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ABSTRACT 
 
 

For the past few decades, a frenzy of attention has been given towards the 

development of an assortment of photocatalysts as a solution for various environmental 

problems. TiO2 is the most widely used photocatalyst.  TiO2 is biocompatible, chemically 

and thermally stable but TiO2 and a vast majority other photocatalysts have large band 

gaps, and hence they find applicability only in the UV region of the solar spectrum. 

These large band gap photocatalysts suffer a severe limitation with regard to their 

overall process efficiency as the UV region contributes to about 3 to 4 % of the solar 

spectrum in terms of energy.   

This thesis concentrates on the progress towards the generation of visible light 

active photocatalysts. Lanthanum transition metal perovskites were synthesized to 

incorporate B site doping in the following fashion; LaCrxFe1-xO3, LaMnxFe1-xO3 and 

LaCrxMn1-xO3 (x= {1, 0.25, 0.5, 0.75}). These perovskites configurations were selected 

as LaCrO3 has a conduction band edge suitable to activate most photocatalytic 

reactions, but LaCrO3’s large band gap energetically hinders the photocatalysis. Doping 

LaCrO3 with Fe and Mn allowed for tuning their band gaps and made various 

photocatalytic reactions feasible, namely CO2 reduction and photoassisted dye 

degradation.   
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Validation of the perovskite's crystal structure was established through the study 

of their XRD patterns. The perovskite exhibited crystallinity throughout all doping 

concentrations. At some doping concentrations, due to low or high degree of tolerance 

factor, the presence of hexagonal and rhombohedral crystal phases was seen. 

Analysis of the electronic structure of these perovskites was conducted through 

diffuse reflectance spectroscopy measurements and electrochemical impedance 

spectroscopy. Doping transition metals in B site of the perovskite led to the narrowing of 

band gap energy with the increase in the concentration of the higher atomic number 

transition metal. About 38% reduction in band gap was achieved in LaCrxFe1-xO3. The 

band gap constituted of Mott- Hubbard gap and charge transfer gap. 

For the species LaCrxFe1-xO3, interband states exist with an energy gap as large 

as 1.3 eV for X=1 and 0.75. These states manifested as Urbach tails and are clearly 

documented in the absorption spectrum data. At x=0.5 and below, evidence of mixing is 

seen in LaCrxFe1-xO3, leading to the diminution of these interband states, although not 

to full extent, their energy was reduced by about 0.5 eV. In LaCrxMn1-xO3 and LaMnxFe1-

XO3, the absence of Urbach tail and absorption edge is observed.  

The band edge positions of most of these perovskites provided a large enough 

over potential to cause the reduction of CO2. Future efforts on the photocatalytic activity 

study of these perovskites through dye degradation and CO2 reduction are in progress. 

Preliminary results of photoassisted dye degradation are shared in this thesis.  
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CHAPTER 1 - INTRODUCTION AND BACKGROUND 
 
 
1.1 Motivation 

With the present environmental crisis, implementation of clean energy generation 

has become crucial. More and more resources are being allocated towards green 

energy harvesting and large-scale production of renewable fuels culminating in a fervent 

interest towards photocatalysts. Photocatalysis integrates solar energy with physical 

science thereby engendering panacea for our prevalent environmental problems.  

Research and development efforts on a wide range of systems in the field of 

photocatalysis has seen a remarkable increase[1]. The multidisciplinary nature of this 

field has gained numerous industrial applications such as hydrogen production, 

reduction of carbon dioxide to hydrocarbon fuel systems [2, 3], water treatment[4, 5], air 

pollution diminution through removal of toxic sulphur and nitrogenous gases[6, 7]. This 

thesis is dedicated towards semiconductor type photocatalysts designed for CO2 

reduction through heterogeneous surface reactions.  

The inclination towards semiconductor type photocatalyst is due their electronic 

structure that allows for light absorption. In this type of photocatalysis, the formation of 

the electron-hole pair is essential for the viability of the process. The generation of the 

electron-hole pair is achieved through the excitation of an electron from the valence 

band to the conduction band of the semiconductor. This excitation is made possible by 

the absorption of photons of appropriate energy.  



 
 

2 
 

Fujishima and Honda’s[8] discovery of TiO2’s application in photocatalytic water 

splitting paved the path for rigorous investigations on TiO2- based systems. Other 

complex oxide systems also received unpretentious attention but failed to perform on 

par with TiO2. The only drawback was the limited applicability of these photocatalysts in 

terms of their response to the solar spectrum. 

The Sun bestows the Earth with 174,000 TW of energy [9]. However, 30% is 

partly reflected back by the Earth's stratosphere and the remaining absorbed by the 

hydrosphere and mountainous lithospheric terrains [9]. As a result, the solar spectrum 

on the Earth’s surface consists of mainly visible region (λ= 400 to 700 nm), infra-red 

region (λ> 700nm) and small portion of UV region (λ<400 nm) [10]. In terms of energy, 

the visible region contributes to about 42-43 %, the infra-red region covers 52-55%, and 

the remaining comes from the UV region (refer to Fig 1.1) [11].  

The above data suggests that the efficiency of semiconductor photocatalysis can 

be further improved by utilizing the visible region of the solar spectrum. Therefore tuning 

the band gap of certain semiconductor materials to enable the production of more 

efficient photocatalysts is the goal of our study. 

1.2 Perovskites  

Perovskites based semiconductor photocatalyst offer distinct physical and 

chemical advantages when compared to their counterparts. Perovskite metal oxides are 

commonly presented by ABO3 nomenclature and have a distinct crystal structure. The A 

is larger cation while the B is the smaller one. Coordination of B cation with six oxygen 

atoms results in the formation of BO6 octahedra. The A cation is coordinated to twelve 

oxygen atoms. The ABO3 has a cubic crystal structure comprising of eight BO6 
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octahedra connected to the corner while the A cation is located at the center. Tilting of 

the BO6 octahedra can take place depending on the ionic radii and electronegativity 

difference between the A and B cations thus allowing the ABO3 perovskite to exist in 

different crystal structures[12].  

The ABO3 perovskite can be modified to ABxB’1-xO3 type by incorporating two 

different types of B cations. Depending on the charge and electronegativity of the 

participating B cations, the perovskite’s inherit structure can be preserved through 

careful selection of B-type substituents. This permits the tunability of the perovskite's 

electrical and chemical properties, making these materials an ideal candidate for our 

study.    

1.3 Mott Insulators and Charge Transfer Insulators 

Transition metal oxides, like CoO, were thought of as metallic according to 

Electronic Band theory but when measured, exhibited insulator like behavior. The 

discovery of this deviation that manifested in certain transition metal oxides led to the 

birth of a new class of materials labeled as Mott insulators. De Boer and Verwey [13] 

studied the conductivity of 3d transition metal oxides; although conductivity of MnO, 

CoO, NiO, Fe2O3 was predicted to be metallic by band theory, data showed these metal 

oxides to possess conductivity in the range of 10-10 to 10-7 (ohm-1cm-1)[13, 14].  

This complication was subsequently proved to arise because of the localized 

behavior of partially filled 3d orbitals. Arguments from Wilson and Peierls [15] for the 

nature 3d delocalization in Fe3O4 (ρ=102 ohm-1cm-1 ) led to the establishment that these 

3d levels can behave either localized, partially localized or delocalized resulting in 

insulating or metallic behavior of the transition metal oxide, bringing into existence the 
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Hubbard model [16]. Hubbard postulated a Hamilton (1.1) that took into consideration 

the correlation energy between electrons, which band theory neglected. For transition 

metals that have strong correlating electrons, the degree of electron correlation energy 

governs the existence of their Mott insulator or metallic behavior. Following the Band 

theory of tight binding, with the decrease in the interatomic distance the bandwidth (B) 

increases as a consequence of better orbital overlap. 

                                       H = � ∑ (���	
 ��� + ℎ. �) + � ∑ ��↑� ��↓                                      1.1 

Then the level of electrical conductivity will depend on the kinetic energy t 

associated with the hopping of electrons from one atomic site to a neighboring site and 

the potential that arises due to Coulomb repulsion caused by duplex occupancy of 

opposite spin electrons in a single orbital. In other words, when an electron from one 

atomic site “hops” to the nearest occupied site, the two electrons in the single orbital will 

experience coulomb repulsive forces and the potential energy involved by this duplex 

occupancy is labelled as Hubbard energy U[16, 17]. For late transition metals, U is in 

the range of 7-10 eV[18] 

According to the Hubbard Hamilton (1.1), in the absence of electron correlating 

forces U, the Hamilton describes Bloch states that make up the concept of electron 

band theory but with the company of U, the model contributed to the localization of 

electrons. Hubbard model effectuated the bifurcation of d-band into lower occupied and 

upper unoccupied Hubbard bands based on the degree of U and t. Thus the energy 

gap, Mott- Hubbard gap would be U-B and for small interatomic spacing, this gap will be 

governed by B leading to metallic behavior arising from the overlap of lower and upper 
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Hubbard bands and for large spacing, the ramifications of localized electrons result in 

insulating behavior. 

