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ABSTRACT 

 

In the United States alone, hundreds of millions of blood tests are performed annually, 

and a significant number of those tests are compromised due to hemolysis: e.g., 31% 

compromised in emergency rooms (inpatient) and 10% at blood banks, clinics, and other 

outpatient venues. Currently there is no way to reliably detect hemolysis without plasma 

separation. As a result, significant delays ensue, potentially negatively affecting patient diagnosis 

and treatment. In addition to in vitro hemolysis, which compromises the quality of blood tests, 

hemolysis can also occur in vivo. The in vivo occurrence of hemolysis is an indication of life-

threatening complications. Being able to detect early signs of in vivo hemolysis would 

significantly improve outcomes for many patients, including pregnant women affected by 

HELLP (Hemolysis, Elevated Liver Enzymes, Low Platelet counts) syndrome. Therefore, there 

is a critical need to be able to detect hemolysis near the patient, immediately following the 

collecting of blood sample.  

The goal of this research is to provide an alternative to the traditional testing of blood 

samples, which requires large volumes of blood, centrifugation, and bulky instrumentation. The 

proposed alternative hemolysis detection system is a simple miniature setup that produces test 

results in minutes. This miniature, near-patient sensor would improve patients’ diagnosis, 

treatments, general satisfaction, and overall experience. The potential reduction of healthcare 

costs associated with hemolysis would be another significant benefit. 
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The technology demonstrated in this dissertation is based on a novel combination of 

microfluidics, spectroscopy, and optical-fiber sensing. The microfluidics provide the capability 

to handle small volumes of liquid and to filter particles from solution. Novel membrane 

fabrication and modular integration provides the means to characterize and culture the captured 

particles. Spectroscopy and optical fibers provide the means to characterize the filtrate. These 

capabilities can be used for not only the detection of hemolysis but also other biomedical 

applications. . 

 The first step in detecting hemolysis is to separate blood cells and other unwanted 

particulates from the plasma needed for optical analysis of concentration of hemoglobin. To that 

end, we focused initially on the problem of particle separation—specifically, within a 

microfabricated chamber with a custom-designed transparent membrane. To create a miniature 

microfluidic system capable of processing microliter blood samples, microelectromechanical 

systems (MEMS) fabrication techniques were required. The fabrication process included steps 

such as low-stress vapor deposition, photolithography, plasma, and wet etching. The resulting 

microdevice proved capable of filtering a variety of biological test fluids, including human lung 

fibroblast cancer cells from medium. The transparent membrane also allows for spectroscopic 

studies in broader applications, such as spectroscopic analysis or culturing of the cells retained 

on the filter. These capabilities were demonstrated using microbeads and cancer cells in solution.  

Optical techniques are used to analyze the separated blood plasma for concentration of 

hemoglobin. To integrate spectroscopic capabilities with the above microfluidics system, an 

optical fiber–based miniature probe was attached to the microfabricated chamber.  As proof of 

concept, this system was tested in an application that required the measurement of 

physiologically relevant concentrations of cobalamin (vitamin B12). This application was used to 
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address human error in drug administration showing measurements of cobalamin concentration 

as an example drug that can be monitored. The clinical means range of concentrations is from 1 

µg/ml to 1000 µg/ml.  The achieved results showed measurements of concentrations between 1 

µg /mL to 5 mg/mL to monitor the physiological range and potential overdose in microliter of 

volume. 

This device has potential for numerous applications, ranging from single cell 

spectroscopy to measurements of glucose concentrations. 

This integrated system was then applied to the detection of hemolysis. The complete 

system conducts optofluidic spectroscopy with the optical fiber probe connected to the 

microfabricated chamber, which locally filters out blood cells, and reliably determine amount of 

free hemoglobin with the need for centrifuging. The utility of the device was demonstrated by its 

accurate measurement of hemoglobin concentrations in blood plasma. 

Finally, to apply the concept of the detection system to clinical condition with a reliable, 

and low-cost system, especially useful for developing countries, a smartphone-based technology, 

is proposed.  This technology delivers ultra-fast results for the detection of early signs of HELLP 

syndrome and preeclampsia with the goal to decrease mortality and morbidity.  The smartphone-

based diagnostics is low cost, high speed of operation together with high accuracy.  Detection of 

1 mg/dL of free hemoglobin was achieved which is comparable to gold standard assay which are 

time consuming, difficult to operate and expensive.  

This technology, in summary, integrates microfluidics with microfiltration and 

spectroscopic technology to conveniently separate and characterize blood plasma. The device 

can also provide important information about other complex biological samples. These 

measurements require only very small sample volumes. 
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CHAPTER 1: INTRODUCTION 

 

1.1  Motivation 

Prenatal conditions are the fourth leading cause of death in developing nations and also 

pose significant health risks in countries with high income [1]. Globally, preeclampsia and other 

hypertensive disorders of pregnancy are a leading cause of maternal and infant illness and death. 

By conservative estimates, these disorders are responsible for 76,000 maternal deaths and 

500,000 infant deaths each year [2]. Preeclampsia can rapidly escalate to a dangerous 

complication known as HELLP (hemolysis, elevated liver enzymes, low platelets) syndrome. 

According to the Preeclampsia Foundation [2], the maternal mortality rate of HELLP syndrome 

has been reported to be as high as 25%. Overall perinatal mortality from HELLP Syndrome 

(stillbirth plus neonatal death) ranges from 7.7 to 60%. Among pregnant women in the United 

States, 5 to 8% develop preeclampsia. Clinical studies estimated that 15% of those women will 

develop evidence of HELLP syndrome. This means that as many as 48,000 women per year will 

develop HELLP syndrome in the United States. 

HELLP syndrome can be difficult to diagnose, especially in the absence of protein in the 

urine and high blood pressure. Its symptoms are sometimes mistaken for gastritis, flu, acute 

hepatitis, gall bladder disease, or other conditions. Late diagnosis results in much higher 

mortality and morbidity. One of the important indicators of HELLP syndrome is in vivo 

hemolysis (disruption of red blood cells and release of hemoglobin into blood plasma). Due to 

the very high speed of disease progression, delays related to blood testing increase risk for the 
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mother and the baby. A patient’s condition can severely deteriorate in just three hours, while 

many tests confirming diagnosis of HELLP syndrome also take several hours. Therefore, there is 

a need for new technologies that can confirm HELLP syndrome near patient, in minutes to 

address delays that can be detrimental. Here we propose and demonstrate a new technology for 

the detection of hemolysis, a key diagnostic symptom of HELLP syndrome. This dissertation 

aims to develop an important step toward early detection of hemolysis, with the goal of being 

able to confirm the diagnosis while there is still time to save the mother and the baby. 

1.2  Research Approach 

The new high-speed technology for the detection of hemolysis is based on optofludic 

spectroscopy. In particular, we work on absorption spectroscopy combined with microfiltration, 

with a focus on applications related to studies of different types of biological samples.  The 

custom-designed and fabricated microfilters enable the effective capturing of cells that can be 

isolated from blood and further studied under a microscope. Absorption spectroscopy integrated 

on an optical fiber platform is used for material characterization. This optofluidic technology, 

with its miniaturized optical and microfluidic sub-systems, supports not only real-time, label-free 

measurements, but also allows for analysis of very small sample volumes. The combination 

gives high precision results, flexibility and allows for insight into the biochemistry of blood and 

other biological samples.  

Because the specific application of this optofluidic platform is hemolysis assessment, 

filtering out blood cells, and measurement concentration of hemoglobin in plasma is required. 

The filtered cells can be next studied under a microscope in both upright and inverted 

configurations, since the micro-filter is a thin transparent membrane. In addition to imaging the 

captured cells on the microfiltering chip, this cutting-edge device provides an opportunity to 
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culture cells (e.g., circulating tumor cells) for further studies on the same chip. Therefore, this 

work provides a number of innovations: new architecture for optofluidic spectroscopy integrated 

on an optical fiber platform, a new method of hemolysis detection, and also a new multi-

functional filter that can also serve as an imaging and culturing substrate. 

1.3   Research Objectives 

The objective of this dissertation is to develop a new optofluidic platform that can rapidly 

quantify the level of hemoglobin in blood plasma. The research requires development of a new 

miniature spectroscopic system, a new microfluidic system for blood filtration, and a unique 

integration of the microfluidic component with an optical fiber. The complete system can be 

applied to a number of important applications in addition to hemolysis detection. 

The goal of this research is to contribute to the knowledge of science in the field of 

optofluidics and sensing by publishing in reputable peer-reviewed journals, and presenting in 

both national and international conferences. 

1.4   Dissertation Outline 

This thesis will present a new optofluidic system that combines spectroscopy with 

microfluidics. Some of the results were obtained in collaboration with other members of the USF 

Innovative Biomedical Instruments and Systems (IBIS) Laboratory.  

Chapter 2 of the dissertation introduces the state of the art and describes prior research 

related to hemolysis detection.   

Chapter 3 demonstrates the design, fabrication, and testing of a novel removable 

microfilter membrane that can filter cells or particles from biological samples. Additionally, 

there is experimental demonstration that the same removable microfilter can be used for further 

study of the captured cells under microscope and even for culturing. 
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Chapter 4 presents a new optofluidic spectroscopic device and its application towards 

elimination of human error in drug administration. This work has been published in the journal 

Sensing and Bio-Sensing Research. 

In Chapter 5, further optimization of the optofluidic system for better detection of 

hemoglobin is addressed and then experimental detection of hemolysis demonstrated. 

