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ABSTRACT 
 

In composite materials, transverse shear modulus is a critical moduli parameter for 

designing complex composite structures. For dependable mathematical modeling of mechanical 

behavior of composite materials, an accurate estimate of the moduli parameters is critically 

important as opposed to estimates of strength parameters where underestimation may lead to a 

non-optimal design but still would give one a safe one. 

 Although there are mechanical and empirical models available to find transverse shear 

modulus, they are based on many assumptions. In this work, the model is based on a three-

dimensional elastic finite element analysis with multiple cells. To find the shear modulus, 

appropriate boundary conditions are applied to a three-dimensional representative volume element 

(RVE). To improve the accuracy of the model, multiple cells of the RVE are used and the value of 

the transverse shear modulus is calculated by an extrapolation technique that represents a large 

number of cells. 

Comparing the available analytical and empirical models to the finite element model from 

this work shows that for polymeric matrix composites, the estimate of the transverse shear modulus 

by Halpin-Tsai model had high credibility for lower fiber volume fractions; the Mori-Tanaka 

model was most accurate for the mid-range fiber volume fractions; and the Elasticity Approach 

model was most accurate for high fiber volume fractions. 

Since real-life composites have voids, this study investigated the effect of void fraction on 

the transverse shear modulus through design of experiment (DOE) statistical analysis. Fiber 

volume fraction and fiber-to-matrix Young’s moduli ratio were the other influencing parameters 
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used. The results indicate that the fiber volume fraction is the most dominating of the three 

variables, making up to 96% contribution to the transverse shear modulus. The void content and 

fiber-to-matrix Young’s moduli ratio have negligible effects. 

To find how voids themselves influence the shear modulus, the transverse shear modulus 

was normalized with the corresponding shear modulus with a perfect composite with no voids. As 

expected, the void content has the largest contribution to the normalized shear modulus of 80%. 

The fiber volume fraction contributed 12%, and the fiber-to-matrix Young’s moduli ratio 

contribution was again low.  

Based on the results of this work, the influences and sensitivities of void content have 

helped in the development of accurate models for transverse shear modulus, and let us confidently 

study the influence of fiber-to-matrix Young’s moduli ratio, fiber volume fraction and void content 

on its value.
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CHAPTER 1 LITERATURE REVIEW 
 

1.1 Introduction 

Linear elasticity mathematical models are derived using equilibrium, stress-strain, and 

strain-displacement equations. To solve such mathematical models, one needs to have accurate 

estimates of stiffness parameters. For an ideal three-dimensional material following Hooke’s Law 

– the stress-strain relationship (Kaw, 2005) in the 1-2-3 orthogonal Cartesian coordination system 

is given by 

⎣
⎢
⎢
⎢
⎢
⎡
𝜎𝜎1
𝜎𝜎2
𝜎𝜎3
𝜏𝜏23
𝜏𝜏31
𝜏𝜏12⎦

⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡
𝐶𝐶11 𝐶𝐶12 𝐶𝐶13
𝐶𝐶21 𝐶𝐶22 𝐶𝐶23
𝐶𝐶31 𝐶𝐶32 𝐶𝐶33

𝐶𝐶14 𝐶𝐶15 𝐶𝐶16
𝐶𝐶24 𝐶𝐶25 𝐶𝐶26
𝐶𝐶34 𝐶𝐶35 𝐶𝐶36

𝐶𝐶41 𝐶𝐶42 𝐶𝐶43
𝐶𝐶51 𝐶𝐶52 𝐶𝐶53
𝐶𝐶61 𝐶𝐶62 𝐶𝐶63

𝐶𝐶44 𝐶𝐶45 𝐶𝐶46
𝐶𝐶54 𝐶𝐶55 𝐶𝐶56
𝐶𝐶64 𝐶𝐶65 𝐶𝐶66⎦

⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡
𝜀𝜀1
𝜀𝜀2
𝜀𝜀3
𝛾𝛾23
𝛾𝛾31
𝛾𝛾12⎦

⎥
⎥
⎥
⎥
⎤

                                                                  (1) 

where 

 𝜎𝜎𝑖𝑖 = normal stress in direction 𝑖𝑖, 𝑖𝑖 = 1, 2, 3, 

 𝜏𝜏𝑖𝑖𝑖𝑖 = shear stress in plane 𝑖𝑖𝑖𝑖, 𝑖𝑖 = 1, 2, 3, 𝑖𝑖 = 1, 2, 3, 

 𝜀𝜀𝑖𝑖 = normal strain in direction 𝑖𝑖, 𝑖𝑖 = 1, 2, 3, 

 𝛾𝛾𝑖𝑖𝑖𝑖 = shear strain in plane 𝑖𝑖𝑖𝑖, 𝑖𝑖 = 1, 2, 3, 𝑖𝑖 = 1, 2, 3. 

Note that 1-axis is chosen as the direction along the fiber as shown in Figure 1. 
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Figure 1 Definition of axes for composite models. 
 

The 6 × 6 [𝐶𝐶] matrix is called the stiffness matrix. For instance, based on Equation (1), the shear 

stress 𝜏𝜏23 can be calculated from the given formula 

𝜏𝜏23 = 𝐶𝐶41𝜀𝜀1 + 𝐶𝐶42𝜀𝜀2 + 𝐶𝐶43𝜀𝜀3 + 𝐶𝐶44𝛾𝛾23 + 𝐶𝐶45𝛾𝛾31 + 𝐶𝐶46𝛾𝛾12                                                 (2) 

Highly symmetrical geometric structure correlates to a strong similarity between 

mechanical behaviors in opposing directions. A typical unidirectional composite material with a 

matrix reinforced by long fibers can be classified as an orthotropic material. The stiffness matrix 

of an orthotropic material with three mutually perpendicular planes with geometric symmetry is 

written as (Kaw, 2005) 

[𝐶𝐶]orthotropic =

⎣
⎢
⎢
⎢
⎢
⎡
𝐶𝐶11 𝐶𝐶12 𝐶𝐶13
𝐶𝐶12 𝐶𝐶22 𝐶𝐶23
𝐶𝐶13 𝐶𝐶23 𝐶𝐶33

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

𝐶𝐶44 0 0
0 𝐶𝐶55 0
0 0 𝐶𝐶66⎦

⎥
⎥
⎥
⎥
⎤

                                                              (3) 

 

 

 

1 

2 

3 
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 Equation (3) of the stiffness parameters can also be written in terms of elastic moduli as 

[𝐶𝐶] =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1 − 𝜈𝜈23𝜈𝜈32
𝐸𝐸2𝐸𝐸3∆

𝜈𝜈21 + 𝜈𝜈23𝜈𝜈31
𝐸𝐸2𝐸𝐸3∆

𝜈𝜈31 + 𝜈𝜈21𝜈𝜈32
𝐸𝐸2𝐸𝐸3∆

𝜈𝜈21 + 𝜈𝜈23𝜈𝜈31
𝐸𝐸2𝐸𝐸3∆

1 − 𝜈𝜈13𝜈𝜈31
𝐸𝐸1𝐸𝐸3∆

𝜈𝜈32 + 𝜈𝜈12𝜈𝜈31
𝐸𝐸1𝐸𝐸3∆

𝜈𝜈31 + 𝜈𝜈21𝜈𝜈32
𝐸𝐸2𝐸𝐸3∆

𝜈𝜈32 + 𝜈𝜈12𝜈𝜈31
𝐸𝐸1𝐸𝐸3∆

1 − 𝜈𝜈12𝜈𝜈21
𝐸𝐸1𝐸𝐸2∆

0 0 0

0 0 0

0 0 0

0 0 0
0 0 0
0 0 0

𝐺𝐺23 0 0
0 𝐺𝐺31 0
0 0 𝐺𝐺12⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

                           (4) 

where 

∆ =
1 − 𝜈𝜈12𝜈𝜈21 − 𝜈𝜈23𝜈𝜈32 − 𝜈𝜈13𝜈𝜈31 − 2𝜈𝜈21𝜈𝜈32𝜈𝜈13

𝐸𝐸1𝐸𝐸2𝐸𝐸3
                                                                  (5) 

 𝐸𝐸𝑖𝑖 = Young’s modulus in direction 𝑖𝑖, 𝑖𝑖 = 1, 2, 3, 

 𝜈𝜈𝑖𝑖𝑖𝑖 = Poisson's ratio in plane 𝑖𝑖𝑖𝑖, 𝑖𝑖 = 1, 2, 3, 𝑖𝑖 = 1, 2, 3. 

The stiffness matrix in Equation (4) implies that for orthotropic materials, the shear strain 

𝛾𝛾23 is only influenced by the shear stress 𝜏𝜏23, and the slope of the linear relationship is 𝐶𝐶44 = 𝐺𝐺23.  

Some unidirectional composite materials such as those with symmetric periodic 

distribution of fibers may act as transversely isotropic material with five independent constants 

and is given by 

[𝐶𝐶]transversely isotropic =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝐶𝐶11 𝐶𝐶12 𝐶𝐶12
𝐶𝐶12 𝐶𝐶22 𝐶𝐶23
𝐶𝐶12 𝐶𝐶23 𝐶𝐶22

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

𝐶𝐶22 − 𝐶𝐶23
2

0 0
0 𝐶𝐶55 0
0 0 𝐶𝐶55⎦

⎥
⎥
⎥
⎥
⎥
⎤

                                  (6) 

where the transverse shear modulus 

 𝐺𝐺23 = 𝐶𝐶44 

=
𝐶𝐶22 − 𝐶𝐶23

2
                                                                                                                            (7) 
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As an illustration, the stiffness matrix of an isotropic material, which has infinite symmetry 

planes is simplified as 

[𝐶𝐶]isotropic =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝐶𝐶11 𝐶𝐶12 𝐶𝐶12
𝐶𝐶12 𝐶𝐶11 𝐶𝐶12
𝐶𝐶12 𝐶𝐶12 𝐶𝐶11

0 0 0
0 0 0
0 0 0

0 0 0

0 0 0

0 0 0

𝐶𝐶11 − 𝐶𝐶12
2

0 0

0
𝐶𝐶11 − 𝐶𝐶12

2
0

0 0
𝐶𝐶11 − 𝐶𝐶12

2 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

                               (8) 

where the two independent constants 𝐶𝐶11 and 𝐶𝐶12 in terms of elastic moduli are given by 

𝐶𝐶11 =
𝜈𝜈𝐸𝐸

(1 − 2𝜈𝜈)(1 + 𝜈𝜈)                                                                                                                 (9) 

𝐶𝐶12 =
𝐸𝐸(1 − 𝜈𝜈)

(1 − 2𝜈𝜈)(1 + 𝜈𝜈)                                                                                                              (10) 

where 

 𝐸𝐸 = Young’s modulus, 

 𝜈𝜈 = Poisson's ratio. 

In this research, we are focusing on the elastic moduli of orthotropic composite materials 

with square periodic arrangement of cylindrical fibers and transverse random arrangement of voids 

(Figure 2). In particular, we focus on the property of the transverse shear modulus. The reason to 

do this is as follows. 

