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ABSTRACT

Low grade heat sources have a large amount of thermal energy content. Due to low
temperature, the conventional power generation technologies result in lower efficiency and hence
cannot be used. In order to efficiently generate power, alternate methods need to be used. In this
study, a supercritical organic Rankine cycle was used for heat source temperatures varying from
125°C to 200°C. Organic refrigerants with zero ozone depletion potential and their mixtures
were selected as working fluid for this study while the cooling water temperature was changed
from 10-25°C. Operating pressure of the cycle has been optimized for each fluid at every heat
source temperature to obtain the highest thermal efficiency. Energy and exergy efficiencies of
the thermodynamic cycle have been obtained as a function of heat source temperature.

Efficiency of a thermodynamic cycle depends significantly on the sink temperature. At
areas where water cooling is not available and ambient air temperature is high, efficient power
generation from low grade heat sources may be a challenge. Use of passive cooling systems
coupled with the condenser was studied, so that lower sink temperatures could be obtained.
Underground tunnels, buried at a depth of few meters, were used as earth-air-heat-exchanger
(EAHE) through which hot ambient air was passed. It was observed that the air temperature
could be lowered by 5-10°C in the EAHE. Vertical pipes were used to lower the temperature of
water by 5°C by passing it underground. Nocturnal cooling of stored water has been studied that
can be used to cool the working fluid in the thermodynamic cycle. It was observed that the water
temperature can be lowered by 10-20°C during the night when it is allowed to cool. The amount
of water lost was calculated and was found to be approximately 0.1% over 10 days.

viii



The different passive cooling systems were studied separately and their effects on the
efficiency of the thermodynamic cycle were investigated. They were then combined into a novel
condenser design that uses passive cooling technology to cool the working fluid that was selected
in the first part of the study. It was observed that the efficiency of the cycle improved by 2-2.5%

when passive cooling system was used.



CHAPTER 1: INTRODUCTION

Traditional methods of power generation generally require non-renewable sources of
energy, such as coal, petroleum and natural gas; that are used to generate high temperatures in
the power plants. The limited stock and environmental problems related to the fossil fuels have
made it necessary to explore alternate sources of energy. There are several low to medium
temperature heat sources, such as solar thermal, geothermal and waste heat, that are abundantly
available and the amount of energy contained in those sources is high enough to fulfill all the
energy requirements of the world [1]. However, the conventional power generation methods,
such as a steam Rankine Cycle, result in very low efficiencies for these sources. As the
efficiency of power conversion depends largely on source and sink temperatures; and the source
temperature is low, other factors such as alternative configuration for the power cycle,
appropriate working fluid, optimum operating pressure and lower sink temperature, need to be
considered to obtain a viable method of power generation. A number of studies have analyzed
the effects of aforementioned parameters separately. The objective of this study is to holistically
combine different technologies to develop a novel design that can provide a comprehensive
solution to the low temperature power generation.

Several configurations of thermodynamic cycles have been proposed to improve the
efficiency of power generation when the heat source temperature is low, that include organic
Rankine cycle (ORC), Kalina cycle, Goswami cycle, trilateral flash cycle and the supercritical
Rankine cycle (SRC) [2-10]. These cycles have been studied with different working fluids that

have the potential of giving high efficiency. Organic Rankine cycles (ORC) have performed
1



better compared to other thermodynamic cycles that convert low grade heat into power because
of the simplicity in design and being more cost effective [7]. They use an organic fluid instead of
steam to generate electricity from low temperature heat sources. They have been used as a
bottoming cycle for a combined cycle power plant. It has been observed that the improvement in
efficiency and the amount of power generated is generally sufficient to offset the cost of

additional equipment needed.

Supercritical Rankine cycle

== === Organic Rankine cycle

Temperature

Figure 1. A supercritical Rankine cycle on a T-S diagram.

Conventional ORCs work under subcritical conditions and generally use pure working
fluids. Since a pure fluid boils at a constant temperature (Figure 1), it results in a mismatch with
the temperature profile of the heat source [8]. This mismatch results in higher losses in the heat
exchange process, which can be reduced by the use of a supercritical Rankine cycle (SRC) [8]. In
a SRC, shown in Figure 1, the working fluid is pressurized beyond its critical pressure and then it
is heated isobarically directly to vapor phase. The superheated vapor then expands in the turbine

where mechanical work is extracted. The turbine exhaust is then cooled to the liquid state in a



condenser and the condensed fluid is pumped back to the high pressure. A number of
hydrocarbons and refrigerants have been studied as potential working fluids to be used in SRCs
[8, 11-15]. It has been observed that these fluids give better efficiency in supercritical Rankine
cycles than the conventional ORC [8, 12, 16-21].

The performance of a working fluid and the output of a power cycle are limited by
different constraints that need to be considered while modelling the system for low temperature
applications. The temperatures of geothermal, low concentration solar thermal and waste heat
sources generally vary from less than 100 to over 200 °C [22]. There are also other limitations on
the source side which restrict the heat exchanger/boiler performance and need to be accounted
for while modeling the power block. For a geothermal source, the temperature of the geothermal
fluid in a power plant, in general, cannot be lowered much below 80 °C to avoid precipitation of
minerals and their deposition on the walls of the pipes. In the case of solar thermal plants, the
temperature of some heat transfer fluids, such as a synthetic or mineral oil, cannot be lowered
below 30-40 °C before it enters the collector field. The limitations on the sink side, which are
posed by the ambient conditions, affect the cycle efficiency significantly. A lower value of sink
temperature improves the overall efficiency, which may be difficult to achieve due to economic,
environmental or social concerns. Water cooled condensers usually give lower sink temperatures
but at many places, they cannot be used due to non-availability of water and environmental
impacts. In those conditions, air cooled condensers remain the only acceptable choice. The air
cooled condensers usually result in lower thermal efficiency associated with the added parasitic
power losses and higher sink temperatures. Dry cooling using ambient air increases the sink
temperature by 20-25°C and the reduction in thermal efficiency for a low temperature power

generation system can be as high as 25%. Passive cooling methods such as a ground coupled



heat exchanger or night time radiative cooling lower the sink temperature and hence increase the
overall efficiency of the power plant.

Use of earth as a heat sink can improve the performance by increasing the efficiency and
lowering the fluctuations caused by the variation in the ambient air temperature. Although the
ambient temperatures vary over the year by a large amount, the underground temperatures vary
within a narrow range throughout the year. It has been observed that the temperature at a depth
of few meters remains nearly constant at the average annual ambient temperature [23, 24]. Earth-
to-air heat exchangers operate on the consistency of temperature below the surface of the earth to
heat or cool the ambient air. Buried pipes are used through which air is circulated and the
difference in temperatures is utilized for heating or cooling the air. This method has been used
extensively for air-conditioning of buildings and greenhouses [24-36]. Another possible
environmental heat sink is outer space to which heat can be rejected by radiation at night time.
Since the sky temperature is much lower than the ambient air temperature, a surface exposed to
the night sky can be cooled to a much lower temperature. However, the same surface needs to be
protected from being heated during the day due to the incoming solar radiation. So, nocturnal
cooling systems are generally equipped with an insulated cover that prevents daytime heating.
This concept has also been used for air-conditioning of buildings in the form of roof-ponds [37-
47]. All of these systems can be combined with the condenser of a power cycle that can use the
air or water coming from a passive cooling system to cool the working fluid in the condenser.
The cooling system of a power plant accounts for a major portion of the capital investment.
Figure 2 shows the distribution of cost per kW power produced for Magnamax binary power
plant located at Imperial Valley, California [48]. In order to have shorter payback period for such

investment, it becomes necessary to employ more efficient condensers.
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Figure 2. Cost distribution of a geothermal power plant.

In the current study, the effects of using organic refrigerants in a SRC and passive
cooling in the condenser have been investigated for low temperature power generation. The
power block and the ground coupled heat exchanger were first studied separately and then
combined to get the complete system performance. In order to maximize the efficiency of a SRC
operating in the low temperature range, a number of environmentally safe organic refrigerants
were selected on the basis of their critical points to study the feasibility of their use as working
fluids. The optimum pressure ratios for the selected fluids were obtained by investigating a wide
range of pressure ratios for each source temperature. The system was then further analyzed for
the working fluid giving the highest energy and exergy efficiencies. An earth-air-heat-exchanger
(EAHE) was modeled and the results were used in the condenser of the SRC. Seasonal variation
and its effect on the EAHE and eventually on the SRC efficiency were analyzed for the year

round performance of the power generation system.



CHAPTER 2: RESEARCH BACKGROUND

2.1 Supercritical Rankine Cycle

Supercritical Rankine cycle works on the same principle as an organic Rankine cycle but
its operating pressure is higher than the critical pressure of the working fluid. Figure 3 shows a T-
S diagram of a Supercritical Organic Rankine Cycle along with the temperature profile of a hot
brine heat source. Since the fluid is in supercritical state during the heating process, it does not
enter the two-phase region, while the sensible heat source transfers its heat to the working fluid.
For a supercritical cycle, the energy loss is smaller than a conventional Rankine cycle because

the thermal match between the heat source and the working fluid is better.
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Figure 3. T-S diagram of a supercritical cycle with the temperature profile of the hot brine.



Figure 4 shows the T-S diagram for R-32 at various pressures. It can be seen that the
temperature evolution during the heating process tends towards a straight line when the operating
pressures are farther from the critical pressures. The same is true for other fluids as well. So, a
higher operating pressure is preferable for a higher thermal efficiency of the heat exchange
process. However, at high pressures, the required pump work will increase, and, more
importantly, the material requirements would become more severe, thus increasing the cost. So
an optimum operating pressure needs to be obtained for the highest overall efficiency and power
output of the supercritical cycle.
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Figure 4. T-S diagram for R-32 at different pressures.

The choice of a working fluid depends on its physical and chemical properties as well as
its environmental and economic aspects. Carbon dioxide is one such choice, being abundant,
non-toxic, non-flammable and inexpensive. Zhang et al. [49-52] showed that the efficiency of a
carbon dioxide based cycle is usually around 8-11% when the hot source temperature is close to

185°C and the cooling water temperature is between 7 and 10°C. Chen et al.[12] compared the



efficiency of a R-32 based ORC with a CO,-based cycle under similar source and sink conditions
and concluded that a R-32 based cycle gives higher efficiency than a CO, based cycle and
operates at lower pressures. Also, the exergy efficiency and exergy density for a R-32 based
cycle were found to be higher than a CO, based cycle. Bliem and Mines et al. [53-65] conducted
a series of experiments to study the performance of a supercritical Rankine cycle for binary
geothermal plants using propane-isopentane and isobutene-hexane family of hydrocarbons. They
studied the performance of different equipment used in the experiments and the variation of heat
transfer properties, when the heat source temperature was between 154 °C and 163 °C. Heberle
et al. analyzed four working fluids for combined heat and power generation from geothermal
sources and studied the effect of series and parallel circuits of ORC and heat production [66].
Guo et al. [67-69] studied combined power and heat generation systems for geothermal sources
with temperatures less than 100°C. They considered a list of dry, wet and isentropic fluids and
analysed them separately. Augustine et al. compared sub and supercritical binary Rankine cycles
for 100 to 200°C geothermal source temperatures [21]. Air cooled condenser was considered in
the modelling and most suitable working fluids along with the influence of parasitic losses in
different conditions of cycle operation were reported. Lakew et al.[70] did parametric analysis
for finding the working fluid that needs smallest equipment sizes but gives high power output. It
was found that no fluid considered in the analysis required both smaller heat exchanger area and
turbine size.

Mixtures of organic refrigerants have also been studied as potential working fluids [13,
16, 71-77]. Differences in boiling points and critical properties of the constituent fluids result in
non-isothermal heating and condensation of the mixture in a thermodynamic cycle, which can

reduce the exergy destruction in the heat exchanger. Chen et al.[16] have compared the



performance of zeotropic mixtures in a SRC with that of pure fluids in an ORC and found the

performance of mixtures in the SRC better.

2.2 Passive Cooling

Passive cooling systems utilize natural means to produce cooling that may be used for
various applications. Environmental heat sinks, i.e., ground, air or sky, are used to release heat
from the system that needs to be cooled. Passive cooling methods have the potential to lower the
sink temperature and hence increase the efficiency of power generation unit. Earth may be used
as a heat sink to cool the ambient air or cooling water, which can then be used in the condenser
to cool the working fluid. While using air as a coolant, the fluctuations caused by the variation in
the ambient temperature can be reduced since the temperature at a depth of a few meters (~4 m)
varies in a small range around the annual ambient temperature [23, 24, 78, 79]. Ground coupled
heat exchangers, where coolant is circulated through buried pipes; operate on this consistency of
temperature below the surface of the earth to cool the ambient air or water. This method has been

used for air-conditioning of buildings and greenhouses [24-36, 80-88].

2.2.1 Earth-Air-Heat-Exchanger

Temperature of the soil under the surface of the Earth does not vary as much as the
ambient air temperature and after certain depth, the temperature remains nearly constant
throughout the year. The high thermal inertia of soil reduces the temperature variation and causes
a lag between underground and ambient temperatures. This temperature difference can be
utilized to cool the ambient air in summer and heat it in winter by passing it underground. Figure
5 shows a schematic diagram of an earth-air heat exchanger system. Ambient air is blown
through the tunnels buried inside the ground using a fan (or a blower). As it flows through the
tunnel, the air exchanges heat with the soil. In summer when the ground temperature is lower
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than the ambient, heat is rejected into the ground. However, in the winter season, the ambient air
temperature may be lower than the soil temperature. In this case, the air absorbs heat from the
soil and the heated air is supplied to the air-conditioned space. This method can be used for
lowering the temperature of the ambient air which is then used in the condenser of the power
cycle. A closed loop system with water instead of air may be used at locations that are either far
from a water body or use of water for condenser is prohibited for environmental or other social

reasons.

Air Inlet Air Qutlet

Figure 5. Schematic diagram of an earth-air heat exchanger.

Earth-air heat exchangers (EAHE) have been used for cooling of greenhouses and air-
conditioning of buildings in many parts of the world [24, 27, 31, 35, 36, 89-96]. Goswami et al.
compared the experimental observations [97] with the results obtained from a mathematical
model for fixed mass flow rate and then used the mathematical model to determine the
performance of different flow rates [98, 99]. lleslamlou and Goswami analyzed an EAHE for a
period of 90 days, in which the system was turned on for 16.5 hours in a day and then turned off

for 7.5 hours [100, 101]. During the time it was on, the soil temperature increased with time,
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although the increase was small, and then came down when the system was not operating. They
noticed that the temperature after cool down was slightly higher than the initial temperature.
Bansal and Sodha studied a system that was installed to meet the summer cooling requirements
of a hospital situated near Delhi, India [27, 31]. It was observed that in summer, the dry bulb
temperature could be lowered by as much as 15 °C in the EAHE. While in winter, 3-4 °C
temperature rise was obtained. Mihalakakou studied the effect of various parameters, such as
depth, length and diameter of pipes and effect of ground cover, on the performance of the EAHE
[24, 32, 34, 102-108]. Trombe et al. [25, 109] conducted experiments on three identical systems
coupled with each other. It was also observed that the decrease in air temperature was very rapid
in the initial portion of the duct because the difference in the soil and air temperatures is the
highest in the beginning and decreases later on. Eicker demonstrated the performance of the
passive energy office building in Germany where different designs of ground cooling were
examined and compared [110-112]. It was observed that the EAHE operated at a high coefficient
of performance, of about 30, but it could only satisfy about 20% of the cooling load of the
building. Ghosal et al. studied the effect of an EAHE on greenhouse temperature during the
whole year for both summer cooling and winter heating [30, 113, 114]. It was observed that
using an EAHE resulted in 7-8 °C higher temperature in winter and 5-6 °C lower temperature in
summer compared to when EAHE was not in operation. Goswami [115] investigated the
feasibility of using ground cooling in a Rankine cycle, when the soil temperature was 18 °C and
the air temperature was 41 °C. It was observed that during the day, the performance of the plant
with ground cooling was better than the air cooled solar thermal power plant.