Chapter 6 present the application of optical sensing on a smartphone device.  This 

platform allows developing countries or low resource areas to have a relieable, accurate, and 

low-cost detection tool for preeclampsia and HELLP syndrome.   

Chapter 7 concludes my dissertation with an overall impact of hemolysis and the how the 

use of my research can reduce mortality and morbidity due to pregnancy complication.  Also a 

short summary of future work and other clinical applications the presented platform can be 

addressed.  
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CHAPTER 2:  BACKGROUND 

 

2.1 Hemolysis  

There are two types of hemolysis: in vitro and in vivo, both which negatively impacts the 

healthcare [3].  Additionally, millions of dollars are spent each year due to the inability to 

promptly detect hemolysis.  World-wide in vitro hemolysis affects the quality of blood testing in 

clinical settings, including hospitals, clinics, and blood banks [4].  Furthermore, presence of in 

vitro hemolysis results in test inconsistency, and eventually, negatively influencing diagnostics 

and treatment.   

In the case of in vivo hemolysis, early detection is critical for saving patient’s life.  This 

life-threating condition has devastating consequences for pregnant women suffering from 

hypertensive complications of pregnancies (HCP).  Globally, HCP are among leading cause of 

maternal death, and preeclampsia is one of the most frequently observed HCP.  In vivo hemolysis 

is a key symptom for one of complications of pregnancy – preeclampsia [5].  

Currently, hemolysis detection in whole blood is impossible. First, blood plasma has to 

be separated, and then the level of hemoglobin is determined based on ‘redness’ of the sample 

via visual comparison to a color chart.  While this method may have been used for a long time, it 

fails to effectively assess level of hemolysis at low levels of hemoglobin concentrations.  It is 

important to note that detection of hemolysis at low level of hemoglobin is very important for a 

number of biomedical applications, including diagnosis and monitoring of several diseases. 

Furthermore, the traditional approach to hemolysis identification has other important drawbacks 
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besides its low accuracy.  Large volumes of blood (measured in milliliters) are needed, in order 

to separate plasma using centrifuging method. . Though traditional analytical methods can also 

be used to detect hemolysis (e.g. ELISA), often reagents interfere with the measurements, which 

also results in inconsistency of hemolysis detection [6, 7]. Additionally, using ELISA for pre-

processing of each blood sample would greatly increase cost of blood testing, and thus not 

feasible in developing countries and income stricken areas.  Therefore, due to all these 

limitations of the visual assessment there is a need for an automatic method to detect hemolysis. 

There are numerous benefits that the automated device can bring. First, it can really 

improve accuracy of in vitro hemolysis detection. This can help to identify unusable samples and 

thus improve diagnostics. It will have an important impact on healthcare and economy [3]. 

Second, it can help with detection of in-vivo hemolysis present in case of HELLP syndrome. 

The rest of this chapter will focus on research related to hemolysis, how it affects 

different facets of healthcare, and how our technology can contribute to an effective detection of 

hemolysis.  

2.2 In-vivo Hemolysis  

2.2.1 Hemolysis and Hypertensive Disorder of Pregnancy 

In-vivo hemolysis, can be linked insufficient production of red blood cells (RBCs). RBCs 

do not survive over their normal life span (~ 120 days). Due to certain mechanism the RBCs 

undertake, they are destroyed before their life span. Therefore, the body relies on the bone 

marrow to replenish the cells as fast as they are destroyed. Unfortunately, when the bone marrow 

is unable to timely replenish the cells, the patient then has low number of RBCs. This condition 

is known as a hemolytic anemia. Hemolytic anemia can be provoked by intravascular destruction 

of RBCs, which is observed for such conditions as sickle cell disease and HELLP syndrome [8, 
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9] [10-12]. This conditions due to hemolysis results in high morbidity in high income countries 

and high mortality in low income countries. In industrialized countries, number of deaths from 

preeclampsia and other pregnancy-related complications per number of live births is between 1 

in 4000 and 1 in 10,000. However, in low income countries, this ratio is between 1 in 15 and 1 in 

50 [13].   

The sudden escalation of preeclampsia to eclampsia/HELLP syndrome in pregnant 

women, adds sufficiently to the rate of mortality. The progression from mild pre-eclampsia to 

severe pre-eclampsia can occur within a couple hours, without much clinical warning. Number 

of studies demonstrated that the level of free hemoglobin in plasma starts increasing in early pre-

eclampsia, and then can reach very high level together with progression to HELLP syndrome 

[14, 15]. Unfortunately, the detection of in vivo hemolysis has increasing delays associated with 

testing, and often confirmed too late.   

2.2.2 Clinical Diagnostics and Management of Preeclampsia/HELLP Syndrome 

The diagnosis of pre-eclampsia/HELLP syndrome is made in the hospital through 

analysis of serial blood pressure measurements, detection of proteinuria, as well as several labs 

including aspartate transaminase (AST), alanine transaminase (ALT) lactate dehydrogenase 

(LDH), uric acid, hemoglobin/hematocrit, platelet count and a coagulation profile (PT/PTT, 

fibrinogen and D dimer). Patients with HELLP syndrome have a combination of elevated 

enzyme levels, elevated uric acid, diminished platelet count, and proteinuria.  This condition is 

very severe, and possibly coagulopathy. The hemoglobin/hematocrit can be elevated due to 

hemo-concentration, or it can be reduced if the patient is coagulopathic.  

When a patient has mild pre-eclampsia and is remote from term, it’s important to test 

periodically if the patient is deteriorating. Patients might be given magnesium sulfate as 
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prophylaxis of eclampsia and a course of corticosteroids to enhance fetal lung maturation. Once 

the diagnosis of severe pre-eclampsia and/or HELLP Syndrome is confirmed, the recommended 

management is the delivery of the baby.  If the patient develops the associated coagulopathy, she 

might require transfusion of blood and/or blood products for reversal of this disorder.  It is 

important to note that the use of corticosteroids to improve the maternal condition is 

controversial.  Therefore, it’s also important to diagnose these conditions earlier to avoid 

controversial approach. 

2.3 In-vitro Hemolysis 

2.3.1 Overview of In-vitro Hemolysis  

Currently, clinicians collect, handle, and store blood specimen before sending them to 

laboratory. In order to ensure appropriate quality of the samples, avoiding hemolysis, there are a 

number of practices that has been used.  It’s been suggested to use straight needles venipuncture, 

vacuum tube, and antecubital fossa vs. more distal site [16]. Despite all this effort, sample 

contamination still remains a concern.  This is especially true in emergency departments, which 

has greater than 30% rate of hemolysis [17].  Also, 60% of all rejected clinical blood specimen 

were rejected due to hemolysis, according to Soderberg et al [18].   Other types of sample 

contamination include general collection errors and serum preparation errors.   

A study showed that 91% of personnel in blood testing facilities were aware of 

hemolysis, but only 58% of the 91% were monitoring the hemolysis level in their samples 

systematically and were aware of the numbers, and origin of hemolyzed samples they receive in 

their laboratory [19].  In a different study, of 10,709,701 samples from 453 laboratories, 37,208 

samples were rejected due to hemolysis [20] and, therefore, multiple samples had to be collected 

from patients.  For some of patients 3-5 blood samples were collected [19, 21].   
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2.3.2 Methods Used for In-vitro Hemolysis Detection 

Currently, visual assessment method is used for hemolysis detection in most clinical 

laboratories. The color of centrifuged plasma is assessed for hemolysis either with or without 

reference guide, using hemolysis index (HI) [18].  The level of free hemoglobin is correlated to 

HI and reported as one of the following: no hemolysis, slightly hemolyzed (pink tinged), 

moderately hemolyzed (red), grossly hemolysis (dark red), (Figure 2.1).  This method is very 

subjective and not standardized [22].  Different laboratories reported different detection limits 

for HI, i.e. HI >/=  20 or HI >/= 15, which can both represent “No hemolysis” [18, 23].  It has 

been showed that many hemolyzed samples assessed without reference guide were categorized 

incorrectly comparing to the assessment using automatic systems [4, 24].  Several automatic 

methods are used to assess hemolysis - ELISA and spectrophotometry methods such as Harboe 

method [25]. The spectroscopic methods are based on various wavelengths. Harboe method is 

based on near-UV spectropohotmetry, others use Soret band for a more intense signal than 

visible absorption band [26-28].  They all need several milliliters of blood, require plasma 

separation and takes time to complete, thus would not work for rapid quality assessment based 

on just a drop of blood. 

The amount of free hemoglobin for healthy individuals is 0.001 – 0.004 g/dL (1- 4 

mg/dL) [19].  For in vivo hemolysis which occur in pregnancy complications, total hemoglobin 

in whole blood of a pregnant woman is usually within the ranges from 11.6-15 g/dL (11,600 – 

15,000 mg/dL) as showed in table 1.  The upper limit for free hemoglobin in blood plasma of a 

healthy person is 0.004 g/dL (4 mg/dL). However, hemoglobin concentration that can be defined 

visually is greater than 30-50 g/dL [10], figure 2.1. Additionally, elevated concentration of other 
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blood component such as bilirubin complicates visual detection and even some analytical assays 

[29].   

Since upper level of hemolysis in pregnancy complications can be as high as 3 g/dL and 

above, there is a challenge in designing a system that has a dynamic range of three orders of 

magnitude [19].   

Table 1: Hemoglobin concentration in whole blood of women 

 

  

 

Figure 2.1 Current visual detection method for hemolyzed samples.  From left to right, ranks 

pure to grossly hemolyzed samples, with free hemoglobin in plasma ranging from less than 0.5 

g/dL to greater than 30g/dL [16]. 
 