Interlaminar shear strength (ILSS) is the shear strength between the laminae in the 

laminate. In most cases, the value of ILSS is lower than the other mechanical properties, resulting 

in low overall shear strength. Also, voids are one of the common defects during laminate composite 

manufacturing process that considerably decreases the shear strength (Huang and Talreja, 2005). 

This study is hence a good start to explore the significance and the mechanism of voids effect on 
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transverse shear modulus in composite materials to discover a better transverse shear modulus 

estimation method.  

1.2  Predictive Models of Transverse Shear Modulus of Fiber Reinforced Composites 

For a square periodic arrangement, fiber reinforced composite materials with no void 

fraction, various models are available to estimate the elastic moduli of composite materials. These 

are based on the elastic moduli and volume fractions of the fiber and matrix materials. Note that 

all the theories are based on the assumption that fiber and matrix materials individually are 

isotropic materials. 

1.2.1 Voigt and Reuss Theoretical Model 

Discussed by Selvadurai and Nikopour (2012), the Voigt model, also called Rule of 

Mixture (ROM) or iso-strain model, and the Reuss model, also called Inverse-Rule of Mixture 

(IROM) or iso-stress model, are the well-known simple models for evaluating elastic moduli of 

composite materials.  

𝐸𝐸1 = 𝐸𝐸𝑓𝑓𝑉𝑉𝑓𝑓 + 𝐸𝐸𝑚𝑚𝑉𝑉𝑚𝑚       (𝑇𝑇ℎ𝑒𝑒 𝑉𝑉𝑉𝑉𝑖𝑖𝑉𝑉𝑉𝑉 𝑚𝑚𝑉𝑉𝑚𝑚𝑒𝑒𝑚𝑚)                                                                          (11) 

𝜈𝜈12 = 𝜈𝜈𝑓𝑓𝑉𝑉𝑓𝑓 + 𝜈𝜈𝑚𝑚𝑉𝑉𝑚𝑚       (𝑇𝑇ℎ𝑒𝑒 𝑉𝑉𝑉𝑉𝑖𝑖𝑉𝑉𝑉𝑉 𝑚𝑚𝑉𝑉𝑚𝑚𝑒𝑒𝑚𝑚)                                                                          (12) 

1
𝐸𝐸2

=
𝑉𝑉𝑓𝑓
𝐸𝐸𝑓𝑓

+
𝑉𝑉𝑚𝑚
𝐸𝐸𝑚𝑚

       (𝑇𝑇ℎ𝑒𝑒 𝑅𝑅𝑒𝑒𝑅𝑅𝑠𝑠𝑠𝑠 𝑚𝑚𝑉𝑉𝑚𝑚𝑒𝑒𝑚𝑚)                                                                                  (13) 

1
𝐺𝐺12

=
𝑉𝑉𝑓𝑓
𝐺𝐺𝑓𝑓

+
𝑉𝑉𝑚𝑚
𝐺𝐺𝑚𝑚

       (𝑇𝑇ℎ𝑒𝑒 𝑅𝑅𝑒𝑒𝑅𝑅𝑠𝑠𝑠𝑠 𝑚𝑚𝑉𝑉𝑚𝑚𝑒𝑒𝑚𝑚)                                                                                (14) 

where 

 𝐸𝐸1 = Longitudinal Young’s modulus, 

 𝐸𝐸2 = Transverse Young’s modulus, 

 𝜈𝜈12 = Major Poisson’s ratio, 

 𝐺𝐺12 = Axial shear modulus, 
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 𝐸𝐸𝑓𝑓 = Young’s modulus of fiber, 

 𝐸𝐸𝑚𝑚 = Young’s modulus of matrix, 

 𝑉𝑉𝑓𝑓 = Volume fraction of fiber, 

 𝑉𝑉𝑚𝑚 = Volume fraction of matrix, 

 𝜈𝜈𝑓𝑓 = Poisson's ratio of fiber, 

 𝜈𝜈𝑚𝑚 = Poisson's ratio of matrix, 

 𝐺𝐺𝑓𝑓 = Shear modulus of fiber, 

 𝐺𝐺𝑚𝑚 = Shear modulus of matrix. 

Also, based on the Voigt and Reuss models, the transverse shear modulus 𝐺𝐺23 is specified 

under the following inequality 

1
𝑉𝑉𝑓𝑓
𝐺𝐺𝑓𝑓

+ 𝑉𝑉𝑚𝑚
𝐺𝐺𝑚𝑚

≤ 𝐺𝐺23 ≤ 𝐺𝐺𝑓𝑓𝑉𝑉𝑓𝑓 + 𝐺𝐺𝑚𝑚𝑉𝑉𝑚𝑚                                                                                               (15) 

The 𝐺𝐺23 calculations in this thesis would not include values obtained using Voigt and Reuss 

models because it only shows a range of values and not a specific value. 

1.2.2 Halpin-Tsai Semi-Empirical Model 

 The Halpin-Tsai model is another popular model to predict elastic constants of fiber 

reinforced composite materials. The model is given by 

𝑀𝑀
𝑀𝑀𝑚𝑚

=
1 + 𝜁𝜁𝜁𝜁𝑉𝑉𝑓𝑓
1 + 𝜁𝜁𝑉𝑉𝑓𝑓

                                                                                                                            (16) 

𝜁𝜁 =

𝑀𝑀𝑓𝑓
𝑀𝑀𝑚𝑚

− 1

𝑀𝑀𝑓𝑓
𝑀𝑀𝑚𝑚

+ 𝜁𝜁
                                                                                                                                  (17) 

where 

 𝑀𝑀 = Composite property, 
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 𝑀𝑀𝑓𝑓 = Fiber property, 

 𝑀𝑀𝑚𝑚 =Matrix property, 

 𝜁𝜁 = Reinforcing factor. 

Table 1 shows the details of how Equations (16) and (17) work (Bhalchandra, et al., 2014 and 

Agboola, 2011). 

 

Table 1 Halpin-Tsai equation parameters 

Composite 
Property 
 (𝑀𝑀) 

Fiber  
Property �𝑀𝑀𝑓𝑓� 

Matrix 
Property 
 (𝑀𝑀𝑚𝑚) 

Reinforcing  
Factor 
 (𝜁𝜁) 

𝐸𝐸1 𝐸𝐸𝑓𝑓 𝐸𝐸𝑚𝑚 2 �
𝐿𝐿
𝑚𝑚
� 

𝐸𝐸2 𝐸𝐸𝑓𝑓 𝐸𝐸𝑚𝑚 
2, when 𝑉𝑉𝑓𝑓 < 0.65 

2 + 40𝑉𝑉𝑓𝑓10, when 𝑉𝑉𝑓𝑓 ≥ 0.65 

𝜈𝜈12 𝜈𝜈𝑓𝑓 𝜈𝜈𝑚𝑚 2 �
𝐿𝐿
𝑚𝑚
� 

𝐺𝐺12 𝐺𝐺𝑓𝑓 𝐺𝐺𝑚𝑚 
1, when 𝑉𝑉𝑓𝑓 < 0.65 

1 + 40𝑉𝑉𝑓𝑓10, when 𝑉𝑉𝑓𝑓 ≥ 0.65 

𝐺𝐺23 𝐺𝐺𝑓𝑓 𝐺𝐺𝑚𝑚 

𝐾𝐾𝑚𝑚
𝐺𝐺𝑚𝑚

𝐾𝐾𝑚𝑚
𝐺𝐺𝑚𝑚

+ 2
≅

1
4 − 3𝜈𝜈𝑚𝑚

 

 
where 

 𝐿𝐿 = the length of fiber, 

 𝑚𝑚 = the diameter of fiber, 

 𝐾𝐾𝑚𝑚 = the bulk modulus of matrix. 

Note that when the length of fiber 𝐿𝐿 is far larger than the diameter of fiber 𝑚𝑚, which implies 

that 𝜁𝜁 → ∞ , the equations of 𝐸𝐸1  and 𝜈𝜈12  give the formulas of the Voigt model as given by 

Equations (11) and (12). 
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1.2.3 Elasticity Approach Theoretical Model 

 The elasticity approach theoretical (EAP) model is the most widely used for three 

dimensional elastic moduli of unidirectional fiber composite. According to the study of Selvadurai 

and Nikopour (2012), the method is based on the relationships of three factors: force equilibrium, 

compatibility and Hooke's Law. The model proposed by Hashin and Rosen (1964) was initially 

called the composite cylinder assemblage (CCA) model, where the fibers considered are 

cylindrical and are in continuous periodic arrangement. 

𝐸𝐸1 = 𝐸𝐸𝑓𝑓𝑉𝑉𝑓𝑓 + 𝐸𝐸𝑚𝑚𝑉𝑉𝑚𝑚 +
4𝑉𝑉𝑓𝑓𝑉𝑉𝑚𝑚�𝜈𝜈𝑓𝑓 − 𝜈𝜈𝑚𝑚�

2

𝑉𝑉𝑓𝑓
𝐾𝐾𝑚𝑚

+ 𝑉𝑉𝑚𝑚
𝐾𝐾𝑓𝑓

+ 1
𝐺𝐺𝑚𝑚

,  

(𝑇𝑇ℎ𝑒𝑒 𝐻𝐻𝐻𝐻𝑠𝑠ℎ𝑖𝑖𝑖𝑖 𝐻𝐻𝑖𝑖𝑚𝑚 𝑅𝑅𝑉𝑉𝑠𝑠𝑒𝑒𝑖𝑖 𝑚𝑚𝑉𝑉𝑚𝑚𝑒𝑒𝑚𝑚)                  (18) 

𝜈𝜈12 = 𝜈𝜈𝑓𝑓𝑉𝑉𝑓𝑓 + 𝜈𝜈𝑚𝑚𝑉𝑉𝑚𝑚 +
𝑉𝑉𝑓𝑓𝑉𝑉𝑚𝑚�𝜈𝜈𝑓𝑓 − 𝜈𝜈𝑚𝑚� �

1
𝐾𝐾𝑚𝑚

− 1
𝐾𝐾𝑓𝑓
�

𝑉𝑉𝑓𝑓
𝐾𝐾𝑚𝑚

+ 𝑉𝑉𝑚𝑚
𝐾𝐾𝑓𝑓

+ 1
𝐺𝐺𝑚𝑚

, 

(𝑇𝑇ℎ𝑒𝑒 𝐻𝐻𝐻𝐻𝑠𝑠ℎ𝑖𝑖𝑖𝑖 𝐻𝐻𝑖𝑖𝑚𝑚 𝑅𝑅𝑉𝑉𝑠𝑠𝑒𝑒𝑖𝑖 𝑚𝑚𝑉𝑉𝑚𝑚𝑒𝑒𝑚𝑚)                  (19) 