Several parameters affect the performance of an earth-air heat exchanger, including but

not limited to, the environmental factors, system design, location etc. Some of these parameters,
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like location, seasonal and daily variation, solar radiation, soil temperature and properties,
weather etc. cannot be controlled but affect the system performance significantly. For example, if
the system is set up at a location that is close to a water body, its performance will be very
different from the same setup located in a dry land area. A place with large temperature
difference between summer and winter will have different results with EAHE than a place with
near constant temperature all year round. Similarly different types of soil result in different
thermo-physical properties and hence different performances of the EAHE. Since these factors
have very large impact on the system performance but cannot be controlled, the design
parameters are optimized according to the need. Pipe geometry, depth, mass flow rate, material
use etc. are some parameters that are considered while designing a system to be used for a
specific location. By appropriately designing a system, the climatic conditions can be used to
their full advantage. This section describes these design parameters and their effects on the
EAHE performance.

e Depth: As the lag between the ambient and underground temperature increases with
depth, the performance of the EAHE system also improved by increasing the depth.
However, it was generally observed that the performance improvement was negligible
beyond a depth of 4 m [24, 31, 34, 35, 78, 90, 116].

e Length: Different pipe lengths have been used for various experimental projects as well
as theoretical analyses [23, 24, 34, 35, 90, 117-120]. Longer pipes result in better thermal
performance because the total heat transferred to or from the soil increases. However, the
heat transfer rate becomes negligible as the air temperature inside the pipe gets closer to
the soil temperature and further pipe length doesn’t contribute towards lowering the air

temperature.

12



Pipe radius: Parametric analysis has been done by a number of researchers to study the
effect of pipe radius. Pipe radius directly affects the convective heat transfer coefficient.
Smaller pipe radius results in higher heat transfer coefficient and hence lower thermal
resistance between air and soil [24, 34, 35, 118, 121, 122] . So, using a smaller pipe
diameter should give lower outlet temperature in cooling mode and higher outlet
temperature in heating mode. However, some researchers have observed an interesting
trend where the outlet temperature first reduces with increasing radius and then increases.
The point where the reversal starts is referred to as “critical radius” [116, 118, 120]. The
reason for such trend is the combined effect of reducing heat transfer coefficient and
increasing heat transfer area with increasing radius. Kumar et al. [118, 120] observed in
their analysis that when the radius of the underground pipe was increased from 0.41 m to
0.52 m, the outlet temperature (in cooling mode) reduced. This suggested that the
increase in surface area of the pipe dominated over the reduction of heat transfer
coefficient. However, further increase in the pipe radius (0.58 and 0.70 m) resulted in
higher outlet temperature, implying that the increase in surface area was not enough to
overcome the effects of reducing heat transfer coefficient.

Flow rate: Increase in flow velocity and hence the mass flow rate results in higher outlet
temperature in cooling mode and lower outlet temperature in heating mode [24, 25, 34,
90, 98, 99, 109, 117, 118, 120]. Hence, lower flow rate is generally considered a
favorable situation but the overall effects may not be the optimum. Bansal et al. studied
the effect of flow velocity (2.0, 3.2, 4.0 and 5.0 m/s) for both heating and cooling mode
and compared the results obtained in simulations with the experimental values [28, 29].

As the flow velocity was increased from 2.0 m/s to 5.0 m/s, the total time spent by the air
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underground was reduced by 2.5 times, which dominated over the improvement in the
heat transfer coefficient that increased by 2.3 times. They also noticed that even though
the change in temperature was smaller at higher velocities, the heating or cooling effect
per unit time was much more. So, an optimum flow rate may need to be obtained
depending on the application.

Ground cover and soil type: Different ground covers, like bare soil, grass-covered soil,
sand-covered soil, high moisture soil etc., result in different underground temperatures
and thermal properties [90, 106, 107, 123, 124]. Soil with higher moisture content results
in better performance because its thermal conductivity is increased, leading to improved
heat transfer between the soil and the underground pipes. Goswami et al. showed the
variation of thermal conductivity with time and moisture content and proved its effect on
the performance of the EAHE [99-101]. It was observed that as the soil around the pipe
got heated by the passing air, the moisture dissipated from the pipe vicinity and the
thermal conductivity of the soil was lowered from the initial value of 1.1 W/m-K to less
than 0.8 W/m-K. However, when the system was turned off for 3 hours, the moisture
content was restored and the thermal conductivity increased to 0.9 W/m-K.

Pipe material and thickness: Thermal conductivity of the pipe material adds to the
thermal resistance in the heat transfer. However, since the thickness of the pipe is
generally only a few millimeters, different materials do not induce much difference in
thermal performance [28, 29, 90, 122].

Time: For analyzing the performance of EAHE, earth is usually considered as an infinite
source/sink. So, the underground temperature is assumed constant and it is a valid

assumption for short duration use. Even if the underground temperature is affected by the
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EAHE system, the change is generally negligible However, continued use for a long
period of time results in discharge/extraction of a large amount of heat to/from the earth.
This results in the change of temperature in the region surrounding the underground tube.
Ileslamlou and Goswami analyzed an EAHE for a period of 90 days, in which the system
was turned on for 16.5 hours in a day and then turned off for 7.5 hours [100, 101]. During
the time it was on, the soil temperature increased with time, although the increase was
small, and then came down when the system was not operating. They noticed that the
temperature after cool down was slightly higher than the initial temperature. The same
behavior continued for the entire period of time, resulting in an overall increase of the

outlet temperature by 2 °C [100, 101].

2.2.1.1 Configurations

Different designs have been proposed and practiced all over the world depending upon
the application requirements, ease of establishment, economic considerations, heat exchanger
studies and experiments. The most common design is a single pipe heat exchanger buried at a
fixed depth [27, 30, 31, 34, 100, 101, 104, 125, 126]. However, a number of researchers have
studied multiple pipe systems as well [35, 126]. Figure 6 (a) and (b) show the schematic of such
a system where multiple pipes buried underground are connected in series and parallel,
respectively. The series configuration is generally used when the fluid needs to be cooled to a
lower temperature while the parallel configuration is preferred when the heat load is higher.
While modeling a multiple pipe system, an additional term for the thermal resistance caused by
the mutual interactions of the pipes must be considered. This term is halved for the pipes that are

on the sides.
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Hamada et al. performed experiments on a modified design for underground heat
exchanger that could be installed without digging and was more economic [127]. Figure 7 shows
the installation process for the new design using no-dig method. They observed that using this
system, energy consumption during installation was decreased by 78% while the annual primary
energy consumption was reduced by 29% over the vertical underground system. The payback
period also reduced to less than one year compared for both energy and carbon emission, which

were 4.6 and 6.9 years respectively for the conventional system.
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Figure 7. Installation process using no-dig method. [127] (Copyright permission in Appendix B).

2.2.1.2 Models

A number of analytical and numerical models have been successfully applied to analyse
the earth-air-heat-exchanger systems. The analytical models are generally based on solving the
differential equations for heat transfer and energy balance with some simplifying assumptions,
while the numerical solutions use the discretization of the heat transfer elements for one, two or

three dimensional analysis. Neural network and genetic algorithm techniques have also been
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used for predicting the outlet air temperature by extensive training of the model using the
experimentally obtained data [119, 128, 129]. The relevant features and involved equations (for
analytical models) of these models are summarized in Table 1, along with the location of
experimental study.

Table 1. Models used for EAHE analysis.

Reference Model details Location

1-D heat transfer in soil when air temperature is

sinusoidal in time. Ahmedabad, India

t—t}
Tair(t) = Tgir,qv + AT, cos <2n( a)) [131], Greensboro,

to
NC [99], Athens,

Cucumo [130]

T(x, t) = Tair,av +

AT e~ *Vm/tox ) t—t}
J1+2B+242 cos n( )_

0

rtOa Greece [132]

1
¢ = o)

2-D Pseudo-analytical iterative solution. Pipe was

divided into several elements and output from first was

Goswami et al. . . Greensboro, NC,
considered as input to second and so on.
[98-101] Gainesville, FL
[(1-U/2)Ty 1 +UTs] unsaturated
1+U/2
Tn

= [(1—U/2)Tn_1+wﬂfg+mS
b saturated

1+U/2

Parametric model to determine overall heat transfer

coefficient, U using on pipe length, radius, velocity and

Mihalakakou | depth. Athens, G
thens, Greece

[105] U=ay+a,(L) +ay(L)? + as(L)3
The coefficients of this polynomial were determined

using empirical relations.
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Table 1. (continued)

Trombe [25]

1-D heat transfer analysis on several pipe elements.

x
T(x) = Tsou + (To — Tsoi1) €XP <—m>
1 Ax

R, = —+—
=2t ea

Toulouse, France

Gauthier [133]

3-D numerical model. The region was divided into small
control volumes and finite difference scheme was used

to solve heat transfer equation over each.

Quebec, Canada

Kumar [119]

2-D model using Neural Networks.

Mathura, India

Kumar [129]

2-D model using Genetic Algorithms.

Mathura, India

Vaz [95, 96]

Numerical solution based on finite volume method

using ANSYS FLUENT.

Viamao-RS, Brazil

Liu [134]

3-D numerical model in cylindrical coordinates. Pipe

was divided into elemental discs (Figure 8).

Az hA
Toirj+1 = Toirj — . (T&w; — TY)
p,air

Chongging, China

Hollmuller

[135, 136]

2-D numerical model. Pipe was divided into several
elements and energy balance was performed on each
element iteratively.

eriction - Ah(Ti—l - Ttube)
(Cp,air + Cp,vapWair)pairVair

Ti = Ti—l +

Ah(VVi—l - Wtube)

W, = W'_1 - :
l l Cp.airPairVairAt

Switzerland
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Figure 8. Radial cross-sections of pipe and surrounding soil. [134] (Copyright permission in
Appendix B).

2.2.2 Ground Coupled Water Cooling

Another mode of utilizing earth as a heat sink is to pass water through underground pipes
which rejects heat to the surrounding soil and colder water is obtained at the outlet. The ground
coupled water cooling system works on the same principle as an EAHE; and uses the difference
in temperature of the underground soil and warmer water coming out of an air-conditioning
system [82, 88, 137-149]. Figure 9 shows the schematic of a ground coupled heat exchanger
where water enters from one end of a U-tube and comes out of the other after exchanging heat
with the soil. This system has generally been used for air-conditioning applications and pre-
heating of domestic hot water. These systems have been proven to save annual energy and

operating cost of air-conditioning, but are still not very widely used due to high initial investment
[81, 82, 141, 142].
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Figure 9. Schematic of a ground coupled water cooling system.

2.2.2.1 Configurations

Different configurations have been proposed for the GCHPs. The underground pipes can
be placed in horizontal trenches or vertical boreholes [81, 82, 86, 141]. Figure 9 shows the
vertical boreholes while Figure 10 shows examples of horizontal configurations that have been
studied in the recent years. The horizontal trenches are installed generally when sufficient land
area is available for digging [82, 85, 88]. If the area is limited or landscape disruption needs to be
avoided, vertical boreholes are preferred. In the recent years, "slinky" shapes ground heat
exchangers have also been studied (Figure 11) that allow more pipes in a smaller area, but
prevent the natural recharge of the soil temperature to the accumulation of larger quantity of heat

in a smaller area [88, 150-152].
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Figure 10. Horizontal ground heat exchanger. (a) Single pipe per trench (b) Two pipes
(over/under) (c) Two pipes (side by side) (d) Four pipes per trench. [82] (Copyright information
in Appendix B).

Figure 11. Slinky coil ground heat exchanger. [150] (Copyright information in Appendix B).
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2.2.2.2 Models

The models proposed for analyzing the ground source heat exchangers generally require
the calculation of overall heat transfer coefficient and thermal resistance [143, 153-156]. Since
the depths of the boreholes are very large, the soil temperature is assumed constant at the average
annual temperature [81, 141, 143, 153, 154, 157, 158]. Table 2 shows the details of the different
models that have been used and verified for the study of GCHP.

Table 2. Ground source water cooling models.

Reference Model description Location
Thermal resistances between fluid and soil (Ry), and that
between two pipes (Ri. and Ry3) were calculated separately
(Figure 12).
Zeng 2 2
1 1 kp — k s —D
R11=—[ln<_b>_ b ln<b 2 ) +Rp N/A
[157] 21k, Ty ky, +k 0
p 1 l(rb) kb—kl ry + D*
27 ok, | T \V2D)  2(ky +B) T\ 12
1 N kp—k (ri+D?
Ri;=——I|In(=—=)— 1
13 2nkb[n(2D) kp + k n< r2
Bose 1-D model for thermal resistance.
1 T N/A
Ry = In{— R
[159] b= ok, n( \Wr) + Ry
Ground is treated as an infinite medium and borehole as an
Hart [160] infinite line source with g, heating rate per unit length. N/A
_ q (T e™
Tg(r,t)—T0+m deu
4at
Total thermal resistance between the pipe and the soil is
Sanaye calculated.
D Tuscaloosa, Alabama
[81, 141] 1 In(72) F
R = -
total = h,mD;2L T 2mk,2L ' UgnmDy2L
Lee [161] 3-D solution using finite difference method in rectangular N/A
coordinates.
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Table 2. (continued)

Muraya Heat transfer analysis was performed using transient finite-
N/A
[162] element method.
Li [163] 3-D finite volume model was developed using triangular mesh. Harbin, China [164]
Mean fluid temperature was calculated using thermal resistances
Bernier and g-function [165]. Le Bourget-du-Lac,
[156] O =T 4 ok, + q ( t ) France [166]
= T T o I\ H
Cui [167] | Numerical solutions using finite element method. Hong Kong

Figure 12. Cross-sectional view of 2 U-tube boreholes. (Copyright permission in Appendix B).

2.2.3 Night Sky Radiative Cooling

The temperature of the outer space is about 4 K [168], which is the coldest available heat
sink for passive cooling. A sky-facing surface can be cooled during the night by exchanging
infrared radiation with the space. According to Parker [169], a sky-facing surface at 27°C on a
clear desert night can lose heat at a rate of 75 W/m?% However, the rate of cooling is strongly

dependent on the ambient humidity and cloudiness, and goes down to 60 W/m? for a humid
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climate, 40 W/m? with 50% cloud cover, and 7 W/m? under completely overcast sky [169]. The
temperature of water can be lowered as much as 8°C below the ambient temperature on a clear
night in a desert using this method. The use of spectrally selective surfaces can increase the
temperature drop to as much as 20°C below the ambient [170]. Such surfaces have high
emittance between wavelengths 8 to 13 um and low absorption outside this region. Al-Nimr et al.
[171] observed that using night sky radiative cooling, the mean temperature of a 120 | water
storage tank with a 0.6 m? radiative cooling panel and 0.2 m depth could be reduced by 15°C in
one night implying a heat rejection of 13 MJ/m? to the sky. In another study by Ali [38], the
water temperature of a 0.5 m deep tank with 1 m? surface area was lowered from an initial value
of 23.8-27.1°C to a final value of 17.2-18.9°C.

Nocturnal cooling was traditionally used in ancient civilizations for space cooling and ice
production [172]. More recently it has also been considered for cooling of buildings [173, 174].
Yellott and Hay used a roof pond with a movable cover where the water stored in a shallow
reservoir at was cooled at night and covered during the day to prevent it from heating [46, 47,
175]. Radiative cooling has also been considered for lowering the temperature of cooling water
in the condenser of thermal power plants. For a CSP plant operating at a high temperature of 80-
100°C, the efficiency can be improved by 50-100% by using night sky cooling in the condenser
[176]. Olwi et al. [177] proposed the idea of using a pond covered by a radiator plate to cool the
hot water coming from the condenser of a power plant. Figure 13 depicts a schematic of the
system [177]. The hot water from the power plant enters close to the surface of the pond. It is
cooled inside the pond and the cold water is withdrawn from the bottom. A separating screen is
used to prevent mixing of the top hot water layer with the bottom storage layer. A prototype

experimental pond was also studied at a University Farm in Hada Al-Sham, Saudi Arabia [170].

25



The pond was covered with a white painted aluminum sheet. They observed a heat rejection rate

of 50 W/m? from the pond at night time.

Radiator plate

Pond inlet — '—b—b—h—b”—l—l—h—l—b—b—h\

Pond outlet —{+ + « « .._.._,._.._.._.._,,_)

Figure 13. Night sky radiative cooling system used to cool the hot water from the power plant
(redrawn from [17]).

Although the night sky cooling has been shown to be an effective cooling technique
especially in arid areas, an important limitation is its inability to cool during daytime and limited
effectiveness at locations with high humidity. Because of the night time limitation, the net
cooling period using night sky cooling is less than 11 h/day [178]. Therefore, additional

alternative methods, such as ground coupling, are needed for cooling during the day.

2.2.3.1 Models
Several different models have been proposed to calculate the radiative heat loss from a
water reservoir. Table 3 lists different models that have been proposed in the last few decades

and experimentally verified.
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Table 3. Different models that have been proposed for nocturnal cooling.

