∈ v : α ∈ ωM}

Definition 3.1.2. Let M |= ZFGC. Fix a formula θ ∈ L. We write ∃∞(v)θ(v) to

abbreviate ∀α ∈ ωM∃β ∈ ωM such that α ∈ β and M |= θ(β).

Similarly, we denote ∀∞vθ(v) to abbreviate ∃α ∈ ωM∀β ∈ ωM such that α ∈ β,

M |= θ(β).

Definition 3.1.3. Let M |= ZFGC. Then a complete ωM -type p(v) is strongly definable

if for every formula ϕ(v, z) ∈ LM , we can find a formula θ(v) ∈ p(v) with the following

property,

M |= ∀z(∀∞v(θ(v)→ ϕ(v, z)) ∨ ∀∞v(θ(v)→ ¬ϕ(v, z))).

Definition 3.1.4. Let M |= ZFGC and p(v) be a complete ωM -type. Then, p(v) is

definable if for any ϕ(v, z) ∈ LM the set {z ∈M : ϕ(v, z) ∈ p(v)} ∈ Def(M).

By Fact 2.2.1 we know that definable types exist in models of PA. In this section, we

will show that definable types exist in models of ZFGC.

Definition 3.1.5. Let M |= T such that T is a completion of ZFGC. A type p(v)

is definable if for any formula ϕ(u, v) ∈ p(v) we can find a formula σϕ(u) such that

given any constant Skolem term t,
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ϕ(y, v) ∈ p(v)⇔ T ` σϕ(t).

There is a natural mapping ϕ 7→ σϕ which we will call the defining scheme for the

type p(v).

Lemma 3.1.1. Let M |= T such that T is a completion of ZFGC. If p(v) is a

complete definable type containing the formula v < ωM and is consistent with T , then

p(v) can be extended to a complete definable ωM -type q(v) ⊃ p(v) that is consistent

with M .

Proof. Since p(v) is definable, we can fix a defining scheme ϕ 7→ σϕ for p(v). Define

q(v) = {ϕ(b, v) : b ∈M ∧M |= σϕ(b)}. Clearly, q(v) ⊃ p(v) and by construction q(v)

is definable. Furthermore, since T is a complete theory and q(v) ⊂ T , we have that

q(v) is complete. We need to show that q(v) is consistent.

Now we will show that the type q(v) is consistent. In particular, we will show

that q(v) is finitely satisfiable and thus consistent by the compactness theorem. Let

ϕ(a0, v), ϕ(a1, v), ..., ϕ(an−1, v) ∈ q(v). We know that p(v) is consistent with T , and

thus by the compactness theorem is finitely realized by T . So, T ` ∀x0, ..., xn−1[
∧
i<n σϕi(xi)→

∃v
∧
i<n ϕi(xi, v)]. Since p(v) is definable and finitely realized by T , it follows that

M |=
∧
i<n σϕi(ai). Finally, as M |= T , we can find an element b ∈ M such that

M |=
∧
i<n ϕi(xi, b). Hence, by compactness q(v) is consistent with M .

Lemma 3.1.2. Let M |= ZFGC and D be a definable set with parameters in M .

If ϕ(u, v) is a formula in the language of set theory, then we can find an unbounded

definable subset E ⊆ D such that M |= ∀x ∈ ωM [∃y ∈ ωM∀z ∈ ωM(y ∈ z)(z ∈ E →

ϕ(x, z)) ∨ ∃y ∈ ωM∀z ∈ ωM(y ∈ z)(z ∈ E → ¬ϕ(x, z))]
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Proof. See the proof of Lemma 2.2.4 [5].

Remark 3.1.1. Lemma 2.2.4. of [5] is proved in the context of PA. The same

argument holds in models of ZFGC since the proof relies on arithmetized Ramsey’s

theorem, that is, Ramsey’s theorem for definable sets. The proof of Ramsey’s theorem

shows that the lemma holds within the context of set theory.

Theorem 3.1.1. Let M |= T such that T is a completion of ZFGC. Then, T has a

definable type.