𝐺𝐺12 = �
𝐺𝐺𝑓𝑓�1 + 𝑉𝑉𝑓𝑓� + 𝐺𝐺𝑚𝑚𝑉𝑉𝑚𝑚
𝐺𝐺𝑓𝑓𝑉𝑉𝑚𝑚 + 𝐺𝐺𝑚𝑚�1 + 𝑉𝑉𝑓𝑓�

�𝐺𝐺𝑚𝑚, 

(𝑇𝑇ℎ𝑒𝑒 𝐻𝐻𝐻𝐻𝑠𝑠ℎ𝑖𝑖𝑖𝑖 𝐻𝐻𝑖𝑖𝑚𝑚 𝑅𝑅𝑉𝑉𝑠𝑠𝑒𝑒𝑖𝑖 𝑚𝑚𝑉𝑉𝑚𝑚𝑒𝑒𝑚𝑚)                  (20) 

where 

𝐾𝐾𝑓𝑓 =
𝐸𝐸𝑓𝑓

2�1 + 𝜈𝜈𝑓𝑓��1 − 2𝜈𝜈𝑓𝑓�
                                                                                                         (21) 

𝐾𝐾𝑚𝑚 =
𝐸𝐸𝑚𝑚

2(1 + 𝜈𝜈𝑚𝑚)(1 − 2𝜈𝜈𝑚𝑚)                                                                                                      (22) 

 Moreover, Christensen (1990) gives the equations of the elastic moduli 𝐺𝐺23, 𝜈𝜈23, and 𝐸𝐸2, 

based on the generalized self-consistent model given below. 
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𝐺𝐺23 = �
−𝐵𝐵 ± √𝐵𝐵2 − 𝐴𝐴𝐶𝐶

𝐴𝐴
�𝐺𝐺𝑚𝑚, (𝑇𝑇ℎ𝑒𝑒 𝐶𝐶ℎ𝑟𝑟𝑖𝑖𝑠𝑠𝑉𝑉𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒𝑖𝑖 𝑚𝑚𝑉𝑉𝑚𝑚𝑒𝑒𝑚𝑚)                                              (23) 

𝜈𝜈23 =
𝐾𝐾 −𝑚𝑚𝐺𝐺23
𝐾𝐾 + 𝑚𝑚𝐺𝐺23

, (𝑇𝑇ℎ𝑒𝑒 𝐶𝐶ℎ𝑟𝑟𝑖𝑖𝑠𝑠𝑉𝑉𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒𝑖𝑖 𝑚𝑚𝑉𝑉𝑚𝑚𝑒𝑒𝑚𝑚)                                                                      (24) 

𝐸𝐸2 = 2(1 + 𝜈𝜈23)𝐺𝐺23, (𝑇𝑇ℎ𝑒𝑒 𝐶𝐶ℎ𝑟𝑟𝑖𝑖𝑠𝑠𝑉𝑉𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒𝑖𝑖 𝑚𝑚𝑉𝑉𝑚𝑚𝑒𝑒𝑚𝑚)                                                                (25) 

where 

𝐴𝐴 = 3𝑉𝑉𝑓𝑓�1 + 𝑉𝑉𝑓𝑓�
2
�
𝐺𝐺𝑓𝑓
𝐺𝐺𝑚𝑚

− 1� �
𝐺𝐺𝑓𝑓
𝐺𝐺𝑚𝑚

+ 𝜁𝜁𝑓𝑓� + ��
𝐺𝐺𝑓𝑓
𝐺𝐺𝑚𝑚

+ 𝜁𝜁𝑓𝑓� 𝜁𝜁𝑚𝑚 − �
𝐺𝐺𝑓𝑓
𝐺𝐺𝑚𝑚

𝜁𝜁𝑚𝑚 − 𝜁𝜁𝑓𝑓�𝑉𝑉𝑓𝑓3� 

�𝑉𝑉𝑓𝑓𝜁𝜁𝑚𝑚 �
𝐺𝐺𝑓𝑓
𝐺𝐺𝑚𝑚

− 1� − �
𝐺𝐺𝑓𝑓
𝐺𝐺𝑚𝑚

𝜁𝜁𝑚𝑚 + 1��                                                                          (26) 

𝐵𝐵 = −3𝑉𝑉𝑓𝑓�1 + 𝑉𝑉𝑓𝑓�
2
�
𝐺𝐺𝑓𝑓
𝐺𝐺𝑚𝑚

− 1� �
𝐺𝐺𝑓𝑓
𝐺𝐺𝑚𝑚

+ 𝜁𝜁𝑓𝑓� +
1
2
�
𝐺𝐺𝑓𝑓
𝐺𝐺𝑚𝑚

𝜁𝜁𝑚𝑚 + �
𝐺𝐺𝑓𝑓
𝐺𝐺𝑚𝑚

− 1� 𝑉𝑉𝑓𝑓 + 1� 

�(𝜁𝜁𝑚𝑚 − 1) �
𝐺𝐺𝑓𝑓
𝐺𝐺𝑚𝑚

+ 𝜁𝜁𝑓𝑓� − 2 �
𝐺𝐺𝑓𝑓
𝐺𝐺𝑚𝑚

𝜁𝜁𝑚𝑚 − 𝜁𝜁𝑓𝑓�𝑉𝑉𝑓𝑓3� +
𝑉𝑉𝑓𝑓
2

(𝜁𝜁𝑚𝑚 + 1) �
𝐺𝐺𝑓𝑓
𝐺𝐺𝑚𝑚

− 1� 

�
𝐺𝐺𝑓𝑓
𝐺𝐺𝑚𝑚

+ 𝜁𝜁𝑓𝑓 + �
𝐺𝐺𝑓𝑓
𝐺𝐺𝑚𝑚

𝜁𝜁𝑚𝑚 − 𝜁𝜁𝑓𝑓�𝑉𝑉𝑓𝑓3�                                                                               (27) 

𝐶𝐶 = 3𝑉𝑉𝑓𝑓�1 + 𝑉𝑉𝑓𝑓�
2
�
𝐺𝐺𝑓𝑓
𝐺𝐺𝑚𝑚

− 1� �
𝐺𝐺𝑓𝑓
𝐺𝐺𝑚𝑚

+ 𝜁𝜁𝑓𝑓� + �
𝐺𝐺𝑓𝑓
𝐺𝐺𝑚𝑚

𝜁𝜁𝑚𝑚 + �
𝐺𝐺𝑓𝑓
𝐺𝐺𝑚𝑚

− 1� 𝑉𝑉𝑓𝑓 + 1� 

�
𝐺𝐺𝑓𝑓
𝐺𝐺𝑚𝑚

+ 𝜁𝜁𝑓𝑓 + �
𝐺𝐺𝑓𝑓
𝐺𝐺𝑚𝑚

𝜁𝜁𝑚𝑚 − 𝜁𝜁𝑓𝑓�𝑉𝑉𝑓𝑓3�                                                                               (28) 

𝐾𝐾 =
𝐾𝐾𝑚𝑚�𝐾𝐾𝑓𝑓 + 𝐺𝐺𝑚𝑚�𝑉𝑉𝑚𝑚 + 𝐾𝐾𝑓𝑓(𝐾𝐾𝑚𝑚 + 𝐺𝐺𝑚𝑚)𝑉𝑉𝑓𝑓
�𝐾𝐾𝑓𝑓 + 𝐺𝐺𝑚𝑚�𝑉𝑉𝑚𝑚 + (𝐾𝐾𝑚𝑚 + 𝐺𝐺𝑚𝑚)𝑉𝑉𝑓𝑓

                                                                              (29) 

𝜁𝜁𝑓𝑓 = 3 − 4𝜈𝜈𝑓𝑓                                                                                                                                 (30) 

𝜁𝜁𝑚𝑚 = 3 − 4𝜈𝜈𝑚𝑚                                                                                                                               (31) 

𝑚𝑚 = 1 +
4𝐾𝐾𝜈𝜈122

𝐸𝐸1
                                                                                                                            (32) 
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1.2.4 Saravanos-Chamis Theoretical Model 

 Saravanos and Chamis (1990) proposed a micromechanical model used commonly in 

aerospace industries. Based on the research from Chandra, et al. (2002), the formulas for the elastic 

moduli 𝐸𝐸1 and 𝜈𝜈12 are same as the Voigt model. Also, the formulas for the elastic moduli 𝐸𝐸2 and 

𝐺𝐺12 use �𝑉𝑉𝑓𝑓 instead of 𝑉𝑉𝑓𝑓, and are modified. The five independent elastic moduli are rewritten as 

follows 

𝐸𝐸1 = 𝐸𝐸𝑓𝑓𝑉𝑉𝑓𝑓 + 𝐸𝐸𝑚𝑚𝑉𝑉𝑚𝑚                                                                                                                       (33) 

𝜈𝜈12 = 𝜈𝜈𝑓𝑓𝑉𝑉𝑓𝑓 + 𝜈𝜈𝑚𝑚𝑉𝑉𝑚𝑚                                                                                                                      (34) 

𝐸𝐸2 = �1 −�𝑉𝑉𝑓𝑓�𝐸𝐸𝑚𝑚 +
�𝑉𝑉𝑓𝑓𝐸𝐸𝑚𝑚

1 −�𝑉𝑉𝑚𝑚 �1 − 𝐸𝐸𝑚𝑚
𝐸𝐸𝑓𝑓
�

                                                                             (35) 

𝜈𝜈23 =
𝜈𝜈𝑚𝑚

1 − 𝑉𝑉𝑓𝑓𝜈𝜈𝑚𝑚
+ 𝑉𝑉𝑓𝑓 �𝜈𝜈𝑓𝑓 −

�1 − 𝑉𝑉𝑓𝑓�𝜈𝜈𝑚𝑚
1 − 𝑉𝑉𝑓𝑓𝜈𝜈𝑚𝑚

�                                                                                (36) 

𝐺𝐺12 = �1 −�𝑉𝑉𝑓𝑓�𝐺𝐺𝑚𝑚 +
�𝑉𝑉𝑓𝑓𝐺𝐺𝑚𝑚

1 −�𝑉𝑉𝑚𝑚 �1 − 𝐺𝐺𝑚𝑚
𝐺𝐺𝑓𝑓
�

                                                                           (37) 

and 

𝐺𝐺23 =
𝐸𝐸2

2(1 + 𝜈𝜈23)                                                                                                                         (38) 

1.2.5 Mori-Tanaka's Theoretical Model 

 Mori-Tanaka's Theoretical Model is the micromechanical model based on Eshelby’s 

elasticity solution for unidirectional composite (Benveniste, 1987). This model assumes that there 

is a bridging matrix �𝐴𝐴𝑖𝑖𝑖𝑖� which satisfies the following equation: 

[𝜎𝜎𝑖𝑖𝑚𝑚] = �𝐴𝐴𝑖𝑖𝑖𝑖��𝜎𝜎𝑖𝑖
𝑓𝑓�                                                                                                                         (39) 
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where 

�𝐴𝐴𝑖𝑖𝑖𝑖�  =

⎣
⎢
⎢
⎢
⎢
⎡
𝐴𝐴11 𝐴𝐴12 𝐴𝐴13
𝐴𝐴21 𝐴𝐴22 𝐴𝐴23
𝐴𝐴31 𝐴𝐴32 𝐴𝐴33

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

𝐴𝐴44 0 0
0 𝐴𝐴55 0
0 0 𝐴𝐴66⎦

⎥
⎥
⎥
⎥
⎤

                                                                       (40) 

 �𝜎𝜎𝑖𝑖
𝑓𝑓� = the volume averaged stress tensors of the fiber, 

 [𝜎𝜎𝑖𝑖𝑚𝑚] = volume averaged stress tensors of the matrix. 

