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ABSTRACT

There is a compelling need for the development of new sensory and neural prosthetic devices

which are capable of more precise point stimulation. Current prosthetic devices suffer from the

limitation of low spatial resolution due to the non-specific stimulation characteristics of electrical

stimulation, i.e., the spread of electric fields generated. We present a visible light stimulation

method for modulating the firing patterns of electrically-excitable cells using surface plasmon

resonance phenomena. In in-vitro studies using gold (Au) nanoparticle-coated nanoelectrodes,

we show that this method (substrate coated with nanoparticles) has potential for incorporating

the technology into neural stimulation prosthetics, such as cochlear implants, with arbitrarily high

spatial resolution. Au nanoparticles (NPs) were coated on micropipettes using aminosilane linkers;

and these micropipettes were used for stimulating and inhibiting the action potential firing patterns

of SH-SY5Y human neuroblastoma cells and neonatal cardiomyocytes. Our findings pave the way

for development of biomedical implants and neural testing devices using nanoelectrodes capable of

temporally and spatially precise excitation and inhibition of electrically-excitable cellular activity.

vi



1 INTRODUCTION

The increase in average life expectancy is considered a remarkable achievement of biomedical

research during the 20th century. There is a growing demand for neural and sensory prosthetic

devices, for both diagnostics and treatments among our growing, aging population. The neural

prosthetic devices used to measure, diagnose or restore normal function of partial or completely

lost neural activity operate on the principle of electrical stimulation, e.g., cochlear implants (Wilson

et al., 1991), retinal implants (Hornig et al., 2005), cardiac pacemakers (Epstein et al., 2008), etc.

As per FDA analysis (December 2012), there have been over 96,000 cochlear implants in the

US alone and nearly 400,000 cochlear implants worldwide since first approved for general use

in 1985. Among implant patients in US, 60 % are adults and 40 % are children (17 years or

younger; where 66 % of these children are 5 years or younger). There are over 3 million people

worldwide with cardiac pacemakers and each year 600,00 are added, with most patients aged over

60 years (Wood and Ellenbogen, 2002). The electric fields produced by applied electric currents

spread significantly in the space, resulting in low spatial resolution. There is an urgent need to look

for alternative methods for neural stimulation which could address the critical issue of improved

spatial resolution.

The aim of this project is to develop an alternative technology to electrical stimulation with

a special focus on stimulation of neurons and cardiomyocytes, with initial emphasis on novel

cochlear implant designs for deaf persons. For example, cochlear implants have an array of elec-

trodes that are placed into the cochlea. Different electrodes stimulate different auditory nerve fibers

(ANFs) via current pulses based on the sound frequencies present in the acoustic stimulus; high

frequencies towards the base of the cochlea and low frequencies towards the apex of the cochlea,

thus, mimicking the tonotopic (or cochleotopic) organization of the cochlea. Because of current
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spread, despite recent technological advancements, it is difficult to stimulate discrete ANFs ac-

cording to their sensitivity to different sound frequencies. Specifically, the processing of speech

in background noise and musical sounds to the desired perception levels of cochlear implant users

still remains a significant problem to be addressed because, normally, speech and music sounds

have a wide frequency range with important temporal features, at various sound volume/intensity

levels. (Firszt et al., 2007; Frisina and Frisina, 1997; Limb and Roy, 2014; O’Leary et al., 2009).

The present project also aims at developing novel stimulation/measurement systems for pe-

ripheral neuropathy; i.e., the conditions related to damage and/or malfunctioning of a nerve or a

group of nerves of the peripheral nervous system. Specifically, electromyography is one of the

most common techniques used to detect or diagnose peripheral neuropathy. Like cochlear im-

plants, electromyography also works on the principle of electrical stimulation of muscles/nerves.

In this method, an electrical signal through an electrode stimulates the muscles/nerves, then, elec-

trical activity is recorded from the muscles/nerves. As electrical stimulation is not specific, it will

not stimulate a single nerve but large groups of peripheral nerve bundles, and often evoke painful

sensations. The annual cost of electromyography is approximately 2.8 billion dollars in US alone.

Along with sensory implants and testing devices, electrical stimulation is bench mark method

to treat some neurological disorders where inhibition is needed like brain trauma or epilepsy, and

for some studies of brain function. Because of such wide spread use of artificial neural stimula-

tion, there is crucial need to look for alternative stimulation methods that would address the issue

of specific point stimulation, and be utilized for the development of second generation sensorineu-

ral prosthetic devices. Interestingly, there are recent reports that infrared lasers can invoke in-vivo

responses in peripheral nerves. For instance, Wells et al. (2005) reported 2 to 10 µm wavelength

infrared lasers invoked responses from rat sciatic nerve. The likely mechanism of infrared stim-

ulation is a temperature rise due to photothermal interactions and membrane capacitance changes

(Shapiro et al., 2012; Wells et al., 2007a). Infrared lasers can also be used to stimulate ANFs of

deaf animals, potentially giving better spatial resolution as compared to electric stimulation (Izzo
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et al., 2006, 2007a,b; Littlefield et al., 2010; Rajguru et al., 2010). Shapiro et al. (2012) showed

that the absorption of infrared laser energy cause a local temperature rise which does not effect

a particular membrane channel directly, but changes the cell membrane capacitance. However, a

major limitation of infrared lasers is that, along with the neurons, the infrared laser heats up the

surrounding tissue as well, which can cause thermal damage or unwanted stimulation.

Nanoparticles are a fundamental building block of nanotechnology systems and find applica-

tions in various fields like electronics (Shipway et al., 2000), chemical (Daniel and Astruc, 2004),

catalysis (Crooks et al., 2001), pharmaceuticals (Otsuka et al., 2003), biology (Salata, 2004), etc.

Nanoparticles are defined as particles having a diameter less than 100 nm (Kruis et al., 1998).

Their physical and chemical properties change dramatically with particle size and shape. Metal

nanoparticles like gold (Au) have strong surface interactions with electromagnetic fields because

of the relative availability of free electrons in conduction bands. Light, an electromagnetic wave,

interacts with metal nanoparticles, conduction band electrons then oscillate, and the oscillation be-

comes maximum at a particular wavelength of light. This phenomenon is called surface plasmon

resonance (SPR). The SPR peak can be tuned with particle size and shape. For gold nanoparticles,

an SPR peak occurs around 520 nm; and Au nanoparticles absorb and scatter very efficiently. For

small size particles (< -20 nm in diameter), most of the light energy is absorbed by nanoparti-

cles. As size increases, scattering efficiency increases because higher order electron oscillations

start to play a significant role. As Au nanoparticles are not good emitters of light, absorbed light

generates heat (Coronado et al., 2011; Huang and El-Sayed, 2010). This localized generation of

a temperature gradient due to SPR is also known as plasmonic heating. Thus, for local heating

applications small size Au particles (20 nm and smaller) are used, while for scattering applications

like imaging, larger particles are utilized (30 nm and larger).
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1.1 Nanomaterial-Assisted Neural Stimulation

Recently, nanomaterials have gained attention in addressing the issue of specific focal neural

stimulation (Colombo et al., 2016; Deisseroth, 2015; Wang and Guo, 2016) . Recent reports have

demonstrated that nanomaterials can be used for modulation of neural activity, with some reporting

neural activation (Carvalho-de Souza et al., 2015; Eom et al., 2014; Zhao et al., 2009) and some

reporting neural inhibition (Li et al., 2015; Yoo et al., 2014). In the studies of nanomaterial-

enabled neural stimulation, different power sources have been employed to activate nanomaterials,

e.g., magnetic fields (Chen et al., 2015; Huang et al., 2010), ultrasound (Marino et al., 2015), and

laser light - infrared or less commonly, visible (Carvalho-de Souza et al., 2015; Farah et al., 2013;

Lugo et al., 2012; Pappas et al., 2007), or near infrared (Eom et al., 2014; Li et al., 2015; Yong

et al., 2014; Yoo et al., 2014). Based on initial investigation, light activation looks to be the most

promising among all.