Proof. First we begin by fixing an enumeration 〈ϕn(u, v) : n < ω〉 of every formula in

our language. We will work in M , the prime model of T . Let M = X0, with D = M

as in the Lemma 3.1.2 and ϕ = ϕ0. By induction, assume that for a given n, Xn

is unbounded and definable. By Lemma 3.1.2 there is a an unbounded definable set

Xn+1 such that Xn+1 ⊆ Xn with ϕ = ϕn+1. Furthermore, for each n we can find a

formula σn(u) = ∀x ∈ M [∃y ∈ M∀z(y ∈ z)(z ∈ E → ϕ(x, z)). In other words, σn

decides the parameters such that Xn is a subset of a set defined by ϕn(v, u). Thus,

we let p(v) = {ϕn(u, v) : b ∈M ∧M |= σn(b)} be our definable type.

Corollary 3.1.1. Let M |= ZFGC. Then, M has a definable type.

This result follows by letting T = Th(M) in Theorem 3.1.1 and Lemma 3.1.1.

3.2 End extensions of models of ZFGC generated by types

In this section we will define the notion of a gap within a model of ZFGC. The gaps

will be defined on the ordinals only. We will then prove the analogue of Proposition

2.2.1 concentrating only on the ordinals.
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Remark 3.2.1. Let M |= ZFGC. Then, M(p) will refer to the prime model of the

extension of M generated by a complete ωM -type p. In particular, M(p) is the prime

model of Diagel(M) ∪ p(v).

Now we will redefine the notion of a gap within a model of ZFGC. We proceed by

defining gaps along ωM where M is our fixed model of ZFGC.

Definition 3.2.1. Let M |= ZFGC. Then, we define the following:

1. Mω(β) = {α ∈ ωM : for some Skolem function t, t(β) ∈ ωM ∧ α < t(β)}.

2. Mω[β] = {α ∈ ωM : for any Skolem function t, if t(β) ∈ ωM then t(α) < β}.

3. We define the ωM -gap as gapω(β) = Mω(β)\Mω[d].

The rest of this section will be devoted to proving the analogue of Theorem 2.2.1 in

ZFGC. We will prove this theorem by only considering the ω of our fixed model M

of ZFGC and its extension M(p). First we recall the following fact about gaps.

Fact 3.2.1. Let α, β ∈ ωM such that M |= ZFGC. Then, α ∈ gap(β) if and only if

there are Skolem functions f, g such that β ≤ f(α) and α ≤ g(β).

Remark 3.2.2. By the same reasoning as stated in Remark 2.2.3, we recall that gaps

in models of ZFGC are also disjoint.

Definition 3.2.2. Let M |= ZFGC. Then, we say that K is a conservative

extension of ωM if M ⊂ K such that for any definable set X ∈ Def(K) such that

X ⊂ ωK, X ∩M ∈ DEF (M).
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Lemma 3.2.1. Let M |= ZFGC and p(v) be a complete ωM−type. If p is a definable

type, then the ωM(p) is a conservative extension of M .

Proof. Let p be a definable ωM -type, and β ∈ M(p) realizing p. Fix a definable set

X ∈ Def(M(p)). Then, X = {γ ∈ M(p) : M(p) |= θ(α, γ)} such that θ is a formula

in the language of set theory and α ∈ M(p). Since α ∈ M(p), α = η(β) for some

formula η in the language of set theory. We complete the proof by calculating X∩M ,

X ∩M = {δ ∈M : M(p) |= θ(α, γ)}

= {δ ∈M : M(p) |= θ(η(β), γ)}

= {δ ∈M : θ(η(β), γ) ∈ p}.

Finally, since p is definable, it follows that X ∩M ∈ Def(M) and thus M(p) is a

conservative extension.

Definition 3.2.3. Let M |= ZFGC. We say that K is an ωM end extension of

M if for any α ∈ ωK\ωM , β ∈ α for any ordinal β ∈ ωM .

Lemma 3.2.2. Let M |= ZFGC and K ⊃ ωM be a conservative extension of K.

Then, K is an ωM end extension of ωM .

Proof. Let α ∈ ωK\ωM . Consider the set X = {β ∈ ωM : β ∈ α}. Since K is

conservative and X is definable, X ∩M ∈ Def(M). We claim that X ∩ ωM = {β ∈

ωM : β ∈ α} = ωM .