Experiment
Ref. System description Model details/ underlying assumptions
location
Lumped model using [180] and [181]
: : 1 (Tt — Tary) + he(Ty — To)
Inclined radiator panel 2~ EwolUw = sky cUw ~ la
Meir
connected with a he=3.1+4.1v Oslo, Norway
[179]
water reservoir. Tsiey = T,(0.711 + 0.0056T,;,
+0.00007372,)"*°
Erell & Lumped model using a linearized form of Stefan-
Etzion Flat place radiator to | Boltzmann law given by [184] Sede-Boger,
[173, cool a building. Ruer = 46,02 (T — Tsiey) Israel
182, 183] h. = 1.8 + 3.8v (W /m?°C)
Open loop system
Lumped model applied on number of elements
with a warm water
Ali [168] along the radiator. Assiut, Egypt
tank feeding to two
Sky radiation calculations were based on [185]
parallel plate radiators.
Roof pond is thermally stratified along the depth.
Sky radiations were calculated using [187]
Seder Boker,
he(Ty —T,) —
Tang & Roof pond with gunny (0.7581 + 0.4257v) (P, — OP,)*7 — Israel
Etzion bags floating on water ew0|Ty = Tory| = Ugw (Tw1 — Ty) (Results are
dT, .
[45, 186] | surface. = Hypy Cpuy d_:i shown in
Stratification: [43])

dTy, ;
dt

w

h_l(Tw,i—l + Tw,i+1 - 2Tw,i) = hlpwcp
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Table 3. (continued)

Roof pond is assumed to have perfect thermal

stratification during the day and full mixing at

Seder Boker,

night.
Tang & Israel
Roof pond with he(T, —T,) —
Etzion - _ (0.2253 + 0.2464v) (P, — BP,)"8% — (Results are
movable insulation. dT
[186] ewo|[(Ty +273)* = Tsh, | = HlpWCde—:V shown in
[43])
Tsiy = ggkizs Ty
Esky = 0.754 + 0.0044T,,
Lumped model with constant convective and
radiative heat transfer coefficients.
SOdha et dTw EWO'(T‘;' - (Ta - 12)4)(Ta - Tw)
me = Tw _ Ta New Delhi,
al. [44, Open roof pond. L
_ w — PDqg 3 India
188] +0.884 [(TW —T)+ %Twr (T, = T,)
1
3| _F Pw — PPa ]§
+14.385 x 10 [(TW T+ 5ce o 105 105, W
(Ry(Ty = ¢To) + R, (1 = )
Funnel shaped Corsica
Clus et o )
radiative due CFD analysis. Island,
al. [189]
condenser. France
Lumped model with Fourier expansion of energy
balance equation. Heat transfer coefficients were
Jain Roof pond with determined using [191-193]. Rajasthan,
[190] movable insulation. m,,Cy—2 = (2.8 + 3.00)(T, — T,) India

Pdt
+ £,0(Tg — Tohy)

Tsky = Ta—6
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Table 3. (continued)

Numerical solution using finite volume approach.

Rincon et | Roof pond with Maracaibo,
Measured hourly data for outdoor temperature and
al. [194] | movable insulation. Venezuela
solar irradiance is used.
Heat transfer analysis on each wall of the tank
was performed using lumped model. Sky radiation
was calculated using [193].
drT,,
mep W = Qconv,a—w + Qconv,tkw—w
Thermally uninsulated
+ —w— _
Ali [38] Qconv,tkb w Qevap,w a ASSiUt, Egypt
open tank. — Qradw—-sky
Qradw-sky = Agwo[(Ty +273)* = Tg, |
Qevap,a—w = A(0.2253
+ 0.2464v) (P, — @P,)%82
Qconv,a—w = Ah, (Ta - Tw)
Ito & Lumped model using radiative heat transfer
Radiator panels
Miura calculation based on [193].
connected with a Atsugi, Japan
[195, q = 4,0 T2(Ty — Tsiy) + he(Ty — To)
storage tank.
196]
Analysis of the thermally stratified tank is done
) using the model given by Tang et al. [45, 186].
Spanaki
Roof pond covered he(T, — Ty) — Heraklion
etal. _ 0.7 _
with a floating cloth. (07581 + 0.4257v) (R, — @Fa) city, Greece
[197] ew0 [Ty = Ty = Ugw(Twr — Ty)
dTg
= Hlpwcpw E
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Table 3. (continued)

Dobson

[198]

Radiator panel
connected to a water

storage tank.

Steady state lumped model for both radiator and
storage tank. Sky emissivity is calculated using
[199].
MmCy(T, — T1) = eyAc[Ty — Tohy |
+ (a + bv)A(T,, — T,)
a=08b=0if v<0.076m/s
a=35b=0if v<045m/s

a=18b=38if 1.35<v <45m/s

Seder Boker,

Israel [200]

m,,C.

drT,,

pd_t:Qc+Qe+Qr

The following generic model can be concluded after the review of these models:

where Q., Q. and Q; are the convective, evaporative and radiative heat transfer terms and can be

given by the following generic equations 1-6.

Q= hcA(Tw - Ta)

w
he = s+ b (e

Here, v is the wind velocity in m/s and a; and b; are empirical constants.

Q. = (Cl3 + b3v)(Pw - ®Pa)c4

P, = asexp(by + c,(T)%)

Qr = ASWO-(T\;; - Ts‘}ky)

(D

(2)

(3)
(4)
(5)

Here, a3, bs, Cs, a4, ba, C4 and d, are empirical constants and Tgy is the effective sky temperature

given by:

Tsy = g?kZJ/STa (K)
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where &g is a function of the dew point temperature and is obtained experimentally for different
locations.
Several models have been proposed to calculate the effective sky temperature that in turn

depends on the sky emissivity. The following section gives the details of different equations.

2.2.3.2 Effective Sky Temperature

Even though the temperature of outer space is much lower, the effective temperature for
radiative heat transfer is influenced by the earth’s atmosphere, cloud cover, humidity and wind
velocity. Different empirical correlations have been proposed to predict the effective sky
temperature and have been compared with the experimental data. These are described in Table 4.

Table 4. Different expressions for sky emissivities.

Ref. Model Location

Tang [187] Esky = 0.754 + 0.0044T,, Negev Highlands, Israel
Berdahl and | &g, = 0.741 + 0.0062T, during night Arizona, Maryland,
Fromberg [201] Missouri

&y = 0.727 + 0.0061T, during day

Berdahl and Martin po) 0 B(po>2 Arizona, Texas, Maryland,
+0.73 | —
1

Esky = 0.711 + 0.56 (—

[202, 203] 00 100 Missouri, Florida, Nevada
Centeno [204] Esky = 0.56 + 0.08P)° Venezuela

Berger [205] Eky = 0.77 + 0.0038T, Carpentras, France
Chen [206, 207] Esky = 0.736 + 0.00577Tg;, during night Nebraska and Texas

Esky = 0.732 + 0.00635T,,, during day
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All of these models were obtained by empirical correlations and are applicable for their
respective locations and the environmental conditions they have been tested for. They can be
compared with the experimentally obtained values of sky emissivity. The sky emissivity value is
experimentally calculated by measuring the incoming long wave radiations, IR and ambient
temperature as shown in equation 7.

IR = 05, T4 (7)
where o is the Stefan Boltzmann constant equal to 5.67 x 10® W/m%K”. So, if the measured
values for incoming radiation and ambient temperature are available, emissivity can be
calculated. The error in calculation due to the measurement error in the radiation and temperature
can be obtained by the error analysis of the above equation.

IR
oT}

_dUR) (1)

de
oT} oTy

A(IR)max A(Ta)max
So, Agmax = O'T; + IR O'Tas

(8)

The experimental values for incoming long wave radiation and ambient temperature are
available for the NREL Solar Radiation Research Laboratory in Boulder, Colorado. Figure 14
shows the comparison of the sky emissivity models with the experimental data obtained from the
values obtained from the NREL website for June 1%, 2012 [208]. Most of these models show
similar behavior, except for the Centeno model [204]. Table 5 shows the root mean square errors
(RMSE) for all these models. It can be observed that the RMSE is smallest for the model
proposed by Berdahl & Martin [202]. This is also the most widely used model and has been

verified for different locations in the United States.
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Figure 14. Comparison of different sky emissivity models with the experimental data.

Table 5. Mean error for different sky emissivity models.

S. No. Model Root mean square error in emissivity value
1. Berdahl & Fromberg 0.0350
2. Berdahl & Martin 0.0272
3. Centeno 0.1907
4. Berger 0.0348
5. Chen 0.0246
6. Tang 0.0270
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CHAPTER 3: OPTIMIZATION OF SUPERCRITICAL RANKINE CYCLE

3.1 Thermodynamic Model

Figure 15 shows a schematic of the thermodynamic cycle that was simulated using
CHEMCAD and MATLAB. The pump (unit 1) pressurizes the working fluid to its high pressure
(stage 2), and then the pressurized fluid passes through the pre-heater (recuperator) before
entering the vapor generator (stage 3). In the boiler heat exchanger, the working fluid is heated to
its superheated vapor phase by the hot brine from a geothermal, solar thermal or waste heat
source. The vaporized fluid in the supercritical state (stage 4) then enters the turbine and
undergoes adiabatic expansion, generating power. The fluid from the turbine exit passes through
the recuperator and cools down before entering the condenser at stage 6. When the turbine exit
temperature is not higher than the pump outlet temperature, the recuperator (unit 2) is bypassed.
A water cooled condenser (unit 5) is used for condensing the working fluid, which then enters
the pump and the power cycle is completed.

The hot water used in the boiler heat exchanger is a sensible heat source which rejects the
heat to the working fluid and leaves the heat exchanger at a lower temperature (stage 8). The
water used in the condenser heat exchanger runs in an open loop and the warmer water leaves the
heat exchanger (stage 10). The pinch temperatures in both the boiler and condenser are assumed

to be 5°C.t

! This chapter was published in the ASME Journal of Energy Resources Technology. Copyright permission is
included in Appendix B.

Rachana Vidhi, Sarada Kuravi, D. Yogi Goswami, E. K. Stefanakos, Adrian Sabau, “Organic fluids in a
supercritical Rankine cycle for low temperature power generation”. Journal of Energy Resources Technology, 135,
042002, 2013.
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Figure 15. Layout of the cycle simulated in CHEMCAD. The numbers in the square blocks
indicate the fluid condition; the numbers in the circles refer to equipment unit.

3.2 Operating Conditions

The thermodynamic cycle operates in the supercritical region for all the fluids
considered. In this study, the pump and turbine were both assumed to work at 85% efficiency.
The coolant temperature in the wet cooled condenser was varied from 10 to 25 °C. The lower
value of the coolant temperature allows the working fluid to come out of the turbine at a lower
pressure, leading to higher cycle efficiency. Simulations were performed for the heat source
temperatures varying from 100 to 200 °C in steps of 5°C and coming down to 80 °C after
passing through the boiler. In each simulation, the vapor quality at the turbine exit was kept
higher than 95% in order to ensure proper performance of the turbine. If the amount of liquid
increases in the turbine, droplets of liquid start forming that could damage the turbine blades[3,
209]. In addition, the pinch point in the recuperator was kept between 7 °C to 9 °C.
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3.3 Comparison of Thermal Efficiency for CO, and R32 Based Cycle
According to the first law of thermodynamics, thermal efficiency of a power cycle is

given as:

Don = Vg(z:t _ Wout,turbinQei; Win pump )

The cycle efficiencies, without considering the efficiencies of the heat exchangers, are
shown in Figure 16 (a) and (b). It is clear that the R32 based cycle gives better efficiencies than
the CO, based cycle at a fixed heat source temperature while operating at a much lower pressure.
For example, at 200 °C, an efficiency of 18.3% is obtained for R32 based cycle whereas the CO,
based cycle obtains 16.5% efficiency. Also, as the source temperature is reduced, the efficiency
of the CO, based cycle reduces at a faster rate. The difference in efficiencies for R32 and CO,

based cycles was larger when the turbine efficiency was lower (see Figure 16 (b)).

20 - 18 -
18 16
9 14
.16 9
> o
5 14 p
S 5 8
£ 12 £ 6
4 ] ol R32
10
2 .
8 T T 1 U . . .
140 160 180 200 140 160 180 200
Heat source Temperature (°C) Heat source temperature (°C)
(a) Turbine efficiency 85% (b) Turbine efficiency 75%

Figure 16. Thermal efficiencies of CO2- and R32-based supercritical Rankine cycles at 85% and
75% turbine efficiencies.
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3.4 Fluid Selection Criteria

Performance of an organic working fluid in a supercritical cycle depends largely on its

critical properties. Chen et al. [8] classified a number of fluids on the basis of their thermo-

physical properties and environmental impacts. Different fluids were sorted for their potential as

working fluids. The following parameters were found to be important in the selection:

Critical temperature: Critical temperature is a key parameter in the selection of working
fluids. If the critical temperature is too high, the cycle will work in or close to the sub-
critical region and the efficiency will be low. If the critical temperature is too low,
condensation at the given cooling condition will not be possible.

Critical pressure: Both the energy and exergy efficiencies depend on the thermal match
between the heat source and the working fluid. If the fluid is pressurized far above its
critical point in the supercritical region, the fluid temperature profile during heating will
be straighter and will match better with that of the heat source. So, if the critical pressure
of the fluid is lower, pressurizing it to a higher pressure to increase its performance will
be easier.

Environmental Concerns: Refrigerants that are derived from Chlorofluoro carbons (CFC)
and hydrochlorofluoro carbons (HCFC) are known to be the ozone depleting
substances[13]. We considered fluids with zero ozone depletion potential and are non-
flammable, non-toxic and stable in the temperature and pressure range selected for this
study [13, 14, 49-52].

Table 6 shows the different fluids considered for this study, their chemical names and

their critical properties.
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Table 6. List of fluids studied and their critical properties.

Fluids Chemical name Critical temperature Critical pressure
(°C) (MPa)

R23 Trifluoromethane 16.14 4.83

R32 Difluoromethane 78.11 5.78
R143a 1,1,1-Trifluoroethane 72.71 3.76
R134a 1,1,1,2-Tetrafluoroethane 101.05 4.06

R170 Ethane 32.18 4.87

R125 Pentafluoroethane 66.02 3.62

R218 Octafluoropropane 71.87 2.64

The thermo-physical properties of the working fluids are predicted using the Peng —

Robinson equation of state, given by the following equations:

RT

a(T)

P = —
V—b VWV+b)+b(V-D>b)
where

RZ 2

a(T) = 0.45724 —=m(T)
(o4
b = 0.07780 L
- 0. B

m(™) = {14k (1~ VT7T)}

k = 0.37464 + 1.54226w — 0.26992w?
Here, V is the molar volume, T. and P, are the critical temperature and pressure,
respectively, ® is the acentric factor of the species, and R is the universal gas constant.
Calculation of properties using the Peng — Robinson equation of state is simple and is valid for a

large number of fluids in a much wider range of temperature and pressure. Although this
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equation of state has certain limitations, the error in determining the properties is within
acceptable limits [210].

In the analysis, two different cases were considered. In the first case, the pressure ratio in
the cycle is fixed for all the fluids. In the second case, the minimum cycle pressure is kept
constant at the lowest pressure at which that fluid can be condensed completely at the given sink
temperature, while the maximum pressure is varied to obtain the optimum operating pressure.
Table 7 shows the minimum pressure obtained for each fluid. The analysis for the second case
would provide the best thermal efficiency that can be achieved for each fluid at every heat source
temperature.

Table 7. Condensation pressures of the working fluids.