In the bridging matrix �𝐴𝐴𝑖𝑖𝑖𝑖�, the formula of all the entries are derived as  

𝐴𝐴11 =
𝐸𝐸𝑚𝑚
𝐸𝐸𝑓𝑓

�1 +
�𝜈𝜈𝑓𝑓 − 𝜈𝜈𝑚𝑚�𝜈𝜈𝑚𝑚

(𝜈𝜈𝑚𝑚 + 1)(𝜈𝜈𝑚𝑚 − 1)�                                                                                          (41) 

𝐴𝐴12 = 𝐴𝐴13 

=
𝐸𝐸𝑚𝑚
𝐸𝐸𝑓𝑓

�
�𝜈𝜈𝑓𝑓 − 1�𝜈𝜈𝑚𝑚

2(𝜈𝜈𝑚𝑚 + 1)(𝜈𝜈𝑚𝑚 − 1) +
𝜈𝜈𝑓𝑓

(𝜈𝜈𝑚𝑚 + 1)(𝜈𝜈𝑚𝑚 − 1)� −
𝜈𝜈𝑚𝑚

2(𝜈𝜈𝑚𝑚 − 1)                            (42) 

𝐴𝐴21 = 𝐴𝐴31 

=
𝐸𝐸𝑚𝑚
𝐸𝐸𝑓𝑓

𝜈𝜈𝑓𝑓 − 𝜈𝜈𝑚𝑚
2(𝜈𝜈𝑚𝑚 + 1)(𝜈𝜈𝑚𝑚 − 1)                                                                                                  (43) 

𝐴𝐴22 = 𝐴𝐴33 

=
𝐸𝐸𝑚𝑚
𝐸𝐸𝑓𝑓

�
𝜈𝜈𝑓𝑓 − 3

8(𝜈𝜈𝑚𝑚 + 1)(𝜈𝜈𝑚𝑚 − 1) +
𝜈𝜈𝑓𝑓𝜈𝜈𝑚𝑚

2(𝜈𝜈𝑚𝑚 + 1)(𝜈𝜈𝑚𝑚 − 1)� 

+
(𝜈𝜈𝑚𝑚 + 1)(4𝜈𝜈𝑚𝑚 − 5)
8(𝜈𝜈𝑚𝑚 + 1)(𝜈𝜈𝑚𝑚 − 1)                                                                                                        (44) 

𝐴𝐴23 = 𝐴𝐴32 

=
𝐸𝐸𝑚𝑚
𝐸𝐸𝑓𝑓

�
3𝜈𝜈𝑓𝑓 − 1

8(𝜈𝜈𝑚𝑚 − 1)(𝜈𝜈𝑚𝑚 + 1) +
𝜈𝜈𝑓𝑓𝜈𝜈𝑚𝑚

2(𝜈𝜈𝑚𝑚 − 1)(𝜈𝜈𝑚𝑚 + 1)� 

−
(𝜈𝜈𝑚𝑚 + 1)(4𝜈𝜈𝑚𝑚 − 1)
8(𝜈𝜈𝑚𝑚 + 1)(𝜈𝜈𝑚𝑚 − 1)                                                                                                        (45) 
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𝐴𝐴44 =
𝐺𝐺𝑚𝑚
𝐺𝐺𝑓𝑓

−1
4(𝜈𝜈𝑚𝑚 − 1) +

4𝜈𝜈𝑚𝑚 − 3
4(𝜈𝜈𝑚𝑚 − 1)                                                                                          (46) 

𝐴𝐴55 = 𝐴𝐴66 

=
𝐺𝐺𝑓𝑓 + 𝐺𝐺𝑚𝑚

2𝐺𝐺𝑓𝑓
                                                                                                                              (47) 

Mori-Tanaka's model results in the following formulae 

𝐸𝐸1 =
𝑘𝑘1 + 𝐸𝐸𝑚𝑚𝑘𝑘2 + 𝐸𝐸𝑓𝑓𝐸𝐸𝑚𝑚𝑉𝑉𝑓𝑓2

𝑘𝑘2 + 𝑘𝑘3 + 𝐸𝐸𝑚𝑚𝑉𝑉𝑓𝑓2
                                                                                                      (48) 

𝐸𝐸2 =
𝑘𝑘1�𝑉𝑉𝑓𝑓 + 𝑉𝑉𝑚𝑚(𝐴𝐴22 + 𝐴𝐴32)� + 𝐸𝐸𝑚𝑚𝑘𝑘2 + 𝐸𝐸𝑓𝑓𝐸𝐸𝑚𝑚𝑉𝑉𝑓𝑓2

𝑘𝑘5 + �𝐸𝐸𝑓𝑓𝐸𝐸𝑚𝑚𝑏𝑏5 + 𝐸𝐸𝑓𝑓𝑉𝑉𝑚𝑚2𝐴𝐴222 ��𝑉𝑉𝑓𝑓 + 𝑉𝑉𝑚𝑚𝐴𝐴11�
                                                             (49) 

𝜈𝜈12 =
𝑘𝑘2𝜈𝜈𝑚𝑚 + 𝑘𝑘4 + 𝐸𝐸𝑚𝑚𝜈𝜈𝑓𝑓𝑉𝑉𝑓𝑓2

𝑘𝑘2 + 𝑘𝑘3 + 𝐸𝐸𝑚𝑚𝑉𝑉𝑓𝑓2
                                                                                                     (50) 

𝐺𝐺12 =
𝐺𝐺𝑓𝑓𝐺𝐺𝑚𝑚�𝑉𝑉𝑓𝑓 + 𝑉𝑉𝑚𝑚𝐴𝐴66�
𝐺𝐺𝑚𝑚𝑉𝑉𝑓𝑓 + 𝐺𝐺𝑓𝑓𝑉𝑉𝑚𝑚𝐴𝐴66

                                                                                                         (51) 

𝐺𝐺23 =
𝐺𝐺𝑓𝑓𝐺𝐺𝑚𝑚�𝑉𝑉𝑓𝑓 + 𝑉𝑉𝑚𝑚𝐴𝐴44�
𝐺𝐺𝑚𝑚𝑉𝑉𝑓𝑓 + 𝐺𝐺𝑓𝑓𝑉𝑉𝑚𝑚𝐴𝐴44

                                                                                                         (52) 

where 

𝑘𝑘1 = 𝐸𝐸𝑓𝑓𝐸𝐸𝑚𝑚𝑉𝑉𝑓𝑓𝑉𝑉𝑚𝑚(𝐴𝐴11 + 𝐴𝐴22 + 𝐴𝐴32)                                                                                         (53) 

𝑘𝑘2 = 𝐸𝐸𝑓𝑓𝑉𝑉𝑚𝑚2[𝐴𝐴11(𝐴𝐴22 + 𝐴𝐴32) − 2𝐴𝐴12𝐴𝐴21]                                                                                (54) 

𝑘𝑘3 = 𝑉𝑉𝑓𝑓𝑉𝑉𝑚𝑚�2𝐴𝐴21�𝐸𝐸𝑚𝑚𝜈𝜈𝑓𝑓 − 𝐸𝐸𝑓𝑓𝜈𝜈𝑚𝑚� + 𝐸𝐸𝑚𝑚(𝐴𝐴22 + 𝐴𝐴32) + 𝐸𝐸𝑓𝑓𝐴𝐴11�                                          (55) 

𝑘𝑘4 = 𝑉𝑉𝑓𝑓𝑉𝑉𝑚𝑚�𝐴𝐴12�𝐸𝐸𝑚𝑚 − 𝐸𝐸𝑓𝑓� + 𝐸𝐸𝑓𝑓𝜈𝜈𝑚𝑚(𝐴𝐴22 + 𝐴𝐴32) + 𝐴𝐴11𝐸𝐸𝑚𝑚𝜈𝜈𝑓𝑓�                                             (56) 

𝑘𝑘5 = 𝐸𝐸𝑓𝑓𝐸𝐸𝑚𝑚𝑉𝑉𝑚𝑚[𝐴𝐴22(𝑏𝑏1 + 𝑏𝑏2) + 𝐴𝐴12(𝑏𝑏3 + 𝑏𝑏4)]                                                                       (57) 

1.2.6 Bridging Theoretical Model 

 The bridging micromechanical model was proposed by Huang (2000, 2001). According to 

Liu and Huang (2014), similar to Mori-Tanaka's model, Bridging Theoretical Model also assumes 
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that there is a bridging matrix �𝐴𝐴𝑖𝑖𝑖𝑖� which satisfies the following equation: 

[𝜎𝜎𝑖𝑖𝑚𝑚] = �𝐴𝐴𝑖𝑖𝑖𝑖��𝜎𝜎𝑖𝑖
𝑓𝑓�                                                                                                                         (39) 

where 

 �𝜎𝜎𝑖𝑖
𝑓𝑓� = the volume averaged stress tensors of the fiber, 

 [𝜎𝜎𝑖𝑖𝑚𝑚] = volume averaged stress tensors of the matrix. 

However, the difference between the two theories is that they have different opinions on 

the symmetry of their model and numbers of independent elastic constants, deriving different 

bridging matrix �𝐴𝐴𝑖𝑖𝑖𝑖� on the calculation. Since the �𝐴𝐴𝑖𝑖𝑖𝑖� matrix is different from the bridging 

model, the formulas of elastic moduli are different (Zhou and Huang, 2012). 