Although the Hubbard model was unerring in predicting the electronic structure of 

late transition metal compounds, for compounds of Co, Ni and Cu, the electronegativity 

of the anion affected their energy gap, as in the case of insulating behavior of CoO and 

high electrical conductivity of CoS. This steered the postulation of another entity, the 

charge transfer energy ∆, which is the energy needed for the transfer of electrons to the 

upper unoccupied Hubbard band of transition metal from the valence band of the anion. 

Using the Anderson impurity Hamilton that incorporates both U and  ∆ , Zaanen. 

Sawatzky and Allen not only illustrated how the energy gap could be because of ������ →

���������� fluctuation or charge transfer in nature based on the values of U and ∆  but 

also the possibility of zero energy gap even when U was large [19]. 

The transition metal compound can be classified into a Mott insulator when ∆ >U 

>B. In this case, the d-d electron transfer from the lower Hubbard band to the upper 

Hubbard band determines the energy gap.  

When ∆ < U, the transition metal compound is classified as a charge transfer 

semiconductor. The overlap between the anion p band and the upper Hubbard band 

gives rise to a small energy gap even though U is considerably large. A metallic 

behavior is exhibited due to the overlapping of lower and upper Hubbard bands when U 

is lesser than B and∆ (refer to Fig 1.2) 
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1.4 Band Gap Tuning  

Perovskites class of materials were chosen as they offered the opulence of 

doping with little or no change in crystallinity and crystal structure. Perovskite’s thermal 

stability in the temperature range of our experiments also favored our inclination 

towards these materials.   

The selection of LaCrO3, LaFeO3 and LaMnO3 were based on their electronic 

structures. LaCrO3 possesses a conduction band edge that favors photocatalysis of 

products we desire, but LaCrO3's large band gap of 3.08 eV poses energy restraints 

[55, 56]. In contrast, LaFeO3 and LaMnO3 have smaller band gaps but their band edge 

positions are not favorable for photocatalysis activation [55, 56].  

The band structure of these perovskites depend on the transition metal present in 

their B site [55, 56], thus by doping with Fe or Mn using LaCrO3 as templates an 

averaging of band gaps can occur. This band gap averaging was purely hypothetical, 

but the results from band gap and band edge measurements in chapter 2 offered 

substantial support to our hypothesis.  

The primary focus of our investigation will be on obtaining beneficial band 

structures for photocatalysis, modification of the perovskite's surface and charge 

transport properties are developments that will materialize in our future work 
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Figure 1.1 Distribution of solar spectrum (adapted from ASTM terrestrial reference 
spectra)  
 
 

 
Figure 1.2 Classification of transition metal oxides (adapted from [20]) 
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CHAPTER 2 - SYNTHESIS AND CHARACTERIZATION 
 
 
2.1 Material Synthesis  

The design of semiconducting ABxB’1-xO3 perovskites for our investigation was 

based on the strategy of synergistic effects of B-site transition metals that determined its 

photocatalytic activity. LaFexCr1-xO3, LaFexMn1-xO3 and LaMnxCr1-xO3 (x= {1, 0.25, 0.5, 

0.75}) perovskites were synthesized under identical conditions through Pechini 

process[21].  

Many methods have been researched for the synthesis of ABxB’1-xO3 perovskites 

i.e microwave method, hydrothermal, solvothermal, pyrolysis [22-26]etc but this gel 

polyesterification method has been widely used in the synthesis of a variety of metal 

oxides as it offers several advantages such as precise and direct control over the 

stoichiometry of the product, achieve uniform distribution at a molecular scale, 

homogeneity and operation at ambient pressure[21]  

The synthesis began with dissolving hydrous nitrates in an aqueous citric acid 

(Sigma-Aldrich, anhydrous, ≥99.5%) solution in the presence of a polyhydroxy alcohol. 

The citric acid acts as a chelating agent. Lanthanum–transition metal citrates were 

prepared by adding an aqueous solution of citric acid (CA) to a suspension of transition 

metal nitrate in La(NO3)3 aqueous solution.  

The La-Transition Metal (M)-CA solution with La:M:CA =1:1:10 was continuously 

stirred with a magnetic stirrer on a hot plate to remove excess of water and to 
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accomplish the polyesterification reaction. The La-M-CA solution was heated up to 

~60°C for 2 h after which Ethylene Glycol (EG) was added (CA: EG=1:4).  

The perovskites were synthesized using laboratory grade reagents and distilled 

deionized water. Fe(NO3)3.9H2O (purity≥ 98%) procured from Sigma-Aldrich was used 

as a precursor for Fe. La(NO3)3.XH2O(Sigma-Aldrich, 99% trace metals basis) as a La 

precursor. Cr(NO3)3.9H2O as Cr precursor and Mn(CO3) (Alfa Aesar, 99.9% (metals 

basis excluding Na)) as Mn precursor.  

The solution temperature was raised to 90°C and maintained at this temperature 

under constant stirring for 7 h. A gummy gel-like mass was obtained as the end product. 

The thermal decomposition of the La–M precursors was achieved at 450°C for 2 h in air. 

The solid residue attained after thermal decomposition was calcined at 950°C for 6 h in 

air, then cooled down to room temperature.  

2.2 Powder X-Ray Diffraction 

The X-ray diffraction (XRD) patterns for the prepared perovskite powders were 

obtained with the aid of a Bruker X-Ray Diffractometer with CuKα radiation (λ = 0.154 

nm). The scan range of 2θ was from 20° to 100° with a step size of 0.0102°.  The 

experiment was conducted at normal room temperature and pressure.  

The XRD profiles of the perovskites (refer to Fig 2.2-2.7) were similar and 

displayed diffraction peaks that complemented the standard diffraction patterns found in 

JCPDS for LaFeO3, LaCrO3 and LaMnO3 perovskites.  

The diffraction spectra exhibited an assortment of cubic, orthorhombic, 

rhombohedral and hexagonal crystals lattices with cubic being the major component.  

The diffraction peaks were refined and indexed. The diffraction lines related to the cubic 
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crystalline phase were (1 0 0), (1 1 0), (1 1 1), (2 0 0), (2 1 0), (2 1 1), (2 2 0), (3 0 0), (3 

1 0), (2 2 2) and (3 2 1). The intensity and sharpness of the peaks indicated a good 

degree of crystallinity. The spectra did not confirm the presence of iron, chromium and 

manganese oxides or other impurities, thus crediting the phase purity of the prepared 

LaM1
xM2

1-xO3 perovskites.. The lattice constant (a) for the cubic crystal phase was 

calculated through Bragg’s Law.  

(2.1)                                                 �� = 2� sin $                                                                           

where λ was the wavelength of radiation used, n = 1, d is the interplanar distance and θ 

is the scattering angle. The crystallite size was estimated through Scherrer analysis on 

peak (1 1 0), assuming instrumental peak broadening to be zero. The effect of B-site 

doping was evident from the shift of the highest intensity peak (1 1 0) (refer to Fig 2.3, 

2.5 and 2.7).  

For the case of LaMnxFe1-xO3, with increasing Fe, the lattice constant a 

increases. This was because of substitution of a smaller ion (%&�'(  = 72 pm) with a 

considerably larger ion (%)*'( = 78.5 pm). Table 2.2 shows that lattice constant (a) is 

highest for LaFeO3 and decreases with the increase in the molar concentration of Mn. 

The similar effect was visible for LaCrxMn1-xO3 and LaCrxFe1-xO3, as seen from 

the peak shift in their XRD patterns, the lattice constant a (refer to Fig 2.2, 2.6 and 

Table 2.1 and 2.3). The decrease in lattice constant (a) for LaCrxMn1-xO3 is evident with 

the decrease in Cr+3 ion (rCr+3 = 75.5 pm). 

 The Goldschmidt’s tolerance factor t [27], defined by equation 2.2 was estimated 

for each of the perovskite species. For an ABO3 perovskite, the tolerance factor was 

validated under the assumption the bonds are purely ionic. 
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                                                      � =  (+,�+-  )
√/0 (+1�+-)                                                          (2.2) 

where rA, rB and rO  are the ionic radii of the A site, B site and oxygen ions respectively. 