 

In summary, traditional visual assessment of hemolysis is unreliable, while available 

automatic measurements require extensive time and prohibitively expensive. Therefore, there is a 

great need in an accurate, fully automatic hemolysis assessment tool that can precisely measure 

free plasma hemoglobin for both in vivo and in vitro hemolysis.  

 

 

   Units Nonpregnant Female First Trimester Second Trimester Third Trimester 

g/dL 12 -15.8 11.6 - 13.9 9.7 - 14.8 9.5 -15 
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2.4  Alternative Approaches to Sensing 

Recent advancement in technology has improved many types of biomedical sensors.  

Optical detection methods such as fluorescence, absorption and Raman can be used for analysis 

of biomedical samples using light. Different electrochemical, optical, and thermometric methods 

can be used to analyze biochemistry with high sensitivity and specificity [30].  Additionally 

different Point-of-care testing and Lab-on-a-chip (LOC) technologies have more applications in 

the biological and medical fields. Below, focus is based on analyzing existing technologies and 

using these concept to design a new technology for hemolysis detection. 

2.4.1 Spectroscopy 

Optical absorption spectroscopy analyzes materials by measuring the amount of light 

absorbed in relation to the light frequency or wavelength.  It is widely used in chemistry, biology 

and medicine and has high sensitivity, and specificity [30-32].  An additional benefit of 

spectroscopy includes real-time analysis on complex fluids without the need for preanalytical 

processing or large sample volumes. It is especially important for medical applications, since 

blood testing instruments have to be compact, operate with small blood volume (microliters), and 

still be precisely accurate. Furthermore, spectroscopy can be integrated with other passive and 

active components, such as filters, mixers, on a single microfluidic chip. 

One applications of spectroscopy for biomedical applications is glucose measurement. 

Many researchers are trying to find a good alternative to traditional finger pricking.  A semi-

invasive near infrared (NIR) glucose monitoring based on absorption spectroscopy with a 

microfluidic chip showed detection limit of the measurements to be 20 mg/dL [33]. However, 

Anas et al demonstrated a non-invasive near-infrared glucose measurements [34].  Furthermore, 

since a pressing need for compressive analysis has led to demonstration of comprehensive 
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analysis of total biochemical composition of plasma and in blood with infrared spectroscopy was 

used to distinguish between cancer and non-cancer patients [35]. 

For application on detection of hemolysis, concentration of hemoglobin can be extracted 

from spectroscopic measurements using Beer-Lambert Law (1), in which absorbance is directly 

proportional to the path length, and concentration of an absorptive component.   

A = Ɛlc, where A is the total absorbance, Ɛ is the molar absorptivity, l is the path length, 

and C, concentration. Alternatively, transmission T can be measured with respect to the same 

parameters.  

T =
I

Io
= e−αl = e−ɛlc                                             Equation 1 

where, T = Transmission of light through the system; I and I0 are initial and transmitted light 

intensity.   

Since different molecules absorb in different parts of the optical spectrum, this absorption 

“fingerprint” can be used to identify components and measure their concentration. Base on this 

principle, a device was designed, that can determine the concentration of hemoglobin present in 

blood plasma, real-time.  

2.4.2  Optical Fibers 

Optical spectroscopy can be conducted on large instruments, but currently there is a lot of 

interest in its miniaturization and integration on highly compact optical fiber platform. In 

general, optical fiber are great for miniature sensing because they are lightweight, have low 

power consumption, and high bandwidth [36], and can be used in a dangerous environment [37, 

38].  Other applications of optical fibers range from networks and communications [38-41] to 

chemical and biomedical sensing.  In particular, in sensing, optical fibers can be used to measure 
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temperature, pressure and other physical parameters [36], in addition to many chemical and 

biological substances [42].   

There are many different kinds of optical fibers made from glasses and plastics and 

having different core/cladding configurations. 

Some of them are optimized for a specific wavelength, while others support broadband 

signal propagation. If fiber diameter is less than 250 µm, it can be inserted into medical 

instruments, such as catheters, IV bags, or needles for highly localized measurements.  

2.4.3 Microfluidics and Optofluidics 

While optical fibers allow conducting very sensitive measurements on small samples, 

handling these small volumes of fluid requires use of microfluidics [43]. The integration of 

microfluidics with optical fibers enables creating a miniaturized platform for quantitative 

analysis of many biological fluids including blood, urine, and saliva [44, 45]. The field that 

allows this integration is called optofluidics, and it has important applications in telemedicine 

and point of care testing. Benefits of optofluidics include cost reduction and improved efficacy.  

Additionally, it can help bringing affordable, rapid and accurate medical diagnostics to lower 

income countries [46-48].   

Currently, because of the lack of infrastructure, and low resources, many patients suffer 

from the lack of adequate diagnostics, which further results in lack of treatment.  Improvement is 

needed to combat such diseases as HIV/AIDs, malaria, Ebola and many others.  The 2014, 

United Nations report showed an increase of lives saved through malaria interventions (3 million 

young children between 2000 and 2012), 22 million lives saved with tuberculosis treatment, and 

9.5 million people received antiretroviral medicine [49].  Though this incredible improvement 

has been made, almost 600 children still die every day of AIDs-related causes, and a record high 
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of estimated 35.3 million people still live with HIV worldwide [49].  Furthermore, 210 maternal 

death per 100,000 live births were recorded in 2013, this number indicate a decrease from last 

recording of 380 deaths, however, the report stated that much more was needed in this area to 

provide adequate care for pregnant women and their babies [49].   

2.4.4  Mobile Medicine 

Another way to conduct low cost sensing in developing countries is through the use of 

mobile phones. Seven billion mobile phone subscriptions were reported in the 2014 United 

Nation report. This means that even in a very low resource environment the mobile phones 

become available, and thus can be used for healthcare applications. Cell phone imaging can be 

seen as a grandchild of optical spectroscopy which has been used for quantitative and specific 

diagnosis of many disease [46].  There have been many advances in cell phone imaging and 

analysis [50, 51]. For example, Ozcan Lab developed a platform for mobile phone based 

microscopy and flow cytometry [51, 52].  Other advances of mobile phone based images include 

super-resolution algorithm [53, 54] allowing to conduct sample imaging with the sub-pixel 

resolution limits [55]. Furthermore, researchers have demonstrated mobile phone colorimetric 

assays.  A cellphone-based urine analysis platform sensing marker PCADM-1 for prostate cancer 

diagnosis was developed by GENTAG, Inc and MacroArray Technologies, LLC [56].  Another 

system was created for E. coli detection. It used anti-E.coli antibody-functionalized arrays and a 

quantum dot (QD) immunoassay [57]. Additionally, this system used battery-powered ultra-

violet LEDs that allowed uniform excitation of the labeled E.coli. 

2.4.5 Point-of-Care Testing and Lab-on-a-Chip 

 One of important trends in contemporary healthcare is that it evolves from the standard 

laboratory processing using large instruments, large samples and large volumes of expensive 
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reagents to the use of point-of-care devices and lab-on-chip.  It helps to address sanitization of 

device in clinical setting, improves automation and operation speed, and decreases sample 

volume [58, 59].  

The POC and LOC platform can be applied to a number of studies in blood. For pregnant 

women who developed preeclampsia, the level of hemoglobin in their blood is an important 

indicator of the disease progression.  Other important parameters of blood are uric acid, related 

to the kidney health, number of platelet, hematocrit, and percentage of red blood cells (RBCs) 

with abnormal shape and functionality.  For instance, a label-free optofluidic POC device 

demonstrated detection of cells distribution based on size and stiffness with high sensitivity 

using encoded forward light scattering signal [59].  Compare to the typical blood volume needed 

for blood analysis, this compact, inexpensive system needed ~5 µL of human blood. 

 In this dissertation we integrate together spectroscopy and microfluidics on optical fiber 

platform and demonstrate several important POC applications of this new technology.  
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CHAPTER 3: A NEW APPROACH TO MICROFLUIDIC FILTRATION: MODULAR 

FILTERS THAT CAN BE ATTACHED AND REMOVED FROM MICROFLUIDIC 

CHIP 

 

3.1        Introduction 

  The traditional approach to microfluidics is based on monolithic integration of 

multiple components on a single chip [60]. This approach allows for the simultaneous 

fabrication of multiple components including, but not limited to, microfluidic channels, 

filters, and sensors, thus enabling many functionalities [61, 62]. However, the monolithic 

integration of a microchip requires that all of the functional components comprising the 

microfluidic circuit are fixed at the time of fabrication. In order to change the parameters 

of the microfluidic filter or the characteristics of a sensor, the whole functional layer must 

be changed, new photolithographic masks must be created, and all fabrication steps must 

be repeated. 

  We propose the fabrication of some select microfluidic circuit components on 

separate microfluidic chips and seamlessly connecting them with the main circuit. This 

introduces a completely new level of flexibility to microfluidics and allows for custom 

integration with different kinds of sensors, filters, or other microfluidic components. In 

this paper, we focus on microscale filters because they are not only very important for the 

field of microfluidics, but frequently cause problems for the whole system operation.  The 

ability to exchange a clogged microfluidic filter for a new one without the need to throw 
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away the whole microfluidic-chip would increase the economy and efficiency of future 

microfluidics. Furthermore, filtering on the micro-scale is needed for a broad range of 

applications, such as capturing circulating tumor cells, separating blood cells from 

plasma, and collecting high concentrations of food pathogens or other small-sized 

particles from complex solutions or biological samples [63-68]. 