Fluid Condensation pressure (Bar) at
20°C
R23 40
R32 15
R143a 11
R134a 5.8
R170 37
R125 12
R218 7.5

3.5 Thermal Efficiency at Fixed Pressure Ratio

In this section, the pressure ratio is fixed at 5 and the variation of thermal efficiency is
found as a function of the heat source temperature for each fluid. Figure 17 shows the results
obtained for each fluid. It can be observed from the figure that the efficiency of the cycle

increases with increase in the heat source temperature. This is consistent with the fact that higher
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operating temperatures lead to higher cycle efficiencies. The slope of the efficiency curve
increases at the minimum temperature where the recuperator is used. As can be observed from
the figure, not all the fluids can be used in the power cycle for the entire temperature range. For
example, R32 could not be used for temperatures lower than 135 °C. This is because, at lower
temperatures, the vapor quality in the turbine drops to less than 90%. It was observed that the
R125 and R143a based cycles gave the highest efficiencies at high temperatures, while at low
temperatures, the R218 based cycle was the most efficient. In addition, R218 could be used even

at temperatures as low as 90°C unlike other fluids.
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Figure 17. Thermal efficiency vs. heat source temperature at a constant pressure ratio of 5.
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3.6 Effect of Pressure on Thermal Efficiency

For all the working fluids considered in this analysis, the pressure ratios were varied to
study their effect on the thermal efficiency of the power cycle. For this analysis, the
condensation pressure was kept the same for each fluid (as given in Table 7) to ensure complete
condensation at the condenser outlet, and the turbine inlet pressure is varied in steps of 1 bar to
obtain the optimum point. This process was repeated for different heat source temperatures.
Figure 18 - Figure 21 show the variation of thermal efficiency as a function of operating pressure
and pressure ratio for each fluid at different heat source temperatures. Since the cycle can be
operated with all the working fluids at temperatures between 125 °C to 200 °C, the same heat
source temperatures were used for each fluid for further analysis. It was observed that first the
thermal efficiency increases with increasing pressure ratio and then decreases for each working
fluid. For R32 however, the maximum efficiency was achieved at a pressure where the vapor
fraction in the turbine becomes lower than 95%. As shown in the Figure 18 (a) and (b), the
portion of graph bounded by the arrows signifies the range where the vapor quality in the turbine
was poor and those pressures cannot be used. Similar behavior was obtained at every source
temperature for R32 but we only considered the pressures where turbine vapor quality was more
than 95%. It was also observed that the optimum pressure of R170 was the highest while the
optimum pressure ratio was the lowest at all source temperatures. Since R170 has low critical
temperature and hence high condensation pressure, even very high operating pressures give low
optimum pressure ratios. Such low pressure ratios resulted in lower value of the turbine work
output while the necessity to increase the pressure in the pump to a very high value increased the

pump work input compared to other refrigerants and eventually lower thermal efficiency was
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obtained. Furthermore, for R134a, that has high critical temperature and so low condensation

pressure, a high value of pressure ratio could be obtained at lower operating pressures.
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Figure 18. Thermal efficiency of the SRC at 125 °C heat source temperature and 10 °C sink
temperature.
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Figure 19. Thermal efficiency of SRC at 150 °C heat source temperature and 10 °C sink
temperature.
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Figure 20. Thermal efficiency of SRC at 175 °C heat source temperature and 10 °C sink
temperature.
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Figure 21. Thermal efficiency of SRC at 200 °C heat source temperature and 10 °C sink
temperature.
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3.7 Effect of Pressure Ratio on Work Output and Input

The existence of optimum pressures for the fluids can be attributed to the fact that the
pump work input keeps increasing with increasing pressure while the turbine work output
reaches a saturation region where the increase in turbine work output becomes smaller than the
increase in the pump work input. This results in a decrease of the net work output. Since the heat
input changes very little with the change in pressure, the efficiency starts decreasing when the
net work output is reduced. Figure 24 show the turbine work output and pump work input for
R134a at 200 °C as a function of the operating pressure. As shown in Figure 22, the power
output of the turbine increases with the pressure ratio. However, the rate of increase decreases
with the pressure ratio. Over the same pressure ratio, the results shown in Figure 23 indicate a
linear increase of the required pump input. It can be observed from Figure 24 that the increase in
turbine output decreases with an increase of the pressure ratio while the increase in the pump
work input remains constant. The thermal efficiency of the thermodynamic cycle keeps
increasing as long as the increase in the turbine work output is greater than the pump work input

and achieves its maximum value when the two graphs intersect each other.
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Figure 22. Turbine work output vs. pressure ratio at 200°C heat source temperature for R134a
based cycles with flow rate of 1.5 kg/s.
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Figure 23. Pump work input vs. pressure ratio at 200°C heat source temperature for R134a based
cycles with flow rate of 1.5 kg/s.
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Figure 24. Change in turbine output and pump input as a function of pressure ratio at 200°C heat
source temperature and 10 °C sink temperature for R134a based cycles with flow rate of 1.5 kg/s.

3.8 Optimum Pressure
Figure 25 shows the variation of optimum pressure with the heat source temperature. It
can be observed that for each fluid, the optimum pressure increases with an increase in the heat

source temperature. The optimum pressure for R170 (having the lowest critical temperature of all
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the fluids considered) is the highest for all the heat source temperatures. This can be attributed to
the fact that R170 requires a high condensation pressure at the given cooling conditions resulting
in higher operating pressures. R32 has been excluded from this graph because the vapor fraction
in the turbine dropped to less than 95% before an optimum point could be achieved. So, the

maximum pressure at which it could be operated is considered for further analysis.
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Figure 25. Optimum pressure vs. heat source temperature for the fluids considered at 10 °C heat
sink temperature.

3.9 Thermal Efficiency at the Optimum Pressure
Figure 26 shows the efficiencies of the cycle at different source temperatures for both a
fixed pressure ratio and optimum pressure ratios for R134a. It can be observed that compared to

the fixed pressure ratio case, the thermal efficiency of the power cycle increases from 12% to
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13.8% when the optimum pressure ratio is used for a heat source temperature of 125°C. The
corresponding increase for a heat source temperature of 200°C is from 17.5% to 21.1%. This
significant increase suggests the importance of optimizing the operating pressure.
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Figure 26. Comparison of thermal efficiency at fixed and optimum pressures for R134a at 10 °C
heat sink temperature.

Figure 27 shows the variation of the thermal efficiency as a function of the heat source
temperature at optimum pressures for all the fluids considered. Comparing Figure 17 and Figure
27, it can be observed that the relative performance of the fluids changes when the cycle operates
at the optimum pressure ratio instead of a pre-determined fixed pressure ratio. For example,
among the fluids presented in Figure 17 and Figure 27, R-134a has the highest efficiency when
operating at the optimum pressure ratio, while its performance is lower than many other fluids if
the pressure ratio is fixed at 5. When operated at optimum pressure ratios, the efficiencies of the
R134a, R125, R143a and R218 based cycles are close to each other and higher than the R32 and

R170 based power cycles.

49



22.0 ~

% "-/l
20.0 ~
U A w
287 +
-2 +
" AT
—~18.0 - et
s ¥ +/
> /,r’.// -P/*/
Q - x” . _/
5 16.0 ,/_./ /+
2 S e
& o L R143a
14.0 —‘(/,X//_'_/ —+-R170
S /+/+ R134a
120 - ~+-R218
“R32
10.0 T T .
125 150 175 200

Heat Source Temperature (°C)

Figure 27. Thermal efficiency of a SRC vs. heat source temperature at optimum pressures at
10°C heat source temperature.

3.10 Exergy Efficiency
The exergy efficiency (#exergy) Of the thermodynamic cycle is simulated for the fluids

using equation 9.

W, Epue — E
Nexergy = .net = Out. £ (11)
Ep En

Only R134a, R143a, R125 and R218 are considered in this section, since these fluids
have higher efficiencies among the fluids shown in Figure 27. Figure 28 shows the exergy
efficiency obtained for the four fluids as a function of the heat source temperature. The exergy
efficiency of the cycle increases with an increase in the source temperature for all the working
fluids. It can be inferred from the results that the performance of the R134a based cycle is higher
than that of the other three fluids. Though the R143a based cycle has a lower thermal efficiency
than the R218, the exergy analysis shows that the exergy efficiency is higher for the R143a.The

performance of the R218 can be better or worse than that of the R125, depending on the heat
50



source temperature, which could be the result of the thermo-physical and critical properties of
the fluids.
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Figure 28. Exergy efficiency of SRC as a function of heat source temperature at 10 °C heat
source temperature and optimum operating pressure ratio.

3.11 Effect of Cooling Water Temperature

The cooling water temperature was varied from 10°C to 25°C for pressure ratios 10, 12
and 14 when the heat source temperature was 200 °C. It can be observed from Figure 29 that
when the cooling water temperature was higher, the power cycle efficiency was greater for a
lower pressure ratio. This is because at higher cooling water temperatures, a higher condensation
pressure was required. The difference between the cycle high pressure and low pressure becomes
larger at the same pressure ratio when the condensation pressure is higher. In order to achieve
higher pressure ratios, the required pump work becomes very high while the increase in turbine
output is not very significant. So, the net work output is lower for higher pressure ratios and

hence, the efficiency is lower.
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CHAPTER 4: SUPERCRITICAL RANKINE CYCLE USING ORGANIC MIXTURES

4.1 Introduction

Use of mixtures of organic fluids reduces exergy destruction in the heat exchange process
because of non-isothermal condensation. So, a thermal glide is obtained in the condensation
process that reduces the irreversibilities during heat exchange. Figure 30 shows the thermal glide
obtained in the condensation process for a mixture of 50% R134a and 50% R143a (composition
by mass) as compared to isothermal condensation of R134a and R143a.
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Figure 30. Condensation process of R134a, R143a and their mixture on a T-S diagram.

2 This chapter was published in the conference proceedings of the ASME 2012 6™ International Conference on
Energy Sustainability. Copyright permission is included in Appendix B.

Rachana Vidhi, Sarada Kuravi, Saeb Besarati, E. K. Stefanakos, D. Yogi Goswami, Adrian Sabau, ‘“Performance of
working fluids for power generation in a Supercritical Organic Rankine cycle”. Proceedings of the ASME 2012 6"
International Conference on Energy Sustainability. San Diego. July, 2012.
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4.2 R32 and R125

Mixtures of R32 and R125 have been studied most widely; in nearly all the compositions
and at a broad range of temperatures and pressures[211]. R410A is a predefined mixture of R32
and R125 in a mass ratio of 50/50. The mixtures of R32 and R125 in different compositions were
analysed to study the effect of varying composition on the thermal efficiency of the supercritical
Rankine cycle at different heat source temperatures. Figure 31 shows the variation of thermal

efficiency of the SRC as a function of the mass percentage of R32 in the mixture.

21
g 19 H
>
o
c
2 17 ‘\\‘\_.
2
£
(]
© 4
E 15
Q2 --200
i 13 N . =175
) " T 150
-+-125
11 I 1 I 1
0 25 50 75 100

Percentage of R32 in the mixture

Figure 31. Thermal efficiency as a function of composition of mixture of R32 and R125 at
different heat source temperatures (°C); the compositions shown in the figures are in terms of
percentage mass of R32 in the mixture.

It can be observed from the graph that the efficiency of the thermodynamic cycle using a
mixture was in between the efficiencies for the pure fluids. At higher temperatures, where the
difference in the efficiencies for pure R32 and R125 was large, this variation can be easily
observed. While at lower heat source temperatures, where the thermal efficiencies for the pure

fluids were nearly equal, this variation became less clear.
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4.3 R134a and R143a

From Figure 27 and Figure 28, we observe that thermodynamic cycles using R134a and
R143a as working fluids have high thermal as well as exergy efficiencies in the temperature
range considered for this study. Their mixtures in different compositions were analyzed in the
thermodynamic cycle as working fluids. Figure 32 shows the effect of varying compositions of

the components on the thermal efficiency of the power cycle at different temperatures.
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Figure 32. Thermal efficiency as a function of composition of mixture of R134a and R143a at
different heat source temperatures (°C); the compositions shown in the figures are in terms of
percentage mass of R134a in the mixture.

Thermal efficiencies of the power cycle when pure R134a or pure R143a were used as
working fluid were very close. So, a significant difference of using the mixture could not be
observed in the thermal analysis of the cycle. The small variation in the thermal efficiency graph
for different temperatures could be the result of error in predicted thermo-physical properties of

the fluids and their mixtures.
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CHAPTER 5: PASSIVE COOLING

5.1 Introduction

Different passive cooling systems and their effects on the efficiency of the SRC have
been studied. The ground cooling systems that utilize earth as the heat sink for cooling air (earth-
air-heat-exchanger) and water (ground coupled water cooling) have been coupled with an air-
cooled-condenser and a double pipe heat exchanger, respectively. A water reservoir cooled using

night-sky-radiative cooling system has been coupled with a shell-and-tube type condenser.

5.2 Earth-Air-Heat-Exchanger

The condenser of the SRC was coupled with an earth-air-heat-exchanger, using the earth
as the heat sink. Figure 33 shows a schematic diagram of an EAHE system. Ambient air is blown
through the tunnel buried underground using a blower. As it flows through the tunnel, the air
exchanges heat with the soil. Figure 34 shows the annual variation of temperature of the ambient
air and soil at various depths for Las Vegas where the yearly average ambient temperature is
19.5°C. As can be seen from the figure, the temperature at a depth of 4 m does not vary much
during the year and has a phase lag of about 90 days. In the summer, when the ground
temperature is lower than the ambient, heat is rejected into the ground. However, in the winter
season, the ambient air temperature is lower than the soil temperature. In this case, the ambient

air is directly used in the condenser for cooling the working fluids.®

® Part of this section was published in Energy Procedia. It is open access journal.
Rachana Vidhi, D. Yogi Goswami, E.K. Stefanakos, “Parametric study of Supercritical Rankine cycle and Earth-
Air-Heat-Exchanger for low temperature power generation”. Energy Procedia, 2014. 49(0): p. 1228-1237
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Figure 33. Schematic of an EAHE.
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Figure 34. Annual variation of ambient air and soil temperature.
The effect of various system parameters on the performance of the SRC was investigated.
Since R134a was found to have the maximum efficiency for the temperature range considered

above, it was chosen for further analysis with the EAHE.

5.2.1 Methodology

Several different models have been proposed and verified with reasonable accuracy by a

number of researchers [27, 31, 35, 91, 102, 118-121, 124, 133, 212-216]. For this study, a two
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dimensional model developed by Dhaliwal and Goswami was used to study heat transfer
between the air and soil [99-101]. The tunnel length was divided into small segments as shown

in Figure 35 and energy balance was performed on each segment.
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Figure 35. The buried pipe is divided into small segements and energy balance is applied to each
segment.

e Heat transfer in air
The inlet temperature was specified and was used to find the temperature of the air
leaving the first element. This value was then used as the inlet for the second element and so on.
The temperature of the air leaving the nth element is given by equation 12.

[(1 - U/Z)Tn—l + UTs]
1+U/2
(Wn—l —

|( If the air is unsaturated
T, =
n [(1 — /2Ty + Wt =Wy UTS]
t 2

(12)

If the air is saturated

1+U/2

where,

e Heat transfer in soil
The temperature of the soil can be obtained using equation 13, where r is the radial

distance from the center of the tunnel and t is the time.
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9°T(r,t) 10T(r,t) 19T(rt)
oz 't or a ot (13)
The solution for equation 13 was obtained using an integral method [99-101] and is given

in equation 14,

! 2
T O = Te(®) - qle{k (1 * g B %) (S/R 12 13(1 n 8/R)) In (1 :—/;{/R> (14

where, Te is the bulk earth temperature and & is the penetration depth in the soil given by
equation 15. The temperature of the soil remains unchanged beyond this length.
& = V8at (15)
e Ambient air temperature
The diurnal and annual variations of average ambient air temperature are sinusoidal. A
sinusoidal profile close to practical conditions was used for yearly variations; while the Erbs
Model (equation 16) was selected for the variation over a day.

T(t) = Tavg + Ar[0.4632 cos(a — 3.805) 0.0984 +cos(2a — 0.360)

+ 0.0168 cos(3a — 0.822) + 0.0138 cos(4a — 3.513)] (16)
2m(t—1) )
where o = 1 and tis the hour

5.2.2 Improvement with EAHE

Figure 36 shows the inlet and outlet temperatures for 10 days of operation. It can be
observed that the change in outlet temperature is much smaller than the inlet temperature, which
suggests that we not only obtain a lower sink temperature for the power cycle, but also a more
stable temperature profile with lower fluctuations. Such performance can be used to ensure that

the power generation system operates at near optimum condition at all time.
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Figure 36. Inlet and outlet temperature for 10 days in June for a 25 m long pipe buried at 2 m.
The outlet air was used for cooling the working fluid in the power cycle. As the
temperature of the air inlet to the EAHE increased, the outlet temperature also increased. Since
higher sink temperatures resulted in lower efficiency of the power cycle, the trend of variation of
efficiency was opposite to the trend of the temperature. Figure 37 shows the variation in
efficiency of the power cycle with and without the EAHE for 10 days. We observe that an

efficiency increase of about 1% was obtained when EAHE was used for the condenser.

15 : :
A14.5\/\/\/\/\/\/\/\/\/\/:
Q - Y ”n a2t 4 'y

4 4 ’
& Y N T T A A A T U A B
s ) s 3 ;Y PR R § o1 ;o A ;1
> NN A O A T AR DA N I O O A
[} M . s % ¥ [ [ 1 ¥ [} ¥ ] [ 1 ¥ [ s 3 N
c 14y & 4 45 0y 5oy S oy v N 7y oy oy oy
WA EYEVYEAVYEYERVEVEYERY
[«b] H : - [ 1 105 ‘| s i ¥ 1or LR Loy lll.
7S [ s ! 12 T H ] [ [ oy T 5 -
(&) . ¥ (] [ [ (] W
P v ! o 1oy v [ s 2 s Ly L
T LY VA VARV L
Wy ¥ M 4 1
=== Without EAHE
—With EAHE
13 | | | I

Days

Figure 37. Efficiency of SRC with and without EAHE for 10 days in June for Las Vegas when
source temperature is 150°C.
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5.2.3 Effect of Depth

The depth of EAHE was varied from 1m to 4m. Figure 38 shows the annual variation of

outlet temperature for different depths.
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Figure 38. Outlet air temperature for different depths at Las Vegas.

