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NONLINEAR DYNAMICS OF INFANT SITTING POSTURAL CONTROL 

Joan Elizabeth Deffeyes, Ph.D. 

University of Nebraska, 2009 

Advisor: Nicholas Stergiou 

Sitting is one of the first developmental milestones that an infant achieves. Thus 

measurements of sitting posture present an opportunity to assess sensorimotor 

development at a young age, in order to identify infants who might benefit from 

therapeutic intervention, and to monitor the efficacy of the intervention. Sitting postural 

sway data was collected using a force plate from infants with typical development, and 

from infants with delayed development, where the delay in development was due to 

cerebral palsy in most of the infants in the study. The center of pressure time series from 

the infant sitting was subjected to a number of different analyses, both traditional linear 

analyses, and a number of nonlinear analyses based on information theory, nonlinear 

dynamics, and artificial intelligence.  The traditional linear measures of postural sway did 

not detect a difference between the two groups, but several of the nonlinear measures did 

detect differences. Postural sway of infants with delayed development was found to have 

more repeated patterns in their postural sway, and to control posture on a slower time 

scale than infants with typical development. Additionally, spectral analysis was 

performed, and high frequency (20 -30 Hz) features were observed in the postural sway 

of infants with typical development that were not apparent in the postural sway of infants 

with delayed development, and these high frequency features were particularly prominent 

in the posterior sway in the anterior-posterior axis in early sitting. The origins of the 

features are not certain, but the fastest control is from stretch reflexes, and stretch reflexes 
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may be contributing to the postural sway control in infant sitting. Dynamic systems 

theory, as applied in developmental psychology, suggests that infants need to explore a 

wide range of postural sway control muscle synergies, in order that the upright sitting 

behavior emerge. Infants with cerebral palsy often have muscle spasticity associated with 

altered stretch reflexes, and this may limit the exploration of a wide a range of postural 

control strategies, as compared to infants with typical development.   
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CHAPTER1  

INTRODUCTION TO THE DISSERTATION 

The control of movement in humans is a complicated process as multiple sensory 

signals must be integrated, and appropriate responses determined and executed. Even for 

an apparently simple task such as upright sitting information from millions of sensory 

cells, including retinal cells, vestibular cells, cutaneous sensory cells, sensory cells in 

muscle spindles and Golgi tendon organs, and joint proprioceptive cells.  Information 

must be extracted from all of the various sensory input, and control decisions made and 

implemented for hundreds of muscles. As complicated as control of sitting posture is, 

infants with typical development still are able to acquire upright sitting skill early in life, 

at about age 6 to 8 months, while infants with certain motor pathologies, such as cerebral 

palsy, take longer to acquire the skill. Stable sitting allows the infant to reach for objects 

in his environment, and allows visual inspection of the environment. Additionally, sitting 

is a major developmental milestone. Infants who don’t learn to sit by age 2 years, 

typically never learn to walk (Fedrizzi, et al., 2000). Thus sitting is not only important in 

itself, but can serve as a window into the sensorimotor system of the developing infant, 

and provide insight into deficits in motor control in infants with developmental delay. 

Human development can be viewed as an emergent process (Smith & Thelen, 

2003), where behaviors such as sitting emerge as the organism matures in a manner that 

depends on the interaction of genetic and environmental influences. The old debate of 

nature versus nurture is seen to be nonsensical, just as asking whether 5 times 3 is 15 

because of the 5 or is it because of the 3? The answer is 15 because of the interaction 

between the 3 and the 5, just as in the human emergent behaviors are a result of the 
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nature-nurture interaction. In African societies where early sitting is encouraged by 

parents’ manipulating of infants’ posture, the infants develop sitting at an earlier age and 

spend more time in an unsupported sitting posture than American infants (Bril & 

Sabatier, 1986). Thus the development of postural control is not entirely a matter of 

maturation of biological control systems, but also is influenced by the environment in 

which the infant develops. However, there is no culture in which infants develop 

independent sitting skills at age 1 month, as the neuromuscular system apparently cannot 

control sitting at that age regardless of environmental influences. The development of 

postural control is not entirely a matter of the environment in which the infant develops, 

but also depends on the maturation of the biological control systems. It is the interaction 

of the biological system and the environment in which it develops that determines the 

outcome of the infant’s motor development, not simply biology or environment acting 

alone. In a complex system, the property of emergence is a result of many interactions 

among many individual agents. The patterns formed by a flock of birds or a school of 

fish, for example, emerge due to relatively simple rules being executed by each 

individual as they respond to each other and to the environment (Grimm, et al. 2005). 

Similarly, a multi-cellular human being, along with their behaviors including upright 

sitting, emerge based on the interactions. Each neuron may be executing a relatively 

simple integrate-and-fire logic, but the complex behavior patterns that emerge as a result 

of the interactions of over 10,000,000,000 of them are not easily predicted just from a 

knowledge of the integrate-and-fire logic that each is implementing.  

The question arises then, if we want to characterize the emergence of sitting 

behavior in infants, and if we want to quantify differences between infants with typical 
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development and infants with developmental delay, as occurs in cerebral palsy, what are 

the appropriate measures to use?  In this dissertation, postural sway data from sitting 

infants was characterized using a number of measures from nonlinear dynamics, with the 

hope that features of system complexity that are overlooked by more conventional, linear 

measures would be apparent using the nonlinear measures. These measures are described 

in detail in the relevant chapters, but include measures from information theory, chaos 

theory, and fractal measures. What these measures have in common is sensitivity to the 

system dynamic that linear measures of variability are lacking. However, the application 

of these nonlinear measures is not straight forward, as compared to the linear measures. 

For example, calculation of the standard deviation is straight forward with a single 

formula. However, each of the nonlinear analyses measures requires the use of several 

parameters that must be decided on in order to perform the analysis. The parameters that 

have been developed for use in heart rate analysis in cardiology, for example, may not be 

appropriate for use in postural sway analysis, and vise-versa. This much of the work 

performed for this dissertation is simply trying to understand how these parameters affect 

the analysis, and what values of the parameters are best for distinguishing differences 

between sitting postural sway of infants with typical development from infants with 

delayed development.   

The dissertation is divided into five chapters, each of which is a separate paper in 

itself, three of which are already in print (Deffeyes, Harbourne, DeJong, Kyvelidou, 

Stuberg, & Stergiou, 2009; Deffeyes, Harbourne, Kyvelidou, Stuberg, & Stergiou, 2009; 

Deffeyes, Kochi, Harbourne, Kyvelidou, Stuberg, & Stergiou, 2009).  In short, the five 

chapters are: 
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1. Analysis of infant sitting postural sway, comparing a variety of linear and 

nonlinear measures. 

2. Analysis of late infant sitting postural sway using entropy measures. 

3. Analysis of early infant sitting postural sway using approximate entropy. 

4. Analysis of fractal properties of infant sitting postural sway using detrended 

fluctuation analysis. 

5. Analysis of infant sitting postural sway using an artificial neural network 

model. 
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CHAPTER 2 

 NONLINEAR ANALYSIS OF SITTING POSTURAL SWAY 

INDICATES DEVELOPMENTAL DELAY IN INFANTS 

Abstract 

Background: Upright sitting is one of the first developmental motor milestones 

achieved by infants, and sitting postural sway provides a window into the developing 

motor control system. A variety of posture sway measures can be used, but the optimal 

measures for infant development have not been identified. 

Methods: We have collected sitting postural sway data from two groups of 

infants, one with typical development (n=33), and one with delayed development and 

either diagnosed with or at risk for cerebral palsy (n=26), when the infants had developed 

to the point where they could just maintain sitting for about ten seconds. Postural sway 

data was collected while infants were sitting on a force platform, and the center of 

pressure was analyzed using both linear and nonlinear measures. 

Findings: Our results showed that a nonlinear measure, the largest Lyapunov 

exponent, was the only parameter of postural sway that revealed significant differences 

between infants with typical versus delayed development. The largest Lyapunov 

exponent was found to be higher for typically developing infants, indicating less repeated 

patterning in their movement coordination. 

Interpretations: A nonlinear measure such as largest Lyapunov exponent may be 

useful as an identifier of pathology, and thus is a potential candidate for measuring the 

success of therapeutic interventions.    
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1. Introduction  

Cerebral palsy is a result of damage that occurs to the brain early in development, 

typically before, during or shortly after birth. While cerebral palsy is non-progressive in 

that there is no further expansion of the lesion with age, the result of the early damage 

influences the rest of the infant’s life in many ways, both medical and social. Motor 

control abnormalities due to the initial neurological insult give rise to atypical movement 

patterns, which in turn give rise to atypical development (Bleck, 1990). Motor 

development in infants with cerebral palsy is delayed, meaning that developmental 

milestones such as sitting, standing, or walking may occur later than in infants with 

typical development, and in severe cases these milestones may never be met (Wu, et al., 

2004; Fedrizzi, et al., 2000 ).  

There is both strong theoretical support for the idea that early intervention may 

result in more desirable outcome (Landsman, 2006), as well as evidence-based support 

(Blauw-Hospers, et al., 2007; Blauw-Hospers & Hadders-Algra, 2005). Certainly 

intervention early in development is seen as being beneficial among clinical practitioners 

(Gardner, 2005). Early intervention requires early identification of infants who would 

benefit from the intervention, however current methods for early identification of cerebral 

palsy are inadequate (Donohue & Graham, 2007). Not only are many infants with 

cerebral palsy difficult to identify early, but false positives can occur (Nelson & 

Ellenberg, 1982). Early and accurate identification of infants with cerebral palsy allows 

appropriate allocation of resources to help those who would benefit, avoid use of 

resources on those who would not, and avoids the unnecessary anxiety for parents that an 

incorrect identification brings. Unfortunately, early identification is difficult; however, a 
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lack of complexity and low variation of movement is thought to be an indication that 

physical therapy intervention would be indicated (Hadders-Algra, 2001).  

Learning how to maintain upright sitting posture is an important motor 

developmental milestone. Upright sitting allows visual exploration of the environment 

and serves as a stable platform for reaching nearby objects.  If sitting posture is not 

developed by age 2 years, there is a significant chance that walking will never be 

achieved (Wu, et al., 2004; Fedrizzi, et al., 2000 ). Additionally, because sitting is one of 

the first motor developmental milestones an infant achieves in life, detecting 

abnormalities in infants’ sitting posture control provides an opportunity to identify infants 

with motor control pathologies much earlier in life than, for example, waiting until the 

walking or talking milestones have been missed.  Thus characterizing sitting posture 

differences in infants with cerebral palsy and infants with typical development has the 

potential to allow early and objective identification of infants who would benefit from 

intervention (de Graaf-Peters, et al., 2007).  

Linear techniques such as path length or range of movement can be used to 

describe how much the center of pressure moves around (quantity of movement), but 

these techniques don’t give any information about how well controlled the movement is 

(quality of movement) (Stergiou, et al., 2006). For example, one infant may have a large 

amount of postural sway due to poor control of movement, whereas another infant may 

have a large amount of postural sway due to exploration of the environment after good 

posture control skills have been learned. Thus measures of the quantity of movement do 

not necessarily indicate the progress that an infant has made in control of movement. 

What are needed are measures of the quality of the center of pressure (COP) movement 
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in order to develop a more complete understanding of the development of postural 

control. Measures from nonlinear dynamics, such as the largest Lyapunov exponent 

(LyE), approximate entropy (ApEn), and correlation dimension (CorrDim) are promising 

new additions to the analytical tools used for physiologic time series analysis (Stergiou, 

et al., 2004). Because these nonlinear analysis techniques are sensitive to patterns in the 

data, rather than the overall magnitude of the fluctuations, they could be ideal tools for 

quantifying the quality of postural sway, thus making them potentially clinically useful 

for studying both the typical and pathological development of motor control in infants. 

ApEn is a measure of system complexity made by counting how often patterns of 

different lengths repeat in the time series (Pincus, 1991). The LyE is a measure of how 

rapidly trajectories diverge in phase space, and the CorrDim estimates the dimensionality 

of the system (Sprott & Rowlands, 1998). See Stergiou, et al., (2004) for a more complete 

discussion of these nonlinear measures. 

These three nonlinear measures are derived from chaos theory and from 

information theory, and have higher values for a random signal and lower values for a 

periodic signal. A random signal has no patterns in it, and a periodic signal, such as a sine 

function has a simple pattern that repeats over and over again. While the analysis of the 

ideal signals can often be interpreted in terms of randomness or complexity, the 

interpretation of physiologic signals is considerably more difficult. Part of the difficulty 

lies in the fact that precise definitions of basic terminology are still evolving. For 

example, whether a high value for approximate entropy should be interpreted as higher 

complexity of the system (Vaillancourt & Newell, 2002a; Vaillancourt & Newell, 2002b) 

or merely as more random (Goldberger, et al., 2002) has not been resolved.  A clear 
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definition of “complexity” is lacking. In comparing the results from different studies, one 

must be careful with the language used, as “complexity” defined by one author may 

differ from “complexity” defined by a different author.  

In this paper we will speak of “optimal movement variability” as being indicative 

of the middle ground between random and periodic (Stergiou, et al., 2006). A random 

response to a stimulus would be maladaptive, just as an overly rigid pattern of response 

would be maladaptive. In fact, the mid-ground between these extremes is likely the best 

control region for maintaining appropriate responses. The mathematical theory of chaos, 

a branch of dynamical systems theory, suggests that the middle-ground, the region of 

optimal movement variability, may be chaotic. The nonlinear measures that we have 

selected to use, ApEn, LyE, and CorrDim, all have high values for random signal (no 

structure), low values for a periodic sine function (overly rigid structure), and 

intermediate values for chaotic region where optimal movement variability is found.   

The actual assessment of chaos in experimental data is somewhat controversial 

due to limitations of the experimental data (Rapp, 1994), but despite the mathematical 

controversy, these algorithms have been successfully applied to many different biological 

and physiological systems, including postural sway data. In standing posture, nonlinear 

techniques have been used successfully to give insight into posture control. Nonlinear 

measures have been shown to be able to discriminate between pathologic and non-

pathologic populations using standing COP data, and thus someday may be clinically 

useful measures. Patients with stroke (Roerdink, et al., 2006), traumatic brain injury 

(Cavanaugh, et al., 2006), and Parkinson’s disease (Vaillancourt & Newell, 2000; 

Schmit, et al., 2006) have all been shown to differ from non-pathologic controls using 
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nonlinear measures applied to standing COP data. Most encouraging for the present study 

is that COP data from standing posture in children with cerebral palsy has been found to 

differ from typically developing children, using both linear and nonlinear measures 

(Rose, et al., 2002; Donker, et al., 2008). Nonlinear measures of posture sway tend to 

decrease with pathology, when significant changes are observed. This might be 

interpreted as being more periodic, less complex, or less random.  

The purpose of this paper was to investigate the use of sitting postural sway as a 

measure of health of the motor control system in infants. To accomplish this, we have 

used several linear and nonlinear time series analysis techniques to determine how sitting 

postural sway in typically developing infants differs from developmentally delayed 

infants. We hypothesized that the infants with developmental delay will have more 

periodic postural sway than typically developing infants. Additionally, to further explore 

the relationships between these various measures of postural sway, Pearson product-

moment correlation coefficients were calculated, since highly correlated measures may 

be providing redundant information. 

 

2. Methods 

2.1. Participants   

Twenty six infants with developmental delay and thirty three typically developing 

infants participated in the study. Recruitment was done through newsletters, flyers, and 

pediatric physical therapists employed at the University. Infants in the developmentally 

delayed group were diagnosed with cerebral palsy, or else were developmentally delayed 

and at risk for cerebral palsy (Table 2.1). At risk infants met one or more of the following 
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conditions: premature delivery, brain abnormality based on ultrasound or MRI, or 

significantly delayed gross motor development as measured on standardized testing with 

no current diagnosis. Because a definitive diagnosis of cerebral palsy had not been made, 

we refer to these infants as developmentally delayed, because all scored below 1.5 

standard deviations below the mean for their corrected age on the Peabody Gross Motor 

Scale (Folio & Fewell, 2000). However, the development is likely not just delayed, but 

also atypical (Chen & Wollacott, 2007).  

This study was part of a longitudinal study in which the infants with 

developmental delay received one of two different interventions. This analysis was of the 

data from the first month only, before any interventions had started, so all infants with 

developmentally delay were analyzed as a single group. A consent form was signed by a 

parent or guardian of all infant participants, and all procedures were approved by the 

University of Nebraska Medical Center Institutional Review Board.  

2.2. Inclusion and exclusion criteria 

Inclusion criteria for entry into the study for the typically developing infants were: 

a score on the Gross Motor Quotient of the Peabody Developmental Motor Scale-2 of 

greater than 0.5 SD below the mean, age of five months at the time of initial data 

collection, and sitting skills as described below in beginning sitting. Exclusion criteria for 

the sample of infants who are typically developing were: a score on the Gross Motor 

Quotient of the Peabody Developmental Motor Scale-2 of greater than 0.5 SD below the 

mean, diagnosed visual deficits, or diagnosed musculoskeletal problems. If a typically 

developing infant was found to be less than 0.5 SD below the mean, and did not qualify 
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for the study, the parents were informed of the score, the possibility of error in the 

measurement, and advised to have the infant re-evaluated within the next 3 months. 

Operational definitions of beginning sitting were used to determine the child's readiness 

for entry into the study. Beginning sitting was defined as (a) head control such that when 

trunk is supported at the mid-trunk, head is maintained for over one minute without 

bobbing; (b) infant can track an object across midline without losing head control; (c) 

infant may prop hands on floor or legs to lean on arms, but should not be able to reach 

and maintain balance in the prop sit position; (d) when supported in sitting can reach for 

toy; (e) can prop on elbows in the prone position for at least 30 seconds.  

For the infants with developmental delay the inclusion and exclusion criteria were 

as follows. Inclusion criteria were: age from five months to two years, score less than 1.5 

SD below the mean for their corrected age on the Peabody Gross Motor Scales, and 

sitting skills as described above for beginning sitting. Exclusion criteria were: age over 

two years, a score greater than 1.5 SD below the mean for their corrected age on the 

Peabody Gross Motor Scale, a diagnosed visual impairment, or a diagnosed hip 

dislocation or subluxation greater than 50%.  

2.3. Data Collection 

 For data acquisition (Figure 2.1), infants sat on an AMTI force plate (Watertown, 

MA), interfaced to a computer system running Vicon data acquisition software (Lake 

Forest, CA). Markers can be seen on the infant in Figure 2.1, and kinematic data was also 

collected, but is not discussed in this paper. COP data were acquired through the Vicon 

software at 240 Hz. A frequency analysis of both the medial-lateral and anterior-posterior 
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components of all the COP time series from our preliminary data indicated that the range 

of signal frequencies that contain 99.99% of the overall signal power is between 1 and 29 

Hz. Therefore, the sampling frequency was set at 240 Hz in order to be above a factor of 

ten higher than the highest frequency that might contain relevant signal.  

For all data collection sessions, the infants were allowed time to get used to the 

laboratory setting, and were at their parent's side or on their lap for preparation and data 

collection. Infants were provided with a standard set of infant toys for distraction and 

comfort. All attempts were made to maintain a calm, alert state by allowing the infant to 

eat if hungry, be held by a parent for comforting, or adapting the temperature of the room 

to the infant's comfort level. Testing was only proceeded when the infant was in a calm 

and relaxed state, not crying or otherwise making extended vocalization. A blanket was 

placed over the plate for warmth and was securely adhered with double sided tape on the 

ground. The investigator and the parent remained at one side and in front of the infant 

respectively during all data collection, to assure the infant did not fall or became insecure. 

The child was held at the trunk for support, and gradually the infant was guided into a 

prop sitting position while being distracted by toys presented by the parent. Once the 

examiner could completely let go of the infant, data were collected for 10 seconds while 

the child attempted to maintain sitting postural control. Trials were performed until we 

had collected three trials that are acceptable for our criteria, or until the infant was 

indicating that they were done. At any time the child became irritated; the session was 

halted for comforting by the parent or a chance for feeding, and then resumed only when 

the child was again in a calm state. In some cases, if the infant was crying for a long 

period of time, then data was not collected at that session. Infants came to the lab twice 
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within a single week, and we attempted to get three trials in each of the two sessions.   

Segments of usable (described below) data were analyzed using custom MatLab 

software (MathWorks, Nantick, MA). No filtering was performed on the data in order to 

not alter the nonlinear results (Rapp, et al., 1993). Trials were recorded including force 

plate data and video data from the back and side views. Afterwards segments were 

selected by viewing the corresponding video. Segments of data with 2000 time steps (8.3 

seconds at 240 Hz) were selected from these trials by examination of the video. 

Acceptable segments were required to have no crying or long vocalization, no extraneous 

items (e.g. toys) on the force platform, neither the assistant nor the mother were touching 

the infant, the infant was not engaged in rhythmic behavior (e.g. flapping arms), and the 

infant had to be sitting and could not be in the process of falling.  

2.4. Data analysis 

 Linear measures of the variability present in postural sway were calculated using 

customized MatLab software from the COP time series, using the methodology of Prieto, 

et al., (1996), and included root-mean-square (RMS), maximum minus minimum (range), 

length of the path traced by the COP (sway path), the area of a circle (circle area) that 

contains 95% of the COP data points, and the area of an ellipse (ellipse area) that 

contains 95% of the COP data points. These parameters were selected according to 

Chiari, et al., (2002), as being relatively independent of biomechanical factors (e.g. height 

and weight), which might be expected to change with development. These linear 

measures characterize the quantity or amount of movement variability present in the data 

(Stergiou, et al., 2006). 

Three nonlinear measures of variability were used, approximate entropy, largest 
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Lyapunov exponent, and correlation dimension. Nonlinear measures of the variability 

present in postural sway were calculated from the COP time series as described by 

Harbourne and Stergiou (2003) and Stergiou, et al., (2004). Specifically, the nonlinear 

measures of largest Lyapunov Exponent (LyE) and the Correlation Dimension (CorDim) 

were calculated using the Chaos Data Analyzer software (professional version, Physics 

Academic Software; Sprott & Rowlands, 1998) using an embedding dimension of 6 for 

all files, which had been determined as one higher than the highest value for a 

representative sample of data segments using the Tools for Dynamics software (Applied 

Nonlinear Sciences, LLC and Randle, Inc, Del Mar, CA). Using too low of an embedding 

dimension results in points being next to each other in the phase space that do not belong 

next to each other (i.e. too many false nearest neighbors); using too high of an embedding 

dimension can lead to too few nearby trajectories to do the analysis. For consistency in 

the analysis, the same embedding dimension was used for all files, even if they had a 

dimension lower than 6.  The Approximate Entropy (ApEn) was calculated using MatLab 

code developed by Kaplan and Staffin (1996), implementing the methodology of Pincus 

(1991), using a lag value of 4, an r value of 0.2 times the standard deviation of the data 

file, and a vector length m of 2. These r and m values are typically used in the calculation 

of ApEn for physiologic time series (Pincus & Goldberger, 1994), and the lag 4 values 

was used due to slight contamination of the 240 Hz signal with a 60 Hz sinusoidal line 

noise. This noise was due to the electric power distribution in North America being at 60 

Hz, which can result in contamination at this frequency, and at harmonics of this 

frequency. All the above mentioned nonlinear measures characterize the “quality” of 

movement variability present in the data by examining the patterns and the order that 
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exist in the COP time series by evaluating point-by-point the entire data set (Stergiou, et 

al., 2006). 

Infants came to the lab twice within a single week, and we attempted to get three 

trials in each of the two sessions. Sometimes the infant would cry, or not stay seated on 

the force plate, and data could not be collected for these sessions. Thus the analysis 

results for six trials in most cases, or fewer if we could not collect all six trials, were 

averaged, and statistical analysis performed on the average. The infants in the 

developmental delay group were somewhat less willing to sit for multiple trials, 

compared to infants in the typical development group. Infants with developmental delay 

on average had 5.15 trials per infant; where as infants with typical development had 5.55 

trials per infant.  

2.5. Statistical Analysis  

Independent t-tests were used to compare the measures of postural sway from the 

infants with typically development and the infants with delayed development. There were 

thirteen different measures of postural sway that were compared, so significance was set 

at p < .004, based on a Bonferroni correction for multiple comparisons (.05/13). 

Additionally, Pearson product-moment correlation coefficients were calculated between 

the different measures of postural sway for the infants with typical development, and 

again for the infants with delayed development. For the correlation analyses, there were 

156 total correlations calculated, so the significance level was set at p < .000321, based 

on the Bonferroni correction (.05/156). For independent t-tests and correlation analysis 

(described in detail below), all the data available was used.  
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3. Results 

The age of the infants with typical development was 5.0 months (std 0.6 months). 

The age of the infants with delayed development was 13.3 months (std 3.4) months. Thus 

the infants with delayed development were older than those with typical development, as 

would be expected since all the infants entered the study when they were at a similar 

level of motor skill development (able to sit for about ten seconds). 

Results of independent t-tests showed significant differences between the 

typically developing and delayed developing infants only for the Lyapunov exponent 

(Table 2.2), both in the anterior-posterior direction and in the medial-lateral direction. 

The correlation analysis showed that the linear measures of postural sway were 

often strongly positively correlated with each other, except for sway path, for both infants 

with typical development (Table 2.3) and infants with developmental delay (Table 2.4). 

The nonlinear measures tended to not be strongly correlated with each other, except for 

the approximate entropy in the anterior-posterior direction and the approximate entropy 

in the medial-lateral direction were positively correlated.  

Approximate entropy and correlation dimension were strongly negatively 

correlated with many of the linear measures, but never with sway path. The Lyapunov 

exponent was not significantly correlated with any of the linear or other nonlinear 

measures. These trends were seen in postural sway from both infants with typical 

development and infants with delayed development. There were more significant 

correlations of the postural sway measures for infants with typical development, which 

may be due to a somewhat larger sample size (n=33 for typical development group versus 

n=26 for delayed development group, over 25% more in the group with typical 
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development).  

 

4. Discussion 

We hypothesized that the infants with developmental delay likely due to cerebral 

palsy will have more periodic postural sway than typically developing infants, and our 

data supported this hypothesis. In fact, the Lyapunov exponent was found to be 

significantly higher for sitting postural sway of typically developing infants than for 

delayed infants. Optimal variability theory (Stergiou, et al., 2006) does not require that 

the LyE be less for the pathologic condition. Instead, it suggests that there is an optimal 

value, and the pathology exists if the LyE is either too high or too low. However, for 

posture data, with a fixed point intrinsic dynamic, the tendency is for more regular 

postural sway to be associated with pathology (Vaillancourt & Newell, 2002a).  The 

ApEn and the CorrDim were not sensitive to differences between the two groups in the 

present study, while the LyE was found to be more sensitive to the differences in postural 

sway dynamics between these two populations than ApEn or CorrDim.  

We included a variety of different linear and nonlinear analytical techniques for 

analysis of postural sway data from sitting infants. The linear measures used in this study 

include range, root-mean-square, length of the sway path, and area covered by the sway 

path. These linear techniques were chosen from those considered by Chiari, et al., (2002) 

for postural sway data as being relatively insensitive to body mass parameters, an 

important consideration for a methodology to be applied to developing infants whose 

mass is changing rapidly with growth. The other class of postural sway measures that we 

included was nonlinear analysis techniques, which were taken from nonlinear dynamics 
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(chaos theory) and information theory. The nonlinear analysis techniques included ApEn, 

LyE and CorrDim.  

From all these measures, the LyE measure of postural sway was the only one of 

these measures that was significantly different between infants with typical versus 

delayed development. The infants with delayed development were found to have postural 

sway with a lower LyE than infants with typical development. The Lyapunov exponent is 

derived from chaos theory, and is a measure of how rapidly trajectories diverge in phase 

space (Alligood, et al., 1996). The LyE is a classic test of whether a system is chaotic or 

not, with a positive LyE being consistent with the system being chaotic. We would like to 

understand the nature of the difference in the LyE between these groups.  

As mentioned in the introduction, there are a wide variety of differences to be 

expected between infants with cerebral palsy and infants with typical development. 

Dynamic systems theory has been used to describe infant sitting (Thelen & Spencer, 

1998), and we expect the postural control system dynamics to be altered in infants with 

developmental delay or cerebral palsy, as compared to infants with typical development. 

A limitation of this study is that because we enrolled infants just as they were able to sit 

upright, the developmentally delayed infants were older than the infants with typical 

development. Thus it is possible that age is a contributing factor to the observed 

differences. However, we find that none of the linear measures showed a significant 

difference between the postural sway of infants with delayed versus typical development. 

Instead, the difference between the two groups was seen in the LyE, a measure that is 

sensitive to patterns in the movement.  

Mathematically, the LyE indicates exponential divergence of trajectories in phase 
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space. Embedding the postural sway data in a phase space means that, for example in a 

two dimensional phase space, velocity would be plotted versus position. Imagine that at 

some point in time, the postural COP data has a certain velocity and position. Then the 

infant sways around, but at a later time the infant has the same velocity and position as 

the previous time. These two points would be close to each other in the phase space plot. 

Does the infant’s sway the second time follow a similar trajectory as the first time, or 

does it diverge from the first trajectory, and if so how much? The LyE quantifies this 

divergence. For our analysis, the data was embedded in a six dimensional phase space, 

using position plus 5 derivatives. A higher LyE indicates more divergence of the 

trajectories.  

Our interpretation of the LyE relevant to clinical considerations, which is 

somewhat speculative, is that the COP from an infant with more diversity in motor 

control strategies will follow different trajectories, whereas the COP from an infant with 

limited diversity in motor control strategies will tend to follow a similar trajectory each 

time, with the result being less divergence in the trajectories, and a correspondingly lower 

LyE. Thus the infants with delayed development appear to have less diversity in their 

motor control strategies than infants with typical development, based on the lower LyE 

values seen in the COP from sitting postural sway.  Our assumption is that the infants 

with typical development have better motor control, and thus we speculate that the 

diversity in motor control strategies has a benefit, perhaps that the infants with typical 

development are exploring a wider variety of solutions to postural control, and/or that 

infants with delayed development are freezing degrees of freedom in order to have fewer 

control parameters to have to manipulate as they maintain upright posture. This 



 22

interpretation supports the notion that the therapist should select activities that allow and 

encourage the infant to explore different strategies in motor control, rather than identical 

repetition of a single task.   

In order to gain additional insight into the relationships between these various 

measures of postural sway, we looked at the correlations between the variables. If two 

variables are highly correlated, measuring one does not provide new ability to 

discriminate between two populations that the other has not already provided. Variables 

with low correlations to other variables are of interest because they potentially measure 

different aspects of the system. For example, the Lyapunov exponent and COP root-

mean-square were two such variables with low correlation in this study. Of these, it was 

the Lyapunov exponent that was sensitive to whatever aspect of movement that was 

different about the sitting postural sway of infants with developmental delay and infants 

with typical development, where as root-mean-square was not. In fact, the LyE was not 

highly correlated with any of the other variables, consistent with it being a uniquely 

useful measure. A more in-depth analysis of the relationships between these variables 

using principle component analysis is published elsewhere (Harbourne, Deffeyes, 

Kyvelidou, & Stergiou, 2009).  

5. Conclusion 

The ability to discriminate between the typical and delayed development groups 

using nonlinear analysis of postural sway has the potential to add to the specificity of 

diagnosis in the early months of life, when most standardized tests of infant development 

have little predictive value. In addition, information from postural measures may aid the 

therapist in decision-making for therapeutic intervention and goal setting. Furthermore, it 
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is desirable to be able to objectively quantify progress being made by intervention in the 

developmentally delayed population, assuming that the therapeutic intervention moves 

the quality of their movement patterns towards that of the typically developing 

population. Sensitive objective measures that can quantify changes in motor control of 

specific tasks would be useful in assessment of various interventions designed to assist 

developmentally delayed infants to achieve more typical movement patterns. An 

approach that includes nonlinear measures of postural sway, optimized for infant sitting 

posture data, may contribute to these goals in the future. More work is needed to 

determine if these potential benefits of nonlinear analysis can be realized in clinical work.  
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Table 2.1 

Subject information for infants included in the developmentally delayed group 

 

Subject Diagnosis at 2 years old Severity GMFCS 

1. C01 Spastic Quadriplegic CP Severe 4 

2. C02 Right Hemiplegic CP Mild 1 

3. C03 Right Hemiplegic CP Mild 1 

4. C04 Hypotonic, overall delays Moderate 3 

5. C05 Hypotonic, overall delays Mild* n/a 

6. C06 Premature (28 weeks), BPD Mild* n/a 

7. C07 Premature (28 weeks), BPD Mild* n/a 

8. C08 Spastic lower extremities Moderate 1 

9. C09 Hypotonic, overall delays Severe 3 

10. C10 Athetoid CP Moderate 2 

11. C12 Mixed Quadriplegic CP Moderate 3 

12. C13 Spastic Quadriplegic CP Severe 4 

13. C14 Spastic Quadriplegic CP Severe 4 

14. C15 Right Hemiplegic CP Mild 1 

15. C17 Noonan’s Syndrome Mild* n/a 

16. C18 Athetoid CP Moderate 3 

17. C19 Spastic Quad CP & MD Moderate 3 

18. C20 Spastic Quadriplegic CP Severe 4 

19. C21 Undiagnosed; motor delay Moderate 2 
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20. C23 Spastic Quadriplegic CP Severe 4 

21. C24 Mental Retardation Mild* n/a 

22. C25 Spastic Diplegia Moderate 2 

23. C26 Premature, hearing impaired Mild* n/a 

24. C27 Premature Mild* n/a 

25. C29 Premature, left side weakness Mild 1 

26. C30 Premature Mild* n/a 

Note. *Diagnosis of CP excluded,  BPD=Brochial Pulmonary Dysplasia, MD=Muscular 

Dystrophy (Duchenne’s), GMFCS=Gross Motor Function Classification Scale, n/a indicates 

GMFCS is not applicable unless infant is diagnosed with cerebral palsy (Palisano, et al., 1997) 
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Table 2.2 

Independent t-tests comparing postural sway measures of infants with typical development with 

infants who have delayed development 

 DD a  TDb p  

 mean std mean std   

Linear       

   RMS AP 6.61 3.22 6.88 2.67 0.729  

   RMS ML 6.31 2.90 7.30 2.24 0.143  

   Range AP 32.63 12.96 37.86 11.70 0.110  

   Range ML 29.92 12.11 36.46 10.23 0.028  

   Sway Path 1024.26 222.31 1110.80 221.84 0.143  

   Circle 1037.32 834.03 1139.52 678.28 0.606  

   Ellipse 823.07 649.81 1017.00 661.95 0.265  

Nonlinear       

   ApEn AP 0.613 0.245 0.695 0.213 0.171  

   ApEn ML 0.528 0.187 0.533 0.196 0.923  

   LyE AP 0.092 0.016 0.108 0.011 0.000  

   LyE ML 0.077 0.012 0.087 0.008 0.000  

   CorDim AP 4.262 0.306 4.357 0.261 0.204  

   CorDim ML 4.268 0.328 4.274 0.231 0.934  

* Note. Significant at  p < .004 
a. n=26 
b. n=33 
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Table 2.3 

Correlations between different measures of postural sway for infants with typical development 

  Linear  Nonlinear 
    Range        ApEn  LyE  CorDim  
Linear RMS ML  AP  ML  SwayPath  Circle  Ellipse   AP   ML  AP  ML  AP  ML  
 RMS AP 0.63 * 0.94 * 0.65 * 0.10  0.93 * 0.91 * -0.63 * -0.40  -0.04  0.10  -0.83 * -0.27  
 RMS ML   0.58  0.96 * -0.04  0.82 * 0.80 * -0.67 * -0.79 * 0.15  -0.23  -0.59  -0.62 * 
 Range AP     0.63 * 0.26  0.86 * 0.86 * -0.55  -0.37  0.02  0.20  -0.72 * -0.24  
 Range ML       0.00  0.81 * 0.78 * -0.64 * -0.74 * 0.18  -0.13  -0.63 * -0.54  
 SwayPath         0.01  0.04  0.14  0.10  0.29  0.33  0.12  0.04  
 Circle           0.99 * -0.66 * -0.56  0.05  -0.03  -0.79 * -0.36  
 Ellipse             -0.65 * -0.54  0.04  -0.06  -0.76 * -0.31  
Nonlinear                         
 ApEn AP               0.82 * 0.19  0.16  0.54  0.42  
 ApEn ML                 -0.10  0.23  0.36  0.52  
 LyE AP                   0.45  0.15  -0.07  
 LyE ML                     0.07  0.21  
  CorDim AP                                           0.42   
 * Note. Significant at p< .000321; n=33                    
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Table 2.4 

Correlations between different measures of postural sway for infants with delayed development 

  Linear  Nonlinear 
    Range        ApEn  LyE  CorDim  

Linear 
RMS 

ML  AP  ML  SwayPath  Circle  Ellipse   AP   ML  AP  ML  AP  ML  
 RMS AP 0.49  0.94 * 0.52  0.23  0.85 * 0.85 * -0.56  -0.44  -0.23  0.11  -0.81 * -0.30  
 RMS ML   0.50  0.97 * -0.20  0.80 * 0.82 * -0.22  -0.73 * 0.18  -0.14  -0.31  -0.44  
 Range AP     0.57  0.30  0.80 * 0.81 * -0.50  -0.36  -0.17  0.24  -0.71 * -0.26  
 Range ML       -0.10  0.81 * 0.84 * -0.16  -0.63  0.24  -0.01  -0.31  -0.44  
 SwayPath         0.08  0.03  0.05  0.44  -0.16  0.19  0.02  0.27  
 Circle           0.98 * -0.41  -0.58  -0.07  -0.08  -0.66 * -0.37  
 Ellipse             -0.44  -0.65  -0.02  0.00  -0.66 * -0.40  
Nonlinear                         
 ApEn AP               0.63  0.53  0.21  0.63  0.19  
 ApEn ML                 0.14  0.34  0.42  0.39  
 LyE AP                   0.55  0.37  0.14  
 LyE ML                     0.01  0.08  
  CorDim AP                                           0.40   

 * Note. Significant at p< .000321; n=26                    
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Figure 2.1.  Infant sits on force plate for data collection, with researcher, parent and 

sibling nearby.  
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CHAPTER 3 

USE OF INFORMATION ENTROPY MEASURES OF SITTING 

POSTURAL SWAY TO QUANTIFY DEVELOPMENTAL DELAY IN 

INFANTS 

Abstract 

Background 

By quantifying the information entropy of postural sway data, the complexity of the 

postural movement of different populations can be assessed, giving insight into 

pathologic motor control functioning.  

Methods 

In this study, developmental delay of motor control function in infants was assessed 

by analysis of sitting postural sway data acquired from force plate center of pressure 

measurements. Two types of entropy measures were used: symbolic entropy, 

including a new asymmetric symbolic entropy measure, and approximate entropy, a 

more widely used entropy measure. For each method of analysis, parameters were 

adjusted to optimize the separation of the results from the infants with delayed 

development from infants with typical development.   

Results 

The method that gave the widest separation between the populations was the 

asymmetric symbolic entropy method, which we developed by modification of the 

symbolic entropy algorithm. The approximate entropy algorithm also performed well, 

using parameters optimized for the infant sitting data. The infants with delayed 
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development were found to have less complex patterns of postural sway in the 

medial-lateral direction, and were found to have different left-right symmetry in their 

postural sway, as compared to typically developing infants.  

Conclusions 

The results of this study indicate that optimization of the entropy algorithm for infant 

sitting postural sway data can greatly improve the ability to separate the infants with 

developmental delay from typically developing infants. 

Background  

Cerebral palsy, and other motor pathologies, give rise to altered patterns of 

movement. In order to quantify altered movement patterns in infants, postural sway 

during infant sitting can be analyzed for patterns using measures derived from 

information theory, such as approximate entropy and symbolic entropy. Measures 

such as these quantify patterns in time series data, making them potentially well suited 

for assessment of altered patterns of movement in a variety of movement pathologies, 

and may also provide insight into the nature of movement variability in human motor 

control pathologies [1, 2, 3, 4]. 

Variability in control of human movement has historically been thought of in 

terms of error in a control system [5]. For example, if one is tossing darts, sometimes 

one might toss a bull’s eye (meaning the dart goes in the very center of the circular 

pattern of the target), but the dart doesn’t always go in the bull’s eye because of 

variability in the motor control system. This leads some to the conclusion that a motor 

program was not executed correctly when the dart fails to go in the bull’s eye, and 

from this perspective, variability is always an error in the motor control system. A 

more recent theory of motor control, based on dynamic systems theory, views the 
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variability in motor control as part of the natural dynamics of the system [6]. Dynamic 

systems theory represents behaviors as being local minima on a potential surface, with 

the system proceeding towards a potential well like a marble rolling towards the 

bottom of a dish. Motor learning involves deepening the system’s potential well 

associated with the behavior, and thus reducing variability. From this perspective, the 

potential well can never be infinitely deep, so there will always be some variability in 

the behavior. While a person tossing darts may wish for zero variability in their 

tosses, current theories on variability find that there are benefits to having some 

variability in movement. The theory of optimal movement variability focuses on the 

benefits of having a balance between rigid control and randomness in movement; i.e. 

complexity [7]. Having complexity in movement allows for exploration of new 

solutions to motor control in order to find optimal solutions. As stated by Hadders-

Algra and colleagues, “Complexity points to the spatial variation of movements. It is 

brought about by the independent exploration of degrees of freedom in all body 

joints.” [8,9]. Thus entropy, a measure of complexity from information theory, might 

be expected to differ in postural sway of infants with typical development, as 

compared to infants with motor development pathologies such as cerebral palsy.  