For 0.89< t <1, the cubic crystal structure of the perovskite is stable. The orthorhombic 

crystal structure was more favorable when t <0.89 as the BO6 octahedra tilts with the 

decrease in the symmetry of the lattice. Hexagonal crystal structure is also noticed in 

some of these perovskites. 

The lower tolerance factor of LaCrO3 and LaFeO3 manifests in the stabilization of 

orthorhombic crystal structure that was apparent from the XRD patterns of the 

respective perovskites. The calculated tolerance factor for each of the synthesized 

perovskites is listed in Table 2.1- 2.3. The Lattice size was calculated for the cubic 

crystal structure species. As the peak shifts in the XRD patterns of the synthesized 

perovskites are symmetrical absence of stress and strain can be confirmed. 

 
Table 2.1 Crystallite size and lattice constant of LaCrxMn1-xO3 perovskites 

 
Perovskite  Crystallite sizea Lattice Constantb Tolerance factor  

               (Å) a (Å)   

LaCrO3
¤ 446.7 3.894 0.897 

LaCr0.9Mn0.1O3 396.0 3.892 0.899 

LaCr0.75Mn0.25O3
¤ 309.3 3.903 0.901 

LaCr0.5Mn0.5O3
¤ 202.7 3.893 0.905 

LaCr0.25Mn0.75O3
¤ 210.5 3.889 0.909 

LaCr0.1Mn0.9O3 199.5 3.872 0.911 

LaMnO3 194.5 3.89 0.912 
a: crystal size calculated by Scherrer analysis of peak (1 1 0), b: Lattice constant calculated for cubic phase, ¤: mixed crystal 

structures present  
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Table 2.2 Crystallite size and lattice constant of LaMnxFe1-xO3 perovskites 
 

Perovskite  Crystallite sizea Lattice Constantb Tolerance factor  

                  (Å) a (Å)   

LaFeO3
¤ 324.1 3.92 0.883 

LaMn0.25Fe0.75O3 301.8 3.934 0.890 

LaMn0.5Fe0.5O3 239.1 3.923 0.897 

LaMn0.75Fe0.25O3
¤ 206.0 3.903 0.904 

LaMnO3 194.5 3.89 0.912 
a: crystal size calculated by Scherrer analysis of peak (1 1 0), b: Lattice constant calculated for cubic phase, ¤: mixed crystal 

structures present  

 
 

Table 2.3 Crystallite size and lattice constant of LaCrxFe1-xO3 perovskites 
 

Perovskite  Crystallite sizea Lattice Constantb Tolerance factor  

                  (Å) a (Å)   

LaCrO3
¤ 446.7 3.894 0.897 

LaCr0.75Fe0.25O3 299.3 3.862 0.904 

LaCr0.5Fe0.5O3
¤ 391.9 3.911 0.912 

LaCr0.25Fe0.75O3
¤ 443.4               3.812 0.919 

LaFeO3
¤ 324.1 3.92 0.883 

a: crystal size calculated by Scherrer  analysis of peak (1 1 0), b: Lattice constant calculated for cubic phase, ¤: mixed crystal 

structures present  

 

2.3 Diffuse Reflectance Spectroscopy 

2.3.1 Introduction and Background Information  

Condition for feasible photocatalytic reactions, necessitated the photocatalyst to 

generate electron-hole pairs through the absorption of photons from the incident 

radiation under the stipulation that the wavelength of the photons are less than the band 

gap wavelength of the photocatalyst. A large absorption coefficient will enable a positive 

environment for the photons to be absorbed on the surface of the photocatalyst 
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consequently reducing the diffusion length of the charge carriers thus delivering a more 

favorable outcome[28]. Appreciable output can be achieved when band gap energies 

are lesser than 2.7 eV as the photocatalyst can absorb a wider portion of the solar 

spectrum i.e. visible region. Reiterating, TiO2, which seems to be an epitome with 

respect to a photocatalysis' process efficiency but due to its large band gap of 3.2 eV, it 

falls short in terms of a photocatalysis' efficiency for energy conversion. 

   Diffuse reflectance spectroscopy is a common approach employed to measure 

the band gap energy[29]. Obstruction created by a solid medium in the path of a light 

beam leads to dissemination of light throughout the depth of the medium and depending 

on the optical property of the material, a portion of light maybe be absorbed, transmitted 

and or reflected.  

The reflected portion propagating in a path different from the one traced by the 

incident beam constitutes the diffuse reflectance spectrum of the material. The band 

gap energy value of a semiconductor can be extracted from its diffuse reflectance 

spectrum through Tauc plots[30, 31]. This method also allows for the approximate 

estimation of the absorption coefficient from the diffuse reflectance data.   

Electronic transitions between the highest occupied valence band and the lowest 

unoccupied conduction band start at the absorption edge of the absorption spectrum. 

The energy differences between the said bands is given by the band gap energy. For 

large absorption values, an n order dependence of band gap energy with the materials 

absorption coefficient is observed, and their relationship is established through Tauc 

equation   

                                                     2ℎ3 = 4(ℎ3 − 67)�                                                  (2.3) 
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where α, ν, A, and Eg are the absorption coefficient, incident light frequency, 

proportionality constant and band gap, respectively and n decides the characteristics of 

electron transition in a semiconductor, i.e. n = 1/2 for direct transition and n = 2 for 

indirect band transition[32, 33]. Here the perovskites display direct band transition. It 

should be noted that the Tauc equation holds physical meaning only for energies equal 

to or higher than the band gap energy.  

For photons of energy less than the band gap energy, the absorption coefficient 

depends exponentially on the photon energy.  

                                                             2(ℎ8)~ :;<=
>?@

                                                   (2.4) 

where Eu is the Urbach energy. Eu is the width of the band tails of localized states and 

related to the transitions from these localized states to extended states in the 

conduction band.. This exponential decay of localized states into the band gap is 

caused by deviations from ideal stoichiometry[34], structural[35] and thermal[36] 

induced disorders. The genesis of these localized tail states is spawned by different 

possibilities. 

The emergence of these localized states maybe because of exciton-phonon 

coupling promoting the widening of the exciton line[37, 38]. The micro-electric fields due 

to phonon interaction can establish energy states in the band gap[39]. The reciprocal of 

the slope of linear low energy region of ln(α) vs. hv curve gives the value of Eu.  Errors in 

band gap energy calculations were minimized by obtaining the maxima- minima profiles 

of the Tauc curve to better judge the positions of electronic transitions.  
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The DRS can be mathematically expressed in terms of absorption coefficient 

through differential equations obtained from Kubelka-Munk theory[40, 41]. Under the 

constraints of this theory, for a homogenous distributed sheet of powder of significant 

thickness (1-3 mm) and particle size sufficiently greater than the wavelength of the 

incident radiation, the diffused reflectance (R∞) of the powder sample is related to 

effective absorption coefficient k* and scattering coefficient S of the powder. The 

effective absorption coefficient is proportional to the true absorption coefficient α of the 

powder.  

                                           A(B∞) ≡ (��EF)0
/EF = G∗

I                                                   (2.5) 

Substituting the Kubelka- Munk function (A(B∞)) in the Tauc equation, the 

intercept of linear region of A(B∞) = 4(ℎ3 − 67)� curve on the x-axis gives the value of 

the band gap energy of the sample.   

2.3.2 Experiment Setup 

The diffused reflectance spectrum (DRS) of the samples was measured using a 

Jasco V-670 UV-Vis-NIR spectrophotometer with a scan speed of 100 nm min-1 in a 

wavelength range of 360 nm to 800 nm for LaCrXFe1-XO3 and 360 nm to 1800 nm for 

LaCrXMn1-XO3/ LaMnXFe1-XO3. The absorbance spectrum was measured from 360 nm to 

800 nm for LaCrxFe1-xO3 and LaMnxFe1-xO3 specimens with a scan speed of 100 nm 

min-1. All experiments were performed at room temperature and atmospheric pressure. 

The perovskite powders were fine ground using a mortar and pestle. The powders were 

tightly packed to prevent any voids and sandwiched between two microscopic glass 

slides. The thickness of this sample setup was 2 mm. Spectralon SRM-99 purchased 
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from Labsphere was used as reference standard for reflectance and absorbance 

measurements. The absorbance and reflectance spectra of the glass slides were 

analyzed to avoid experimental errors. The absorbance of glass slide remained almost 

constant (0.03 approx) within the range of the experiment and was removed from the 

absorbance measurement of perovskites through base line subtraction.  