We proceed by induction on α. Clearly, if γ = ∅, then γ ∈ X ∩ ωM . If γ ∈ ωM ,

then γ + 1 ∈ ωM . Hence, γ ∈ X ∩ ωM since α ∈ ωK\ωM . Hence, K is an ωM end

extension.
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Now we are ready to state the analogue of Proposition 2.2.1 within a model of ZFGC.

Proposition 3.2.1. Let M |= ZFGC, and p be a definable ωM -type. Then, ωM(p) =

ωM ∪ gapω(d).

The proof of Proposition 3.2.1 follows using the same argument as in Proposition

2.2.1. One simply replaces end extension with ωM end extension etc.

3.3 Canonical extensions of models of ZFGC along linear

orders

In this section we will build an extension of the ordinals of a fixed model of ZFGC

along a linear order of ordinals. We will begin by defining minimal types with ordinal

parameters. Similar to the construction in Chapter 1, adjoining a minimal type will

allow us to construct an extension along a linear order in such a way that all of the

gaps above the ground model are disjoint.

Definition 3.3.1. Let M |= ZFGC. Then, an ωM -type p(α) is rare, if for any

ordinals α, β ∈ K such that K is an ωM -end extension of ωM , then α and β are in

unique gaps.

Definition 3.3.2. Let M |= ZFGC. Then, p(β) is minimal with respect to ωM if

p(β) is rare, strongly definable and unbounded.
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As shown in the previous section, we know that definable types in models of ZFGC

exist. Minimal types as will be shown exist in models ZFGC.

Proposition 3.3.1. Let N |= ZFGC and T be a completion of ZFGC. If p is a

minimal type, then p is definable.

Proof. Suppose p is not definable. Let ϕ(u, x) witness that p is not a definable type.

Consider the set of formulas

ψ(α, β, γ) = p(β) ∪ (γ) ∪ {s < x : s is a constant Skolem term ∧ s ∈ ωM}

∪ {t(x) < y < z : t(x) is a Skolem term ∧ t(x) ∈ ωM}

∪ {∀q ∈ x[ϕ(q, y)↔ θ(q, z)]} ∪ {ϕ(x, y)↔ ¬ϕ(x, z)}.

We claim that ψ(α, β, γ) is consistent with T .

If we take any finite subset X ⊆ ψ(x, y, z), it is clear that X |= ψ(x, y, z). Hence,

by the compactness theorem ψ(α, β, γ) is consistent with T . Let M |= T such that

a, b, c ∈ ωM witness ψ(a, b, c) |= T . Fix a prime model M ′ of T . Consider ωM
′
, the ω

of the prime model M ′. Notice that ωM
′
< a since a satisfies s < x for any constant

Skolem term s. Also, ωM
′
< a < gap(b) since t(a) < b < c for any Skolem function t.

Thus, a 6∈ M ′
ω(b). Since p is minimal, we know that p is a rare type. So, b < gap(c)

since the gaps of b and c are disjoint. Furthermore, c 6∈ Mω(a, b). Thus, it follows

that Mω(b) ≺ Mω(a, b) ≺ Mω(a, b, c). Finally, since c 6∈ Mω(a, b) and b, c witness p,

we have Mω(a, b, c) = Mω(b, c). Hence, Mω(b) is not a minimal extension of Mω which

is a contradiction.

Definition 3.3.3. Let M |= ZFGC and p(β) be a type with parameters in ωM . We
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say that p(β) is ωM indiscernible if there are increasing sequences α0, ..., αn,β0, ..., βn ∈

K with respect to ε witnessing p(β) such that K is an ωM -end extension of Mω then

p(α0, ..., αn) = p(β0, ..., βn).

As in Chapter 1, we will provide a characterization of minimal types with ordinal

parameters.

Lemma 3.3.1. Let M |= ZFGC and p(γ) be a minimal complete ωM − type. Then,

p(γ) is ordinal indiscernible.

We restate Lemma 2.3.2 from the first chapter as it will be used to prove the following

theorem. Lemma 2.3.2 will be applied to the ordinals of a fixed model M |= ZFGC.

Lemma 3.3.2. Let L = {<} and M be a model linearly ordered by <. If p(v) is an

indiscernible M − type then for every ϕ(v0, ..., vn) ∈ L(M), we can find a formula

θ(v) ∈ p(v) such that

M |= ∀v(
∧
i≤n

θ(vi) ∧
∧
i≤n

vi < vi+1 → ϕ(v)) ∨ ∀v(
∧
i≤n

θ(vi) ∧
∧
i≤n

vi < vi+1 → ¬ϕ(v)).