1.1.1 Nanoparticle-Enabled Neural Activation

Carvalho-de Souza et al. (2015) stimulated dorsal root ganglion (DRG) neurons from neona-

tal rats using ligand-conjugated Au nanoparticles with a 532 green laser light stimulation. Au

nanoparticles have conjugated with three different ligands - a synthetic molecule based on the Ts1

neurotoxin (binds with voltage-gated sodium channels), antibodies targeting the TRPV1 channel-

rhodopsin channels, and antibodies targeting P2X3 receptor ion channels. These ligands bind to

DRG neurons, and action potentials were recorded in response to 532 nm green laser stimula-

tion. The authors attributed initiation of action potentials to membrane capacitance changes due

to plasmonic heating, similar to what was shown by Shapiro et al. (2012) for infrared stimula-

tion. In a similar vein, Yong et al. (2014) demonstrated activation of rat primary auditory neurons

in-vitro with the help of silica-coated Au nanorods and 780 nm near-IR laser stimulation. The pri-

mary neurons were cultured from neonatal rats and incubated with nanoparticles - silica coated Au
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nanorods and silica-coated Au nanoparticles, overnight. Au nanorods shows much higher current

responses as compared to neurons incubated with Au nanoparticles. The authors attributed the

responses to heat generation due to interactions of the Au nanorods and near-infrared laser. This

heats leads to cell membrane capacitance changes and mechanisms similar to those proposed by

Shapiro et al. (2012). Additionally, Eom et al. (2014) recorded compound nerve action potentials

from rat sciatic nerve to which Au nanorods were attached, in response to 980 nm IR laser light.

Nanorods were injected into the sciatic nerve using a glass capillary and subsequently, the nerve

bundle was excised. The magnitudes of recorded compound action potentials were more than 6

times higher in the presence of Au nanorods compared to the control situation - no Au nanorods,

IR stimulation alone. The magnitude of the compound nerve action potentials also increased with

increases in laser power. The mechanism responsible was again attributed to the heat generated

due to interactions of Au nanorods and 980 nm IR laser light.

1.1.2 Nanomaterials-Assisted Neural Inhibition

Yoo et al. (2014) used Au nanorods to record inhibitory response from rat hippocampal tis-

sues. The Au nanorod surfaces were coated with polyethylene glycol (PEG) molecules by reacting

the Au nanorods solution with biterminal PEG (NH2-PEG(5K)-SH). PEG coating facilitates the

binding of Au nanorods with the cell membrane, when neurons were treated with PEG-coated

Au nanorods. Neural networks were cultured on a multi-channel multielectrode array chip and

incubated with PEG-coated Au nanorods. A fiber-coupled 785 nm near infrared laser was used

to stimulate the hippocampal neurons. There was a significant decrease in spontaneous activity

when Au nanorod treated neurons were irradiated with the near infrared laser. There was a min-

imal change in spike activity for infrared stimulation alone, or Au nanorod treatment alone. The

authors’ hypothesize that heat sensitive potassium channels, such as TREK-1 were responsible

for the suppression of neural activity. The heat was delivered at the nanoscale level, generated

during interaction of the near infrared laser and Au nanorods. Similarly, Li et al. (2015) utilized
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photosensitive poly(N-isopropylacrylamide) hydrogels embedded with polypyrole nanoparticles

to release biomolecules (glutamate & DNQX), and neural activity was recorded in response to

980 nm infrared (IR) laser light stimulation. The hydrogel was used to release neurotransmitter

- glutamate, locally near the hippocampal neurons and increases in spike activity were observed

for the hydrogel, as compared to the control condition - no glutamate. Equivalent in-vivo studies

were performed in rat visual cortex; there was a significant decrease in spikes rates when microgel

loaded with an inhibitory biomolecule 6,7-dinitroquinoxaline-2,3-dione (DNQX), was applied.

1.2 Current Project

For the current project, a primary question to be investigated was: can localized plasmonic

heating be used to stimulate electrically excitable biological cells such as neurons or cardiomy-

ocytes? Specifically, in the present work, we investigate the stimulation of cardiomyocytes from

neonatal rats, and SH-SY5Y neurons, using Au nanoparticle coated glass micropipettes and 532

nm green visible light. Because plasmonic heating is a localized phenomenon, it does not spread

like electrical stimulation. So, it can potentially give higher spatial resolution than electrical stimu-

lation and prosthetic devices based upon plasmonic phenomena can potentially perform better than

current devices. Another advantage is that unlike electrical stimulation, plasmonic heating does not

require any wire connections between the Au nanoparticles and energy source, i.e., the laser. Also,

the laser does not heat up surrounding tissue like infrared stimulation. Given these potential advan-

tages, plasmonic stimulation can revolutionize the existing field of biomedical stimulation implants

and other therapeutic or testing systems.

In the next part of the report, experimental methods are present, followed by a discussion of

experimental results. In the final part of the report, future work clinical translational pathways are

presented.
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2 EXPERIMENTAL METHODS

2.1 Synthesis of Gold Nanoparticles

Au nanoparticles were synthesized by bottom up approach; particles are synthesized from

atoms. In a standard citrate method, a gold salt solution (Chloroauric acid) was reduced using

a trisodium citrate solution (Nath and Chilkoti, 2002). Specifically, the glass beakers were washed

thoroughly first with distilled water, then, with ethanol. 20 ml of 1 mM gold (III) chloride trihy-

drate (HAuCl4.3H2O ) was boiled on a heating plate with continuous stirring, using a magnetic

stirrer. Next, 2-3 ml of 1% trisodium citrate solution was added to the boiling solution of chloroau-

ric acid. After 10 min, the solution became a deep red in color as shown in figure 2.1, which

indicates the presence of Au nanoparticles.

2.2 Fabrication of Nanoelectrodes for Stimulation

Nanoelectrodes were fabricated by coating Au nanoparticles onto glass micropipettes. Nath

and Chilkoti (2002) studied the interaction of a biomolecule with a monolayer of Au nanoparticles

coated onto glass coverslips. This coating involved three steps: cleaning the glass coverslip surface,

functionalization of the glass surface with γ-(aminopropyl) triethoxysilane, and finally, coating of

the functionalized glass surface with gold nanoparticles. We used the same three steps to coat gold

nanoparticles onto glass micropipettes, as explained next.
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Figure 2.1: The gold nanoparticle solution that was synthesized by reduction of 1 mM gold salt
solution (chloroauric acid) with a 1% sodium citrate solution. The deep red color indicates the
presence of gold nanoparticles.

2.2.1 Cleaning of Micropipettes

The glass micropipettes were put inside a petri-dish and washed using liquid detergent with

continuous heating at 55 − 60 ◦C for 10-15 min. The micropipettes were thoroughly washed

with distilled (DI) water to remove detergent. The micropipette was cleaned with 1:1 v/v (vol-

ume/volume) solution of HCl and methanol for 30 min, and subsequently, washed with DI water

thoroughly. Micropipettes were dried overnight at 60 ◦C in an oven.

2.2.2 Functionalization of the Micropipettes with γ-(Aminopropyl) Triethoxysilane

The tip of the micropipette was immersed in 10% v/v solution of γ-(aminopropyl) triethoxysi-

lane in anhydrous ethanol for 15 min. Subsequently, the micropipette was washed 5 five times with

ethanol and dried at 120 ◦C for 3 h.

8



2.2.3 Coating of Gold Nanoparticles

The functionalized micropipette tip was immersed in the gold nanoparticles solution for 24 h.

The gold nanoparticle coated micropipette was characterized using scanning electron microscopy.

2.3 Testing of Nanoelectrode

Prior to cellular physiology experiments, nanoelectrode responses to 532 nm green lasers were

tested in electrochemical cells. Lowe et al. (2003) demonstrated that a laser-induced temperature

jump occurs when a gold nanoparticles-coated indium tin oxide electrode was illuminated with a

532 nm green laser in a electrochemical cell, where, 0.1 M phosphate buffer containing 0.05 M

EDTA was used as the electrolyte solution. The maximum photocurrent was reported near the

oxidation peak potential of EDTA on gold nanoparticles, 0.9 V vs Ag(s)/AgCl. The nanoeletrode,

i.e., the microelectrode coated with the gold nanoparticles, and a Pt electrode, were used as the two

electrodes of the electrochemical cell whereas a saturated calomel electrode served as the reference

electrode. Figure 2.2 shows the schematic diagram of the testing set-up and the inset shows the

digital micrograph the same - electrochemical cell with two electrodes, along with the reference

electrode. The control experiment was done with the microelectrode not coated with the gold

nanoparticles. The same experiment was done again with extracellular solution as the electrolyte

instead of phosphate buffer.