2.4 Mott Schottky Measurements 

2.4.1 Introduction and Background Information  

In order to better classify the prepared perovskites as a potentially potent 

photocatalyst for specific applications i.e., photodegradation of organic dyes/pollutant, 

photocatalytic water splitting, photocatalytic carbon dioxide reduction and so on; a 

knowledge of their band energy levels is essential. The band energy levels of the 

synthesized perovskites were investigated through the determination of their flat band 

potential (Vfb) by Mott-Schottky (M.S) plot.  

Before evaluating the Vfb through M.S plot, it is crucial to understand the 

correlation between the energy levels of a semiconductor (S) and an electrolyte (E) in 

contact. At the semiconductor-electrolyte interface (SE), the equilibrium between these 

phases is established by equalizing their electrochemical potentials. The Fermi level of 

the semiconductor and the redox potential of the electrolyte determine their respective 

electrochemical potential. Fig 2.22 (a) represents the energy levels of a p-type 

semiconductor and a redox couple in an electrolyte.  

The conduction and valence band edges are identified as CB and VB 

respectively. Both CB and VB are dependent on the semiconductor potential. In this 

case, as the Fermi level (Ef) is below the redox potential, to attain electrochemical 
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equilibrium between the two phases in contact, electrons must transfer from the 

electrolyte solution into the semiconductor. Any excess charge does not lie on the 

surface of the semiconductor but extends into the bulk up to a distance of 100-10,000 Å 

[42]. This region is called the space charge region.  

In the above case, due to the charge transfer of electrons into the bulk of the 

semiconductor, a negative space charge region is created causing a downward bending 

of the band edges (refer Fig 2.22 (b)). The space charge region is counterbalanced by a 

sheet of positive charge from the electrolyte solution (Helmholtz layer). For an n- type 

semiconductor in contact with an electrolyte solution, as shown in Fig 2.23 (a), the 

Fermi level of the semiconductor is above the redox potential of the electrolyte. A 

transfer of electrons from the semiconductor to electrolyte occurs to establish 

electrochemical equilibrium thus causing the formation of a positive space charge 

region leading to the upward bending of the band edges (refer to Fig 2.23 (b)). 

Separation between the redox and Fermi levels of the semiconductor and 

electrolyte respectively will vary by applying a potential using an external source like a 

potentiostat and hence the level of band bending will depend on this applied potential.  

At a certain potential, the level of band bending is negligible and this potential is called 

the flat band potential. 

The potential difference over the SE interface (JKL) (refer to Fig 2.23 (c)) arises 

from the contribution of the space charge region (SC) and the Helmholtz layer (H)[43]. 

                                                   JKL =  JKM + JN                                               (2.5) 
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The interfacial capacitance �IO =  PQRS
PTUV

 deduced from the solution of the following 

Poisson’s equation of charge density function W(X) [43].  

                                                
P0T(Y)

PY0 = − �(Y)
ZZ[

                                            (2.6) 

where W(X) a function of the donor density (Nd) is, \  is the dielectric constant, \] 

permittivity of free space, ^KM is total space charge per unit surface area of SE. Given 

that all potential changes occur over the interfacial region, then  JKM = _ − _̀  

                                                               �
MUV0= /

*ZZ[ab c  ;_ − _̀ d − e f
* @                                  (2.7) 

where e is the charge of an electron, V is applied potential, and A is the surface area. 

The capacitance of the space charge region (Csc) and Vfb for an n-type semiconductor 

are related through the Mott- Schottky equation. Vfb can be obtained by extrapolation of 

1 hKM/i  = 0 1. The slope of the M.S plot yields the donor density.  

The band edges were calculated from the Vfb and the band gap (Eg) obtained 

from DRS analysis. The conduction band edge (ECB) of an n-type semiconductor is 

almost equal to Vfb and the valence band edge (EVB) for a p-type semiconductor is 

approximated to be equal to its  Vfb [44]. The EVB and ECB of n-type and p-type 

semiconductors respectively can be estimated from their Eg.  

2.4.2 Validity of Mott Schottky (M.S) Capacitance Behavior 

The interfacial capacitance derivation is based on the following assumptions [45]. 

The bulk semiconductor offers zero resistivity, and capacitances of the Helmholtz layer, 

                                            

1   
e f

*   is negligible (approx. 0.025) 
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electrode/ electrolyte, and electrode/semiconductor are negligible. Surface states are 

absent.  The dielectric coefficient \ is independent of the test frequency. Donor species 

are restricted to only a single type. The interface has two-dimensional planar 

characteristics and has homogeneous defects distributed in a spatial fashion. 

2.4.3 Sample Preparation  

The semiconducting perovskites powders were fashioned into thin films that 

strongly adhered to pure titanium metal foils of thickness 0.25 mm. These films were 

made by mixing 0.12 g of the powder with appropriate amount of deionized water 

needed to form a slurry that was smeared evenly on Titanium foils.  

Adherence between the powders and the metal foil was obtained by sintering the 

prepared films for 6 h at 600°C. To hold the electrolyte solution in contact with 

perovskite films, an inert polyethylene tube with internal area 0.636 cm2 and volume of 

0.9 ml was fashioned on top of the prepared films using epoxy.  

The electrolyte solution used for the M.S experiment was 0.1 M Na2SO4. The 

electrolyte was prepared from laboratory grade reagent and distilled deionized water. 

Two test samples of each perovskite powder were made and named as LaMxM’1-xO3 

sample I and LaMxM’1-xO3 sample II. It is assumed that there is a good electronic 

contact between the perovskite powder and the titanium foil, and that the electrolyte 

does not come in direct contact with the titanium foil. This assumption needs to be 

studied in future work by comparing Vfb  measurements of perovskites on Ti foil vs. the 

measurements of Vfb obtained by perovskites film on platinum foil. 
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2.4.4 Experiment Setup 

The electrochemical setup consisted of a three-electrode configuration: the 

reference (R), the counter/ counter sense (C/CS) and the working/ working sense 

(W/WS) electrode (refer to Fig 2.24). The control of potential and measurement of 

current takes place at the working electrode. Here the working electrode is the 

perovskite film coated on Ti foil.  The reference electrode measured the potential of the 

working.  

The reference electrode used here was activated Ti wire. The counter electrode 

completes the cell circuit. The current that enters electrolyte through the working 

electrode leaves the cell through the counter electrode. Chemically inert metals were 

used as counter electrodes. Here we used activated Ti wire as the counter electrode. 

The working sense was connected to the working sample, thus introducing two 

independent systems: the W and C/CS and WS and R. The current flows through the 

working and counter electrodes and the potential was measured through the working 

sense and reference electrode path.  

All voltages recorded were calibrated against saturated standard calomel 

electrode (refer to Fig A.2 and appendix A.2). For the M.S measurements, the samples 

were tested after carefully rinsing with deionized water and then with the electrolyte. 

The samples along with the contacts were allowed to sit for a period of half hour in the 

0.1 M Na2SO4 electrolytic solution before the measurements were started.  

A hold period of 7 minutes in between each test has followed to achieve more 

accurate results. The experiments were carried out in the dark using Gamry Potentiostat 

Reference 600 (Gamry Instruments, Warminster, PA, USA). The numerical fitting 
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program Gamry Echem Analyst (Gamry Instruments, Warminster, PA, USA) was used 

for the estimation of electrochemical parameters. The Vfb measurements were 

performed at frequencies of 100 Hz and 50 Hz from -1.5 V to -0 V with a step size of 10 

mV. Test frequency of 10 and 1000 Hz were also employed to test the sensitivity of the 

sample  

 
Table 2.4 (a) Flat band potential and donor density of LaCrxMn1-xO3 

 

Perovskite  

Flat Band Potential ε Nd (x1020 cm-3 ) 

      V vs NHE 

 

50 Hz 100 Hz 
50 Hz 100 Hz 

region 1 region 2 region 1 region 2 

LaCrO3 -0.892±0.00 -0.883±0.01 0.8 1.8 0.88 1.79 

LaCr0.75Mn0.25O3 -0.942±0.06 -0.944±0.06 0.64 1.62 0.61 1.56 

LaCr0.5Mn0.5O3 -0.899±0.06 -0.929±0.07 0.71 1.42 0.7 1.38 

LaCr0.25Mn0.75O3 -0.779±0.03 -0.757±0.04 0.99 1.58 0.86 1.47 

LaMnO3 -0.547±0.01 -0.687±0.14 2.77 5.54 3.57 5.97 

 
 

Table 2.4 (b) Flat band potential and donor density of LaCrxFe1-xO3 

Perovskite  

Flat Band Potential ε Nd (x1020 cm-3) 