Theorem 3.3.1. Let M |= ZFGC and p(γ) be an ωM -minimal complete M − type

and (I,<) a linearly ordered set. Then, there is an ωM -end extension ωM ≺ Kω such

that X = {αi : i ∈ I} ⊂ K and Kω = Mω ∪
⋃
i∈I gapω(αi).

Proof. We first construct the ordinal end extension K. Let T = Diagel(ω
M) ∪⋃

i∈I p(αi) ∪ {αi ∈ αj : i < j ∧ i, j ∈ I} such that each αi is a new constant symbol.

Now let K be the prime model pf the theory T . Hence, K is an ωM -end extension of

K. It remains to show that K = ωM ∪
⋃
i∈I gapω(αi). As in Theorem 2.2.1 we know

that ωM ∪
⋃
i∈I gapω(αi) ⊂ K. We proceed by showing that K ⊂ ωM ∪

⋃
i∈I gapω(αi).
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Let β ∈ K. Since K is a prime model, we can find a formula η in the language of

set theory and α0, α1, ..., αn ∈ X such that βη(α0, α1, ..., αn). Now, take the Skolem

closure of clK(ωM ∪ {αi : i ≤ n}) = K0. Since p(γ) is a rare type, the gaps of

{αi : i ≤ n} are disjoint. So, we have that gapK0(α1) < ... < gapK0(αn). Since p(γ)

is strongly definable, each αi witnesses a strongly definable type. Thus, we apply

Proposition 3.2.1 n+1 many times to obtain the structure K0 = ωM∪
⋃
i≤n gapK0(αi).

Now, it follows that β is an element of ωM or one of the gaps gapK0(αi) for some

i ≤ n. To finish the proof, we note that K0 and K have the same Skolem func-

tions. So, we conclude that β ∈ ωM or β ∈ gapK(αi) for some i ≤ n. Thus

K = ωM ∪
⋃
i∈I gapω(αi).

3.4 Classification of countable models of ZFGC

In this section we will show that countable models of ZFGC are Borel complete. As

noted in Chapter 1, countable models of PA are Borel complete. Thus, it suffices

to show that there is a Borel reduction from countable models of LO to countable

models of ZFGC.

Similar to the argument of Theorem 2.4.1, we obtain the following result:

1. Given two isomorphic countable linear orders I ∼= I ′, the corresponding I models

of ZFGC M(I) ∼= M(I ′) respectively are isomorphic.

2. Given two isomorphic countable I models of ZFGC M(I) ∼= M(I ′), the corre-

sponding linear orders I and I ′ are isomorphic.
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3. The mapping f : I →M(I) is Borel.

Theorem 3.4.1. Consider the isomorphism equivalence relation ∼=LO on the class

of countable linear orders, and ∼=I the isomorphism equivalence relation on the class

of canonical I-models of completions T of ZFGC. Then, assuming T is consistent,

there is a Borel reduction f : I → M(I) where f maps a given linear order to the

corresponding I-model of ZFGC. In particular, models of ZFGC are Borel complete.

We will conclude this chapter by modifying the previous result to show that countable

models of ZFC are Borel complete.

Corollary 3.4.1. Let T be a completion of ZFC. Assuming T is satisfied by a

transitive model of ZFC, the class of countable models of T are Borel complete.

Proof. Let T ⊃ ZFC be complete and M |= T such that M is transitive. Given

M |= T , we can find a forcing extension N of M such that N |= T and contains a

choice function F that is defined on all non-empty sets of N (this can be found in [4]).

So, we have that N |= ZFC + GC such that F is a global choice function defined

on N . Without loss of generality, let F be defined such that for any set X in which

X ∩ORD 6= ∅, F (X) = least ordinal in X.

Given the model N and a linear order I, we can carry out the construction used

earlier in this chapter to obtain the canonical I−model N(I). We now proceed to

modify the Borel reduction to obtain the result. In particular, we argue that this

construction does not need to make reference to the global choice assumption.