Due to SPR, gold nanoparticles are known to affect the emission spectra of fluorophores in

its vicinity via energy transfer between the two and are utilized in many fluorescence-based ap-

plications like molecular imaging, and sensing (Aslan et al., 2007; Aslan and Pérez-Luna, 2004;

Dulkeith et al., 2002, 2005; Lee et al., 2008; Schneider et al., 2006). Aslan et al. (2007)studied

the effect of Au NP size on emission spectra of FITC-labeled human serum albumin. We adapted

the same methods for testing the nanoelectrodes for fluorescence quenching by the Au NPs (Aslan

et al., 2007; Aslan and Pérez-Luna, 2004). FITC-labeled human serum albumin (HSA) was at-
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tached to the Au NP-coated micropipette by incubating the nanoelectrode with a 10 M solution of

the fluorophore. A 488 nm laser source was used to excite FITC-HSA and the emission spectrum

the wavelength of around 520 nm was observed under an Olympus BX61W1 upright microscope.

Figure 2.2: Schematic shows an electrochemical cell to record the photocurrent: A beaker filled
with 0.1 M phosphate buffer/0.05 M EDTA electrolyte solution; containing both electrodes, nano-
electrode and Pt electrode. The inset shows the digital micrograph of the same - two electrodes of
the electrochemical cell along with reference electrode: saturated calomel electrode (SCE).
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2.4 Plasmonic Temperature Measurement

Yao et al. (2009) reported a pipette resistance method, an indirect method to measure the lo-

cal rapid temperature jumps occurring during the infrared stimulation of biological cells. In this

method, a patch pipette filled with extracellular solution was placed in a petri dish containing the

same extracellular solution and an infrared laser was focused on the tip of the pipette with the help

of an optical fiber. The pipette tip was placed near the fiber, approximately at a distance equal to

the distance between the fiber and cell for stimulation experiments. The resistance of the pipette

was measured in response to a current pulse. A sudden change in resistance was obtained when the

infrared laser pulse was applied on to the tip of the pipette. A pipette resistance vs. temperature

calibration curve was obtained by putting the pipette filled with extracellular solution into a petri

dish containing hot extracellular solution and allowing it to cool down. The resistances measured

during infrared laser experiment were converted into temperature changes using the calibration

curve (Shapiro et al., 2012).

In the present investigation, the same method was used to measure the plasmonic temperature

change on the surface of nanoelectrode when a 532 nm green laser was focused on the tip of the

nanoelectrode using an optical fiber having a 50 µm inside diameter. The experiment was done

using our patch clamp system as shown in figure 2.3 (Multiclamp 700B amplifier and Digidata

1440A data acquisition system from Molecular Devices). The resistance vs. temperature calibra-

tion curve was obtained by allowing the extracellular solution to cool down from approximately

55 ◦C to room temperature. As the extracellular solution cooled down, corresponding patch pipette

resistances were measured in response to a 20 mV voltage pulse. Then, a patch pipette having 5-8

MΩ resistance, filled with extracellular solution was placed very near to the surface of the nano-

electrode, and changes in resistance were measured when a 532 nm green laser was focused on

the tip of the nanoelectrode. The control experiment was done without the nanoelectrode, and no

resistance change was observed in response to a 20 mV pulse. Figure 2.4 shows the experiments

schematic for plasmonic temperature measurements. Figure 2.5 shows the digital micrographs for
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plasmonic temperature measurements: a) plasmonic temperature measurement and b) the control

experiment. Plasmonic temperature rises were also confirmed using an infrared thermal camera

(FLIR T420 thermal camera with detector spectral range 7.5 to 13.0 µm).

Figure 2.3: Digital micrograph of patch clamp setup showing its various components.

2.5 Cell Culture

2.5.1 Neonatal Cardiomyocytes Culture

2-3 day old Sprague Dawley rat pups (8-10) were decapitated and their hearts were removed.

The hearts were transferred to ice cold PBS with 20 mM glucose. The atria were removed using

small scissors to expose the ventricular cardiomyocytes. The ventricles were minced into small
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Figure 2.4: Schematic diagram of plasmonic measurement experiment in which the nanoelectrode
was not part of the electrochemical cell circuit.

pieces and transferred into a 50 ml Falcon tube, and 7 ml of type-II collagenous solution was

added to the tube. After that, the tube was heated in a water bath maintained at 37 ◦C for 5-6

min with gentle shaking. The supernatant was transferred to another 50 ml Falcon tube. Next,

7 ml of the stop solution was added to the tube containing supernatant. The stop solution was

M199 media with 5% FBS and 0.1% PenStrep. 7 ml of type-II collagenous solution was added

into the first tube having the remaining undigested ventricular cardiomyocytes. The tube with

the collagenous solution was again heated in a 37 ◦C water bath for 5-6 min with gentle shaking.

Then, the supernatant was transferred to the tube containing the earlier digested supernatant and

stop solution mixture. 7 ml of stop solution was added to make the collagenous solution inactive.

The procedure was repeated until cells were digested completely. The tubes containing digested

cardiomyocytes were centrifuged at 3000 rpm for 2-3 minutes. The cell pellets were re-suspended

into PBS and centrifuged again at 2500 rpm for 2-3 minutes. The pellets were suspended into

13 ml of day 1 medium - M199 containing 5% FBS, 10% horse serum and 0.1% PenStrep. The

solution was incubated at 37 ◦C with 5% CO2 for 1 h.

13



Figure 2.5: Digital micrographs were taken during the plasmonic temperature measurement at
the surface of the nanoelectrode. (a) The digital micrograph of the plasmonic temperature mea-
surement experiment showing the nanoelectrode, a patch pipette filled with extracellular solution,
known as the measurement electrode, placed near the nanoelectrode surface; and a 50 µm inside
diameter optical fiber used to focus a 532 nm green laser on the surface of the nanoelectrode (b)
The control experiment showing the measurement electrode and a 50 µm inside diameter optical
fiber (no nanoelectrode).

Next, the supernatant was diluted with day 1 medium and incubated in 35 mm laminin-coated

petri dishes at 37 ◦C with 5 % CO2 for 24 h. On day 2, dishes were washed with PBS twice and

the day 2 medium was used. The day 2 medium had the same composition as the day 1 medium

except for the amount of FBS. It contained 1% FBS instead of 5% FBS. The medium was changed

every 24-48 h. The cardiomyocytes showed spontaneous beating on day 3. These cells are good

for patch clamp experiments at days 2 to 5 (Salameh and Dhein, 2005).
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2.5.2 Differentiation of SH-SY5Y Neuroblastoma Cells

SH-SY5Y(ATCC R© CRL-2266) neuroblastoma cell lines can be differentiated to neurons in

presence of retinoic acid. The cells were initially cultured in a medium which is mixture of F12 &

DMEM (1:1, v/v) containing 10% FBS and 1% PenStrep at 37 ◦C with 5 % CO2. The medium was

changed every 4-7 days. After 80-90% confluence, trypsin was added to detach the cells. The cells

in trypsin solution were incubated for 1-2 min. Then, an equal volume of medium, DMEM:F12

(1:1 v/v) with 10% FBS & 1% PenStrep, was added to neutralize the trypsin. The cells were

centrifuged at 1500 rpm for 5 min. Next, the cell pellets were suspended in 90% FBS, 10% DMSO

for long-term storage in 1.5 ml screw cap vials in a liquid nitrogen cylinder. For the subculture,

cell pellets were suspended in medium, DMEM:F12 (1:1, v/v), 10% FBS, 1% PenStrep. After

48 h of plating, the medium was replaced with the Neurobasal medium containing supplements

B27 and GlutaMAX. 10 µM all-trans-retinoic acid (ATRA) was added to this medium to promote

neural differentiation. Along with promoting differentiation, the retinoic acid inhibits cell growth

and proliferation as well. The medium was changed every 48 h (Kovalevich and Langford, 2013;

Phlman et al., 1984).

2.6 Electrophysiology

All the physiological experiments were done using the whole cell configuration of the patch

clamp technique, whose set-up is shown in Figure 2.3 (Multiclamp 700B amplifier and Digidata

1440A data acquisition system from Molecular Devices). For plasmonic stimulation, the nano-

electrode was placed adjacent (within 2 µm) to the cell, while the cell was patched in whole-cell

configuration using another microelectrode to measure the plasmonic responses. 532 nm green

laser pulses were focused on the nanoelectrode using an optical fiber with 50 µm inside diameter.