The application of the concept of entropy to information theory has resulted in 

mathematical algorithms that are useful for describing randomness in experimental 

data from physiological systems. Information is a concept used in information theory, 

and is used in the sense that the string “ABABABABAB” has only a small amount of 

information in it (it is easy to guess what the next letter is – so the next letter adds no 

new information, hence a low information content) but “ABAABABABB” has more 

information (you could not determine for sure the next letter), even though both are 

strings of characters of the same length. Claude Shannon [10, 11], developed the 
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Shannon Entropy to describe the information content of a signal, with the idea that 

transmission of the signal for communication purposes needs to preserve the 

information content.  If the goal of one’s research is to characterize information in 

experimental physiologic time series, rather than in communication applications as 

Shannon did, there are some modifications that can be made to the algorithm. Perhaps 

the most widely used entropy measurement for experimental data from physiologic 

systems is the approximate entropy developed by Pincus [12]. The approximate 

entropy may serve as an indicator for the complexity of the underlying physiologic 

processes that give rise to the variability in the time series data [12]. In instances 

where pathology alters the complexity of the physiological process, the entropy value 

may serve as a means to identify the pathological state. For example, cardiac 

pathology may be identified by loss of complexity in heart rate data [13], concussions 

have been shown to cause loss of complexity in standing postural sway data [1], and 

knee ligament injury alters complexity in gait [14].  

Other authors have developed different algorithms to assess entropy in 

experimental time series data [15, 16, 17], often with the goal of improving some 

aspect of the analysis. For example, one might desire to find a measure of randomness 

that does not depend on the length of the time series, i.e. the entropy should remain 

within a well defined range, regardless of the length of the time series.  This would 

facilitate comparisons with data acquired in different laboratories, for example. 

Sample entropy has been used for this reason [15]. Both the approximate entropy and 

the sample entropy look at changes comparing patterns of length L with patterns of 

length L+1. Alternatively, the scaling of patterns at greatly different lengths, i.e. a 

pattern repeats but one repeat is longer or shorter than another, has been studied using 

multiscale entropy [16]. A data vector from time series data is a continuous subset of 



 

 

38

the list of numbers that comprise the time series data. Comparison of data vectors at 

different points along the time series is typically done by comparing the values, with 

similarity of the vectors being defined as one vector having values within a specified 

range of those in the comparison vector. However, comparison of the vectors can be 

performed using fuzzy logic, resulting in the fuzzy entropy [17], where the term 

“fuzzy” indicates that the similarity between the vectors is not a simple binary “yes” 

or “no”, but rather the degree of similarity is calculated.  

Different types of data may be best analyzed using different measures of 

complexity, and it is not clear a priori which type of analysis will be best for a 

particular type of data. For infant sitting postural sway data, approximate entropy has 

been used previously [18], but other methods have not been explored. For this work 

we have chosen to use the approximate entropy [12], the symbolic entropy [19], and 

asymmetric symbolic entropy, which is a modification of the symbolic entropy. While 

in our Methods section we provide more details on the algorithm, in short the 

symbolic entropy measures how much the infant’s postural sway crosses certain 

locations on the force plate, called “threshold values”. Typically only one threshold is 

used, the mean of the data. We modified the symbolic entropy algorithm to allow 

multiple threshold values to be used. These thresholds need not be symmetric – i.e. 

thresholds in one direction could be set differently from thresholds in the opposite 

direction in order to investigate asymmetry in the data. The use of two thresholds is 

motivated by the idea that the postural sway needs to be confined within the base of 

support to avoid a fall. Therefore control of posture near the center of the base of 

support might not be as critical as control of posture near the boundary. In order to 

investigate postural control near the boundaries of the base of support, two threshold 

values were used. Additionally, the use of different thresholds in the left and right 
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directions allows the investigation of asymmetry of the postural sway, which can not 

be addressed with other measures of complexity. 

Learning how to maintain upright sitting posture is an important motor 

developmental milestone. Infants use the upright sitting posture as a base from which 

to explore their immediate environment by reaching for nearby objects and to allow 

visual inspection of their immediate environment [20, 21].  Additionally, sitting is 

important because it is one of first developmental milestones an infant achieves, and 

thus serves as an early indicator of the health of the motor control system [22]. The 

achievement of the sitting milestone is delayed in some pathologic populations, such 

as those with cerebral palsy. Identification of infants with delayed motor development 

at the youngest age possible is of interest because treatment early in life when neural 

plasticity is greatest may confer greater benefits. Some intervention methods for 

infants with cerebral palsy may prove better than others [23]. Quantifying the 

differences between various interventions using sitting postural sway will assist 

researchers evaluating the various interventions. Specifically, cerebral palsy is a 

multifaceted pathology, and there is great variability in the pathology among the 

affected population [24]. Thus what works best for one infant may not be optimal for 

another infant. Early evaluation of the effectiveness of one intervention may allow 

early change of treatment, while neural plasticity is still greatest. For example, if an 

infant is found to not be responding to a particular intervention, an alternative could 

be implemented as soon as the first intervention can be determined to not be optimal.  

Thus, use of sitting postural sway as an early window into the developing motor 

control system could have potential clinical benefits.  

While being able to extract information about the infant’s motor control 

capabilities from sitting postural sway data could be beneficial, the best analytical 
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method to do so has not yet been identified. Linear measures, such as standard 

deviation or range of sway, may be used to describe how much movement there is in 

the postural sway. However, the complexity of the movements that an infant makes 

may be a better predictor of pathology that simply how much movement [9]. The 

entropy measures discussed above are promising because they have been developed to 

assess the complexity of a time series, rather than just assessing the amount of 

movement. We anticipate that the complexity of the postural sway will give insight 

into the motor control pathology in cerebral palsy, as it has in other motor control 

studies, including concussion [1], grip force in Parkinson’s disease [2], stereotypical 

rocking in severe retardation [3], and loss of visual/cutaneous feedback [4]. However, 

the best algorithm to use for infant sitting needs to be determined. The reason for 

comparing different parameter values is to understand the impact of parameter choice 

on the outcome of the analysis, as different researchers will use different parameters 

in their analysis. But more importantly, in order for a measure to be clinically useful, 

it needs to maximize the ability to classify individuals correctly into one population or 

the other. The approach used here was to examine t-scores, the statistic used in the 

independent t-test to compare two populations, with the goal of maximizing the 

ability of the algorithm to separate the two populations. 

Therefore, the goal of this investigation was to determine the utility of several 

different entropy algorithms in differentiating between sitting posture data of infants 

who have typical motor skills from sitting posture data of infants who have delayed 

development of motor skills. We hypothesized that infants with developmental delay 

will have altered complexity of postural control, because optimal variability theory 

suggests that pathology can be associated with either higher or lower complexity of 

movement [7]. Further, we hypothesized that asymmetric measures of postural control 
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will vary in the infants with developmental delay as compared to typically developing 

infants in the anterior-posterior direction (forward-backwards direction), since falling 

forward results in a soft landing on the legs, but falling backwards needs to be more 

carefully controlled.   

Methods 

Subjects 

Infants were recruited into the study when they were just developing the 

ability to sit upright, and all infants participated for several months. However, the data 

used for this analysis is only from the last session for each infant, so it represents the 

most mature sitting behavior that was collected for each infant. Recruitment was done 

through newsletters, flyers, and pediatric physical therapists employed at the 

University. Twenty-two developmentally delayed infants, age 11.97 months to 27.8 

months (mean=17.70, std=3.93); and nineteen typically developing infants, age 7.03 

to 9.8 months (mean=8.13, std=0.71) participated in the study. Infants in the 

developmentally delayed group were diagnosed with cerebral palsy, or else were 

developmentally delayed and at risk for cerebral palsy. At risk infants met one or 

more of the following conditions: premature delivery, brain bleeding (of any level of 

severity), diagnosis of periventricular leukomalacia, or significantly delayed gross 

motor development as measured on standardized testing.  Because a definitive 

diagnosis of cerebral palsy could not been made by our collaborating physicians, we 

refer to these infants as developmentally delayed, and all scored below 1.5 standard 

deviations below the mean for their corrected age on the Peabody Gross Motor Scale 

[25]. Exclusion criteria included having an untreated, diagnosed visual impairment, a 

diagnosed hip dislocation or subluxation greater than 50%, or an age outside the range 
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5 months to 24 months at the start of the study, which was 4 months prior to the data 

collection session used for this analysis. Typically developing infants were screened 

for normal development by a physical therapist prior to admission into the study, 

being excluded if they failed to score above 0.5 standard deviations below the mean 

on the Peabody Gross Motor Scale, had a diagnosed visual impairment, had a 

diagnosed musculoskeletal problem, or were older than five months at the start of the 

study. A consent form was signed by a parent of all infant participants, and all 

procedures were approved by the University of Nebraska Medical Center Institutional 

Review Board.  

Data collection 

For data acquisition, infants sat on an AMTI force plate (Watertown, MA), 

interfaced to a computer system running Vicon data acquisition software (Lake 

Forest, CA). Center of Pressure (COP) data were acquired through the Vicon software 

at 240 Hz, in order to be above a factor of ten higher than the highest frequency that 

contained relevant signal as established via spectral analysis from pilot work. 

Segments of usable (described below) data were analyzed using custom MatLab 

software (MathWorks, Nantick, MA). No filtering was performed in order to not alter 

the entropy results [26]. Trunk and pelvis markers were also placed on the infant, but 

the marker data was not analyzed for this study. An assistant sat to the left side of the 

infant during data acquisition, and a parent or relative (typically the mother) sat in 

front of the infant, for comfort and support, as well as to keep the infant’s attention 

focused on toys held in front of the infant (Figure 3.1).  

Trials were recorded including force plate data and video data from the back 

and side views.  Afterwards segments were selected by viewing the corresponding 

video. Segments of data with 2000 time steps (8.3 seconds at 240 Hz) were selected 
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from these trials by examination of the video. The COP data allows medial-lateral 

(side-to-side) and anterior-posterior (front to back) to be analyzed separately. 

Acceptable segments were required to have no crying or long vocalization, no 

extraneous items (e.g. toys) on the force platform, neither the assistant nor the mother 

were touching the infant, the infant was not engaged in rhythmic behavior (e.g. 

flapping arms), and the infant had to be sitting and could not be in the process of 

falling. 

Data analysis  

Symbolic entropy. Calculation of symbolic entropy was performed on postural sway 

data in both the medial-lateral movement, and in the anterior-posterior movement, 

using the methodology presented by Aziz and Arif [19]. It is a four step process: 

1. Convert the time series into a binary symbol series based on a threshold value. 

Time series data points below the threshold are replaced by 0, those above the 

threshold value are replaced by 1. 

Example time series: 

         { 0.6073   0.8768   0.7129   0.4104   0.3791  0.1073   0.4267   0.6073   0.8768   

0.7129 } 

With a threshold of 0.5718 (mean of the data) is converted to the following symbol 

series: 

Symbol series: {1     1     1     0     0     0     0     1     1     1} 

2. Words are formed from the symbols, each with a word length L. For our example, 

using a word length of three: 

{1     1     1     0     0     0     0     1     1     1} 
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etc… 

that is then represented as a word series (Figure 3.2c): 

{ (111) ( 110) (100) (000) (000) (001) (011) (111)} 

3. The word series can be transformed by conversion of the binary into decimal: 

(000=0, 001=1, 010=2, 011=3, 100=4, 101=5, 110=6, 111=7) into a word symbol 

series: 

{7 6 4 0 0 1 3 7 } 

4. Shannon’s entropy can be calculated from this word symbol series, and then 

corrected and normalized as described by Aziz and Arif [19]. However, it is this 

process of conversion to a symbolic time series that is critical in finding relevant 

patterns in the time series.  

 The threshold value is a key aspect of the process, as points in the time series 

are either above or below the threshold value. Selection of too low of a threshold 

produces more ones than zeros, with a correspondingly high number of words with 

mostly ones. Conversely selecting too high of a threshold value results in more zeros 

in the symbol series, with a correspondingly high number of words with mostly zeros. 

If the symbol series is mostly ones (or mostly zeros) then the corresponding entropy 

will be low, and the complexity of the time series will not be appropriately captured in 

the result. Thus selection of a threshold value must be done carefully. One method is 

to select the mean value for the time series, thereby ensuring that half of the symbols 

will be zeros and half will be ones, as was done by Aziz and Arif [19]. As an 

example, consider the analysis with a word length of three. The words that are 

encoded with this approach will have a value 0 (000) if the infant stays on the low 

side of the mean for the time interval that corresponds to that word; or a value of 7 
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(111) if the infant stays on the high side of the mean for the time interval that 

corresponds to that word. The only way the word will have a value of other than 0 or 

7 will be if the infant moves past the average value during the time interval that 

corresponds to that particular word. The entropy value calculated with this approach 

will then be a reflection of the movement back and forth past this mean value. The 

important question is whether this reflects a clinically meaningful measure or not.    

 Control of the system near the average value may not be the most sensitive 

measure of physiologic function of the postural control system. It may be that control 

towards the extreme values of postural sway, where there is a greater likelihood of 

falling over, would be more diagnostic of pathology in neuromuscular control. With 

just a single threshold value in the symbolic entropy, this can not really be explored 

fully. Thus a second method of calculating the symbolic entropy was devised with 

two threshold values. Choosing values of 0.3 and 0.8 for the threshold values, the time 

series  

{ 0.6073   0.8768   0.7129   0.4104   0.3791  0.1073   0.4267   0.6073   0.8768   

0.7129  } 

is converted to the symbol series (Figure 3.2d): 

   {1     2     1     1     1     0     1     1     2     1} 

where 0 indicates a data point below the lower threshold, 2 indicates a data point 

above the upper threshold, and 1 indicates a data point in between the thresholds. 

Again, using a word length of three for this example, the following words are 

obtained: 

                     {(121), (211), (111), (110), (101), ( 011), (112), (121)} 

with a word length of three and three symbols possible, there are 3^3= 27 possible 
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words, coded from 0 to 26 as follows: 

000 = 0 100 = 9 200 = 18     

001 = 1 101 = 10 201 = 19 

002 = 2 102 = 11 202 = 20 

010 = 3 110 = 12 210 = 21 

011 = 4 111 = 13 211 = 22 

012 = 5 112 = 14 212 = 23 

020 = 6 120 = 15 220 = 24 

021 = 7 121 = 16 221 = 25 

022 = 8 122 = 17 222 = 26 

So that the word series formed is: 

        {16, 22, 13, 12, 10, 4, 14, 16} 

As with the single threshold symbolic entropy, Shannon’s entropy is calculated from 

the word series, and then the normalized corrected Shannon’s entropy is calculated.   

 The thresholds in all cases were based on the mean value of each time series, 

and new threshold values were calculated for each time series. In some cases of 

multiple thresholds, the thresholds were determined from the standard deviation of the 

time series. The strategy in these calculations is to examine a movement at each time 

step as it relates to the overall movement in that time series. In other cases, the 

thresholds were set as a certain number of millimeters above or below the mean. The 

strategy in these calculations is to examine at the actual distance moved in millimeters 

at each time step. In most cases the thresholds were set symmetrically, with the same 

distance above and below the mean being used. However, a few non-symmetric 

thresholds were also investigated. For example, 0 might be assigned to data points 

below minus three standard deviations, 1 assigned to data points between minus three 
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standard deviations and plus one standard deviations, and 2 assigned to all data points 

above one standard deviation. In this example, excursions have to be three standard 

deviations away from the mean in the left direction, but only one standard deviation in 

right direction, to trigger the assignment of a different symbol. Once the symbols have 

been assigned, the Shannon entropy is calculated, and then normalized, as was done 

for the symbolic entropy, using the method of Aziz and Arif [19]. The entire 

procedure is performed twice, once for data from the anterior-posterior direction, and 

once for the data from the medial-lateral direction.   

Approximate entropy The approximate entropy (ApEn) was calculated using 

MatLab code developed by Kaplan and Staffin [27], implementing the methodology 

of Pincus [12]. Approximate entropy is a measure of how disorderly a time series is 

[12] and can be used to assess disorderliness in movement when applied to COP time 

series data. The general strategy in the calculation of approximate entropy is to 

examine all the points in the data set for short pattern repeats (Figure 3.2a). The 

length of the repeat pattern is defined by a parameter m. This is done by using a 

vector of length m starting at point pi, and then counting how many other vectors at 

other points pj (j ≠ i ) in the time series have a similar pattern, repeating the procedure 

for all vectors of length m in the time series, and summing the logarithm of the 

results. The r parameter defines how similar a second vector has to be in order to be 

counted. Another parameter, lag, indicates how many time steps there are between 

points in one of the length m vectors. For example, if lag=1, then adjacent points are 

used. To calculate approximate entropy, the log of this similarity count is normalized 

by the number of points in the time series. Thus three parameters are used in this 

algorithm, m, r, and lag. Typical values for biomechanics data analysis are lag = 1, r =  

0.2 to 0.25 times the standard deviation of the time series, and m = 2  [2, 28, 29].  



 

 

48

Statistical analysis 

One goal of the statistical analysis was to find the best entropy measure to 

separate the two populations, since the entropy measure identified in this manner 

would presumably have the best chance of having clinically useful sensitivity to 

changes in postural control with physical therapy interventions, a long range goal of 

this research. In order to assess the effectiveness in separating the two populations 

(delayed versus typical development), we used the t-score, which is a measure of the 

separation between the two populations relative to the variances of the populations.  

The t-scores, also called t-statistics or t-values that are commonly used in independent 

t-tests [30], were calculated by dividing the difference in means between the two 

populations (mean of delayed development minus mean of typically developing) by 

the root mean square of the standard deviations, for each set of parameters used for 

each type of entropy, for COP data from both anterior-posterior and medial-lateral 

directions. A negative sign on the t-score indicates that the mean of the data from the 

typically developing is larger than the mean of the data from delayed development. 

The t-score indicates how much the two populations overlap for the given measure, 

with larger magnitude indicating less overlap.  

The analysis includes multiple comparisons, but they are not all independent. 

In other words, the entropy calculated with one set of parameters is correlated with 

the entropy calculated with a slightly different set of parameters, and values of t 

scores in the tables 1-4 are similar to values nearby. We have 2 types of entropy 

(approximate entropy and symbolic entropy) and 3 parameters for each (approximate 

entropy has m, r, and lag; symbolic entropy has number of threshold values, position 

of threshold, and symmetry of thresholds). Thus, there are 2 times 3 equal with 6 

parameters that we have adjusted independently. This number times 2 (for postural 
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sway in the two directions: the anterior-posterior and medial-lateral) gives a total of 

12. The Bonferroni correction requires the p-value to be adjusted for the number of 

independent comparisons. Thus, we set the pcrit =.05/12 = .00417, corresponding to a 

t-score of magnitude 3.04 for a t-tailed test with 39 degrees of freedom (dof = n1 + n2 

– 2; where n1 and n2 are the number of subjects sampled from the two populations).  

Results  

The t-score results (Table 3.1) indicated that the symbolic entropy does find 

significant differences between the medial-lateral postural sway of typically 

developing infants compared to infants with delayed development.  The t-score results 

in the anterior-posterior direction were less able to detect separation between the two 

populations (Table 3.2). The largest t-scores are for two threshold analysis with non-

symmetric thresholds, as presented in last row of two-threshold analyses in Table 3.1. 

The larger magnitude t-scores (Table 3.1) are connected with two threshold values 

being assigned relatively far away from the mean, with the thresholds assigned on the 

order of three standard deviations above and below the mean value of the COP. This 

is consistent with the notion that control near the extreme positions (i.e. far to the 

right or far to the left) is important, since poor control near the extreme values of the 

COP may result in a fall.  The best threshold of those tested was the mean-3 std, 

mean+1 std. This means that excursions farther away from the mean to the left side 

(mean -3 std) and excursions not as far away to the right side (mean + 1 std) were the 

important differences between the populations. A word length of about 4 to 7 was 

found to be the most successful. The largest magnitude t-score of -3.48 corresponds to 

p-value equal with 0.00125 for a two-tailed test and for degrees of freedom equal with 

39. While the separation found between the two populations by this measure of 

entropy is considered statistically significant, the clinical significance of the measure 
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identified here would have to be determined with additional experimentation. 

The approximate entropy algorithm was also capable of detecting separation 

between the infants with typical development and the infants with delayed 

development. As with the symbolic entropy, the largest separations were seen 

between typical development and delayed development in the medial-lateral direction. 

Also, as with symbolic entropy, the larger t-scores for approximate entropy were 

negative, indicating that entropy calculated from postural sway data of infants with 

typical development is higher that entropy calculated from postural sway data of 

infants with delayed development.  Overall, the best approximate entropy result (t-

score=-3.48) was with lag = 4, m =2, and r= 3*std. However several other 

combinations presented also larger values than the critical t value of 3.04, indicating 

significant differences between the two populations.  

In order to visually examine the effect of these parameters on the distribution 

of the entropy values, plots of the entropy values for the medial-lateral postural sway 

were calculated with two different methods (Figure 3.3). The top plot in Figure 3.3 

shows the approximate entropy values that were obtained using the following 

parameters: m = 2, r = 0.2 std, and lag = 4. The bottom plot shows asymmetric 

symbolic entropy values that were obtained using two thresholds, mean – 3 std and 

mean + 1 std, and a word length of seven. This plot visually illustrates the benefit of 

using a method with a larger magnitude t-score for analysis of sitting postural sway in 

the medial-lateral direction to compare these two populations, as the populations can 

be seen to overlap quite a bit with the standard approximate entropy analysis (top) 

where as the separation is better in the asymmetric symbolic entropy analysis 

(bottom).  

Discussion  
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One aspect of this work was the exploration of the effects of various 

parameters in the entropy algorithms. While selection of the parameters used in the 

calculation of entropy was found to affect the results, the parameter values that give 

rise to statistically significant comparisons show consistent trends, with the typically 

developing infants having higher entropy values in sitting postural sway, and sway in 

the medial-lateral having the bigger differences between the populations. 

Furthermore, two hypotheses were proposed in the introduction. One was that 

the complexity of postural sway of infants with delayed development would be altered 

as compared to that for infants with typical development. Importantly, a finding of 

this study was that the medial-lateral postural sway in sitting is a useful type of data to 

compare infants with delayed development with those who are typically developing, 

and that infants with typical development are seen to have more information entropy 

in their movement in this dimension than infants with delayed development, as 

measured by approximate entropy and symbolic entropy. This is consistent with the 

notion that development of a postural control strategy involves an exploration of the 

many possible solutions to Bernstein’s degrees of freedom problem in order to arrive 

at a control strategy with optimal variability [7]. In this study we found that infants 

with typical development appear to be exploring more varied motor strategies, giving 

rise to a higher level of complexity in their postural sway. Therefore, healthy postural 

control is seen to be more complex as predicted by the optimal movement variability 

[7].   

The second hypothesis, that lack of symmetry in anterior-posterior posterior 

control would be different between infants with delayed development and those with 

typical development, was not supported. A surprising result of this study was that the 

asymmetric symbolic entropy in the medial-lateral direction (left-right movement) 
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found larger separation between postural sway in infants with developmental delay 

and those with typical development. We had expected this result in the anterior-

posterior axis, since the result of a large excursion in the posterior direction is falling 

over, whereas a large excursion in the anterior direction merely results in the infant 

resting the torso on top of the legs. In fact, this was the motivation for trying the non-

symmetric thresholds. However, the impact of the non-symmetric threshold was 

actually seen in the medial-lateral direction. As described in the experimental section, 

a researcher is always positioned to the left of the infant. Perhaps having a large 

object in the visual field unilaterally alters the infants’ postural sway, as vision has 

been shown to impact standing postural sway in infants, although the effect was only 

seen in infants after walking skills had been acquired [31]. If integration of visual 

information is different in the two populations of infants, differences in postural sway 

could result.  Alternatively, the non-symmetric postural sway may be due to some 

type of psychological response that the infants have to the presence of the adult on the 

left side, and this response is different in the two populations of infants. Infants 

develop a protective extension reaction [32], which is a reaction of the arms to falling 

from a seated position. The protective extension reaction develops first in the anterior 

direction, typically at around 6 months. Then it develops sideways, typically at around 

eight months. Finally, from about the tenth month, they are able to use their arms to 

prevent backwards falls. An infant who has developed this reaction for sideways 

falling may well respond differently to the presence of a researcher on one side than 

an infant who has not yet developed this reaction. Based on this typical development 

schedule of the protective extension reaction [32], we would expect that the typically 

developing infants would have developed this response, where as the infants with 

delayed development may not. However we did not test the infants for the protective 
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extension response, so this is a speculative explanation. An alternative explanation 

which should be considered is that there may be some unconscious bias in how the 

researcher sitting next to the infants responds to near falls in the two populations, 

perhaps being more protective of falling movement away from themselves in infants 

that they perceive as having less control.  The reason for the success of non-

symmetric thresholding in the medial-lateral axis is not clear and warrants further 

investigation. 

The results of this study indicate that optimization of the entropy algorithm for 

infant sitting postural sway data can greatly improve the ability to separate the infants 

with developmental delay from typically developing infants. However, there is still 

significant overlap of even the best entropy measures, which could result in false 

positives or false negatives if used in a clinical setting. Further improvements may be 

possible, such as optimization of the number of thresholds used in the calculation of 

symbolic entropy, optimization of the actual threshold values, and further exploration 

of non-symmetric thresholds. Additionally, there are other entropy algorithms that 

have not yet been applied to infant sitting postural sway data, which may offer an 

improvement. Multiscale entropy analysis [16] has been used on gait data [33] and on 

heart rate data [34]. Von Newman entropy, originally derived for quantum mechanics 

applications, has been applied to EEG data [35]. Kolmogorov entropy has been used 

on EEG data for epileptic seizure prediction [36] and on cell patch-clamp recordings 

[37]. Success in finding an algorithm that can objectively quantify pathologic motor 

patterns will help to identify infants who would benefit from therapeutic intervention, 

as well as provide an important research tool for assessment of various interventions 

for developmentally delayed infants.  

Based on our exploration of different parameter combinations, we can make 
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the following suggestions to researchers interested in using entropy measures in their 

work. Asymmetry can be an interesting aspect of postural sway data and of other time 

series data. However, asymmetry is not often probed, or if it is, then two separate 

force plates are required [38]. Use of the asymmetric symbolic entropy provides a 

means to investigate asymmetry on postural sway with data from a single force plate. 

Approximate entropy is a useful choice for an entropy measure, but the values for the 

parameters of m, lag, and r need to be optimized for the data set under investigation, 

rather than accepting standard values for these parameters.   

Conclusions  

Information entropy measures can be used to characterize randomness in time 

series data. We have used approximate entropy and symbolic entropy in infant sitting 

postural sway for infants with typical development, and infants with delayed 

development, where the developmental delay was likely due to cerebral palsy. While 

selection of the parameters used in the calculation of entropy was found to affect the 

results, differences between the two populations found were to be consistent for 

statistically significant results. The significant results were that infants with typical 

development were found to have less repetition of fixed patterns in the medial-lateral 

direction of postural sway than infants with developmental delay. This result is 

consistent with the notion that infants with typical development are exploring a wider 

range of movement patterns as they learn to control upright sitting posture. This result 

also suggests that therapeutic interventions that encourage the exploration of varied 

movement patterns would be beneficial. 
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Figure 3.1. Infant sits on force platform for data collection, with researcher and 

parent near by. 

 

 



 

 Figure 3.2. Entropy calculations
 

Entropy calculations: A. time series data.  B. Approximate entropy counts similar 

vectors; here two similar vectors are shown in bold. C. Symbolic entropy with one 

threshold creates a time series based on whether a point is above or below the mean. 

Note that the value changes as the time series crosses the threshold. D. Two 

thresholds allow sensitivity to movement that is not close to the center, and thus 

closer to the presumed edge of the base of support. 

2. Entropy calculations 

Entropy calculations: A. time series data.  B. Approximate entropy counts similar 

vectors; here two similar vectors are shown in bold. C. Symbolic entropy with one 

threshold creates a time series based on whether a point is above or below the mean. 

at the value changes as the time series crosses the threshold. D. Two 

thresholds allow sensitivity to movement that is not close to the center, and thus 

closer to the presumed edge of the base of support.  
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Entropy calculations: A. time series data.  B. Approximate entropy counts similar 

vectors; here two similar vectors are shown in bold. C. Symbolic entropy with one 

threshold creates a time series based on whether a point is above or below the mean. 

at the value changes as the time series crosses the threshold. D. Two 

thresholds allow sensitivity to movement that is not close to the center, and thus 
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Figure 3.3. Distribution of entropy values 
 
Distribution of entropy values for medial-lateral postural sway for infants who are 

typically developing versus those who have delayed development. Top plot (t-score = 

-1.94) is approximate entropy with r = 0.2 std, lag = 4, m = 2. Bottom plot (t-score = -

3.48) is symbolic entropy with word length=6, thresholds of -3 std and +1 std.  

Several of the subjects have the same symbolic entropy values as other subjects; the 

same number time series were analyzed for both top and bottom plots. The 

populations (DD and TD) are much better separated by use of symbolic entropy than 

approximate entropy. 
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Table 3.1. Symbolic entropy t-scores for comparison of medial-lateral postural sway  

t-scores for comparison of medial-lateral postural sway of infants with typical development and with delayed development, based on symbolic 

entropy calculated with various thresholds and word lengths, -3.48 is the largest magnitude t-score. 

  

One threshold 1 2 3 4 5 6 7 8 9 10 

M -0.93 -0.68 0.77 -1.85 -1.44 -1.40 -1.13 -1.05 -1.12 -1.18 

           

Two thresholds           

m - .01 std, m + .01 std -1.20 -1.61 -1.62 -1.47 -1.39 -1.25 -1.24 -1.22 -1.31 -1.33 

m - .1 std, m + .1 std -1.26 -0.32 -0.41 -0.71 -0.72 -0.88 -1.07 -1.23 -1.30 -1.31 

m - .2std, m + .2std -0.48 -0.86 -0.67 -1.19 -1.35 -1.53 -1.46 -1.42 -1.32 -1.21 

m - .5 std, m + .5 std 0.37 -1.23 -1.15 -0.51 -0.61 -0.77 -0.84 -1.03 -1.13 -1.21 

m - 1 std, m + 1 std 0.44 0.29 -0.53 -1.70 -1.98 -2.10 -1.86 -1.64 -1.38 -1.22 

m - 2 std, m + 2 std -0.61 -1.07 -1.15 -0.71 -0.49 -0.43 -0.39 -0.36 -0.33 -0.31 

m - 2.5 std, m + 2.5 std -1.13 -1.04 -1.20 -1.13 -0.93 -0.82 -0.77 -0.76 -0.75 -0.77 

m - 2.8 std, m + 2.8 std -0.98 -1.30 -1.52 -1.70 -1.95 -1.99 -2.01 -2.02 -2.00 -1.97 

m - 2.9 std, m + 2.9 std -0.97 -1.38 -1.66 -1.74 -1.81 -1.82 -1.84 -1.92 -2.00 -2.05 

m - 3 std, m + 3 std -2.68 -2.76 -2.57 -2.36 -2.52 -2.59 -2.64 -2.68 -2.71 -2.79 

m - 3.1 std, m + 3.1 std -2.31 -2.67 -2.85 -2.85 -2.73 -2.62 -2.55 -2.56 -2.59 -2.62 

m - 3.2 std, m + 3.2 std -1.56 -1.92 -2.16 -2.24 -2.30 -2.32 -2.31 -2.31 -2.34 -2.35 

m - 3.5 std, m + 3.5 std -2.10 -2.24 -2.25 -2.24 -2.25 -2.25 -2.25 -2.26 -2.27 -2.29 

m - 1 mm, m + 1 mm -0.34 -1.79 -1.85 -1.69 -1.11 -1.08 -1.18 -1.34 -1.41 -1.45 

m - 10 mm, m + 10 mm -0.30 -0.49 -0.25 -0.17 -0.30 -0.46 -0.57 -0.64 -0.67 -0.67 

Word length used in symbolic entropy calculation 
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m - 15 mm, m + 15 mm 0.61 0.59 0.42 0.19 0.06 -0.05 -0.04 -0.03 0.00 0.04 

m - 20 mm, m + 20 mm 0.64 0.65 0.58 0.59 0.60 0.57 0.54 0.54 0.55 0.55 

m - 25 mm, m + 25 mm -0.39 -0.53 -0.39 -0.38 -0.30 -0.26 -0.27 -0.28 -0.29 -0.32 

m - 22 mm, m+ 22 mm -0.40 -0.53 -0.52 -0.54 -0.51 -0.45 -0.47 -0.47 -0.47 -0.50 

m - 30 mm, m + 30 mm -0.07 -0.14 0.14 0.43 0.48 0.50 0.51 0.50 0.48 0.46 

m - 35 mm, m + 35 mm 0.30 0.46 0.65 0.77 0.82 0.84 0.85 0.85 0.84 0.83 

m - 40 mm, m + 40 mm 0.22 0.45 0.65 0.77 0.82 0.82 0.82 0.81 0.80 0.79 

m - 2 std, m + 3 std (A) -1.30 -1.40 -1.20 -0.86 -0.73 -0.63 -0.60 -0.62 -0.65 -0.68 

m - 1std, m + 3 std (A) -1.39 -1.54 -1.45 -1.04 -1.07 -1.06 -0.95 -0.81 -0.67 -0.63 

m - 3 std, m + 2 std (A) -1.86 -2.19 -2.28 -1.85 -1.57 -1.46 -1.34 -1.22 -1.13 -1.08 

m - 3 std, m + 1 std (A) -2.52 -2.64 -2.61 -3.33* -3.42* -3.48*  -3.05* -2.68 -2.28 -1.99 

           

Three thresholds           

m - .01 std, m, m + .01 std -1.16 -1.77 -2.23 -2.76 -2.25 -1.20 -0.72 -1.05 -1.14 -1.85 

m - .1 std, m, m + .1 std -1.49 0.91 -1.11 -1.16 -2.50 -2.15 -1.47 -2.08 -2.77 -1.60 

m - .2std, m, m + .2std -2.67 -1.38 -1.43 -0.54 0.57 0.64 -0.58 -0.58 -0.19 0.43 

m - .5 std, m, m + .5 std -0.27 0.19 0.15 -1.13 -1.33 -1.51 -1.91 -2.51 -1.69 -0.70 

m - 1 std, m, m + 1 std -0.18 -0.31 -0.60 -1.30 -0.68 -0.93 -0.63 -1.11 -2.70 -2.17 

m - 2 std, m, m + 2 std -2.89 -2.58 -2.35 -2.66 -3.07 -2.29 -1.57 -0.61 -0.37 0.10 

m - 2.5 std, m, m + 2.5 std -2.24 -1.45 -0.95 -1.41 -1.24 -1.40 -0.99 -1.33 -2.59 -2.21 

m - 2.8 std, m, m + 2.8 std -1.32 -1.05 -0.92 -1.16 -1.71 -1.46 -1.64 -1.57 -1.71 -1.53 

m - 2.9 std, m, m + 2.9 std -1.62 -1.44 -1.54 -1.54 -1.62 -1.51 -1.53 -2.37 -1.37 -1.04 

m - 3 std, m, m + 3 std -1.25 -0.96 -1.04 -1.50 -1.16 -1.67 -2.09 -3.06 -1.90 -1.42 

m - 3.1 std, m, m + 3.1 std -1.32 -0.94 -1.21 -1.24 -1.09 -1.01 -1.04 -1.15 -1.08 -1.22 

m - 3.2 std, m, m + 3.2 std -1.02 -1.26 -1.55 -2.10 -1.52 -1.46 -1.07 -1.46 -1.41 -1.12 

m - 3.5 std, m, m + 3.5 std -2.04 -1.74 -1.68 -1.63 -1.15 -0.69 -1.28 -1.34 -1.05 -0.89 
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m - 1 mm, m, m + 1 mm 0.80 0.88 1.68 1.73 1.15 0.67 0.96 0.37 0.24 -0.13 

m - 10 mm, m, m + 10 mm -1.24 -2.08 -2.20 -1.86 0.91 -0.22 0.24 0.92 1.43 1.48 

m - 15 mm, m, m + 15 mm 0.41 0.57 1.52 -0.09 -0.21 -1.07 -0.55 -0.54 -0.92 -2.06 

m - 20 mm, m, m + 20 mm 0.49 1.46 1.76 1.45 1.28 0.41 1.21 0.90 0.95 0.96 

m - 25 mm, m, m + 25 mm 1.80 0.55 1.04 1.76 0.70 0.80 0.85 1.24 0.55 0.82 

m - 22 mm, m, m+ 22 mm -0.03 -1.25 -0.57 -0.45 -0.76 -1.78 -1.50 -1.21 1.63 0.61 

m - 30 mm, m, m + 30 mm 1.26 0.59 1.09 0.97 1.00 1.11 0.83 -0.41 -0.27 -1.44 

m - 35 mm, m, m + 35 mm 0.06 0.48 1.04 1.73 1.04 0.52 0.62 1.14 1.02 0.55 

m - 40 mm, m, m + 40 mm -0.23 -0.20 -0.21 -0.12 0.81 0.17 0.75 0.68 0.14 0.64 

m - 2 std, m, m + 3 std (A) 1.26 0.80 0.62 1.15 1.04 0.79 1.00 0.92 0.90 1.01 

m - 1std, m, m + 3 std (A) 0.85 0.37 0.75 0.61 0.26 0.84 1.30 1.84 1.33 0.91 

m - 3 std, m, m + 2 std (A) -0.37 -0.12 0.65 0.65 0.61 0.64 0.64 0.66 0.92 0.42 

m - 3 std, m, m + 1 std (A) 1.08 0.94 1.09 1.02 0.99 1.06 1.45 0.02 -0.25 0.13 

Note: t-scores with magnitude equal or larger than 3.04 are indicated with * and are in bold. The “m” indicates mean value for the time series, 

“std” indicates the standard deviation for the time series, and “mm” indicates millimetres of movement in the COP. (A) indicates asymmetric 

thresholds were used
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Table 3.2. Symbolic entropy t-scores for comparison of anterior-posterior postural sway  

t-scores for comparison of anterior-posterior postural sway of infants with typical development and with delayed development, based on 

symbolic entropy calculated with various thresholds and word lengths, -3.29 is the largest magnitude t-score. 