The effect of depth on the efficiency of the SRC can be observed in Figure 39. The

efficiency is better for larger depths in the summer season. During colder weather, the ambient

air is used directly for cooling the working fluid.
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Figure 39. Efficiency of SRC with a heat source of 150°C for different depths of EAHE.
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5.2.4 Effect of Length

Four different lengths of the underground tunnel, 10, 25, 50 and 100 m, were analyzed
for a pipe radius of 25 cm and a depth of 4 m. With increasing length, the outlet temperature of
the air was lower. However, this decrease becomes negligible after 50 m. Figure 40 shows the
variation of the air temperature for different tunnel lengths. As the length of the pipe increases,
the variation in the temperature of the air at the EAHE outlet decreases. The outlet air
temperature approaches the undisturbed soil temperature and so, it can be observed that, the
annual profile of the outlet air follows that of the soil. As seen in Figure 40, the time lag between
the inlet air temperature and the outlet air temperature profiles increases with the pipe length as
the outlet air starts to follow the soil temperature profile more closely. This behavior has direct
influence on the cycle efficiency which increases when pipe length is increased but no significant

improvement is observed after 50m.
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Figure 40. Annual variation of inlet and outlet temperatures for different lengths.
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Figure 41. Annual variation of SRC efficiency with 150°C source temperature for different pipe
lengths.

5.2.5 Underground Temperature
The heat transfer from the air affects the temperature of soil around the underground
pipe. As expected, the temperature of soil very close to the pipe varies more and follows a profile

similar to the air temperature.

5.2.5.1 Effect of Time and Distance from the Surface

As the distance from the pipe increases, the variation in soil temperature reduces and the
profile gets closer to that of the bulk soil temperature. Figure 42 shows the variation of
temperature of two points located at a horizontal distance of 0.1 m and 0.5 m from the surface,
half way from the inlet of the tunnel. It can be observed that the temperature of soil 0.1 m from
the surface of the pipe increases by almost 0.5°C at end of 1 month and 2°C at the end of 3

months above the bulk temperature, while the increase in soil temperature 0.5 m from the surface
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is negligible and was less than 0.5°C. As time increases, the thermal penetration inside the soil

increases and so the effect of heat transfer on the temperature of soil becomes more prominent.
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Figure 42. Variation of soil temperature over 3 months at 0.5 m and 2 m from the surface.

5.2.5.2 Effect of Position from Inlet

The temperature of air inside the tunnel decreases at a faster rate in the beginning as the
temperature gradient with the soil temperature is higher. So, the temperature of soil increases
more in the initial portion of the pipe and starts decreasing as the heat transfer from the air
decreases along the length. Figure 43 shows the variation in soil temperature as function of
distance from the surface, for four corresponding positions at the pipe. It can be observed that the
soil temperature at the close to the pipe surface decreases as the position is moved farther from
the inlet. Also, the difference between the graphs for 5 m and 10 m points is more compared to
the difference between 15 m and 20 m graphs. It can also be noticed that the temperature of soil
approximately 2 m from the surface converges to the bulk temperature for all positions from the

inlet.
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Figure 43. Soil temperature variation with distance from the surface for different locations from
the inlet at the end of 3 months.

5.3 Ground Coupled Water Cooling

Underground water cooling systems work on the same principle as the EAHE, but water
is used instead of air in the heat exchanger. The underground pipes can be vertical or horizontal
depending upon the area available. The horizontal systems not only require larger area, but the
effect of season change is also more pronounced as the depth is lower. While the vertical systems
have much larger depths and hence, the surrounding soil stays at the average annual temperature,
throughout the operation. In this study, an underground heat exchanger with vertical boreholes
was analyzed for cooling water that may be used in the condenser of the SRC. Figure 44 shows a
schematic of a U-shaped vertical ground heat exchanger (VGHX). Warm water coming out of
the condenser is passed through the pipes, where it cools down by rejecting heat to the soil and

then re-circulates to the condenser.
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Figure 44. Schematic of ground coupled heat exchanger with condenser.

5.3.1 Methodology

The mathematical model proposed by Sanaye et al. [81, 141] is used for studying the
VGHX. The model uses the heat transfer rate, inlet and outlet temperature of water and thermal
resistance to obtain the length of boreholes needed. Table 8 lists the parameters used for the
current study.

Table 8. Parameters of ground coupled water cooling.

S.no Parameter Value

1. Pipe internal diameter 2.0-2.5cm
2. Pipe external diameter 2.5-3.0cm
3. Inlet temperature 35°C
4. Outlet temperature 30°C

5. Heat transfer rate 496 W
6. Soil thermal conductivity 2.4 W/m-K
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e Thermal resistances
The total thermal resistance for the heat flow was calculated by combining the resistance

caused by water flow, pipe wall and the soil (equation 17).

Riotat = Rw + Rp + R; (17)
where
. 1
Y h,mD;2L
D,
~ In (Fl)
P 2mky2L
R = F
S UsnD,2L

e Length of pipe
The thermal resistances can be used to calculate the heat transfer rate using equation 18.

AT AT
Rtotal Rw + Rp + RS

Q (18)

If the heat transfer rate is known, this equation can be used to obtain the length of the

pipe needed for a given temperature difference (equation 19).

Q( 1 +1n(Do/Di)+ 1 )

L=-=
AT \2h,mD; = 4mk,  2UgmD,

(19)

5.3.2 Effect on Efficiency

The above model has been used to calculate outlet temperature from the pipe of a given
length for different temperatures. The soil temperature determines the lowest temperature of the
thermodynamic cycle and hence the efficiency of the cycle, for a given source temperature. Since

the underground pipe rejects the heat to the soil at a higher rate than it can be dissipated,
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temperature around the soil increases. This results in an increase in the outlet temperature of the
water cooling system and a decrease in the efficiency of the cycle. Figure 45 and Figure 46 show
the variation in outlet temperature and cycle efficiency at a heat source temperature of 175°C for

four months of operation.
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Figure 45. Increase in soil and outlet temperature over four months from April to August.
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Figure 46. Efficiency of SRC vs. soil temperature for heat source temperature of 175°C.
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5.3.3 Area of Underground Pipes Required

The amount of heat that needs to be removed and the temperature of water and soil
determine the length of the underground pipe. In order to handle a larger heat load, a greater
number of pipes may be needed to keep the depth within reasonable limits. In this study, the
amount of heat rejected in the condenser per kW of net power produced by the R134a based
cycle at the heat source temperature of 175°C is obtained and that value is then used to calculate
the pipe area needed. The heat transfer area obtained for water cooling system was about an
order of magnitude lower compared to that for air cooling system. This is due to the high specific
heat and thermal conductivity and viscosity of water. Figure 47 shows the total area of the
underground pipes as the number of boreholes is increased for different pipe diameters when the
soil temperature is at the annual average at the two locations and the water inlet temperature is
35°C. It can be observed that the total area increases with the number of pipes, even though the
length of the boreholes reduces, as shown in Figure 48; however it may not be economically
viable to use multiple bores. A detailed economic analysis is needed to determine the optimum

number of pipes.
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Figure 48. Length of each pipe vs. number of pipes.

5.3.4 Water-Cooled Condenser

A counter current double pipe heat exchanger was considered to be used as the condenser
for the power cycle where the cooling water, returning from the underground pipes, goes through
the inner tube while the working fluid passes through the outer annulus. The length of the
condenser was estimated by equation 20 [81] for various values of heat exchanger effectiveness.

Q 1 I (]z))—?) 1

L= X
AT} vrp hsmD;  2mkcong  hwmD,

(20)

where h¢ is the condensation heat transfer coefficient for the working fluid [217] and h,, is the
convective heat transfer coefficient for the cooling water. Table 9 shows various parameters used
for the calculations and Figure 49 shows the variation in the condenser length as a function of the
heat exchanger effectiveness for different diameters of the tube. As expected the length of the
condenser decreased for increasing effectiveness. A larger diameter increases the thermal
resistance and lowers the velocity and turbulence, thus requiring a larger length of the condenser.

Other types of heat exchangers, shell-and-tube or brazed plate heat exchanger, may provide
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better performance and a comparative thermal and economic analysis is needed to select the most

suitable configuration.
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Figure 49. Condenser length vs. heat exchanger effectiveness for different tube diameters.

Table 9. Design parameters for the condenser.

S. no Parameter Value
1. Inner diameter of the tube 3-3.5¢cm
2. Outer diameter of the tube 3.25-3.75¢cm
3. Thermal conductivity 398 W/m/K
4. Heat exchanger effectiveness 75-95%

5.4 Night Sky Radiative Cooling
Water stored in a tank can be cooled at night using radiative cooling and the cooler water
can then be used in the condenser heat exchanger of the SRC. The heat transfer occurs by

radiation, convection and evaporation as shown in Figure 50. The temperature of water in the
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reservoir is lower at the bottom and higher at the top due to natural convection. However, bulk
assumption is generally made for modeling such systems and has been proven to give accurate

results [38, 45, 168, 169, 171, 173, 182, 186, 218].

Convection

. Radiation
Evaporation

Figure 50. Heat transfer schematic for nocturnal cooling.

5.4.1 Methodology

The following heat transfer model was used to analyze the variation in temperature of the
stored water. This model has previously been used to calculate the radiative heat transfer
between the water storage tank and the sky [43, 45, 186, 187, 197, 219]. The reservoir is
assumed to be covered during the day using a movable insulation and is allowed to cool during
the night time. Water in the tank is assumed to be perfectly mixed to allow lumped model
analysis. Equation 21 shows the energy balance analysis of the water at the night time:

he(Ty — Ty,) — (0.2253 + 0.2464v) (B, — ®P,)*%2 — &,,0((T,, + 273)* — T4}, |

drT,,

= HlprPWW (21)
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Here, the first term signifies the convective heat transfer between the air and the water, the
second term accounts for the heat transfer due to the evaporation of water from the free surface
and the third term on the left hand side of the equation is the radiative heat transfer term between
the water and the sky. Hj is the depth of the water storage tank and p,, and Cp,, are the density
and specific heat capacity of water, respectively. The convective heat transfer coefficient
depends on the wind velocity, v and is given by equation 22 [220].

h. = 2.8+ 3v (22)
® is the relative humidity of the air and P, and P, are the saturated vapor pressures at the water
and ambient temperatures, respectively and can be calculated by equation 23 [220].

P = 3385.5 exp(—8.0929 + 0.97608(T + 42.607)°5) (23)
The effective sky temperature (given in equations 24-27) is calculated using the emissivity
expression given by Berdahl and Martin [202]. This model has been verified for several locations

in the United States, including locations in Nevada that are similar to Las Vegas, as shown in

Table 4.
Tsky = ES,'(%,S(Ta +273) (24)
0.711 056(po) 073(T‘7”")2 25
Esky = 0-711+ 006 750) + 073100 (25)

Here, the dew point temperature, Ty, can be obtained from relative humidity and ambient

temperature, which are used to calculate the vapor pressure, Pv and saturation vapor pressure, Ps

[221].
b (16.78Ta - 116.9) .
s = P\ T 12373 (26)
p =20
Y7100 C°
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Figure 51. Comparison of the analytical model with experimental data obtained by Tang et al.
[43, 186] in Sede Boger, Israel. The experimentally obtained humidity and wind speed values
were obtained from the article. (Copyright persmission in Appendix B.)
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Figure 51 shows the comparison of the above model with the experimental data obtained
by Tang and Etzion [43, 186]. The experiments were conducted on a shallow reservoir
measuring 117x117x22 cm and the temperature sensors were calibrated to <0.1°C. The ambient
conditions recorded with the experiment were used as input to the theoretical model. It can be
observed that the model results conform to the experimental data with a root mean square error
of 1.7 °C. However, since the model was verified with experimental data for a tank with small
depth in a humid climate, application to a large body of water in an arid climate has limitations.
The validation was done for a humid location but the model would be applied for Las Vegas
which has an arid climate. This may cause some error in the final results. Experimental
verification of the model for an arid location is needed to verify the accuracy of the results. The
results also depend on the aerosol concentration in the atmosphere, cloud cover, humidity and

wind speed which vary with the location.

5.4.2 Cooling Obtained at Night

The energy equation was solved at elemental time intervals (60 sec) and the temperature
of water was obtained as a function of time from 9:00 pm to 5:00 am for a typical summer night
(July 1) and a winter night (January 31) at Las Vegas. The relative humidity and wind speed
values were obtained from the TMY 3 data provided by NREL. Figure 52 and Figure 53 show the
results obtained for different values of reservoir depths when the initial temperature of water is
assumed to be the same for both cases. It can be observed that the temperatures obtained at the
end of 8 hours for both the cases were nearly the same even though the ambient temperatures
were very different (5°C and 40°C). This is due to the difference in relative humidity and the

wind velocity. For this location, the wind velocity is much higher (4m/s) during the summer

75



months compared to 2m/s during winter

. Hence the cooling obtained by evaporation is higher in

the summer.
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Figure 52. Temperature variation in the summer.
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Figure 53. Temperature variation in the winter.
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5.4.3 Effect of Humidity

Humidity directly affects the evaporative heat transfer rates and the dew point
temperature, which in turn affects the effective sky temperature and the radiative heat transfer
rate. So, the resulting water temperatures differ for locations with different humidities. The
nocturnal cooling model was studied for different values of relative humidities when the ambient
temperature and wind speed was fixed. Figure 54 and Figure 55 show two such cases when the
ambient temperatures were 15 and 35°C, respectively and the wind speed was 2 m/s. It can be
observed that when the ambient temperature is higher, change in humidity affects the water
temperature more. For 15°C ambient temperature, the difference in water temperature at the end
of 8 hours is only 2°C when the relative humidity changes from 10% to 90%; while for 35°C
ambient temperature, the final water temperature is about 5°C higher for 90% relative humidity

compared to that at 10%.
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Figure 54. Effect of humidity when ambient temperature is 15°C

77



N
(@»)

Wind speed =2 m/s
Ambient temperature = 35°C
O
<35 .
2
8
@ Relative humidities ——
830 —10%
£ —25%
- —50%
=79%
25 —90% ]
0 2 4 6 8
Time (hrs)

Figure 55. Effect of humidity when ambient temperature is 35°C

5.4.4 Effect of Wind Speed

Wind speed is another environmental factor that affects the performance of the nocturnal
cooling system. It directly influences the convective and evaporative heat transfer rates. As seen
from Figure 52 and Figure 53, higher wind speed and lower humidity in the summer resulted in
reservoir temperatures that were comparable to the temperatures obtained in the winter. Figure
56 and Figure 57 show the effect of wind speed on the water temperature when the ambient
temperatures were 15 and 35°C, respectively and relative humidity was 30%. It can be observed
that the varying wind speeds had a larger impact on the water temperature for lower ambient
temperature. When the ambient temperature was 15°C, the difference in temperature for 1m/s

and 5 m/s was ~10°C at the end of 8 hours while for 35°C, it was ~5°C.

78



N~
()

Water temperature (°C)

w
&n

w
K

)
&

N
2

Wind speed
—1mls
—2m/s
—3mls
—4m/s

—5mls

T
Relative humidity = 30%
Ambient temperature = 15°C

=

Figure 56. Water temperature for different wind speeds at 15°C ambient temperature

N
(&)

Water temperature (°C)

w
&

w
@

4
Time (hrs)

Wind speeds

N
&

N
e

—1mls
=2 mis
—3 m/s
—4 m/s
—5ml/s

T
Relative humidity = 30%
Ambient temperature = 35°C

=

4
Time (hrs)

Figure 57. Water temperature for different wind speeds at 35°C ambient temperature

79



5.4.5 Efficiency Improvement

Warm water coming out of the condenser enters the reservoir where it is cooled and the
cooler water is then used to condense the working fluid in the thermodynamic cycle. This adds
another term in the energy balance equation for the incoming water stream. The effect of
nocturnal cooling system on the efficiency of the cycle was analyzed when the heat source
temperature was 175°C and R134a was used as the working fluid for approximately 100kW
power generation. It was assumed that the reservoir is cooled during the night from 9:00 pm to
5:00 am and is covered during the day. The cooling water from the condenser of the SRC
continues to pass through the reservoir, thus increasing its temperature during the day time.
Figure 58 shows the water temperature variation over a period of 10 days for different reservoir
sizes and Figure 59 shows the corresponding variation in the SRC efficiency. The hourly
variation during the second night is shown in Figure 60 and Figure 61. It can be observed that the
improvement obtained by increasing the surface area becomes smaller beyond 250 m? reservoir
area. Different input parameters are listed in Table 10.