First, let I and I ′ be countable linear orders such that I ∼= I ′. By Theorem 3.4.1
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we can obtain an isomorphism M(I) ∼= M(I ′) of canonical I-models of ZFGC. Then,

it follows that the reducts M and M ′ of the models M(I) and M(I ′) to the language

without the global choice function are isomorphic.

Let M(I) ∼= M(I ′) be canonical I-models of ZFGC. We claim that the gaps of

ωM(I) and ωM(I′) can be identified as isomorphic to I and I ′ respectively. We identify

these gaps by choosing the least ordinal that satisfies a formula rather than using the

Skolem term t in the definition of ωM -gaps.

Thus, we obtain an isomorphism between the gaps of M(I) and M(I ′) which are

isomorphic to I and I ′ respectively. Notice that we have established this isomorphism

without making reference to the global choice function. Hence, we obtain the desired

Borel reduction from countable linear orders to countable models of ZFC.
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Chapter 4

THE CLASSIFICATION OF WELL-FOUNDED MODELS

OF ZFC

In the previous chapter we showed that the class of countable models of ZFC is Borel

Complete. It is natural to consider the classification problem for well-founded models

of set theory. Is this class Borel complete, or does this class of structures decrease

in complexity? In this section, we do not claim to answer this question. On the

other hand, this section will begin to generate some of the tools needed to answer

this question.

In order to study the classification problem for well-founded models of set theory,

we need a way to obtain continuum many non isomorphic well-founded models of

some completion T of ZFC. We first note that we can easily obtain continuum

many non isomorphic well-founded models of ZFC, if we allow for these models to

have different theories. A more interesting question is whether or not we can find

continuum many non isomorphic well-founded models of a fixed completion T . We

first consider substructures of Gödel’s L.
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4.1 Generating ω1 many non-isomorphic well-founded mod-

els of a completion T of ZFC

Consider a fixed completion T of ZFC. We claim that there are ω1-many countable

models of ZFC, assuming ωV1 is inaccessible in L. The next two lemmas will be stated

in more generality, but will imply the previous claim. We first show that we can find

at least one such substructure of Lκ, assuming κ is an inaccessible cardinal.

Lemma 4.1.1. If κ is inaccessible, then there there is a cardinal α < κ such that

Lα ≺ Lκ.

Proof. Let κ be inaccassible. Then, there is a model of set theory Lκ |= ZFC. By

the Lowenheim-Skolem theorem, there is a countable substructure Nα0 ≺ Lκ. Let

Xα0 be the Skolem hull of Nα0 , and Lα0 be the smallest Lγ such that Nα0 ≺ Lα0 . We

can continue this construction to obtain the sequence Nα0 , Nα1 , ..., Nαξ , ... such that

ξ < γ and γ < κ. Since each Nαξ ≺ Lκ, it follows by the elementary chain lemma

that N =
⋃
ξ<γ Nαξ ≺ Lκ. Notice that N =

⋃
ξ<γ Lαξ . Finally, let α = limξ<γ αξ.

Then, we have that N = Lα ≺ Lκ.

We now claim that we can find a club sets worth of Lα ≺ Lκ.

Lemma 4.1.2. The set X = {α < κ : Lα ≺ Lκ} is club.

Proof. First we note that X is unbounded by using the construction in the previous

theorem. To show that X is closed, we let α0, ...αξ, .. be elements of X such that

α = limξ<γ αξ where γ < κ. We claim that α ∈ X.
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Since α0, ...αξ, .. are elements of X, we know that Lαξ ≺ Lκ for each αξ. By the

elementary chain lemma, it follows that
⋃
ξ<γ Lξ = Lsup{αξ:ξ<γ} = Lα ≺ Lκ. Hence,

α ∈ X. Thus, X is closed.

Now, the fact that there are ω1-many countable models, provided ωV1 is inaccessible

in L, follows from Lemma 4.1.1 and Lemma 4.1.2. Since L |= ωV1 is inaccessible, and

L |= ωV1 is club, we have that there are ω1-many models Lα ≺ Lω1 , if ωV is inaccessible.

Moreover, these are countable in V . This proves the following theorem:

Theorem 4.1.1. If ωV1 is inaccessible in L, then there are ω1−many countable models

of the theory T = Th(Lω1).