Figure 2.6 shows the micrographs of one such plasmonic stimulation experiment with an SH-SY5Y

cell.
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Figure 2.6: Digital micrographs showing the plasmonic set up in which our nanoelectrode was
placed just next to an SH-SY5Y cell, and a recording microelectrode was used to patch the cell in
whole-cell configuration. An optical fiber having an inside diameter of 50 µm was used to focus
laser on the tip of the nanoelectrode (a) when laser was off and (b) when laser was on.

2.6.1 Neonatal Cardiomyocytes

Kang et al. (1995) studied the effects of fatty acids on various parameters of action potential

generation for neonatal cardiomyocytes, like strength of depolarization current, cycle time and

so on. We used their control current clamp experiment protocol to record action potentials from

neonatal cardiomyocytes. The control experiments and plasmonic stimulation experiments were

done at room temperature with no perfusion. The microelectrode resistance was 2.5-4.0 MΩ. The

extracellular solution was 140 mM NaCl, 5 mM KCl, 1 mM MgCl2, 2 mM CaCl2, 10 mM HEPES

at pH 7.4 maintained with NaOH. The intracellular solution used to fill the microelectrodes was

140 mM KCl, 2 mM MgCl2, 1 mM CaCl2, 5 mM MgATP, 10 mM NaCl, 10 mM HEPES, 10 mM

EGTA, and pH 7.2 maintained with KOH.

2.6.2 SH-SY5Y Cells

Johansson (1994) recorded action potentials from differentiated SH-SY5Y human neuroblas-

toma cells. Tosetti et al. (1998) studied the effect cell differentiation on potassium currents and
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its parameters by comparing differentiated and undifferentiated cell lines using whole-cell voltage

clamp experiments. We recorded action potentials from undifferentiated and differentiated cells

using the protocol of Tosetti et al. (1998) and also, recorded the plasmonic stimulation responses

in the whole-cell configuration. The patch pipette had a resistance 4.5-7.5 MΩ. All the experi-

ments were done at room temperature without perfusion. The extracellular solution contained 125

mM NaCl, 4 mM KCl, 2 mM CaCl2, 1.2 mM MgSO4, 10 mM glucose, 10 mM HEPES. The pH

of the extracellular solution was maintained at 7.4 using NaOH. The intracellular microelectrode

solution contained 140 mM KCl, 4 mM NaCl, 0.02 mM CaCl2, 0.8 mM EGTA, 2 mM MgCl2, 4

mM Mg-ATP, 10 mM HEPES. The pH of the intracellular solution was maintained at 7.2 using

KOH.
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3 RESULTS

3.1 Characterization of Gold Nanoparticles

3.1.1 UV-Vis Spectra

The strong absorption of a specific wavelength light by Au nanoparticles is responsible for the

localized plasmon resonance phenomena. The ultraviolet-visible (UV/Vis) spectroscopy is used to

quantify the absorbed and scattered light of a sample. A Perkin Elmer Lambda 35 UV/Vis spec-

trophotometer was used to obtain the UV/Vis spectra of our Au nanoparticles solution. Figure 3.1

shows the graph relating absorbance and wavelength for our gold nanoparticles solution. The peak

absorbance around the wavelength 528 nm confirms the presence of Au nanoparticles.

3.1.2 Electron Microscopy Characterizations

An FEI Morgagni transmission electron microscope (TEM) was used to obtain images of gold

nanoparticles. Figure 3.2 represents the two TEM images of gold nanoparticles: at a 100 nm scale

bar and at a 20 nm scale bar. In addition to TEM, an Hitachi S-800 scanning electron microscope

(SEM) was used to image the gold nanoparticles. Figure 3.3 shows the two SEM images of gold

nanoparticles: at a 100 nm scale bar and at a 50 nm scale bar.

3.2 SEM Imaging of Nanoelectrode

SEM images of gold nanoparticles coated onto a micropipette were obtained using a Hitachi

SU70 SEM. Figure 3.4 represents the SEM images of Au nanoparticles coated onto a micropipette
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Figure 3.1: Absorbance spectrum of gold nanoparticles.

(10 µm, 1 µm, 500 nm and 300 nm scale bars). SEM images clearly show the uniform coating of

gold nanoparticles onto glass micropipette.

3.3 Testing of Nano-electrode

Nanoelectrodes were tested using two methods before stimulation experiments with biological

cells - Light-induced photocurrent method and fluorescence quenching.

3.3.1 Light-Induced Photocurrents

As reported by Lowe et al. (2003), we also observed photocurrents when our Au nanoparticles

coated microelectrode was illuminated with a 100 mW 532 nm green laser with 0.1 M phos-
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Figure 3.2: TEM images of gold nanoparticles: (a) a 100 nm scale bar and (b) a 20 nm scale bar.

phate buffer having 0.05 M EDTA as the electrolyte. Figure 3.5 shows measured photocurrents.

When there were no nanoparticles coated on the microelectrode, no photocurrent was observed

(figure 3.5). The photocurrents have a linear relationship with the applied voltage (Figure 3.7a)

Similar photocurrent jumps were observed when an extracellular solution having a composition

of 140 mM NaCl, 5 mM KCl, 1 mM MgCl2, 2 mM CaCl2, 10 mM HEPES at pH 7.4 maintained

with NaOH was used as the electrolyte instead of phosphate buffer. Figure 3.6 shows the measured

photocurrent when the extracellular solution was used as the electrolyte. The control experiment

was done with the micropipette not coated with gold nanoparticles. Like in phosphate buffer,

photocurrents in ECS also have a linear relationship with the applied voltage (Figure 3.7b)

The photocurrents occur due to temperature rise the nanoelectrode-electrolyte interface by plas-

mon excitation of Au nanoparticles. Temperature rise at the interface leds to alteration of open

circuit voltage of the nanoelectrode with respect to reference electrode, results in photocurrents

(Lowe et al., 2003).
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Figure 3.3: SEM images of gold nanoparticles: (a) a 100 nm scale bar and (b) a 50 nm scale bar.

3.3.2 Fluorescence Quenching

Metal nanoparticles like gold is known to strongly affect the emission spectra of fluorophores

in their vicinity (Aslan et al., 2007; Aslan and Pérez-Luna, 2004). Nanoelectrodes were also tested

for fluorescence quenching of FITC-labeled human serum albumin (HSA). FITC- labeled human

serum albumin (HSA) was attached to the Au nanoparticles coated micropipette by incubating

the nanoelectrode with a 10 µM solution of the fluorophore. A 488 nm laser source was used to

excite FITC-HSA and the emission spectrum around wavelength of 520 nm was observed under an

Olympus BX61W1 upright microscope. A fluorescence quenching was observed in the presence

of Au nanoparticles (Figure 3.8b & c) in comparison to the control conditions (uncoated glass

micropipette tips) (Figure 3.8a).

3.4 Plasmonic Temperature Measurements

3.4.1 Pipette Resistance Method

The indirect pipette resistance method used to measure plasmonic temperature measurement

was adapted from Yao et al. (2009), measured temperature rise for the infrared stimulation of
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Figure 3.4: SEM images of nanoelectrode, micropipette coated with gold nanoparticles: (a) 10 µm
scale bar, (b) 1 µm scale bar, (c) 500 nm scale bar, and (d) 300 nm scale bar.

biological cells (Shapiro et al., 2012). For calibration curve, the extracellular solution was heated

to approximately 55 ◦C, then, allowed to cool down to room temperature. The resistance of a

patch pipette filled with the same extracellular solution was recorded as temperature cooled down.

Figure 3.9 represents the log (R) vs 1/temperature, fitted as a straight line, calibration curve. The

blue curve was used for temperature calculations.

Figures 2.4 and 2.5 show the plasmonic temperature measurement setup where a patch pipette

was placed just next to the nanoelectrode and a change in pipette resistance was measured when the

laser was shined on the tip of the nanoelectrode. When 20 mV voltage pulses were applied to the

patch pipette, there were extra instant jumps in current responses along on top of the voltage pulse

response, as soon as the laser was turned on at maximum power (100 mW). These jumps go away

when the laser was turned off (Figure 3.10). There were no current jumps, when the nanoelectrode
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Figure 3.5: Photocurrents vs time in 0.1 M phosphate buffer having 0.05 M EDTA. (a) a microelec-
trode coated with gold nanoparticles when 0.3 V vs Ag(s)/AgCl, reference electrode was applied
(b) a microelectrode coated with gold nanoparticles when 0.9 V vs Ag(s)/AgCl, reference electrode
was applied (c) a microelectrode with no gold nanoparticles coating when 0.3 V vs Ag(s)/AgCl,
reference electrode was applied (d) a microelectrode with no gold nanoparticles coating when 0.9
V vs Ag(s)/AgCl, reference electrode was applied. The green upward arrows represents when laser
was turned on and black downward arrows represent when laser was turned off.

was not present (Figure 3.10). These current jumps correspond to 33 ◦C temperature rise from the

room temperature (22 ◦C to 55 ◦C).