 

  

One threshold 1 2 3 4 5 6 7 8 9 10 

M 0.67 1.63 1.48 0.83 0.68 0.52 0.69 0.80 0.91 0.95 

           

Two thresholds           

m - 1 std, m + 1 std 0.34 1.01 1.27 0.86 0.25 -0.13 -0.20 -0.25 -0.25 -0.23 

m - .5 std, m + .5 std -0.25 1.17 0.51 0.11 -0.21 -0.42 -0.13 0.15 0.31 0.40 

m - .2std, m + .2std 1.53 1.24 1.12 1.01 1.20 1.14 1.04 0.98 0.97 1.02 

m - .1 std, m + .1 std 1.67 0.52 0.80 0.86 1.08 1.31 1.62 1.79 1.87 1.92 

m - .01 std, m + .01 std 1.32 0.41 0.75 0.53 0.72 0.85 0.96 1.12 1.25 1.32 

m - 2 std, m + 2 std 0.94 1.24 1.54 1.36 0.99 0.47 0.27 0.17 0.11 0.07 

m - 2.5 std, m + 2.5 std 0.38 0.80 1.17 1.51 1.52 1.39 1.35 1.32 1.37 1.43 

m - 3 std, m + 3 std 0.21 0.54 0.93 1.16 1.16 1.13 1.09 1.07 1.05 1.01 

m - 3.5 std, m + 3.5 std -0.16 -0.07 0.01 0.12 0.20 0.26 0.31 0.29 0.29 0.30 

m - 2.8 std, m + 2.8 std 0.98 0.89 0.90 0.94 1.04 1.08 1.08 1.09 1.11 1.16 

m - 3.2 std, m + 3.2 std 0.25 0.36 0.55 0.69 0.77 0.76 0.77 0.78 0.78 0.77 

m - 3.1 std, m + 3.1 std 0.02 0.21 0.60 0.84 0.81 0.78 0.76 0.70 0.69 0.67 

m - 2.9 std, m + 2.9 std 0.22 0.38 0.65 0.86 1.01 1.03 1.03 1.01 0.98 0.97 

Word length used in symbolic entropy calculation 
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m - 1 mm, m + 1 mm 1.63 1.29 1.15 1.40 1.32 1.21 1.06 0.98 1.01 1.09 

m - 10 mm, m + 10 mm -0.60 -0.28 -0.47 -0.56 -0.58 -0.67 -0.70 -0.73 -0.73 -0.74 

m - 15 mm, m + 15 mm -0.74 -0.36 -0.19 -0.20 -0.45 -0.74 -0.87 -0.97 -1.08 -1.18 

m - 20 mm, m + 20 mm -1.33 -1.19 -1.27 -1.39 -1.48 -1.57 -1.66 -1.69 -1.66 -1.66 

m - 25 mm, m + 25 mm -0.94 -0.74 -0.89 -0.89 -0.94 -0.99 -1.02 -1.01 -1.03 -1.03 

m - 22 mm, m+ 22 mm -0.81 -0.69 -0.68 -0.69 -0.77 -0.80 -0.85 -0.91 -0.95 -0.98 

m - 30 mm, m + 30 mm -1.40 -1.12 -1.14 -1.20 -1.22 -1.25 -1.27 -1.30 -1.30 -1.31 

m - 35 mm, m + 35 mm -2.03 -2.08 -2.11 -2.13 -2.13 -2.13 -2.12 -2.12 -2.12 -2.12 

m - 40 mm, m + 40 mm -2.13 -2.15 -2.13 -2.11 -2.09 -2.07 -2.07 -2.06 -2.06 -2.05 

m - 2 std, m + 3 std 0.93 1.29 1.58 1.53 1.16 0.79 0.65 0.62 0.61 0.58 

m - 1std, m + 3 std -0.02 -0.07 0.25 0.51 0.31 -0.06 -0.11 -0.18 -0.26 -0.37 

m - 3 std, m + 2 std 0.16 0.40 0.73 0.80 0.82 0.56 0.36 0.20 0.05 -0.02 

m - 3 std, m + 1 std 0.54 1.08 1.50 1.53 1.04 0.66 0.42 0.29 0.27 0.34 

           

Three thresholds           

m - 1 std, m, m + 1 std -0.95 -1.58 -2.34 -0.94 -0.59 -0.50 0.51 0.60 -0.59 -0.60 

m - .5 std, m, m + .5 std -0.53 -0.98 -1.46 -0.68 -1.09 -1.04 -2.76 -2.25 -1.29 -1.93 

m - .2std, m, m + .2std 0.43 -1.09 -1.40 -1.70 -2.21 -2.88 -1.63 -0.99 -0.37 -0.96 

m - .1 std, m, m + .1 std -1.18 -0.23 0.45 0.61 -0.33 -0.45 0.22 0.74 0.74 -0.65 

m - .01 std, m, m + .01 std -1.01 -1.40 -2.76 -2.81 -2.02 -2.73 -3.27* -2.12 -1.38 -0.36 

m - 2 std, m, m + 2 std -1.61 -1.67 -0.78 -0.40 -0.40 -1.65 -1.12 -1.83 -2.06 -3.29* 

m - 2.5 std, m, m + 2.5 std -2.28 -2.37 -2.66 -2.15 -1.70 -1.13 -0.90 -0.43 -1.64 -1.70 

m - 3 std, m, m + 3 std -0.99 -1.49 -1.31 -1.13 -0.94 -1.22 -2.02 -1.68 -1.89 -1.82 

m - 3.5 std, m, m + 3.5 std -0.95 -1.18 -1.05 -1.41 -1.78 -2.46 -1.68 -1.47 -1.02 -1.50 

m - 2.8 std, m, m + 2.8 std -1.69 -2.01 -1.22 -0.79 -1.16 -1.20 -1.01 -0.89 -0.93 -1.09 

m - 3.2 std, m, m + 3.2 std -0.97 -1.17 -1.64 -1.43 -1.57 -1.54 -1.65 -1.51 -1.61 -2.30 
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m - 3.1 std, m, m + 3.1 std -1.49 -1.89 -1.44 -1.45 -1.11 -1.42 -1.43 -1.18 -1.03 -1.20 

m - 2.9 std, m, m + 2.9 std -1.26 -1.29 -1.16 -1.10 -1.12 -1.21 -1.15 -1.23 -1.47 -1.76 

m - 1 mm, m, m + 1 mm 1.03 0.30 0.06 0.24 1.73 -0.38 -0.53 -1.19 -0.75 -0.61 

m - 10 mm, m, m + 10 mm 1.20 0.98 0.30 1.56 1.39 0.98 0.74 0.15 1.08 0.57 

m - 15 mm, m, m + 15 mm -2.07 -1.73 1.43 0.14 0.59 1.34 1.21 1.20 1.02 0.92 

m - 20 mm, m, m + 20 mm 0.87 -0.23 0.01 -1.07 -0.58 -0.42 -0.75 -2.00 -1.75 -1.61 

m - 25 mm, m, m + 25 mm 1.49 1.60 1.41 0.49 1.15 0.97 1.11 1.10 0.88 -0.38 

m - 22 mm, m, m+ 22 mm 1.06 1.53 0.30 0.58 0.89 1.51 0.88 0.67 1.09 1.44 

m - 30 mm, m, m + 30 mm -0.45 -0.46 -0.50 -0.66 -0.62 -0.40 1.19 0.40 1.04 1.03 

m - 35 mm, m, m + 35 mm 0.93 0.79 0.82 0.95 1.05 -0.52 -0.62 -1.55 -0.29 -0.33 

m - 40 mm, m, m + 40 mm 1.18 1.80 1.14 0.69 0.59 1.14 1.03 0.70 0.97 0.86 

m - 2 std, m, m + 3 std (A) 1.30 -0.31 -0.52 -0.59 0.43 0.42 0.41 0.45 0.45 0.47 

m - 1std, m, m + 3 std (A) 0.69 1.22 1.08 0.90 1.07 1.00 0.98 1.06 1.39 -0.12 

m - 3 std, m, m + 2 std (A) 0.79 0.70 0.32 0.86 1.37 1.82 1.37 0.95 0.71 1.24 

m - 3 std, m, m + 1 std (A) 0.74 0.74 0.69 0.72 0.72 0.73 0.93 0.43 0.81 0.77 
Note: t-scores with magnitude equal or larger than 3.04 are indicated with * and are in bold. The “m” indicates mean value for the time series, 

“std” indicates the standard deviation for the time series, and “mm” indicates millimetres of movement in the COP. (A) indicates asymmetric 

thresholds were used 
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Table 3.3. Approximate entropy t-scores for comparison of medial-lateral postural sway  
t-scores for comparison of medial-lateral postural sway of infants with typical development and with delayed development, based on 

approximate entropy calculated with various lag and r values, -3.32 is the largest magnitude t-score.    

                                                                        r value used in ApEn calculation 

m lag 0.05*std  0.1*std  0.2*std  0.4*std 0.8*std 1.5*std 2.5*std 3*std 3.5*std 4*std 5*std 

2 1 -0.94 -0.55 -0.46 -0.47 -0.56 -0.67 -0.20 -0.26 -1.14 -2.12 -0.76 

4 1 0.58 -1.08 -1.22 -1.20 -1.37 -1.67 -1.62 -1.40 -2.26 -3.17* -2.04 

8 1 1.05 -0.14 -0.63 -1.69 -1.92 -2.40 -2.52 -2.54 -2.88 -3.27* -2.69 

2 4 -1.26 -1.41 -1.94 -2.46 -2.72 -2.68 -3.09 -3.32* -3.27* -3.17* -2.04 

4 4 1.23 -0.17 -1.55 -2.41 -2.84 -2.81 -3.07 -3.24* -3.20* -3.10* -1.67 

8 4 1.34 0.33 0.16 -2.39 -2.64 -2.64 -2.49 -2.93 -3.16* -3.13* -1.32 

2 8 -1.32 -1.50 -2.18 -2.72 -2.82 -2.71 -3.02 -3.16* -3.08 -2.90 -1.54 

4 8 1.64 0.46 -1.51 -2.68 -2.60 -2.47 -2.45 -2.86 -3.03 -2.91 -1.15 

8 8 1.35 0.50 1.29 -1.96 -2.91 -2.06 -1.96 -2.20 -2.49 -2.83 -1.73 

Note: t-scores with magnitude equal or larger than 3.04 are indicated with * and are in bold.  
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Table 3.4. Approximate entropy t- scores for comparison of anterior-posterior postural sway 

t- scores for comparison of anterior-posterior postural sway of infants with  typical development and with delayed development, based 

on approximate entropy calculated with various m, lag and r values, are all lower than 3.04.    

 
                                                                     r value used in ApEn calculation 

 
m lag 0.05*std  0.1*std  0.2*std  0.4*std 0.8*std 1.5*std 2.5*std 3*std 3.5*std 4*std 5*std 
2 1 0.83 0.82 0.84 0.99 0.99 1.03 0.92 1.46 1.14 0.54 0.69 
4 1 0.50 0.17 0.25 0.60 0.61 0.73 0.36 0.87 0.59 0.28 0.12 
8 1 -1.04 0.68 0.41 0.28 0.24 0.40 -0.19 0.53 0.30 0.22 0.17 
2 4 0.61 0.60 0.46 0.16 0.02 0.40 -0.30 0.41 0.23 0.24 0.04 
4 4 1.15 1.05 0.84 0.48 0.17 0.17 -0.38 0.39 0.24 0.31 0.20 
8 4 -0.80 0.55 1.03 1.01 0.39 0.49 -0.48 0.44 0.12 0.36 0.46 
2 8 1.27 1.01 0.90 0.36 0.10 0.21 -0.33 0.39 0.25 0.35 0.17 
4 8 0.15 1.26 1.09 0.90 0.36 0.54 -0.42 0.32 0.18 0.42 0.39 
8 8 -1.04 -0.49 0.90 1.47 0.85 0.34 -0.05 0.21 0.20 0.34 0.43 

Note: No t-scores with magnitude equal or larger than 3.04 are in this table.   
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CHAPTER 4 

DEVELOPMENTAL DELAY AND TYPICAL DEVELOPMENT 

INVESTIGATED USING APPROXIMATE ENTROPY AND SPECTRAL 

ANALYSIS OF INFANT SITTING POSTURAL SWAY 

 

Abstract: We have applied approximate entropy to infant sitting postural sway 

center of pressure (COP) data, with the goal of distinguishing between the postural sway 

dynamics of infants with typical development, and infants with delayed motor 

development, where the delayed development is due to cerebral palsy for many of our 

subjects. By trying to find approximate entropy parameters that are effective in separating 

these populations, we hope to find a measure that will be able to quantify improvements 

that occur in motor control due to physical therapy. In order to assess the impact that 

experimental noise has on the analysis, we included a periodic single pendulum and a 

chaotic double pendulum in the analysis, however comparison of the single and double 

pendulum COP data was not very sensitive to the parameters used in the approximate 

entropy analysis, due to the very different dynamics of the periodic single pendulum and 

chaotic double pendulum.  We find that best approximate entropy parameters for the 

infant sitting data set are ApEn(m=1, r=1*std(Data), t=8.33sec@240Hz, lag=8), and a 

significant difference is seen in the anterior-posterior axis, but not in the medial-lateral 

axis with these parameters. The analysis is not very sensitive to the m value selected, but 

is sensitive to the values of r and lag.  Use of the full time series, 8.33 sec at 240 Hz, was 

the best value of N we obtained for the data, but we cannot rule out that longer time 

series could have improved the analysis. The choice of lag value of 8 to 12 in the 
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approximate entropy analysis corresponded to a time lag of 33 to 50 msec, or a frequency 

of 20 to 30 Hz. Spectral analysis confirmed features in the postural sway of early sitting 

of infants with typical development in this frequency range. The high frequency of these 

features suggests a stretch reflex or tissue vibration may be active, perhaps activated by a 

near-fall. Voluntary movements, medium and long latency reflexes are not as fast. 

Suggestions for implementation of the approximate entropy algorithm to experimental 

data are discussed.  

 

Introduction 

Cerebral palsy occurs because of brain injury sustained very early in life, either 

before, during, or shortly after birth, and is characterized by motor dysfunction. 

Identifying affected infants when they are very young allows for physical therapy to be 

started early when brain plasticity is maximal, with the goal of improving the long-term 

outcome for these infants (Blauw-Hospers, Hadders-Algra, 2005; Blauw-Hospers, de 

Graaf-Peters, Dirks, Bos, Hadders-Algra, 2007; de Graaf-Peters, Blauw-Hospers, Dirks, 

Bakker, Bos, & Hadders-Algra, 2007). Sitting is a motor skill acquired early in life, 

typically at about age 4-9 months, and thus can serve as a window into the development 

of motor skills in very young infants (Harbourne & Stergiou, 2003). Studying sitting 

dynamics affords the possibility of objectively quantifying motor coordination in order to 

identify infants who might benefit from physical therapy, and to assess improvements as 

therapy progresses, even in infants who cannot yet stand.  Lack of general movement 

complexity in young infants may be a useful indicator of cerebral palsy and that 

therapeutic intervention is appropriate (Hadders-Algra, 2004), but it is not yet clear how 
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best to objectively quantify movement complexity. To explore the dynamics of sitting 

postural sway in infant sitting, a measure of time series dynamics is needed that is 

sensitive to differences between affected and unaffected infants, and which is robust to 

experimental noise, and also robust to shorter time series segments since many infants 

can not sit for extended periods of time. The long term goal of this work is to develop a 

measure that can assess developmental delay early in life, is sensitive enough that it can 

be used to monitor the effectiveness of a course of therapy, and is robust enough to real-

world data limitations such as noise and limited time for analysis, that it could someday 

be applied in a clinical setting.  

Approximate entropy was developed by Pincus (1991) as a measure of 

“complexity” for time series data, where “complexity” is defined as being low for time 

series with a repetitive pattern such as a sine function, high for a random variable, and 

intermediate for systems with chaotic dynamics. Alternatively, it can be described as a 

measure of “regularity” where time series data with repeated patterns has low 

approximate entropy and high regularity (Pincus & Goldberger, 1994), i.e. approximate 

entropy is a measure of lack of regularity.  Because approximate entropy is sensitive to 

the system dynamics, it is a potentially useful measure for a wide range of medical 

conditions that alter physiological or motor control dynamics. There are a number of 

medical fields where the use of approximate entropy has been investigated, including 

cardiology (Pincus & Goldberger, 1994; Kaplan, Furman, Pincus, Ryan, Lipsitz & 

Goldberger, 1991), endocrinology (Liu, Iranmanesh, Keenan, Pincus, and Veldhuis, 

2007; Veldhuis, Keenan, & Pincus, 2008), anesthesiology (Kumar, Anand, Chari, 

Yaddanapudi, & Srivastava, 2007), traumatic brain injury (Cavanaugh, Guskiewicz, 
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Giuliani, Marshall, Mercer, & Stergiou, 2005, Cavanaugh, Guskiewicz, Giuliani, 

Marshall, Mercer, & Stergiou, 2006), Parkinson’s disease (Morrison, Kerr,  Newell, & 

Silburn, 2008), and orthopedics (Georgoulis, Moraiti, Ristanis, Stergiou, 2006). Both the 

loss of complexity hypothesis (Goldberger, Peng, & Lipsitz, 2002) and the optimal 

movement variability hypothesis (Stergiou, Harbourne, & Cavanaugh, 2006) suggest that 

approximate entropy of time series data from physiological systems may be clinically 

useful, as pathology can shift the regularity of system dynamics away from the optimal 

values. A measure like approximate entropy, with the ability to quantify regularity of 

system dynamics, may someday be used clinically to discriminate typically developing 

children from those with pathology, help assess severity of pathology, and assess efficacy 

of treatment. 

Despite the wide range of research applications of approximate entropy, the 

methodology of application of the approximate entropy algorithm to experimental data 

has yet to be fully optimized for widespread clinical implementation. Experimentally 

measured time series data is necessarily of limited length, and often, if not always, 

corrupted by experimental noise of unknown dynamics. Experimental noise is often 

assumed to be white noise, or independent and identically distributed error, allowing for 

statistical treatment based on these assumptions. The reality is that the measurement 

noise is generated by physical processes that have certain dynamics associated with them, 

which may lead to noise dynamics being something other than the statistical ideal of 

white noise. For example, time series data acquired at high enough frequency will often 

have a 60 Hz noise component due to electrical power distribution using 60 Hz frequency 

(or 50 Hz in Europe). The 60 Hz noise is certainly not well represented as white noise.  
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The dynamics of the noise may not be important if the measure used on the time series 

data is range or standard deviation, but in using measures of the dynamics of the time 

series, including approximate entropy, the dynamics of the noise may interfere with the 

measurement of the dynamics of the system under study.  One way the impact of noise 

can be studied is to add in computer generated white noise to time series data, and 

investigate the impact that the added white noise has on the approximate entropy 

analysis. However, this method leaves open the possibility that real experimental noise, 

which is not pure white noise, may have a different effect on the analysis.  

Another approach to understanding the impact of experimental noise on measures 

of system dynamics is to use a model system that has known dynamics, and see if the 

dynamical analysis gives a result in reasonable agreement with the known dynamics. For 

example, a mechanical single pendulum has limit cycle dynamics, and thus would be 

expected to have a low value for the approximate entropy.  Higher values of approximate 

entropy from experimental measurements of the dynamics of a single pendulum are likely 

a result of contamination of the measured signal with experimental noise with more 

complex dynamics. Data acquired from the single pendulum with the same experimental 

equipment as the infant sitting data would be contaminated with noise having the same 

dynamics as noise contaminating the infant sitting data. Thus it is possible to select 

analysis parameters for the approximate entropy analysis using pendulum data that 

minimize the impact of experimental noise on the analysis. A double pendulum is a 

pendulum with two linked segments that are each free to rotate, giving a system with 

enough degrees of freedom to display chaotic dynamics (Shinbrot, Grebogi, Wisdom, & 

Yorke, 1992). If the experimental limitations of the data are minor enough to not interfere 
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with the analysis, then approximate entropy should be able to distinguish between data 

from these two mechanical systems. Thus mechanical pendulums can act as model 

systems to investigate the effect of the experimental noise on the analysis of system 

dynamics. 

The approximate entropy algorithm has been described in detail elsewhere 

(Pincus, 1991; Pincus & Goldberger, 1994). As implemented (Kaplan & Staffin, 1996), 

the algorithm creates vectors of length m, and length m+1. It then counts vectors of time 

series data of length m that are similar to each of the vectors of length m, and then counts 

how many of those similar m length vectors are also similar at length m+1. Approximate 

entropy is then calculated as the logarithm of the sum of the count of similar m length 

vectors minus the logarithm of the sum of the count of similar m+1 length vectors, 

normalized by N, the number of data points. The difference between logarithms can be 

rewritten as the logarithm of the ratio of the count of similar vectors of length m divided 

by the count of similar vectors of length m+1. Thus repeated patterns in the data give rise 

to lower approximate entropy values, because two vectors similar at length m will also be 

similar at length m+1 due to the repeating pattern, resulting in a ratio near 1, the log of 

which is then near zero. For this reason, time series with repeated patterns have 

approximate entropy near zero. 

An important aspect of the approximate entropy calculation is determining how 

similar vectors are defined. The approximate entropy algorithm uses a parameter r to 

define similar vectors. If each point in a vector is within a distance r of the corresponding 

point in the other vector, then the two vectors are counted as similar. If r is too large, 

vectors are counted as being similar when they are not; if r is too small, then vectors that 
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should be considered as similar are not counted as being similar. The time series data will 

have some measurement error, as is typical of experimentally derived data, and the r 

parameter allows for two vectors to be counted as similar, even if the experimental noise 

results in the values not being identical. A value for “R” is selected for all the time series 

in the analysis, and this value is multiplied times the standard deviation of each 

individual time series data in order to define the r for that time series; ri=R*std(Datai) for 

each time series i. While a range of 0.1 to 0.25 for R is suggested in early work (Pincus & 

Goldberger, 1994), recent work suggests that R be set at 0.2 for biological applications; 

i.e. ri=0.2*std(Datai) (Veldhuis, Keenan, & Pincus, 2008). While the r parameter may 

serve to filter experimental noise, it also filters the biological signal, and thus serves to 

select the length scale of the system dynamics that is being probed by the approximate 

entropy analysis. It is not clear whether the most important function of the r parameter is 

simply to reduce the sensitivity of the analysis to experimental noise, or if it has a more 

important function relevant to the length scale of the dynamics of biological system. 

If the function of the r value is simply to reduce the sensitivity of the analysis to 

experimental noise, then basing the r value on the noise, ri=R*std(Noisei),  might be 

preferred. Pincus and Goldberger (1994) suggest that r must be chosen to be larger than 

the noise, but fail to give exact guidelines other than to suggest a value of three times the 

estimated mean noise has work well in their clinical studies. Thus one might expect that 

selecting the r value based on some estimation of the noise in the data might be a useful 

approach. Alternatively, other authors have suggested that r should be selected to 

maximize the entropy result (Castiglioni & Di Rienzo, 2008; Lu, Chen, Kanters, 

Soloman, & Chon, 2008). Both of these possibilities were investigated in this work. 
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Understanding the impact of experimental noise (i.e. measurement error) on results is 

often difficult, since the actual signal and noise are not known a priori. One method to 

address this is to use the measurement technique on a known system, i.e. on a model 

system with know dynamics. Because we are making mechanical measurements on the 

infant postural sway, we used mechanical systems with known dynamics to test the 

analysis. Two such mechanical systems were used, 1) the single pendulum, which 

exhibits simple limit-cycle dynamics, and 2) the double pendulum, which exhibits chaotic 

dynamics when launched from appropriate initial conditions.   

The purpose of this work is to examine the impact of the parameters in the 

approximate entropy analysis to better understand dynamics of infant sitting postural 

sway, and we utilized COP data from single and double pendulums, in order to guide us 

in analysis of the infant sitting data. The long-term goal of the work is to discover 

differences between postural sway of infants with typical development and infants with 

delayed development that might be useful in a clinical setting to help assess alterations in 

infants motor control skills due to pathologies such as cerebral palsy, and to assess 

progress due to various therapeutic interventions. 

 

2. Methods 

2.1. Infant Participants   

Thirty infants with 30 developmental delay (age=14.05 months, std=5.33 months, 

for early sitting and age=18.06 months, std=5.09 months, for advanced sitting) and 33 

infants with typical development (age=4.92 months, std=0.57 months, for early sitting, 

and age = 7.92 months, std=0.60 months, for advanced sitting) participated in the study. 
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Recruitment was done through newsletters, flyers, and pediatric physical therapists 

employed at the University. Infants in the developmentally delayed group were diagnosed 

with cerebral palsy, or else were developmentally delayed and at risk for cerebral palsy. 

Obtaining a firm diagnosis of cerebral palsy at this young age is often not possible. 

Because a definitive diagnosis of cerebral palsy had not been made, we refer to these 

infants as developmentally delayed, because all scored below 1.5 standard deviations 

below the mean for their corrected age on the Peabody Gross Motor Scale (Folio & 

Fewell, 2000). However, the development is likely not just delayed, but also atypical 

(Chen & Wollacott, 2007). A consent form was signed by a parent or guardian of all 

infant participants, and all procedures were approved by the University of Nebraska 

Medical Center Institutional Review Board.  

Inclusion criteria for entry into the study for the typically developing infants were: 

a score on the Peabody Gross Motor Scale of greater than 0.5 SD below the mean, age of 

five months at the time of initial data collection, and sitting skills as described below in 

beginning sitting. Exclusion criteria for the sample of infants who are typically 

developing were: a score on the Peabody Gross Motor Scales less than 0.5 SD below the 

mean, diagnosed visual deficits, or diagnosed musculoskeletal problems. If a typically 

developing infant was found to be less than 0.5 SD below the mean, and did not qualify 

for the study, the parents were informed of the score, the possibility of error in the 

measurement, and advised to have the infant re-evaluated within the next 3 months. 

Operational definitions of beginning sitting were used to determine the child's readiness 

for entry into the study. Beginning sitting was defined as (a) head control such that when 

trunk is supported at the mid-trunk, head is maintained for over one minute without 
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bobbing; (b) infant can track an object across midline without losing head control; (c) 

infant may prop hands on floor or legs to lean on arms, but should not be able to reach 

and maintain balance in the prop sit position; (d) when supported in sitting can reach for 

toy; (e) can prop on elbows in the prone position for at least 30 seconds. Each infant was 

tested when they entered into the study based on the ability to sit for about 10 sec, and 

then again 3-4 months later. 

For the infants with developmental delay the inclusion and exclusion criteria were 

as follows. Inclusion criteria were: age from five months to two years, score less than 1.5 

SD below the mean for their corrected age on the Peabody Gross Motor Scales, and 

sitting skills as described above for beginning sitting. Exclusion criteria were: age over 

two years, a score greater than 1.5 SD below the mean for their corrected age on the 

Peabody Gross Motor Scale, a diagnosed visual impairment, or a diagnosed hip 

dislocation or subluxation greater than 50%.  

Note that “early” and “advanced” sitting are labels indicating that the sitting was 

either close to the time the infant was able to achieve about 10 seconds of upright sitting 

(early), or the sitting behavior that was displayed 3-4 months later (advanced). For the 

infants with typical development, the advanced sitting was also well controlled sitting. 

For the infants with developmental delay, the sitting behavior studied as advanced sitting 

was not necessarily well controlled sitting behavior, especially in infants who were more 

severely affected. The comparison between “early” and “advanced” should be understood 

as advancement in behavior with time, and not that the skill level had improved equally 

between the two groups. Thus the change in the measures of posture control might be 

expected to change less for the infants with delayed development than for those with 
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typical development.  

 

2.2. Pendulums 

Two pendulums were used in the study (Figure 4.1).  The first was a single 

pendulum, constructed from steel bar (1” x .125” x 3’) and mounted to swing freely on a 

rigid structure, using Bones Reds 608 Precision Skate Bearings (Bones Bearings, Santa 

Barbara, CA) to reduce friction as the pendulum swings. The pendulum arm length was 

selected to give the pendulum a frequency of approximately 0.7 Hz, because maximum 

power in the power spectra of the infant sitting was of a similar frequency. Weights were 

clamped on the pendulum arm to simulate the weight of an infant. Amplitude of the 

pendulum swing was varied from trial to trial. The second pendulum was a double 

pendulum, purchased commercially (http://www.chaoticpendulums.com), and could be 

mounted on the same mounting structure as the single pendulum. The double pendulum 

also had metal bearings to reduce friction. 

2.3.  Data Collections 

 Data collections for both infants and pendulums were performed with the same 

equipment, using all the same data acquisition parameters. For data acquisition (Figure 

4.1), a pendulum or infant was placed on an AMTI force plate (Watertown, MA), 

interfaced to a computer system running Vicon data acquisition software (Lake Forest, 

CA). Markers can be seen on the infant in Figure 4.1, and kinematic data was also 

collected, but is not discussed in this paper. The time series data collected is center of 

pressure (COP) data, which is the position of the resultant vector where it intersects the 

surface of the force plate. Thus the time series data is position data, although it is derived 
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from the forces measured by the force plate. The COP time series were acquired through 

the Vicon software at 240 Hz, in order to have a sampling frequency 10 times above the 

highest frequency found the time series from in a pilot study.  

For all data collection sessions, the infants were allowed time to get used to the 

laboratory setting, and were at their parent's side or on their lap for preparation and data 

collection. Infants were provided with a standard set of infant toys for distraction and 

comfort. All attempts were made to maintain a calm, alert state by allowing the infant to 

eat if hungry, be held by a parent for comforting, or adapting the temperature of the room 

to the infant's comfort level. Testing was only proceeded when the infant was in a calm 

and relaxed state, not crying or otherwise making extended vocalization. A soft cloth was 

placed over the plate for warmth and was securely adhered with tape on the force plate. 

The investigator and the parent remained at one side and in front of the infant 

respectively during all data collection, to assure the infant did not fall or became insecure. 

The child was held at the trunk for support, and gradually the infant was guided into a 

prop sitting position while being distracted by toys presented by the parent. Once the 

examiner could completely let go of the infant, data were collected for 10 seconds while 

the child attempted to maintain sitting postural control. Trials were performed until we 

had collected three trials that are acceptable for our criteria, or until the infant was 

indicating that they were done. At any time the child became irritated; the session was 

halted for comforting by the parent or a chance for feeding, and then resumed only when 

the child was again in a calm state. In some cases, if the infant was crying for a long 

period of time, then data was not collected at that session. Infants came to the lab twice 

within a single week, and we attempted to get three trials in each of the two sessions.   
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Segments of usable (described below) data were analyzed using custom MatLab 

software (MathWorks, Nantick, MA). No filtering was performed on the data in order to 

not alter the nonlinear results (Rapp, Albano, Schmah, & Farwell, 1993). Trials were 

recorded including force plate data and video data from the back and side views. 

Afterwards segments were selected by viewing the corresponding video. Segments of 

data with 2000 time steps (8.3 seconds at 240 Hz) were selected from these trials by 

examination of the video. Acceptable segments were required to have no crying or long 

vocalization, no extraneous items (e.g. toys) on the force platform, neither the assistant 

nor the mother were touching the infant, the infant was not engaged in rhythmic behavior 

(e.g. flapping arms), and the infant had to be sitting and could not be in the process of 

falling.  

For the single pendulum, long time series could be collected (limited by the 

storage capacity of the computer), and then these were divided into 2000 time step 

segments (i.e. N=2001) to match the infant sitting data. Segments matching the infant 

sitting based on signal-to-noise (discussed below) were selected for analysis. For the data 

collection with the double pendulum, to ensure initial conditions that would lead to 

chaotic motion, the double pendulum was restarted before each data collection. The first 

8.3 seconds of data (2000 time steps, N=2001) were selected for analysis. 

2.4.  Data Analysis 

Signal-to-noise: During the course of data analysis, it became apparent that some 

time series had better signal-to-noise than other time series, and that this was affecting 

the approximate entropy analysis. For the single pendulum, the equation of motion can be 

solved using the small angle approximation, resulting in a sin function for the solution to 
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the equation of motion. As expected, the COP data obtained from the single pendulum 

appeared to be a sine function for small amplitudes of displacement, but appeared to have 

a noise component in addition to the expected sine wave. Based on this observation, a 

method was developed to estimate the signal-to-noise for our time series data.  Here 

“signal” refers to the true data if no experimental noise were present in the time series 

data. Signal-to-noise is defined as the ratio of the variances of the signal and noise 

(Manolakis, Ingle, & Kogon, 2005); signal-to-noise = ss
2/sn

2 , where ss indicates the 

standard deviation calculated from the smoothed time series (estimated signal), and sn is 

the standard deviation of the difference between the unsmoothed time series and 

smoothed time series (estimated noise). 

Because we wanted to estimate the signal-to-noise in both periodic data and 

chaotic data, we used a sine function and a numerical solution to the Lorenz attractor, 

each with different levels of added random noise, as test pseudo-data sets, where 

“pseudo-” indicates data was generated in MatLab, not acquired with the force plate. By 

generating pseudo-signal and pseudo-noise separately before adding them to make 

pseudo-data, time series pseudo-data were generated with known signal-to-noise, 

allowing the result of the signal-to-noise detection algorithm to be verified. Sampling 

rate, spectral frequencies, and apparent signal-to-noise of the pseudo-data were chosen to 

be similar to the infant sitting data. An estimate of the signal in each of the pseudo-data 

sets was made by smoothing the noisy data, and then the noise was estimated by the 

difference of the pseudo-data and the estimated signal. Two smoothing methods were 

used, Savisky-Golay polynomial smooth and a low-pass Butterworth filter smooth.  It 

was felt that the critical measure of signal-to-noise was at poor signal-to-noise conditions, 
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so the parameters for the Savisky-Golay (polynomial order and window size) and for the 

low-pass filter (filter order and cut-off frequency), were optimized for matching the 

measured signal-to-noise with the actual signal-to-noise for the pseudo-data at poorer 

signal-to-noise levels. Then, comparing the measured with actual signal-to-noise at better 

signal to noise values, the Savistsky-Golay method was found to be better, so that method 

was adopted as the standard method, using the parameters of a polynomial order = 8, and 

window size = 121 (0.5 sec). The double pendulum has much higher signal-to-noise than 

the other data types, and these parameters for estimation of signal-to-noise did not appear 

to work for the double pendulum data. Application of this method to single pendulum 

data and infant sitting data appeared to give reasonable results (Figure 4.2), and the result 

from the single pendulum is especially encouraging because the solution to the equation 

of motion is expected to be a sine function, and the estimated signal, i.e. the smoothed 

data, closely resembles a sine function.  

Approximate entropy: The approximate entropy calculation was described in the 

introduction, and Pincus (1991) and Pincus and Goldberger (1994) are good resources for 

additional discussion of the method. The MatLab code used to calculate approximate 

entropy was accessed online (Kaplan & Staffin, 1996). Approximate entropy, and all 

other calculations for this work, were done using MatLab (version  R2007a).  

Spectral analysis: Periodograms were calculated using MatLab to estimate the 

power spectrum for each trial using a Hann window function. Periodograms were 

averaged for all trials in each of 4 categories, 2 subject types (infants with typical or 

delayed development), at 2 sitting ages (early or advanced sitting). Sharp peaks were 

observed at 30 Hz, 60 Hz, and 90 Hz, the largest of which was at 60 Hz, and were 
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thought to be related to power transmission at 60 Hz, and not features of the infant sitting 

postural sway.   

Statistical analysis: A statistic of interest in this analysis is the effect size in 

comparing two populations. Many estimators of effect size assume a normally distributed 

data, but the approximate entropy values in this study were observed to have a non-

symmetric distribution, and the distribution was skewed to high side. Thus we used the 

nonparametric Wilcoxon rank sum test (Mann-Whitney U test) to perform comparisons. 

This has the advantage of being easy to calculate using MatLab, and allowed comparison 

of the p value obtained to a critical p value to assess if the approximate entropy analysis 

were likely significant (p<pcritical), or if the difference in approximate entropy values were 

likely not significant (p>pcritical). We also performed a paired t-test, again using the built-

in MatLab function.  

The reported p values are for three different comparisons: 1) comparisons of the 

n=30 infants with developmental delay compared with the n=33 infants with typical 

development, for approximate entropy analysis of postural sway in the anterior-posterior 

(front-to-back) axis, 2) comparisons of the n=30 infants with developmental delay 

compared with the n=33 infants with typical development, for approximate entropy 

analysis of postural sway in the medial-lateral (side-to-side) axis, and 3) comparisons of 

n=100 trials of single pendulum with n=100 trials of double pendulum. For comparisons 

1 and 2 (infant sitting) up to 3 trials for each infant were averaged (sometimes the infant 

was crying, and fewer than 3 trials were collected). Hundreds of comparisons were made 

using different parameters for the approximate entropy calculation, but these are not 

independent comparisons, e.g. the ApEn (m=2, r=1, N=2001) are correlated with ApEn 
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(m=2, r=1, N=1001). Thus in correcting our significance level for multiple comparisons, 

we used a Bonferroni type correction considering three independent comparisons (infant 

sitting anterior-posterior axis, infant sitting medial-lateral axis, and pendulum 

comparisons), and set the significance level at alpha=0.05/3=0.017. Repeated measures 

ANOVA analysis, comparing sitting postural sway for infants with typical development 

and delayed development, for early sitting and advanced sitting was performed using 

SPSS Statistics (GradPack 17.0).  

 

Results 

Typical parameters used in many studies for calculating approximate entropy are 

m=2, r= .2* std(data), and lag=1, so we used these parameters as our starting point. To 

see the effect of noise on the approximate entropy result, we examined the relationship 

between approximate entropy using standard parameters ApEn( m=2, r=.2*std(data), 

N=8.33 sec acquired at 240 Hz, lag=1), and estimated signal-to-noise (Figure 4.3), and 

found that approximate entropy is systematically higher for poor signal-to-noise for 

single pendulum data, as well as infant sitting in both anterior-posterior (front-to-back) 

and medial-lateral (side-to-side) directions. Compensating for the effect of poor signal-to-

noise is critical, because most of the variability in the approximate entropy is due to 

signal-to-noise. 

Looking at the approximate entropy as a function of lag in data from the single 

pendulum (Figure 4.4), we found that for time series with poor signal-to-noise, the 

approximate entropy varies considerably with lag, but that for the time series with the 

best signal-to-noise, lag is not as important.  We expect the approximate entropy for a 
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single pendulum to be near zero, due to the limit cycle dynamics of the single pendulum. 

The lowest approximate entropy value for the poor signal-to-noise time series was at 

lag=4. Spectral analysis of the time series data finds a small peak at 60 Hz, and even 

smaller peaks at 30 Hz and 90 Hz, presumably contamination from the 60 Hz frequency 

used for power delivery. Our data was acquired at 240 Hz, so the 60 Hz noise repeats 

every 4 data points in our data, explaining the utility of using lag=4 in the approximate 

entropy calculation. Alternatively, down-sampling the data to 60 Hz would be another 

way to reduce the impact of 60 Hz noise contamination on the approximate entropy 

result, so we included this in our subsequent data analysis. 

Proper selection of the r parameter would be expected to improve the performance 

of the algorithm on data contaminated by experimental noise, since this parameter is 

thought to act as a filter parameter (Pincus, 1991; Pincus & Goldberger, 1994). 

Conceptually, if the r parameter is larger than the experimental noise, then the effect of 

the experimental noise on the analysis should be reduced. Thus we investigated the 

performance of the approximate entropy algorithm as a function of the r parameter. 

Typically, r is defined for each time series as some multiple of the standard deviation of 

the time series data, ri=R*std(datai), where R is constant for a given analysis, but r varies 

for each time series i in the analysis because the standard deviation of each time series is 

different. Some authors have suggested that the best choice for the r parameter is to select 

one that maximizes the entropy calculated (Castiglioni & Di Rienzo, 2008; Lu, Chen, 

Kanters, Solomon, and Chon, 2008). Using r=R*std(data) for each time series, and 

varying R, we found that infant sitting and single pendulum data have maximum entropy 

with lowest values of r (Figure 4.5). For these data, there is no maximum in entropy with 
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changes in R, so that selecting R based on maximizing the time series is not feasible. The 

maximum in entropy for the double pendulum data down-sampled to 60 Hz, lag=1, 

occurs at R=0.25 (Lower left plot) and at R=0.15 for the 240 Hz data, lag=4. Perhaps the 

reason that the double pendulum has a maximum other than at the lowest R value is 

because the double pendulum data had better signal-to-noise than the infant sitting data 

and better than the single pendulum data, since trials of single pendulum data were 

chosen to match the infant sitting data in signal-to-noise. If maximizing the entropy were 

the best criteria, then the standard selection of R=0.2 appears to be near optimal for this 

better signal-to-noise data of the double pendulum. 

However, the goal of the approximate entropy analysis on the infant postural 

sway data is to distinguish between infants with delayed motor development and the 

infants with typical development, with the notion that pathologic development could lead 

to more regularity in postural sway (Goldberger, Peng, & Lipsitz, 2002; Stergiou, 

Harbourne, & Cavanaugh, 2006). The corresponding goal of the pendulum analysis is to 

take a system with known high regularity (the single pendulum), and a system with 

known chaotic behavior (the double pendulum), and see how well the approximate 

entropy algorithm can be tuned to distinguish between these two systems. Thus the 

measure of interest is a measure of comparison between two groups, and we have used 

the p value from a Wilcoxon rank sum comparison. To investigate the effect of the r 

parameter on the analysis, three types of comparisons were made: 1) infant sitting 

anterior-posterior postural sway (delayed development versus typical development), 2) 

infant sitting medial-lateral postural sway (delayed development versus typical 

development), and 3) pendulum reaction forces (single versus double pendulums). These 
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3 comparisons were repeated for various R values in the approximate entropy calculation, 

and for the data sampled at 240 Hz using lag=1, data sampled at 240 Hz using lag=4, and 

the 240 Hz down-sampled to 60 Hz using lag=1 (Figure 4.6a). The comparison of single 

and double pendulum data showed that the dynamics are significantly different between 

these two systems, and that for the pendulum comparison, the difference is statistically 

significant for a wide range of parameters. For the comparisons of infant sitting postural 

sway data, choice of analysis parameters was more critical, with the data acquired at 240 

Hz and analyzed at lag=1 (Black symbols in Figure 4.6 and 4.6b), no value of R was 

successful in producing a significant p value for the comparisons of infants with typical 

development and infants with delayed development. For the infant sitting postural sway 

comparisons, no comparisons in the medial-lateral axis (squares) were significant. For the 

postural sway in the anterior-posterior axis (circles), and for the time series data down-

sampled to 60 Hz (white symbols) and for the 240 Hz data analyzed using lag=4 (grey 

symbols), the comparison was statistically significant, with minimum p values in the 

range R=1 to R=1.5.   

Since it has been suggested that the function of the r parameter is to act as a noise 

filter  (Pincus, 1991; Pincus & Goldberger, 1994), and since we have an estimate of the 

noise for each time series in our analysis, we investigated the use of the noise estimate to 

calculate the r parameter for each analysis. In this analysis, ri=R*std(Noisei), where 

Noisei is the estimated noise time series based on subtracting the Savitsky-Golay fit to the 

data, as described in “signal-to-noise” methods section. Comparisons were again made 

using the infant sitting postural sway data (Figure 4.6c), but even thought the result can 

be considered significant for the anterior-posterior sway (circles) for the 240 Hz data 
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using lag=4 analysis, the p values obtained were an order of magnitude higher than for 

the analysis based on ri=R*std(Datai). Thus even though one function of the r parameter 

is to act as filter parameter and reduce the sensitivity of the analysis to experimental 

noise, basing the value of the r parameter on the estimated experimental noise does not 

work as well as basing the r parameter on the standard deviation of the time series data. 