      V vs NHE 

 
50 Hz 100 Hz 

50 Hz 100 Hz 

region 1 region 2 region 1 region 2 

LaCrO3 -0.892±0.00 -0.883±0.01 0.8 1.8 0.88 1.79 

LaCr0.75Fe0.25O3 -0.855±0.01 -0.867±0.00 0.07 0.16 0.06 0.14 

LaCr0.5Fe0.5O3 -0.537 -0.604 1.73             - 1.02              - 

LaFeO3 -0.384±0.01 -0.393±0.00 2.38 3.92 2.06 3.69 
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Table 2.4 (c) Flat band potential and donor density of LaMnxFe1-xO3 

 

Perovskite  

Flat Band Potential ε Nd (x1020 cm-3) 

      V vs NHE 

 
50 Hz 100 Hz 

50 Hz 100 Hz 

region 1 region 2 region 1 region 2 

LaMnO3 -0.547±0.01 -0.687±0.14 2.77 5.54 3.57 5.97 

LaMn0.75Fe0.25O3 -0.836±0.02 -0.901±0.00 2.06 6.13 2.53 6 

LaMn0.5Fe0.5O3 -0.945±0.00 -1.02±0.03 0.2 0.3 0.25 0.39 

LaMn0.25Fe0.75O3 -0.619 -0.622 1.85 3.67 1.22 2.82 

LaFeO3 -0.384±0.01 -0.393±0.00 2.38 3.92 2.06 3.69 

 

2.5 Energy Level Predictions Based on Electronegativity Values 

The concept of “electronegativity" was first introduced by Berzelius, who 

developed a scale based on his electronegativity values to explain enthalpies of 

reaction[46]. Berzelius electronegativity values were based on bulk properties of the 

element and led to the confliction of his theory with the laws of electrostatics[47]. 

Subsequently, Pauling’s thermochemical investigation resulted in the famous Pauling’s 

electronegativity scale that was a development of Berzelius theory on an atomic 

level[48]. Pauling's electronegativity was defined as an atom's ability to attract electrons. 

His calculations were based on the difference between hetero and homoatomic bond 

enthalpies of two different elemental species[48, 49]. Although his theory established 

significant improvements in the field, the Pauling’s scale had its limitations as it 

assigned a single value to the same element irrespective of its bonding nature (i.e 

hybridization) with respect to different electronic arrangements[50].  
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Mulliken’s electronegativity scale proved to be a more precise form 

electronegativity representation. Mulliken’s electronegativity for univalent species is 

given by the arithmetic mean of its first ionization (\ IP) and electron affinity (\ EA) 

energies[51]. Later density function calculations[52] based on the valence state of the 

atom gave precision to the concept of electronegativity and helps validate Mulliken’s 

electronegativity theory.  

Closed shell Hartee-Fock theory based Koopman’s theorem allowed for the 

estimation of the energy of the highest occupied molecular orbital energy (\HOMO) of a 

compound. This theorem affirms that \HOMO equals -\IP of the compound[53]. and the 

assumption that the energy of the lowest unoccupied molecular orbital (\LUMO) equals 

–\AP.  Thus, the Fermi level of an undoped elemental semiconductor can be related to 

its Mulliken’s electronegativity. Creating interest in predicting the electronic structure of 

a species through theoretical calculations involving electronegativity values, group 

electronegativity concepts for binary compounds were established[54]. 

                                                         Xcj = kXclXjdm� (l�d)i
                                             (2.6) 

 where Xcj  is the electronegativity of AaBb compound, Xc  and Xj  the Mulliken’s 

electronegativity of elements A and B, a and b are the stoichiometric coefficients. 

Coupling the results of Nethercot [57], equation 2.7 was estimated to predict the 

conduction band energy (on NHE scale) of a bulk semiconductor with band gap energy 

of Eg eV and Mulliken’s electronegativity X. 

                                                      6M = X − 4.5 − 0.567                                              (2.7) 
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2.6 Results and Discussion  

The Tauc plots for the synthesized perovskites can be seen in Fig 2.8 to 2.21. 

The LaCrxMn1-xO3 and LaMnxFe1-xO3 species exhibit a linear Tauc plot with no tailing 

near the lower energy region while LaCrxFe1-xO3 show a presence of Urbach tail at the 

lower energy section of the plots. For the LaCrxFe1-xO3 species, approximately 38% 

reduction in the band gap energy is observed with the increase in Fe. Multiple band gap 

energies can be seen in these perovskites. LaCrO3 showed two band gap energies, one 

of them was the charge transfer gap (C T) due to the electronic transition from O 2p 

band state to upper Cr 3d band and the other was due to Cr 3d-d interaction, named the 

Mott gap. In Fig 2.12, the C T gap for LaCrO3 was estimated to be about 3.09 eV and 

Mott gap had a value of 2.3 eV. LaFeO3 (refer to Fig 2.8) had a Mott gap of 2.1 eV and 

C T gap of 1.75 eV. Both the band gaps correlated with literature [55, 56].  

A narrowing in band gap energy was visible with the increase in Fe (refer to Fig 

2.36). For X= 0.75, 0.5 and 0.25 apart from presence C T gap due to O 2p –Fe 3d, a 

band gap of 1.9 eV (approx.) was observed. Its origin can be attributed to new energy 

states created due to the interaction of Fe with LaCrO3 lattice. The Urbach energy of 

LaCrxFe1-xO3 was higher than the critical values. From Goldschmidt tolerance factor[27] 

calculated (refer to Table 2.3), deviation from unity indicates distortion in the perovskite 

structure. Surface segregation can also be a potential source for unique results.  As the 

degree of peak broadening in XRD patterns of these powders were not profound, the 

large values of Urbach energy can be explained by charge transfer excitons formed by 

the electrons in the conduction band of Fe/Cr 3d states and the holes in valence band of 
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O 2p states[57-59] The MO6 octahedra network in the perovskite favors the localization 

of these excitons through phonon coupling at room temperatures[59].    

With the increase in higher atomic number transition element, the LaMnxFe1-xO3 

species exhibited similar trends as LaCrxFe1-xO3, but they possessed no significant 

Urbach energies in the visible region, which was evident from the absence of tailing in 

their Tauc plots. With X=0.5 and 0.75 in LaCrxFe1-xO3, the new energy states in the band 

gap region were formed due to interaction of Fe in the LaMnO3 lattice and gave rise to a 

band gap energy of 0.6 eV and 1.05 eV in X =0.5 and 0.75 respectively. For X= 0.25, 

the electronic structure was dominated by C T transitions between O 2p and Fe/Mn 3d 

states. The C T gap of LaMnO3 was in good correlation with literature [56].  

The trend in band gap energy for LaCrxMn1-xO3 can be seen in Fig. 2.38. 

Narrowing of band gap energy with the increase in Mn was noticed. Along with the 

presence of Mott gap and C T gap, interband states transitions were also visible leading 

to narrowing of band gap energy in X= 0.5 and 0.25.    

The flat band potentials of perovskites measured were fairly consistent at 50 Hz 

and 100 Hz. The results showed replicability. Apart from LaCr0.5Fe0.5O3, the M.S plots 

showed two linear regions of different slopes. Region 1 and Region 2 denote the part of 

the plot closer and farther away from Vfb respectively. The non-linear character of M.S 

plot contributed to the presence of deep and surface states[60, 61].  

The surface states become ionized when Fermi level passes through the surface 

state level, leading to an addition of charge. Thus, an additional capacitance was added 

in parallel to the space charge capacitance in the equivalent circuit.  The phenomenon 

manifested in the following entities [39] [45, 62] 
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                                                 hKK = *0aUU ÙU(�� ÙU)
ef                             (2.9) 

                                                     BII ∝ ( ef
*0aRR

) ;exp ;− LRR
ef @ uII@��

                            (2.10) 

where hII, BKK, AKK w�� xKK are the capacitance, resistance, fermi occupation factor, the 

density of surface states and 6KK   is energy difference conduction band edge at the 

surface and the surface state levels.  

The position of the Fermi level plays a crucial role. When the Fermi level is close 

to the surface state level, contribution of the surface state capacitance is significant, but 

at Fermi level positions below and above the surface state level, the surface state 

capacitance is negligible [39], hence the M.S plot shows two linear sectors at above and 

below Fermi level. The Urbach energy calculated for LaCr0.5Fe0.5O3 was lesser 

compared to its family offered supportive evidence of the contribution of surface states 

to the electronic structure of these perovskites.  

The conduction and valence band edges were deduced from the respective flat 

band potential of perovskites (refer to Table 2.4). These results were compared with 

calculations made with electronegativity values (refer appendix A.3). Fig 2.39-41 depicts 

the trend of CB and VB obtained from flat band potential measurements and 

electronegativity calculations. For LaCrxFe1-xO3, there is fairly a reasonable agreement 

(±0.3 _ ) with the data obtained from M.S plots and electronegativity calculations, but 

for the perovskites with Mn, there is a disagreement of the order of ±1 _. To address 

this discrepancy, we need to go back to Mulliken’s electronegativity derivations.  