�𝐴𝐴𝑖𝑖𝑖𝑖�  =

⎣
⎢
⎢
⎢
⎢
⎡
𝐻𝐻11 𝐻𝐻12 𝐻𝐻13
0 𝐻𝐻22 𝐻𝐻23
0 0 𝐻𝐻33

𝐻𝐻14 𝐻𝐻15 𝐻𝐻16
𝐻𝐻24 𝐻𝐻25 𝐻𝐻26
𝐻𝐻34 𝐻𝐻35 𝐻𝐻36

0 0 0
0 0 0
0 0 0

𝐻𝐻44 𝐻𝐻45 𝐻𝐻46
0 𝐻𝐻55 𝐻𝐻56
0 0 𝐻𝐻66⎦

⎥
⎥
⎥
⎥
⎤

                                                                         (58) 

With the bridging matrix �𝐴𝐴𝑖𝑖𝑖𝑖�, the elastic moduli are given by 

𝐸𝐸1 = 𝐸𝐸𝑓𝑓𝑉𝑉𝑓𝑓 + 𝐸𝐸𝑚𝑚𝑉𝑉𝑚𝑚                                                                                                                       (59) 

𝜈𝜈12 = 𝜈𝜈𝑓𝑓𝑉𝑉𝑓𝑓 + 𝜈𝜈𝑚𝑚𝑉𝑉𝑚𝑚                                                                                                                      (60) 

𝐸𝐸2 =
�𝑉𝑉𝑓𝑓 + 𝑉𝑉𝑚𝑚𝐻𝐻11��𝑉𝑉𝑓𝑓 + 𝑉𝑉𝑚𝑚𝐻𝐻22�

�𝑉𝑉𝑓𝑓 + 𝑉𝑉𝑚𝑚𝐻𝐻11� �
𝑉𝑉𝑓𝑓
𝐸𝐸𝑓𝑓

+ 𝑉𝑉𝑚𝑚
𝐸𝐸𝑚𝑚

𝐻𝐻22� + 𝑉𝑉𝑓𝑓𝑉𝑉𝑚𝑚 �
1
𝐸𝐸𝑚𝑚

− 1
𝐸𝐸𝑓𝑓
� 𝐻𝐻12

 

= �𝑉𝑉𝑓𝑓 + 𝑉𝑉𝑚𝑚𝐻𝐻11��𝑉𝑉𝑓𝑓 + 𝑉𝑉𝑚𝑚𝐻𝐻22�
2
𝑚𝑚3                                                                                       (61) 

𝐺𝐺12 =
�𝑉𝑉𝑓𝑓 + 𝑉𝑉𝑚𝑚𝐻𝐻66�𝐺𝐺𝑓𝑓𝐺𝐺𝑚𝑚
𝑉𝑉𝑓𝑓𝐺𝐺𝑚𝑚 + 𝑉𝑉𝑚𝑚𝐺𝐺𝑓𝑓𝐻𝐻66

 

=
�𝐺𝐺𝑓𝑓 + 𝐺𝐺𝑚𝑚� + 𝑉𝑉𝑓𝑓�𝐺𝐺𝑓𝑓 − 𝐺𝐺𝑚𝑚�
�𝐺𝐺𝑓𝑓 + 𝐺𝐺𝑚𝑚� − 𝑉𝑉𝑓𝑓�𝐺𝐺𝑓𝑓 − 𝐺𝐺𝑚𝑚�

𝐺𝐺𝑚𝑚                                                                                      (62) 
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𝜈𝜈23 =
𝑚𝑚4
𝑚𝑚3

                                                                                                                                         (63) 

𝐺𝐺23 =
1
2

𝐸𝐸2
1 + 𝜈𝜈23

 

=
1
2

𝑉𝑉𝑓𝑓 + 𝑉𝑉𝑚𝑚𝐻𝐻44

𝑉𝑉𝑓𝑓 �
1 + 𝜈𝜈𝑓𝑓
𝐸𝐸𝑓𝑓

� + 𝑉𝑉𝑚𝑚 �
1 + 𝜈𝜈𝑚𝑚
𝐸𝐸𝑚𝑚

� 𝐻𝐻44
                                                                                 (64) 

where the entries in the bridging matrix are derived as 

𝐻𝐻11 =
𝐸𝐸𝑚𝑚
𝐸𝐸𝑓𝑓

                                                                                                                                       (65) 

𝐻𝐻22 = 𝐻𝐻33 = 𝐻𝐻44 

= 𝛽𝛽 + (1 − 𝛽𝛽)
𝐸𝐸𝑚𝑚
𝐸𝐸𝑓𝑓

,                                                                                                               (66) 

𝐻𝐻12 =
�𝐸𝐸𝑚𝑚𝜈𝜈𝑚𝑚 − 𝐸𝐸𝑓𝑓𝜈𝜈𝑓𝑓�(𝐻𝐻11 − 𝐻𝐻22)

𝐸𝐸𝑚𝑚 − 𝐸𝐸𝑓𝑓
                                                                                          (67) 

𝐻𝐻55 = 𝐻𝐻66 = 𝛼𝛼 + (1 − 𝛼𝛼)
𝐺𝐺𝑚𝑚
𝐺𝐺𝑓𝑓

,                                                                                                  (68) 

where 

0 < 𝛼𝛼 < 1 (𝛼𝛼 = 0.3~0.5 𝑖𝑖𝑖𝑖 𝑚𝑚𝑉𝑉𝑠𝑠𝑉𝑉 𝑐𝑐𝐻𝐻𝑠𝑠𝑒𝑒𝑠𝑠) 

0 < 𝛽𝛽 < 1 (𝛽𝛽 = 0.35~0.5 𝑖𝑖𝑖𝑖 𝑚𝑚𝑉𝑉𝑠𝑠𝑉𝑉 𝑐𝑐𝐻𝐻𝑠𝑠𝑒𝑒𝑠𝑠) 

𝑚𝑚3 = �
𝑉𝑉𝑓𝑓
𝐸𝐸𝑓𝑓

+
𝑉𝑉𝑚𝑚𝐻𝐻22
𝐸𝐸𝑚𝑚

� �𝑉𝑉𝑓𝑓2 + 𝑉𝑉𝑓𝑓𝑉𝑉𝑚𝑚(𝐻𝐻11 + 𝐻𝐻22) + 𝑉𝑉𝑚𝑚2(𝐻𝐻11𝐻𝐻22)� 

+𝑉𝑉𝑓𝑓𝑉𝑉𝑚𝑚𝐻𝐻12�𝑉𝑉𝑓𝑓 + 𝑉𝑉𝑚𝑚𝐻𝐻22� �
𝜈𝜈𝑓𝑓
𝐸𝐸𝑓𝑓
−
𝜈𝜈𝑚𝑚
𝐸𝐸𝑚𝑚

�                                                                                   (69) 

𝑚𝑚4 = 𝑉𝑉𝑓𝑓𝑉𝑉𝑚𝑚𝐻𝐻12�𝑉𝑉𝑓𝑓 + 𝑉𝑉𝑚𝑚𝐻𝐻22� �
𝜈𝜈𝑚𝑚
𝐸𝐸𝑚𝑚

−
𝜈𝜈𝑓𝑓
𝐸𝐸𝑓𝑓
� +

𝜈𝜈𝑓𝑓
𝐸𝐸𝑓𝑓
�𝑉𝑉𝑓𝑓3 + 𝑉𝑉𝑓𝑓𝑉𝑉𝑚𝑚𝐻𝐻22 �𝑉𝑉𝑓𝑓 +

𝐸𝐸𝑚𝑚𝑉𝑉𝑚𝑚
𝐸𝐸𝑓𝑓

�� 

+
𝜈𝜈𝑚𝑚𝑉𝑉𝑓𝑓𝑉𝑉𝑚𝑚𝐻𝐻22

𝐸𝐸𝑚𝑚
 �𝑉𝑉𝑓𝑓 + 𝑉𝑉𝑚𝑚(𝐻𝐻11 + 𝐻𝐻22)� +

𝐸𝐸𝑚𝑚𝑉𝑉𝑚𝑚
𝐸𝐸𝑓𝑓

�𝑉𝑉𝑓𝑓2 + 𝑉𝑉𝑚𝑚2𝐻𝐻222 �                                       (70) 
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1.2.7 Whitney and Riley Theoretical Model 

The Whitney and Riley Theoretical Model (Seiler, et al. 1966 and Selvadurai and 

Nikopour, 2012), is based on energy weighting methods, and is different from most of other 

theories that are based on elasticity models.  

𝐸𝐸1 = 𝑉𝑉𝑓𝑓�𝐸𝐸𝑓𝑓 − 𝐸𝐸𝑚𝑚� + 𝑉𝑉𝑚𝑚𝐸𝐸𝑚𝑚                                                                                                       (71) 

𝜈𝜈12 = 𝜈𝜈𝑚𝑚 −
2�𝜈𝜈𝑚𝑚 − 𝜈𝜈𝑓𝑓�(1− 𝜈𝜈𝑚𝑚)2𝐸𝐸𝑓𝑓𝑉𝑉𝑓𝑓

𝐸𝐸𝑚𝑚�1 − 𝜈𝜈𝑓𝑓�𝐿𝐿𝑓𝑓 + 𝐸𝐸𝑓𝑓�𝑉𝑉𝑓𝑓𝐿𝐿𝑚𝑚 + 𝜈𝜈𝑚𝑚 + 1�
                                                              (72) 

𝜈𝜈23 = 𝑉𝑉𝑓𝑓𝜈𝜈𝑓𝑓 + 𝑉𝑉𝑚𝑚𝜈𝜈𝑚𝑚                                                                                                                      (73) 

𝐺𝐺23 =
�𝐺𝐺𝑓𝑓 + 𝐺𝐺𝑚𝑚� + �𝐺𝐺𝑓𝑓 − 𝐺𝐺𝑚𝑚�𝐺𝐺𝑚𝑚𝑉𝑉𝑓𝑓
�𝐺𝐺𝑓𝑓 + 𝐺𝐺𝑚𝑚� − �𝐺𝐺𝑓𝑓 − 𝐺𝐺𝑚𝑚�𝑉𝑉𝑓𝑓

                                                                                     (74) 

where 

𝐿𝐿𝑓𝑓 = 1 − 𝜈𝜈𝑓𝑓 − 𝜈𝜈𝑓𝑓2                                                                                                                          (75) 

𝐿𝐿𝑚𝑚 = 1 − 𝜈𝜈𝑚𝑚 − 𝜈𝜈𝑚𝑚2                                                                                                                        (76) 

Note that this theory gives equations for four out of the five independent elastic moduli. 

1.3 Scale Effects of Finite Domain Models 

A unit cell, or so-called a representative volume element (RVE) of composite model is 

described as a cylindrical fiber embedded into the center of a volumetrically proportionate matrix 

of specific geometric shape, such as a cuboid matrix with a square cross-sectional area. Based on 

the RVE model, Finite Element Analysis method (FEA) is a credible numerical method to study 

mechanical properties of composite materials.  

Jiang, et al. (2001) defines window size 𝛿𝛿 to standardize the domain size of FEM models 

by the following equation 

𝛿𝛿 =
𝐿𝐿
𝑚𝑚𝑓𝑓

≥ 1                                                                                                                                     (77) 
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where  

 𝐿𝐿 = the length of unit cell, 

 𝑚𝑚𝑓𝑓 = the diameter of fiber in the cell. 

Also, the relationship window size 𝛿𝛿 between domain size D or the so-called number of cells can 

be written by 

𝐷𝐷 = 𝛿𝛿2                                                                                                                                            (78) 

 

Figure 2 Window parameter δ subject to varying scales. 
 

In this research, the impact of domain size on 𝐺𝐺23 value is observed, but would be 

normalized by the following equation 

𝐺𝐺23
𝐺𝐺𝑚𝑚

= 𝛼𝛼 +
𝛽𝛽

(𝐷𝐷)𝛾𝛾                                                                                                                            (79) 

where α, β, and γ are constants. 

Considering reality, composite products in the scale used in daily application, the value of 

𝐷𝐷 is large, which means the value of 𝛽𝛽
(𝐷𝐷)𝛾𝛾 would be close to zero for positive γ, resulting in the 

value of 𝐺𝐺23 𝐺𝐺𝑚𝑚⁄  converge to 𝛼𝛼, and hence call it transverse shear modulus ratio (𝐺𝐺23)∞ 𝐺𝐺𝑚𝑚⁄ . 