3.1.1  Current Approaches to Filtering of Microparticles 

  Traditionally, the separation of microscale particles from a complex liquid sample 

requires either centrifugation [62], mechanical millilitre-scale filtering using syringes 

[69], vacuum filter units [70], attachable filter membranes [71], or microfluidic filtration 

[72-74].  Centrifugation is widely used for biomedical applications, such as the separation 

of blood cells from plasma. It works only on relatively large sample volumes, measured 

in milliliters, while many applications, (e.g., capturing circulating tumor cells) require 

microfiltration [75-78]. 

 Mechanical filtration is widely used for laboratory sample pre-processing; tissue culture; 

biological fluids; fixation buffers; particle removal and clarification. This strategy is most 

effective for work on large scales or for high volumes and pressures [79-81].  The filtering 

membranes used for this approach can be made from a variety of materials, such as regenerated 

cellulose, polyethersulfone, surfactant-free cellulose acetate, nylon, or "PTFE" fluourocarbon 

resin. Yet this is not an effective approach for work that requires small volumes or for on-chip 

applications [82]. 

Processing of small fluid samples requires the use of microfluidics. One approach 

is to use size-restrictive filtration based on micro-pillars and micro-channels [83-86]. 

However, fluid flow through these structures requires high pressure and frequently results in 
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damage to the filters or degradation of biological samples [77] through induced blood hemolysis 

and cell fragmentation. 

3.1.2 Sample Processing After Microfiltration 

 While there are multiple microfluidic filters [65-68, 75-77], their main purpose is 

typically limited to filtering out unneeded particles or cells. However, it is frequently necessary 

for on-chip micro-filtration to be followed by microscopic or spectroscopic analysis of captured 

microscale objects, or by fluorescence in situ hybridization (FISH) [78, 88, 89]. Previously, this 

analysis has been completed after filtration using specialized instruments [90-92]. The 

inconvenience and cost of the aforementioned approach has created a need to simplify the 

extraction of captured objects before conducting analysis. This can be done using removable 

building blocks for microfluidics that can be easily inserted or extracted from the microfluidic 

circuit.  

3.1.3  Experimental Approach 

  Here we demonstrate a new, modular, microfluidic filter that can be attached to a 

microfluidic chip and later removed or exchanged for another filter. The filter is a thin 

porous transparent membrane with a pore size smaller than the particles being filtered 

[93]. It can easily be attached to microfluidic chips to capture particles; then be detached 

and used for particle analysis under a microscope or for spectroscopic studies [94].  Using 

a 1µm thick membrane instead of long microfluidic channels helps to significantly 

increase filtering area, decrease the pressure, and eliminate damage to the biological 

samples. Furthermore, if the accumulation of a large number of particles prevents 

microfluidic flow, the filter can be easily removed and exchanged for a new one. This 

modular configuration provides a simple, convenient tool for fast isolation and analysis of 



19 

 

cells, bacteria, and micro-particles. Additionally, this new technology can be used fora 

broad range of chemical, biomedical and safety applications. 

3.2 Materials and Methods 

3.2.1  Membrane Fabrication 

  The modular microfluidic filter captures particles using a porous membrane with a 

periodic array of holes shown in (Figure 3.1a). It was fabricated using the process flow 

shown in (Figure 3.2a-f). In order to enable the separation of a variety of particles from 

solution, numerous designs consisting of different pore sizes and configurations were 

fabricated on a single photolithographic mask. The pore sizes ranged from 1µm to 20µm 

in diameter, and each device was contained inside of a 5 mm square. 

  The detailed fabrication procedure used for processing was the following (Figure 

3.2). To begin, 1µm thick layers of silicon nitride were deposited on double-side polished 

wafers using the Nitride Tystar low pressure chemical vapour deposition (LPCVD) 

diffusion furnace at GATech MiRC facility; details of the LPCVD preparation process 

can be found here [89]. Next, photolithography was conducted using a chromium mask 

and AZ4620 photoresist; followed by silicon nitride etching in a PlasmaTherm reactive 

ion etcher and the removal of the residual photoresist. The backside of the same wafer 

was then photo lithographically patterned after careful alignment of the front and back 

structures [95]. 

  The next process step was silicon etching of the wafers in a heated solution of 

potassium hydroxide [94]. After this was completed, the micro-filtering membrane was 

released from the underlying silicon and a small chamber with a height equal to thickness 

of the wafer was formed. The backside of the chamber was patterned with a large circular 
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opening. The scanning electron microscope (SEM) image of the completed device is 

shown in (Figure 3.1). The small chamber together with the top and bottom membrane is 

shown in the image.  

  When fabrication was completed the devices were cleaned and diced using a 

dicing saw. After this, the hydrophilic properties of the membrane were tested to make 

sure that the fluid would run through the pores without the need to apply high pressure. 

Figure 3.3 shows that the contact angle for the water of water drop on the membrane was 

35.7 and that the membrane was hydrophilic. 

 

 

Figure 3.1 SEM image of a micro-fabricated filtering membrane. The large square is the 

membrane on top side of the wafer. It has a periodic array of holes through which we can 

see a smaller square which is a membrane on the bottom side of the wafer that has one 

circular hole in the middle. 
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Figure 3.2 Fabrication process for the transparent reconfigurable microstrainer. (a, b) Low stress 

silicon nitride is deposited on both sides of a double side polished wafer. (c, d) Photoresist is 

spin-coated; photolithography is used to pattern pores in the membrane followed by the etching 

through the nitride layer. (e) The wafer is flipped and the backside is patterned using 

photolithography and etching. (f) To complete the fabrication, KOH is used to release the 

structure. 

 

 
Figure 3.3 Water contact angle measured on the surface of the fabricated membrane  

3.2.2 Packaging and Integration 

  Here we propose two approaches towards packaging of the modular membrane. 

The integration of the filtering membrane into a microfluidic device requires the 

membrane to be encapsulated across micro-channels containing the solution to be filtered. 

The first approach is shown in Figure 3.4; in this method, the filtering membrane is still 

attached to the supporting piece of silicon substrate and is sandwiched between two 
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Polydimethylsiloxane (PDMS) adapters inserted between two glass slides (Figure 3.4 a-

d); The purpose of the PDMS adapters is to hold the membrane in place by touching only 

the supporting substrate, but not the membrane. Even though the membrane is very robust 

(after integration into the microfluidic system it can operate continuously for hours 

without breaking), the direct attachment to the membrane is challenging because it is very 

thin. The PDMS structure protects the membrane which allows for simple assembly and 

disassembly of the filter. Along with the adapters, glass slides are used to provide 

mechanical support and to facilitate integration with capillary tubes. To achieve this, a 

small opening is drilled into two glass slides in which thin capillary tubes are inserted. 

The complete device can then be connected to other microfluidic chips through these 

tubes. Figure 3.4 e-f demonstrates how this microfluidic filter would separate red blood 

cells from a blood sample and provide blood plasma as the filtrate. This application would 

be very beneficial for many diagnostic microfluidic chips that work well with blood 

plasma, but fail with whole blood. 

 Figure 3.5-a shows a variety of membranes with differing sizes and pore diameters 

all fabricated on a single 3-inch wafer. After the wafer is diced, an individual chip, with a 

selected membrane size, is inserted into the configuration described in Figure 3.4. Figure 

3.5 b shows the complete assembly that includes a membrane with 6µm pores Figure 3.5 

c. Figure 3.5 d) and e) show the second approach towards filter device assembly, where 

the micro-channels and the insertion chamber are moulded in PDMS. This second 

strategy simplifies the insertion and removal of the filtering membrane, yet, this comes 

with the cost of a slightly more difficult tubing attachment when compared to the first 

integration approach. Both methods work equally well, and the choice of one over the 
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other depends on the specific application of the filter and the consideration of future 

integration with the design of other microfluidic chips. 

 

Figure 3.4 3-Dimensional model of proposed integration of the filtering membrane into a 

microfluidic filter. The membrane is sandwiched between two protective PDMS adapters 

inserted between two glass slides (a-d). The proposed filtering of the whole blood sample 

is shown in (e-f). 

 

 

Figure 3.5 Integration of the membrane into a microfluidic filter. (a) A 3-inch silicon wafer with 

multiple microfabricated filtering membranes. (b) Membrane sandwiched between supporting 

glass slides with the tubes attached. (c) Close-up of the integrated membrane that has a periodic 

array of pores each one 6 µm in diameter. (d) and (e) show an alternative approach to integration, 

where the whole microfluidic structure including microfluidic channels is moulded in PDMS. 

The membrane is inserted across the channels. 
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3.3  Results and Discussions  

3.3.1  Microfluidic Filtration and Further Sample Processing  

  The microfluidic filter was tested with a variety of solutions (Figure 3.5) and it was 

demonstrated that the membrane can effectively separate particles from the filtrate. 

(Figure 3.5a) shows the filtration of a solution that consisted of a high concentration of 

dark brown microspheres in water. The brown fluid flows from the left, and after going 

through the membrane that is inserted perpendicular to the microfluidic channel, the fluid 

becomes clear (on the right). The fluid was pumped using peristaltic pump with a 

minimum flow rate of ~2µL/s working at the lowest setting. Microchannels were moulded 

in PDMS using very thin capillary tubes. The microfiltering membrane was inserted 

perpendicular to the channel for filtration and later extracted for analysis of the captured 

particles. Figure 3.6 b demonstrates that cells can be successfully captured using the same 

microfilter with a pore diameter smaller than the cells being used. The cells in this 

experiment are Human Lung Fibroblasts, IRM-90, from ATCC.  