As a control measurement, the temperature rise was studied as a function of laser power. The

plasmonic temperature increases linearly with the laser power (Figures 3.11a & c) and decreases

exponentially with the distance away from the nanoelectrode (Figure 3.11b).

3.4.2 Infrared Thermography

The change in temperature of 0.3 to 0.4 ◦C was measured at the nanoelectrode-electrolyte in-

terface using infrared thermal camera (Figure 3.12).
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Figure 3.6: Photocurrent measurements when extracellular solution was used as the electrolyte.
(a) A 0.6 V voltage vs Ag(s)/AgCl, reference electrode was applied. (b) A 0.9 V voltage vs
Ag(s)/AgCl, reference electrode was applied.

3.5 Plasmonic Physiological Responses

All the plasmonic stimulation experiments were done by using our patch clamp set up - Multi-

clamp 700 (Figures 2.3, 2.6). Cells were patched by forming the gigaseal in voltage clamp mode

and whole cell patch clamp configuration was achieved by applying the slight negative pressure

with the help of 1 ml syringe. After that, all recordings will be done under current clamp mode.

3.5.1 Neural Activation

When SH-SY5Y cells were stimulated with a 10 ms or longer laser pulse, jumps in membrane

potential - plasmonic jumps were observed. These jumps in potential change magnitude, relative

to the holding potential of the cell, were positive when the cell was at holding potentials -30 mV or

less. As the holding potential approaches zero, the magnitude of the plasmonic jumps decreased

and become negative as the holding potential went to more positive. Figure 3.13a shows one

of these recordings from a differentiated SH-SY5Y cell. Cells were firing action potential both,

before and after, the plasmonic stimulation portion of the experiment (Figure 3.14). For control

experiments (laser stimulation alone - without nanoelectrode), no cellular response was observed

(Figure 3.13b)
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Figure 3.7: Photocurrents increase with applied voltage for both electrolytes: (a) 0.1 M phosphate
buffer/0.05 EDTA and (b) NaCl (125 mM) based extracellular solution.

Positive plasmonic jumps indicate the depolarization due to opening of sodium channels and

negative plasmonic jumps indicate the repolarization because of the opening of potassium chan-

nels. Figure 3.14 shows the action potential recordings before and after the plasmonic stimulation

from the same cell whose plasmonic jumps are shown in Figure 3.13. Figure 3.15 provides the data

showing the relations between plasmonic jumps and the holding potential for six different neurons.

All the cells show the same trend. It has also been observed that magnitude of plasmonic jumps

increases as pulse timing increases at a particular laser power but plasmonic jumps rise at a slow

rate (Figure 3.16).

Plasmonic jumps also increases with increase in laser power. Figure 3.17 shows change in

membrane potential at different laser powers (20-100 mW). Experiments were carried out with

rat neonatal cardiomyocytes as well and similar plasmonic jumps were observed, increases with

increases in laser power (Figure 3.18).

For laser pulse widths of 1-5 ms, action potentials were recorded from the cells. Figure 3.19

shows action potential recordings for a representative SH-SY5Y cell when the nanoelectrode was

illuminated with a 1 ms 532 nm green laser pulse with 100 mw power. Figure 3.20 shows these op-
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tically stimulated action potential recordings from six different cells. To induce optical responses,

we found that the laser power should be in the 60 mW - 120 mW range. At lower powers, there

was generally no response recorded. Like for plasmonic jumps experiments, action potentials were

recorded, prior and subsequent, to the optical stimulations in response to electrical current pulses

(Figure 3.21). Following stimulation the resting potential slowly returns to pre-stimulus over a

time span of seconds and up to a minute. (Carvalho-de Souza et al., 2015) also reported the simi-

lar observations for stimulation of dorsal root ganglion (DRG) neurons using functionalized gold

nanoparticle attached to cell membrane. They have attributed it to transient membrane alteration

due to optical stimulation.

3.5.2 Neural Inhibition

When optical laser pulses were superimposed on electrically stimulated action potential re-

sponses, while recording action potentials in standard current clamp experiments, a decreases in

magnitude of the action potentials were observed. Action potentials were recorded before and

after the optical stimulation experiments (Figure 3.22). As laser power increases, the inhibition

become more prominent (Figure 3.23). Typically in an action potential, depolarization happens

predominantly because of Na+ ion exchange and repolarization happens mainly because of K+ ion

exchange. Different data analysis were carried out with respect to laser power for depolarization

and repolarization phases of the action potentials. Figure 3.24 shows the various data analyses car-

ried out for inhibition experiments with respect to laser power: action potential peaks (AP peaks),

up-slope of the AP (rate of membrane potential rise from holding potential to peak value - rate of

depolarization), difference between the initial peak value and first minimum of the action potential

(AP Peak - Base), base value (first minimum after peak value) and the down-slope of the AP (rate

of membrane potential fall from the peak value to base value - rate of repolarization).

The AP peak value decreased as laser power increased as shown in Figure 3.25. The rate of

membrane potential rise from holding potential to peak value - up-slope, i.e., the depolarization
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rate, remained unaffected by the laser power (Figure 3.26). The up-slope values were normalized

by dividing each value with initial value of the up-slope for electrical action potential stimulation

before the optical stimulation experiment. The normalized upslope also has the same trend as

absolute values, i.e., there was hardly any change with the laser power (Figure 3.27).

The minimum after the AP peak, i.e., the base value did not change with increases in laser

power (Figure 3.31). The differences between the peak & base values decreased with laser power

(Figure 3.28).

The rate of membrane potential fall from peak value to the first minima after the peak - down-

slope, i.e., the depolarization rate, decreased with increased laser power (Figure 3.29). Like up-

slope, the down-slope values were normalized by dividing each value with the initial value of the

down-slope for electrical action potential stimulation before the optical stimulation experiment.

The normalized downslope also had the same trend as absolute values, i.e., decreased with the

laser power as shown in Figure 3.30.

It can be noted that up-slope (depolarization rate) was unaffected by laser power while the

down-slope (repolarization) decreased with laser power. As depolarization is mostly governed by

exchange of Na+ ions and repolarization is governed by exchange of K+ ions, it is possible that

during inhibition, the rate of K+ ion transfer was affected more than the rate of Na+ ion transfer.

Since inhibition is largely governed by potassium channels. It has been reported in earlier studies

that temperature sensitive potassium channels are involved in inhibition. For example, Yoo et al.

(2014) reported significant decrease in neural activity in response to Au-nanorods activated with

an infrared laser due to the responses of heat-sensitive TREK-1 channels.

Another set of experiments were conducted where the laser pulse led the electric current pulse

by a few milliseconds. Figure 3.32 shows one such representative SH-SY5Y cell. The inhibition

increases as laser pulse lead time increased.
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To confirm the generalization of eliciting inhibition phenomena with visible light laser stimu-

lation, experiments were conducted with spontaneous beating neonatal cardiomyocytes from rats.

Like SH-SY5Y cells, the inhibition of action potential magnitude was observed for the neonatal

rat cardiomyocytes. A decrease in action potential magnitudes became more significant at higher

laser power levels, as shown in figure 3.33.