𝛿𝛿 = 1 𝛿𝛿 = 2 

𝐿𝐿 

𝑚𝑚𝑓𝑓 
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1.4 Voids  

1.4.1 Nucleation 

There is no exact and unified mechanism for voids formation. However, the most accepted 

and frequently mentioned mechanism for glass/epoxy and graphite/epoxy is defects induced in 

manufacturing processes (Hamidi, et al. 2004, 2005, and Bowles and Frimpong, 1992). 

Little, et al. (2012) point out that void content is not the only factor that affects composite 

mechanical properties, but that size, shape and distribution of voids are significant factors that 

influence the mechanical response. Influenced by so many factors, gas-entraining voids produced 

in the mechanical mixing process result in inconsistent size, shape, and content of void. 

To simplify the situation, the shape of voids are considered as spherical or cylindrical in 

many of theories (Bowles and Frimpong, 1992). Jena and Chaturvedi, (1992) and Porter, et al. 

(2009), which are two examples under cylindrical void shape assumption, have discussion of 

kinetics theories of nucleation. The first boundary condition of homogeneous nucleation is that it 

is an energy balance process between surface energy 𝛾𝛾 and volume free energy change  ∆𝐺𝐺𝑣𝑣 . 

Therefore the equation of total Gibbs free energy ∆𝐺𝐺 is written as 

∆𝐺𝐺 =
4
3
𝜋𝜋𝑟𝑟3∆𝐺𝐺𝑣𝑣 + 4𝜋𝜋𝑟𝑟2𝛾𝛾                                                                                                           (80) 

where 

 𝑟𝑟 = the radius of voids. 

Also, we know that the reaction will be stopped when the system reaches steady state, 

where ∆𝐺𝐺 would stay at its minimum. 

𝜕𝜕∆𝐺𝐺
𝜕𝜕𝑟𝑟

= 0 

=
4
3
𝜋𝜋𝑟𝑟2∆𝐺𝐺𝑣𝑣 + 8𝜋𝜋𝑟𝑟𝛾𝛾                                                                                                           (81) 
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In thermodynamics, the Gibbs free energy is defined as 

∆𝐺𝐺 = ∆𝐻𝐻 − 𝑇𝑇∆𝑆𝑆                                                                                                                           (82) 

where 

 ∆𝐻𝐻 = enthalpy change of reactions, 

 𝑇𝑇 = current temperature of the system, 

 ∆𝑆𝑆 = entropy change of reactions. 

Also, when  𝑇𝑇 = 𝑇𝑇0 , where 𝑇𝑇0 is the equilibrium transition temperature of voids, and 

∆𝐻𝐻𝑣𝑣 is the enthalpy difference between the two phases. 

∆𝐺𝐺 = ∆𝐻𝐻𝑣𝑣 − 𝑇𝑇0∆𝑆𝑆 = 0                                                                                                               (83) 

∆𝑆𝑆 =
∆𝐻𝐻𝑣𝑣
𝑇𝑇0

                                                                                                                                      (84) 

Assuming that ∆𝐻𝐻 ≅ ∆𝐻𝐻𝑣𝑣 for any temperature, we have 

∆𝐺𝐺 = ∆𝐻𝐻𝑣𝑣 �
𝑇𝑇0 − 𝑇𝑇
𝑇𝑇0

�                                                                                                                     (85) 

Therefore 

𝑟𝑟𝑐𝑐  = −
2𝛾𝛾
∆𝐺𝐺𝑣𝑣

 

= −
2𝛾𝛾

∆𝐻𝐻𝑣𝑣 �
𝑇𝑇0 − 𝑇𝑇
𝑇𝑇0

�
                                                                                                                  (86) 

∆𝐺𝐺𝑐𝑐,ℎ𝑜𝑜𝑚𝑚𝑜𝑜 =
16𝜋𝜋𝛾𝛾3

3(∆𝐺𝐺𝑣𝑣)2 

=
16𝜋𝜋𝛾𝛾3

3 �∆𝐻𝐻𝑣𝑣 �
𝑇𝑇0 − 𝑇𝑇
𝑇𝑇0

��
2                                                                                                  (87) 

where 

 𝑟𝑟𝑐𝑐  = critical radius of void clusters, 
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∆𝐺𝐺𝑐𝑐,ℎ𝑜𝑜𝑚𝑚𝑜𝑜 = critical free energy barrier of void clusters through homogeneous 

nucleation. 

The total Gibbs free energy curve is shown in Figure 3, where 𝑟𝑟𝑐𝑐 is equal to 𝑟𝑟∗ in the 

figure. For those clusters where 𝑟𝑟 < 𝑟𝑟𝑐𝑐, the surface energy is larger than the volume free energy, 

resulting in that the clusters are unstable, and will shrink after reaction. On the other side, for those 

clusters where 𝑟𝑟 > 𝑟𝑟𝑐𝑐, the surface energy is smaller than the volume free energy, resulting in that 

the clusters are stable and have a chance to become voids. 

 

Figure 3 The free energy change associated with homogeneous nucleation of a sphere of radius 
(Porter, 2009). 
 
 Secondly, the Boltzmann distribution is an assumption for void distribution based on 

thermodynamic equilibrium, considering the void clusters are of same radius resulting from under 

the uniformity of the thermal environments. Because of the total free energy ∆𝐺𝐺𝑐𝑐 is limited, the 

equation is 

𝑁𝑁𝑟𝑟𝑐𝑐 = 𝑁𝑁0𝑒𝑒𝑒𝑒𝑒𝑒 �−
∆𝐺𝐺𝑐𝑐
𝑅𝑅𝑇𝑇

�                                                                                                                  (88) 
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where 

 𝑁𝑁𝑟𝑟𝑐𝑐 = the number of clusters with radius rc per unit volume, 

 𝑁𝑁0 = the number of clusters in the system per unit volume. 

Therefore, the voids volume fraction 𝑓𝑓𝑣𝑣 can be written as 

𝑓𝑓𝑣𝑣 = 𝑁𝑁𝑟𝑟𝑐𝑐 �
4
3
𝜋𝜋𝑟𝑟𝑐𝑐3� 

= 𝑁𝑁0 �
4
3
𝜋𝜋(𝑟𝑟𝑐𝑐3)� 𝑒𝑒𝑒𝑒𝑒𝑒 �−

∆𝐺𝐺𝑐𝑐
𝑅𝑅𝑇𝑇

� 

= −
4
3
𝜋𝜋𝑁𝑁0 �

2𝛾𝛾

∆𝐻𝐻𝑣𝑣 �
𝑇𝑇0 − 𝑇𝑇
𝑇𝑇0

�
�

3

𝑒𝑒𝑒𝑒𝑒𝑒

⎩
⎨

⎧
−

16𝜋𝜋𝛾𝛾3

3𝑅𝑅𝑇𝑇 �∆𝐻𝐻𝑣𝑣 �
𝑇𝑇0 − 𝑇𝑇
𝑇𝑇0

��
2

⎭
⎬

⎫
                                  (89) 

Furthermore, the homogeneous nucleation rate I can be rewritten as 

𝑞𝑞0 =
𝛼𝛼𝛼𝛼

√2𝜋𝜋𝑀𝑀𝑘𝑘𝑇𝑇
                                                                                                                              (90) 

𝑂𝑂𝑐𝑐 = 4𝜋𝜋𝑟𝑟𝑐𝑐2                                                                                                                                      (91) 

𝑍𝑍𝑐𝑐 = 𝑁𝑁𝑟𝑟𝑐𝑐                                                                                                                                           (92) 

𝐼𝐼 = 𝑞𝑞0𝑂𝑂𝑐𝑐𝑍𝑍𝑐𝑐                                                                                                                                      (93) 

where 

 𝑞𝑞0 = jump frequency, 

 𝛼𝛼 = accommodation or sticking coefficient, 

 𝛼𝛼 = vapor pressure of voids, 

 𝑀𝑀 = average molecular mass of voids, 

 𝑘𝑘 = Boltzmann constant, 

 𝑂𝑂𝑐𝑐 = surface contact area of critical clusters, 

 𝑍𝑍𝑐𝑐 = number of critical clusters. 
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Therefore 

𝐼𝐼 = �
𝛼𝛼𝛼𝛼

√2𝜋𝜋𝑀𝑀𝑘𝑘𝑇𝑇
� (4𝜋𝜋𝑟𝑟𝑐𝑐2) �𝑁𝑁0𝑒𝑒𝑒𝑒𝑒𝑒 �−

∆𝐺𝐺𝑐𝑐
𝑅𝑅𝑇𝑇

�� 

=
4√𝜋𝜋𝛼𝛼𝑟𝑟𝑐𝑐2𝑁𝑁0𝛼𝛼
√2𝑀𝑀𝑘𝑘𝑇𝑇

𝑒𝑒𝑒𝑒𝑒𝑒

⎩
⎨

⎧
−

16𝜋𝜋𝛾𝛾3

3𝑅𝑅𝑇𝑇 �∆𝐻𝐻𝑣𝑣 �
𝑇𝑇0 − 𝑇𝑇
𝑇𝑇0

��
2

⎭
⎬

⎫
                                                               (94) 

Therefore, the radius, number of voids and rate of voids nucleation can be controlled by governing 

pressure and temperature in the manufacturing processes. 

 Heterogeneous nucleation occurs on impurities particles, strained regions, interface, 

surface defects, and broken structure, which enable clusters becoming voids with smaller free 

energy of activation in the same radius than homogeneous nucleation. The critical free energy of 

heterogeneous nucleation is given by 

∆𝐺𝐺𝑐𝑐,ℎ𝑒𝑒𝑒𝑒𝑟𝑟𝑜𝑜 = ∆𝐺𝐺𝑐𝑐,ℎ𝑜𝑜𝑚𝑚𝑜𝑜 �
2 − 3𝑐𝑐𝑉𝑉𝑠𝑠𝑐𝑐 + 𝑐𝑐𝑉𝑉𝑠𝑠3𝑐𝑐

4
� 

=
16𝜋𝜋𝛾𝛾3

3(∆𝐺𝐺𝑣𝑣)2 �
2 − 3𝑐𝑐𝑉𝑉𝑠𝑠𝑐𝑐 + 𝑐𝑐𝑉𝑉𝑠𝑠3𝑐𝑐

4
� 

=
4𝜋𝜋𝛾𝛾3𝑇𝑇02(2 − 3𝑐𝑐𝑉𝑉𝑠𝑠𝑐𝑐 + 𝑐𝑐𝑉𝑉𝑠𝑠3𝑐𝑐)

3∆𝐻𝐻𝑣𝑣2(𝑇𝑇0 − 𝑇𝑇)2                                                                            (95) 

where 

∆𝐺𝐺𝑐𝑐,ℎ𝑒𝑒𝑒𝑒𝑟𝑟𝑜𝑜 = critical free energy barrier of void clusters through heterogeneous nucleation, 

 𝑐𝑐 = contact angle of surface defect and interface between fibers and matrix. 