 The filtering ability of the membrane depends on the size of the pores along with 

the size of the particles; when large particles are captured, smaller ones can still go 

through. (Figures 3.6 c and d) demonstrate 20 µm microbeads captured on a membrane 

with 10 µm pores. Figure 3.6 c is focused on microbeads, while Figure 3.6 d is focused on 

the membrane. Figures 3.6 e and f show that the particles that are smaller than the 

membrane pores can easily flow through the pores to the other side of the membrane. By 

focusing above and below the transparent membrane, particles can be observed on both 

sides. It is also demonstrated that focusing through the membrane produces an image of 
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almost identical quality when compared with directly observing the particles on top of the 

membrane. 

3.3.2  Filtration Operation 

  The design configuration of the circular opening (figure 3.1) enables the extraction 

of fluid medium from particles and cells. Yet, the filtration of particles of different sizes 

requires tight control of the change in pressure across the membrane to keep the larger 

particles from damaging the thin transparent silicon nitride membrane. To achieve this 

control is it necessary to know the volumetric flow rate, Q. Given in equation 1 below, Q 

is calculated knowing the diameter of the capillary D, the velocity of the fluid V, and the 

viscosity of the fluid, 𝛾, (for distilled water it is 0.894 × 10−3 𝑃𝑎. 𝑠.). 

𝑄 =
𝜋

4
𝐷2𝑉                                                       Equation 1 

The volumetric flow rate is related to the pressure across the membrane by the Hagen 

Poiseuille equation. 

∆𝑃 =
8𝛾𝐿𝑄

𝜋𝑟4
=  

128𝛾𝐿𝑄

𝜋𝐷4
                                       Equation 2 

where viscosity, 𝛾 and volumetric flow rate, Q are used along with channel length, L and 

channel diameter D. 

  It was observed that efficient particle separation, without damage to the membrane, 

was achieved when the V was measured as 1.79 × 10−3 𝑚/𝑠.  Based on this velocity, Q 

was calculated to be 2 𝜇𝐿/𝑠 and the pressure drop across the membrane while particles 

are filtered (Figure 3.6) was calculated as 2.70𝑃𝑎.    
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Figure 3.6 Demonstration of microfluidic filtration. (a) Filtration of concentrated particle 

solution. (b) Filtered Human Lung Fibroblasts cells. (c) and (d) show 20 µm microbeads 

captured on a membrane with 10 µm pores with a focus on beads (c) and the membrane (d). (e 

and f) are focused above and below the transparent membrane and show that small particles can 

go through the membrane. 

 

3.3.3  Biological Sample Integrity 

  In the next experiment, captured Human Lung Fibroblast cells were cultured directly 

on the microfiltering membrane in 10% FBS/1% antibiotic medium Figure 3.7. Figure 

3.7a demonstrates that the cells were successfully attached to the membrane and were 

able to grow. Figure 3.7b shows fluorescent image obtained using a LIVE/DEAD® Cell 

Viability Assay. In this figure the cells fluoresce with green light demonstrating that they 

are all alive. 

  For safety, all experiments with captured or cultured cells on the microfiltering 

membranes were completed in an aseptic environment. The membranes were cleaned 

with ethanol solution (70%); removing all chemical residues. Next, fibronectin was 

coated on the membrane to assist in the cell adhesion and mitosis.  For culturing, the 
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membrane was used without any further preparation steps; however for fluorescent 

imaging, cells were incubated in a 1:1 fresh medium mixed with fluorescence dyes.   

Figure 3.7 Microfiltering membrane with the Human Lung Fibroblasts cells grown on its 

surface. (a) Optical microscopy image of the membrane with the cells. (b) Green 

fluorescent images of cells demonstrating that all of them are alive. 

  

3.4   Conclusion 

  We have designed, fabricated, and tested innovative modular microfluidic filters 

that can be used as an exchangeable building block for the implementation of complex 

microfluidic circuits. Filtering and capturing of particles and cells from a number of fluids 

has been demonstrated; along with the ability to use the same filter for the analysis of the 

captured content. The thin transparent microfiltering membrane can be used for bright 

field and fluorescent microscopy and even for the culturing of captured cells. This device 

has a multitude of potential applications in microfluidics ranging from the capturing and 

analysis of the circulating tumor cells, to other industrial applications including food 

analysis, safety and security. 
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CHAPTER 4:  OPTOFLUIDIC SPECTROSCOPY INTEGRATED ON OPTICAL FIBER 

PLATFORM1 

 

4.1 Introduction 

The Institute of Medicine estimated that as many as 98,000 patients die each year due to 

preventable medical errors, making this the sixth leading cause of death in the United States, and 

claiming more lives than diabetes or Alzheimer disease [96].  Additionally, the expense of 

medical care necessitated because of medical errors, lost income, and disability, results in a total 

cost between $17 billion and $29 billion per year [97].  There are many potential sources of error 

in patient care, such as medical prescriptions, transcriptions, dispensing and administration of 

drugs, and monitoring patient’s responses.  However, among these, administration errors account 

for approximately 32% of morbidity and mortality cases in inpatient facilities [97].  Because of 

this, there is a pressing need to detect drug identity and concentration during administration, 

allowing for precise measurement of dosages, and preventing errors in real time before adverse 

effects take place.  

While monitoring of  specific medications such as antidepressants and anticoagulants are 

important for compliance and toxicity checks [98], there are many other pharmaceuticals that 

when wrongly administered will result in dangerous consequences [99]. Currently, several 

specialized assay based techniques have been used to monitor medication errors in specific 

therapeutic treatments, known as therapeutic drug monitoring (TDM) [98-101].  However, assay 

and label based detection systems such as immunoassays, electrochemical assays, and lateral-

                                                 
1 This chapter was previously published. Permission is included in Appendix A.  
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flow assays (LFAs) have several limitations that prevent them from being used for point-of-care 

sensing [102]. These techniques are time consuming, and require large volumes of analyte to 

achieve the needed sensitivity. Furthermore, drug assays use complicated electrochemical 

measurements, suffer from background interference in complex solutions and have poor thermal 

stability [103-109]. Currently there are no available technologies for detection of overdose or 

incorrect drugs during administration. 

There are many sensors that can work in almost real time and do not require use of 

reagents, but they typically measure refractive index and are based on ring-resonators [110-113], 

photonic-crystals [114-116], whispering gallery-mode [117-119], plasmonic structures [120] and 

other optical components, that without additional modifications do not provide enough 

specificity for differentiation between multiple drugs.  In addition, these techniques are prone to 

noise caused by any microscale particles present in the system and are very sensitive to small 

temperature changes.  

In general, traditional approaches to drug identification include color test [121], 

microscopic microcrystal analysis [122], thin layer chromatography [123], gas chromatography 

[124], mass spectroscopy [125], X-ray diffraction [126], and different types of spectroscopy that 

are most suitable for real time detection. By using traditional spectroscopic techniques (IR, Near-

IR, NMR, Raman) it has been shown that drug identity can be determined [127-130]. Once a 

drug has been identified using traditional spectroscopy, information regarding concentration may 

be obtained by quantifying absorption at a specific wavelength. Furthermore, spectroscopy using 

a single optical fiber is becoming a powerful approach for analysis of biological samples [131-

135]. 
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However, for complex systems such as biological fluids that contain a variety of free 

floating particles and cells, the effectiveness in determining a drugs concentration is significantly 

reduced due to scattering and interference by these objects.  As a result, additional reagents are 

required to amplify the spectral signatures of compounds of interest (e.g. biomarkers of a specific 

multiple diseases) [136-138].  Unfortunately, studies requiring reagents and labeling can only be 

performed in specialized laboratories, using large sample volumes, as well as extensive time for 

analysis ranging from several hours to multiple days.  Because of this, a reliable, reagent and 

label-free, detection method that can run in real-time by using a small sample volume would 

greatly benefit point-of care drug monitoring. 

To overcome these limitations we have proposed a new optofluidic platform that can be 

used to detect the concentration of drugs by absorption spectroscopy, free of noise from particles 

and cells, without prior sample pre-processing.  This device is small enough that it can be 

directly inserted to an IV bag or syringe, and continuously monitor drug concentration before or 

while the patient is being treated.  Additionally, this device can be mass-produced and requires 

relatively inexpensive materials.  

4.2 Materials and Methods 

4.2.1  Device Principles 

 The device was designed to be a compact probe, consisting of a miniature microfluidic 

chamber attached to the interface of an optical fiber (Figure 4.1).  The bottom of the microfluidic 

chamber consists of a porous membrane that allows fluids and chemical compounds to flow 

inside the device, while at the same time filtering out undesired particles. Furthermore, the 

porous membrane is coated with a reflective metal. Because of this coating, light will pass 

through the filtered fluid and reflect back once it reaches the membrane. The reflected light can 
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then be collected by the optical fiber for spectroscopic analysis of the filtered fluid. Based on the 

absorption of light by the fluid, the system can provide a conclusion if the drug dosage is correct. 

The top portion of the chamber might also contain small pores to allow air to escape while the 

chamber is being filled. Alternatively, if the top portion of the chamber is not inserted in fluid, 

then it might have larger air outlets.  

 

Figure 4.1  Artistic rendering of the design of the optofluidic probe and its main components. 

This includes optical fiber with attached microfluidic chamber. Sample fluid would propagate 

through the micrometer-size pores while particles are filtered out.  The bottom membrane is 

reflective, so light exiting the fiber into sample fluid contained in the chamber is coupled back 

into the same fiber for analysis. 