This result shows the importance of the r parameter as length scale for the system 

dynamics, not merely a filter for experimental noise. Based on these results, we have 

chosen to use ri=R*std(Datai) where R=1, for the rest of our analyses.  

While the r parameter is related to the y axis of the time series (amplitude of 

data), several parameters affect the approximate entropy analysis in the x axis (time axis 

of data). The length of data acquisition, sampling rate, and length of the comparison 

vectors (m parameter) all potentially interact to affect the results of the analysis. The data 

were all acquired at 240 Hz, but down-sampling the data allows emulation of data 

acquired at high frequencies. For example, by creating a time series using every tenth 

data point in the 240 Hz time series, a time series with the effective sampling rate of 24 

Hz is created. Comparing sitting postural sway in the anterior-posterior axis of infants 

with typical versus delayed development, and single and double pendulums, a plot of 

Wilcoxon rank-sum p value versus effective sampling frequency was made for m values 

of 1, 2, 3, and 4 (Figure 4.7a). The comparison of single and double pendulums resulted 

in statistically significant differences regardless of the sampling frequency or m value 

used, consistent with the dynamics of these two systems being very different. For infant 

sitting, the minimum in p values occurred at 20-30 Hz (Figure 4.7a and expanded in 

Figure 4.7b), for which the time between data points is 33-50 msec. The m=4 data is 
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significant all the way to 120 Hz or .0083 sec, but m=4 means vectors of length 4 and 5 

are used. Considering that 4*.0083=33 msec is still in that range of 33-50 msec. Similar 

results were obtained by using the lag parameter to generate comparison vectors with 

different time lengths, with lag = 8 to 12 giving the lowest p values (Figure 4.7c), and 

having similar p values to those obtained by simply down-sampling the data and using 

lag=1 for the analysis (Figure 4.7a and b). In general there is a good correlation between 

the p values obtained using a lag value to achieve a specific time between data points in 

the times series, and using down-sampling to achieve that same time lag (Figure 4.8). 

However, at the best p-values, there is slight advantage to using the lag method rather 

than down-sampling. Repeating this analysis for infant postural sway in the medial-lateral 

axis did not find any significant differences for infants with typical development versus 

infants with delayed development. 

While the approximate entropy algorithm is considered to be more robust to short 

time series than many other methods of nonlinear analysis, length of the time series still 

must be adequate to sample the system dynamics. Thus we investigated shortening the 

time series data to see if we could establish a minimal length requirement for future 

studies. To compare time series of different lengths, we calculated ApEn(m, r=std(Data), 

t @ 240 Hz, lag=8), where t@240Hz means N=t*240 and t is the length in time of the 

time series used in this analysis. We used the first t seconds of the anterior-posterior COP 

time series data, and then plotted the p value from the Wilcoxon rank sum comparisons. 

For the comparison of single and double pendulum, just one second of data was sufficient 

to distinguish between the single and double pendulum (Figure 4.9a), again consistent 

with the dynamics being very different between the single and double pendulum. For the 
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infant sitting, p values were slightly below the p=0.017 level that had been set as the 

critical value for determining statistical significance with as little as 3 seconds of time 

series data  (Figure 4.9a). However, the best p values were with t=8.33 seconds of data, 

and we did not have longer time series to determine if longer time series would be 

beneficial. To determine the effect of time series length on the approximate entropy 

values, and on the distribution of approximate entropy values, we also examined those 

values as a function of length of the time series (Figures 4.9b and 4.9c, respectively). The 

values have leveled off substantially by 8.33 seconds, so major improvements in the 

analysis with longer times series seem unlikely, but without actually having longer time 

series, this result is speculative.  

Repeated measures ANOVA analysis was performed on the infant sitting data 

using ApEn(m=1, r=std(Data), t=8.33sec@240Hz, lag=8) with data from the early sitting 

and developed sitting. In the anterior-posterior axis, the development comparison was 

significant (F=15.623, p<.001), the group difference was significant (F=6.908, p=.034), 

and the interaction was significant (F=4.723, p=.011). Approximate entropy of anterior-

posterior sitting postural sway decreases significantly with development for infants with 

typical development, while the change with development for infants with delayed 

development is not significant (Figure 4.10). The comparisons for postural sway in the 

medial-lateral axis were not significant.  

The approximate entropy results indicating that down-sampling to 10 to 30 Hz 

range allows differences to be seen between postural sway in the anterior-posterior axis 

suggests that spectral differences in this region should be observed.  To investigate this, 

spectral analysis was performed on the same time series data as the approximate entropy 
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analyses, and the spectral analysis confirms there are differences in the 10-30 Hz range, 

especially in the anterior-posterior axis data (Figure 4.11). The broad features seen in the 

power spectra from early sitting postural sway of infants with typical development in the 

10-30 Hz region (Figure 4.11 c) are greatly reduced in intensity in the advanced sitting of 

these infants (Figure 4.11d), and are not seen in the power spectra of postural sway from 

infants with delayed development, for either early (Figure 4.11a) or advanced (Figure 

4.11b) sitting.  The 10-30 Hz features are much lower intensity in the medial-lateral axis 

(Figure 4.12).   The narrow peak at 30 Hz in these spectra is an artifact related to the 60 

Hz power, as a larger narrow peak is seen at 60 Hz.  Note that the power spectra are 

plotted on a semilog axis, so the intensity in these high frequency features is small 

compared to the intensity of the lower frequency features. 

Discussion 

The use of measures of nonlinear dynamics in medicine and physiology research 

is appealing because there are pathologies that alter system dynamics (Goldberger, Peng, 

& Lipsitz, 2002; Stergiou, Harbourne & Cavanaugh, 2006), and these measures have the 

capability to quantify the changes in dynamics. Approximate entropy was developed to 

be robust when applied to experimental data, but appropriate choice of parameters used in 

the algorithm need to be made.  Methods for selection of the r parameter based on 

experimental noise and on maximizing the approximate entropy value did not prove to be 

useful in our analysis. Use of a single and double pendulum as model systems provided to 

be of limited benefit, as the difference in the dynamics between these systems was so 

large, that the analysis was not sensitive to the choice of parameters used in the 

approximate entropy analysis. The analysis of infant postural sway, on the other hand, did 
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depend on the choice of parameters. The discussion below is in two sections, one on the 

implementation of the approximate entropy algorithm, followed by a discussion infant 

sitting postural sway.   

Discussion of implementation of the approximate entropy algorithm 

For comparing systems with vastly different dynamics, such as the single and 

double pendulum, approximate entropy is not terribly sensitive to the choice of analysis 

parameters. Statistically significant differences between the single pendulum, a strictly 

periodic system, and the double pendulum, a known chaotic system, were found for a 

wide variety of parameters. However, for comparing systems with similar dynamics, such 

as infants with typical development and infants with motor development delay, the 

analysis benefits from more careful attention to the parameters used. Based on our 

results, we make some practical recommends for performing approximate entropy 

analysis on flow data: 

1. The r parameter in the approximate entropy algorithm is designed to 

compensate for experimental noise in the measured time series data, and many authors set 

the r parameter as r=0.2 * std(Data), i.e. 0.2 times the standard deviation of the time 

series. With our data set, use of the standard parameters ApEn(m=2, r=.2*std(Data), t @ 

240 Hz, lag=1) leads to the erroneous conclusion that there is no significant difference 

between these two groups of infants, and use of ApEn(m=1, r=1.0*std(Data), t @ 240 

Hz, lag=8) showed significant differences in infants with delayed versus typical 

development in early sitting in the anterior-posterior axis. In previous work (Deffeyes, 

Harbourne, DeJong, Kyvelidou, Stuberg, & Stergiou, 2009) we found that ApEn(m=2, 

r=3.0*std(Data), t @ 240 Hz, lag=4) showed significant differences in infants with 
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delayed versus typical development in developed sitting in the medial-lateral axis, 

although at the time that study was completed, not all the subjects had completed the data 

collections, so only n=22 infants with developmental delay and n=19 infants with typical 

development were included in that study. Perhaps because larger swings in postural sway 

are more difficult to control, larger movements are more sensitive to the differences in 

motor control between these populations, so the use of the smaller value of r= 

0.2*std(Data) is not appropriate for finding these differences. The r parameter is not 

simply a filter for experimental noise, but also adjusts the analysis to be sensitive to the 

magnitude of changes that are characteristic of the dynamics of the system. An a priori 

prediction of the most useful r value is difficult, and we suggest exploring the effect of 

this parameter on the analysis. Using the standard approach of .2*std(Data) may not be 

the best choice for certain types of data, such as our infant sitting postural sway data, but 

for systems with large differences in the dynamics, such as the periodic single pendulum 

and the chaotic double pendulum, the standard choice of r may be appropriate.  

2. The sampling frequency and lag are two ways to adjust the time constant to 

which the analysis is sensitive. For our analysis, 33-50 milliseconds between data points 

had the best sensitivity to differences between the infants with typical versus delayed 

development. A lag value of 1 is often used, and this may be a good choice for many data 

sets. However, for our postural sway data, the adjustment of the lag parameter can 

improve the analysis. Selection of the sampling frequency for spectral analysis is well 

understood, and the Nyquest criterion of sampling at twice the rate of the highest 

frequency feature in the data is a well known requirement. Sampling at higher than the 

Nyquist frequency for spectral analysis helps to give better definition to the spectral 
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features, and so oversampling by a factor of 5 to 10 is not uncommon. The penalty for 

oversampling in spectral analysis is minimal, with extra storage for the data and an 

increase in computational time for the power spectrum being two main disadvantages. 

However, with inexpensive data storage and the very highly optimized fast Fourier 

transform algorithms available, in most situations these are not significant disadvantages, 

so oversampling is a common practice. Oversampling the time series data for 

approximate entropy analysis means that the system does not evolve enough between 

data points for the system dynamics to be captured. Under-sampling means that the 

system has evolved too much between data points so the functional relationship between 

adjacent points is lost, and just as with spectral analysis, under-sampling leads to 

incorrect results. Thus there is an optimum sampling rate, and that sampling rate is 

related to a time scale of the system dynamics.  We suggest over sampling for data 

acquisition to be sure fast system dynamics are captured, and then either down-sampling 

the data, or use of a lag value >1, in order to put the time between samples at a value that 

is appropriate for the system dynamics improves the approximate entropy analysis. If 

analysis time is a limiting factor (e.g. a very large data set), down-sampling the data and 

using a lag=1 is almost as good as using the lag to match the frequency of interest, and 

down-sampling the data reduces the time required for the approximate entropy analysis.  

If periodic noise is present, then selection of the lag value based on the repeat of 

the periodic noise may be beneficial. For example, we sampled at 240 Hz, and have 60 

Hz noise from the power distribution frequency, which means the 60 Hz noise repeats 

every 4 data points. Thus selecting a lag value of 4, 8, 12, 16, etc. results in all the points 

in the comparison vector being acquired at the same point in the noise cycle, to help 
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reduce the impact of the periodic noise on the analysis. Spectral analysis can be done first 

to help determine frequencies at which there are differences between populations of 

interest, and lag values of interest can be determined. Averaging spectra from multiple 

trials improves the analysis. Also, spectral analysis will show any periodic noise that 

might be present, and if present, may guide the choice of lag value. For example, our data 

acquired at 240 Hz with 30 Hz and 60 Hz noise, means that lags of 8 or 4 should be 

considered (240 Hz/30Hz=8; 240 Hz/60Hz=4) so that all the points in comparison 

vectors are acquired at the same phase in the noise contamination. 

 3. The m parameter is the length of the comparison vectors formed from the 

time series data. A comparison vector length of m=2 is commonly used, meaning that 

similar vectors of length 2 are tested to see if they are still similar at length 3. For more 

intricate patterns, longer comparison vectors may be beneficial to include in the analysis, 

but for our analysis, the m value was less critical than some of the other parameters. One 

reason to choose a smaller m value is that approximate entropy analysis with larger m 

values takes more time to run. 

4. The length of the time series is important to the analysis, but verification that 

the length of the time series is appropriate is not as easy as we might have assumed at the 

outset. A commonly used criteria for the length of the time series data for approximate 

entropy analysis is that N, the number of data points in the time series, needs to be N> 

10m, or  N>30m if possible (Pincus, 1991; Pincus & Goldberger, 1994). For our choice of 

m=1, we in theory would only need 10 to 30 data points. One issue is that N does not 

give the complete answer about the necessary length of the time series because sampling 

rate also needs to be considered. For example, with our sampling at 240 Hz, we could 
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have met the N> 30m criteria with a data collection of 125 msec. However, we found that 

at least 3 seconds of data was needed to find significant differences between infants with 

typical versus delayed development, and that the analysis improved for even longer data 

sets. Thus the length of the time series needs to be set based on sampling the complete 

dynamics of the system, and not set based on getting a certain number of data points. One 

way to examine if the time series is long enough is to perform the analysis on 

increasingly longer lengths of time series data, and see if increasing the length of the time 

series used in the analysis changes the results. 

5. Specify the parameters used in the analysis in discussing the results. The 

parameters that were selected for calculation of the approximate entropy in this study 

were based on maximizing the p value for a rank sum test involving early infant sitting. 

In this study, we found no significant effect in the data from the medial-lateral direction, 

only in the anterior-posterior direction, based on ApEn(m=1, r=1.0*std(Data), t @ 240 

Hz, lag=8), parameters optimized for comparing the early sitting. A somewhat similar 

approximate entropy analysis was performed using a subset of this data, but the 

parameters were optimized used the data from developed sitting (Deffeyes, Harbourne, 

DeJong, Kyvelidou, Stuberg, & Stergiou, 2009), which found a significant difference 

between ApEn(m=2, r=3*std(Data), t=8.33sec@240Hz, lag=4) sitting postural sway for 

infants with developmental delay and infants with typical development, but in the medial-

lateral direction and not in the anterior-posterior direction. A third study with a subset of 

this data used nearly standard parameters ApEn(m=2, r=0.2*std(Data), 

t=8.33sec@240Hz, lag=4) and found no significant difference between postural sway of 

infants with delayed development and infants with typical development (Deffeyes, 
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Harbourne, Kyvelidou, Stuberg, & Stergiou, 2009). Thus it is not correct to say that the 

approximate entropy of one condition/group is different than another condition/group, but 

rather the parameters must be specified, i.e. that the ApEn(r,m,t @ Hz, lag) is different 

for the condition/group. Pincus (1991) has described the approximate entropy as a family 

of statistics, with members varying by r and m values. We point out that different family 

members may on occasion arrive at different conclusions.   

6. A model system can give an indication that the approximate entropy result is 

being predominately influenced by noise. Using a single pendulum model of periodic 

motion, noise was found to be the main source of variability in approximate entropy 

calculated with the standard parameters. Consider whether the equipment used for data 

acquisition is suitable for the measurements, as approximate entropy analysis is sensitive 

to the dynamics in the noise.  

 

Discussion of the infant sitting postural sway results 

An important result from this work is that using a lag value of 8 or 12 in the 

approximate entropy analysis gave the best separation of early sitting between infants 

with typical development and infants with delayed development, and that the difference 

was only for postural sway in the anterior-posterior direction. ANOVA analysis of the 

ApEn(m=1, r=std(Data), t=8.33sec@240Hz, lag=8) results found a significant interaction 

between sitting development and subject group being found only for the anterior-

posterior axis. A lag value of 8 corresponds to a time lag of 33 msec, or a frequency of 30 

Hz; a lag value of 12 corresponds to a time lag of 50 msec, or a frequency of 20 Hz. 

Spectral analysis confirmed that there are features in the 20-30 Hz range in the early 
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sitting of infants with typical development that are greatly reduced in mature sitting, and 

these features are not seen in either early or developed sitting of infants with delayed 

development. These features are apparent in the anterior-posterior data, but not in the 

medial-lateral data. The importance of these 20-30 Hz features is not that they are the 

largest features in the power spectra, but rather that they are more prominent for postural 

sway in the anterior-posterior axis in infants with typical development in early sitting, the 

same group/condition where the ApEn(m=1, r=std(Data), t=8.33sec@240Hz, lag=8) was 

higher. As discussed in more detail below, our results suggest a contribution from a fast 

acting (20-30 Hz) mechanism in early (~4.9 months of age) sitting of typical infants, such 

as a stretch reflex. This fast mechanism is greatly reduced in their postural control in 

advanced (~7.9 months) sitting, presumably because better control from other 

mechanisms has become active.   

Our sitting postural sway results in typically developing infants fit well with 

results reported of infant sitting by Hadders-Algra (2005), as she reports a change in 

postural variability that occurs at about 6 months of age, so that our early sitting is before 

the transition and the developed sitting is after the transition. The transition that occurs at 

6 months of age (Hadders-Algra, 2005) is a transition from “primary variability” in 

postural activity characterized by high variability and only poorly adapted to 

environmental constraints, to a more well-coordinated “secondary variability.” The 

“secondary variability” that emerges in infants at about age 6 months Hadders-Algra 

(2005) describes as being related to the infants refining the ability to successfully 

incorporate multiple sensory systems, such as somatosensory, visual, and vestibular, into 

the postural control. In our study, higher frequency postural sway perhaps due to stretch 
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reflex in early sitting corresponds to the more poorly controlled “primary variability” 

described by Hadders-Algra  (2005) (REF). As the ability to incorporate more types of 

sensory information into the postural control improves, the apparent stretch reflex 

contribution to postural sway declines and the advanced sitting with the lower 

contribution from the apparent stretch reflex corresponds to the “secondary variability” 

described by Hadders-Algra  (2005)(REF).  

In the vocabulary of dynamic systems theory, as a control parameter changes, the 

attractor changes, resulting in the emergence of a new behavior, such as the emergence of 

sitting. While we have not elucidated the control parameter for the transition in infant 

sitting, candidates include neurological maturation, physical growth, muscle strength 

gains, or learning due to interaction with the environment that alters central nervous 

system connectivity based on neural plasticity mechanisms.  While certainly neural 

myelination is an ongoing process during infancy, and physical growth and strength gains 

are apparent, Hadders-Aldra (2005) describes the emergence of the secondary variability 

from primary variability in infant sitting as being related to motor learning, and the 

increased use of appropriate motor synergies, while acknowledging that some of the other 

control parameters may also be contributing. If an important control parameter is 

increased experience, how is that translated into more appropriate motor synergies? What 

is it that an infant learns when learning to sit? One possibility is that the internal model of 

the infant is refined to the point that correct control decisions can be made, allowing the 

emergence of the new behavior (Chen, Metcalfe, Jeka, & Clark, 2007).  The description 

of an improved internal model is somewhat of a mechanistic description of the changing 

attractor landscape, where the internal model is thought to be associated with cerebellar 
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function (Ebner & Pasalar, 2008). Hadders-Algra (2005) studied the response to postural 

perturbations to arrive at these conclusions that the transition allows better response to 

external perturbations with “secondary variability” in postural control than with the 

“primary variability” found in younger infants. Our study did not include perturbations in 

the protocol, but internal perturbations, such as breathing movements, are present. If the 

infant’s internal model of their body is not well refined, then response to a perturbation, 

even if it is simply the breathing of the infants, will not be as well controlled as it would 

be with a better internal model. Sitting postural sway in infants has been shown to 

increase with the acquisition of walking skills, which was interpreted as being due to 

changes of the infant’s internal model of their body with walking (Chen, Metcalfe, Jeka, 

& Clark, 2007), showing that infants are actively refining their internal model, and that 

sitting postural sway can change based on changes in the internal model. To the extent 

that the younger infant’s internal model of their own body is not yet well developed, the 

movement of any part of their body may act as an unexpected perturbation to sitting 

posture. The infants in our study at age 7.9 months likely have not only a better ability to 

deal with unexpected perturbations than the infants at age 4.9 months as Hadders-Algra 

(2005) data on response to external perturbations would suggest, but also a more refined 

internal model of their body so that they would be expected to encounter fewer 

unexpected internal perturbations.  

 Our data comparing sitting behavior of infants with typical development to 

infants with delayed development also fits well with other reported entropy results. We 

found differences between early sitting postural sway of infants with typical development 

compared to infants with delayed development, with the ApEn(m=1, r=std(Data), 
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t=8.33sec@240Hz, lag=8) being lower in the postural sway of infants with cerebral 

palsy. Our result of higher approximate entropy for postural sway of infants with typical 

development is consistent with the results of Donker, Ledebt, Roerdink, Savelsbergh & 

Beek (2008) who find lower sample entropy, a measure very similar to approximate 

entropy, for standing postural sway in infants with cerebral palsy. Approximate entropy 

has been described as a measure of complexity (Pincus, 1991). Infants with typical 

development have been described as having more complex movements than infants with 

cerebral palsy, perhaps due to impaired cerebral connectivity (Hadders-Algra, 2008). If 

approximate entropy is a measure of complexity, then the higher ApEn(m=1, r=std(Data), 

t=8.33sec@240Hz, lag=8) values we found for postural sway of  infants with typical 

development are consistent with the reported higher complexity. We see the high values 

for ApEn(m=1, r=std(Data), t=8.33sec@240Hz, lag=8) decrease with development, 

whereas Hadders-Algra (2008) hypothesizes that complexity should always be higher for 

infants with typical development, regardless of age.  However, Hadders-Algra (2007) 

reports different types of movement complexity, including “pre-term”, “writhing”, and 

“fidgety”, depending upon the age of the infant. Our particular analysis may only be 

sensitive to one particular type of movement complexity that is prevalent in infants when 

they are 5 months old, i.e. the early sitting in our study. Infants with cerebral palsy may 

have inappropriate muscle sequencing, even in older children (Wollacott & Shumway-

Cook, 2005; van der Heide & Hadders-Algra, 2005). 

The development of motor skills has also been considered from a developmental 

psychology perspective, where the development of locomotion has been described as 

initiating a psychological reorganization that is wide ranging and impacts perception, 
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spatial cognition, and social and emotional development (Campos, Anderson, Barbu-

Roth, Hubbard, Hertenstein, & Witherington, 2000). While locomotor development may 

occur in synchrony with cognitive performance, the unilateral focus of Campos, 

Anderson, Barbu-Roth, Hubbard, Hertenstein, and Witherington (2000) on motor skills as 

the cause of cognitive change is unfortunate given that cognitive change is likely driving 

motor skill acquisition just as much as motor skill acquisition is driving cognitive change 

(Bushnell, 2000). However, Campos, Anderson, Barbu-Roth, Hubbard, Hertenstein, and 

Witherington (2000) make an interesting point that locomotion allows the infant to 

explore the environment by moving to and exploring objects of interest, thereby engaging 

cognitive function that might not otherwise be active. Relating this speculation to our 

study, sitting likely affords some of the same cognitive benefits as locomotion because 

the visual exploration of the environment is enabled by a stable sitting posture, and 

reaching to nearby objects is enabled by a stable sitting posture. From the perspective of 

Campos, Anderson, Barbu-Roth, Hubbard, Hertenstein, & Witherington, (2000), one 

might speculate infants development of upright sitting skills would enhance cognitive 

development, and from this perspective the higher incidence of mental retardation in 

infants with cerebral palsy (Odding, Roebroeck, & Stam, 2006) would be attributed to 

poor development of motor skills. However, from the perspective of bidirectionality of 

causation of Bushnell (2000), the cognitive interest in surrounding environment is also 

likely important in development of the motor skill. From this perspective the high 

incidence of mental retardation in infants with cerebral palsy (Odding, Roebroeck, & 

Stam, 2006), may contribute to the delay of motor skill acquisition, as the intellectual 

curiosity motivating the infant to explore the environment may be lower in infants with 
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mental retardation. However, one cannot neglect the possibility that the correlation 

between mental retardation and cerebral palsy is only partially one of cause and effect, 

and that both are substantially mediated by the severity of the original brain injury.  

The cultural influence on motor development is an intriguing aspect of 

development as it supports the notion that experience influences motor development, as 

the different experiences that infants have in different cultures result in differences in 

motor development. In African societies where early sitting is encouraged by parents’ 

manipulating of infants’ posture, the infants develop sitting at an earlier age and spend 

more time in an unsupported sitting posture than American infants, and it is hypothesized 

that experiencing a greater number of postural positions influences motor learning of 

postural control (Bril & Sabatier, 1986). The development of postural control is not 

entirely a matter of maturation of biological control systems, but also is influenced by the 

environment in which the infant develops. However, there is no culture in which infants 

develop independent sitting skills at age 1 month, as the neuromuscular system 

apparently cannot control sitting at that age regardless of environmental influences. The 

development of postural control is not entirely a matter of the environment in which the 

infant develops, but also depends on the maturation of the biological control systems. It is 

the interaction of the biological system and the environment in which it develops that 

determines the outcome of the infant’s motor development, not simply biology or 

environment acting alone. 

The postural positions that an infant experiences without external intervention, 

such as those performed by the parents in the African societies (Bril & Sabatier, 1986) 

discussed above, are a result of movements the infant makes itself. If more positions are 
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beneficial for motor learning of postural control, then there would be a benefit for infants 

to move more, but what benefit is there to moving in a random manner? Fractal 

movements, such as Levy flights, are more random than periodic movements, and are a 

good search method. For example, Levy flights are used by animals for searching an area 

for food or mates (Reynolds & Rhodes, 2009). Infants sitting postural sway has been 

shown to be fractal (Deffeyes, Kochi, Harbourne, Kyvelidou, Stuberg, & Stergiou, 2009). 

Thus the higher entropy postural sway may be an adaptive method for exploring various 

postural positions. It seems counterintuitive that a young infant with poor postural control 

skills would attempt to use a wide range of different postures, as adopting new 

challenging postures may result in falls. However, unlike falling in adults that may cause 

injury, infants’ falling is typically inconsequential from an injury standpoint, and is 

instead part of the exploratory behavior of an infant as they learn new motor skills such 

as sitting, crawling, cruising, and walking, and learn to use these skills in novel 

environments (Adolph, 2008). The biological interpretation of the large value of the r 

parameter used in the analysis is that large excursions of the COP are required to be 

counted as non-matches by the approximate entropy algorithm. Near fall events, where 

the infant nearly falls but then recovers balance, might give rise to large excursions in the 

COP. Actual falling events were not included in the data, the infant must be sitting in 

order for the trial to be used. Higher entropy for early sitting infants with typical 

development might then reflect more near fall events, as compared to more developed 

and thus more skilled sitting. Higher entropy for infants with typical development as 

compared to infants with delayed development may indict an increased willingness to 

engage in behaviors that result in near fall events as they explore various control 
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strategies.  

Adults have difficulty in producing random movement patterns even when 

requested to do so (Newell, Deutsch, & Morrision, 2000), so it is perhaps not surprising 

that the typical infants sitting behavior loses much, but not all, of its random quality in 

becoming more adult-like. Optimal variability theory (Stergiou, Harbourne, & 

Cavanaugh, 2006) suggests that there is an optimal randomness in human movement 

variability, and early sitting in infants with typical development may have too high a 

randomness compared to optimal adult values, with a subsequent loss of variability with 

development. However, this study only assesses infant sitting at two points in time, and 

there is no reason to believe that the development of infant sitting is linear progression 

towards adult sitting (Adolph, Young, Robinson, Gill-Alvarez, 2008; Harbourne & 

Stergiou, 2003).  While some authors suggest daily evaluation of a motor skill in order to 

assess developmental nuances (Adolph, Young, Robinson, Gill-Alvarez, 2008), a major 

goal of this work was to understand the parameters necessary for the approximate entropy 

analysis, rather than mapping out the shape of the developmental trajectory. 

An interesting aspect of the postural sway features that we found are the high 

frequencies of the COP movements. The features in the 20-30 Hz range are at a higher 

frequency than is typically found in postural sway data, or even in other types of human 

movement data. Human clapping can be maintained as fast as 7 to 8 Hz (Morrison, Hong, 

& Newell, 2009), and the world’s fastest drummer can perform tapping movements no 

faster than 10 Hz (Fujii, Kudo, Ohtsuki, & Oda, 2009).  Because of their high frequency, 

these COP movements are not thought to be related to any type of voluntary movement 

of the infants, and trials with observable repetitive movements, such as clapping or 
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flapping the arms, were excluded from our analysis. Faster movements may be 

accomplished by reflexes, in particular the short latency reflexes that result from stretch 

reflex mechanism. Although different authors adopt different definitions of short latency, 

one definition is a latency less than 60 msec is short latency (Taube, Schubert, Gruber, 

Beck, Faist, & Gollhofer, 2006), and we would classify the features 33 to 50 msec as 

being short latency, if they are in fact due to reflex activity. For comparison, in adult 

sitting the stretch reflex of the paraspinal muscles, which help stabilize the spine in 

upright sitting, has a mean latency of 30.7 (21.3) msec in response to external 

perturbations (Granata, Slota, & Bennett, 2004). The response latency is the time from 

the perturbation until electromyography detects activation of the muscle. It does not 

include time for the muscle to reach full activation, which in adults was an additional 

71.3 (27.7) msec (Granata, Slota, & Bennett, 2004). Thus the fastest reflex response 

might be fast enough to contribute to the 20-30 Hz, 50-33 msec features that we find in 

the anterior-posterior sitting postural sway of typically developing infant. As a 

comparison, normal finger tremor includes a 20-25 Hz component that is produced by the 

stretch reflex loop (Deutsch & Newell, 2006). However, for this tremor the frequency 

depends on the inertial properties and the stiffness properties of the limb, and to the best 

of our knowledge, the frequency for infant trunk movements has not been reported, but 

might be considerably different than the reported 20-25 Hz range for finger movement. 

Perhaps the near-fall events, where the infant nearly falls but recovers (discussed above), 

result in high frequency components of the COP either by exciting a stretch reflex, or 

from high accelerations associated with the fall and/or recovery result in tissue vibrations 

in the high frequency range.  The features in the 20 to 30 Hz range of the power spectra 
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of sitting postural sway of typically developing infants may be stretch reflex associated 

movement, but it is not clear that this is the case.   

Is it reasonable to propose stretch reflexes are active in unperturbed infant sitting? 

Historically, reflexes were thought to be the main posture control mechanism, but more 

recent work has shown posture control is a more complex sensory motor integration 

problem (Horak, 2006). Additionally, the small movements in well-controlled postural 

balance do not seem capable of exciting a stretch reflex. Proposing stretch reflexes in a 

sitting posture study seems unlikely from this perspective, but sitting in young infants is 

not as well controlled as in adults. Postural control in adult standing has been much more 

widely studied than infant sitting, and one might hypothesize that similar control 

mechanisms are operative in infant sitting. Because stretch reflexes likely play only a 

small role in unperturbed adult standing postural control (Bove, Trompetto, Abbruzzese, 

& Schieppati, 2006), it might be argued that stretch reflexes are not active in early infant 

sitting. However, while stretch reflexes are not the main mechanism for control of sitting 

posture, evidence for stretch reflexes making some contribution to infant sitting postural 

sway has also been reported by Hadders-Algra, Brogren, and Forsserberg (1996). Stretch 

reflexes are certainly important in generating a quick response to an external perturbation 

in adult sitting (Granata, Slota, & Bennett, 2004), but may not be activated in unperturbed 

sitting in adults. There are some important differences between adult postural control and 

young infants postural control. Adult postural control can potentially use information 

from a wide array of different sensory modalities, including visual information, vestibular 

information, joint proprioceptive information, cutaneous information from the plantar 

surface of the feet, as well as sensory information from the muscles.  Some of these 
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sensory modalities are not as well developed in the infant compared to adults or even 

older infants, and sensory integration capabilities are not as well developed.  Children do 

not achieve fully adult-like sensory integration until they are 12 years old (Peterson, 

Christou, Rosengren, 2006). Using an oscillating moving-room experimental paradigm, 

infants’ sitting postural sway was found to become more strongly entrained to the visual 

stimuli as they reached the age where they learned to sit (Bertenthal, Rose, & Bai, 1997), 

and infant sensitivity to optic flow in contraction (meaning the image appears to be 

moving away from the infant) increased from 2 to 8 months, but still had not attained 

adult values (Brosseau-Lachaine, Casanova, & Faubert, 2008). The vestibular-ocular 

reflex matures as infants learn to walk (Wiener-Vacher, Toupet, & Narcy, 1996). Thus 

the younger, typically developing infants in our study did not have the full spectrum of 

sensory information to use for posture control. One might speculate that, as a result of not 

having fully developed sensory input to the postural control, postural sway carries the 

body to more extreme positions, sufficient to trigger stretch reflexes. Additionally, infants 

in early sitting more often adopt a “prop sitting” posture where they lean forward and 

place their hands on the ground or on their legs, and support some of their upper body 

weight with their arms. Perhaps because of the forward leaning, the hamstring muscles 

are closer to being stretched to the threshold that can trigger a stretch reflex, and thus 

smaller amounts of postural sway in the anterior direction may be capable of triggering a 

stretch reflex. The differences found in our study were only significant in the anterior-

posterior direction, not in the medial lateral direction, consistent with a stretch reflex of 

the hamstring muscles being triggered more often from a forward leaning posture. These 

results do not indicate that stretch reflexes are the main control mechanism for the infant 
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controlling postural sway, but merely that the differences between the infants with 

developmental delay and those with typical development are more pronounced on time 

scales that are associated with reflex control. 

If the features are related to a stretch reflex, why then would higher ApEn(m=1, 

r=std(Data), t=8.33sec@240Hz, lag=8) values be associated with the movement? The 

stretch reflex in adults is well tuned, with the muscle stretch inducing contraction in the 

muscle that was stretched, and inhibition of the antagonist muscle. However, in infants 

the stretch reflex sensory neurons project to a number of different motor muscles, as the 

connections have not yet been optimally tuned (Myklebust & Gottlieb, 1993; Lichtman & 

Colman, 2000). Thus when any given muscle is stretched, a variety of muscles contract, 

generating movement in a direction that is not entirely appropriate. Thus the higher 

entropy values in postural sway of early sitting of typically developing infants are 

consistent with the occasional occurrence of a movement that triggers a stretch reflex, in 

conjunction with the poorly organized postural sway as result of reflex irradiation that is 

present in these younger infants. ApEn(m=1, r=std(Data), t=8.33sec@240Hz, lag=8) 

decreases as the infants develop, consistent with better coordinated reflex activity. 

If the features we observe in the early sitting postural sway data from infants with 

typical development are indeed due to a stretch reflex, then why do the infants with 

delayed development not have these features in their postural sway data? One potential 

reason for not seeing stretch reflexes in the data from infants with delayed development is 

that if the infant moves enough to trigger a stretch reflex, the reflex may be poorly 

coordinated and cause the infant to lose balance and fall, and we did not use data in our 

analysis where the infant was falling, which may have resulted in not including data 
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where stretch reflex was activated in infants with delayed development.  

A second potential reason is that the emergent behavior in infants with cerebral 

palsy is different that in infants with typical development because the neuromuscular 

control constraints are different, and the optimal behavior for each system is different. 

For example, muscle firing patterns in walking that emerge in infants with Down’s 

syndrome are longer than in infants with typical development, and this emergent pattern 

is thought to be adaptive in these infants in order to help stabilize lax joints (Chang, 

Kubo, & Ulrich, 2009). Children with cerebral palsy have hyperactive stretch reflexes 

(Poon & Hui-Chan, 2009), although the functional implications of the altered reflexes are 

not entirely clear (Matiello & Wollacott, 1997). In some cases, spasticity in limbs 

associated with cerebral palsy may be a result of an altered stretch reflex (van Doornik, 

Kukke, & Sanger, 2009). The infants with delayed development also use a prop sitting 

posture in early sitting, and unlike the infants with typical development, some maintain 

this posture in developed sitting. It may be that these high frequency features are not seen 

in the sitting postural of infants with delayed development because the infants with 

developmental delay do not exhibit as much movement as those with typical 

development, and therefore are less likely to trigger a stretch reflex. A previous analysis 

of this data set, minus a few subjects who had not yet finished the study, found the infants 

with typical development had slightly more postural sway than infants with delayed 

development, although the difference was not statistically significant (Deffeyes, 

Harbourne, Kyvelidou, Stuberg, & Stergiou, 2009).  Given the nonlinear response of the 

stretch reflex, that small difference measured in amount of movement may be more 

important than the linear statistical analysis used in that study would indicate. 
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Additionally, if the infant has learned through experience that certain behavior triggers a 

stretch reflex, and if that poorly coordinated stretch reflex results in a fall, the infant may 

adapt their behavior to avoid triggering a stretch reflex. Sitting still may be an adaptive 

response to an altered stretch reflex in these infants. Children with CP are reported to use 

more top-down postural control (van der Heide & Hadders-Algra, 2005), perhaps because 

reflexive control is less functional in these children.  

A third potential reason for not seeing a stretch reflex response in the postural 

sway data is that it may be related to some unknown parameter that changes with normal 

development of the infants, rather than to typical or delayed developmental. A weakness 

of the experimental design is that, even though both the infants with typical development 

and the infants with delayed development were just learning to sit, the infants with 

delayed development were necessarily older than the infants with typical development. 

Thus any normal developmental change, such as height gain, change in body adipose 

mass, change in lean mass lean mass, could account for the differences we observed. 

Changes in anthropometric features in infants can have unexpected consequences. As an 

example, the stepping reflex seen in young infants appears to disappear with 

development. If young infants are held over a moving treadmill, their feet will make 

stepping motions on the treadmill surface (Thelen, Fisher, & Ridley-Johnson, 1984). As 

the infants developed, they no longer make these stepping movements. Thelen, Fisher, 

and Ridley-Johnson (1984) found the reflex had not disappeared, but rather the infants 

had gained mass due to growth, and the muscle strength had not yet caught up, and if the 

infants’ legs were submerged in water, such that the buoyancy force helped support the 

infant’s mass, the stepping movements were again observed. Similarly, as the typically 
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developing infants in our study developed from age 4.9 months at early sitting to age 7.9 

months at advanced sitting, weight gain may prevent small contributions from reflex 

activity from moving the mass of the infant enough to be detected by the force plate.  The 

high frequency features were not observed in the infants with delayed development, at 

any time early or advanced sitting. These infants were age 14.1 months at early sitting 

and 18.1 months at advanced sitting. While these infants were delayed in their 

development, they were also older than the typically developing infants, and thus may 

have different anthropometric characteristics than the typically developing infants.  

There is also the possibility that the high frequency features are due to some cause 

other than a stretch reflex. While stretch reflexes are fast for control of movement, the 

fast movements we see in our study may not be controlled movements. Often gait data is 

low pass filtered in order to remove high frequency contributions from tissue vibrations 

that occur on impact of foot with the ground. There is a possibility that the high 

frequency features found in this study are some type of tissue vibration. Perhaps a rapid 

change of direction might be able to cause enough vibration of soft tissue for the 

vibration to be detectable. However, in sitting there are no impacts with the ground to 

excite tissue vibrations. Vibrations could be excited by quick movements in the anterior-

posterior axis, accounting for the high frequency features in the anterior-posterior COP 

data. However, root-mean-square and range of movement did not differ significantly 

between infants with developmental delay and infants with typical development in the 

anterior-posterior axis (Deffeyes, Harbourne, Kyvelidou, Stuberg, & Stergiou, 2009), so 

differences in vibration would perhaps be due to differences in mass distribution or tissue 

elasticity between the two groups. Infants with cerebral palsy may have eating difficulties 



 

 

116

(Sleigh, Sullivan, & Thomas, 2004), prevented adequate nutrient intake during 

development and thereby reducing the adipose tissue compared to infants with typical 

development (Kuzawa, 1998).  

Opportunities for further work 

One area that was not investigated was the use of filtering to remove noise. 

Filtering data for linear analysis or spectral analysis is a well developed area of signal 

processing, but filtering for nonlinear analysis is not as well developed. Use of filters 

designed for linear or spectral analysis prior to nonlinear analysis may be problematic 

(Rapp, Albano, Schmah, & Farwell, 1993; Schreiber & Katz, 1995; Theiler &  Eubank, 

1993) as the filters have been designed to preserve certain linear and spectral aspects of 

the data, and may not preserve nonlinear features that are of interest in nonlinear analysis. 

However, many researchers use standard filter techniques on standing postural sway data, 

such as a low pass Butterworth filter (Donker, Ledebt, Roerdink, Savelsbergh, & Beek, 

2008;  Hong, James, & Newell, 2008; Stins, Michielson, Roerdink, & Beek, 2009; ), 

Savitsky-Golay smoothing (Hong, Manor, & Li, (2007), and some authors use detrending 

methods which effectively serve as filters for the data (Costa, Priplata, Lipsitz, Wu, 

Huang, Goldberger, & Peng, 2007). Our results suggest that down-sampling or 

appropriate choice of a lag value may be a good alternative to filtering noisy data, but we 

did not investigate filtering, so a test of this hypothesis is needed. Another approach to 

removing noise from the data is to use equipment for data collection that gives high 

signal-to-noise data, so that the dynamics of the system under study can be more readily 

quantified without filtering. Future studies from this lab on infant sitting will use force 

plate equipment with a dynamic range selected specifically for infant sitting postural 
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analysis. 