However, the situation of homogeneous nucleation would not be considered in this 

research, because all the voids would be formed on the interface between fibers and matrix. To 

focus on the characteristic and effect of different void content, the simple model in this research is 

square packed arrangement fiber in matrix with cylindrical voids at random positions. 
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1.4.2 Volume Content 

There are two possible methods to represent void content. The first method considers voids 

as a kind of defect structure on the matrix. In other words, it is part of the matrix. Therefore the 

void content 𝑓𝑓𝑣𝑣  is volume percentage of the void volume. The equation can be written as 

𝑉𝑉𝑓𝑓 + 𝑉𝑉𝑚𝑚∗ = 1                                                                                                                                   (96) 

𝑉𝑉𝑚𝑚∗ = 𝑓𝑓𝑣𝑣 + 𝑓𝑓𝑚𝑚                                                                                                                                 (97) 

where 

 𝑉𝑉𝑓𝑓 = Fiber volume fraction, 

 𝑉𝑉𝑚𝑚∗ = Total matrix volume fraction, 

 𝑓𝑓𝑚𝑚 = Matrix volume fraction except the void content. 

Indeed, this method seems reasonable because the method is a good way on reflecting the 

density of void in the matrix. 

The other method is considering voids as a third material as fibers or particulates 

embedded into the matrix. Then  

𝑉𝑉𝑓𝑓 + 𝑉𝑉𝑚𝑚 + 𝑉𝑉𝑣𝑣 = 1                                                                                                                          (98) 

where 

 𝑉𝑉𝑓𝑓 = Fiber volume fraction, 

 𝑉𝑉𝑚𝑚 = Matrix volume fraction, 

 𝑉𝑉𝑣𝑣 = Voids volume fraction. 

This method also seems reasonable because the method gives more specific description on 

voids, which is conducive on further studies of void properties. 

Therefore, the research adopts the latter method to define void content as 𝑉𝑉𝑣𝑣, which satisfies 

the following relationship 
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𝑉𝑉𝑓𝑓 + 𝑉𝑉𝑚𝑚 + 𝑉𝑉𝑣𝑣 = 1                                                                                                                          (98) 

𝑉𝑉𝑣𝑣 = �1 − 𝑉𝑉𝑓𝑓� × 𝑓𝑓𝑣𝑣                                                                                                                       (99) 

1.4.3 Size, Shape and Distribution 

Based on the derivation of nucleation by kinetic theories in Section 1.4.1, we know that 

void content, radius of voids, and the rate of nucleation are determined when the pressure and 

temperature of system are known. In fact, the relationship between voids content and radius of 

voids has been further discussed by Huang and Talreja (2005). Based on their work, all the models 

in this research are adopting a unified cylinder void shape through its length and of radius (Figure 

4): 

𝑟𝑟𝑣𝑣 =
𝑚𝑚𝑣𝑣
2

=
1
2
�(1.93 × 10−2) − (1.2 × 10−2) × 𝑒𝑒(−87×𝑓𝑓𝑣𝑣)�                                              (100) 

where 

 𝑟𝑟𝑣𝑣 = the radius of voids (mm), 

𝑓𝑓𝑣𝑣 = the void contents, defined as the ratio of volume of voids to volume of matrix and 

voids. 

 

Figure 4 The average void height vs. void content (Huang and Talreja, 2009). 
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Although size, shape and distribution of voids are significant factors that influence the 

mechanical response, we are not considering the impact of voids distribution. The reason is that 

although different voids distribution would result in decrease of 𝐺𝐺23 value by different amounts, 

the voids positions are not controllable during manufacturing processes.
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CHAPTER 2 FORMULATION 
 

2.1 Finite Element Modeling 

To determine the impact of voids on the transverse shear modulus 𝐺𝐺23, matrix laboratory 

(MATLAB®, 2012) and ANSYS Parametric Design Language (ANSYS® APDL, 2016) programs 

were selected to simulate the effects of geometrical configurations, boundary conditions, fiber-to-

matrix Young’s moduli ratios, and fiber and void volume fractions on the model.  

MATLAB, a powerful programming language capable of numerical computing, played an 

important role in providing randomly-generated two-dimensional coordinate points and of 

programming APDL codes into *.dbs files. The significant benefit of producing APDL code files 

via the MATLAB platform is that highly developed looping application functions make the code 

shorter and more logical. In other words, MATLAB simplifies the modification processes and 

lowers the risks of typographical errors, resulting in saving more time on testing and debugging 

processes. 

The ANSYS APDL program is used for computing numerical simulations with finite 

element analysis because of its powerful capability to solve mechanical problems. In addition to 

being able to create models through selecting options on the user interface, users of the APDL 

program are also able to build models by entering custom codes. By loading the code files 

produced from MATLAB, we can save time and redundancy from manually entering those 

commands for each model.  
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2.2 Geometrical Design 

The RVE composite model was previously discussed in Section 1.3. In this research, the 

local coordinate system axes of the composite model are defined by the coordinate system 

of  (1, 2, 3), which corresponds to the global coordinate system  (𝑧𝑧, 𝑒𝑒,𝑦𝑦). The local system is 

defined such that the origin is located at the bottom left corner of the back face of the RVE.  

 

  

  

 
Figure 5 The model in the global coordinate system axes. 
 

To proceed, some assumptions of mechanical behaviors have been made in order to 

simplify the study of the composite material. For all models, each section of RVE cells, parallel to 
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the 𝑒𝑒-𝑦𝑦 plane, are square with side lengths of 1mm. The cylindrical fibers are embedded within 

the center of each cell and are extruded along the 𝑧𝑧-axis. In addition, the thickness of all models 

is same as their 𝑒𝑒-𝑦𝑦 face edges, therefore all models are cubic bodies.  

2.2.1 Material Properties of Fibers and Matrix 

Summarized from the theories discussed in Chapter 1, it has been shown that the elastic 

moduli of fiber and matrix play an important role in affecting the 𝐺𝐺23 modulus. To understand the 

impact of the void fraction on values of 𝐺𝐺23 with different material properties, we design three 

fiber materials with different fiber to matrix elastic moduli ratio 𝐸𝐸𝑓𝑓 𝐸𝐸𝑚𝑚⁄ (20, 50, and 80). These 

values for the different models are listed in Table 2. Therefore, the selected materials range 

between a low elastic moduli ratio 𝐸𝐸𝑓𝑓 𝐸𝐸𝑚𝑚⁄  of 20 (glass/epoxy composites) to a high elastic moduli 

ratio of 80 (graphite/epoxy composites). 

 

Table 2 Material properties of fibers and matrix 

Material Fiber-to-matrix Young’s 
modulus ratio, 𝐸𝐸𝑓𝑓 𝐸𝐸𝑚𝑚⁄  Poisson's Ratio, 𝜈𝜈 

Fiber #20 20 0.2 
Fiber #50 50 0.2 
Fiber #80 80 0.2 

Matrix - 0.3 
 
2.2.2 Variable Fiber Volume Fraction of Square Packed Array Composite 

In addition to material properties, the fiber volume fraction also serves a primary role in 

determining the value of  𝐺𝐺23 . For square-packed array fiber-reinforced composites, the fiber 

volume fraction 𝑉𝑉𝑓𝑓 is denoted here as a term to describe the relationship between the diameter of 

the fiber d and the distance between two fibers s. Formally, their relationship is defined by the 

following formula (Kaw, 2005) 
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𝑚𝑚
𝑠𝑠

= �
𝑉𝑉𝑓𝑓
𝜋𝜋
�
1 2⁄

                                                                                                                                (101) 

Limited by geometry, this formula yields the maximum value of 

 𝑉𝑉𝑓𝑓 =
𝜋𝜋
4

 

= 78.540%                                                                                                                           (102) 

Therefore, to portray the effects on 𝐺𝐺23  based on different fiber volume fractions, different 

percent compositions were studied. Namely, fiber volume fractions of 40%, 55% and 70% are 

investigated. Furthermore, because this research assumes that the edge of a unit cell s is 1mm in 

length, the radius of the fibers, 𝑟𝑟𝑓𝑓 = 𝑑𝑑
2

 , have been calculated and are listed in Table 3. 

 

Table 3 Radius of fibers for different fiber volume fraction (𝑠𝑠 = 1mm) 

Fiber Volume Fraction, 𝑉𝑉𝑓𝑓 (%) Radius of Fiber, 𝑟𝑟𝑓𝑓 (mm) 
40 0.3568 
55 0.4184 
70 0.4720 

 
2.2.3 Variable Domain Size of Square Packed Array Composite 

The effect of the domain size of composite models was briefly discussed in Section 1.4. 

This study allows us to speculate the mechanical behavior of composites by observing the tendency 

of the dimensionless shear modulus ratio 𝐺𝐺23 𝐺𝐺𝑚𝑚⁄  value as the domain size increases. In common 

situations, the composite materials often used in real-world applications are far too complex, that 

is, they contain considerable amounts of cells. These materials are too complicated for the finite 

element analysis program to simulate directly. In this study, the correlation 

between 𝐺𝐺23 𝐺𝐺𝑚𝑚⁄  values and domain sizes are calculated from the following formula 

𝐺𝐺23
𝐺𝐺𝑚𝑚

= 𝛼𝛼 +
𝛽𝛽

(𝐷𝐷)𝛾𝛾 
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= 𝛼𝛼 +
𝛽𝛽

(𝛿𝛿)2𝛾𝛾                                                                                                                         (103) 

where α, β, and γ are constants solved by substituting 𝐺𝐺23 𝐺𝐺𝑚𝑚⁄  values of the models with domain 

size 𝛿𝛿 from 1 to 4 into the Curve Fitting tool in MATLAB, where the geometry is shown in Figure 

5. Upon inspection of the formula, it becomes apparent that the value of  𝐺𝐺23 𝐺𝐺𝑚𝑚⁄  in models 

containing a large number of cells will eventually converge to α as the second term of Equation 

(103) tends to zero, and hence call 𝛼𝛼 as (𝐺𝐺23)∞ 𝐺𝐺𝑚𝑚⁄ . 

Additionally, it should be noted that the interface between fibers and the matrix is assumed 

to be perfectly bonded. 

2.2.4 Void Design of Square Packed Array Composites 

To simplify the model, some boundary conditions for voids are established. Just as the 

shape of the fiber is cylindrical, so too is the shape of the void, being formed from a circular section 

on the 𝑒𝑒-𝑦𝑦 plane which is extruded along the 𝑧𝑧-axis. According to the research done by Huang 

(2005), the radius of voids 𝑟𝑟𝑣𝑣 in models can be derived by the following formula 

𝑉𝑉𝑣𝑣 = �1 − 𝑉𝑉𝑓𝑓� × 𝑓𝑓𝑣𝑣                                                                                                                      (104) 

𝑟𝑟𝑣𝑣 = (9.65 × 10−6) − (6 × 10−6) × 𝑒𝑒(−87×𝑓𝑓𝑣𝑣)                                                                   (105) 

The calculated values are shown in Table 4. The selected void content range in this study 

is between 0% and 3%. The research from Liu, et al. (2006) has indicated that the void content is 

critical on dynamic aerospace composite application, where 1% void content above is intolerable. 