Both activation - optical stimulation alone and inhibition - optical stimulation in combination

with electrical stimulation, were recorded from the same cells. Figure 3.34 shows a representative

SH-SY5Y cell.
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Figure 3.8: Digital micrographs of fluorescence emission of FITC-labeled human serum albumin
(FITC-HSA) on glass micropipette tips. (a) uncoated tip (b) tip coated with Au nanoparticles
outside and (c) tip coated both inside and outside. A 488 nm laser source was used to excite FITC-
HSA and the emission spectrum around wavelength of 520 nm was observed under an Olympus
BX61W1 upright microscope.
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Figure 3.9: Micropipette resistance versus temperature calibration curve. The figure shows curve
from two trials. Blue data points and line were used for temperature calculations because it has
more data points.
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Figure 3.10: Current vs time curves in response to a 20 mV electrical pulse. (a) when the Au
nanoelectrode was present, instant jumps in current were observed as soon as the laser (100 mW,
532 nm green laser) was turned on (upward arrows). These jumps are due to plasmonic heating and
correspond to 33 ◦C temperature rise from room temperature to approximately 55 ◦C. (b) There
were no jumps when the nanoelectrode was not there. Downward arrows designate when the laser
was turned off.
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Figure 3.11: Plasmonic temperature measurements using pipette resistance method. (a) Laser
power vs plasmonic temperature rise on the surface of the nanoelectrode (Three trials). As laser
power increases, temperature-rise also increased, approximately linearly. (b) Plasmonic temper-
ature rise vs distance from the nanoelectrode at various laser powers. The temperature rise de-
creases exponentially with distance. (c) Like on the surface of the nanoelectrode, temperature rise
increases linearly with laser power at different distances away from the nanoelectrode.
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Figure 3.12: Infrared thermograms of glass micropipettes. (a) nanoelectrode - micropipette coated
with Au nanoparticles and (b) control - uncoated micropipettes. Laser was either off or not focused
on the tip of the micropipette (left), laser was switched on and focused on the tip of the micropipette
tip (middle) and finally, laser was turned off again or not focused on the tip of the micropipette.
The shadow in the background shows the micropipette.
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Figure 3.13: Plasmonic jumps for a representative SH-SY5Y cell. (a) Change in cell potential
(plasmonic jumps) at different holding potentials during plasmonic stimulation, i.e. a 10 ms pulse
having a power of 100 mW, was shined onto the nanoelectrode. The figure shows plasmonic jumps
at three holding potentials: -73.7 mV, -24.4 mV and 23.6. The inset shows the onset response in
more detail (faster time scale). (b) When optical stimulation experiments were done with laser
along, without nanoelectrodes, no/little response was observed. Figure shows a SH-SY5Y cell
with holding potential = -53.9 mV. The green bar represents the laser pulse timing.

34



Figure 3.14: Action potentials recorded using standard whole cell current clamp procedure; (a) be-
fore plasmonic stimulation experiment and (b) after plasmonic stimulation experiment. It indicates
that plasmonic stimulation is not doing any thermal damage to the cell, so, the neuron is otherwise
healthy.

Figure 3.15: Plasmonic jumps versus membrane potential. (a) Plasmonic jumps versus holding
potential graph for six different cells. Each cell is represented by different color data points and
line. All show the same trend, i.e., as holding potential goes from negative to positive, plasmonic
jumps go from positive to negative. (b) The average linear regression curve for holding potential
versus jumps when cells were stimulated with 10 ms, 100 mW laser pulses.
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Figure 3.16: Plasmonic jumps of a representative SH-SY5Y cell at different pulse timings (10-50
ms) at 100 mW laser power. Plasmonic jumps increases in magnitude with pulse timing (inset) but
the rate of rise slows down.
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Figure 3.17: Plasmonic jumps of SH-SY5Y cells for 10 ms pulses at different laser powers; 20
mW, 40 mW, 60 mW, 80 mW and 100 mW (holding potential = -77.8 mV). The plasmonic jumps
become more prominent at higher laser powers.

Figure 3.18: Shift in membrane potential for a representative neonatal cardiomyocyte at three
different laser powers; 60 mW, 80 mW, 100 mW for 10 ms laser pulse timing.
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Figure 3.19: A representative action potential recorded from an SH-SY5Y cell for a 1 ms laser
pulse at 100 mW laser power. For 1-5 ms laser pulses (100-120 mW laser power), action potentials
were recorded from the SH-SY5Y neural cells. The inset shows the zoomed portion of the onset
response for the same
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Figure 3.20: Optical action potentials. (a) Action potentials recorded, in response to the optical
stimulation from six different neural cells, each a different color. (b) The mean curve of optically
stimulated action potentials (N=6). Black curve shows the mean values and red curves show the
sem values. All the experiments were done in whole current clamp mode using an electrophysio-
logical patch clamp system.
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Figure 3.21: Electrically stimulated action potentials (pre AP & post AP) were recorded before
and after the optical stimulation recordings (plasmonic AP). The figure shows three different such
SH-SY5Y cells.
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Figure 3.22: When laser pulses were superimposed on the responses to electric current pulses a
reduction in magnitude of action potential was observed. The figures show responses for four dif-
ferent cells, each shown by different color (a) Action potential recorded when cells were stimulated
with electric current pulses (180 pA, 300 ms) in a whole-cell current clamp experiment, (b) Action
potential recorded when a 120 mW laser pulse was superimposed on the current pulse. The green
bar indicates the laser pulse and (c) Action potential recorded after the optical stimulation. Cell
action potentials recover back to the original value.
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Figure 3.23: The inhibition of action potentials was affected by laser power. As laser power
increased, inhibition became more prominent - action potential peak decreased with laser power.
The figure shows one such representative SH-SY5Y cell.
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Figure 3.24: A representative figure indicating the various analysis done for inhibition experiments
as a function of laser power. These are shown in subsequent figures - Figures 3.25 to 3.31.

Figure 3.25: Action potential peak decreases as the laser power increased, (a) shown for five
different cells and (b), mean values for the same five cells.
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Figure 3.26: The rate of rise of the action potentials (mV/ms) remains unaffected by the laser
power. (a) Up-slope vs laser power curves for five different cells. (b) The average values of rate of
rise of the action potential versus laser power for five cells.

Figure 3.27: Normalized up-slope remains unaffected by laser power. (a) All of the up-slope
values were normalized with initial up-slope (Electrical AP up-slope before the laser stimulation
experiment) which shows the same trend of having no change with laser power like absolute values.
(b) The mean value graph bar confirms the same trend.
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Figure 3.28: The difference between action potential peak and base value (first minima after peak)
decreased with laser power. It is due to the decreased in peak values of action potentials being
inhibited, as shown by both (a), individual cells and (b), mean values.

Figure 3.29: The down-slope decreases with laser power as shown in part (a) raw traces for indi-
vidual five cells and (b) mean values for same five cells.
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Figure 3.30: Like down-slope, normalized down-slope (down-slopes normalized with downslope
of electrical AP down-slope before laser experiment) decreases with laser power. (a) normalized
down slope for five cells and (b) mean values [N =5].

Figure 3.31: The base value (first minima) remains the same, i.e., did not vary with laser power;
(a) base values for individual cells and (b) mean data for five cells.
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Figure 3.32: The inhibition is more prominent when the laser pulse leads the electrical pulse by
a few milliseconds. The figure shows a representative cell where the laser pulse leads the current
pulse for three different times: - 5 ms, 10 ms and 15 ms. Action potentials were recorded before
(Pre-AP) and after (Post-AP) the optical stimulation experiment.
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Figure 3.33: Plasmonic stimulation of spontaneous beating cardiomyocytes. Green bars show the
laser stimulus pulses. As laser power increases, suppression in magnitude of the action potential
becomes more prominent as shown in the figure, with a maximum for the 100 mW laser power.
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Figure 3.34: Inhibition and activation in response to laser stimulation was recorded from a single
cell. (a) Action potential of a representative SH-SY5Y cell in response to 180 pA, 300 ms electrical
pulse. Subsequently, inhibition (120 mW, 532 nm green laser pulse was superimposed on the 180
pA electrical pulse) and activation (2 ms, 120 mW laser pulse) in response to laser stimulation were
recorded. Part b and c shows the inhibition and activation recordings and inset of part c shows the
long time scales of the optical AP.
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4 DISCUSSION

To overcome the limitations of clinical electrical stimulation, light stimulation offers exciting

opportunities, especially, regarding capabilities of focusing it on small areas at sub-micron levels

(Antognazza et al., 2015; Colombo et al., 2016; Shapiro et al., 2012; Wang and Guo, 2016). In the

present study, we explored visible light stimulation for cell manipulation using Au nanoparticles.

We have developed an Au nanoelectrode and demonstrated that these electrodes in combination

with a 532 nm green laser can both stimulate and inhibit neural signals. This the first report

showing both inhibition as well as activation of neural response together using Au NPs and green

visible light. We were able to record the inhibitory and excitatory responses from the same cell

(Figure 3.34). Because of its capabilities to elicit inhibitory and excitatory responses, plasmonic

stimulation can be a promising alternative for electrical stimulation paradigms in sensorineural

prosthetic and testing devices.

4.1 Neural Activation

When the laser was focused on the nanoelectrode, placed near a patched neuron, a change in

cell potential was observed. The laser timing is a critical parameter for eliciting action potentials.