 

4.2.2  Fabrication Flow 

The reflective micro-porous membrane for the fluid chamber was fabricated using 

standard micro-fabrication processes (Figure 4.2) [139, 140].  Double-side polished silicon 

wafers purchased from Nova Electronic Materials (Texas) were used as the substrate (Figure 4.2 

a).  First, a 1 µm thick membrane layer of silicon nitride (Si3N4) was grown on both sides of the 

wafer by low stress–low pressure chemical vapor deposition (LPCVD) at the MiRC facility at 

Georgia Tech (Figure 4.2 b). Wafers were cleaned with acetone and IPA, then dried with 

d 
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nitrogen. Additionally, they were baked on hotplate @ 115ºC for 5 minutes to dehydrate and 

then cooled for a couple of minutes before spin-coating with photoresist. 

Next, Si3N4 layer was patterned (Figure 4.2 c), defining the transparent microfiltering 

membrane on one side and optic fiber opening on the other side. It was done by spin-coating 

positive photoresist followed by UV lithography and reactive ion etching on both sides of the 

wafer. Two consecutive photolithography steps required through-wafer alignment using IR mask 

aligner. The recipe for the photoresist deposition was the following: 4620AZ Positive Resist was 

spin-coated first at 4000rpm for 30 seconds, then at 500rpm for 10 seconds and finally at 

6500rpm for 60 seconds. This allowed to achieve the most uniform surface coverage. Then it 

was baked in oven at 100°C for 20 minutes and rehydrated for 24 hours. The exposure was 7 

seconds on Karl Suss mask aligner (lamp intensity 25 mW/cm2). After that it was developed for 

3 min in photoresist 400K developer, hard baked at 100°C for 30 minutes and used for etching in 

RIE.  

After patterning silicon nitride layers the exposed silicon was etched away in a solution 

of potassium hydroxide (KOH, 85°C) for 7 hours, creating a hollow chamber between the two 

nitride layers. This chamber will be filled with the fluid under study through the nitride 

membrane. Finally, 200 nm of gold was deposited on top of the nitride membrane using a 

Denton Thermal Evaporator.  An optical microscopy image of the micro-fabricated membrane is 

shown in Figure 4.2 f.  The circular pores of the membrane are 10 µm in diameter, and have been 

patterned in a square array with the distance of 15 µm from center to center. This configuration 

of the membrane allows for filtration of particles larger than 10 µm in diameter. 
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4.2.3  Filtration Experiment 

 Once the membranes had been prepared, their filtration capabilities were tested. The 

membranes were pre-wetted and cleaned by flushing them with acetone while switching from 

sample to sample. The membranes were positioned underneath an upright optical microscope for 

observation, where the membrane surfaces were oriented perpendicular to the microscope 

objective. They were slightly elevated, allowing for space to exist beneath them. In order to 

observe filtration with these membranes, a droplet of DI water containing naturally occurring 

contaminants (dust) was placed on top of the membrane surface. By relying on gravitational 

forces alone, the droplet of water was allowed to pass through the membrane, while 

contaminants were effectively filtered out. These effects were recorded using a microscope 

camera. After the filtration experiment was completed, the membranes were easily cleaned by 

rinsing with acetone. 

 

Figure 4.2  Device fabrication. (a) Two-side polished silicon substrate. (b) Silicon nitride is 

deposited on both sides of the wafer. (c) Silicon nitride was patterned and etched on both sides.  

(d) The membrane was released using etching in KOH solution.  (e) Gold was deposited on the 

membrane. (f) Optical microscopy image of a released membrane. 
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4.2.4  Optical Experiments 

4.2.4.1  Device Packaging 

 

Figure 4.3 Details of the packaging. a) Cleaved optical fiber inserted into fiber holder, b) 

enlarged tip of the fiber that is 125 µm in diameter. c) Optical fiber holder fixed in high precision 

XYZ-stage. d) Optical fiber above reflective gold coated membrane. e) Fully assembled device 

with an optical fiber enclosed inside of the fluid chamber and a filtering membrane connected at 

the bottom. 

 

 After testing filtering properties of the micro-filtering membranes they were assembled 

next to the optical fiber tips. For this, an 8 μm optical fiber was cleaved and inserted into an 

adjustable fiber holder (Figure 4.3a) to provide mechanical support to the otherwise flexible 

fiber. The enlarged image of the exposed fiber tip is shown in Figure 4.3b.  Following this, the 

fiber holder was inserted into a high precision XYZ-stage, and the tip was positioned ~105 µm 

from a reflective metal membrane by adjusting the dial of the optical stage (Figure 4.3c). For 

optical alignment procedures, please refer to the following section (2.4.2). In Figure 4.3d, an 

enlarged image of the fiber tip and membrane in the assembly is shown. It may be seen that 

spacing (~105 µm) exists between the fiber and the membrane, and that the membrane itself is 
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coated with gold. Finally, the entire device was fixed in place by epoxying the metal surrounding 

the membranes to a small polydimethylsiloxane (PDMS) tube. This tube was created to fit tightly 

to the optical fiber holder, and the final assembly can be seen in Figure 4.3e.  

4.2.4.2  Fiber Alignment and Positioning 

 

Figure 4.4 Fabry-Perot resonance of the set-up used in this experiment. Here the resonance 

corresponds to a separation of approximately 105 μm between the fiber and reflector. 

 

As previously stated, before the setup was fixed in place the optical fiber and membrane 

required alignment and positioning at an appropriate spacing. In order to optimize coupling, the 

optical fiber was set perpendicular to the membrane. Angular alignment of the system was 

performed by adjusting the XYZ-stage, and observing the reflected power in air. An 

approximation of fiber angle was made qualitatively through visual observation. However, for 

added precision, reflected power was recorded while the fiber angle was finely tuned. The fiber 

angle was set once the reflected power reach a maximum value. 

Following angular alignment, the fiber needed to be placed at a set spacing from the 

membrane surface. The XYZ-stage allows for vertical adjustment of the fiber. However, micron 

level precision was needed to effectively determine the spacing, and thus Fabry-Perot resonance 
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was used for high precision measurements.  The resonance was formed between the two 

reflective surfaces - the gold coated membrane and the cleaved fiber interface. The spectrum was 

recorded in air (refractive index: 1.0) and conducted using infrared light between 1400 and 1500 

nm (shown in Figure 4.4 for the desired spacing). Using the collected IR spectrum, the distance 

could be calculated using the following expression:  

𝑑 =
𝜆𝑖

2

2𝑛(𝜆𝑖+1−𝜆𝑖)
                                                  Equation 1 

where λi and λi+1 are consecutive resonance wavelengths (nm), n is the refractive index. By 

recording resonance patterns for different vertical settings of the XYZ-stage, a correlation 

between stage setting and the actual distance, determined by equation 1, was obtained. Once the 

appropriate vertical setting was found, the fiber was fixed in position and the distance was 

verified again using Fabry-Perot resonance. In Figure 4.4, we can see the Fabry-Perot resonance 

recorded for the vertical setting once the fiber was set 105 µm from the membrane. 

4.2.4.3 Absorption Spectroscopy of Cobalamin 

 In order to demonstrate that the device is capable of determining drug and its 

concentrations, absorption spectroscopy was conducted for a specific pharmaceutical– cobalamin 

(vitamin B12). Different drugs can be identified using UV-vis spectroscopy. For example, 

absorption spectrum of cobalamin dissolved in water with concentration 60 mg/dL is shown in 

Figure 4.5a. When drug is known, its concentration can be measured at one specific wavelength, 

since it is much faster than measurements of the whole spectrum. 
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a) b)  

Figure 4.5 Experimental absorption spectrum.  (a) and theoretical transmission profiles 

for Cobalamin (b) at varying concentrations and fiber spacing. 

 

 The goal was to construct a sensor that would be able to conduct measurements for the 

broad range of concentrations from 0.1 mg/dL to 500 mg/dL.  Theoretical modeling of this 

sensors transfer function was conducted using Beer-Lambert law: 

𝑃

𝑃𝑜
= 𝑒𝑥𝑝(−2𝛼𝑑𝐶)                                                 Equation 2 

where P is the power of transmitted light (W) for the fluid under study, Po is the transmitted 

power (W) for a pure sample, α is the molar absorptivity with units of L/mol∙cm, 2∙d is the total 

optical path where d was the spacing between the fiber and reflective surface (cm), and C is the 

concentration of the cobalamin expressed in mol/L. 

Figure 4.5 shows the theoretical transfer functions plotted for the needed range of 

concentrations and three different spacing between the fiber and the membrane – 75, 105 and 

150 µm.  While 150 µm gap is better for the measurements of lower concentrations, and 75 µm 

works better for higher concentrations, the 105 µm gap is suitable for both ranges and thus was 

chosen for the experimental testing. 

 During the experiment, the concentration of cobalamin was varied from approximately 

0.1 mg/dLto 515 mg/dL, while reflected power was recorded for each concentration.  All 
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measurements were conducted over 5 minute timeframes, during which the power was averaged. 

A high stability green laser (532 nm) was used at a fixed power at 30 mW.  After one cobalamin 

measurement was made, the sample was removed, and the sensor was thoroughly rinsed with 

water. This cleaning was conducted to prevent build-up of cobalamin on surfaces. After cleaning, 

the setup was allowed to air dry for approximately one minute, ensuring that all water was 

removed from the system.  Samples were tested sequentially with increasing concentration. In 

order to ensure reproducibility of results, every test was calibrated with respect to the water 

control measurements. 

4.3 Results and Discussion 

4.3.1  Filtration Demonstration 

As previously mentioned, the filtering properties of the micro-fabricated porous 

membrane were demonstrated with a drop of DI water. Figure 4.6a and 4.6b show the empty 

membrane placed horizontally under the microscope and a membrane right after putting a drop 

of water, respectively. It may be noticed that the water passes through the pores in the 

membrane, and forms a drop on the other side, while all particles are filtered by the pores and 

remain on the membrane surface (Figure 4.6b-f).  Figure 4.6f demonstrates the outline of the 

water drop that is not fully seen since it is already under the membrane, and the dark spots are 

particles that are present in all real world samples and were successfully filtered out by the 

membrane. 