The valence states in the electronegativity assessment is ignored when 

determining CB using the process stated in Chapter 2.5. Mulliken’s had established his 
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scale based on IP and EA through Vleck valence states relating to the species 

electronic distribution [63]. 

Arguments could be raised based on the difference between the electronegativity 

of the ground state isolated atoms and that of in a molecule [64]. As Nethercot [54] 

derived group electronegativity based on bond lengths for binary stoichiometric 

compounds, the presence of defects and different crystal phases might give misleading 

results as these alter the bond lengths of compounds.. For example, CB values of 

anatase and rutile phase of TiO2 are different. Hence, it is important here to take into 

consideration that the perovskites are a mixture of different crystal phase structures. 

The presence of mixed crystal phases is supported by the similar shifts in diffraction 

lines observed for similar compositional change thus following Vegard’s law and 

excluding the presence of stress or strain in the lattice. Also, the half-filled electronic 

configuration of Mn will pose considerable deviations from theoretical electronegativity 

CB computation. Therefore, the hybridization of the species should be considered in 

electronegativity calculations.  

Though the value of dielectric constant (ε) of the perovskites may vary, from the 

results of ε Nd we can draw some conjecture, especially for x=0.5 species. As there are 

two types of donors (Cr+3 & Fe+3: LaCrxFe1-xO3, Mn+3 & Fe+3: LaMnxFe1-xO3, Mn+3 & 

Cr+3: LaCrxMn1-xO3), deep states can created. M.S plots have to be frequency 

independent and linear in nature.  

When Vfb measurements were conducted at 1000, 100, 50 and 10 Hz, the MS 

plots were frequency independent but the presence of two donor deep lying states 

made them non-linear.  At this point, we are left with two options, one being Nd and N’d 
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both ionized at flat band potential and the other being either Nd/N’d ionized or not 

ionized at flat band potential.  Due to the complex nature of the obtained M.S plots the 

later option needs to be taken into consideration. This results in W(X) being potentially 

dependent, and the interfacial capacitance expression becomes [43, 60] 

                                                   hKM = ;ZZ[
/ @{.| ∅(∆TRS)

~� ∅(∆T)P∆T∆�RS� ��.�                          (2.11) 

 ∆J  is the potential difference between bulk and SC, ∅∆J  is W(X)  at X = ∆J . For a 

semiconductor of n- type with M discrete donor levels [43, 60] ∅∆J is given as below 

                    ∅∆J = � �∑ xP� ~1 + :X� ;L��Lb���∆T
ef @�

��&��� − xO:X� ;L��LV��∆T
ef @�          (2.12) 

where xM is the effective density of states at 6M and xP� is the density of donor states in 

the ith level with 6P� energy.  

For a semiconductor of n- type with localized states given by density states 

functions [60] 

                ∅∆J = � � �(6) �~1 + :X� ;L�L�
ef @����F

�F − ~1 + exp ;L�L���∆T
ef @���� �6        (2.13) 

Comparison of curves based on above both conditions suggested tailing localized 

states below the conduction band level. The slopes of these curves increase with an 

increase in applied potential. The capacity at higher potentials was nearly potential 

independent indicating the constant nature of these localized states.  

The results of absorbance spectrum correlated well with the prediction of 

localized states. Chemical intuition from the band gap energy suggested a sandwiching 

of the two participating transition metals d bands. The energy level calculations of these 
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localized states though possible through the solution of the above equations are out of 

the scope of this discussion.  

Table 2.5 gives the approximate band energy levels of the perovskites. Within 

the assumptions of our Vfb measurement the error in band edge determination is not 

more than ± 0.1 V vs SCE. The band gap energy determined through DRS 

measurements were used in the calculation of valence band edge. 

 
Table 2.5 (a) Conduction and valence band edges of LaCrxMn1-xO3 

 

Perovskite  

Conduction 

Band  

Valence Band 

      V vs NHE 

      V vs NHE Cr d-d o2p-Mn3d forbidden 

LaCrO3 -0.887±0.01 1.408±0.00 - 2.203±0.01 

LaCr0.75Mn0.25O3 -0.943±0.03 1.257±0.03 0.157±0.03 0.357±0.03 

LaCr0.5Mn0.5O3 -0.903±0.02 - - -0.003±0.02 

LaCr0.25Mn0.75O3 -0.768±0.02 - - 0.082±0.02 

LaMnO3 -0.624±0.06 0.376±0.06 0.376±0.06 - 

 
 

Table 2.5 (b) Conduction and valence band edges of LaCrxFe1-xO3 
 

Perovskite  

Conduction 

Band  

Valence Band 

      V vs NHE 

      V vs NHE Cr d-d o2p-Fe3d Forbidden 

LaCrO3 -0.887±0.01 1.408±0.00 - 2.203±0.01 

LaCr0.75Fe0.25O3 -0.861±0.01 - 0.989±0.01 1.079±0.01 

LaCr0.5Fe0.5O3 -0.565 - 1.185 1.335 

LaFeO3 -0.388±0.01 - 1.362±0.01 1.712±0.01 
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Table 2.5 (c) Conduction and valence band edges of LaMnxFe1-xO3 

 

Perovskite  

Conduction 

Band  

Valence Band 

      V vs NHE 

      V vs NHE o2p-Fe3d forbidden 

LaMnO3 -0.624±0.06 

 

0.376±0.06 

LaMn0.75Fe0.25O3 -0.865±0.02 0.635±0.02 -0.065±0.02 

LaMn0.5Fe0.5O3 -0.9825±0.03 

 

-0.3825±0.03 

LaMn0.25Fe0.75O3 -0.6205 0.8795±0.02 0.4295±0.02 

LaFeO3 -0.388±0.01 1.362±0.01 1.712±0.01 

 

2.7 Conclusions  

A significant amount of reduction in band gap energy has been achieved in the 

synthesized perovskites to a point in the near infra-red and visible region of the solar 

spectrum. The sandwiching effect of participating transition metals d bands with O 2p 

band results in localized state transitions that enabled the utilization of varied levels of 

solar energy for photocatalysis (refer to Section 3.1). The conduction band edge and 

valence band edge alignments for specific perovskites allow for CO2 reduction, water 

splitting and dye degradation (refer to Table 3.1). Although we were able to tune the 

band structure of these perovskites, limitations in terms of their electron-hole 

recombination rates, adsorption properties, and chemical stability still needs to be 

studied and modified to obtain better rates of photocatalysis.  
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Figure 2.1 Synthesis scheme 
 
 

 
Figure 2.2 XRD patterns for LaCrxMn1-xO3 

 

Mix A, B, and Citric acid and 
dissolve in water, continously 
stir at  250 rpm for 2 h while 

maintaing the solution at 60°C 

Add Ethylene Glycol to reagent 
solution once 90°C is 

reached.Let stir for 7 h

Scrap bubbly mass  out into a 
crucible,Heat at 450°C for 2 h (rr = 

25°C/min)

Gently grind the solid mass into small 
particles.Heat  at 950°C for 6 h (rr = 

25°C/min)
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Figure 2.3 (1 1 0) XRD shifts for LaCrxMn1-xO3  
 
 

 
 

Figure 2.4 XRD patterns for LaMnxFe1-xO3 
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Figure 2.5 (1 1 0) XRD shifts for LaMnxFe1-xO3  
 
 

 
 

Figure 2.6 XRD patterns for LaCrxFe1-xO3 
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Figure 2.7 (1 1 0) XRD shifts for LaCrxFe1-xO3 
 
 

 
 

Figure 2.8 (a) Tauc plot for LaFeO3 
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Figure 2.8 (b) Urbach energy plot for LaFeO3 
 
 

 
  

Figure 2.9 (a) Tauc plot for LaCr0.25Fe0.75O3 
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Figure 2.9 (b) Urbach energy plot for LaCr0.25Fe0.75O3 

 
 

 
 

Figure 2.10 (a) Tauc plot for LaCr0.5Fe0.5O3 
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Figure 2.10 (b) Urbach energy plot for LaCr0.5Fe0.5O3 
 
 

 
 

Figure 2.11 (a) Tauc plot for LaCr0.75Fe0.25O3 
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Figure 2.11 (b) Urbach energy plot for LaCr0.75Fe0.25O3 
 
 

 
 

Figure 2.12 (a) Tauc plot for LaCrO3 
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Figure 2.12 (b) Urbach energy plot for LaCrO3 

 
 

 
 