Table 10. Input parameters for SRC coupled with nocturnal cooling system.

S. No. Input parameter Value
1. Pump efficiency 85%
2. Turbine efficiency 85%
3. Relative humidity 30%
4. Wind speed 2 m/s
5. Tank height 0.5m
6. Average ambient temperature 30°C
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Figure 61. Variation in SRC efficiency during the night for different surface area.
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It can be observed from the figures that larger surface area provides more cooling and
hence lower reservoir temperatures. For surface area less than 250 m?, the cooling obtained at
night is not sufficient for the load of ~100 kW power generation and the temperature of the water
increases above the starting value of 40°C. This leads to lower values of efficiency as shown in
Figure 61. In order to successfully employ nocturnal cooling system in the condenser, the surface

area should be at least 250 m? for the given conditions.

5.4.5.1 Covered vs. Uncovered

If the ambient temperature is low, the reservoir may not need to be covered during the
day as the heat can be rejected even during the day. Figure 62 compares the temperature
variation of the reservoir for different values of average ambient temperatures fora20 m x 10 m
surface that stays exposed during the entire time with the case when it is covered during the day.
Other conditions remain the same as given in Table 10. It can be observed that for these
conditions the nocturnal cooling system performed better when it was left uncovered during the
day. The corresponding efficiencies of the SRC are shown in Figure 63.
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Figure 62. Comparison of water temperature for covered and uncovered cases.
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Figure 63. SRC efficiency for covered and uncovered cases.

The reason behind this behaviour is the heat loss due to evaporation. The heat gain during
the day is compensated by the evaporative heat loss. However, the evaporative heat loss results
in loss of water volume as well. So make up water is needed after the system has been
operational for a prolonged period of time. Figure 64 shows the amount of water lost in kg for
both covered and uncovered cases when the ambient temperature was 30°C. It can be observed
that at night time the water loss from the reservoir which is covered during the day is more than
the reservoir which stayed uncovered all the time. This is because the temperature of the covered
reservoir was higher than the uncovered reservoir and hence the temperature gradient between
the water and the ambient was more. This resulted in greater water loss at night. Nonetheless, the
overall water loss was greater for the uncovered reservoir. The total amount of make-up water

required for different ambient temperatures is given in Table 11. The area of the reservoir was
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kept constant at 200 m? It can be observed that the water lost is a very small percentage of the

total volume.
0.1r Tank height =0.5m  Tank area = 200m’
. ; : i ; ’\
0.08 \ \ \ \
o)
~
» 0.06
1)
2
EJ 0.04+
=
0.02+ Relative humidity = 30%
Wind speed = 2 m/s —Uncovered
0 Ambient temperature=30°C —Covered
0 2 4 6 8 10
Days

Figure 64. Water loss from the reservoir for covered and uncovered cases.

Table 11. Total water lost over 10 days.

Ambient Covered/Uncovered Total water loss over | Percentage loss for the
> e temperature during the day 10 days (kg) whole volume
1 15°C Covered 33.2 0.06
2 15°C Uncovered 40.6 0.08
3 30°C Covered 375 0.07
4 30°C Uncovered 50.4 0.10
5 45°C Covered 415 0.08
6 45°C Uncovered 61.1 0.12
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CHAPTER 6: NOVEL CONDENSER DESIGN

6.1 Introduction

The different passive cooling techniques described in the previous chapter can be
combined together to achieve superior performance of the condenser which affects the efficiency
of the SRC much more significantly. In this chapter, two possible configurations of passive
cooling systems have been presented that may be used for a novel condenser design and their

effects on the SRC efficiency have been analyzed.

6.2 Condenser Design 1

In this configuration, the water in the storage tank is cooled by both underground cooling
and radiative cooling. A schematic of such a configuration is shown in Figure 65. The reservoir
stays uncovered all the time to allow cooling via convective and evaporative methods even
during the day time and radiative cooling during the night. During the day, water from the
reservoir is passed through underground pipes, if the underground soil temperature is lower than
the water temperature, where it rejects heat. If the underground temperature gets higher than the
water temperature, the water is not pumped through the underground pipes and only sky/air
cooling is used. The cooled water from the reservoir is then directly used in a water cooled
condenser for condensing the working fluid in the SRC. This condenser can be a shell-and-tube,
double pipe or plate type heat exchanger. Detailed design of the heat exchanger is beyond the

scope of this study.
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Figure 65. Schematic of configuration 1. Temperature in the shell-and-tube condenser is lowered
by using passive cooling.

6.2.1 Results

The feasibility of using the configuration shown in Figure 65 was investigated for the
condenser of a SRC. The operating parameters were selected based on the analyses of the
previous chapters and are summarized in Table 12. The system was studied for an operating
period of 5 days in July at Las VVegas when the ambient temperature is approximately 40 °C. The
ambient conditions were obtained using the TMY 3 data provided by NREL. It was assumed that
the underground system was operational for 16 hours during the day and was turned off for 8
hours during the night to allow recharging of the soil temperature similar to the experimental and
theoretical analysis by Goswami and lleslamlou [100, 101]. Figure 66 and Figure 67 show the

variation in reservoir temperature and the corresponding variation in the efficiency of the SRC,
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respectively for different surface area of the reservoir. It can be observed that the efficiency of
the system improved by 2-2.5% when the new condenser design with largest surface area was
used. In for the smallest area, efficiency improved by 1-1.5%. Figure 68 (a) and (b) show the
variation in reservoir temperature for different underground pipe area when the reservoir size
was kept constant at 250 m? and 100 m® From figure (a), we notice that the effect of
underground cooling was negligible when the reservoir size was large. However, for smaller size
of the reservoir, cooling obtained by underground pipes became significant. The sudden change
in the slope of the curve denotes the time when the ground cooling was turned on or off The
corresponding efficiencies of the SRC are shown in Figure 69 (a) and (b). It can be observed that
the efficiency improvement for larger reservoir area of 250 m? was only about 0.1% when the
underground pipe area increased from 21 m? to 106 m? while it improved by 0.5% for the similar
increase in the underground pipe area when the reservoir area was 100 m®.

Table 12. Design and operating parameters used for the condenser.

S. No. Input parameter Value
1. Location Las Vegas
2. Average ambient temperature 40°C
3. Tank height 0.5m
4, Underground pipe length 100 m
5. Pipe diameter 2.25¢cm
6. Power capacity 100 kw
7. Working fluid R134a
8. Heat source temperature 175°C
9. Condenser heat exchanger effectiveness 75%
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Figure 67. Efficiency of a 100 kW SRC for different reservoir area.
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Figure 68. Effect of underground pipes on the reservoir temperature.
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Figure 69. Effect of underground pipes on the efficiency of a 100 kW SRC.
Figure 70 and Figure 71 show the variation in the reservoir temperature when the system
was operational for the whole year. The underground cooling system was used only when the
difference in the soil temperature and the reservoir temperature was more than 5°C. The average

heat transfer rate per unit power generation per unit area was calculated for both the technologies
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for the time they were operation. It was 3.15 kW/kWe/m? due to the radiative cooling system

was while for the ground cooling system, the value was 1.4 kW/kWe/m?.

)

Reservoir temperature (°C

Heat transfer per unit

w
o

N
9]

N
o

—
(9]

Location: Las Vegas
Reservoir area = 200 m?

—_
o

Reservoir depth = 0.5 m

Underground pipe length = 100 m

12

50 1 2 3 4 5 6 7 8 9 10 11
Months
Figure 70. Reservoir temperature variation over a year.
6 T T T T | | |
i Reservo%r area = 200 m’ — Ground cooling
g 5t Reservoir depth =0.5 m — Radiative cooling |
+ | Underground pipe length = 100 m
S 4| Location: Las Vegas
3
=3
e
32
g
o 1} d
Q
O[I | | | | | |
o 1 2 3 4 5 6 7 8 9 10 11
Months

12

Figure 71. Comparison of heat transfer rate per unit power generation per unit area for ground
cooling and radiative cooling over a year.
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6.3 Condenser Design 2

In this design, the earth-air-heat-exchanger is coupled with an air-cooled condenser
where the working fluid in vapor state enters at the top and the leaves from the bottom in liquid
state as shown in Figure 72. Air coming out of the underground pipes in blown into the air-
cooled condenser from the bottom. This configuration eliminates the use of water for the power
plant application. At a location where water is not available, e.g. a solar power plant located in a
desert area, or the use of water is not allowed by the local government due to environmental
concerns, air-cooled condensers are the only option. So, this configuration can offer a solution by
significantly improving the efficiency of the power plant without the need of any water.
However, the system cannot be used continuously for a long period of time as the underground
soil needs to be recharged. So, it is turned off at night and cooler night air is used directly in the

air-cooled condenser.
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Figure 72. Schematic of configuration 2.
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Selecting an efficient air-cooled condenser is also very important for this configuration.
Several designs are already in market and more are being investigated. The most common design
is a plate and fin type air-cooled condenser as shown in Figure 73*. The working fluid enters the
condenser at the top and passes through the thin tubes while the cooling air is passed through the
finned chambers to increase the contact area between the heat exchanging fluids. The condensed
fluid is obtained at the bottom and is sent back to the SRC. The detailed optimization of the ACC
depends on a number of factors, such as X, Xr, Xp and fin pitch etc., which is beyond the scope

of this study but can be found in a great detail in [222]
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Figure 73. Schematic of a plate-fin-and-tube heat exchanger. (a) overall layout (b) hexagonal
layout for a single fin with the description of major geometric aspects (redrawn from [223]).

* Figures were drawn by Pardeep Garg, Department of Mechanical Engineering, Indian Institute of Science,
Bangalore, India.
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6.3.1 Results

The condenser system was studied for 5 days in July for Las Vegas. It was assumed that
the system was operational from 5:00 am to 9:00 am and was turned off for 8 hours during the
night for thermal recharge of the underground soil [100, 101]. The ACC then had to use the
ambient air directly, which was at relatively higher temperature. So, the efficiency of the SRC

was lower during night as shown in Figure 74.
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Figure 74. Efficiency of SRC for condenser design 2.
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CHAPTER 7: SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

A supercritical Rankine cycle was analyzed for low temperature power generation and
the feasibility of using a condenser coupled with passive cooling system was investigated. Six
organic fluids were selected based on a previous study by Chen et al. where potential working
fluids were screened for power generation applications and environmental safety. The optimum
efficiency for each fluid at the given conditions is reported. Use of earth-air-heat-exchanger,
ground coupled water cooling system and night sky radiative cooling and their effects on the
SRC efficiency were studied.

The following conclusions can be made from this study:

e The optimum pressure ratio depends on the heat source temperature and increases with
temperature.

e Among the working fluids considered in the analysis (R23, R32, R125, R134a, R143a,
R170, R218), the highest efficiency was obtained for R134a for the source temperatures
of 125-200°C.

e For higher condensation temperatures, the thermal efficiency is higher for lower pressure
ratios.

e Use of an EAHE improves the efficiency of the SRC and reduces daily fluctuations.

e Larger depths of the EAHE improve the efficiency of the SRC but the improvement was
negligible beyond a depth of 4 m.

e Temperature of soil 10 cm from the ground coupled heat exchanger increased by 2 °C
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over four months. The increase in soil temperature resulted in a decrease in efficiency
from 17.7% to 17.1%, a 3% decrease.

Nocturnal cooling can be used to reject heat from a power plant. However, the
effectiveness depends on the atmospheric conditions. Because of lack of experimental
data, the study is inconclusive.

When the reservoir was not covered during the day, additional cooling was obtained due
to evaporation. However, the improvement in cooling needs to be weighed against the
additional water loss associated with evaporation.

The condensers coupled with the passive cooling systems improved the efficiency of the
cycle by 2-2.5%. The average heat transfer rate per unit power generation per unit area
due to the radiative cooling system was 3.15 kW/kWe/m? while for the ground cooling
system, it was 1.4 kW/kWe/m?.

Nocturnal cooling model was validated with experimental data for a tank with a small
depth in a humid climate due to lack of experimental data in the literature. So its accuracy
for applications with large bodies of water and different climates is questionable.
However, the performance for a dry location with less atmospheric pollution might be
better than prediction from this model.

The particulate matter in the atmosphere, such as aerosol, dust particles and other
pollutants, that affect the performance were not considered in the model. Even though the
experimental data was obtained for a city-based location, the application is expected to be
at a low temperature power plant located far away from the city. So the performance will
not be affected by the city air pollution. However, if it is located at a desert location, the

sand particles will interfere with the overall performance of the cooling system.
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7.1 Recommendations for Future Work

This study was performed to identify technical feasibility of the various systems. In order
to implement the technologies described here, further practical details need to be analyzed
including the economic analysis. The author recommends following direction for future work:

e Economic comparison of different working fluids over a long period of time should be
done.

e Although mixtures didn't show any improvement compared to the pure working fluid in
this study but it was limited to only two sets of mixtures. In order to better answer the
question of pure working fluids vs. mixtures, additional mixtures of organic fluids should
be investigated for other operating conditions to identify the best working fluid(s) for any
given set of source and sink temperatures.

e An integrated model of the air-cooled and the water-cooled condensers with the passive
cooling system should be developed for the complete system design.

e An economic analysis should be done to study the viability of using these cooling
systems.

e Other configurations for passive cooling systems that have been described in the
literature with detailed optimization of the air and water cooled condensers should be
studied in the future. An example is shown in Figure 75 where the water in the reservoir
is cooled by ground cooling and sky/air cooling. This cold water can then be used to cool

the air before it enters an air-cooled condenser.
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Figure 75. Schematic for configuration 3. Temperature in the air-cooled condenser is lowered by
using passive cooling.
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Appendix A: MATLAB Codes

A.1 Thermodynamic Cycle
A MATLAB code was developed to model the thermodynamic cycle shown in Figure 15.
This section shows the code that was used to analyze different components of the system. It was

modified from the code first developed by Saeb M. Besarati®.

clc
clear all
fluid = 'R134a.fld’; %Working Fluid
eta_p =0.85;
eta_t=0.85;
T0 =0+273.15; % Reference temperature for exergy analysis (K)
Tsink = 30+273.15; % Cooling water input temperature (K)
Tsinkout = Tsink+5; % Cooling water output temperature (K)
Ts_out = 80+273.15; % Source output temperature (K)
m=1; % Mass flow rate of the working fluid (kg/sec)
eta HX =0.75; % Recuperator heat exchanger effectiveness
Pl = refpropm('P',"T", Tsink+10,'Q",0,fluid); % Cycle low pressure
Tcrit = refpropm('T','C",0,",0,fluid); % Critical Temperature
Pcrit = refpropm('P','C",0,",0,fluid); % Critical Pressure
i=1;
for(Ts_in = 125:5:175) % Source inlet temperature (C)
Ts(i) = Ts_in+273.15; % Conversion to K
=L
for (Ph = 3000:100:7500) % Cycle high pressure (kPa)
% Pump inlet
P1(j) = PI; % kPa
H1(j) = refpropm('H','P',P1,'Q",0,fluid); % J/kg
S1(j) = refpropm('S','P',P1,'Q",0,fluid); % J/kg/K
T1(j) = refpropm('T",'P',PI,'Q",0,fluid); % K

% Pump outlet
P2(j) = Ph;

> Doctoral candidate in Chemical Engineering, University of South Florida, Tampa, FL.
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S2(j) = S1(0);

H21(j) = refpropm('H','P',Ph,'S",S1(j),fluid);

H2(j) = H1()+((H21(j)-H1())/eta_p);

T2(j) = refpropm('T",'P",Ph,'H",H2(j),fluid);

W_p(j) = (H2(j)-H1(j))/1000; % kd/kg

% Turbine input

P4(j) = Ph;

TA4(j) = Ts(i)-10;

H4(j) = refpropm('H','T",T4(j),'P',Ph,fluid);
S4(j) = refpropm('S',T', T4(j),'P',Ph,fluid);

% Turbine output

S5()) = S4());

P5(j) = PI;

H51(j) = refpropm('"H','P',P5(j),'S",S5(j),fluid);
H5(j) = H4(j)-eta_t*(H4(j)-H51()));

T5()) = refpropm(T','P',P5(j),'H",H5(j),fluid);
Hf = refpropm('H','P',P5(j),'Q",0,fluid);

Hg = refpropm('H','P',P5(j),'Q",1,fluid);

x5(j) = (H5(j)-Hf)/(Hg-Hf);

if (x5(j)<0.95)
fprintf("Vapor quality at turbine outlet is low at pressure %0.2f \n',Ph);
end