The cells fired action potentials for laser pulses of 1-5 ms durations (Figures 3.19, 3.20, 3.21). For

larger pulses (time > -10 ms), though there was a shift in cell potential but the response rate was

not sufficient to generate action potentials (Figures 3.13, 3.15, 3.16, 3.17). Our findings about pulse

duration are consistent with the literature. Eom et al. (2014) showed neural activity enhancement

utilizing mid-infrared (980 nm fiber coupled laser) stimulation for rat sciatic nerve when the nerve

was stimulated in the presence of gold nanorods, as compared to the control condition (no gold

nanorods). 1 µL Au nanorods solution was injected to the sciatic nerve in-vivo, subsequently,
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the close-by area of the excised nerve was illuminated by the laser. There was approximately a

six times increase in the magnitude of the compound nerve action potential, with a higher rate

of depolarization - 5.7 times higher, when using Au nanorods. The laser pulse durations were a

couple of milliseconds (< 3 ms), of the same order in which we observed neural activation (1-5

ms). Similarly, Carvalho-de Souza et al. (2015) reported activation of dorsal ganglion neurons

from neonatal rats and acute slices of mouse hippocampus using neurotoxin (TS1) conjugated

Au nanoparticles - so, targeting specific ion channels, and a 532 nm green laser. The conjugated

nanoparticles showed resistance to the washout. Like Eom et al. (2014) study, laser pulse time was

on the order of a millisecond - 1 ms, similar to the range (1-5 ms) for which we recorded action

potentials in the current investigation.

4.1.1 Mechanism

Light interaction with gold nanoparticles results in collective oscillations of electrons which

have both strong near field and far field affects, specially, for a particular wavelength of light. The

near field affects the surroundings of the nanoparticle a distance equal or smaller than the order

of the wavelength of the light (Kelly et al., 2003; Lin et al., 2015; Myroshnychenko et al., 2008;

Nedyalkov et al., 2007, 2012). Though, the intensity of field is high, it falls off rapidly with dis-

tance (Nedyalkov et al., 2012). Since the stimulating nanoelectrode is a few microns (1-3 micron)

away from the cells, the electric field is an unlikely contributor for stimulation of the cells. For far

fields, Au nanoparticles generate localized thermal fields nearby, especially, for small size particles

(< 20 nm) (Coronado et al., 2011; Huang and El-Sayed, 2010). Since we are using particles of

approximately 20 nm, it is very likely that localized thermal fields of non-radiative decay (plas-

monic heating) play a critical role in the neural stimulation. Localized plasmonic heating could

have the similar mechanism as infrared stimulation. It has been demonstrated that pulsed infrared

lasers can stimulate various neural cells in-vivo and in-vitro, e.g., auditory nerve (Izzo et al., 2007b,

2008), peripheral nerve (Wells et al., 2005, 2007a,b), vestibular hair cells (Rajguru et al., 2011),
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and heart cells (Jenkins et al., 2010). Shapiro et al. (2012) studied the mechanisms of infrared

stimulation with Xenopus laevis oocytes, mammalian HEK cells and artificial lipid bilayers, and

reported that the absorption of infrared lasers lead to rises in localized temperature which, instead

of affecting individual channels, alters the membrane capacitance. The artificial bilayer is con-

sidered as a model for cell membrane and capacitance change in response to infrared stimulation.

The very likely mechanism is that interactions of visible light with Au NPs results in localized

heating around the particles which alters the cell capacitance. Carvalho-de Souza et al. (2015) also

attributed the conjugated Au NPs cell activation of dorsal root ganglion neurons to the change in

membrane capacitance. Like Shapiro et al. (2012), an artificial lipid bilayer was considered as a

representative model of cell membrane capacitance changes. In sum, initial reports suggest that

membrane capacitance change is the driving force for action potential generation in response to a

thermal pulse. Apart from the transient capacitance change mechanism, there are in-direct indica-

tions that heat sensitive channels like TRPV (Caterina et al., 1997; Güler et al., 2002) also plays a

role in cell depolarization Richter et al. (2011). Katz et al. (2010) recorded depolarization currents

from dorsal root ganglion (DRG) neurons in response an 1889 nm laser. The results were attributed

to activation of TRPV1 channels and other channels. It would be worthwhile to further explore the

combine effect of heat sensitive channels along with membrane capacitance changes in response

to short thermal pulses.

4.2 Neural Inhibition

Along with neural activation, neural inhibition is equally important clinically, and used to in-

hibit abnormal activities in neurological diseases, e.g., in brain trauma and epilepsy. To test the

capability of our nanoelectrode for neural inhibition, laser pulses were superimposed on the electric

current pulse and responses were recorded from the SH-SY5Y neurons. A decrease in amplitude

of action potentials was observed as compared to control experiments - only current stimulation,

no laser stimulation. The pulse duration was 300 ms. Yoo et al. (2014) reported inhibition in neural
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activity of Sprague Dawley hippocampal tissue slices when stimulated with gold nanorods and a

785 nm near IR laser. The laser pulse durations were from couple of seconds to a few minutes.

In addition, (Yoo et al., 2016) reported an opto-electrical platform made up of a microelectrode

array for neural inhibition. The microelectrode arrays were integrated with Au nanorodes and pri-

mary hippocampal neurons were cultured on the integrated design. The inhibition was recorded

in response to a 785 nm infrared laser having a duration of a few minutes. In present report, we

observed a similar inhibition of neural activity in our plasmonic stimulation experiments for 300

ms laser pulses. Similar, inhibition was observed from spontaneously beating neonatal cardiomy-

ocytes when our nanoelectrode was illuminated with 10 s green laser pulses, figure 3.33.

4.2.1 Biological Mechanism

Interestingly, previous reports suggest that inhibition due to thermal pulses is driven by potas-

sium channel currents (Yoo et al., 2014, 2016). Yoo et al. (2014) reported the inhibition of hip-

pocampal neurons in response to illumination of gold nanorods with 785 nm near infrared laser.

The inhibition was attributed to the involvement of a thermo-sensitive potassium channel, TREK-

1, i.e., photothermal inhibition. When stimulation was carried out with fluoxetine - a TREK-1

blocker, no suppression in neural activity was observed. Rabbitt et al. (2016) demonstrated inhibi-

tion in the presence of infrared stimulation with type II vestibular hair cells ex vivo from mice, and

afferent neurons in-vivo from chinchillas. They attributed the excitatory responses to the transient

membrane capacitance changes and inhibitory responses were thought to be governed by large

conductance Ca2+ activated potassium channels, so called BK channels. The application of 100

nM iberiotoxin (IBTX)- a selective blocker of BK channels, eliminated the inhibitory response.

This evidence suggests that inhibition could be mediated by heat-sensitive potassium channels like

TREK-1 and/or BK. Relevant to the current project, SH-SY5Y cell lines express both TREK-1

(Tong et al., 2013) and BK channels (Curci et al., 2014; Park et al., 2010).
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One more possible mechanism is the occurrence nanopore formations in the cell membrane,

which facilitate the exchange of ions and probably, activates the voltage-gated ion channels as

shown by Beier and colleagues (Beier et al., 2014; Olsovsky et al., 2015; Roth et al., 2016; Walsh

et al., 2016). Beier et al. (2014) have shown the presence of intracellular responses, such as in-

flux of Ca2+ ions due to activation of intracellular pathways, for cells when they were exposed

to milliseconds durations of infrared laser pulses. They attributed this influx to nanometer pore

formations in the cell membrane. Fluorescent markers were used to study the cell response to IR

stimulation. Further studies need to be done to investigate the role of heat-sensitive cell membrane

channels in for mechanisms involved in plasmonic neural stimulation.

4.3 Comparison with Other Light Stimulations Methods

Nanomaterial assisted neural stimulation, infrared (Izzo et al., 2006, 2007b; Shapiro et al.,

2012; Wells et al., 2005) and optogenetics (Ayling et al., 2009; Boyden et al., 2005; Darrow et al.,

2015; Hira et al., 2009; Huff et al., 2013; Shimano et al., 2013), are newer emerging bio-stimulation

technologies.