4.2 Generating 2ω many non-isomorphic well-founded mod-

els of ZFC

In this section, we examine an argument provided by Enayat that allows us to

construct 2ω non-isomorphic well-founded models of a completion T of ZFC [2]. The

idea is to fix a countable transitive model M |= T , and then use Cohen forcing to

generate 2ω many mutually generic filters. Since the models we produce are transitive,

it will then follow that any two of our generics will produce non-isomorphic models

that are well-founded.

Theorem 4.2.1. Let M |= T be a countable transitive model such that ZFC ⊂ T is

complete, then there are 2ω many well-founded non-isomorphic models of T .
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Proof. Let M |= T and consider the Cohen forcing poset P = 2<ω in M . We start by

enumerating all of the open dense sets Dn ⊆ P × P. Then, we recursively construct

a set of conditions in our poset {pt : t ∈ 2<ω} such that

1. if s ≤ t then pt ≤ ps

2. if |s| = |t| = n and s 6= t then (ps, pt) ∈ Dn.

In order to carry out the construction for items 1 and 2, assume that we have

constructed level n of our tree. That is, ps has been defined for any s ∈ 2<ω such

that |s| = n. We now construct level n + 1, and proceed by sub-induction on j ∈

{0, ...,
(
2n−1

2

)
}. If j = 0, we let p0s = ps�n for any s ∈ 2<ω such that |s| = n+1. Assume

by induction that the pjs have been defined for any s ∈ 2<ω such that |s| = n+ 1. We

define pj+1
s in the following way: Let (t, t′) be the j+1st pair of elements of 2n+1, and

let (pj+1
t , pj+1

t′ ) ≤ (pjt , p
j
t′) such that (pj+1

t , pj+1
t′ ) ∈ Dn. Furthermore, we let pj+1

s = ps

whenever s 6= t, t′.

Then, it follows that for any branch x ∈ 2ω we have a generic filter gx = 〈{ps :

s ⊂ x}〉. By property 2, it follows that if x, x′ ∈ 2<ω and x 6= x′, then gx and gx′

are mutually generic. So, in particular M [gx] ∩M [gx′ ] = M , and M [gx] 6= M [gx′ ].

Finally, since forcing extensions via Cohen forcing are transitive, it follows that if

x 6= x′ then M [gx] 6∼= M [gx′ ]. Hence, it follows that there are 2ω many well-founded

non-isomorphic models of T .

4.3 Generating E0 many non-isomorphic well-founded mod-

els of a completion T of ZFC

In this section we will adapt our construction from section 4.2 to generate E0 many

non-isomorphic well-founded models of ZFC.
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Theorem 4.3.1. Let M |= T be a countable transitive model such that ZFC ⊂ T is

complete, then there are E0-many well-founded non-isomorphic models of T .

Proof. Let M |= T and consider the Cohen forcing poset P = 2<ω in M . We start by

enumerating all of the open dense sets Dn ⊆ P × P in such a way that Dn+1 ⊆ Dn.

We require that Dn+1 ⊆ Dn so that meeting only infinitely many is equivalent to

meeting them all. Then, we recursively construct a set of conditions in our poset

{pt : t ∈ 2<ω} such that

1. if s ≤ t then pt ≤ ps

2. if |s| = |t| = n and s 6= t then (ps, pt) ∈ Dn.

We proceed by adapting our construction of items 1 and 2 so that we generate E0

many mutual generics. The set up is the same as in Theorem 4.2.1. Now, we let (t, t′)

be the jth pair such that t(n) = 0 and t′(n) = 1. Then, we find a pair of conditions

(pjt a qjt , p
j
t′ a qjt′) ≤ (pjt , p

j
t′) such that (pjt a qjt , p

j
t′ a qjt′) ∈ Dn and |qjt | = |qjt′|. To

finish the construction, we let

pj+1
s =


pjs a qjt , if s(n) = 0

pjt a qjt′ , if s(n) = 1.

Thus, we obtain items 1 and 2 by induction. It then follows that given x, x′ ∈ 2ω,

if x E0 x
′ then gx E0 gx′ since we always add the same extension after some finite

stage n. Thus, if we have to generics g and g′ such that g E0 g
′, then they generate

the same model M [g] = M [g′]. Furthermore, if x and x′ are not E0 related, then we

meet infinitely many of the open dense Dn’s, which amounts to meeting all of them.

Hence, in this case the models produced are non-isomorphic.
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