There are a number opportunities for further exploration of the approximate 

entropy algorithm and related measures. Attempting to select the one best set of 

parameters for approximate entropy misses the opportunity to use multiple sets of 

parameters to characterize a data set. For example, values of approximate entropy both 

using low and high values for the r parameter may provide a useful contrast, if the data 

has different dynamics at different length scales, such as our data that has differences 

with r=1*std(Data) versus r=3*std(Data). Similarly, differences could exist on different 

time scales, and multiscale entropy could be used to more rigorously investigate the 

entropy of dynamics that occur on multiple time scales (Costa, Goldberger, & Peng, 

2002; Costa, Priplata, Lipsitz, Wu, Huang, Goldberger, & Peng, 2007). Postural sway 

data is not necessarily stationary (Schumann, Redfern, Furman, el-Jaroudi, Chaparro, 

1995), and these high frequency features are likely not occurring all the time, but may be 

occurring only sporadically in the sitting position. Time frequency analysis (Schumann, 

Redfern, Furman, el-Jaroudi, Chaparro, 1995) or wavelet analysis might give more 

insight into the occurrence of these features. Additionally, using techniques such as 

electromyography to monitor muscle activity after perturbation of sitting, and 

accelerometers to monitor tissue vibration, might shed light on the origins of the 20-30 

Hz spectral features. 

 

SUMMARY: 

The use of standard parameters, ApEn(r=.2*std(Data),m=2, N, lag=1) , for the 

approximate entropy analysis may work well for comparing systems with very different 
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dynamics, but to detect more subtle differences, the standard parameters may not be 

optimal. A useful pragmatic finding of this work for researchers who use nonlinear 

measures is that spectral analysis can be used as a guide to select lag parameters for 

approximate entropy analysis. From a clinical perspective, this work is of interest because 

the design of an infant postural analysis system, coupled with computer for data analysis, 

may one day bring this technology to the clinical setting for a more sensitive analysis of 

postural control than is currently available. From a developmental neuroscience 

perspective, this work is of interest because it suggests the possibility that a short latency 

reflex for control of sitting posture is operative, perhaps triggered by near-falls. The 

stretch reflex does not disappear with development, so the disappearance of the measured 

short latency reflex contribution to postural sway may be a result of not being activated in 

older infants as other sensory modalities develop and postural control improves. More 

work is needed to elucidate the important of the stretch reflex in early sitting postural 

control, and to understand the differences in postural control between infants with 

developmental delay and those with typical development.  
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Figure 4.1. All data acquisition used the same force plate, which is built into the floor as 

is typical in a gait laboratory. a. single pendulum, b. double pendulum, c. infant sitting. 
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Figure 4.2. COP time series data acquired at 240 Hz from single pendulum  (top left) and 

infant with delayed development (top right), with decomposition of each into signal 

(middle) and noise (bottom) using a Savitsky-Golay smooth to estimate the signal, and 

subtracting the signal from the data to estimate the noise.   
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Figure 4.3. Plot of approximate entropy using “standard” parameters (m=2, 

r=0.2*std(Data), N=8.3 sec @240 Hz , lag=1) versus estimated signal-to-noise. Signal-to-

noise is the ratio of the variances of the estimated signal and estimated noise (σs
2/σn

2). 
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Figure 4.4. Average of approximate entropy(m=2, r=0.2*std(Data), N=8.3 sec @240 Hz , 

lag=1) from single pendulum COP data for the five time series with the worst signal-to-

noise (solid line) and the five time series with the best signal-to-noise (dashed line), 

plotted versus lag. Contamination of data acquired at 240 Hz with 60 Hz noise leads to a 

dependence on lag for low signal-to-noise data. Note that for the lag=4 (filled circle) the 

approximate entropy of the worse signal-to-noise data is lowest (240 Hz/60 Hz = 4). 
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Figure 4.5. Plots of approximate entropy(m=2,r,t=8.3 sec, lag) versus R value used in 

approximate entropy calculation (r = R*std(Data)), for pendulum data (left column), 

infant sitting anterior-posterior axis (middle column) and infant sitting medial-lateral axis 

(right column). Data was sampled at 240 Hz and analyzed at lag=1 (top row), or lag=4 

(middle row), or down sampled to 60 Hz and analyzed at lag=1 (bottom row).  
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Figure 4.6. Effect of R-parameter. Wilcoxon rank sum (Mann-Whitney U test) p values 

for comparison of approximate entropy(m=2,r,t=8.3 sec, lag) for single versus double 

pendulums (triangles), infants with cerebral palsy versus typical development in anterior-

posterior axis (circles) and in medial-lateral axis (squares), plotted versus R value used in 

the calculation of approximate entropy. Similarity of points in comparison vectors r is 

determined by R*std(Data) in plots a and b, and by R*std(estimated noise) in plot c. Plot 

b is an expanded plot of the infant sitting data in a, for comparison with plot c using the 

same y axis scale as plot c, but note x axes differ between plots b and c. 
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Figure 4.7. Effect of sampling frequency and lag. Wilcoxon rank sum (Mann-Whitney U 

test) p values for comparison of approximate entropy(m, r=std(Data), t=8.3 sec, lag) for 

single versus double pendulums (triangles, plot a), infants with cerebral palsy versus 

typical development in anterior-posterior axis (circles, plots a and b), plotted versus 

frequency obtained by down-sampling the 240 Hz data using lag=1 (plots a and b), and 

versus lag value using 240 Hz data (plot c). Plot b is an expanded plot of the infant sitting 

data in a, for comparison with plot c using the same y axis scale as plot c, but note x axes 

differ between plots b and c. Legend symbols apply to all three plots. 
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Figure 4.8. Wilcoxon rank sum (Mann-Whitney U test) p values from comparison of 

infant sitting postural sway in the anterior-posterior axis, based on the analysis presented 

in Figure 4.7b and 4.7c. The vertical axis is p values from comparison of approximate 

entropy(m, r=std(Data), t=8.3 sec @ 240 Hz, lag)  using various lags (see Figure 4.7c) 

corresponding to down-sampled frequency, plotted versus Wilcoxon rank sum (Mann-

Whitney U test) p values for comparison of down-sampled approximate entropy(m, 

r=std(Data), t=8.3 sec, lag=1)  (see Figure 4.7b). Corresponding frequency means 60 Hz 

down-sampled p-value is paired with 240 Hz data using lag 4 p-value, for example.  
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Figure 4.9. Effect of length of time series on the analysis. 4.9a. Wilcoxon rank sum 

(Mann-Whitney U test) p values for comparison of approximate entropy(m, r=std(Data), t 

@ 240Hz, lag=8) for single versus double pendulums (triangles), infants with cerebral 

palsy versus typical development in anterior-posterior axis (circles), plotted versus length 

of data acquisition in seconds. 4.9b. Mean values of ApEn(m=1, r=std(Data), t @ 240 Hz, 

lag=8) plotted versus length of time series used in the analysis. 4.9c. Standard deviation 

of ApEn(m=1, r=std(Data), t @ 240 Hz, lag=8) plotted versus length of time series used 

in the analysis.  
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Figure 4.10. Mean values of ApEn(m=1, r=std(Data), t=8.33sec@240Hz, lag=8) for 

postural sway of early and advanced infant sitting in the anterior-posterior(AP) axis (a) 

and in the medial-lateral(ML) axis (b). Groups were infants with typical development 

(TD) and infants with delayed development (DD). 
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Figure 4.11. Spectral analysis of infant sitting postural sway in the anterior-posterior axis. 

Plotted in black is the average periodogram for all trials for infants with developmental 

delay, early sitting (a), advanced sitting (b), and infants with typical development, early 

sitting (c) and advanced sitting (d). To aid in visual comparison, plotted in grey on all 

four plots is the average periodogram for all trials of the developmentally delayed, early 

sitting. Artifacts seen at 30 Hz are due to electrical power distribution, and are not related 

to infant sitting.  



 

 

139

 

 

Figure 4.12. Spectral analysis of infant sitting postural sway in the medial-lateral axis. 

Plotted in black is the average periodogram for all trials for infants with developmental 

delay, early sitting (a), advanced sitting (b), and infants with typical development, early 

sitting (c) and advanced sitting (d). To aid in visual comparison, plotted in grey on all 

four plots is the average periodogram for all trials of the developmentally delayed, early 

sitting. Artifacts seen at 30 Hz are due to electrical power distribution, and are not related 

to infant sitting.  
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CHAPTER 5 

 NONLINEAR DETRENDED FLUCTUATION ANALYSIS OF SITTING 

CENTER-OF-PRESSURE DATA AS AN EARLY MEASURE OF 

MOTOR DEVELOPMENT PATHOLOGY IN INFANTS 

 

Abstract: Upright sitting is one of the first motor skills an infant learns, and thus sitting 

postural control provides an early window into the infant’s motor development. Early 

identification of infants with motor developmental delay, such as infants with cerebral 

palsy, allows for early therapeutic intervention by physical therapists. Early intervention 

is thought to produce better outcomes, due to greater neural plasticity in younger infants. 

Postural sway, as measured by a force plate, can be used to objectively and quantitatively 

characterize infant motor control during sitting. Pathology, such as cerebral palsy, may 

alter the fractal properties of motor function. Often physiologic time series data, 

including infant sitting postural sway data, is mathematically non-stationary. Detrended 

Fluctuation Analysis (DFA) is useful to characterize the fractal nature of time series data 

because it is does not assume stationarity of the data. In this study we found that suitable 

selection of the order of the detrending function improves the performance of the DFA 

algorithm, with a higher order polynomial detrending better able to distinguish infant 

sitting posture time series data from Brown noise (random walk), and first order 

detrending better able to distinguish infants with motor delay (cerebral palsy) from 

infants with typical development.  
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INTRODUCTION  

Cerebral palsy is a result of brain injury that occurs early in life, before, during or 

shortly after birth, and occurs in 1.5 to 2.5 per 1000 live births (Paneth, Hong, & 

Korzeniewski, 2006). Many areas of the brain can be involved, including the motor 

cortex, periventricular area, or basal ganglia, which subsequently affects the control of 

movement (i.e. motor control).  The injury may be due to many causes, such as placental 

lesions and/or umbilical cord obstruction (Redline, 2008), exposure of the mother to 

certain chemicals during gestation (Kenyon, Brocklehurst, Jones, Marlow, Salt, & Taylor, 

2008), and is often associated with premature birth (Hemming, Colver, Hutton, 

Kurinczuk, & Pharoah, 2008). While the injury occurs early in life, the effects of the 

injury impact the individual for the rest of their lives (Krakovsky, Huth, Lin, & Levin, 

2007).  Abnormal movement due to cerebral palsy can result in abnormal bone 

development sometimes requiring corrective surgery, especially at the hip joint 

(O'Sullivan, Walsh, Hewart, Jenkinson, Ross, O'Brien, 2006). If the infant does not learn 

to sit by age 2, there is a good chance that they will never learn to walk (da Paz Junior, 

Burnett, & Braga, 1994; Fedrizzi, et al., 2000).  Physical therapy for these children may 

be most beneficial if started early in life, when the brain is better able to learn and adapt 

(Blauw-Hospers, de Graaf-Peters, Dirks, Bos, Hadders-Algra, 2007). A reliable, 

quantitative measure is needed to assess infant motor control early in infancy to (a) help 

clinicians identify infants who might benefit from interventions, and (b) help physical 

therapists assess the effectiveness of the intervention.  Current methods of assessment are 

inadequate (Heineman & Hadders-Algra, 2008). 
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Upright sitting is one of the first developmental motor milestones that an infant 

achieves. Attainment of the ability to sit upright is important as it indicates healthy 

development of the infant, and also because the upright sitting posture will allow the 

infant to explore the environment from a stable upright posture (Harbourne & Stergiou, 

2003). Additionally, sitting is an early indicator of motor development, and identifying 

infants with motor development delays early in life, when therapeutic intervention may 

be most effective, is desirable (de Graaf-Peters, Blauw-Hospers, Dirks, Bakker, Bos, & 

Hadders-Algra, 2007). Thus using sitting posture as a window into an infant’s motor 

control development has the potential to identify infants with motor dysfunction, such as 

that caused by cerebral palsy, as opposed to a transient motor delay. Identification of this 

dysfunction early in life when therapy may be most effective has the potential to be a 

sensitive indicator of progress being made in therapy.   

Motor control in infants is typically judged in a clinical setting by observing 

specific behaviors, such as rolling to the appropriate side if a toy is presented on one side. 

To quantify motor development, tests such as the Peabody Gross Motor Skill Test (Folio 

& Fewell, 2000), are used which assign points based on the behaviors that can be elicited 

by the clinician, such as rolling towards the toy, and comparing with standards for infants 

of that age. While some of these tests may have high reliability, they are lacking in ability 

to discriminate between healthy and pathologic infants (Spittle, Doyle, & Boyd, 2008), 

and thus would likely not be useful in monitoring progress of the infant receiving 

physical therapy intervention. New tests are being developed to try and improve the 

results (Heineman, Bos, Hadders-Algra, 2008). Because the standard tests are based on 

what can be visually observed by the clinician, they require significant training of the 
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clinician to produce consistent results. Developing a new test with objective measures of 

motor control that can be administered by an untrained individual has the potential to 

improve clinical identification of infants who have motor control pathology, such as 

cerebral palsy, and may be useful in assessing progress in therapy.   Additionally, a new 

test that is based on highly sensitive measurements, coupled with suitable data analysis 

techniques, may allow sensitivity and selectivity above and beyond what even the best-

trained clinician is able to observe visually. 

The use of a force plate to objectively measure postural sway is a potentially 

useful technique to quantify sitting behavior. A force plate is a rigid plate instrumented 

with force transducers to measure force applied to the plate in all directions. From this 

data, the center of pressure (COP) can be calculated for both the anterior-posterior (front-

to-back) postural sway and the medial-lateral (side-to-side) postural sway, and then 

stored on a computer for analysis. The COP is the point at which the resultant force 

vector from the infant’s body contacting the force plate intersects the plane of the force 

plate. Thus the COP is a time series that captures the subtle sway associated with posture 

control that is not evident visually to an observer. COP analysis has been used to examine 

standing posture of children with cerebral palsy (Donker, Ledebt, Roerdink, Savelsbergh, 

& Beek, 2008), making it a logical candidate technique to explore sitting posture of 

children with cerebral palsy. The force plate can quantify subtle shifts in posture that a 

human observer would not be able to notice, and add valuable information to the data 

collected during a movement evaluation. Analysis of force plate data from infant sitting 

thus has the potential to be increase the accuracy and objectivity of currently available 

methods for assessment of motor control in young infants. Traditional statistical measures 
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such as variance, range, etc. can be used to quantify the variability in COP time series 

data. However, these measures ignore an important feature of time series data, in that the 

time aspect of the data is ignored. For example, if the time series data were to be 

randomly shuffled, the variance would be the same. In order to probe the dynamics of the 

system, a different type of measure is needed. Methods from nonlinear dynamics may 

provide the sensitivity to motor control system dynamics (Guastello, 2006) that is needed 

to probe clinically relevant aspects of postural sway in infant sitting (Harbourne & 

Stergiou, 2003; Stergiou, Harbourne & Cavanaugh, 2006). 

Fractal properties of the human neuromuscular system can be seen in 

electroencephalogram (EEG) recordings of brain waves (Nikulin & Brismar, 2005; Hwa 

& Ferree, 2002), as well as in recordings of human movement, such as walking gait 

(Jordan, Challis, & Newell, 2007), running gait (Jordan, Challis, & Newell, 2006), 

standing posture (Kim, Nussbaum, & Madigan, 2008), and eye movements (Shelhamer, 

2005). Fractal properties are an emergent property of the system dynamics, and to the 

extent that a given pathology disrupts those dynamics, the resulting fractal properties will 

be altered. For example, the fractal properties of EEG are seen to be altered in 

Alzheimer’s disease (Abasolo, Hornero, Escudero, & Espino, 2008), in stroke (Hwa, He, 

& Ferree, 2003), and in depression (Lee, Yang, Lee, Choi, Choi, & Kim, 2007). In 

Huntington’s disease, the fractal dynamics of walking gait are found to be altered 

compared to healthy controls (Hausdorff, Mitchell, Firtion, Peng, Cudkowicz, Wei, & 

Goldberger, 1997). In searching for a measure of postural sway of infant sitting that we 

would anticipate would be altered in cerebral palsy, fractal measures are good candidates. 
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The COP time series from postural control studies are considered to be 

nonstationary (Carol & Freedman, 1993; Loughlin, Redfern, & Furman, 2003). 

Nonstationarity in the mathematical sense means that the mean, variance, and/or higher 

moments are different for different segments of the time series data. Compared to other 

nonlinear measures, detrended fluctuation analysis (DFA) is thought to be more robust to 

nonstationarity (Peng, Havlin, Stanley & Goldberger, 1995), and thus might prove to be a 

useful tool for infant sitting COP data analysis. Traditionally, DFA analysis is performed 

by repeatedly dividing the time series data into segments of different lengths, and then 

measuring the average error (sum of the residuals squared divided by segment length) 

after performing a linear least squares analysis on the data in that segment. A log-log plot 

is made of the average error versus segment length. The DFA parameter of interest is 

alpha, the slope of this plot. For a pure random walk alpha is 1.5, and for white noise 

alpha is 0.5 (Peng, Havlin, Stanley & Goldberger, 1995). 

DFA has been applied in a number of studies of medical pathology. For example, 

DFA has been applied to fetal heart rate to detect pathology (Ferrario, Signorini, & 

Magenes, 2007) and adult heart rate (Peng, Havlin, Hausdorff, Mietus, Stanley, 

Goldberger, 1995; Goldberger, Amaral, Hausdorff, Ivanov, Peng, & Stanley, 2002). DFA 

has also been used to characterize gender and aging effects on respiration (Peng, Mietus, 

Liu, Lee, Hausdorff, Stanley, Goldberger, & Lipsitz, 2002) and analysis of brain activity 

from fMRI data (Lee, Hu, Gao, Crosson, Peck, Wierenga, McGregor, Zhao, & White 

2008; Hu, Lee, Gao, White, & Crosson, 2008). One of the first applications to motor 

control time series analysis was the investigation of long-range correlations in stride 

interval in unperturbed walking (Hausdorff, Peng, Ladin, Wei, & Goldberger, 1995). 
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Other motor control applications of DFA include finger tapping at different speeds 

(Kadota, Kudo, & Ohtsuki, 2004), gait with development and aging (Hausdorff, 

Ashkenazy, Peng, Ivanov, Stanley, & Goldberger, 2001), gait with metronome beat 

(Hausdorff, Purdon, Peng, Ladin, Wei, & Goldberger,1996),  gait at different speeds 

(Hausdorff, Purdon, Peng, Ladin, Wei, & Goldberger,1996; Jordan, Challis, Newell, 

2007), and gait in Huntington’s disease (Hausdorff, Mitchell, Firtion, Peng, Cudkowicz, 

Wei, & Goldberger, 1997). Thus DFA has wide-ranging applications in the medical 

sciences, due at least in part to its applicability to analysis of non-stationary time series. 

DFA has been found to be a relatively reliable measure of adult standing COP (Lin, Seol, 

Nussbaum, & Madigan, 2008). DFA analysis of standing posture in elderly may be useful 

in identifying individuals who are at risk of injury from falling (Amoud, Abadi, Hewson, 

Michel-Pellegrino, Doussot, & Duchene, 2007). DFA analysis of infant sitting postural 

sway data has not yet been reported.  

Because DFA is an analysis of the goodness of fit of a linear polynomial, or more 

accurately the “badness” of fit since it is the residuals of the fit that are used in the 

calculation, any linear trend due to nonstationarity will be removed. Thus DFA is thought 

to be robust to nonstationarity. However, there is no reason to believe that the 

nonstationarity will be linear.  In fact, given the prevalence of nonlinear processes in 

physiologic control systems (Mackey & Glass, 1977), including human motor control 

(Guastello, 2006; Schoner & Kelso, 1988), it would instead be surprising if the 

nonstationarity were found to be linear. Nonlinear DFA can be performed, which 

involves using higher order polynomials to perform the detrending (Hu, Ivanov, Chen, 

Carpena, & Stanley, 2001; Munoz-Diosdado & del Rio Correa, 2006). In this paper, we 
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investigated the use of nonlinear DFA as a method to quantify clinically relevant features 

from COP data from infant sitting. In order to determine if the nonlinear DFA is 

capturing clinically relevant information, we compared data from two sets of infants, one 

with typical development, and the other with delayed development, where the delay in 

development is likely due to cerebral palsy. We hypothesized that DFA will be able to 

detect a difference between the two groups of infants, and that the dynamics of infant 

sitting will be significantly different from Brown noise.  

 

EXPERIMENTAL METHODS AND DATA ANALYSIS 

Subjects 

Infants were recruited into the study when they were just developing the ability to 

sit upright. Recruitment was done through newsletters, flyers, and pediatric physical 

therapists employed at the University. Subjects included 18 developmentally delayed 

infants, with an average age of 13.22 months (std = 2.96); and 23 typically developing 

infants, with an average age of 5.08 months (std = 0.68). Infants in the developmentally 

delayed group were diagnosed with cerebral palsy, or else were developmentally delayed 

and at risk for cerebral palsy. Some of the infants in this group may not actually have 

cerebral palsy because definitive diagnosis at this age is difficult. At risk infants met one 

or more of the following conditions: premature delivery, brain bleeding (of any level of 

severity), diagnosis of periventricular leukomalacia, or significantly delayed gross motor 

development as measured on standardized testing.  While a definitive diagnosis of 

cerebral palsy had not been made, these infants were all developmentally delayed, and all 

scored below 1.5 standard deviations below the mean for their corrected age on the 
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Peabody Gross Motor Scale (Folio & Fewell, 2000). Thus it is possible that a small 

number of these infants did not have cerebral palsy, and that the developmental delay is 

due to another cause, such as early medical problems. Exclusion criteria included having 

an untreated, diagnosed visual impairment, a diagnosed hip dislocation or subluxation 

greater than 50%, or an age outside the range of 5 months to two years. Typically 

developing infants were screened for normal development by a physical therapist prior to 

admission into the study, being excluded if they failed to score above 0.5 standard 

deviations below the mean on the Peabody Gross Motor Scale, had a diagnosed visual 

impairment, a diagnosed musculoskeletal problem, or were older than five months at the 

start of the study. A consent form was signed by a parent/caregiver of all infant 

participants, and all procedures were approved by the University of Nebraska Medical 

Center Institutional Review Board.  

 

Data Collection Methods 

For data acquisition, infants were seated on an AMTI force plate (Watertown, 

MA), interfaced to a computer system running Vicon data acquisition software (Lake 

Forest, CA). COP data were acquired through the Vicon software at 240 Hz, in order to 

be above a factor of ten higher than the highest frequency that might contain relevant 

signal. Trunk and pelvis markers were also placed on the infant, but the marker data was 

not analyzed for this study. An assistant sat to the left side of the infant during data 

acquisition, and a parent or relative (typically the mother) sat in front of the infant, for 

comfort and support, as well as to keep the attention of the infants focused on toys held in 

front of them. 
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Trials were recorded including force plate and video data from the back and side 

views.  Afterwards segments were selected by viewing the corresponding video. 

Segments of data with 2000 time steps (8.3 seconds at 240 Hz) were selected from these 

trials by examination of the video. Acceptable segments were required to (a) have no 

crying or long vocalization, (b) no extraneous items (e.g. toys) on the force platform, (c) 

neither the assistant nor the mother were touching the infant, (d) the infant was not 

engaged in rhythmic behavior (e.g. flapping arms), and (e) the infant had to be sitting and 

could not be in the process of falling. Both anterior-posterior (front-to-back) and medial-

lateral (side-to-side) center of pressure data was used for the analysis.  

 

Data Analysis Methods 

 COP data was analyzed using custom software developed using MatLab (Nantick, 

MA). The 2000 time step data was analyzed as is, then divided into sub-segments, first 

into two segments each half the length of the time series, then into four segments each 

one quarter the length of the time series, etc., until segments were no shorter than eight 

time steps (0.0333 sec). Each sub-segment was fit with a polynomial (Figure 5.1), and 

then F was calculated as the average of the absolute values of the residuals. Alpha is the 

slope of least squares fit from a log-log plot of F versus segment length.  This procedure 

was repeated four times, first for a first order polynomial, then for a second order, then a 

third order polynomial and finally, for a fourth order polynomial (Munoz-Diosdado & del 

Rio Correa, 2006). 

One way to calculate the DFA alpha value is to perform a least-square fit to the 

log F versus log n plot, and this was one of the two methods we used. For very small 
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window sizes, the slope of the log-log plot of F versus window size is sampling the 

dynamics of the system on short time scales, and thus is likely contaminated by 

experimental noise. For very long window sizes, the slope of the log-log plot of F versus 

window size is altered because the window size is on the order of the length of the data 

time series. Thus a plot of experimentally acquired log-log plot of F versus window size 

may not be linear at very high and/or very low values of n. One approach to calculating a 

slope from this non-linear relationship is to restrict the window size to some arbitrary 

range of lengths that includes the region in the center that appears to be linear. We used a 

somewhat different approach which we felt was more objective. We fit the log-log plot of 

F versus window size to a third order polynomial, because a third order polynomial 

allows for two inflection points that would allow the curve to fit the two expected bends 

in the curve, one at short window sizes, and the other at long window sizes. We then 

analytically calculated the slope of the polynomial, evaluating the derivative at the 

middle of the window size range. 

Fit of ln(F) versus ln(n):      y= ax3 + bx2 + cx +d 

Slope (DFA alpha):   dy/dx = 3ax2 + 2bx +c; evaluated at x= nmiddle 

This appears to give a better estimate of the slope for some trials where the log-

log plot of F versus window size was not linear (Figure 5.2).  

 In order to compare the infant sitting data to results from Brown noise, DFA was 

performed on 25 trials of pseudo-data. The “randn” function in MatLab was used to 

generate Gaussian white noise time series the same length as the infant sitting COP data 

(2000 time steps), which was then integrated with the “cumsum” function to create 

Brown noise. DFA was performed using the same methodology described for the infant 
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sitting COP data. These results were compared to DFA results for infants sitting, to test 

whether time series from infant sitting is different than Brown noise. 

 

Statistical Methods 

Independent t-tests were used to compare the DFA alpha values from COP data 

for infants with typical development with DFA alpha values from COP data for infants 

with delayed development. Independent t-tests were also performed to compare DFA 

alpha values from infant sitting with brown noise, both for infants with typical 

development and infants with delayed development. A significance level of α < 0.001 

was used to make comparisons (note the statistical alpha is a different concept from the 

DFA alpha).  There were 48 t-tests performed, and by correcting for multiple 

comparisons the α level was set to .001 (.05/48 = .001).   

 

RESULTS 

DFA alpha values for COP data from medial-lateral postural sway from sitting 

infants (Table 5.1), and for COP data from anterior-posterior postural sway (Table 5.2), 

were not too far off of the value of 1.5 with first order detrending, which would be 

expected for Brownian noise. Use of our analysis algorithm on computer generated 

Brown noise results in values very near the theoretically expected result of 1.5 (Table 

5.3). However, t-tests showed that there are significant differences between infant sitting 

postural sway and Brown noise, especially for higher order detrending (Tables 5.4 and 

5.5). Note that an analysis performed only with the standard method of first order 

detrending would have concluded that postural sway for the medial-lateral axis is not 
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significantly different than Brown noise, but the higher order detrending found a 

significant difference (Table 5.4). In the case of anterior-posterior postural sway (Table 

5.5), using only the standard linear detrending would have lead to the conclusion that 

postural sway of the infants with delayed development/cerebral palsy was not 

significantly different than Brown noise, whereas postural sway of those with typical 

development was found to be significantly different than Brown noise. The analysis with 

higher order detrending found that both populations have postural sway significantly 

different than Brown noise. 

The method of evaluating the first derivative of the plot of ln(F) versus ln(n) at 

the center, rather than simply evaluating the slope of a linear fit to all the data, did not 

have a significant impact in comparison of the DFA alpha values for medial-lateral 

postural sway (Table 5.4, compare asterisks indicating significant differences in top and 

bottom sections of the table). However, it did have an impact in comparison to the DFA 

alpha values for postural sway in the anterior-posterior axis (Table 5.5), where the 

difference between Brown noise and postural sway for typical developing infants is 

significant for third and fourth order detrending. This was evident using the derivative 

method for evaluating slope, but not for the slope of the linear fit.  Thus, we believe this 

method to be somewhat superior, and we have used results from this method in creating 

Figure 5.3. 

One goal of this work was to distinguish between infants with typical 

development and infants with delayed development, where the developmental delay was 

likely due to cerebral palsy. DFA alpha values for sitting COP from infants with delayed 

development are compared to DFA alpha values for sitting COP from infants with typical 
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development for the anterior-posterior axis, and are found to be significantly different for 

first and second order polynomials, but only in the anterior-posterior axis (Table 5.5). 

The analysis of Brown noise was relatively insensitive to the order of the polynomial 

used for detrending, compared to the infant sitting COP.  For Brown noise, the DFA 

alpha value is close to 1.5 regardless of the order of the polynomial used for detrending 

(Figure 5.3 and Table 5.3).  For infant sitting COP data in the medial-lateral direction 

(Figure 5.3a), the DFA alpha values were similar for infants with typical development 

and infants with delayed development, regardless of the order of the polynomial used for 

detrending. However, for infant sitting COP data in the anterior-posterior direction 

(Figure 5.3b), the separation was least when the forth order polynomial was used for 

detrending, with a first order polynomial giving the best separation (p = 0.0004; Table 

5.5).   

DISCUSSION 

The theoretical DFA alpha value from Brown noise is 1.5 (Peng, Havlin, Stanley 

& Goldberger, 1995) and the algorithm we used reproduced this result. Postural sway 

time series data visually appeared very similar to Brown noise, and the results of this 

study agreed with other published DFA results for adult standing where DFA results for 

postural sway were similar to Brown noise with linear (i.e. first order) detrending. 

Amound et al. (2007) used the DFA algorithm with linear detrending to evaluate postural 

sway from elderly and young adults. However, they subtracted 1 from the DFA alpha 

values that they report. Taking their reported values and adding back 1 to compare with 

our values, we get DFA alpha values in the range of 1.25 to 1.55. This range compares 

well to the results that we found for infant sitting of 1.22 to 1.52, with the DFA alpha 
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values calculated using linear detrending. In another study of adult standing, Kim, 

Nussbaum, and Madigan (2008) reported DFA alpha values between 1.31 and 1.48, also 

within the range of our results. Thus our results are in good agreement with both 

theoretical values and experimental values for adult standing from the literature. DFA 

alpha values for infants sitting have not been reported. 

DFA is considered a measure of the fractal properties of a time series because the 

scaling behavior is probed by using different segment lengths of the data. Brown noise is 

integrated white noise, and thus the value at one point in time affects values at other 

points in time –i.e. long range correlations. While white noise has no long range 

correlations and a correspondingly low DFA alpha value of 0.5, Brown noise has a higher 

value of 1.5 (Peng, Havlin, Stanley & Goldberger, 1995). One way to interpret the results 

is in terms of long range correlations, as has been done in DNA sequences (Peng, 

Buldyrev, Havlin, Simons, Stanley, & Goldberger, 1993) and heart rate analysis (Peng, 

Havlin, Stanley & Goldberger, 1995).  DFA results from gait data have also been 

interpreted as being descriptive of long range correlations (Hausdorff, Purdon, Peng, 

Ladin, Wei, & Goldberger, 1996). By examining the DFA alpha values calculated with 

the linear detrending, as it has been done in other studies, we found that infants with 

typical development have less long-range correlations (lower alpha values) than do 

infants with developmental delay/cerebral palsy, for postural sway in the anterior-

posterior direction.  Pink noise (e.g. 1/f1) is intermediate between white noise (1/f0) and 

Brown noise (1/f2), and has a DFA alpha value between that of white noise and Brown 

noise.  Pink noise dynamics has been associated with healthy dynamics, as opposed to 

pathologic dynamics (Goldberger, Amaral , Hausdorff, Ivanov, Peng, & Stanley, 2002). 
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This is consistent with our findings that pathologic infant sitting was not statistically 

different from Brown noise using DFA analysis with linear detrending, whereas typically 

developing infants were closer to pink noise.  

However, this interpretation should be treated with caution. Interpretation of DFA 

results in terms of the presence or absence of long range correlations may not be straight 

forward in all cases, due to limited length of the time series data (Maraun, Rust, & 

Timmer, 2004). One weakness of this study is the time series of 2000 time steps is only 

8.3 seconds. This is a practical limitation of working with infants who may not be willing 

or able to sit for longer data acquisitions. Postural control mechanisms that operate with 

characteristic time scales longer than 8.3 seconds will not be found in our analysis. 

Importantly, we found that DFA analysis using higher order polynomial detrending, 

rather than linear detrending, resulted in significant differences between Brown noise and 

postural sway of both the infants with typical development and the infants with delayed 

development/cerebral palsy. In fact, the infant sitting postural sway was quite different 

from Brown noise, both for infants with typical development and infants with delayed 

development. The variance of Brown noise increases with increasing length of the time 

series without bound. The variance of postural sway cannot increase without bounds, 

because the result would be a fall. Thus one would expect to find differences between 

postural sway data and Brown noise, and the fact that detrending with higher order 

polynomials was sensitive to that difference shows the strength of this technique. Any 

analysis technique that cannot distinguish between infant sitting postural sway and 

Brown noise is lacking sensitivity to a fundamental aspect of motor control.  A 

significant result of this study is that detrending with polynomials of different orders 
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when performing DFA analysis can provide additional insight that the linear detrending 

by itself can not provide. 

Another way to interpret these results is to note that the detrending was reported 

to remove nonstationarity (Peng, Havlin, Stanley, & Goldberger, 1995), and thus one 

could describe the infants with delayed development/cerebral palsy as having different 

characteristics of the nonstationarity, as compared to infants with typical development. 

Often nonstationarity is conceived of as a drift in the measurement over time that is not 

part of the system dynamics that one is attempting to characterize. However, there was 

not a drift in the experimental apparatus giving rise to nonstationarity in these results. 

Any “nonstationarity” that the detrending is removing, is a biological nonstationarity. It 

was influencing the infant’s motor control system, or was part of the motor control 

system, and thus may have been affected by the underlying pathology in the motor 

control system.  For example, we may speculate that the infant’s attention may shift from 

one object to another, impacting motor function, and this shifting of attention may be 

different between the two populations. A cognitive task has been shown to influence 

posture control in adults and even more so in younger children (Reilly, van Donkelaar, 

Saavedra, Woollacott, 2008). An interesting topic for future research is the impact of 

cognitive function on infant motor control. The use of polynomials of different order for 

detrending has discovered interesting differences in the system dynamics of infants 

sitting, but further work is necessary to fully interpret the results.  

One goal of this work was to develop a clinically useful methodology to 

objectively distinguish between infants with cerebral palsy and infants who are 

unaffected.  We would like to develop a methodology that is sensitive enough to provide 
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early identification of infants with cerebral palsy, and to assist physical therapists with 

evaluation of the effectiveness of specific interventions. Here we have reported that DFA 

has shown statistically significant differences between the two populations that we 

analyzed. However, the differences between the two populations are not wide enough to 

be used for clinical identification of pathology. In other words, there is quite a bit of 

overlap between the DFA alpha values for the two populations studied. Future work will 

include other data analysis methods capable of probing nonlinear dynamics of infant 

sitting, as well as the application of more sophisticated classification methods based on 

the results of multiple data analysis methods.  

In summary, this work has demonstrated that DFA analysis of infant sitting 

postural sway is sensitive to differences in developmental delay. A major finding was that 

the use of higher order polynomials for the detrending step in the DFA algorithm helps to 

distinguish infant sitting posture COP from Brown noise. Another major finding was that 

DFA analysis using the standard linear detrending method is the most sensitive to 

differences between sitting postural sway of infants with delayed development/cerebral 

palsy as compared to infants with typical development.  Future work is needed to 

increase the sensitivity, specificity, and reliability of the measures used for analysis of 

postural control, in order to make this approach clinically useful for identification of 

infants with developmental delay, and for characterization of effectiveness of therapeutic 

interventions. 
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Table 5.1. Alpha values for DFA analysis of infant sitting postural sway along the 

medial-lateral axis.  

________________________________________________________________________ 

                                                              Polynomial Order 

                               1                   2                  3                 4 

DFA alpha values calculated from linear fit of ln(F) vs. ln(n) 

Typical Development (n=23) 

 Mean    1.44      1.62      1.65      1.62 

 Standard Deviation  0.09      0.15      0.15      0.15 

Delayed Development/Cerebral Palsy (n=18) 

 Mean    1.47     1.66      1.69      1.65 

 Standard Deviation           0.11      0.16      0.18     0.17 

DFA alpha values calculated from center of ln(F) vs. ln(n) 

Typical Development (n=23) 

 Mean    1.42     1.95      2.19      2.24 

 Standard Deviation  0.18      0.25      0.25      0.25 

Delayed Development/Cerebral Palsy (n=18)  

 Mean    1.53     2.04      2.27      2.30 

 Standard Deviation             0.18      0.25      0.28      0.29 
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Table 5.2. Alpha values for DFA analysis of infant sitting postural sway along the 

anterior-posterior axis. 

________________________________________________________________________ 

                                                                    Polynomial Order 

                              1                   2                  3                 4 

        DFA alpha values calculated from linear fit of ln(F) vs. ln(n) 

Typical Development (n=23) 

 Mean    1.33      1.50      1.57      1.58 

 Standard Deviation  0.15      0.17      0.16      0.15 

Delayed Development/Cerebral Palsy (n=18) 

 Mean    1.47      1.64      1.67      1.64 

 Standard Deviation             0.12      0.14      0.18      0.20 

         DFA alpha values calculated from center of ln(F) vs. ln(n) 

Typical Development (n=23) 

 Mean    1.22      1.59      1.89      2.08 

 Standard Deviation  0.23      0.32      0.33      0.33 

Delayed Development/Cerebral Palsy (n=18) 

 Mean    1.47      1.88      2.08      2.16 

 Standard Deviation             0.19      0.22      0.22      0.27 

 



 

 

167

Table 5.3. Alpha values for DFA analysis of computer generated (synthetic) Brown 

noise. 

________________________________________________________________________ 

                                                                   Polynomial Order 

                                1                   2                  3                 4 

                       DFA alpha values calculated from linear fit of ln(F) vs. ln(n) 

Brown Noise (n=25) 

 Mean    1.50      1.49      1.48      1.48 

 Standard Deviation             0.10      0.07      0.07      0.06 

DFA alpha values calculated from center of ln(F) vs. ln(n)  

Brown Noise (n=25) 

 Mean    1.52      1.52     1.47      1.48 

 Standard Deviation             0.13      0.12      0.13      0.10 
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 Table 5.4. Results of independent t-tests comparing DFA alpha values for postural sway 

along the medial-lateral axis.  

_____________________________________________________________ 

                                                                 Polynomial Order 

                             1                   2                  3                 4 

_____________________________________________________________ 

  Results using DFA alpha calculated from linear fit of ln(F) vs. ln(n) 

TD vs CP  -1.06   -0.87   -0.91   -0.57   

Brown vs TD   2.10   -3.62*  -4.99*  -4.39* 

Brown vs CP   1.70   -4.24*  -4.29*  -3.33  

 Results using DFA alpha calculated from center of ln(F) vs. ln(n) 

TD vs CP  -1.89   -1.17     -1.03     -0.72   

Brown vs TD   2.49   -6.90*  -12.22* -13.15* 

Brown vs CP  -0.53   -7.95*  -10.78* -11.13*  

Note. *p < .001 
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Table 5.5. Results of independent t-tests comparing DFA alpha values for postural sway 

along the anterior-posterior axis.  

_____________________________________________________________ 

                                                                 Polynomial Order 

                             1                   2                  3                 4 

_____________________________________________________________ 

  Results using DFA alpha calculated from linear fit of ln(F) vs. ln(n) 

TD vs CP  -3.27   -2.76   -1.82   -1.19   

Brown vs TD   4.63*  -0.30   -2.63   -2.90   

Brown vs CP 1  0.67   -4.14*  -3.81*  -2.95  

  Results using DFA alpha calculated from center of ln(F) vs. ln(n) 

TD vs CP  -3.85*  -3.26   -2.09   -0.85   

Brown vs TD   5.86*  -0.73   -5.59*  -8.09* 

Brown vs CP   0.51   -5.95*  -9.79*  -9.80*  

Note. * p < .001 

  

 

 

 

 



 

Figure 5.1. Plot of cumulative COP versus time, with first order fit (linear) fit (left 

side, a and b) and third order polynomial (cubic) fit (right side, c and d). Top 

panels (a and c) show a long window size, bottom panels (b and d) show a shorter 

window size. Windows are indicated by the vertical dashed lines, cumulative 

COP data in grey lines, and blac

 

 

 

1. Plot of cumulative COP versus time, with first order fit (linear) fit (left 

and third order polynomial (cubic) fit (right side, c and d). Top 

panels (a and c) show a long window size, bottom panels (b and d) show a shorter 

window size. Windows are indicated by the vertical dashed lines, cumulative 

COP data in grey lines, and black lines indicate the fit to the data.
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1. Plot of cumulative COP versus time, with first order fit (linear) fit (left 

and third order polynomial (cubic) fit (right side, c and d). Top 

panels (a and c) show a long window size, bottom panels (b and d) show a shorter 

window size. Windows are indicated by the vertical dashed lines, cumulative 

k lines indicate the fit to the data. 