Figure 2.13 Tauc plot LaCr0.9Mn0.1O3 
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Figure 2.14 Tauc plot LaCr0.75Mn0.25O3 

 
 

 
 

Figure 2.15 Tauc plot LaCr0.5Mn0.5O3 
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Figure 2.16 Tauc plot LaCr0.25Mn0.75O3 

 
 

 
 

Figure 2.17 Tauc plot LaCr0.1Mn0.9O3 
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Figure 2.18 (a) Tauc plot for LaMnO3 
 
 

 
 

Figure 2.18 (b) Urbach energy plot LaMnO3 
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Figure 2.19 (a) Tauc plot LaMn0.75Fe0.25O3 

 
 

 
 

Figure 2.19 (b) Urbach energy plot LaMn0.75Fe0.25O3 
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Figure 2.20 (a) Tauc plot LaMn0.5Fe0.5O3 

 
 

 
 

Figure 2.20 (b) Urbach energy plot LaMn0.5Fe0.5O3 
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Figure 2.21 (a) Tauc plot LaMn0.25Fe0.75O3 

 
 

 
 

Figure 2.21 (b) Urbach energy plot LaMn0.25Fe0.75O3 
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Figure 2.22 (a) Energy levels of p- type semiconductor in contact with an electrolyte, 
(b) Band bending for a p-type semiconductor 

 
 

 
Figure 2.23 (a) Energy levels of n- type semiconductor in contact with an electrolyte, (b) 
Band bending for a n-type semiconductor 

 
 

(a) (b) 

(a) (b) 
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Figure 2.23 (c) Potential profile over the semiconductor-electrolyte regions 

 
 

 
Figure 2.24 (a) M.S electrode setup; (b) M.S sample setup 

 
 
 
 
 
 
 
 

(a) (b) 

(c) 
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Figure 2.25 (a) Mott Schottky plot for LaCrO3 sample I 
 
 

 
 

Figure 2.25 (b) Mott Schottky plot for LaCrO3 sample II 
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Figure 2.26 (a) Mott Schottky plot for LaCr0.75Fe0.25O3 sample I 
 
 

 
 

Figure 2.26 (b) Mott Schottky plot for LaCr0.75Fe0.25O3 sample II 
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Figure 2.27 Mott Schottky plot for LaCr0.5Fe0.5O3 sample I 
 
 

  
 

Figure 2.28 (a) Mott Schottky plot for LaFeO3 sample I 
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Figure 2.28 (b) Mott Schottky plot for LaFeO3 sample II 
 
 

  
 

Figure 2.29 Mott Schottky plot for LaMn0.25Fe0.75O3 sample I 
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Figure 2.30 (a) Mott Schottky plot for LaMn0.5Fe0.5O3 sample I 
 
 

 
 

Figure 2.30 (b) Mott Schottky plot for LaMn0.5Fe0.5O3 sample II 
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Figure 2.31 (a) Mott Schottky plot for LaMn0.75Fe0.25O3 sample I 
 
 

 
 

Figure 2.31 (b) Mott Schottky plot for LaMn0.75Fe0.25O3 sample II 
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Figure 2.32 (a) Mott Schottky plot for LaMnO3 sample I 
 
 

 
 

Figure 2.32 (b) Mott Schottky plot for LaMnO3 sample II 
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Figure 2.33 (a) Mott Schottky plot for LaMn0.75Cr0.25O3 sample I 
 
 

 
 

Figure 2.33 (b) Mott Schottky plot for LaMn0.75Cr0.25O3 sample II 
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Figure 2.34 (a) Mott Schottky plot for LaMn0.5Cr0.5O3 sample I 
 
 

 
 

Figure 2.34 (b) Mott Schottky plot for LaMn0.5Cr0.5O3 sample II 
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Figure 2.35 (a) Mott Schottky plot for LaMn0.25Cr0.75O3 sample I 
 
 

 
 

Figure 2.35 (b) Mott Schottky plot for LaMn0.25Cr0.75O3 sample II 
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Figure 2.36 Band gap trend in LaCrxFe1-xO3 

 
 

 
 

Figure 2.37 Band gap trend in LaMnxFe1-xO3 
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Figure 2.38 Band gap trend in LaCrxMn1-xO3 

 
 

 
 

Figure 2.39 Band edge trend of LaCrxFe1-xO3 
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Figure 2.40 Band edge trend of LaMnxFe1-xO3 

 
 

  
 

Figure 2.41 Band edge trend of LaCrxMn1-xO3 
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CHAPTER 3 - FUTURE WORK 
 
 
3.1 Photocatalytic Dye Degradation  

3.1.1 Introduction  

Photo-degradation of organic contaminants has been a keen interest due to 

current water shortage and pollution. Approximately 40% of the world’s population 

experience water scarcity. Recycling stagnant water bodies polluted with organic and 

industrial solvents will offer significant relief from our current water crisis. Principle water 

contaminants are cyclic organic compounds, industrial dyes and bio organic species. A 

large number of these organic products possess high toxicity and are not fully degraded 

by the recycling plants. Hence stringent oxidizing agents are required to fully mineralize 

these compounds into less harmful by-products.  

Advanced oxidative technique (AOT) involves the oxidation of organics through 

photolysis of oxygen or water molecules. AOT relies on the formation of hydroxyl 

radicals which are considered responsible for the mineralization of the pollutant. The 

mechanism of hydroxyl radical formation depends on numerous material and 

environmental properties. Upon illumination by radiation of suitable photon energy, 

excitation of valence electrons to the conduction energy level results in the electron-hole 

pair generation. The other possibility is oxidation of contaminant under suitable irradiant 

source, yielding electrons to the conduction energy level (refer to Fig 3.1). Interaction of 

these species with the adsorbed water molecule or dissolved oxygen on the surface of 
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the semiconductor results in the formation of hydroxyl radical which mineralizes the 

organic into CO2, H2O and maybe other simpler carbonaceous compounds. 

3.1.2 Experiment 

The photocatalytic oxidation reactions were carried out on a slurry type batch 

reactor (refer to Fig 3.2). The reaction conditions were closely monitored. The 

experiment set up consists of a magnetic stirrer to allow for even distribution of light on 

the reactants. The light fixtures were General Electric F8T5/D florescent bulbs with 

daylight spectrum and a color rendering index of 75. Each bulb contributed a power of 8 

W. Initially experiments were conducted under 48 W illumination and later increased to 

88 W.  Leakage was prevented by conducting the experiments in the enclosed reactor. 

The duration of the experiment was 90 minutes. Degradation rates were determined by 

measuring the absorbance of the pollutant in 1 ml aliquot taken every 15 minutes. Care 

was taken not to expose these intermittent samples measurements to light. The 

absorbance measurements were carried out in Perkin Elmer Lambda 35 UV- Vis 

spectrophotometer with a scan speed of 1 nm/s in the range of 450 to 600 nm.  

3.1.3 Preliminary Results and Discussions 

4,5,6,7-tetrachloro-2',4',5',7'-tetraiodofluorescein, commonly known as Rose 

Bengal is chosen as the model contaminant for the photo degradation experiments. The 

reaction volume consists of 5% Rose Bengal and 95% deionized water. The catalyst 

loading was varied from 2.6x10-4 g/ml to 10-3g/ml of LaFe0.5Cr0.5O3. The pH of the initial 

reaction solution was in the order of ~ 6. The initial concentration of R.B 0.0169mM. 

Other preliminary investigation on the effect of illumination intensity was also carried 
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out. No significant enhancement in the degradation rate was noticed with changes in 

experiment parameters.  

The reaction rates were influenced by the following factors. Since the 

photodegradation reaction occurs at the interface of the pollutant and photocatalyst, 

adsorption of the contaminant on the catalysts will greatly increase the rate of the 

reaction. Larger surface area of photocatalyst enhances the absorption[65]. The 

relationship between the pH of the environment and the surface charge governs the 

type of dye species that will be adsorbed better on the catalyst surface. At pH< point of 

zero charge the surface is positively charged and cationic dyes are weakly adsorbed at 

these conditions [66] but as Rose Bengal is an organic dye, surface adsorption plays a 

more dominant than pH of the reaction. Hence reaction rates can be improved through 

increase of the catalyst surface area.  

Although the band structure of prepared perovskites favor degradation ofRose 

Bengal (refer to Fig 3.6), the large electron-hole recombination rates maybe a possible 

reason for slow degradation rates.  

Another possible reason for slow degradation rates is because of the oxidation of 

transition metal species (Fig 3.7).as seen in hole induced photo degradation due to Co+3 

reduction in LaCoO3 explains the slow degradation rates seen in this species[66]. 