P3(j) = Ph;
P6() = P5();

% Recuperator heat exchanger
if((T5(j)-T2(j))<5)

T3(3j) = T2(j);

S3(j) = S2(j);

H3(j) = H2(j);

T6(j) = T5());

S6(j) = S5());

H6(j) = H5());

else
H31(j) = refpropm('H',"T", T5(j),'P',Ph,fluid);
H61(j) = refpropm('H','T", T2(j),'P',PI,fluid);
Q1(j) = H31()-H2(j);
Q2(j) = H5(j)-H61();
Q@) = min(Q1(),Q2()));

H3(j) = H2(j)+eta_HX*Q(j);
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T3(j) = refpropm('T",'P',Ph,"H',H3(j),fluid);
S3(j) = refpropm(’S','P',Ph,"H',H3(j),fluid);

H6(j) = H5(j)-eta_HX*Q(j);
T6(j) = refpropm('T",'P',PIl,'H",H6(j),fluid);
S6(j) = refpropm(’S','P',P1,"H',H6(j),fluid);
x6(j) = (H6(j)-Hf)/(Hg-Hf);

end

% Heat source

T7(j) = Ts(i);

P7(j) = refpropm(’P','T", T7(j),'Q’,0,'water’);
H7(j) = refpropm('H','T", T7(j),'Q",0,'water";
S7(j) = refpropm('S','T", T7(j),'Q",0,'water");

T8(j) = Ts_out;

P8(j) = P7();

H8(j) = refpropm(*H','T",T8(j),P',P8(j), water);
S8(j) = refpropm('S','T', T8(j),'P',P8(j), water");
m_hot(j) = m*(H4(j)-H3(j))/(H7(j)-H8());

% Heat sink

T9(j) = Tsink;

HI(j) = refpropm(*H','T",T9(j),'P',100,'water");

S9(j) = refpropm('S','T', T9(j),'P',100,'water");

Tcond(j) = refpropm('T','P',P1,'Q",1,fluid); % Temperature at which working fluid
starts condensing

Qw(j) = m*(H5(j)-H6(j)); % Heat taken out from the working fluid

eta_cond =0.8; % Condenser heat exchanger effectiveness

Qs(j) = eta_cond*Qw(j);

T10(j) = Tsinkout;

H10(j) = refpropm('H',"T", T10(j),'P',100,'water’);

S10(j) = refpropm('S','T", T10(j),'P',100,'water");

m_cool(j) = Qs(j)/(H10(j)-H9(j)); %Mass flow rate of the cooling water
% Energy efficiency of the cycle

W_t(j) = (H4(j)-H5(j))/1000; %kJ/kg

Qin(j) = (H4(j)-H3(j))/1000; %kJ/kg

W_net(j) = (W_t(j)-W_p(j)); %kJ/kg

eff(j) = (W_t(j)-W_p(j))/Qin(j); %Cycle efficiency

% Exergy Efficiency of the cycle
E_t(j) = W_t(j)-TO*(S5(j)-S4(j))/1000; % Exergy output from the turbine (kJ/kg)
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E_p() = W_p(j)-T0*(S2(j)-S1(j))/1000; % Exergy input in the pump (kJ/kg)

Ex_net(j) = m*(E_t(j)-E_p(j)): % Net exergy output (kJ)

E_h(j) = m_hot(j)*((H4(j)-H3(j))-T0*(S4(j)-S3(j))); % Exergy input from the heat source
(kJ)

effex(j) = (Ex_net(j))/(E_h(j)); % Exergy efficiency of the cycle

% Exergy efficiency of evaporator
E_fh(j) = m*((H4()-H3(j)-T0*(S3(1)-52(1))));
eta_ex_h(j) = E_fh()/E_h());

% Exergy efficiency of the condenser

E_c(j) = m_cool(j)*((H10(j)-H9(j))-T0*(S10(j)-S9(})));
E_fc(j) = m*((H6(j)-H1(j)-T0*(S6()-S1(1))));
eta_ex_c(j) = E_c(j)/E_fc(j);

% Total exergy efficiency
eta_ex_tot(j) = effex(j)*eta_ex_h(j)*eta_ex_c(j);

% Exergy in the recuperator
E23(j) = (H3(j)-H2()))-T0*(S3(j)-S2()));
E56(j) = (H6()-H5(j))-T0*(S6())-S5()));
pressure(j) = Ph; % Pressure matrix
j=itL
end
Pr(i) = pressure(eff==max(eff)); % Pressure at maximum efficiency
eta(i) = max(eff)*100; % Maximum energy efficiency for the given temperature
eta_ex(i) = effex(eff==max(eff))*100; % Exergy efficiency at maximum energy efficiency
for the given temperature

i=i+1;
end

plot(Ts,eta)

A.2 Earth-Air-Heat-Exchanger
This MATLAB code was used to model the earth-air-heat-exchanger shown in Figure 35.

clc
clear all

% Geometry
d = 0.25; % Diameter of pipe (m)
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L = 25; % Length of pipe
1=0.1; % Differential length
Ap = I*2*pi*d/2;

R=4d/2; % Radius

Dp =2; % Depth

% Air Properties

m = 0.00222;

rho = refpropm('D’,'T",300.15,'P',100, air.ppf’);
k1 = refpropm('L’,'T",300.15,'P',100,air.ppf");
Cp = refpropm('C','T",300.15,'P',100, air.ppf’);
Mu = refpropm('V','T",300.15,'P',100, air.ppf");

% Circumferential area of the pipe element

% Mass flow rate (kg/s)
% Density of air

% Thermal conductivity
% Specific heat

% Viscosity

V = m/rho/3.1416/R"2;
Re_d = rho*V*d/Mu;
Pr = Cp*Mu/k1,;

% Soil Properties
k =0.159;

Cp =800;

den = 1600;
alpha = k/Cp/den;

% Temperature variations
Th=273.15+19.5;
Tav=273.15+19.5;

As =10;

Aa = 20;

t_total = 3600*24*365;
t_step = 3600;

tl_total =t_total/t_step;
hour = t_step/3600;

% Initialization

% Air velocity
% Reynold's number
% Prandtl number

% Coefficient of thermal conductivity
% Specific heat (J/kg/K)

% Density

% Thermal diffusivity of soil (m2/sec)

% Yearly average bulk earth temperature
% Annual average air temperature

% Surface temperature amplitude

% Air temperature amplitude

% Total time (S)
% Time step in seconds
% Total number of time steps

Ts(1,1) = Tb; % Surface temperature
T soil(1,1,1) = Tb - As*exp(-Dp*(2*pi/365)*23.5)*sin(2*pi/365*(0-23.5*Dp)+pi/2);
soil temperature at the given depth

% Initial

q(1,1) =0; % Heat transfer rate before the flow starts

delta(1) = 0; % Penetration depth before the flow starts

Te(1) = Tb - As*exp(-Dp*(2*pi/365)*23.5)*sin(2*pi/365*(0-23.5*Dp)+pi/2);
temperature at the given depth

Tair(1) = Tav - Aa*sin(2*pi/365*(0)+pi/2); % Initial air temperature

% Initial soil

% Assigning memory
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T = Tav*ones(L/I,1);
Ts = Tb*ones(L/I,1);
g = 0*ones(L/I,1);
rl) =R;

T s=Thb;

t1=2;

while (t1<=t1_total)
t = t1*t_step;
days = floor(t/24/3600);
time = t-24*3600*days;

Te(tl) = Th - As*exp(-Dp*(2*pi/365)*23.5)*sin(2*pi/365*(days-23.5*Dp)+pi/2);
Tair(tl) = Tav - Aa*sin(2*pi/365*(days)+pi/2);

% ERB'S MODEL (1984)
a=2*pi*(time/3600-1)/24,

if(time<=16)

T(1,t1)=Tair(t1)+15*(0.4632*Ccos(a-3.805)+0.0984*cos(2*a-0.360)+0.0168*cos(3*a-
0.822)+0.0138*cos(4*a-3.513));

else
T(1,t1) = Te(tl);
end

delta(tl) = 2.3*sqrt(alpha*t); % Penetration depth

n=2;
while(n*l<=L)

h = k1/d*0.023*(Re_d"0.8)*(Pr"0.33);
U = Ap*h/m/Cp;

% Assuming air remains unsaturated
q(n,tl) = h*(T(n-1,t1-1)-Ts(n-1,t1-1));

Ts(n,t1) = Te(tL) - q(n,t1)*R/k/(delta(tl)/R)*(1+delta(tL)/R-R/R) 2*(1/(delta(tL)/R +
2*log(1+delta(tl)/R)))*log(L/(1+delta(tl)/R));

T(n,t1) = ((1-U/2)*T(n-1,t1) + U*Ts(n,t1))/(1+U/2);

% Soil temperature variation around the pipe
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rl =R/2;
ml=2;

while(m1*rl1<2)
r(mil) = r(m1-1)+rl;

T _soil(n,t1,m1) = Te(t1)-g(n,t1)*R/k/(delta(tl)/R)*(1+delta(t1)/R-
r(m1)/R)"2*(1/(delta(tl)/R+2*log(1+delta(t1)/R)))*log(r(m1)/R/(1+delta(t1)/R));

ml=mil+1;
end
n=n+1;
end
Temp(tl) = T(n-1,t1);
if(Tair(tl)<Te(tl))

Temp(tl)=Tair(tl);
fprintf(Air is colder than soil \n’);

end

t1=t1+1;
end
dimwrite (‘air_temp.rtf', Tair,"\n’)
dimwrite(outlet_I_10.rtf", Temp,"\n")

dimwrite('ground_temp.rtf', Te,"\n")
dimwrite(‘along_the_length', T(:,24*30),\n")

A.3 Ground Coupled Water Cooling
This MATLAB code was used to model the ground coupled water cooling system shown
in Figure 44.

clc
clear all

% Design inputs
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Di_GHX =0.025; % Inner diameter

Do GHX =0.03; % Outer diameter
Twl = 35; % Inlet water temperature
Tw2 = 30; % Outlet water temperature

% Soil properties

Ts=25; % Mean soil temperature
Ks = 0.54; % Thermal conductivity
Us = 12; % Overall heat transfer coefficient
i=1;
for(n = 1:10)
% System operational inputs
Qc =4.1/0.85*1000; % Cooling load Qs(eff==max(eff))/wnet(eff==max(eff))/Heat
exchanger effectiveness
Qb=Qc/n;
% Water properties
Kw = 0.623; % Thermal conductivity (W/m-K)
mu = 719.13 * 107(-6); % Dynamic viscosity (Pa-s)
rho = 994; % Density (kg/m3)
Cpw =4179.3; % Specific heat
mw = Qb/Cpw/(Tw1-Tw2); % Mass flow rate of water

vw = mw/rho*4/pi/Di_GHX"2;
Re = rho*vw*Di_GHX/mu;

Pr = Cpw*mu/Kw;

Nu =0.023 * Re”0.8 * Pr™0.33;
hw = Kw/Di_GHX*Nu;

% Resistance due to water flow
Rw = 1/(2*hw*pi*Di_GHX);

% Resistance due to pipe wall
Kp =0.3979; %Thermal conductivity of polyethylene pipe (W/m-K)
Rp = log(Do_GHX/Di_GHX)/(4*pi*Kp);

% Resistance due to soil
F =580/1225;
Rs = F/(2*pi*Us*Do_GHX);

% Length of pipe needed

L(i) = Qb / ((Twl+Tw2)/2-Ts) * (Rw+Rp+Rs);
Area(i) = L(i)*pi*(Di_GHX+Do_GHX)"2/4*n;
NO(i) = n;
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Ltotal(i) = L(i)*n;
i=i+1;
end

plot(L,'0")

A.4 Night Sky Radiative Cooling
This MATLAB code was used to model the night sky radiative cooling system described
in section 5.4.

clc
clear all

phi=0.3; % Relative humidity (%) (20 in summer, 30 in winter)
v =2.0; % Wind speed (m/s) (4 in summer, 2 in winter)
hc = 2.8+3*v; % Convective heat transfer coefficient

H=0.5; % Height of the tank (m)
rhow =998; 9% Density of water (kg/m3)
Cpw =4186; % Specific heat of water
ew =0.9;

sig = 5.67*107(-8); %J/s/Im2/K4

Tair =5;

Tw(l) = 40;

t total = 8*3600;
t0 = 60;

i_total =t _total/tO;

i=1;
while(i<=i_total)

t(i) = i*t0; %Time

al(i) = 2*pi*(t(i)/3600-1)/24; %Erb's model parameter for daily temperature variation

Ta(i) = Tair+15*(0.4632*cos(al(i)-3.805)+0.0984*cos(2*al(i)-0.360)+0.0168*cos(3*al(i)-
0.822)+0.0138*cos(4*al(i)-3.513)); %(C)

Pa(i) = 3385.5*exp(-8.0929+0.97608*(Ta(i)+42.607)"0.5);

Pw(i) = 3385.5*exp(-8.0929+0.97608*(Tw(i)+42.607)"0.5);
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% Sky temperature calculation

y(i) = 1/17.27*log(phi) + Ta(i)/(237.3+Ta(i));

Tdp(i) = 237.3*y(i)/(1-y(i)); % Dew point temperature (C)
esky(i) = 0.741 + 0.0062*Tdp(i); % Sky emissivity
Tsky(i) = esky(i)*0.25 * (Ta(i)+273); % Sky temperature (K)

% Heat transfer rates

Qc(i) = he*(Ta(i) - Tw(i)); % Convectiv gain

Qe(i) = (0.2253+0.2464*v)*(Pw(i)-phi*Pa(i))"0.82; % Evaporative loss
Qr(i) = ew*sig*((Tw(i)+273)"4-Tsky(i)4); % Radiative loss

Q(i) = Qc(i) - Qe(i) - Qr(i);

i=i+1;

Tw(i) = Tw(i-1) + t0*Q(i-1)/H/rhow/Cpw; % Water temperature (C)

end

A.5 SRC with Nocturnal Cooling
This MATLAB code was used to model efficiency improvement in the SRC when
combined with nocturnal cooling.

clc
clear all

% SRC parameters
fluid ='R134a.fld; %Working Fluid

eta_p =0.85;

eta t=0.85;

TO =0+273.15; % Reference temperature for exergy analysis (K)
Ts_out = 80+273.15; % Source output temperature (K)

m=3; % Mass flow rate of the working fluid (kg/sec)
m_cool = 21, % Mass flow rate of cooling water (kg/sec)
eta HX =0.75; % Recuperator heat exchanger effectiveness
Tcrit = refpropm('T",'C',0,",0,fluid); % Critical Temperature

Pcrit = refpropm('P','C',0,",0,fluid); % Critical Pressure

Ts in=175; % Source inlet temperature (C)
Ts=Ts_in+273.15; % Conversion to K

% Nocturnal cooling system parameters
phi =0.3; % Relative humidity (%)

V=2, % Wind speed (m/s)
H=0.5; % Height of the tank (m)
L = 20; % Length of the tank (m)
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W = 20; % Width of the tank (m)

A=L*W; % Top surface area

rhow =998; 9% Density of water (kg/m3)

Cpw =4186; % Specific heat of water

ew =0.9; % Emissivity of reservoir

sig =5.67*10"(-8); %J/s/Im2/K4

Tair = 30; % Average ambient temperature

hc = 2.8+3*v; % Convective heat transfer coefficient

Tw(l) = 40;

Tsink(1) = 40;

t total = 24*10*3600;
t0 = 600;

i_total =t _total/tO;

i=1;
while(i<=i_total)

t(i) = i*t0; %Time

days (i) = floor(t(i)/24/3600);

time(i)=t(i)-24*3600*days(i);

al(i) = 2*pi*(t(i)/3600-1)/24; %Erb's model parameter for daily temperature variation

Ta(i) = Tair+15*(0.4632*cos(al(i)-3.805)+0.0984*cos(2*al(i)-0.360)+0.0168*cos(3*al(i)-
0.822)+0.0138*cos(4*al(i)-3.513)); %(C)

Pa(i) = 3385.5*exp(-8.0929+0.97608*(Ta(i)+42.607)"0.5);

Pw(i) = 3385.5*exp(-8.0929+0.97608*(Tw(i)+42.607)"0.5);

% Sky temperature calculation

y(i) = 1/17.27*log(phi) + Ta(i)/(237.3+Ta(i));

Tdp(i) = 237.3*y(i)/(1-y(i)); % Dew point temperature (C)
esky(i) = 0.741 + 0.0062*Tdp(i); % Sky emissivity
Tsky(i) = esky(i)0.25 * (Ta(i)+273); % Sky temperature (K)