Figure 5.2. Plot of log mean error F(n)  versus log window size (n). A linear fit 

(left) gives a lower slope than the derivative of a third order polynomial fit 

evaluated at the at the center (right). The slope of t

alpha value. 

 

 

2. Plot of log mean error F(n)  versus log window size (n). A linear fit 

(left) gives a lower slope than the derivative of a third order polynomial fit 

evaluated at the at the center (right). The slope of the F versus n plot is the DFA 
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2. Plot of log mean error F(n)  versus log window size (n). A linear fit 

(left) gives a lower slope than the derivative of a third order polynomial fit 

he F versus n plot is the DFA 



Figure 5.3. DFA alpha values from slope evaluated at the center of the F versus n 

plot. DFA was performed on COP data from infant sitting, for infants with typical 

development (triangles), infants with delayed 

palsy (squares), and synthetic Brown noise generated by integrating computer 

generated Gaussian

lateral results, bottom plot (b) shows anterior

 

 

3. DFA alpha values from slope evaluated at the center of the F versus n 

plot. DFA was performed on COP data from infant sitting, for infants with typical 

development (triangles), infants with delayed development and at risk for cerebral 

palsy (squares), and synthetic Brown noise generated by integrating computer 

generated Gaussian-distributed white noise (circles).  Top plot (a) shows medial

lateral results, bottom plot (b) shows anterior-posterior results.  
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3. DFA alpha values from slope evaluated at the center of the F versus n 

plot. DFA was performed on COP data from infant sitting, for infants with typical 

development and at risk for cerebral 

palsy (squares), and synthetic Brown noise generated by integrating computer 

distributed white noise (circles).  Top plot (a) shows medial-
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CHAPTER 6 

SENSORY INFORMATION UTILIZATION AND TIME DELAYS 

CHARACTERIZE MOTOR DEVELOPMENTAL PATHOLOGY IN 

INFANT SITTING POSTURAL CONTROL 

 

Abstract: 

Sitting is one of the first developmental milestones that an infant achieves. Thus 

measurements of sitting posture present an opportunity to assess sensorimotor 

development at a young age, in order to identify infants who might benefit from 

therapeutic intervention, and to monitor the efficacy of the intervention. Sitting postural 

sway data was collected using a force plate, and the data was used to train a neural 

network controller of a model of sitting posture. The network was trained with data from 

infants with cerebral palsy, and data from infants without cerebral palsy, both for early 

sitting (as soon as they could sit for about 10 sec), and late sitting (a few months later). 

The trained networks were then probed for sensitivity to position, velocity, and 

acceleration information. Late sitting for infants with typical development had a higher 

reliance on velocity information in control in the anterior-posterior axis, and utilized 

more types of information in control in the medial-lateral axis, perhaps indicative of 

lower stability along the medial-lateral axis. The use of velocity information for control 

in the anterior-posterior direction may emerge independently in both typical infant sitting 

and in typical adult standing, as an efficient means of control for those particular 

postures, given the anatomical and physiological constraints of each of those systems. 
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Infants with delayed development, where the developmental delay is due to cerebral 

palsy for most of the infants in the study, did not develop this reliance on velocity 

information. Infants with delayed development have less reliance on short latency control 

mechanisms compared to infants with typical development, apparently necessitating an 

adaptive switch to other longer latency control mechanisms in the infants with deleayed 

development.    

Introduction  

Cerebral palsy is due to a brain injury that occurs early in life, where “cerebral” 

indicates involvement of the cerebrum, and “palsy” indicates a movement disorder. Thus 

impairment in motor function is a hallmark of the disorder, but impairments in sensory 

function are also prevalent, perhaps as a result of injury to thalamocortical pathways 

(Hoon, et al., 2009).  Sensory impairment can include proprioception (Goble, Hurvitz, & 

Brown, 2009) and cutaneous sensation (Lesny, Stehlik, Tomasek, Tomankova, & 

Havlicek, 1993; Sanger & Kukke, 2007), and sensory deficits and/or deficits in sensory 

integration likely contribute both to impairment in motor performance (Bumin & 

Kayihan, 2001; Bumin & Kavak, 2008; Hadders-Algra, van der Fits, Stremmelaar, & 

Touwen, 1999) and motor development (Wilke & Staudt, 2009). Sitting is an important 

motor control skill that infants learn early in life, at about age 6-8 months. Stable sitting 

allows the infant to reach for objects in his environment, and allows visual inspection of 

the environment. Additionally, sitting is a major developmental milestone. Infants who 

do not learn to sit by age 2 years, typically never learn to walk (Fedrizzi, et al., 2000). 

Thus sitting is not only important in itself, but can serve as a window into the 



 

 

175

sensorimotor system of the developing infant, and provide insight into deficits in motor 

control in infants with developmental delay.  

The control of sitting posture, like standing posture, requires maintaining the 

center of mass within the base of support. In order to achieve this goal both in sitting and 

standing, information from various sensory modalities, including visual information, 

vestibular information, proprioceptive information, and cutaneous information, is used to 

provide feedback for various postural control mechanisms (Horak, 2006). Much of the 

research on postural control in standing is focused on understanding the contributions of 

these different modes of sensory information, which is accomplished by blocking or 

altering various sensory modalities, such as closed eyes/open eyes to investigate the 

importance of vision in postural sway (Kiemel, Oie, Jeka, 2002), altering visual surround 

movement to provide false visual information (Peterka, 2002), using vibration to alter 

touch information to investigate the importance of cutaneous sensory input (Kiemel, Oie, 

Jeka, 2002), or use of galvanic stimulation to investigate vestibular function in postural 

sway (Ali, Rowen, & Iles, 2003). However, when one sensory modality is altered, the 

information from other modalities is used more for control; i.e. sensory reweighting 

occurs such that the control dynamics may not be representative of the control dynamics 

under more typical conditions. For example, in normal adult standing, about a third of the 

information used for control is from visual information (Peterka, 2002), but in the 

blindfolded condition used as an experimental manipulation of sensory input for postural 

control, vestibular information and proprioceptive information become more heavily 

weighted (Horak, 2006).  A different strategy in the study of postural control is to apply 

mechanical perturbations to the subject, and characterize the response, to gain insight into 
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the postural control mechanism. Perturbation methods have been applied to adult sitting 

(Granata, Slota, & Bennett, 2004) and to infant sitting (Harbourne, Giuliani, & Neela, 

1993; Hedberg, Carlberg, Forssberg, & Hadders-Algra, 2005; Hedberg, Forssberg, & 

Hadders-Algra, 2004; Hirschfeld, & Forssberg, 1994). These studies characterize the 

response to extreme events that may not represent typical control mechanisms in 

unperturbed sitting. For example, stretch reflexes might be triggered by a strong 

perturbation during sitting (Granata, Slota, & Bennett, 2004), but it is not clear from that 

result whether stretch reflexes are important in control of unperturbed sitting. While 

understanding sensory reweighting and response to external perturbations are important 

goals, it is also important to understand normal postural control, i.e. postural control 

without experimentally altered sensory input or external perturbations. Normal postural 

control serves as a baseline with which to compare experimental manipulations of 

postural control, and is relevant to postural control in many everyday situations. Thus it is 

desirable to develop methods to study normal postural control, and analysis of center of 

pressure (COP) data from unperturbed sitting with no sensory manipulation is one such 

method, and it is the method we have chosen to investigate infant sitting.  

The mechanism for control of upright posture is not known, but a leading 

hypothesis is that a control parameter is the time to contact of the perimeter of the base of 

support (Slobounov, Cao, Jaiswal, & Newell, 2009). In order to calculate the time to 

contact parameter, position, velocity and acceleration information must be known.  The 

various sensory modalities provide different types of sensory information. Visual 

information may include position, velocity and acceleration (Thiel, Greschner, Eurich, 

Ammermüller, & Kretzberg, 2007). The vestibular labyrinth is particularly suited to 
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sensing acceleration information (Kandel, Jessel, & Schwartz, 2000, p. 802-803). 

Proprioceptive feedback includes position, velocity and acceleration information 

(Schouten, de Vlugt, van Hilten, & van der Helm, 2008). Stretch receptors in the skin 

also contribute information for postural control (Kandel, Jessel, & Schwartz, 2000, p 

443). These multiple modes of sensory information must be interpreted and integrated by 

the central nervous system in order for postural control mechanisms to maintain upright 

posture (Horak, 2006).  While estimations of position information, velocity information, 

and acceleration information are all available from integrated sensory input, it is not 

known which information is actually used for infant sitting postural control.  Velocity 

information is thought to be more accurately estimated than position or acceleration from 

sensory input, and that it is the predominate type of information used for standing 

postural control in healthy adults (Jeka, Kiemel, Creath, Horak, & Peterka, 2004). It is 

unclear if infant sitting postural control can benefit from relying more heavily on the 

more accurately estimated velocity information, compared to position or acceleration 

information, or if the time-to-contact calculation requires equal use of all three types of 

information. Additionally, it is not known if infants with developmental delay will use 

the same types of sensory information on a delayed developmental schedule, or if they 

will adaptively find alternate ways to use sensory information to compensate for 

sensorimotor deficits.   

Postural control, just like any motor control task, is accomplished by contraction 

of the appropriate muscles at the appropriate time. If sensory information indicates an 

acceleration in a particular direction is needed, then a motor command is executed to 

provide that acceleration. At a given point in time, the sensory system may detect 
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position, velocity, and acceleration information, but there is a time lag before that 

information can be acted upon. The time lag is due to nerve conduction time for the 

sensory information to flow to the central nervous system (CNS), processing of the 

sensory signal by the CNS, motor command flow back to the muscle, and muscle 

activation time.  There are a range of delay times that have been measured in adult 

postural control, including stretch reflex time delay with a latency on the order of about 

30 msec and rise time of about 70 msec (Granata, Slota, & Bennett, 2004), vestibular 

control time delay on the order of 60-100 msec (Ali, Rowen, & Iles, 2003), and visual 

control time delay on the order of about 500 -750 msec (van den Heuvel, 

Balasubramaniam, Daffertshofer, Longtin, & Beek, 2009). Multiple postural control 

mechanisms exist (Horak, 2006), resulting in multiple time scales associated with 

postural control, as the various control mechanisms have different time delays associated 

with them. Thus time delay is a critical parameter in analysis of postural sway data.  In 

investigating how infants utilize position, velocity, and acceleration information, it is 

necessary to also investigate the time delay associated with the utilization of that 

information. 

Conceptually, to maintain upright sitting posture, a control signal is 

generated by biological neural networks within the central nervous system, with sensory 

information as the input. The output of the biological controller is a motor control signal 

that initiates muscle activation. Muscles produce forces and joint torques, which are 

proportional to accelerations via Newton’s second law, often written as F=ma for a 

system of constant mass.  Due to finite nerve conduction velocities and muscle activation 

response times, there is a time delay between the activation of sensory neurons, and the 
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acceleration of the body that occurs following the sensory input. Thus the biological 

system is has sensory input from which, after sensory integration, includes position, 

velocity and acceleration information, and the output is a muscle activation that causes an 

acceleration at time delay τ. As a model of the biological control system in this work, we 

will use a simple artificial neural network (ANN) controller. The input to the ANN is 

position, velocity and acceleration at time t, and the output is an acceleration at time t+τ. 

By training the ANN with position, velocity, and acceleration information form 

experimental COP data from infant sitting, and then probing the response of the network 

with a sensitivity analysis, the importance of position, velocity and acceleration 

information to the postural control can be evaluated.  We hypothesize that infants will 

utilize velocity information more than position or acceleration information for sitting 

postural control, based upon velocity information utilization in adult standing postural 

sway (Jeka, Kiemel, Creath, Horak, & Peterka, (2004) We also hypothesize infants with 

delayed development will utilize sensory information differently compared to infants 

with typical development, rather than simply being delayed in development. Thisd 

hypothesis is based on sensory deficits in infants with cerebral palsy, which compromise 

the majority of the sample with atypical development. 

 

Methods 

2.1. Infant participants and data collection   

Thirty infants with 30 developmental delay (age=14.05 months, std=5.33 months, 

for early sitting and age=18.06 months, std=5.09 months, for late sitting) and 33 infants 

with typical development(age=4.92 months, std=0.57 months, for early sitting, and age = 
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7.92 months, std=0.60 months, for late sitting)  participated in the study. Recruitment was 

done through newsletters, flyers, and pediatric physical therapists employed at the 

University. Infants in the developmentally delayed group were diagnosed with cerebral 

palsy, or else were developmentally delayed and at risk for cerebral palsy. Obtaining a 

firm diagnosis of cerebral palsy at this young age is often not possible. Because a 

definitive diagnosis of cerebral palsy had not been made, we refer to these infants as 

developmentally delayed, because all scored below 1.5 standard deviations below the 

mean for their corrected age on the Peabody Gross Motor Scale (Folio & Fewell, 2000). 

However, the development is likely not just delayed, but also atypical (Chen & 

Wollacott, 2007). A consent form was signed by a parent or guardian of all infant 

participants, and all procedures were approved by the University of Nebraska Medical 

Center Institutional Review Board.  

Inclusion criteria for entry into the study for the typically developing infants were: 

a score on the Peabody Gross Motor Scale of greater than 0.5 SD below the mean, age of 

five months at the time of initial data collection, and sitting skills as described below in 

beginning sitting. Exclusion criteria for the sample of infants who are typically 

developing were: a score on the Peabody Gross Motor Scales less than 0.5 SD below the 

mean, diagnosed visual deficits, or diagnosed musculoskeletal problems. If a typically 

developing infant was found to be less than 0.5 SD below the mean, and did not qualify 

for the study, the parents were informed of the score, the possibility of error in the 

measurement, and advised to have the infant re-evaluated within the next 3 months. 

Operational definitions of beginning sitting were used to determine the child's readiness 

for entry into the study. Beginning sitting was defined as (a) head control such that when 
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trunk is supported at the mid-trunk, head is maintained for over one minute without 

bobbing; (b) infant can track an object across midline without losing head control; (c) 

infant may prop hands on floor or legs to lean on arms, but should not be able to reach 

and maintain balance in the prop sit position; (d) when supported in sitting can reach for 

toy; (e) can prop on elbows in the prone position for at least 30 seconds. Each infant was 

tested when they entered into the study based on the ability to sit for about 10 sec, and 

then again 3-4 months later. 

For the infants with developmental delay the inclusion and exclusion criteria were 

as follows. Inclusion criteria were: age from five months to two years, score less than 1.5 

SD below the mean for their corrected age on the Peabody Gross Motor Scales, and 

sitting skills as described above for beginning sitting. Exclusion criteria were: age over 

two years, a score greater than 1.5 SD below the mean for their corrected age on the 

Peabody Gross Motor Scale, a diagnosed visual impairment, or a diagnosed hip 

dislocation or subluxation greater than 50%.  

For all data collection sessions, the infants were allowed time to get used to the 

laboratory setting, and were at their parent's side or on their lap for preparation and data 

collection. All attempts were made to maintain a calm, alert state by allowing the infant 

to eat if hungry, be held by a parent for comforting, or adapting the temperature of the 

room to the infant's comfort level. A blanket was placed over the plate for warmth and 

was securely adhered with double sided tape on the ground. The baby was held in the 

sitting position in the middle of the plate to start. Once the examiner could completely let 

go of the infant, data were collected for 10 seconds while the child attempted to maintain 

sitting postural control. Trials were performed until we had collected three trials, or until 
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the infant was no longer interested in sitting, i.e. was crying or agitated and could not be 

calmed. At any time the child became irritated; the session was halted for comforting by 

the parent or a chance for feeding, and then resumed only when the child was again in a 

calm state. We attempted to collect three trials at each of the two sessions, but could not 

always get that many, depending on the infant’s behavior.  

For data acquisition (Figure 6.1), infants sat on an AMTI force plate (Watertown, 

MA), interfaced to a computer system running Vicon data acquisition software (Lake 

Forest, CA). Center of pressure (COP) data were acquired at 240 Hz using the Vicon 

software. Trials were recorded including force plate data and video data from the back 

and side views. Afterwards segments were selected by viewing the corresponding video. 

Segments of data with 2000 time steps were selected from these trials by examination of 

the video. Acceptable segments were required to have no crying or long vocalization, no 

extraneous items (e.g. toys) on the force platform, neither the assistant nor the mother 

were touching the infant, the infant was not engaged in rhythmic behavior (e.g. flapping 

arms), and the infant had to be sitting and could not be in the process of falling.  

Calculation of position, velocity and acceleration from COP data  

 The time delay in a sensory feedback system is an important parameter. Since the 

goal is to model actual infant sitting, the delay from one time step to the next should be 

appropriate for human motor control.  The data in this study was acquired at 240 Hz, 

meaning there were 240 data points collected each second, or a time lag of 4.2 msec 

between points. In order to investigate time lags of different lengths, the time series data 

was sectioned into non-overlapping windows sized from 33 msec (8 data points) to 750 

msec (180 data points). Position data for each window was calculated as the average 
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position for that window. Velocity data was calculated by differencing the position data 

in that window, and calculating the average, and similarly differencing the position data 

twice and averaging gave the acceleration for that window. For example, for a window of 

33 msec, each COP position time series was broken into segments with length of 8 data 

points. Averaging these points gave an estimate of the position for that 33 msec time step. 

Differencing the 8 points and averaging the resulting 7 points gave the velocity 

estimation for that time step. Differencing twice and averaging the six points gave an 

estimation of the acceleration for that time step.  Thus from the original time series, three 

time series were calculated: position time series, velocity time series, and acceleration 

time series.   

Because the effect of the three different information types were to be compared, 

all of the input data to the model needed to be comparable in magnitude for the 

comparison to be meaningful. Each point of the position data was then normalized by 

subtracting the mean and dividing by the standard deviation for all position data. 

Likewise, all the velocity data was normalized using mean and standard deviation for 

velocity, and acceleration data normalized using mean and standard deviation for 

acceleration. The normalization process was used in order that each type of data had 

mean of zero and a standard deviation of 1, and thus the weights from the ANN would be 

related to the importance of that type of information, and not influenced by the different 

units on position, velocity and acceleration.  

 

Neural network model 
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f (netj ) =
1

1+ e−σ ⋅netj

A simple neural network model was created with 3 neurons in the input layer, one 

each for position, velocity, and acceleration; a hidden layer with 6 neurons, and an output 

layer with one neuron (Figure 6.2). All neurons used a simple sigmoidal function for 

activation (Duda, Hart, & Stork, 2001), which has an output of [0, 1], so the acceleration 

for comparison with the model output was normalized to be in the range [0,1].  Each 

neuron in the model summed the input from the preceding layer, and then used the 

following sigmoidal function to compute the output: 

  

 

where σ is a steepness parameter, that was set  equal to one for this model, and netj is the 

summation of input to the neuron j. The output of a sigmoid neuron is between zero and 

one, so all the desired output calculated  from the infant posture data was scaled to be 

between zero and one.  

Back propagation of error was used to train the network, where error 

calculated in each time step was back-propagated based on the current weights of the 

network, allowing new weights to be calculated (Duda, Hart, & Stork, 2001). Initial 

weights were randomly generated. Iteration was terminated when the error reached below 

a threshold value, and if the algorithm did not converge, new random weights were 

chosen, and the training repeated. The network was trained using the inputs position, 

velocity and acceleration at time (t), and trained to calculate acceleration at the next time 

window (t+1). The contribution of position, velocity and acceleration were ascertained by 

propagating [p,v,a], through the trained network, where p is a position value, v is a 

velocity value, and a is an acceleration value. For example, propagation of [1,0,0] 
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through the trained network results in an output that indicates the response of to a 

positive position, and neutral velocity and acceleration, i.e. what acceleration would the 

infant’s muscles and gravity provide if the infant were leaning 1 standard deviation away 

from the mean in the positive direction. The output of the network is in the range [0,1], 

where a value of 0.5 corresponds to no acceleration, an output close to 0 corresponds to a 

negative acceleration, and a value near 1 corresponds to a positive acceleration. In this 

manner, for each time series, the contribution of position, velocity, and acceleration were 

determined for each time series by propagation of [ 1,0,0], [0,1,0], and [0,0,1], 

respectively.  

Statistical analysis 

 A repeated measures ANOVA analysis was performed with 2 levels of time (early 

and late sitting), two axes (anterior-posterior and medial-lateral), 3 levels of ANN input 

(position, velocity, and acceleration), and 11 window sizes (spanning 33.3 msec to 750 

msec). The between subjects factor was the developmental group, delayed versus typical.  

The significance level for the ANOVA was set at alpha=0.05.  

In order to evaluate whether a control effect was observed, the output of the 

network was compared to 0.5 for each group and condition combination. The output of 

the network is a value between 0 and 1, with a value of 0.5 being the neutral output of the 

network, i.e. 0.5 indicates no acceleration in the next time step. An output significantly 

above 0.5 indicates acceleration in the positive direction in the next time, and an output 

significantly below 0.5 indicates negative acceleration in the next time. For a 

perturbation, whether it is position, velocity, or acceleration, the correct response is 

acceleration in the opposite direction in order to correct for the perturbation. Since we 
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tested the network with a positive perturbation (either [1,0,0] for position, [0,1,0] for 

velocity, or [0,0,1] for acceleration), the correct response of the network is a value below 

0.5, indicating that the acceleration in the next time step is in the opposite direction to the 

perturbation. Thus one-sided, independent t-tests were used test whether the output 

results were below 0.5. For each window size, infants with typical development and 

infants with delayed development, at early sitting and late sitting, in each of two axes 

(anterior-posterior and medial-lateral), are evaluated for the effect of three different types 

of posture control information (position, velocity and acceleration), resulting in 2 x 2 x 2 

x 3 = 24 comparisons for each window size used. Because 11 window sizes were 

examined, 24*11= 264 conditions were tested. With so many conditions, using 0.05 as 

the critical alpha value for all these tests would likely result in reporting some effects as 

significant, when in fact they were due to chance. A conservative Bonferroni correction 

for multiple comparisons would require setting the alphacritical=.05/264 = .000189, which 

is quite difficult to meet. If we had knowledge of the one best window size for posture 

control in infants sitting, then only 24 conditions would have been examined, and 

alphacritical=.05/24 = .0021 would be used. Because of the exploratory nature of this work, 

we relaxed the criteria for significance from the Bonferroni standard, and we chose to 

examine two critical values, alphacritical=0.01 and alphacritical =.0021. To get an idea of the 

effect of the relaxed criteria, using an alphacritical value of 0.01 means we expect to reject 

the null hypothesis when in fact it is true for 1% of the comparisons. For 264 

comparisons, we expect about .01*264 = 2.64 comparisons to appear as significant, even 

if the results are actually random. Similarly, for alphacritical = 0.0021, we expect about 0.6 

comparisons to be evaluated as significant when in fact they are not.  



 

 

187

 

Results 

The repeated measures ANOVA analysis did not reveal any significant 

differences for group, nor did it find a main effect for the repeated measures, day, axis, 

perturbation type, or window size. However, within subject contrasts found significant 

interactions in perturbation type x group (p=.044), window size x axis (p=.034), window 

size x day x axis (p=.041), window size x axis x perturbation type x group (p=.019), and 

window size x day x axis x perturbation type x group (p=.014), where the p value shown 

represents the best p value for each type of contrast (i.e., lowest among linear , quadratic, 

etc). Note that the last interaction with all 5 conditions and group is significant, and has 

the lowest p value, so there is no simple interpretation of these results, as all interactions 

must be considered. 

To help interpret the interactions, there is an additional consideration about the 

results that will be helpful, namely that the comparison of the neural network output to 

the neutral value of 0.5 for each condition. The output of the network is a normalized 

acceleration, with a value ranging from 0 to 1, where a value of 0 indicates a maximum 

acceleration in the negative direction, a value of 1 indicates a maximum acceleration in 

the positive direction, and a value of 0.5 indicates no acceleration in response to the 

input. If the network is tested with a positive perturbation, the appropriate response is in 

the negative direction, i.e. in the opposite direction to the perturbation, which corresponds 

to an output significantly less than 0.5 If the output of the network for a positive 

perturbation is not significantly less than 0.5 for that time lag and input perturbation type 

(i.e. position, velocity, or acceleration), that indicates that the time lag/information type 
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combination is not contributing significantly to control. One-sample t-tests were used to 

compare the output for each condition to 0.5, for inputs designed to test the trained 

networks sensitivity to position [1,0,0], velocity [0,1,0], and acceleration [0,0,1] (Table 

6.1).  The tests were two-sided t-tests, but the mean values for all conditions that are 

significantly different than 0.5 are less than 0.5, consistent with the output of the network 

having useful control functionality. Using a criteria of statistical significance of 0.01, 44 

conditions/group combinations were found to be significantly lower than 0.5, out of 264 

tested, compared to only about 3 combinations would be expected to be significantly 

different if the results were random. Using a criteria of statistical significance of 0.0021, 

11 conditions/group combinations were found to be significantly lower than 0.5, out of 

264 tested, compared to only about 1 combination would be expected to be significantly 

different if the results were random.  

The significant results (Table 6.1) were organized by group, day, and axis (Table 

6.2) to facilitate comparisons. Typically developing infants have a wide range of time 

windows contributing to control in the medial-lateral axis. Additionally, position, 

velocity and acceleration are all contributing to control in the medial-lateral axis for 

infants with typical development. In contrast, the anterior-posterior axis for late sitting for 

infants with typical development is very dependent on velocity information. The infants 

with delayed development have no short time window contributions to control, as there 

are no significant contributions from time windows less that 100 msec for infants with 

delayed development, and for late sitting no significant contribution from a time window 

less that 250 msec. Additionally, infants with delayed development have more equal 

lag/information types contributing to control for the anterior-posterior axis and medial-
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lateral axis, compared to the infants with delayed development who have more in the 

medial-lateral axis and fewer in the anterior-posterior axis. 

Discussion  

Our first hypothesis was that velocity information would be more heavily used in 

infant sitting posture control. We found this to be true, but only for infants with typical 

development, and then only for control in the anterior-posterior axis for late sitting. That 

late sitting should use velocity information more heavily is consistent with the sensory 

integration capabilities of the infants becoming more nearly adult like later in 

development. In adult standing posture control, Jeka, Kiemel, Creath, Horak, and Peterka 

(2004) find that velocity information is more heavily used than position or acceleration. 

They point out that the proprioceptive, cutaneous, and visual systems are all velocity 

sensitive, due to the sensor physiology being more sensitive to changes in position rather 

than absolute position. They mentioned that the vestibular system, a source of 

acceleration information, is relied on under conditions where sway referenced support has 

altered normal sensory input. They argue that under normal postural sway conditions, the 

vestibular system is likely not sensitive enough to contribute greatly to postural control. 

However, the study by Jeka, Kiemel, Creath, Horak, and Peterka (2004) only examined 

control in the anterior-posterior axis due to the sway platform being used allowing tilt in 

only one direction, and their study does not address control in the medial-lateral axis. Just 

because velocity is more heavily used for control of adult standing posture in the anterior-

posterior axis, does not imply that the same is true in the medial-lateral axis, as sensory 

information is used differently for control in the two different axes. For example, a study 

by O’Conner and Kuo (2009) found that normal adult standing postural sway is more 
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influenced by visual perturbations in the anterior-posterior axis than in the medial-lateral 

axis, while the sensitivity is higher in the medial-lateral direction if the feet are placed in 

tandem rather than side-by-side. As infants learn to sit they must learn to appropriately 

use sensory information based on task demands. 

Our second hypothesis was that infants with developmental delay use sensory 

information differently than infants with typical development. The infants with 

developmental delay were found to lack the short time delay contributions to posture 

control that the infants with typical development demonstrated. Infants with 

developmental delay were found to not simply be delayed in the development of sitting, 

but were less able to utilize short latency sensory information in postural control than 

infants with typical development, instead relying on longer delay time mechanisms for 

postural control. One short delay time control mechanism that might be used in postural 

control is the stretch reflex (Granata, Slota, & Bennett, 2004). Infants with spastic 

cerebral palsy have altered stretch reflex activity and greater stiffness of the 

musckuloskeletal system, and thus this mechanism may not be as useful for postural 

control for infants with cerebral palsy compared to infants with typical development.  

Perhaps an adaptive strategy for maintaining upright posture for infants with altered short 

latency control, possibly altered stretch reflexes, is a more complete reliance on higher 

level control mechanisms, which necessarily have a longer delay time. With a reduced 

number of postural control strategies available, the motor control system has fewer 

synergies to invoke, so the motor control development becomes atypical as well. 

Children with cerebral palsy have been found to have an increased time to 

produce a given amount of force in lower extremity movements (Downing, Ganley, Fay, 
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& Abbas, 2009), and patients with dystonia have slower reaction times in a visual 

stimulus and button-pushing task (Jahanshahi, Rowe, & Fuller, 2001). The slow response 

time of the neuromuscular control system, and the necessary reliance on longer time lag 

control mechanisms, has important implications for postural control. One model of 

postural control is the inverted pendulum model, where a mass remains positioned above 

the ground on a vertical rod due to actuators controlled by a feed back controller.  If the 

delay time of the feedback controller exceeds a critical time delay, then the upright 

position cannot be maintained. The critical time is given by: tc= sqrt(2*L/3*g), where L is 

the distance from ground to the center of mass of the pendulum, and g is the acceleration 

of gravity, which works out to 260 msec for adult standing (Milton, Cabrera, Ohira, 

Tajima, Tonosaki, Eurich, & Campell, 2009) . From this formula, the critical delay time 

for control of an inverted pendulum depends on the size of the pendulum, with taller 

pendulums able to be controlled using slower response times. For an infant, with a center 

of mass about 20 cm above the ground, the critical control time is 117 msec.  None of the 

significant control time delays for infants with delayed development meet this criterion 

(Table 6.2). While the inverted pendulum is a very crude model of infant sitting postural 

control (Kyvelidou, Stuberg, Harbourne, Deffeyes, Blanke, Stergiou, 2009), and ignores 

what are likely important contributions from the viscoelastic properties of the infant’s 

body as well as the pelvis and spine joints, the inverted pendulum model suggests that an 

infant who is not able to use fast latency control mechanisms may have a more difficult 

control problem to solve than infants with typical development.   

This study investigated control of normal postural sway, where no external 

mechanical perturbations are applied, and no sensory alteration is used. While an 
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important feature of this study is that the results apply to normal, unperturbed posture 

control with normal sensory weighting, a weakness of this study is that the specific 

sensory modalities involved in estimation of position, velocity, and acceleration can not 

be identified.  This study used a very simple ANN to model postural control, which is a 

complicated control process with multiple control mechanisms interacting to maintain 

upright posture (Horak, 2006). The ANN topology might be improved by inputting 

position, velocity and acceleration information for multiple time delays information 

simultaneously (larger ANN input layer), or by having more processing nodes (larger 

ANN hidden layer), or by having output to multiple muscles with various different time 

delays (larger ANN output layer). The probes that we use to test the network sensitivity 

to position, velocity, and acceleration were also very simple, but more complex, 

nonlinear combinations of inputs might be important for posture control, as might be 

expected if the time-to-contact hypothesis (Slobounov, Cao, Jaiswal, & Newell, 2009) is 

correct. A combination of velocity and acceleration may also be useful for infant sitting  

postural control, as muscle activity in adult standing postural control has been shown to 

correlate with perturbation acceleration and velocity (Welch & Ting, 2009). Additional 

work is needed to address these issues.  

Dynamic system theory, as used in the field of developmental psychology, 

accepts that an important aspect of motor development is the development of perception-

action coupling, as a result of exploring a wide variety of coordination patterns, and 

eventually selecting those best suited to a particular motor task. Thelen (2000) has 

emphasized the close relationship between cognition and action-perception during 

development. An important aspect of perception is the cognitive task of sensory 
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integration that must occur in order to utilize the information content of the sensory input. 

Visual, vestibular, proprioceptive, and cutaneous sensory data must be integrated in order 

to estimate position, velocity, and acceleration information to be used for posture control.  

Although there is no theoretical guidance on whether position, velocity, or acceleration 

information would be most useful for postural control, work with adult standing anterior-

posterior postural control indicates that velocity information is most useful (Jeka, Kiemel, 

Creath, Horak, & Peterka, 2004), and we have noted in this work that infants with typical 

development utilize velocity information more heavily in posture control in the anterior-

posterior direction. Thus the infants with typical development appear to develop towards 

using sensory information in a manner similar to adult posture, with the underlying 

assumption that the infant is developing on a trajectory that will eventually led to the 

adult pattern of use of sensory information. However, this analysis may be overly 

simplistic. There is no reason to assume a linear trajectory in infant development (Adolf, 

Young, Robinson, & Gill-Alvarez, 2008). Development of proprioceptive sensory 

integration is not mature even in adolescents (Viel, Vaugoyeau, & Assaiante, 2009), so 

attainment of a fully adult response in infants, even in later sitting, is not likely.  Instead, 

the use of velocity information for control in the anterior-posterior direction may emerge 

independently in both infant sitting and adult standing, as an efficient means of control 

for those particular postures, given the anatomical and physiological constraints of each 

of those systems. In discussing the anterior-posterior and medial-lateral differences in 

sensory information utilization in adult standing, O’Conner and Kuo (2009) stated that 

the task direction with the greatest instability requires more feedback, and applying this 

logic to our results suggests that control in the medial-lateral axis is less stable than the 
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anterior-posterior axis, as more types of sensory information are used for control in that 

axis, for infants with typical development.  

In summary, we find that late sitting for infants with typical development is 

characterized by a high reliance on velocity information in control in the anterior-

posterior axis, as is adult standing posture control (Jeka, Kiemel, Creath, Horak, & 

Peterka, 2004), with relatively more complicated control in the medial-lateral axis 

utilizing a wider range of information types. Infants with delayed development who are 

younger than 18 months do not develop the same reliance on velocity information. 

Infants with delayed development have less reliance on short latency control mechanisms 

compared to infants with typical development, perhaps due to altered stretch reflexes or 

generally slower sensorimotor dynamics, necessitating an adaptive switch to other longer 

latency control mechanisms.  
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Table 6.1.  

Results of One Sample t-Tests With the Output of the ANN Less than the Neutral Value 

of 0.5.  

ANN input Axis Time Window  

(msec) 

Mean Standard 

deviation 

p 

Typical development (n=33) 

position medial-lateral late sitting 33.3 0.448 0.116 0.0076 

position medial-lateral early sitting 83.3 0.412 0.155 0.0014* 

velocity medial-lateral early sitting 83.3 0.407 0.173 0.0021* 

acceleration medial-lateral early sitting 83.3 0.410 0.164 0.0018* 

velocity anterior-posterior late sitting 83.3 0.431 0.129 0.0023 

position anterior-posterior early sitting 133.3 0.431 0.157 0.0084 

position medial-lateral early sitting 133.3 0.411 0.189 0.0053 

velocity medial-lateral early sitting 133.3 0.411 0.198 0.0074 

acceleration medial-lateral early sitting 133.3 0.406 0.191 0.0041 

position medial-lateral late sitting 133.3 0.430 0.150 0.0056 

velocity medial-lateral late sitting 133.3 0.425 0.166 0.0070 

acceleration medial-lateral late sitting 133.3 0.425 0.154 0.0042 

position medial-lateral early sitting 187.5 0.410 0.161 0.0016* 

velocity medial-lateral early sitting 187.5 0.423 0.160 0.0046 

acceleration medial-lateral early sitting 187.5 0.418 0.174 0.0053 

position medial-lateral late sitting 250.0 0.438 0.131 0.0053 
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acceleration medial-lateral late sitting 250.0 0.433 0.152 0.0080 

position anterior-posterior early sitting 500.0 0.414 0.153 0.0015* 

velocity anterior-posterior early sitting 500.0 0.398 0.172 0.0009* 

acceleration anterior-posterior early sitting 500.0 0.391 0.176 0.0006* 

position medial-lateral early sitting 500.0 0.412 0.186 0.0054 

velocity medial-lateral early sitting 500.0 0.405 0.178 0.0021 

velocity anterior-posterior late sitting 500.0 0.423 0.174 0.0082 

position medial-lateral late sitting 750.0 0.418 0.154 0.0022 

velocity medial-lateral late sitting 750.0 0.418 0.166 0.0040 

Delayed development (n=30) 

position medial-lateral early sitting 133.3 0.420 0.125 0.0008* 

velocity anterior-posterior early sitting 187.5 0.406 0.169 0.0025 

acceleration anterior-posterior early sitting 187.5 0.419 0.172 0.0075 

acceleration anterior-posterior early sitting 250.0 0.428 0.152 0.0070 

velocity anterior-posterior late sitting 250.0 0.416 0.167 0.0050 

acceleration anterior-posterior late sitting 250.0 0.420 0.158 0.0046 

position medial-lateral late sitting 250.0 0.413 0.178 0.0060 

velocity medial-lateral late sitting 250.0 0.413 0.179 0.0063 

velocity anterior-posterior early sitting 333.3 0.409 0.194 0.0081 

acceleration anterior-posterior early sitting 333.3 0.409 0.177 0.0043 

position medial-lateral early sitting 375.0 0.410 0.161 0.0023 

acceleration medial-lateral early sitting 375.0 0.410 0.163 0.0025 

acceleration anterior-posterior late sitting 375.0 0.415 0.153 0.0025 
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position anterior-posterior early sitting 500.0 0.424 0.124 0.0011* 

acceleration anterior-posterior late sitting 500.0 0.432 0.142 0.0068 

velocity anterior-posterior early sitting 750.0 0.405 0.171 0.0024 

position medial-lateral late sitting 750.0 0.407 0.189 0.0058 

velocity medial-lateral late sitting 750.0 0.403 0.160 0.0012* 

acceleration medial-lateral late sitting 750.0 0.396 0.174 0.0014* 

Note: Only conditions with p<.01 are included in the table, and * indicates conditions 

with p<.0021. The p values are for a one-sided t-test with null hypothesis mean=0.5 for 

each condition/ANN input combination. Comparisons with p>.01 are not shown.  
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Table 6.2. Information Type and Window Times (msec) for Significant Output of Infant 

Sitting ANN  

Delayed development  Typical development 
       
Medial-lateral  Anterior-posterior  Medial-lateral  Anterior-posterior 

Early Sitting 
P 133* 
P 375 
A 375 

P 500* 
V 187 
V 333 
V 750 
A 187 
A 250 
A 333 

P 83* 
P 133 
P 187* 
P 500 
V 83* 
V 133 
V 187 
V 500 
A 83* 
A 133 
A 187 

P 133 
P 500* 
V 500* 
A 500* 

Late Sitting 
P 250 
P 750 
V 250 
V 750* 
A 750* 

V 250 
A 250 
A 375 
A 500 

P 33 
P 133 
P 250 
P 750 
V 133 
V 750 
A 133 
A 250 

V 83 
V 500 

Note. P=position sensitivity of ANN, V=velocity sensitivity of ANN, A=acceleration 

sensitivity of ANN.  Numerical value is window size in msec. * indicates ANN output 

was significantly different from 0.5 with p<.0021, and values without * were 

significantly different from 0.5 with p< .01, as indicated in Table 1.  

 

 

 



 

 

204

 

 

Figure 6.1. Postural sway COP data is collected as an infant sits on a force plate.  COP 

data was used to train the neural network. 



 

 

Figure 6.2. Model of infant as a sitting on a force plate, with a neural network controller. 

Force plate is indicated as a black box that outputs COP data, which is 

differentiated to get velocity and acceleration sensory information, the input to the 

neural network. The output of the network is a control signal that drives muscles 

in order to maintain upright sitting posture of the infant. We measure COP with 

the force plate to derive the position, velocity, and acceleration sensory data for 

the model, whereas the i

cutaneous sensory input for this information. 

 

 

2. Model of infant as a sitting on a force plate, with a neural network controller. 

Force plate is indicated as a black box that outputs COP data, which is 

differentiated to get velocity and acceleration sensory information, the input to the 

. The output of the network is a control signal that drives muscles 

in order to maintain upright sitting posture of the infant. We measure COP with 

the force plate to derive the position, velocity, and acceleration sensory data for 

the model, whereas the infant relies on visual, vestibular, proprioceptive, and 

cutaneous sensory input for this information.  
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DISSERTATION CONCLUS

 Chapter 2 used linear and nonlinear measures to compare postural sway of infant 

early sitting, and finds significan

but not any of the other measures, including approximate entropy. The sitting postural 

sway of infants with typical development had higher LyE that the sitting postural sway of 

infants with delayed development. The LyE calculated from experimental data is a 

measure of exponential divergence of nearby trajectories of a time series embedded in 

phase space. However, these trajectories must eventually fold back on longer time scales 

because the attractor is bounded (Figure 7.1), as unchecked exponential divergence 

would result in an unbounded system (Wolf, Swift, Swinney, & Vastano, 1985).  