Further study into extinction factor and electron-hole recombination rates of the 

prepared perovskites is necessary to explain the results obtained.     
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3.2 Photocatalytic CO2 Reduction 

CO2 is a highly stable pollutant and is present in abundance in the Earth’s 

atmosphere. Hydrogenation of carbon dioxide to hydrocarbon fuels will prove most 

beneficial, but reduction of CO2 is not favored because a large negative potential(E= -

1.97 V vs NHE) required for even an electron reduction of CO2, also reaction limitations 

due to structural dissimilarity of CO2 and CO2
 

 will raise the energy requirements 

higher[67]. Lesser energy pathways are possible for CO2 reduction and they involve 

multiple electron transfer-proton assisted reduction reactions and result in the formation 

of hydrocarbon by-products. Thus a method of artificial photosynthesis can be devised 

for harvesting solar energy through a semiconductor photocatalyst to reduce CO2.  

The process of photocatalytic CO2 involves generation of electron/holes charge 

carriers through excitation of valence electrons of appropriate photon energy. On 

creation these charge carriers travel across energy barriers through the semiconductor 

and react at the surface with the adsorbed CO2 molecules. Recombination rates of the 

charge carriers has to be low to enable reduction reactions to occur [67-69]. Some over 

potential is needed to for the CO2 reduction to take place. To satisfy this condition, the 

excited valence electron must be at a more negative potential than the CO2 reduction 

potentials. For water oxidation, the holes have to be at a more positive potential than 

the reduction potential of H2O/O2. The following reactions can take place during 

photocatalytic CO2, their reduction potentials are also mentioned at pH=7 conditions[70] 

h�//∗ h�/ → 6� =  −1.9 V vs NHE                    h�//∗ h���� → 6� =  −0.38 V vs NHE 

h�//�h��� → 6� =  −0.61 V vs NHE              h�//h�� → 6� =  −0.24 V vs NHE 
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h�//h� → 6� =  −0.53 V vs NHE                       �/�/�/ → 6� =  +0.81V vs NHE 

h�//�h� → 6� =  −0.48 V vs NHE                      ��/�/ → 6� =  −0.42V vs NHE 

Based on the above information and data of the conduction and valence band 

edges of the perovskites obtained from M.S measurements, possible candidates for 

CO2 reduction and H2O oxidation can be determined (refer to Table 3.1). Although these 

perovskites provide a good over potential, surface properties and charge carrier 

recombination rates are to be investigated to confirm the reaction’s feasibility. Future 

efforts for CO2 reduction using the synthesized catalysts are in progress 

 
Table 3.1 Possible candidates for photocatalytic CO2 and water oxidation 

 

Perovskite CO2/CH4 H+/H2 CO2/CO CO2/HCOOH CO2/CH3OH H2O/O2 CO2/HCHO 

LaCrO3 ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ 

LaCr0.75Mn0.25O3 ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ × ✓✓✓✓ 

LaCr0.5Mn0.5O3 ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ × ✓✓✓✓ 

LaCr0.25Mn0.75O3 ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ × ✓✓✓✓ 

LaMnO3 ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ × ✓✓✓✓ 

LaCr0.75Fe0.25O3 ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ 

LaCr0.5Fe0.5O3 ✓✓✓✓ ✓✓✓✓ × × ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ 

LaFeO3 ✓✓✓✓ × × × ✓✓✓✓ ✓✓✓✓ × 

LaMn0.75Fe0.25O3 ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ × ✓✓✓✓ 

LaMn0.5Fe0.5O3 ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ × ✓✓✓✓ 

LaMn0.25Fe0.75O3 ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ × ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ 
✓- feasible,  ×-not feasible 

 

.  
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. 
Figure 3.1 Formation of hydroxyl radical when: (a) For hv >Eg  (b) For hv <Eg 

 

 
Figure 3.2 Batch reactor; outside view (right), inside view (left) 
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Figure 3.3 Degradation rate for different LaCr0.5Fe0.5O3 loading under illumination 48W  

 
 

 
Figure 3.4 Degradation rate for same LaCr0.9Mn0.1O3 loading 1x10-3g/ml 
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Figure 3.5 Degradation rate for LaMn0.5Fe0.5O3 1x10-3g/ml loading under illumination 
88W 

 
 

 
 

Figure 3.6 Electronic structure of catalysts and dye  

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60 70 80 90 100

C
/C

0

Time (min)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

V
 V

S
 N

H
E

LaCr0.5Fe0.5O3

LaMn0.5Fe0.5O3

ERB*/RB+

ERB/RB+

EC

EC



 
 

69 
 

 
 

Figure 3.7 Possible mechanism that inhibits photo degradation 
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APPENDIX A: GENERAL INFORMATION 
 
 
A.1 Absorption Coefficient Calculation 

The absorption coefficient can be calculated from reflectance, transmittance and 

or absorbance data. Due to the dense non transparent nature of the perovskite 

powders, absorption coefficient was estimated from absorbance data. The baseline 

measurements were carried out with Spectralon SRM 99. The absorbance of glass due 

to the fashion of sample setup was essential so as to avoid misleading data. The 

absorbance spectrum of glass in shown below  

 
 

Figure A.1 Absorbance spectrum of glass microscope slide 
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The absorbance data is converted to the absorption coefficient of the material by 

using the following formula[71, 72].  

                                                              2(�) = /.�{� c(�)
�                                        (A 1.1) 

where 2 is the absorption coefficient, A is the absorbance and D is the thickness of the 

absorbing material. 

A.2 Mott Schottky: Reference Electrode Calibration 

 
         
             Figure A.2 Calibration of measured voltage against Sat. Calomel electrode 
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where 6�  is the instrument reading, 6Il�� *  and 6f�  are the potentials of the 

semiconductor surface and Ti reference electrode. 

                                                                                 6Ol � = 6f� − 6c7/c7M                                          (A 1.3) 

where 6c7/c7M  is the standard Silver/ Silver Chloride electrode  

                                                                                 6Ol / = 6f� − 6KML                                               (A 1.4) 

where ESCE is the standard sat. Calomel electrode. Then,  

                                                      6 = 6f� − 6KML 

                                    = 6Il�� * + 6f� − 6f� − 6KML (Adding and subtracting 6f�) 

             = 6Il�� * + 6f� − 6c7/c7M  + 6c7/c7M  − 6KML (Adding and subtracting 6c7/c7M ) 

                                                  = ¡¢ + ¡£¤¥¦+¡£¤¥§ 

A.3 Electronegativity Calculation 

 
Table A.1 Mulliken’s electronegativity 

 

Element I.P (e.V) E.A (e.V) Mulliken's electronegativity 

La 5.58 0.47 3.02 
O 13.62 1.46 7.54 
Fe 7.90 0.15 4.03 
Mn 7.43 -1.00 3.22 
Cr 6.77 0.68 3.72 

 

Electronegativity values were calculated using the first ionization potential and 

first electron affinity values of the participating atoms. 
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Table A.2 Comparison of calculated and measured band edges for LaCrxFe1-xO3 
 

Perovskite 

C.B V.B 

Calculated  M.S Calculated  M.S 

V vs NHE V vs NHE V vs NHE V vs NHE 

LaFeO3 -0.01 -0.39 2.09 1.71 

LaCr0.5Fe0.5O3 0.05 -0.565 1.95 1.33 

LaCr0.75Fe0.75O3 -0.02 -0.87 1.92 1.07 

LaCrO3 -0.65 -0.90 2.55 2.30 

 

Table A.3 Comparison of calculated and measured band edges for LaMnxFe1-xO3 
 

Perovskite 

C.B V.B 

Calculated  M.S Calculated  M.S 

V vs NHE V vs NHE V vs NHE V vs NHE 

LaMnO3 -0.05 -0.63 0.95 0.37 

LaMn0.75Fe0.25O3 0.46 -0.86 1.26 0.63 

LaMn0.5Fe0.5O3 0.62 -0.98 1.22 -0.38 

LaMn0.25Fe0.75O3 0.45 -0.63 1.50 0.42 

LaFeO3 -0.01 -0.39 2.09 1.71 

 

Table A.4 Comparison of calculated and measured band edges for LaCrxMn1-xO3 
 

Perovskite 

C.B V.B 

Calculated  M.S Calculated  M.S 

V vs NHE V vs NHE V vs NHE V vs NHE 

LaMnO3 -0.05 -0.63 0.95 0.37 

LaCr0.25Mn0.75O3 0.41 -0.76 1.26 0.08 

LaCr0.5Mn0.5O3 0.42 -0.90 1.32 -0.003 

LaCr0.75Mn0.25O3 0.26 -0.94               1.46           1.25 

LaCrO3 -0.65 -0.90 2.55 2.30 
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