4.3.1 Infrared Stimulation

Infrared stimulation showed potential in stimulation some neural systems both in vitro and in

vivo. For instance, Wells et al. (2005) stimulated rat sciatic nerve in-vivo using a tunable laser

having wavelength 2 to 10 µm. The compound nerve action potential (CNAP) and compound

muscle action potential were recorded. Cayce et al. (2010) demonstrated the feasibility of IR

stimulation in central nervous system (CNS) stimulation. Action potentials were recorded form

rat thalamocortical brain slices in response to 2.5 µm to 10 µm IR laser. Similarly, Shapiro et al.

(2012) stimulated oocytes and HEK cells using IR lasers (1.869 µm for HEK cells and 1.889 µm for

oocytes) in vitro. The major disadvantage with infrared stimulation is that, along with the neurons,
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the infrared laser heats up the surrounding tissue as well, which can cause thermal damage and/or

unwanted stimulation. As we are using visible light, and due to the localized nature of plasmonic

heating in the novel approach of the present investigation, our method would, potentially, overcome

these limitations.

4.3.2 Optogenetics

Optogenetics is another light based techniques used to precise control neural excitation and

inhibition. For example, Boyden et al. (2005) expressed algae protein Channelrhodopsin-2 (ChR-

2) into hippocampal neurons from postnatal day 0 Sprague Dawley rats. When ChR-2 expressed

neurons were illuminated with blue light, depolarization currents were observed. ChR2 can ge-

netically target single neurons and this neural activity can be studied. Darrow et al. (2015) used

ChR-2 to stimulate the auditory system. ChR-2 channels were expressed in the cochlear nucleus

via viral-mediated gene transfer methodologies. The responses recorded from the auditory mid-

brain - inferior colliculus, when the cochlear nucleus was stimulated with 473 nm pulses (blue

laser). The optogenetic technique has the added complexity of requiring genetic manipulation of

the target cell population, allowing the cellular machinery to produce light-sensitive ion channels,

such as ChR-2. It would be a challenge to achieve clinical transnational prosthetic device stim-

ulation using optogenetics. With our nanoelectrode and visible light, there is no need of genetic

modification to achieve neural modulation.
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5 FUTURE RECOMMENDATIONS

The developed nanoelectrode, when illuminated with visible light, can stimulate as well in-

hibit neural signaling. Given these breakthrough results, the future work should focus towards the

development of nanomaterials and light-based technologies which could be deployed in various

translational modes, such as cochlear implants. One of our proposed designs involves a neural

cuff placed around the auditory nerve which will have the nanomaterial coated micro-beads along

with the light source Figure 5.1. The substrate or cuff has the potential for carrying several hun-

dred electrodes as compared to a maximum of up to 22 electrodes found in many current cochlear

implants (Wilson and Dorman, 2008). The goal would be that the new laser stimulation device

would stimulate much more discrete groups of ANFs. More specifically, upcoming work can be

divided into two parts - understanding plasmonic stimulation with in vitro experiments and in vivo

applications using animal models with a special focus on cochlear implants.

Figure 5.1: Plasmonic based cochlear implant conceptual design, in which nanoelectrodes can be
used for stimulation of frequency specific auditory nerve fibers.
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5.1 In-vitro Experiments

The primary focus of in vitro work should be to develop a robust plasmonic stimulation sys-

tem for electrically excitable biological cells by understanding the biological mechanisms both

qualitatively and quantitatively, and establishing nanomaterial/laser parameters for neural stim-

ulation responses. It can be further subdivided into two parts - experiments and mathematical

modeling. The different size nanoparticles can be used to develop the nanoelectrodes which stim-

ulate primary neurons, peripheral nerves and cardiomyocytes. This will allow us to optimize the

nanoparticle and laser parameters for more controlled and precise plasmonic stimulation. Along

with lab experiments, mathematical models can also be used to unravel the physical mechanisms

crucial plasmonic neural stimulation. The electrical and thermal fields generated upon visible light

interactions with the Au NPs at the nanoelectrode tip upon laser pulsing will be calculated using

techniques like finite difference time domain (FDTD) simulations. The obtained results can be

adapted for standard Hodgkin-Huxley electrophysiological models to predict the cellular electrical

response properties. Along with continuum approach, it will be worthwhile to explore models at

molecular levels using techniques like molecular dynamic simulations.

5.2 In vivo Applications

Following optimization of NP and laser characteristics, this aim will test the hypothesis that

the novel laser/electrode systems can effectively stimulate in vivo. To test the initial viability of

plasmonic stimulation in vivo, rat sciatic nerve can be stimulated using the optimized NP platform

while recording the compound action potential. The sciatic nerve excitation can serve as an initial

proof-of-concept for further in vivo studies. Subsequently, plasmonic stimulation could be used to

stimulate cochlear neurons in mice while recording responses from the brain; to pave the way for

novel sensory implant designs. Plasmonic stimulation experiments with deaf animal models will

pave the way for development of plasmonic stimulation-based cochlear implants for deaf people.
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6 OUTLOOK

Nanoparticle-assisted neural modulation is still in its early research stages. Most studies are

focused on in vitro proof-of-concept (Carvalho-de Souza et al., 2015; Eom et al., 2014; Farah et al.,

2013; Li et al., 2015; Pappas et al., 2007; Yong et al., 2014; Yoo et al., 2014; Zhao et al., 2009),

with very few successful in vivo experiments being reported, especially for neural excitation (Chen

et al., 2015; Li et al., 2015). Most studies have one common feature in their methodologies, i.e.,

the modification of nano-neural interfaces to achieve the stimulation. The major drawback with al-

teration of nano-neural surfaces is that in vivo translation raises issues regarding unwanted toxicity,

repeatability and bio-compatibility. For example, excessive heating by infrared lasers can damage

healthy tissues and produce unwanted excitation or inhibition. Our method of using nanoelectrodes

(micro-substrates coated with nanomaterials) which provide a physical buffer between the particles

and neural tissue, and optical fibers for delivering visible laser light locally holds much promise

for addressing many of these problems. With a nanoelectrode or similar probe, there is no need

to attach nanoparticles to the neurons. In addition, as reported here, nanoelectrodes can be eas-

ily tested using various methods like light-induced photocurrents (few 100s of nA), fluorescence

quenching (emission spectra around 520 nm) and plasmonic temperature jumps (pipette resistance

method and infrared thermograms).

Our future studies will be focused on developing more robust plasmonic stimulation systems

by better understanding the biological mechanisms involved, and teasing apart the interactions

of nanomaterial/laser parameters for controlling neural and cardiac stimulation responses. We will

also explore the in vivo applications of plasmonic stimulation with an eye towards the development,

initially, of plasmonic-based cochlear implants for deaf people. Also, unlike electrical stimulation,

plasmonic stimulation does not require any wire connection between nanomaterials and the energy
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source (light, magnetic fields, and radio waves), so, it embodies a wireless method for neural and

cardiac stimulation. Another, more direct method would be adaptation of the currently used electri-

cal stimulation cochlear electrode array with optical fibers replacing the electrical electrodes. In a

novel modification of the design, one could structure the electrode to locate polymer-electrode ma-

terial coated Au NPs very close to the basilar membrane, affording extremely specific stimulation,

without thermal damage by the visible light utilized.

6.1 Summary and Conclusions

This project served as initial, in vitro proof-of-concept that wireless nanoelectrodes in combina-

tion with visible light can be used instead of electrical electrodes or IR lasers, for precise temporal

modulation of neural and cardiac cellular responses. Based on these initial breakthrough results,

we visualize that future biomedical implants based on SPR phenomena using nanoelectrodes and

light will give superior spatial resolution and more clinically useful focal stimulation. Implantable

electrodes such as cochlear implant electrode arrays, which use polymeric materials can be de-

signed using the fundamental results demonstrated in the dissertation. Overall, the present report

provides fundamental new evidence to support the pursuit of plasmonic stimulation as an alter-

native approach to conventional electrical neuromodulation, or other emerging modalities, such

as IR stimulation in biomedical stimulation devices. Because the novel technology of the current

investigation has capabilities to elicit both inhibitory and excitatory responses, utilizing different

stimulation parameters, this type of plasmonic stimulation system can be a promising alternative

for electrical stimulation paradigms in biological prosthetic implants. As emphasized above, the

major disadvantage with IR stimulation is that, along with the target neurons, the IR laser heats

up the surrounding tissue as well, which can cause thermal damage and/or unwanted excessive

stimulation. By combining visible light, which is minimally absorbed by surrounding tissue and

aqueous solutions, with an engineered nanomaterial, we have the potential to achieve a unique,

highly localized delivery of energy to the target cells to manipulate their bioelectrical behavior.
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