For cleaning purposes the membrane was flushed with acetone. It was observed that this 

also improved its wetting properties. While without applying additional pressure, water flow 

takes several minutes to completely pass through the membrane. However, prior prewashing 

decreases this time to seconds (Figure 4.6 g-i). The membrane was also tested continuously with 
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the lowest setting of a peristaltic pump pumping fluid with the flow rate ~2µL/s, and it could 

withstand the external pressure still demonstrating successful particle filtration. 

 

Figure 4.6 Demonstration of successful filtration using microfluidic membrane. While water 

goes through the membrane for further analysis, all the contamination stays on the surface.  

 

4.3.2 Optical Measurement of Cobalamin Concentrations 

While the proposed optofluidic platform is compatible with a broad range of drugs, here 

we demonstrated measurements of cobalamin concentration as an example drug that can be 

monitored using this approach.  Cobalamin (vitamin B12) is an essential water-soluble vitamin, of 

which a deficiency can lead to abnormal neurologic and psychiatric symptoms. This may include 

ataxia (shaky movements and unsteady gait), muscle weakness, spasticity, incontinence, 

hypotension (low blood pressure), vision problems, dementia, psychoses, and mood 

disturbances. There is a variety of doses that are used for injections: from 0.2µg/kg for neonates 

and infants to 1000 µg total for adults with severe vitamin deficiency [141]. This means range of 
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concentrations from 1 µg/ml to 1000 µg/ml, therefore the Figure 4.7b shows measurements of 

concentrations between 1 µg /mL to 5 mg/mL to monitor the physiological range and potential 

overdose. 

Because cobalamin was the only compound sensed, all the measurements were conducted 

with a single wavelength, 532 nm, where cobalamin has high absorption and the sensor would 

have the highest sensitivity. In future sensing at multiple wavelengths can be used to monitor 

mixture of several drugs simultaneously.  

a) b)  

Figure 4.7 Sample of cobalamin concentrations and experimental results. a) Samples of different 

concentrations of cobalamin arranged in order of decreasing concentration. b) Corresponding 

experimental results of optical measurements of cobalamin concentration. 

 

Figure 4.7 (a) shows the solutions of cobalamin used in this experiment in order of decreasing 

concentration (left to right).  As a results, the experimental points are well fitted by the 

theoretical curve obtained using Beer-Lambert Law (R2=0.994). 

4.4 Conclusion 

In conclusion, we presented a new optofluidic platform for near-patient drug monitoring 

designed with the purpose of providing additional level of safety for drug administration and 

decreased human error.  This has the potential of reducing preventable deaths due to medical 
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errors.  By combining spectroscopic analysis with microfluidic filtration, the system allows rapid 

and accurate testing for drug concentrations levels.  Design, optimization, fabrication and 

experimental testing of this system for the measurement of cobalamin concentration 

demonstrated that this approach is promising.  Furthermore, it opens up a whole area of 

optofluidic fiber based drug monitoring where future work includes analysis of multiple drugs 

and their mixtures and integration with syringes and IV-bags. 
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CHAPTER 5:  DESIGN OF AN OPTOFLUIDIC SENSOR FOR RAPID DETECTION OF 

HEMOLYSIS 

 

5.1 Introduction 

 Every day millions of blood samples are collected in hospitals and clinics for analysis, 

and a significant portion of those samples are compromised due to hemolysis: up to 31% for 

blood drawn in emergency rooms and 10% in blood banks and blood testing facilities [19, 142]. 

Significant effort has been devoted to reducing the rate of hemolysis in blood samples by 

optimizing collection techniques, through the use of appropriate needles and other methods; 

however, no significant improvement has been demonstrated [4]. Additionally, there are many 

causes of later hemolysis of a correctly collected blood sample, such as improper sample 

collection, handling, transportation, and storage [4, 24] . 

 This high rate of blood sample compromise negatively influences several aspects of the 

healthcare system and has a pronounced adverse economic impact. Millions of dollars are wasted 

each year because instruments for prompt, low-cost hemolysis detection are not available. 

Diagnoses are delayed, and some tests produce erroneous results, evidence to the fact that 

hemolysis is the leading cause of pre-analytical errors [24, 143]. Hemolysis interference also 

affects a number of important biochemical tests, such as lactate dehydrogenase (LD), aspartate 

aminotransferase (AST), bilirubin, cholesterol, and glucose tests.  The quality of blood test 

results can be compromised even when the level of hemolysis is undetectable by visual 

inspection (plasma hemoglobin less than 50 mg/dL) [144]. In addition to sample contamination 



43 

 

due to in vitro hemolysis, in vivo hemolysis is also a problem, resulting in vascular disease, 

inflammation, thrombosis, and renal impairment [7]. Evidence of hemolysis can be detected at 

10 mg/dL in some conditions, while grossly hemolyzed samples might have free plasma 

hemoglobin concentration of 500 mg/dL and above. 

Currently there is no reliable way to detect hemolysis without first separating the blood 

plasma from the whole blood sample. The traditional detection method is visual assessment of 

the level of “redness” of the separated plasma. This approach, however, results in a high 

percentage of human errors and miscategorizations. Alternatively, there are several automatic 

methods of free plasma hemoglobin measurement such as ELISA and spectrophotometry [145] 

[25-27]. These automatic methods of hemolysis detection are time-consuming and expensive. As 

a result, these methods do not work well for rapid assessments of sample quality. 

Here we propose a new device that allows for quantitative measurement of the level of 

hemolysis of just a drop of plasma using absorption spectroscopy. Quantitative measurements 

are available instantaneously, and the method is reagent-free. Significantly, this portable device 

can be used for quality control in blood testing facilities or in hospitals before blood transfusions.  

For the above reasons, we optimized the instrument for the range of measurements between 0 

and 500 mg/dL. 

5.2 Device Packaging and Design 

 Detection of hemolysis requires that measurements be made of free plasma hemoglobin. 

It cannot be done in whole blood samples because of interference from unlysed blood cells. 

Thus, the cells must first be separated from the sample before the plasma can be analyzed. This 

can be achieved by centrifugation and then using an optical fiber platform and absorption 

spectroscopy techniques to measure hemoglobin concentration. Figure 5.1a shows the proposed 
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design, while Figure 5.1b shows the assembled prototype. Here the whole structure is inserted 

into a molded PDMS tube with a thin capillay. A cleaved optical fiber can be fixed in a fiber 

holder that can be moved freely within filtered plasma.  The PDMS forms an airtight seal with 

the fiber capillary holding the fiber holder and fiber.  

 

Figure 5.1 Proposed design for the spectroscopic probe. a) Proposed design for the spectroscopic 

probe. b) Fully assembled spectroscopic probe, including optical fiber, PDMS holder, and 

reflective membrane. 

 

 A thin (~1 µm) reflective porous membrane is attached at the bottom of the chamber. The 

reflective membrane is fabricated using a conventional photolithographic process with gold 

deposition, as described in a previous work [28]. Specifically, silicon nitride was deposited on a 

double-side silicon wafer, and positive resist was used for design patterning. After 

photolithography, nitride etching and wet-etching for silicon layer, 200 nm of gold was deposited 

on the silicon nitride membrane. The supporting wafer was attached using epoxy to ensure a 

watertight seal.  Pores (1–3 µm in diameter) were etched across the whole membrane in a square 

array. The entire device, fully assembled for experimental use, is shown in Figure5.1b.  
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A drop of plasma can be applied on the surface of the membrane that, through capillary action, 

moves into the miniature chamber and inserted capillary. The plasma can subsequently  be 

analyzed. Spectroscopic analysis of plasma is performed to measure the concentration of free 

hemoglobin. Light from the optical fiber passes through the fluid, eventually reaching the 

reflective gold coated membrane. The reflected light is couple back to the optical fiber into the 

power meter for measurement. The whole device can be inserted into acetone for a quick flush, 

as an easy cleaning technique.   

5.3 Optimization of Optical Parameters 

Hemolysis is detected by measuring the concentration of hemoglobin in the plasma. Light 

absorption is measured with a single optical fiber (Figure 5.1a), and then the Beer-Lambert law 

is applied. The Beer-Lambert equation relates light transmission to the concentration of optically 

absorptive compounds in a sample.: 

                                                                   𝑇ℓ = exp(−2𝛼ℓ𝐶)                                          Equation 1 

where ℓ is the spacing distance between the tip of the optical fiber and the reflective membrane 

(cm), 𝐶 is the concentration of hemoglobin in the plasma (mol/L), 𝛼 is the wavelength-dependent 

molar absorptivity of hemoglobin (L/mol∙cm), and 𝑇ℓ is the resulting fraction of light transmitted 

through the sample at the set spacing ℓ. 

 Hemoglobin is found naturally in two variations (oxygenated and deoxygenated), which 

must be taken into consideration. Both variations of hemoglobin have own distinct values of 

molar absorptivity (𝛼) at different parts of the electromagnetic spectrum. However, for a few 

wavelengths of light (isosbestic points), 𝛼 for oxygenated and deoxygenated hemoglobin is the 

same. Over the wavelength range from 500 to 600 nm, four isosbestic points occur, at 

approximately 530, 545, 570, and 584 nm, with 𝛼 values of 0.0138, 0.0188, 0.0167 and 0.0127 
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L/mol∙cm, respectively [94]. The advantage of using isobestic points is that a single wavelength 

can be used to determine the total (both forms) concentration of hemoglobin. For this method, a 

wavelength of 545 nm was selected because of the high corresponding absorption. 