 

                    

 

Figure 7.1. The attractor is globally bound

exponential divergence.  

 

CHAPTER  7 

DISSERTATION CONCLUSION 

Chapter 2 used linear and nonlinear measures to compare postural sway of infant 

early sitting, and finds significant differences with the largest Lyapunov exponent (LyE), 

but not any of the other measures, including approximate entropy. The sitting postural 

sway of infants with typical development had higher LyE that the sitting postural sway of 

velopment. The LyE calculated from experimental data is a 

measure of exponential divergence of nearby trajectories of a time series embedded in 

phase space. However, these trajectories must eventually fold back on longer time scales 

s bounded (Figure 7.1), as unchecked exponential divergence 

would result in an unbounded system (Wolf, Swift, Swinney, & Vastano, 1985).  

ttractor is globally bounded, even though local trajectories exhibit 
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As discussed by Wolf, Swift, Swinney, and Vastano (1985), the exponential divergence 

that is measured in calculation of the LyE is on a much shorter time scale than the period 

of the attractor, in order to avoid underestimating the divergence as the attractor folds 

back on itself. Therefore, short time scale events (i.e. high frequency in the power 

spectrum) contribute more to the calculated LyE than long time scale events. While Wolf, 

Swift, Swinney, and Vastano (1985) discuss this in relation to the sensitivity of the 

analysis to experimental noise, the high frequency components in the postural sway data 

of infants with typical development not seen in the postural sway of infants with delayed 

development (see Figures 4.11 and 4.12 in Chapter 4) may be what is giving rise to the 

differences in LyE between these two groups.  

In a mathematical system, where the system’s governing equations are known 

explicitly, the largest Lyapunov exponent can be calculated analytically from the 

governing equations. When calculated from the governing equations, positive LyE is 

consistent with the system being chaotic, whereas negative LyE indicates the system is 

not chaotic.  However, for the infant postural control system, the governing equations are 

not known explicitly, and the LyE can only be estimated from experimental time series 

data. In this work, the LyE was estimated from center of pressure data in this work using 

commercially available software, the Chaos Data Analyzer was used (professional 

version, Physics Academic Software; Sprott & Rowlands, 1998), which implements what 

is known as the Wolf algorithm for calculation of the LyE (Wolf, Swift, Swinney, & 

Vastano, 1985). Wolf, Swift, Swinney, and Vastano (1985) emphasize that the data used 

for the analysis must be sufficient in quantity (length of the time series), and quality (not 
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have excessive noise) for the algorithm to give meaningful results. The length 

requirement for the time series is based on the need to contain several orbital periods, and 

thus the length requirement for the time series depends on the dynamics of the system 

under study, and Wolf, Swift, Swinney, and Vastano (1985) find that 10D to 30D  data 

points are required, where D is the dimension of the attractor.  Again, we cannot directly 

calculate the dimension of the attractor for infant sitting postural control because the 

governing equations are not known. We can only estimate a dimensionality of the system 

from the data.  One estimate of attractor dimension is the correlation dimension, and as 

reported in Chapter 2, we found a correlation dimension of about 4.2. The required time 

series length, based on this estimate of the attractor dimension, is at least 10D, or 15,849 

data points are required. Here we should note that this estimate of the required number of 

data points is based on the available data. Thus, it is unknown if the actual dimension is 

4.2. It is possible that it will be higher or lower. However, Grassberger and Procaccia 

(1983) find that the correlation dimension is a good estimate of the attractor dimension if 

the time series is long enough, but may underestimate the attractor dimension if the time 

series is too short. Thus the requirement of 15, 849 data points is likely a conservative 

estimate of the length of the time series needed.  

The infants are not able to sit for extended periods of time, and our data 

collections resulted in time series that were 2000 time steps (N=2001), or 8.3 seconds of 

data collected at 240 Hz.  Of course, collecting data at 2400 Hz for 8.3 seconds of sitting 

would have resulted in 20,000 time steps, apparently meeting the requirement of 15,849 

data points. Furthermore, increasing the sampling rate tenfold does not provide an 

increase in length of time the system dynamics the time series, and thus could not be an 
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appropriate solution to the time series length requirement. As a simple example, consider 

studying the dynamics of a sine function with a period of 2 seconds, i.e. a frequency of 

0.5 Hz. The Nyquist criterion requires sampling at least 4 data points in those 2 seconds 

(i.e. sampling at 1 Hz is the minimum for a 0.5 Hz signal). For spectral analysis sampling 

rates higher than the Nyquist criterion present no problem, other that the extra data 

storage requirements for the longer time series. While the Nyquist criterion is widely 

accepted as determining the minimum necessary sampling rate for spectral analysis 

(sometimes called the Nyquist-Shannon criteria), the mathematical proof of the Nyquist 

sampling criterion requires data to cover a complete period (Shannon, 1949).  Simply 

sampling at a very high sampling rate, and obtaining a time series with a certain number 

of data points does not allow characterization of the system dynamics if the time series 

does not sample for at least one period of the sine function. For the example of the 0.5 Hz 

sine function with a period of 2 seconds, mentioned above, sampling at a very high 

sampling rate for 0.2 seconds will not provide a description of the system dynamics, 

regardless of how many data points are collected in that 0.2 seconds.  The requirement 

for the LyE using Wolf’s algorithm is even more severe, in that multiple cycles are 

needed, because divergence values from multiple cycles are averaged in order to 

minimize the effect of noise on the estimate.  The requirement of 15,849 data points for 

the length of the time series cannot be met simply by increasing the sampling rate, but 

that leaves open the question of what sampling rate should be used. 

The sampling rate for nonlinear analysis has additional considerations as 

compared to spectral analysis, because it needs to be low enough that the system evolves 

sufficiently from one measurement to the next. Wolf, Swift, Swinney, and Vastano 
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(1985) suggest looking at delay plots (Figure 7.2) and visually determining if a given 

delay time has sufficiently opened up the attractor, as the attractor will appear as a line on 

x=y (or a line on x=y=z in three dimensions) if the delay is too low.   

 

 

 

Figure 7.2. Delay plots for infant sitting time series at various lag values. 

 

While the delay plots indicate that a lag less than about 40 is not unfolding the 

attractor enough, it is not clear which time lag is best. Additionally, if the data has a 

dimension greater than 3, this method could lead to erroneous conclusions, since higher 

dimensions cannot be visualized. Based on the correlation dimension data reported in 

Chapter 2, the dimension of this data might be 4 or higher, so we might suspect that a two 



dimensional plot is not appropriate for judging the

set. Another method that can be used to is to set the delay time based on the lag value at 

which the autocorrelation function reaches 1

Collins & DeLuca, 1992). This method giv

some time series the values are much higher (Figure 7.3).

 

 
 
Figure 7.3. Histograms of lag values
1-1/e, for sitting COP data for infants with typical developmen
delayed development (right)

 

If a lag value of 40 is to be used for the infant sitting data with the Wolf 

algorithm, as implemented in the software Chaos Data Analyzer (professional version, 

Physics Academic Software

sampled from a time series of 2000 time steps to a time series of just 50 time steps, where 

now each time step is lag 40/ 240 Hz= 166 msec.  The net result is that the 8.3 seconds of 

infant sitting data that was ac

points, compared to the conservative estimate that 15,849 data points are needed. Based 

 

dimensional plot is not appropriate for judging the unfolding of the attractor for this data 

set. Another method that can be used to is to set the delay time based on the lag value at 

which the autocorrelation function reaches 1-1/e of its maximum value (Rosenstein, 

Collins & DeLuca, 1992). This method gives a median value of about 40, although for 

some time series the values are much higher (Figure 7.3). 

. Histograms of lag values (τ) at which autocorrelation function
, for sitting COP data for infants with typical development (left) and infants with 

delayed development (right). 

If a lag value of 40 is to be used for the infant sitting data with the Wolf 

algorithm, as implemented in the software Chaos Data Analyzer (professional version, 

Physics Academic Software; Sprott & Rowlands, 1998), then the data must be down 

sampled from a time series of 2000 time steps to a time series of just 50 time steps, where 

now each time step is lag 40/ 240 Hz= 166 msec.  The net result is that the 8.3 seconds of 

infant sitting data that was acquired for each infant sitting trial provides just 50 data 

points, compared to the conservative estimate that 15,849 data points are needed. Based 
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on this approach, to acquire 15,849 data points at a lag of 166 msec, the infants would 

have to sit for 2631 seconds, or over 40 minutes, which is beyond the capability of most, 

if not all, of the infants in our study. Even if the infants could sit for this long, the 

dynamics of the postural control would likely change during these 40 minutes due to 

fatigue, so nonstationarity of the signal would compromise the outcome. Based on this 

analysis, further calculations with the LyE were not pursued.   

Despite these limitations, the result from the LyE analysis presented in Chapter 2 

is intriguing, because this algorithm did detect differences between the postural sway of 

infants with delayed development and infants with typical development. However, 

interpretation of the LyE in the same manner as analytically determined LyE, as an 

indicator of mathematical chaos, is troublesome, given that the data is so far away from 

meeting the criteria that the algorithm was designed to handle (Wolf, Swift, Swinney, and 

Vastano, 1985).  With this limitation in mind, we should point out that this does not 

undermine the results of Chapter 2 but we suggest that they should be interpreted with 

caution if conclusions of chaos are to be made. We feel that conclusions on amount of 

divergence of the trajectories are safer and they have a more functional importance. 

Entropy measures are thought to be more robust than other nonlinear measures to 

shorter time series (Pincus, 1991), so Chapters 3 and 4 pursued the use of entropy 

measures. In Chapter 3 symbolic entropy (Aziz & Arif, 2006) and approximate entropy 

(Pincus, 1991) were used to compare sitting postural sway of infants with typical 

development to sitting postural sway of infants with delayed development. Chapter 2 

included approximate entropy analysis of early infant sitting postural sway, and found no 

significant difference between the two groups, but the parameters used by the algorithm 
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for the analysis in Chapter 2 were standard parameters that are widely used in other 

fields, as discussed in Chapters 2, 3, and 4. These parameters are comparison vector 

length m=2, and distance parameter r=.2 times the standard deviation of the time series. 

In Chapter 2, the lag parameter was adjusted to 4 because of contamination of the data 

with 60 Hz noise, and sampling at 240 Hz, resulted in a repeating cyclical pattern every 

4th data point. Thus Chapter 2 uses what would be referred to as ApEn(m=2, 

r=.2*std(Data), t @ 240 Hz, lag=1) using the nomenclature in Chapter 4. In Chapter 3 

approximate entropy parameters are varied a bit, but it mostly focuses on the symbolic 

entropy analysis, and for both types of entropy analysis optimizes parameters to 

maximize the separation of the two groups of infants. Chapter 4 focuses exclusively on a 

systematically varying the parameters in the approximate entropy analysis.  

Chapter 2 presents the conclusion that ApEn(m=2, r=.2*std(Data), t @ 240 Hz, 

lag=4) found no significant difference between these two groups of infants. Chapter 3 

presents the conclusion that ApEn(m=2, r=3.0*std(Data), t @ 240 Hz, lag=4) found 

significant differences in infants with delayed versus typical development in developed 

sitting in the medial-lateral axis. Chapter 4 presents the conclusion that ApEn(m=1, 

r=1.0*std(Data), t @ 240 Hz, lag=8) found significant differences in infants with delayed 

versus typical development in early sitting in the anterior-posterior axis. A contributing 

factor to these various results is that different numbers of subjects were analyzed in each 

because the analyses were completed at different times, and each analysis used the 

subjects’ data that was available when the analysis was performed. However, the choice 

of parameters for the analyses in Chapters 3 and 4 were made based on searching a large 

parameter space to find parameters that perform better at separating the developed sitting 
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in Chapter 3 and early sitting in Chapter 4. Thus using the standard parameters finds no 

difference, optimizing the parameters for developed sitting finds differences in the 

medial-lateral axis, and optimizing the parameters for early sitting finds differences in the 

anterior-posterior axis. That no difference was found using the standard parameters is due 

to experimental noise being the main determinate of approximate entropy using the 

standard parameters, a seen in Figure 3.3 in Chapter 4. Use of larger r values in the 

approximate entropy algorithm helped to correct for the high noise levels in the data, as 

this parameter specifies how closely two patterns in the data have to match before being 

counted as similar.  

The net result is that early sitting differs in the anterior-posterior axis, and 

developed sitting differs in the medial-lateral axis, where typically developing infants 

have higher entropy in each case. The lag values found that show these differences are 

relatively short in the time scales usually associated with motor control, lag 4 (16.7 msec) 

and lag 8 (33.3 msec). Spectral analysis presented in Chapter 4 confirms the existence of 

higher frequency structure in the sitting postural sway of infants with typical 

development, and these higher frequency features are not seen in the postural sway of 

infants with delayed development. The origin of the high frequency features in the sitting 

COP data from infants with typical development is not clear, but may be due to the 

utilization of more functional stretch reflexes by infants with typical development, as 

discussed in more detail in Chapter 4, or due to an ability to perform sensory integration 

on a faster time scale, as discussed in more detail in Chapter 6.   

Chapter 5 probes the fractal nature of early infant postural sway using detrended 

fluctuation analysis (DFA). Time series with fractal patterns have repeated patterns, but 
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the patterns are repeated on different time scales. Detrended fluctuation analysis, which 

involves least squares fitting of the data on different window lengths of the time series 

data, was used to probe the fractal properties of the time series. The reliance on least 

squares fitting means that DFA is quite robust to experimental noise and to 

nonstationarity in the data (Peng, Havlin, Stanley & Goldberger, 1995), important 

benefits for the infant sitting data set. Differences between early sitting postural sway for 

infants with typical development and infants with delayed development were seen in the 

anterior-posterior axis only, consistent with the approximate entropy with larger, more 

noise resistant, r value finding differences between groups in anterior posterior postural 

sway in early sitting. The early sitting postural sway of infants with delayed development 

had higher alpha values than sitting postural sway in the anterior-posterior axis of infants 

with typical development. The alpha value is related to the slope of a log-log plot of 

spectral density versus frequency of the time series (Heneghan & McDarby, 2000; note 

that this paper switches the usual convention of alpha as the DFA parameter and beta as 

the negative slope of the power spectral density). For example, white noise has equal 

contributions to the power spectra from all frequencies, so the slope of the log-log plot of 

the power spectrum is zero (beta = 0), and the alpha value from DFA is 0.5. For pink 

noise, also known as 1/f noise, the slope of the log-log plot of the power spectra is -1 

(beta=1), and the alpha value from DFA is 1.0. For brown noise, so called because it is 

characteristic of Brownian motion, the slope of the log-log plot of the power spectra is -2 

(beta=2), and an alpha value of 1.5.  As the high frequency components in a time series 

decrease, the slope of the log-log plot of the power spectrum decreases, and the alpha 

value from DFA decreases. The result found from infant sitting DFA presented in 
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Chapter 5 is that infants with typical development have lower DFA alpha values in early 

sitting in the anterior-posterior axis. This result is consistent with the increased intensity 

in the high frequency range that was discussed previously in sitting postural sway for 

typically developing infants (see Figures 4.11 and 4.12, Chapter 4), and is more 

pronounced in early sitting in the anterior-posterior axis. The increase in intensity at high 

frequency reduces the slope of the power spectral density, and the DFA alpha value is 

reduced.    

Chapter 6 used the infant sitting postural sway data to train an artificial neural 

network (ANN), and then the properties of the network were compared for networks 

trained with data from infants with typical development and infants with delayed 

development. The analysis was repeated with different time windows, where position, 

velocity, and acceleration were calculated for each window, and the ANN was trained to 

predict acceleration at a future window. In the infant, visual information, vestibular 

information, proprioceptive information, and cutaneous information are integrated to 

obtain position, velocity, and acceleration, whereas in the model these kinematic values 

are calculated from the time series data. Based on the kinematic information, the central 

nervous system calculates the appropriate response, resulting in muscle contractions. 

Muscle contractions produce force, and forces produce accelerations via Newton’s 

second law, commonly written as F=ma. Thus the model is a simple feedback control 

model, where the kinematic values at time t are inputs to the ANN, and acceleration at 

time t+τ is the output. Once again, the result was that infants with typical development 

have a fast component to their postural control that infants with delayed development do 

not have, perhaps related to sensory integration.  
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Thus in all of the studies that found statistically significant differences between 

the two groups, the high frequency component in the postural sway of infants with typical 

development, and not seen in the postural sway of infants with delayed development, is 

important in determining the outcome of the analysis. An important question then is what 

is the physiological mechanism that is giving rise to these higher frequency components 

in the sitting postural sway of infants with typical development, and/or why is this 

component missing in the sitting postural sway of infants with delayed development. 

Most of the infants in the group that has been referred to as having delayed development 

have delayed development because of cerebral palsy, and the neurological impairments 

associated with cerebral palsy are likely responsible for the lack of ability to control 

postural sway with the same short time delays that infants with typical development use.  

Children with cerebral palsy have been found to have an increased time to 

produce a given amount of force in lower extremity movements (Downing, Ganley, Fay, 

& Abbas, 2009), and patients with dystonia have slower reaction times in a visual 

stimulus and button-pushing task (Jahanshahi, Rowe, & Fuller, 2001). However, in infant 

sitting, infants with cerebral palsy do not have a slower latency to perturbation than 

infants with typical development, rather the control issue is one of inappropriate co-

contraction and inappropriate muscle firing coordination (Brogren, Forssberg, Hadders-

Algra, 2001). Using diffusion tensor imaging, infants and children with cerebral palsy 

were found to have more extensive damage to posterior thalamic radiation pathways 

(sensory processing) than to the descending corticospinal tracts (motor function), and 

damage to posterior thalamic radiation pathways was better correlated with motor 

function deficit than damage to descending corticospinal tracts (Hoon, et al, 2009). Thus 
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poor sensory processing may be important in altered sitting postural control in infants 

with cerebral palsy.  

As discussed in Chapter 6, one commonly used tactic to study postural control 

involves studying the response to some type of external perturbation. Another type of 

study uses manipulation of sensory input, such as comparing postural control with open 

eyes to eyes closed, to study the effect of vision. These strategies may provide misleading 

information about the control of normal, unperturbed postural control. For example, in 

perturbation studies a seated subject is exposed to some type of external perturbation, 

such as a sudden acceleration, and stretch reflex latencies are measured (Granata, Slota, 

& Bennett, 2004). While this provides insight into postural response to an external 

perturbation, which may be important in injury in automobile accidents, for example, it 

does not answer the question as to whether stretch reflexes are important in unperturbed 

sitting. When visual sensory information is altered, sensory re-weighting occurs within 5-

10 seconds (Jeka, Oie, Kiemel, 2008). Thus the postural control system studied is not 

merely postural control minus the altered sense, but a completely reweighted sensory 

control system, and the relationship of the reweighted sensory control system to the 

normal sensory control system is not clear. An advantage of the methods used in this 

dissertation work is that normal, unperturbed sitting can be studied. A disadvantage of 

this method is that the sensory system involved in estimations of the position, velocity, 

and acceleration cannot be identified. Thus the methods of perturbed postural control are 

complimentary to the unperturbed, unaltered sensory study performed here, with neither 

providing a complete understanding of the postural control system, and each adding 

insight that the other fails to give.   
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The discussion of postural control above, with the emphasis on sensory 

processing, and in Chapter 4, with the emphasis on stretch reflex, is tacitly assuming that 

the postural control is a feedback control system. Indeed, there must be a feedback 

component to postural control. However, feed forward contributions to postural control 

also occur, and it is possible that the differences between postural control of infants with 

typical development and infants with delayed development are due to feed forward 

differences rather than feedback differences. For example, if the infant decides to look 

over at a toy while sitting, anticipatory postural control can be used to adjust for the 

change in mass distribution that occurs as the head is moved. Children with cerebral 

palsy have been shown to have decreased anticipatory postural adjustment skills (Liu, 

Zaino, McCoy, 2007). More work is needed to understand the underlying mechanisms for 

the differences we have found in sitting postural control between infants with typical 

development and infants with delayed development. 

A controversy in developmental psychology is whether development is a smooth 

progression (Kagan, 2008), or whether there are distinct stages and development is a 

progression from one stage to the next (Spencer & Perone, 2008). The traditional view is 

that there are distinct stages in human development, such as those described by Piaget 

(1928/2009). Others argue for a more continuous “developmental cascade” based on 

evolutionary and developmental biology analogies, and question whether stage theory is a 

useful description of development (Kagan, 2008). In motor control development there 

appear to be relatively well defined stages, and achievement of so-called “motor 

milestones” such as acquiring the ability to sit, then to crawl, then to stand, then to walk, 

etc. define entry into the next stage (World Health Organization, 2006). Dynamical 
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systems theory views the developmental process from the stage theory perspective, where 

stages are attractors. Maturation and developmental changes in response to environmental 

stimuli move the child to a new basin of attraction, and a new skill emerges as the child 

then evolves towards the attractor (Smith & Thelen, 2003; Spencer & Perone, 2008). 

From this perspective, the development of sitting behavior is a phase transition, where 

lying and rolling behaviors are displayed in the first phase, and sitting behavior is 

additionally displayed in the second phase, and the infants in this study are going through 

the phase change.  

In developmental psychology then the time scale for the application of dynamical 

systems theory is on the order of months, as new motor milestones are achieved on this 

time frame (World Health Organization, 2006). In motor control, dynamical systems 

theory is also applied, but typically on a shorter time scale. For example, if I wiggle my 

index fingers on each of my hands, I can maintain an anti-phase relationship only up to a 

certain frequency, and attempting to wiggle them faster will result in a spontaneous 

transition to a in-phase (symmetric) relationship, despite my best attempts to maintain the 

anti-phase relationship (Kelso, 1995). The in-phase attractor basin includes high 

frequency finger wiggling, where as the anti-phase attractor basin does not include high 

frequencies.  The frequency of the movement is a control parameter, and it helps to 

define which attractor basin(s) are available. Similarly, the transition from walking to 

running as the speed increases can be described as a phase transition, with speed being 

the control parameter (Diedrich & Warren, 1995), although whether increased variability 

is associated with the walk-run phase transition is controversial (Kao, Ringenbach, & 

Martin, 2003; Seay, Haddad, van Emmerik, & Hamill, 2006). Phase transitions may have 
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more variability associated with them, but experimental techniques must be sensitive 

enough to detect the increased variability.    

While the word “sitting” sounds like a single attractor, there were two types of 

sitting displayed by infants. Typically in early sitting the infants in the study would sit in 

a “prop sit” position, with the arms on the ground close to hip or mid-thigh and the arms 

supporting some of the weight, where as in developed sitting typically a more upright 

posture was used, and the hands rarely touched the ground. In intermediate sitting, the 

infant might alternate between the two types of sitting, choosing one posture for a while, 

then the other, and back to the first, etc. This phase transition behavior is reminiscent of 

phase transitions in materials systems. For example, freezing or melting of water is a 

phase transition involving transition between frozen and liquid phases, where temperature 

and pressure are the control parameters. The interface between the two phases is very 

dynamic on the molecular level during a phase transition. For an individual water 

molecule near the ice-water interface, the molecule could at any instant be incorporated 

into the ice crystal (solid phase), and at a later instant be moving in the water (liquid 

phase), and even later be incorporated back into the ice crystal (solid phase again). One 

way to describe these dynamics is that the behavior of an individual near where the 

basins of two attractors meet in phase space is highly variable, and this variability is 

observed in the infant sitting dynamics as well as the molecular dynamics of the water. 

We did not do any sort of analysis of the prop sitting versus upright sitting in our study, 

and the observations discussed above were casual observations made during data 

collections. However, this transition might be of interest in future studies, as some infants 

in the developmental delay group never progressed from the prop sitting posture to the 
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upright sitting posture. For these infants, does the upright sitting attractor never emerge 

on a developmental time scale, and/or is there a difficulty in making the phase transition 

to upright sitting on shorter motor control time scales? Despite the apparent simplicity of 

maintaining sitting posture, it is a complex process, and more work is needed to 

understand this behavior.  

Another interesting aspect of infant sitting postural control is the difference 

between control in the anterior-posterior axis versus control in the medial-lateral axis. 

Chapter 3 presents the conclusion that ApEn(m=2, r=3.0*std(Data), t @ 240 Hz, lag=4) 

found significant differences in infants with delayed versus typical development in 

developed sitting in the medial-lateral axis. Chapter 4 presents the conclusion that 

ApEn(m=1, r=1.0*std(Data), t @ 240 Hz, lag=8) found significant differences in infants 

with delayed versus typical development in early sitting in the anterior-posterior axis. 

Chapter 5 presents the conclusion that detrended fluctuation analysis found significant 

differences in infants with delayed versus typical development in early sitting in the 

anterior-posterior axis, and Chapter 6 presents the conclusion that typical infants rely 

more on velocity information in control in the anterior posterior axis, whereas control in 

the medial-lateral axis uses a wider range of types of information, and infants with 

delayed development do not develop the same reliance on velocity information. 

Statistical comparisons of measures of postural sway were not performed between 

medial-lateral and anterior-posterior sway in Chapters 2-5, where entropy measures and 

fractal measures were addressed. While most of the analyses presented in this dissertation 

were not really designed to address the differences between control in the medial lateral 

axis and the anterior-posterior axis, it appears that there are some interesting differences.   
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Because the postural control that emerges in the medial-lateral axis appears to be 

different than the control that emerges in anterior-posterior axis, it is of interest to discuss 

why this might occur. Anatomical differences may be important, for example stretch 

reflex associated with the hamstring muscle or spinal muscles may be contributing 

differently to control in the anterior-posterior axis, compared to stretch reflex in the 

external oblique and other muscles that provide postural control in the medial-lateral axis. 

Sensory differences may be important. Cutaneous feedback useful to postural control in 

the medial-lateral axis would include left-right pressure differences, whereas cutaneous 

feedback useful to postural control in the anterior-posterior axis would include pressure 

differences from the proximal to distal portions of the posterior surface of the leg. If 

neural processing of one type of pressure information is more rapid than another, then 

that may affect control in the corresponding axis. Alternatively, the dynamics of 

processing of visual information may differ between the two axes, resulting in differences 

in the postural control that emerges. Visual flow with movement in the anterior-posterior 

axis more strongly influences postural sway than in the medial-lateral direction in 

postural sway (Campbell, Vander Linden, & Palisano, 2006, p. 86-87).  Given the 

different anatomical and sensory differences between the anterior-posterior and medial-

lateral axes, it is perhaps not surprising that differences in postural control emerge with 

development. Based on the results presented in Chapter 6, that infants with typical 

development have larger differences between sensory information usage in the two axes 

than infants with delayed development, perhaps a useful measure of development and 

developmental pathology then is not the value of a particular measure, such as 

approximate entropy, but rather the ratio of that measure in the anterior-posterior axis to 
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the measure for the medial-lateral axis. While much of the work in the postural control 

literature examines the control in the medial-lateral axis independently from that in the 

anterior-posterior axis, as did this work, the sitting infant must accomplish both tasks 

simultaneously. In this sense, sitting postural control is a dual task, and as in many dual 

task experiments, an interaction between the tasks might be expected. Infants with typical 

development might be expected to perform better on a dual task experiment, compared to 

infants with cerebral palsy. Thus a measure that includes an interaction between the 

control along the two different axes, such as the entropy ratio described above, could be 

useful in elucidating differences between these two groups. The work in this dissertation 

has not satisfied the fundamental need for a useful clinical measure to quantify 

differences between infants with typical development and infants with delayed 

development, and to assess progress an infant has made as a result of therapeutic 

interventions, but perhaps it will provide insight for future researchers who work towards 

that goal.  

CONCLUSION: The nonlinear algorithms discussed in this work require selection of 

parameters, unlike more straightforward measures such as mean or standard deviation. A 

significant aspect of this work for nonlinear analysis is that the standard parameters that 

are often used for the nonlinear analyses are not necessarily optimal for a particular data 

set. For example, in this work the approximate entropy did not find a significant 

difference between the postural sway of infants with typical development and infants 

with delayed development (Chapter 2). However, by searching the parameter space, 

parameters were found for approximate entropy that did find significant differences 

between the two populations (Chapters 3 and 4). As another example, the detrended 
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fluctuation analysis did not find a difference between infants with delayed development 

and brown noise using the standard linear detrending, but higher order detrending showed 

that the postural sway of infants with developmental delay is significantly different than 

brown noise (Chapter 5). The parameters make the analysis sensitive to different aspects 

of the data, and interpretation of the data needs to be done by relating the parameters to 

biomechanical and physiological aspects of the data. For example, the large r values used 

in approximate entropy that are sensitive to differences between the postural sway of 

infants with delayed versus typical development can be interpreted as differences in large 

excursions from the mean values, perhaps events where the infant nearly falls over. The 

short lag parameter can be interpreted as a short latency response, perhaps a stretch 

reflex. Making a better connection between the mathematical analysis and the biology of 

the system under study is a challenge for future work. 

Postural control was found to be different comparing infants with developmental 

delay and infants with typical development. Velocity information was found to be more 

heavily weighted that position or acceleration in postural control in the anterior-posterior 

axis for infants with typical development, but not for infants with delayed development. 

For infants with typical development, control in the medial-lateral axis was more 

complex in that more different types of information were used. Thus differences between 

anterior-posterior control and medial-lateral control, as an indicator of developmental 

delay, might be an interesting concept to explore in future work.   An important 

contribution to understanding developmental delay is the finding that postural control 

occurs on a faster time scale for infants with typical development than it does for infants 

with developmental delay. This result is a common thread through multiple types of 
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analyses. Short time lags in approximate entropy (Chapters 3 and 4), high frequency 

features in spectral analysis (Chapter 4), lower alpha values in detrended fluctuation 

analysis (Chapter 5), and more explicitly by the time lags used in the artificial neural 

network analysis (Chapter 6), all are consistent with a faster time scale for postural 

control in infants with typical development.  

Dynamical systems theory has been used to describe infant development, but as 

described by Kelso (1995), not with much success. Kelso (1995, p. 181) states “Although 

‘dynamic systems’ concepts are part of the intellectual heritage of developmental theory, 

they have in my view promised much and delivered little. … A more frank assessment is 

that as scientific theories go, these efforts are pretty barren.” Kelso’s (1995) complaint 

about much of the work that has purported to use dynamic systems theory is that proper 

application of the theory requires the identification of a control parameter. For example, 

in the phase change from walking to running that occurs as velocity increases, velocity is 

the control parameter. Kelso (1995, p. 182) cites the work of Ester Thelen as a rare 

example of making a good effort to apply dynamic systems theory to developmental 

changes, because she identifies mass (weight gain) as a control parameter that changes 

resulting in a change in stepping behavior (e.g. Thelen, Ulrich, & Wolf 1991). An 

important question is what is the control parameter that changes the infant’s behavior to 

upright sitting? 

 As discussed in Chapter 6, one model of postural control is the inverted 

pendulum model, where a mass remains positioned above the ground on a vertical rod 

due to actuators controlled by a feedback controller.  If the delay time of the feedback 
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Note that none of the significant control time delays for infants with delayed 

development meet this criterion (Table 6.2). While the inverted pendulum is a very crude 

model of infant sitting postural control (Kyvelidou, Stuberg, Harbourne, Deffeyes, 

Blanke, Stergiou, 2009), and ignores what are likely important contributions from the 

viscoelastic properties of the infant’s body as well as the pelvis and spine joints, the 

inverted pendulum model suggests that an infant who is not able to use fast latency 

control mechanisms may have a more difficult control problem to solve than infants with 

typical development.   

 A hypothesis can be made based on this model that the control parameter is 

length, and that length must exceed a certain value that can be calculated from the 

sensorimotor delay time using equation 7.1. The slower sensorimotor time delay, perhaps 

as a result of neurological damage associated with cerebral palsy, results in a requirement 

for a longer length to be achieved before upright posture can be controlled. This 

requirement for a longer length may be a contributing factor to the delay in meeting the 

upright sitting milestone, for the infants with developmental delay, especially since often 

they are small for their age. It should be re-emphasized that this is only a hypothesis, but 

future work on infant sitting with a dynamic systems theory perspective might make an 

important contribution to understanding the interaction of biomechanics of infant sitting 

and motor control development. 
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APPENDIX A 

MATLAB CODE FOR ANALYSIS OF INFANT SITTING POSTURAL 

SWAY 

A.1. LINEAR ANALYSIS 

This file is the main analysis function used for the NIDRR project that does all the linear 

analysis, calls approximate entropy, and also saves .dat files that CDA can read for LyE, 

etc, analysis 

function [ProblemFlag]=AnalysisFunction(Filename, Pathname, StartVector, EndVector,... 
            HeadVector, ArmsVector, LegsVector, TrunkVector, Print)   
  
  
% AnalysisFunction performs analyses for NIDRR baby COP data. 
%    AnalysisFunction(Filename, Pathname, StartVector, EndVector)    
%    Call the function with the above syntax. StartVector and  
%    EndVector are the start and end points (in 60 Hz Frames) 
%    for each of the segments of interest in the file FileName. 
%    Results are appended to BabyResults.dat that Excel can read. 
% 
%    The linear analysis is performed per Prieto, et al (1996) 
%    IEEE Transactions on Biomedical Engineering, 43(9) 956-966, 
%    except the window used in frequency analysis is a Hanning 
%    window rather than the multi-taper method Prieto used. 
%    The approximate entropy is from code the Max Kurz gave me, 
%    which he apparently got off the internet. See comments in  
%    that file for details. Also .dat files are saved so CDA 
%    can read them (CDA is used to get Lyapunov exponent,  
%    Correlation Dimension, and Hurst eponent in NIDRR study). 
% 
%    The files OpenCSVFIleFromMMI.m and apentropy.m need to be  
%    in MatLab's path for AnalysisFunction to run. 
% 
%    The COP data is assumed to have been taken at 240 Hz, and the 
%    video frames were at 60 Hz. 
% 
%    2005 Joan Deffeyes 
  
ProblemFlag=0; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Open file  
FileData=importdata([Pathname,'\',Filename],'x'); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Find COP data in 
file 
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InputDataStart=1000000; 
for i=(floor(length(FileData)/2)-10):(length(FileData)) %  
    if length(FileData{i})==12 
        if min(FileData{i}=='FORCE PLATES')==1 
            InputDataStart=i+10; % to skip past text lines 
        end 
    end 
     
    if i>InputDataStart  %% read in COPx and COPy 
         
        %% Start by searching for COPx and COPy in each line of data 
        CommaFinder=FileData{i}==','; 
        Digit='0'; 
        for j= 1:5 
            if CommaFinder(j)==0 
                Digit(j)=FileData{i}(j); 
            end 
        end 
         
        StartCOPx=0; 
        StartCOPy=0; 
        EndCOPx=0; 
        EndCOPy=0; 
        for j=15:45 
            if CommaFinder(j-2)==1 & CommaFinder(j-1)==1 & CommaFinder(j)==0 
                StartCOPx=j; 
            elseif CommaFinder(j-2)==0 & CommaFinder(j-1)==1 & ... 
                    CommaFinder(j)==0  & StartCOPy==0 
                StartCOPy=j; 
                EndCOPx=j-2; 
            elseif CommaFinder(j-2)==0 & CommaFinder(j-1)==1 & ... 
                    CommaFinder(j)==0 & StartCOPy~=0 
                EndCOPy=j-2; 
            end 
        end 
         
        %% Now read out the COPx and COPy for the line i 
        %% If it crashes here, use Notepad to check the last couple of 
        %% lines of the problem file. If there is no data in them, delete 
        %% the lines and re-save the file.  
        DataPointNumber(i-InputDataStart)= str2num(Digit); 
        COPx(i-InputDataStart)=str2num(FileData{i}(StartCOPx:EndCOPx)); %Crash- see above  note 
        COPy(i-InputDataStart)=str2num(FileData{i}(StartCOPy:EndCOPy)); 
    end 
end 
%% Note i is line number on the spread sheet 
%%  DataPointNumber is the number in the first column 
%%  time should correspond to DataPointNumber/240 
%%    since data collection is at 240 hz 
%%  StartPoint and EndPoint are DataPointNumbers 
%%    for user selected range 
%%  StartPointIndex and EndPointIndex are  
%%    the indices into the array which holds COPx andCOPy 
%%    for the user selected range 
  
TrialNumber=str2num(Filename(length(Filename)-5:length(Filename)-4)); 
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Names=[ 'a' 'b' 'c' 'd' 'e' 'f' 'g' 'h' 'i' 'j' 'k' 'l' 'm' 'n']; 
  
for NumberOfSegs=1:length(StartVector); 
     
    %%%%%%%%%%%%%%% Select data range 
    Screen = get(0,'ScreenSize'); 
    figure 
    set(gcf,'Position',[Screen(3)/2+20 40 Screen(3)/2-20 Screen(4)-120]); 
     
    subplot(2,1,1) 
    plot(DataPointNumber/4,COPx,'b'); hold on 
    plot(DataPointNumber/4,COPy,'g'); 
    xlabel('Frame Number') 
    ylabel('COP Value (mm)') 
    title(['Filename:',Filename,'  Blue=COPx; Green=COPy']) 
     
     
     
    %%% DataPointNumber  
     
    StartPoint=4*StartVector(NumberOfSegs); 
    EndPoint=4*EndVector(NumberOfSegs); 
     
    %% At this point, StartPointIndex is the same as StartPoint. 
    %% Historically in this code they were different, and it 
    %% doesn't seem worthwile to go change them now. 
    StartPointIndex=find(DataPointNumber==StartPoint); 
    EndPointIndex=find(DataPointNumber==EndPoint); 
     
    if isempty(EndPointIndex) % problems with file loading!!!  
        disp('Problems with file') 
        LastDataPoint=max(DataPointNumber) 
        EndPoint 
        ProblemFlag=124; 
    end 
     
    subplot(2,1,1) 
    plot(.25*(StartPoint:EndPoint), COPx(StartPointIndex:EndPointIndex),'r','LineWidth',3);  
    plot(.25*(StartPoint:EndPoint), COPy(StartPointIndex:EndPointIndex),'r','LineWidth',3); hold off 
     
     
    %%  The COPd is a distance term 
    COPxNew=COPx(StartPointIndex:EndPointIndex)-mean(COPx(StartPointIndex:EndPointIndex)); 
    COPyNew=COPy(StartPointIndex:EndPointIndex)-mean(COPy(StartPointIndex:EndPointIndex)); 
    COPdNew=sqrt(COPxNew.^2+COPyNew.^2) ;%per Prieto(1996) 
     
    subplot(2,1,2) 
    plot(.25*(StartPoint:EndPoint),COPdNew,'r');  
    xlabel('Frame Number') 
    ylabel('COPd Value (mm)') 
    title(['Range: ',num2str(StartPoint/4),' to ',num2str(EndPoint/4),... 
            '  from: ',Filename,'...',Names(NumberOfSegs)]) 
     
    if Print==1 
        print 
        close 
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    elseif Print==2 
        saveas(gcf,[Pathname,'\',Filename(1:length(Filename)-4),... 
                Names(NumberOfSegs),'TimeSeries.jpg'], 'jpg') 
         
        close 
    end 
     
     
     
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Save data range selected 
    %% Three data types are saved - COPx, COPy, and COPd. 
  
     
    if Pathname(1)=='E' 
        [NewFilename, Pathname] = uiputfile('.dat', 'Select Location for SAVE'); 
        if NewFilename~='.dat' 
            Filename=NewFilename; 
        end 
    end 
     
    for DataType=1:3 
        if DataType==1 
            Suffix='COPx.dat'; 
            NewData=COPx(StartPointIndex:EndPointIndex); 
        elseif DataType==2 
            Suffix='COPy.dat'; 
            NewData=COPy(StartPointIndex:EndPointIndex); 
        elseif DataType==3 
            Suffix='COPd.dat'; 
            NewData=COPdNew; 
        end 
        SaveDATfile = [Filename(1:length(Filename)-4),... 
                Names(NumberOfSegs),Suffix]; 
        fid = fopen([Pathname,'\', SaveDATfile],'w'); 
         
        for k=1:length(NewData) 
            fprintf(fid,'%f\r\n',NewData(k)); 
        end 
        fclose(fid);   
    end 
     
     
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%% 
    %%%%%%%%%%%%%%%   LINEAR ANALYSES   
%%%%%%%%%%%%%%%%%%%%%%%%%% 
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%% 
     
    %%%%% Root Mean Square (x,y,d) - i.e. Standard deviation 
    %% Prieto equations 6 and 7, p 958. 
    RMSxMM=sqrt((1/length(COPxNew))*sum(COPxNew.^2)); %Prieto divides by n, not (n-1) 
    RMSyMM=sqrt((1/length(COPyNew))*sum(COPyNew.^2)); %Prieto divides by n, not (n-1) 
    RMSdMM=sqrt((1/length(COPdNew))*sum(COPdNew.^2))  %Prieto divides by n, not (n-1) 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%% 
    %%%%% Range Anterior-Posterior 
    RangeAPinMM=max(COPxNew)- min(COPxNew) 
     
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%% 
    %%%%% Range Medial-Lateral 
    RangeMLinMM=max(COPyNew)- min(COPyNew); 
     
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%% 
    %%%%% Sway Path 
    SwayPathMM=sum(abs(diff(COPdNew))) 
     
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%% 
    %%%%% Area of 95% Confidence Circle 
    % Note COPd data are the radii 
    % Find 95% of radii below 95%Radius, i.e. one sided test 
    % Distribution of radii is not a normal distribution, but 
    % for now use 1.645 from the normal pdf. Chi-square pdf needed? 
    % Prieto assumes normal distribution 
    NintyFivePercentRadius=mean(COPdNew)+1.645*std(COPdNew); 
    CircleAreaMM2=pi*NintyFivePercentRadius^2 
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%% 
    %%%%% Area of 95% Confidence Ellipse per Prieto (1996) 
    %%%%%%% from Sokal and Rohlf (1995) Biometry p589, cited by Prieto.  
     
    sAP= sqrt((1/length(COPxNew))*sum(COPxNew.^2)); %Prieto  
    sML= sqrt((1/length(COPyNew))*sum(COPyNew.^2)); %Prieto  
    sAPML= (1/length(COPxNew))*sum(COPxNew.*COPyNew); %Prieto  
     
    PrietoF=3; 
     
    % Note Prieto has missed squaring the sum of the first two terms 
    %  in his equation(16) page 959.  
    % This equation is actually from Sokal and Rohlf (1995). 
    PrietoD= sqrt((sAP^2+sML^2)^2-4*(sAP^2*sML^2-sAPML^2));  
     
    PrietoEllipseRadiusA= sqrt(PrietoF*(sAP^2+sML^2+PrietoD)); %Prieto eq 14 
    PrietoEllipseRadiusB= sqrt(PrietoF*(sAP^2+sML^2-PrietoD)); %Prieto eq 15  
    EllipseAreaMM2= 2*pi*PrietoF*sqrt(sAP^2*sML^2-sAPML^2) %Prieto eq 18 
     
    %Calculate these for plot 
    PrietoLambda1=(sAP^2+sML^2+PrietoD)/2; % from Sokal and Rohlf 
    PrietoSlope=sAPML/(PrietoLambda1-sML^2); % from Sokal and Rohlf 
    PrietoAngle=atan(PrietoSlope); 
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    %%%%%%%%%%%%%% Area of Ellipse    
    %Plot data in green 
    figure 
    set(gcf,'Position',[20 Screen(4)/2 Screen(3)/2-20 Screen(4)/2-120]); 
     
    plot(COPxNew,COPyNew,'.g'); hold on 
     
    Theta=(pi/180)*linspace(0,360); 
     
    %%%Now add circle to plot  
    x1=NintyFivePercentRadius.*cos(Theta); 
    y1=NintyFivePercentRadius.*sin(Theta); 
     
    plot(x1,y1,'b');  
     
     
    %%%Now add ellipse to plot 
    x1=PrietoEllipseRadiusA.*cos(Theta); 
    y1=PrietoEllipseRadiusB.*sin(Theta); 
     
    OrientRad=PrietoAngle; 
     
    x2=x1*cos(OrientRad)-y1*sin(OrientRad); 
    y2=x1*sin(OrientRad)+y1*cos(OrientRad); 
     
    plot(x2,y2,'r'); hold off 
     
    % make plot pretty 
    title(strcat('Green=data, Blue=95% circle, Red=95% Ellipse',... 
        Filename,'...',Names(NumberOfSegs)));  
    xlabel('COPx') 
    ylabel('COPy') 
    axis image 
     
    if Print==1 
        print 
        close 
    elseif Print==2 
        saveas(gcf,[Pathname,'\',Filename(1:length(Filename)-4),... 
                Names(NumberOfSegs),'CircleEllipse.jpg'], 'jpg') 
        close 
    end 
     
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%% 
    %%%%%%%%%%%%%%%  Frequency Domain Analyses %%%%%%%%%%%%%%%%%%% 
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%% 
    % Prieto, et al (1996) use a sinusiodal multitaper method with  
    %  eight tapers for their spectral analyses. They cite Riedel and  
    %  Sidorenko(1995), Minimum Bias Multiple Taper Spectral Emission. 
    %  IEEE Transactions on Signal Processing 43(1) 188-195.  
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    %  My implementation follows the equation 
    %  in paragraph 4, page 188 of Riedel and Sidorenko.   
     