% If the reservoir is covered during the day
if(time(i)<=5*3600 || time(i)>=21*3600)
% Heat transfer rates
Qc(i) = A*hc*(Ta(i) - Tw(i)); % Convective gain
Qe(i) = A*(0.2253+0.2464*v)*(Pw(i)-phi*Pa(i))"0.82; % Evaporative loss
Qr(i) = A*ew*sig*((Tw(i)+273)4-Tsky(i)4); % Radiative loss

else
Qc(i) = 0;
Qe(i) = 0;
Qr(i) = 0;
end
%
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%
%
%
%
%
%

% If the reservoir stays uncovered all the
Qc(i) = A*hc*(Ta(i) - Tw(i));

Qe(i) = A*(0.2253+0.2464*v)*(Pw(i)-phi*Pa(i))"0.82; % Evaporative loss

Qr(i) = A*ew*sig*((Tw(i)+273)4-Tsky(

% SRC optimization

time
% Convective gain

i)™); % Radiative loss

PI(i) = refpropm('P','T", Tw(i)+273.15,'Q",0,fluid);% Cycle low pressure

=1
for (Ph = 3000:100:7500)

% Pump inlet

P1(j) = PI(i); % kP
H1(j) = refpropm('H','P',PI(i),'Q",0,fluid);
S1(j) = refpropm('S','P',PI(i),'Q",0,fluid);
T1(j) = refpropm(T','P',PI(i),'Q",0,fluid);

% Pump outlet
P2(j) = Ph;
S2(j) = S1());

% Cycle high pressure (kPa)

a
% J/kg
% J/kg/K
% K

H21(j) = refpropm('"H','P',Ph,'S",S1(j),fluid);

H2(j) = H1(j)+((H21(j)-H1(j))/eta_p);

T2(j) = refpropm('T",'P',Ph,'H',H2(j),fluid);

W_p(j) = (H2(j)-H1(j))/1000;

% Turbine input
P4(j) = Ph;
T4(j) = Ts-10;

%kJ/kg

H4(j) = refpropm('H", T", T4(j),'P",Ph,fluid);

S4(j) = refpropm('S','T', T4(j),'P',Ph,fluid);

% Turbine output
S5()) = S4();
P5(j) = PI(i);

H51(j) = refpropm('"H','P',P5(j),'S",S5(j),fluid);

H5(j) = H4(j)-eta_t*(H4()-H51());

T5(j) = refpropm('T",'P',P5(j),"H',H5(j),fluid);

Hf = refpropm('H','P',P5(j),'Q",0,fluid);
Hg = refpropm('H','P",P5(j),'Q",1,fluid);
x5(j) = (H5(j)-Hf)/(Hg-Hf);

if (x5(j)<0.95)

fprintf("Vapor quality at turbine outlet is low at pressure %0.2f \n',Ph);

end
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P3(j) = Ph;
P6() = P53);

% Recuperator heat exchanger
if((T5(j)-T2(j))<5)

T3() = T2();

S3(j) = S2(j);

H3(j) = H2());

T6(j) = T5());

S6(j) = S5());

H6(j) = H5());

else
H31(j) = refpropm('H',"T", T5(j),'P',Ph,fluid);
H61(j) = refpropm(‘H','T", T2(j),'P",PI(i),fluid);
Q1(j) = H31()-H2());
Q2(j) = H5(j)-H61());
Q@) = min(Q1(),Q2()));

H3(j) = H2(j)+eta_ HX*Q(j);
T3(j) = refpropm(‘T",'P',Ph,'H',H3(j),fluid);
S3(j) = refpropm('S','P',Ph,'H’,H3(j),fluid);

H6(j) = H5(j)-eta_HX*Q());
T6(j) = refpropm(T','P",PI(i),'"H",H6(j),fluid);
S6(j) = refpropm('S','P",PI(i),"H’,H6(j),fluid);
x6(j) = (H6(j)-Hf)/(Hg-Hf);

end

% Heat source

T7() =Ts;

P7(j) = refpropm('P','T", T7(j),'Q',0,' water");
H7(j) = refpropm('H','T", T7(j),'Q",0,'water");
S7(j) = refpropm('S',' T, T7(j),'Q",0,'water’);

T8(j) = Ts_out;

P8(j) = P7(j);

H8(j) = refpropm('H','T",T8(j),P',P8(j), water');
S8(j) = refpropm('S','T', T8(j),'P',P8(j), water");
m_hot(j) = m*(H4(j)-H3(j))/(H7()-H8());

% Heat sink

T9(j) = Tw(i)+273.15;
HI(j) = refpropm(*H','T",T9(j),'P',100,'water");
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S9(j) = refpropm('S',T',T9(j),'P',100,'water");

Tcond(j) = refpropm('T",'P',PI(i),'Q",1,fluid); % Temperature at which working fluid
starts condensing

Qw(j) = m*(H5(j)-H6())); % Heat taken out from the working fluid

eta_cond =0.8; % Condenser heat exchanger effectiveness

Qs(j) = eta_cond*Qw(j);

H10(j) = H9(j) + Qs(j)/m_cool;

T10(j) = refpropm('T','H’,H10(j),'P',100,'water");

S10(j) = refpropm('S','H',H10(j),'P',100, 'water’);

% Energy efficiency of the cycle

W_t(j) = (H4(j)-H5(j))/1000; % kJ/kg
Qin(j) = (H4(j)-H3(j))/1000; % kJ/kg
W_net(j) = (W_t(j)-W_p(j)); % kJ/kg
eff(j) = (W_t(j)-W_p(j))/Qin(j); % Cycle efficiency
j=jtL
end

Qw(i) = m_cool*Cpw*(Tsink(i)-Tw(i));

Q(i) = (Qc(i) - Qe(i) - Qr(i))+Qw(i);

effmax(i) = max(eff);

Wmax(i) = m*W_net(eff==max(eff)); % kW

=i+l
Tsink(i) = T10(eff==max(eff))-273.15;
Tw(i) = Tw(i-1) + t0*Q(i-1)/H/Alrhow/Cpw; % Water temperature (C)

end

dimwrite('Tr_c_A400.rtf', Tw,\n")
dimwrite('Tr_in_c_A400.rtf" Tsink,\n")
dimwrite('E_c_A400.rtf',effmax,\n’)
dimwrite(W_c_A400.rtf', Wmax,"\n")

A.6 Condenser Design 1
This MATLAB code was used to model the condenser design 1.

clc
clear all

% SRC parameters
fluid = 'R134a.fld’; %Working Fluid
eta_p =0.85;
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eta t=0.85;

TO =0+273.15; % Reference temperature for exergy analysis (K)
Ts_out = 80+273.15; % Source output temperature (K)

m=3; % Mass flow rate of the working fluid (kg/sec)
m_cool = 21, % Mass flow rate of cooling water (kg/sec)

eta HX =0.75; % Recuperator heat exchanger effectiveness
Tcrit = refpropm('T','C',0,",0,fluid); % Critical Temperature

Pcrit = refpropm('P','C',0,",0,fluid); % Critical Pressure

Ts_ in=175; % Source inlet temperature (C)
Ts=Ts_in+273.15; % Conversion to K

% Nocturnal cooling system parameters
phi =0.2; % Relative humidity

v=4; % Wind speed (m/s)

H=0.5; % Height of the tank (m)
L = 20; % Length of the tank (m)
W = 10; % Width of the tank (m)

A=L*W; % Top surface area
rhow =998; % Density of water (kg/m3)
Cpw =4186; % Specific heat of water

ew =0.9; % Emissivity of reservoir

sig =5.67*10"(-8); %J/s/Im2/K4

Tair = 40; % Average ambient temperature

hc = 2.8+3*v; % Convective heat transfer coefficient

% Initialization
Tw(l) = 40;
Tsink(1) = 40;

t total = 24*5*3600;
t0 = 600;

i_total =t_total/t0;

i=1;
while(i<=i_total)

t(i) = 1*t0; %Time

days (i) = floor(t(i)/24/3600);

time(i)=t(i)-24*3600*days(i);

al(i) = 2*pi*(t(i)/3600-1)/24; %Erb's model parameter for daily temperature variation

Ta(i) = Tair+15*(0.4632*cos(al(i)-3.805)+0.0984*cos(2*al(i)-0.360)+0.0168*cos(3*al(i)-
0.822)+0.0138*cos(4*al(i)-3.513)); %(C)

Pa(i) = 3385.5*exp(-8.0929+0.97608*(Ta(i)+42.607)"0.5);

Pw(i) = 3385.5*exp(-8.0929+0.97608*(Tw(i)+42.607)"0.5);

% Sky temperature calculation
y(i) = 1/17.27*log(phi) + Ta(i)/(237.3+Ta(i));
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Tdp(i) = 237.3*y(i)/(1-y(i)); % Dew point temperature (C)
esky(i) = 0.741 + 0.0062*Tdp(i); % Sky emissivity
Tsky(i) = esky(i)0.25 * (Ta(i)+273); % Sky temperature (K)

% The reservoir stays uncovered all the time

Qc(i) = A*hc*(Ta(i) - Tw(i)); % Convective gain

Qe(i) = A*(0.2253+0.2464*v)*(Pw(i)-phi*Pa(i))"0.82; % Evaporative loss
Qr(i) = A*ew*sig*((Tw(i)+273)"4-Tsky(i)"4); % Radiative loss

% Ground cooling system
n=4; % Number of pipes

if(time(i)>= 5*3600 && time(i)<=21*3600)
[Tg Qg] = Heat_pump(Tw(i),n);
T_g(i) =Tg;
Q_g(i) = Qg;
else
Q_g(i) =0;

end

if(Q_g(1)<0)
Q_g() =0;

end

% SRC optimization
PI(i) = refpropm('P', T', Tw(i)+273.15,'Q",0,fluid);% Cycle low pressure

=1
for (Ph = 3000:100:7500) % Cycle high pressure (kPa)

% Pump inlet

P1(j) = PI(i); % kPa

H1(j) = refpropm('H','P',PI(i),'Q",0,fluid); % J/kg
S1(j) = refpropm('S','P",PI(i),'Q",0,fluid); % J/kg/K
T1(j) = refpropm('T",'P",PI(i),'Q",0,fluid); % K

% Pump outlet

P2(j) = Ph;

S2(j) = S1();

H21(j) = refpropm('H','P',Ph,'S",S1(j),fluid);

H2(j) = H1()+((H21())-H1())/eta_p);

T2(j) = refpropm('T",'P",Ph,'H',H2(j),fluid);

W_p(j) = (H2(j)-H1(j))/1000; %kJ/kg

% Turbine input
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P4(j) = Ph;

T4(j) = Ts-10;

HA4(j) = refpropm('H','T",T4(j),"P',Ph,fluid);
S4(j) = refpropm('S','T', T4(j),'P',Ph,fluid);

% Turbine output

S5()) = S4();

P5(j) = PI(i);

H51(j) = refpropm('H','P',P5(j),'S",S5(j),fluid);
H5(j) = H4(j)-eta_t*(H4(j)-H51()));

T5(j) = refpropm('T",'P',P5(j),"H',H5(j),fluid);
Hf = refpropm('H','P',P5(j),'Q",0,fluid);

Hg = refpropm('H','P',P5(j),'Q",1,fluid);

x5(j) = (H5(j)-Hf)/(Hg-Hf);

if (x5(j)<0.95)
fprintf("Vapor quality at turbine outlet is low at pressure %0.2f \n',Ph);
end

P3(j) = Ph;
P6(j) = P5();

% Recuperator heat exchanger

if((T5()-T2(j))<5)
T3(j) = T2());
S3() = S2(j);
H3(j) = H2());
T6(j) = T5();
S6() = S5();
H6(j) = H5();

else
H31(j) = refpropm('H',"T", T5(j),'P',Ph,fluid);
H61(j) = refpropm('H',"T", T2(j),'P',PI(i),fluid);
Q1(j) = H31(G)-H2());
Q2(j) = H5(j)-H61());
Q@) = min(Q1(),Q2()));

H3(j) = H2(j)+eta_ HX*Q());
T3(j) = refpropm('T",'P",Ph,"H",H3(j),fluid);
S3(j) = refpropm(’'S','P',Ph,'H',H3(j),fluid);

H6(j) = H5(j)-eta_HX*Q(j);

T6(j) = refpropm('T",'P",PI(i),'H',H6(j),fluid);
S6(j) = refpropm('S','P",PI(i),"H',H6(j),fluid);
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x6(j) = (H6(j)-Hf)/(Hg-Hf);
end

% Heat source

T7(G) =Ts;

P7(j) = refpropm(’P','T", T7(j),'Q’,0,'water’);
H7(j) = refpropm('H','T", T7(j),'Q",0,'water";
S7(j) = refpropm(’S','T', T7(j),'Q",0,'water");

T8(j) = Ts_out;

P8(j) = P7(j);

H8(j) = refpropm('H','T",T8(j),P',P8(j), water');
S8(j) = refpropm('S','T', T8(j),'P',P8(j), water");
m_hot(j) = m*(H4(j)-H3(}))/(H7()-H8());

% Heat sink

T9(j) = Tw(i)+273.15;

HI(j) = refpropm(*H','T",T9(j),'P',100,'water");

S9(j) = refpropm('S','T", T9(j),'P',100,'water");

Tcond(j) = refpropm('T','P',PI(i),'Q",1,fluid); % Temperature at which working fluid
starts condensing

Qw(j) = m*(H5(j)-H6())); % Heat taken out from the working fluid
eta_cond =0.8; % Condenser heat exchanger effectiveness
Qs(j) = eta_cond*Qw(j);

H10(j) = H9(j) + Qs(j)/m_cool;

T10(j) = refpropm('T",'H',H10(j),'P',100, 'water");

S10(j) = refpropm('S',"H',H10(j),'P',100, 'water");

% Energy efficiency of the cycle

W_t(j) = (H4(j)-H5(j))/1000; %kJ/kg
Qin(j) = (H4(j)-H3(j))/1000; %kJ/kg
W._net(j) = (W_t(j))-W_p()); %kJ/kg
eff(j) = (W_t(j)-W_p(j))/Qin(j); %Cycle efficiency
1=+
end

Qw(i) = m_cool*Cpw*(Tsink(i)-Tw(i));
Q(i) = Qc(i) - Qe(i) - Qr(i) + Qw(i) - Q_g(i);

effmax(i) = max(eff);
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Wmax(i) = m*W_net(eff==max(eff)); %kW

i=i+l;

Tsink(i) = T10(eff==max(eff))-273.15;

Tw(i) = Tw(i-1) + t0*Q(i-1)/H/A/rhow/Cpw % Water temperature (C)
end

This MATLAB function was used for the ground coupled heat exchanger system and

then called in the condenser script.
function [T_out Q_out] = Heat_pump(Tw1,n)
% Design inputs

Di_GHX =0.02; % Inner diameter
Do GHX =0.025; % Outer diameter

L1=100;

% Soil properties

Ts=19.5; % Mean soil temperature

Ks =0.159; % Thermal conductivity

Us =12; % Overall heat transfer coefficient
% Water properties

Kw = 0.623; % Thermal conductivity (W/m-K)
mu = 719.13 * 10°(-6); % Dynamic viscosity (Pa-s)

rho = 994; % Density (kg/m3)

Cpw =4179.3; % Specific heat

ii=2;

for(Tw2=Tw1-10:0.1:Tw1)
mw = 0.15; % Mass flow rate of water
vw = mw/rho*4/pi/Di_GHX"2,;
Re = rho*vw*Di_GHX/mu;
Pr = Cpw*mu/Kw;
Nu =0.023 * Re”0.8 * Pr*0.33;
hw = Kw/Di_GHX*Nu;

% Resistant due to water flow
Rw = 1/(2*hw*pi*Di_GHX);

% Resistance due to pipe wall
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Kp = 0.3979; %Thermal conductivity of polyethylene pipe (W/m-K)
Rp = log(Do_GHX/Di_GHX)/(4*pi*Kp);

% Resistance due to soil
Rs = 1/(2*pi*Us*Do_GHX);

T12(i1)= L1 - mw*Cpw*(Twl-Tw2) / ((Twl+Tw2)/2-Ts) * (Rw+Rp+Rs);
if(T12(ii-1)<0 && T12(ii)>0)

T12(ii);
Tf=Tw2;

end
ii=ii+1;
end
T out=Tf,

Q_out = n*mw*Cpw*(Twl1-T_out);
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Appendix C: Nomenclature

T
U
h

Cp

Temperature

Overall heat transfer coefficient
Convective heat transfer coefficient
Specific heat

Mass flow rate

Differential area

Penetration depth

Radial distance

Humidity

Enthalpy

Diameter

Length

Thermal conductivity

Heat transfer per unit area

Subscripts

Element from inlet

Surface of the tube

Earth

Fluid

Gas

Outer wall

Inner wall
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