 After choosing the wavelength (thus determining the molar absorptivity), there remain 

three unknown variables of the Beer-Lambert equation (eq. 1). Hemoglobin concentration (𝐶) is 

the variable we wish to determine, and transmission (𝑇ℓ) is the variable we can directly measure. 

The spacing (ℓ) can be chosen such that the sensor operates with an optimum level of 

performance.  

Figure 5.2 shows the influence of the spacing (ℓ) on the transfer function relating light 

transmission to hemoglobin concentration. Fiber spacing is chosen depending on the desired 

range of sensor measurements. For example, if expected hemoglobin concentrations can be up to 

only 100 mg/dL, then a larger fiber spacing (4.0 mm) would be chosen to achieve the best 

resolution within that range. It will allow to accumulate larger optical absorption in thicker layer 

of plasma and extract more information about low hemoglobin concentrations. If much higher 

concentrations of hemoglobin are to be measured, then a smaller spacing should be chosen. 
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Figure 5.2 Transfer functions relating normalized for different spacings (ℓ) between the fiber 

and the reflective membrane. 

 

For a sensor that displays exponential decay as its operating curve, we consider 

performance to light transmission to hemoglobin concentration, be optimal when there exists a 

strong negative decay over the concentration range of interest. This allows for distinct and well-

defined changes in transmission, as well as greater sensitivity in resolving concentration values. 

However, the performance curve must not display too steep of an exponential decay, as the 

sensor would then lose sensitivity in resolving concentrations at the extremities of the range of 

interest.  

 To characterize sensor behaviors over a range of hemoglobin concentrations, two 

operation parameters were created through manipulations of statistical curve regression analysis 

and least squares error. These parameters are the fraction of maximum decay (ψ) and the degree 

of curvature (φ). The fraction of maximum decay is a measure of how much the signal ‘decays’ 

over the range of interest (Ca to Cb). A value of zero indicates a curve with no decay, while a 

value of one implies that maximum decay has been reached over the range of interest (i.e., 

transmission at Cb is 0%). Derivation and simplification of this parameter is shown in eq. 2. 
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                          𝜓 = (
𝑇ℓ(𝐶𝑏) − 𝑇ℓ(𝐶𝑎)

𝐶𝑏 − 𝐶𝑎
) (

𝐶𝑏 − 𝐶𝑎

𝑇∞(𝐶𝑏) − 𝑇∞(𝐶𝑎)
) = 1 −

𝑇ℓ(𝐶𝑏)

100%
               Equation 2 

In Equation 2, transmission 𝑇ℓ is written as a function of concentration C, and the 

denotation ℓ signifies that the separation between the fiber and membrane is at a fixed length ℓ. 

As such, 𝑇∞ is the transmission that corresponds to a fixed separation for which the tip of the 

optical fiber and the reflective membrane are infinitely far apart. The other parameter, the degree 

of curvature φ, measures the extent to which the exponential sensor deviates from a linear 

operation behavior. A degree of curvature near one indicates that the curve is behaving 

approximately linear, and as this value decreases, the operation curve deviates from a liniar fit 

over the range of interest. This parameter was derived through modification of the least squares 

correlation coefficient, to describe the squared error between the exponential operation curve 

‘𝑇ℓ’ and a hypothetical performance curve for a linear sensor ‘𝜃ℓ.’ Expressions for φ and 𝜃ℓ are 

given below in Equation 3 and 4 respectively. 

                          𝜙 = 1 −
∫ (𝜃ℓ − 𝑇ℓ)2𝑑𝐶

𝐶𝑏

𝐶𝑎

∫ (𝜃∞ − 𝑇∞)2𝑑𝐶
𝐶𝑏

𝐶𝑎

= 1 −
∫ (𝜃ℓ − 𝑇ℓ)2𝑑𝐶

𝐶𝑏

𝐶𝑎

∫ (𝜃∞)2𝑑𝐶
𝐶𝑏

𝐶𝑎

                       Equation 3 

 

                                                𝜃ℓ = (
𝑇ℓ(𝐶𝑏) − 𝑇ℓ(𝐶𝑎)

𝐶𝑏 − 𝐶𝑎
) ∙ 𝐶 + 100%                              Equation 4 

 Solving Equation 1 through 4 for an effective hemoglobin concentration range from 0 to 

500 mg/dL and iterating over various spacings (ℓ), the two behavior parameters could be 

calculated (Figure 5.3a). When the spacing is near 0 mm (i.e., fiber and membrane are nearly 

touching), the sensor behaves practically linearly; however the rate of decay is significantly low. 

Conversely, at larger separation lengths, the decay rapidly reaches its maximum value; however, 

the sensor operates exponentially. By multiplying the two parameters (φψ), the optimum 
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behavior can be determined by locating the relative maximum value, which in turn reveals the 

optimal spacing required to achieve this desired behavior. Figure 5.3b shows the results of this 

multiplication, with a maximum value at approximately 1.27 mm. 

Figure 5.4 shows the theoretical transfer function for the proposed hemolysis sensor 

based on solving the Beer-Lambert law (eq. 1) for the optimal spacing.  Knowing the optimum 

chamber length, this operating curve for the sensor can be achieved.  This indicate that 

transmission drop between a pure plasma (0 mg/dL of hemoglobin) to a slightly hemolyzed 

sample of (30 mg/dL) is approximately 13% change.  

 

 

Figure 5.3 Sensor parameter optimization based on optical detection of hemoglobin over the 

concentration range 0–500 mg/dL. a) Parameters describing sensor behavior are shown for 

various chamber lengths, ℓ. b) Multiplying these two parameters, a spacing for optimum optical 

performance can be found. 

 

a b 
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Figure 5.4 Theoretical performance curve for the optimum sensor configuration over normalized 

transmission measurement of wide range of hemoglobin concentration measured in milligrams 

per deciliter (mg/dL). 

 

5.4 Experimental Detection of Hemoglobin 

 Measuring the distance between the gold-coated membrane and the optical fiber is crucial 

for determining the exact concentration of hemoglobin in a plasma sample.  Therefore, a 200 μm 

cleaved optical fiber was inserted into a fiber holder, which was then connected to an XYZ-stage 

and adjusted to a distance of about 1025 µm from the gold surface.  The system was optically 

aligned by adjusting the XYZ-stage and observing the reflected power when the chamber was 

filled with either air or water. The recorded Fabry-Perot resonance formed between the cleaved 

fiber and the gold surface was used to determine the precise distance and to adjust it to the 

needed value [146]. Figure 5.5 shows theoretical and experimental analysis of the percentage of 

light lost due to diffraction for different optical fibers. It can be noticed that for the propagation 

lengths we are interested in, optical fiber with 200 µm core diameter loses the lowest amount of 

light.  

 Serial concentration solutions of hemoglobin were then prepared in blood plasma using 

animal plasma and hemoglobin from bovine blood lyophilized powder. The reflection 
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measurements were taken over a large range of concentrations (0–500 mg/dL). Each set of 

measurements was repeated three times over duration of 5 minutes for each concentration of 

hemoglobin. All the measurements were normalized relative to the initial laser power. The 

results can be seen in Figure 5.6, a plot of the averaged power vs. hemoglobin concentration.    

 

 

 

Figure 5.5 Left: Percentage of light lost due to diffraction for 8, 50 and 200 μm core optical 

fiber. Right: Losses were measured for the chamber filled either with air (red) or water (blue), 

and model curves were fit to the experimental data. 
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Figure 5.6 Experimental results showing decrease of reflected light with increase of hemoglobin 

concentration. The data points show exponential decay due to increased absorption together with 

periodic fluctuations because of the change of refractive index in the Fabry-Perot resonator. 

 

5.5 Conclusions 

 A method for rapidly detecting hemolysis, using only microliters of plasma, has many 

critical applications for blood-testing quality control and safety control. In this work, we 

proposed, theoretically optimized, fabricated, and tested miniature instrument to rapid test for 

hemolysis in plasma samples for a broad range of hemoglobin concentrations. This sensing 

platform integrates the optical fiber technology and the microfluidic reflective membrane.   
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CHAPTER 6:  CONCLUSIONS AND FUTURE WORK 

 

The negative impact of hemolysis has significantly affected healthcare as well as national 

and global economy.  To address these worldwide health concerns, we specifically focused on 

hemolysis in maternal complications. A novel biomedical platform, optofluidic device was 

investigated for point-of-care clinical and analytical assessment of hemolysis for implementation 

in low resource settings and the developing world.  A combinatory approach was taken by 

integrating optics and microfluidics.  As a result, a new device was introduced with successful 

fabrication of the 3-dimentional microfilter.  The proposed microfilter would enable a new 

direction in the field of microfluidics analysis.  This system will be useful not only toward this 

research, but in any microfiltering system, where spectroscopic analysis is needed real-time.  The 

developed platform can be applied for affordable, rapid and accurate testing in other areas such 

as protein level quantification, and diseases such as sickle-cell.   

In addition to the microfilters, a mobile platform was designed to accurately quantify 

hemolysis by assessing the levels of hemoglobin through color analysis.  Results of this work 

showed successful detection of critical levels of hemoglobin due to hemolysis without any 

sample pre-processing.  This achievement was to target preeclampsia and HELLP syndrome 

rapidly, near-patient, especially in developing countries.  An international patent was filed during 

this project and clinical assessments will be continued toward improving the device and mobile 

platform.  
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