    N=length(COPdNew);  
    n=1:N; 
    TaperWindow=0.5*(1-cos(2*pi*((n-1)/(N-1)))); 
    WindowedData=(COPdNew.*TaperWindow); 
     
     
    TransformFFT=fft(WindowedData); 
     
    if length(TransformFFT)/2 ~= floor(length(TransformFFT)/2) % test for n even 
        TransformFFT=TransformFFT(1:length(TransformFFT)-1); % if odd, toss one data point. 
    end 
     
    Spectrum=TransformFFT(1:length(TransformFFT)/2).*... 
        conj(TransformFFT(1:length(TransformFFT)/2)); 
  
    % This is why the index starts at 3 (so points 1 and 2 are removed) 
    % The big difference is here a Hanning window is used, 
    %  whereas Prieto used a multitaper method.  
  f=(.5/length(Spectrum))*240*(1:length(Spectrum)); 
  
    figure 
    set(gcf,'Position',[20 40 Screen(3)/2-20 Screen(4)/2-120]);   
     
    subplot(3,1,1); plot(f,Spectrum); 
    title(strcat('Power Spectrum:',Filename,'...',Names(NumberOfSegs))); 
    % xlabel('Frequency (Hz)'); 
    ylabel('Arbitrary Units'); 
     
     
    subplot(3,1,2); plot(f,Spectrum); 
    title(strcat('Power Spectrum (60 Hz signal):',Filename,'...',Names(NumberOfSegs))); 
    % xlabel('Frequency (Hz)'); 
    ylabel('Arbitrary Units'); 
    SpectrumIndices=find(f>40 & f<80); 
    PlotMax=max(Spectrum(SpectrumIndices)); 
    axis([50 70 0 PlotMax]); 
     
    subplot(3,1,3); plot(f,Spectrum); 
    title(strcat('Power Spectrum (to 5 Hz):',Filename,'...',Names(NumberOfSegs))); 
    xlabel('Frequency (Hz)'); 
    ylabel('Arbitrary Units'); 
    axis([0 5 0 max(Spectrum)]); 
     
    if Print==1 
        print 
        close 
    elseif Print==2 
        saveas(gcf,[Pathname,'\',Filename(1:length(Filename)-4),... 
                Names(NumberOfSegs),'Spectrum.jpg'], 'jpg') 
        close 
    end 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%% 
    %%%%% Median Frequency 
    % Note Prieto discards the first two points in the spectra 
    % and only uses data to 5 Hz. We have frequencies up at 7, so  
    % cutoff here is at 10 Hz - to avoid 60 Hz noise 
    % when doing power spectral densities. See left-top of p 960 
    FreqIndex=1; 
    while f(FreqIndex)<10 
        FreqIndex=FreqIndex+1; 
    end 
    AnalysisSpectrum=Spectrum(3:FreqIndex); 
    AnalysisFrequency=f(3:FreqIndex); 
     
    CumSumPower=cumsum(AnalysisSpectrum);  
    FindMedian=find(CumSumPower>.5*sum(AnalysisSpectrum));  
    MedianIndex=min(FindMedian); 
     
    MedianFrequencyHz=(.5/length(Spectrum))*240*MedianIndex 
     
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%% 
    %%%%% Frequency Dispersion 
     
     
    Mu0=(1/length(AnalysisSpectrum))*sum(AnalysisSpectrum); 
    Mu1=(1/length(AnalysisSpectrum))*sum(AnalysisSpectrum.*AnalysisFrequency); 
    Mu2=(1/length(AnalysisSpectrum))*sum(AnalysisSpectrum.*AnalysisFrequency.^2); 
     
     
    FrequencyDispersion=sqrt(1-Mu1^2/(Mu0*Mu2)) 
     
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%% 
    %%%%% Approximate Entropy 
     
    ApproxEntropyD=apentropy(COPdNew) 
    ApproxEntropyX=apentropy(COPxNew) 
    ApproxEntropyY=apentropy(COPyNew) 
     
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%% 
    %%%%%%%%%%%%     Save Results to File   %%%%%%%%%%%%%%%%%%%%%% 
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%% 
     
    FilenameProblem=0; 
    if Filename(1)=='T' % Typically Developing 
        SubjectType(1)=0; 
    elseif Filename(1)=='C' % Cerebral Palsy 
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        SubjectType(1)=1; 
    elseif Filename(1)=='H' % Hypotonic 
        SubjectType(1)=2; 
    else 
        disp('Error in filename - SubjectType, data not saved') 
        FilenameProblem=1; 
    end 
     
     
    RestOfFilename=Filename(2:length(Filename)-4); 
     
     
    SubjectNumber=str2num(RestOfFilename(1:2)); 
    if isempty(SubjectNumber) 
        disp('Error in filename - SubjectNumber, data not saved') 
        FilenameProblem=1; 
        ProblemFlag=414 
    end 
     
    DataMonth=str2num(RestOfFilename(4:5)); 
    if isempty(DataMonth) 
        disp('Error in filename - DataMonth, data not saved') 
        FilenameProblem=1; 
        ProblemFlag=421 
    end 
     
    DataDay=str2num(RestOfFilename(7:8)); 
    if isempty(DataDay) 
        disp('Error in filename - DataDay, data not saved') 
        FilenameProblem=1; 
        ProblemFlag=428 
    end 
     
    DataYear=str2num(RestOfFilename(10:11)); 
    if isempty(DataYear) 
        disp('Error in filename - DataYear, data not saved') 
        FilenameProblem=1; 
        ProblemFlag=435 
    end 
    NS=N-1; % number of time steps= number of points minus 1. 
    DataToSave=[SubjectType, SubjectNumber, DataMonth, DataDay, DataYear, ... 
            TrialNumber, NumberOfSegs, DateNum(Date)-693960,... %excel date format 
            RMSxMM, RMSyMM, RMSdMM, RangeAPinMM, RangeMLinMM, ... 
            SwayPathMM, CircleAreaMM2, EllipseAreaMM2, ... 
            MedianFrequencyHz, FrequencyDispersion, ApproxEntropyD,... 
            ApproxEntropyX,ApproxEntropyY, NS,... 
            StartVector(NumberOfSegs),EndVector(NumberOfSegs),... 
            HeadVector(NumberOfSegs), ArmsVector(NumberOfSegs),... 
            LegsVector(NumberOfSegs), TrunkVector(NumberOfSegs)]; 
     
    % stop execution if there is a problem 
    if ProblemFlag~=0 | length(DataToSave)~=28  
        disp('Problem saving the data - analysis function line 449') 
        return 
    end 
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    % Look for file named "BabyResults.dat" 
    Directory=dir(Pathname); 
    NumberOfItems=length(Directory); 
    FileFound=0; 
    for i=3:NumberOfItems 
        if length(Directory(i).name)==length('BabyResults.dat') 
            if Directory(i).name=='BabyResults.dat' 
                FileFound=1; 
            end 
        end 
    end 
     
    if FileFound==1;  % open existing file 
        CurrentFile= importdata([Pathname,'\','BabyResults.dat']); 
        SaveFile=[CurrentFile;DataToSave]; 
    else 
        SaveFile=DataToSave; 
    end 
     
    csvwrite([Pathname,'\','BabyResults.dat'], SaveFile); 
     
     
end 
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A.2. SYMBOLIC ENTROPY ANALYSIS 
The approximate entropy was calculated with Kaplan code that was available on his web 
site. This is the symbolic entropy code. 
 
function [NCSE] = SymEntropy(Data,Thres,WordLen) 
  
% Symbolic Entropy 
% Based on: Aziz & Arif, Eur J Appl Physiol (2006) 98: 30-40. 
% SymEntropy(Data,Thres,WordLen) 
%   Data is the time series data 
%   Thres is the threshold value 
%   WordLen is the length of the word 
  
% Check that data is a column vector 
if size(Data,1)>1 
    Data=Data'; 
end 
  
Scale=2.^[WordLen-1:-1:0]; % for binary conversion 
  
SymSeq=Data>=Thres; % Step 1 from Aziz & Arif 
  
for i=1:(length(SymSeq)-WordLen+1) 
    Word=SymSeq(i:i+WordLen-1); % Step 2 
    
    WordCode(i)=sum(Word.*Scale); % Step 3 
end 
  
%% Calculate probabilities 
for i=1:8 
    p(i)=length(find(WordCode==(i-1))); 
end 
  
p=p/length(WordCode);% Probabilities sum to 1 
  
% calculate Shannon Entropy 
NonZeros=find(p); % don't include p=0 values 
SE= -sum(p(NonZeros).*log2(p(NonZeros))); % Equation 4 
  
% Calcualte corrected Shannon Entropy 
  
Cr=length(unique(WordCode)); %number of occuring words 
M= 2^WordLen; %Total number of words possible 
  
CSE=SE + (Cr-1)/2*M*log(2); % Equation 5 
  
CSEmax=-log2(1/M)+(M-1)/2*M*log(2); % Equation 6 
  
% Normalized Corrected Shannon Entropy 
  
NCSE=CSE/CSEmax; % Equation 7 
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DETRENDED FLUCTUATION ANALYSIS 
The DFA was performed two ways – with a linear fit to the F vs window size, and with a 
third order fit and an analytical derivative evaluated in the middle of the plot. Below is 
the third order fit method (NonlinearDFA3), and below it is the liner fit method 
(NonlinearDFA). 
 
function [alpha, Resids]= NonlinearDFA3(DataInput,Order,varargin) 
% Do DFA using polynomial of selected order  
% alpha= NonlinearDFA(Data,Order) 
% alpha= NonlinearDFA(Data,Order,Plot,PlotTitle) 
%        Plot = 0 no plot made (defalt)   
%        Plot = 1 to get plot and see fit 
%        PlotTitle is a string 
% Variables: LengthWin: size of current window 
%            NumWin: number of windows of this size 
%              i : index into level 
%              j : index across time -position of the current window  
  
  
if isempty(varargin) 
    MakePlot=0; % defalt is for no plot 
else 
    MakePlot=varargin{1}; 
    PlotTitle=varargin{2}; 
end 
  
% Integrate data first 
Data=cumsum(DataInput); 
% Check for row vector 
if size(Data,1)>size(Data,2) 
    Data=Data'; 
end 
  
LengthWin=length(Data); %will get divided by 2 in loop 
i=1; 
%while LengthWin >= 2*2^Order % higher order needs longer data sets? 
while LengthWin >= 8    
    NumWindows=floor(length(Data)/LengthWin); 
    for j=1:NumWindows 
        LowerIdx=(j-1)*LengthWin+1; 
        UpperIdx=j*LengthWin; 
        Fwin(j)=CalcResids(Data(LowerIdx:UpperIdx),Order); 
    end 
     
    n(i)=LengthWin; % n collects the window length used 
    F(i)=mean(Fwin); % F collects the F function results  
    i=i+1; % Update index into level 
    LengthWin=floor(LengthWin/2);% reset for next level 
end 
      
pCoeffs=polyfit(log(n),log(F),3); % third order fit 
% for slope take derivative and evaluate at middle of plot 
Middle=floor(length(n)/2); 
MidVal=mean([n(Middle),n(Middle+1)]); 
alpha=3*pCoeffs(1)* log(MidVal)^2+ 2*pCoeffs(2)*log(MidVal)+pCoeffs(3); 
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if MakePlot==1 
    %figure 
    nVals=linspace(min(n),max(n),500); 
    FitData=exp(polyval(pCoeffs,log(nVals))); 
    loglog(n,F,'ok','MarkerFaceColor','k'); hold on 
  
    %%%%%%%%% Plot pt where slope is evaluated, and slope line 
    % plot([MidVal,MidVal],[F(1),F(end)],'g:'); 
    yVal=polyval(pCoeffs,log(MidVal)); 
    SlopeLineData=exp(polyval([alpha,yVal-alpha*log(MidVal)],log(n))); 
  
    % loglog(n(Middle-1:Middle+2), SlopeLineData(Middle-1:Middle+2),'g'); 
    loglog(n(Middle:Middle+2), 2*SlopeLineData(Middle:Middle+2),... 
        'Color',[.7 .7 .7],'LineWidth',5); %Plot line with slope alpha in middle 
    loglog(nVals, FitData,'k:'); %fit data 
    loglog(n,F,'ok','MarkerFaceColor','k');  
     
    % plot pt where slope is calculated 
    %loglog(MidVal,exp(yVal),'kd','MarkerSize',5);  
     
    xlabel('n','FontSize',16) 
    ylabel('F','FontSize',16) 
    if isempty(PlotTitle) 
    else 
        title([PlotTitle,'  Order for DFA=',num2str(Order),... 
            '  alpha=',num2str(alpha)]) 
    end 
    disp('Hit return to continue') 
    %pause 
    %close 
end 
  
yVal=polyval(pCoeffs,log(MidVal)); 
SlopeLineData=exp(polyval([alpha,yVal-alpha*log(MidVal)],log(n))); 
Resids=sum((log(F)-log(SlopeLineData)).^2); 
% figure 
% loglog(n,F,'o'); hold on 
% loglog(n,SlopeLineData,'og') 
% legend('Data','Fit To Data') 
% title(['SumSquareError=',num2str(Resids)]); 
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function [alpha, Resids]= NonlinearDFA(DataInput,Order,varargin) 
% Do DFA using polynomial of selected order  
% alpha= NonlinearDFA(Data,Order) 
% alpha= NonlinearDFA(Data,Order,Plot) 
%        Plot = 0 no plot made (defalt)   
%        Plot = 1 to get plot and see fit 
  
% Variables: LengthWin: size of current window 
%            NumWin: number of windows of this size 
%              i : index into level 
%              j : index across time -position of the current window  
  
  
if isempty(varargin) 
    MakePlot=0; % defalt is for no plot 
elseif length(varargin)==2 
    MakePlot=varargin{1}; 
    PlotTitle=varargin{2}; 
end 
  
% Integrate data first 
Data=cumsum(DataInput); 
% Check for row vector 
if size(Data,1)>size(Data,2) 
    Data=Data'; 
end 
  
LengthWin=length(Data); %will get divided by 2 in loop 
i=1; 
%while LengthWin >= 2*2^Order % higher order needs longer data sets? 
while LengthWin >= 8   
    NumWindows=floor(length(Data)/LengthWin); 
    for j=1:NumWindows 
        LowerIdx=(j-1)*LengthWin+1; 
        UpperIdx=j*LengthWin; 
        Fwin(j)=CalcResids(Data(LowerIdx:UpperIdx),Order); 
    end 
     
    n(i)=LengthWin; % n collects the window length used 
    F(i)=mean(Fwin); % F collects the F function results  
    i=i+1; % Update index into level 
    LengthWin=floor(LengthWin/2);% reset for next level 
end 
      
pCoeffs=polyfit(log(n),log(F),1); 
alpha=pCoeffs(1); 
  
if MakePlot==1 
    FitData=exp(polyval(pCoeffs,log(n))); 
    loglog(n,F,'ok','MarkerFaceColor','k'); hold on 
    loglog(n, FitData,'k:'); 
     
    loglog(n(3:end-2), 2*FitData(3:end-2), 'Color',[.7 .7 .7],'LineWidth',5); 
     
    xlabel('n','FontSize',16) 
    ylabel('F','FontSize',16) 
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%     title([PlotTitle,'  Order for DFA=',num2str(Order),... 
%         '  alpha=',num2str(alpha)]) 
end 
  
FitData=exp(polyval(pCoeffs,log(n))); 
Resids=sum((log(F)-log(FitData)).^2); 
% figure 
% loglog(n,F,'o'); hold on 
% loglog(n,FitData,'og') 
% legend('Data','Fit To Data') 
% title(['SumSquareError=',num2str(Resids)]); 
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A.4. ARTIFICIAL NEURAL NETWORK 
The code for the artificial neural network includes a script that takes the COP data, chops 
it into windows, calculates the position, velocity, and acceleration for that window, and 
then saves the results. The main script then reads the file created, and calls 
BabyANNFunctCh5.m that does the ANN calculation. All three files are listed below. 
 
 
%% Opens all files in a directory, calculates an average position, 
%%  velocity, and acceleration for each group of 24 data points. 
%%  This data will be used to train the neural network. 
clear all 
  
load cpData 
load tdData 
  
  
idxCpAP=find(cpFilenames(:,21)=='x'); 
idxCpML=find(cpFilenames(:,21)=='y'); 
  
idxTdAP=find(tdFilenames(:,21)=='x'); 
idxTdML=find(tdFilenames(:,21)=='y'); 
  
cpSubjs=unique(cpFilenames(:,1:3),'rows');  
tdSubjs=unique(tdFilenames(:,1:3),'rows');   
  
for s=1:length(cpSubjs) 
    idxSubj=strmatch(cpSubjs(s,:),cpFilenames(:,1:3)); 
    Year=str2num(cpFilenames(idxSubj,11:14)); 
    Month=str2num(cpFilenames(idxSubj,5:6)); 
    Day=str2num(cpFilenames(idxSubj,8:9)); 
    Date=365*(Year-2005)+31*Month+Day; 
    DayF=find(Date==min(Date)); %First day 
    DayL=find(Date==max(Date)); % last day 
     
    idxCPFirstDay{s,1}= intersect(idxSubj(DayF),idxCpAP); 
    idxCPLastDay{s,1}= intersect(idxSubj(DayL),idxCpAP); 
    idxCPFirstDay{s,2}= intersect(idxSubj(DayF),idxCpML); 
    idxCPLastDay{s,2}= intersect(idxSubj(DayL),idxCpML); 
  
  
  
end 
  
for s=1:length(tdSubjs) 
    idxSubj=strmatch(tdSubjs(s,:),tdFilenames(:,1:3)); 
    Year=str2num(tdFilenames(idxSubj,11:14)); 
    Month=str2num(tdFilenames(idxSubj,5:6)); 
    Day=str2num(tdFilenames(idxSubj,8:9)); 
    Date=365*(Year-2005)+31*Month+Day; 
    DayF=find(Date==min(Date)); %First day 
    DayL=find(Date==max(Date)); % last day 
     
    idxTDFirstDay{s,1}= intersect(idxSubj(DayF),idxTdAP); 
    idxTDLastDay{s,1}= intersect(idxSubj(DayL),idxTdAP); 
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    idxTDFirstDay{s,2}= intersect(idxSubj(DayF),idxTdML); 
    idxTDLastDay{s,2}= intersect(idxSubj(DayL),idxTdML); 
     
  
  
end 
  
  
  
save idxFirstLastDays  idxCPFirstDay idxCPLastDay idxTDFirstDay idxTDLastDay  
  
     
%% %%%%%%%%% now load files and calculate  
clear all 
load cpData 
load tdData 
load idxFirstLastDays 
Lag=20; 
idxAll=0; 
for DataType=1:4 
    for Side=1:2 % 1=AP,2=ML 
        if DataType==1 
            Idxs=idxCPFirstDay; 
        elseif DataType==2 
            Idxs=idxCPLastDay; 
        elseif DataType==3 
            Idxs=idxTDFirstDay; 
        elseif DataType==4 
            Idxs=idxTDLastDay; 
        end 
  
  
        for Subj=1:length(Idxs) 
  
            if DataType==1 | DataType==2 
                Datas=cpData(:,Idxs{Subj,Side}); 
                SN=cpFilenames(Idxs{Subj,Side},1:3); 
  
            elseif DataType==3 | DataType==4 
                Datas=tdData(:,Idxs{Subj,Side}); 
                SN=tdFilenames(Idxs{Subj,Side},1:3); 
            end 
  
            for Trial=1:size(Datas,2) 
                idxAll=idxAll+1; 
                SubjNames(idxAll,:)=SN(1,:); % collect subject names 
                DataTypes(idxAll)=DataType; % collect type of data 
                AxisAPML(idxAll)=Side; 
                 
                % select data to be choppped up 
                Data=Datas(:,Trial)-mean(Datas(:,Trial)); 
  
  
                DataChops=floor(length(Data)/Lag); 
                for k=1:DataChops 
                    ThisData=Data(Lag*k-(Lag-1):Lag*k); 
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                    Vel=diff(ThisData); 
                    Accel=diff(Vel); 
  
                    Position(k,idxAll)=mean(ThisData); 
                    Velocity(k,idxAll)=mean(Vel); 
                    Acceler(k,idxAll)=mean(Accel); 
  
                end 
  
                 
            end 
        end 
    end 
end 
  
%Save chopped data and info on each trial 
 save DataForBabyANNChapter5Lag20 Position Velocity Acceler SubjNames DataTypes AxisAPML 
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% %% Main program calls BabyANNFunctCh5 to do ANN analysis for each file 
clear all 
  
  
% N= number of neurons in hidden layer 
N=6; 
  
%%%%%%%%%%%%%%%%%%% Load training data 
% this data was calculated from the center-of-pressure data 
% see BabyPosVelAccer4ANNChapt5.m code for details 
Lag=[8, 12, 20, 32, 45, 60, 64, 70, 80, 90, 120, 180]; 
for L=1:length(Lag) 
    if L==1 
        load DataForBabyANNChapter5Lag8 
    elseif L==2 
        load DataForBabyANNChapter5Lag12 
    elseif L==3 
        load DataForBabyANNChapter5Lag20 
    elseif L==4 
        load DataForBabyANNChapter5Lag32 
    elseif L==5 
        load DataForBabyANNChapter5Lag45 
    elseif L==6 
        load DataForBabyANNChapter5Lag60 
    elseif L==7 
        load DataForBabyANNChapter5Lag64 
    elseif L==8 
        load DataForBabyANNChapter5Lag70 
    elseif L==9 
        load DataForBabyANNChapter5Lag80 
    elseif L==10 
        load DataForBabyANNChapter5Lag90 
    elseif L==11 
        load DataForBabyANNChapter5Lag120 
    elseif L==12 
        load DataForBabyANNChapter5Lag180 
    end 
    % % Rescale 
% rescale for Norm ; Rescaling in BabyANNFunctChapt5 turned off 
    Acceler=(Acceler-mean(Acceler(:)))/std(Acceler(:)); 
    Velocity=(Velocity-mean(Velocity(:)))/std(Velocity(:)); 
    Position=(Position-mean(Position(:)))/std(Position(:)); 
  
    % do ANN analysis 
    PlotIt=0; %=1 make plot, =0 no plot 
    for Trial=1:size(Position,2); 
        TrainIn=[Position(:,Trial),Velocity(:,Trial),Acceler(:,Trial)]; 
        [Weights1(:,:,Trial),Weights2(:,Trial),... 
            TimesThruLoop(Trial),Redo(Trial)]=BabyANNFunctCh5(TrainIn,N,PlotIt); 
        ResultPVA(Trial,1:3)=(Weights1(:,:,Trial)*Weights2(:,Trial))'; 
        disp(['Trial ',num2str(Trial),' done.  Lag=', num2str(Lag(L))]) 
    end 
  
    if L==1 
        save ANNResultsCh5NormLag8  Weights1 Weights2 TimesThruLoop ResultPVA Redo 
    elseif L==2 
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        save ANNResultsCh5NormLag12 Weights1 Weights2 TimesThruLoop ResultPVA Redo 
     elseif L==3 
        save ANNResultsCh5NormLag20 Weights1 Weights2 TimesThruLoop ResultPVA Redo   
     elseif L==4 
        save ANNResultsCh5NormLag32 Weights1 Weights2 TimesThruLoop ResultPVA Redo 
    elseif L==5 
        save ANNResultsCh5NormLag45 Weights1 Weights2 TimesThruLoop ResultPVA Redo 
    elseif L==6 
        save ANNResultsCh5NormLag60 Weights1 Weights2 TimesThruLoop ResultPVA Redo 
    elseif L==7 
        save ANNResultsCh5NormLag64 Weights1 Weights2 TimesThruLoop ResultPVA Redo 
    elseif L==8 
        save ANNResultsCh5NormLag70 Weights1 Weights2 TimesThruLoop ResultPVA Redo 
    elseif L==9 
        save ANNResultsCh5NormLag80 Weights1 Weights2 TimesThruLoop ResultPVA Redo 
    elseif L==10 
        save ANNResultsCh5NormLag90 Weights1 Weights2 TimesThruLoop ResultPVA Redo 
    elseif L==11 
        save ANNResultsCh5NormLag120 Weights1 Weights2 TimesThruLoop ResultPVA Redo 
    elseif L==12 
        save ANNResultsCh5NormLag180 Weights1 Weights2 TimesThruLoop ResultPVA Redo 
    end 
  
  
    clear Weights1 Weights2 TimesThruLoop ResultPVA Redo 
end 
  
 
%% analyze weights 
clear all 
Lag=[8, 12, 20, 32, 45, 60, 64, 70, 80, 90, 120, 180]; 
AllLabels=''; 
CpPVA=[]; 
TdPVA=[]; 
for L=1:length(Lag) 
    if L==1 
        load ANNResultsCh5NormLag8  Weights1 Weights2 %TimesThruLoop ResultPVA Redo 
    elseif L==2 
        load ANNResultsCh5NormLag12 Weights1 Weights2 %TimesThruLoop ResultPVA Redo 
     elseif L==3 
        load ANNResultsCh5NormLag20 Weights1 Weights2 %TimesThruLoop ResultPVA Redo   
     elseif L==4 
        load ANNResultsCh5NormLag32 Weights1 Weights2 %TimesThruLoop ResultPVA Redo 
    elseif L==5 
        load ANNResultsCh5NormLag45 Weights1 Weights2 %TimesThruLoop ResultPVA Redo 
    elseif L==6 
        load ANNResultsCh5NormLag60 Weights1 Weights2 %TimesThruLoop ResultPVA Redo 
    elseif L==7 
        load ANNResultsCh5NormLag64 Weights1 Weights2 %TimesThruLoop ResultPVA Redo 
    elseif L==8 
        load ANNResultsCh5NormLag70 Weights1 Weights2 %TimesThruLoop ResultPVA Redo 
    elseif L==9 
        load ANNResultsCh5NormLag80 Weights1 Weights2 %TimesThruLoop ResultPVA Redo 
    elseif L==10 
        load ANNResultsCh5NormLag90 Weights1 Weights2 %TimesThruLoop ResultPVA Redo 
    elseif L==11 
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        load ANNResultsCh5NormLag120 Weights1 Weights2 %TimesThruLoop ResultPVA Redo 
    elseif L==12 
        load ANNResultsCh5NormLag180 Weights1 Weights2 %TimesThruLoop ResultPVA Redo 
    end 
  
    %%%%%%%%%% Propagate [100],[010],[001] 
    for Trial=1:720 
        for i=1:3 
            Input=-1*[1 1 1]; 
            Input(i)=0; % value that gets propagated  
            Result1=Input*Weights1(:,:,Trial); 
            Result1=1./(1+exp(-Result1));% output of hidden layer 
            Result2=Result1*Weights2(:,Trial); 
            Result2=1./(1+exp(-Result2));% Output of output layer 
  
            % 
            ResultPVA(Trial,i)=Result2; 
        end 
    end 
    %%%%%%%%%%%%%%%% 
  
  
    % Just to get datatypes load this 
    load DataForBabyANNChapter5Lag8 
    idxCPFirstDay=find(DataTypes==1); 
    idxCPLastDay=find(DataTypes==2); 
    idxTDFirstDay=find(DataTypes==3); 
    idxTDLastDay=find(DataTypes==4); 
  
    idxAP=find(AxisAPML==1); 
    idxML=find(AxisAPML==2); 
  
    Subjs=unique(SubjNames,'rows'); 
  
    CPidx=0; 
    TDidx=0; 
    for s=1:size(Subjs,1) 
        if Subjs(s,1)=='C' 
            CPidx=CPidx+1; 
            %first day 
            idxDayF=intersect(idxCPFirstDay,strmatch(Subjs(s,:),SubjNames)); 
            idxDayFAP=intersect(idxDayF,idxAP); 
            idxDayFML=intersect(idxDayF,idxML); 
            %last day 
            idxDayL=intersect(idxCPLastDay,strmatch(Subjs(s,:),SubjNames)); 
            idxDayLAP=intersect(idxDayL,idxAP); 
            idxDayLML=intersect(idxDayL,idxML); 
  
            if length(idxDayFML)>1 
                CPSubjPVA(CPidx,1:6)=[mean(ResultPVA(idxDayFAP,:)),... 
                    mean(ResultPVA(idxDayFML,:)),... 
                    ]; 
            else 
                CPSubjPVA(CPidx,1:6)=[ResultPVA(idxDayFAP,:),... 
                    ResultPVA(idxDayFML,:),... 
                    ]; 
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            end 
  
            if length(idxDayLML)>1 
                CPSubjPVA(CPidx,7:12)=[... 
                    mean(ResultPVA(idxDayLAP,:)),... 
                    mean(ResultPVA(idxDayLML,:)),... 
                    ]; 
            else 
                CPSubjPVA(CPidx,7:12)=[... 
                    ResultPVA(idxDayLAP,:),... 
                    ResultPVA(idxDayLML,:),... 
                    ]; 
            end 
  
  
        elseif Subjs(s,1)=='T' 
            TDidx=TDidx+1; 
            %first day 
            idxDayF=intersect(idxTDFirstDay,strmatch(Subjs(s,:),SubjNames)); 
            idxDayFAP=intersect(idxDayF,idxAP); 
            idxDayFML=intersect(idxDayF,idxML); 
            %last day 
            idxDayL=intersect(idxTDLastDay,strmatch(Subjs(s,:),SubjNames)); 
            idxDayLAP=intersect(idxDayL,idxAP); 
            idxDayLML=intersect(idxDayL,idxML); 
            if length(idxDayFML)>1 % average over multiple trials 
                TDSubjPVA(TDidx,1:6)=[mean(ResultPVA(idxDayFAP,:)),... 
                    mean(ResultPVA(idxDayFML,:)),... 
                    ]; 
            else 
                TDSubjPVA(TDidx,1:6)=[ResultPVA(idxDayFAP,:),... 
                    ResultPVA(idxDayFML,:),... 
                    ]; 
            end 
  
            if length(idxDayLML)>1 % average over multiple trials 
                TDSubjPVA(TDidx,7:12)=[... 
                    mean(ResultPVA(idxDayLAP,:)),... 
                    mean(ResultPVA(idxDayLML,:)),... 
                    ]; 
            else 
                TDSubjPVA(TDidx,7:12)=[... 
                    ResultPVA(idxDayLAP,:),... 
                    ResultPVA(idxDayLML,:),... 
                    ]; 
            end 
  
        end% ends if (Cp and TD) 
    end % ends s 
  
    %% 
  
    Labels=char(... 
        ['AP_PositionWeight_FirstDay_Lag',num2str(Lag(L))],... 
        ['AP_VelocityWeight_FirstDay_Lag',num2str(Lag(L))],... 
        ['AP_AccelerationWeight_FirstDay_Lag',num2str(Lag(L))],... 
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        ['ML_PositionWeight_FirstDay_Lag',num2str(Lag(L))],... 
        ['ML_VelocityWeight_FirstDay_Lag',num2str(Lag(L))],... 
        ['ML_AccelerationWeight_FirstDay_Lag',num2str(Lag(L))],... 
        ['AP_PositionWeight_LastDay_Lag',num2str(Lag(L))],... 
        ['AP_VelocityWeight_LastDay_Lag',num2str(Lag(L))],... 
        ['AP_AccelerationWeight_LastDay_Lag',num2str(Lag(L))],... 
        ['ML_PositionWeight_LastDay_Lag',num2str(Lag(L))],... 
        ['ML_VelocityWeight_LastDay_Lag',num2str(Lag(L))],... 
        ['ML_AccelerationWeight_LastDay_Lag',num2str(Lag(L))]); 
  
    %collect results for this lag 
    AllLabels=char(AllLabels,Labels); 
    CpPVA=[CpPVA, CPSubjPVA]; 
    TdPVA=[TdPVA, TDSubjPVA]; 
    clear CPSubjPVA TDSubjPVA  
  
end % ends L 
AllLabels=AllLabels(2:end,:); 
  
% create speadsheet for SPSS to do repeated measure ANOVAs 
%column with Group (1=CP, 0=TD) 
% csvwrite('ANN4SPSSNormLag832.xls',[ones(size(CPSubjPVA,1),1);... 
%     zeros(size(TDSubjPVA,1),1)],1,0) 
% for i=1:24 
%     L{1,i+1}=deblank(Labels(i,:)); 
% end 
% M=mat2cell([CPSubjPVA;TDSubjPVA],ones(1,63),ones(1,24)); 
% 
% xlswrite('ANN4SPSSNormLag832.xls',M) 
%  
% csvwrite('ANN4SPSSNormLag7080.xls',[ones(size(CPSubjPVA,1),1);... 
%     zeros(size(TDSubjPVA,1),1)],1,0) 
% for i=1:24 
%     L{1,i+1}=deblank(Labels(i,:)); 
% end 
% M=mat2cell([CPSubjPVA;TDSubjPVA],ones(1,63),ones(1,24)); 
  
M=[zeros(size(TdPVA,1),1),TdPVA;ones(size(CpPVA,1),1),CpPVA]; 
xlswrite('ANN4SPSSNormalizedFinalFinalProp1Neg.xls',M) 
clc 
AllLabels 
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function [BestWeights1, BestWeights2,TimesThruLoop,Redo] = BabyANNFunctCh5(TrainIn,N,PlotIt) 
  
% This network has 3 input neurons (posiiton, velocity, & acceleration) 
% and one output neuron for acceleration. There are N neurons in the 
% hidden layer (in order to test different numbers of neurons) 
  
ErrorImproved=0; 
minError=10^10; 
Redo=0; 
while ErrorImproved==0 %redo if error not improved by learning 
  
    % Rescale to range -1 to +1 
    %TrainIn= 2*(TrainIn- mean([max(TrainIn(:)),min(TrainIn(:))]))/(max(TrainIn(:))-min(TrainIn(:))); 
  
    Input=TrainIn(1,:); 
  
  
    % Calculate target accelerations that we want to calculate 
    % i.e. this is the desired output of the ANN 
    TrainOut=(TrainIn(2:end,3)); 
    % since sigmoid output is 0 to 1, need to scale acceleration to that 
    % range, so error calculation is meaningful. 
    TrainOut= (TrainOut+abs(min(TrainOut)))/range(TrainOut);  %added for dissertation 
  
    % Initial weights are random 
    Weights1=randn(3,N); % three input neurons 
    Weights2=randn(N,1); %only one output neuron 
  
    % Find initial cumulative error 
    for i=1:size(TrainIn,1)-1 
        Result1=TrainIn(i,:)*Weights1;  
        Result1=1./(1+exp(-Result1));% output of hidden layer 
        Result2=Result1*Weights2;  
  
        % sigmiodal function for use with backpropagation 
        Result2=1./(1+exp(-Result2));% Output of output layer 
  
  
        % desired result-calculated result, beta in notes 
        Error3(i)=TrainOut(i)-Result2; 
    end 
  
    % sum error over all 249 time steps 
    MeanError=mean(Error3); 
    PrevError=10^10; % set previous error arbitarily high so real 
    % error will be lower, and loop will be executed. 
  
    % %% Continue training as long as error is being reduced 
    TimesThruLoop=0; 
    %while abs(PrevError)>abs(MeanError) 
    while abs(PrevError-MeanError)>.00001 % i.e. while error is changing 
        TimesThruLoop=TimesThruLoop+1; 
        %BackPropagate Error 
        Error2=(Result2.*(1-Result2).*MeanError*Weights2)'; % layer 3=>2 
        for i=1:3 % number of neurons in input layer is three 
            Error1(i)=mean(TrainIn(:,i)).*(1-mean(TrainIn(:,i))).*sum(Error2.*Weights1(i,:)); % layer 2=>1 
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        end 
  
        %Calculate weights 
        LearnRate=10; %slow learning 
        Weights1=Weights1 + LearnRate*(TrainIn(i,:).*Error1)'*(Result1.*(1-Result1)); 
        Weights2=Weights2 + LearnRate*(Result1.*Error2)'*(Result2.*(1-Result2)); 
         
        % Calculate result using new weights 
        for i=1:size(TrainIn,1)-1 
            Result1=TrainIn(i,:)*Weights1; 
            % sigmiodal function for use with backpropagation %Changed!!! 
            Result1=1./(1+exp(Result1)); 
            Result2=Result1*Weights2; 
            Result2=1./(1+exp(Result2)); 
  
            Error3(i)=TrainOut(i)-Result2; 
        end 
  
        PrevError=MeanError; 
        if MeanError<minError 
            minError=MeanError; 
            BestWeights1=Weights1; 
            BestWeights2=Weights2; 
        end 
        MeanError=mean(Error3); 
        SaveError(TimesThruLoop)=MeanError; 
    end 
  
  
    if PlotIt==1 
  
        plot(1:TimesThruLoop,SaveError.^2) 
        xlabel('Iteration') 
        ylabel('Error squared') 
        pause 
        close 
  
    end 
  
    if abs(SaveError(end))<abs(SaveError(1)) 
        ErrorImproved=1; 
    else 
        disp('Redo') 
        Redo=Redo+1; 
        clear  Error3 SaveError 
    end 
end 
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