Moreover, Ghiorse (1991) mentions that the void content of advanced dynamic aerospace 

structures, such as helicopters, should not be more than 1.5%. On the other side, for the 

applications which are not critically dependent on low void volume, high-level void content such 

as 5% and higher, is still acceptable (Ghiorse 1991 and Liu, et al. 2006). Examples include ground 

vehicle components. 
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Table 4 Void fraction transfer, void radius, and number of voids for different fiber volume 

fractions 

𝑉𝑉𝑓𝑓(%) 40 55 70 
𝑉𝑉𝑣𝑣(%) 1 2 3 1 2 3 1 2 3 
𝑓𝑓𝑣𝑣(%) 1.667 3.333 5 2.222 4.444 6.667 3.333 6.667 10 
𝑟𝑟𝑣𝑣(𝜇𝜇𝑚𝑚) 8.2430 9.3198 9.5726 8.7818 9.5244 9.6318 9.3198 9.6318 9.6490 
(#𝑣𝑣𝑉𝑉𝑖𝑖𝑚𝑚)  

𝛿𝛿2 

1 59 73 104 41 70 103 37 69 103 
4 235 293 417 165 281 412 147 274 410 
9 528 660 938 371 632 926 330 618 923 
16 938 1173 1667 660 1123 1647 586 1098 1641 

 
The position of voids are randomly-generated, but they must also adhere to the following 

stipulations. Firstly, we presume that the voids should maintain cylindrical structure in the matrix. 

Therefore, the distance between the void and the interface of the nearest fiber should be larger than 

the radius of void. This is expressed by the following inequality 

𝐷𝐷𝑓𝑓−𝑣𝑣 > 𝑟𝑟𝑓𝑓 + 𝑟𝑟𝑣𝑣                                                                                                                            (106) 

where 

 𝐷𝐷𝑓𝑓−𝑣𝑣 = distance between the void center point and the nearest fiber, 

 𝑟𝑟𝑓𝑓 = the radius of the fiber, 

 𝑟𝑟𝑣𝑣 = the radius of void. 

Secondly, we assume that the voids are completely in the matrix. This means that the 

distance between the edge of the matrix and the center of the voids should be larger than the radius 

of the voids. The parametric inequalities of the center coordinates of the voids on the 𝑒𝑒-𝑦𝑦 plane 

are expressed by 

𝑟𝑟𝑣𝑣 < 𝑒𝑒𝑣𝑣 < 𝐿𝐿𝑚𝑚𝛿𝛿 − 𝑟𝑟𝑣𝑣 for the range of possible 𝑒𝑒-coordinate (107) 

𝑟𝑟𝑣𝑣 < 𝑦𝑦𝑣𝑣 < 𝐿𝐿𝑚𝑚𝛿𝛿 − 𝑟𝑟𝑣𝑣 for the range of possible 𝑦𝑦-coordinate (108) 

where 
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 𝑒𝑒𝑣𝑣 and 𝑦𝑦𝑣𝑣 = the 𝑒𝑒 and 𝑦𝑦 coordinates of the void center, 

 𝐿𝐿𝑚𝑚 = length of the edge of the matrix, 

 𝛿𝛿 = domain size of the model. 

Finally, we specify that the voids are separate from one another, meaning that the voids 

will never overlap nor combine into larger voids. This condition is expressed as the inequality 

below 

 𝐷𝐷𝑣𝑣−𝑣𝑣 > 2𝑟𝑟𝑣𝑣                                                                                                                                   (109) 

where 

 𝐷𝐷𝑣𝑣−𝑣𝑣 = the distance between any two void centers.  

Note that before a new void is generated, the minimum distance between its coordinates and all 

other previous points coordinates should be examined. 

 To produce void coordinates which satisfy these three boundary conditions above, the first 

step is to create two series of uniformly distributed random numbers which both range from 𝑟𝑟𝑓𝑓 to 

𝐿𝐿𝑚𝑚𝛿𝛿 − 𝑟𝑟𝑓𝑓  expressed as 𝑒𝑒  and 𝑦𝑦 coordinates. Following this, the next step is to classify the 

points based on their distance to the nearest central coordinates of a fiber. Once this is done, the 

newly-generated points must be filtered by the conditions of the inequality 

 𝐷𝐷𝑓𝑓−𝑣𝑣 > 𝑟𝑟𝑓𝑓 + 𝑟𝑟𝑣𝑣                                                                                                                          (110)  

The final step is checking the distance between a probable new point and the previously plotted 

points.  

2.3 Meshing Elements of Geometric Models 

2.3.1 Bulk Elements 

We use ANSYS Solid185 elements to simulate the problem. Solid185 is an 8-node, 3D 

element for structural or layered solids. This element type, which is shown in Figure 6, is 
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comprised of a node on each of the eight corners which are connected by twelve straight lines. 

These lines, which serve as the edges of the element, can be described by linear equations. This 

provides a substantial improvement in the solving of these equations when compared with higher 

order expressions, such as quadratics. The selection of Solid185 in this research is made because 

this element type is commonly used due to the ease of deducing its mechanical properties 

concerning plasticity, stress stiffening, large deflections, and high amounts of strain. 

 
Figure 6 Solid185 element in Ansys® program. 
 
2.3.2 Contact Surfaces 

The contact surfaces between the fibers and matrices in all models are bonded. However, 

it is to be noted that we adopted GLUE command rather than NUMMRG command in this 

research. Both of these commands achieve the effect of bonding when simulating in the Ansys 

program. The difference between these commands is that GLUE command makes the elements 

sharing the same position, such as contact areas, bond to each other, while NUMMRG command 

actually merges the elements with same positions into a singular element. NUMMRG command 

occasionally produces problems. For instance, in this research, it became difficult to define which 
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contact surface belongs to which material. For this reason, the GLUE command was chosen over 

NUMMRG command.  

2.3.3 Meshing Elements Shapes and Sizes 

Normally, the structural systems used in actual practice contain complicated geometries 

and displacement applied methods. The concept of finite element analysis is to break down the 

complicated geometries of these materials into small and simple shapes called elements. For 

example, in 2D geometry three and four sided elements, triangles and rectangles respectively, are 

considered finite elements. This can be extended to higher dimensions such as the tetrahedron and 

hexahedron in 3D geometry. These simple geometrical elements require far less work needed to 

solve problems that arise under an applied displacement defined by a handful of equations. 

Moreover, approximate solutions can be obtained by combining the individual results of the effects 

of an applied displacement on all elements as piecewise functions. 

To produce highly stable and qualitative results, two methods can be considered to improve 

the solving processes. One, the so-called p-method, involves satisfying the boundary conditions 

and behaviors by making use of higher ordered equations. The other, the so-called h-method, is 

performed by refining the geometries into a larger number of basic elements. In general, both the 

p-method and h-method improve the precision of the results but require more time on their solving 

processes. 

To determine the most appropriate element size that will save time without losing too much 

accuracy, different element sizes were tested to produce 𝐺𝐺23 values. The models that were tested 

needed to satisfy two conditions: firstly the models must be without voids, and secondly the model 

must be subjected to a shear displacement. After these conditions are satisfied, a convergence 

curve plot is generated with the element number defined along the 𝑒𝑒-axis and the corresponding 
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𝐺𝐺23 values as plotted along the 𝑦𝑦-axis. In addition, the convergence curve must be satisfied by the 

equation below 

𝐺𝐺23 = 𝛼𝛼2 +
𝛽𝛽2
𝑁𝑁𝛾𝛾2

                                                                                                                         (111) 

where 𝛼𝛼2, 𝛽𝛽2, and 𝛾𝛾2 are constants solved by supplementing 𝐺𝐺23 values of the models with finite 

number of elements 𝑁𝑁 into Curve Fitting tool in MATLAB. Note that the command we use to 

control the element size and number is LESIZE command. LESIZE command is used for defining 

how many line segments are contained within the model as well as constructing the elements based 

on these line segments. In this research, each edge of the unit cell matrix was comprised of ten 

equal line segments whose total combined length, the length of one edge, is defined as 𝐿𝐿𝑚𝑚. This 

resulted in a percent difference  which remained under 0.5%, which can be defined by the 

following formula the percent difference P is given by 

𝛼𝛼 =
𝐺𝐺23 − 𝛼𝛼2
𝐺𝐺23

× 100%                                                                                                             (112) 

where 𝛼𝛼2 is an indication for the expectation of the exact solution. 

2.4 Boundary Conditions 

2.4.1 Displacement Conditions 

Considering that all elements of the models behave as ideal elastic solids, one can have 

confidence that their mechanical behaviors can be described by Hooke's law. To calculate the 

𝐺𝐺23 value of all models, both load application conditions and displacements applied can be 

considered. Studying applied displacement conditions is a less intuitive but more powerful 

methodology in this research. The reasoning behind using this method is that it yields more 

measurably accurate results when compared to the load application method. 
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Therefore, homogeneous displacement boundary conditions are imposed. These equations, 

which are listed below, govern the displacement of the 𝑒𝑒 and 𝑦𝑦 edges of the model when viewed 

from along the 𝑧𝑧-axis (depicted in Figure 7). 

�𝑅𝑅𝑥𝑥 = 𝜀𝜀230 𝑦𝑦
𝑅𝑅𝑦𝑦 = 0  for all elements on 𝑒𝑒 = 0                                                                                 (113) 

�
𝑅𝑅𝑥𝑥 = 0
𝑅𝑅𝑦𝑦 = 𝜀𝜀230 𝑒𝑒

 for all elements on 𝑦𝑦 = 0                                                                                 (114) 

�
𝑅𝑅𝑥𝑥 = 𝜀𝜀230 𝑦𝑦
𝑅𝑅𝑦𝑦 = 𝜀𝜀230 𝐿𝐿𝑚𝑚𝛿𝛿

 for all elements on 𝑒𝑒 = 𝐿𝐿𝑚𝑚𝛿𝛿                                                                     (115) 

�
𝑅𝑅𝑥𝑥 = 𝜀𝜀230 𝐿𝐿𝑚𝑚𝛿𝛿
𝑅𝑅𝑦𝑦 = 𝜀𝜀230 𝑒𝑒

 for all elements on 𝑦𝑦 = 𝐿𝐿𝑚𝑚𝛿𝛿                                                                     (116) 

where 

 𝐿𝐿𝑚𝑚 = length of the edge of the unit cell matrix, 

 𝛿𝛿 = domain size of the model, 

 𝜀𝜀230 = a dimensionless constant applied for uniform shear strain. 

 
Figure 7 Strain applied on a model in Ansys® program. 
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2.4.2 Volumetric Weighing Average and Void Strain Rectification 

To estimate the transverse shear modulus 𝐺𝐺23 of each model, a proper calculation method 

should be derived for the numerical results from the stress and strain produced by the simulation. 

According to Huang (2005), one concept derived from the Mori–Tanaka solution formula provided 

a way for the void effect on composite materials to be quantified. The formula used in calculating 

volumetric average stress and strain for the 𝐺𝐺23 calculation can be written as 

𝜏𝜏̅ =
1
𝑉𝑉𝑒𝑒
� 𝜏𝜏23,𝑒𝑒𝑒𝑒𝑒𝑒

 

𝑉𝑉𝑡𝑡
𝑚𝑚𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒 =

∑𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒𝜏𝜏23,𝑒𝑒𝑒𝑒𝑒𝑒

𝑉𝑉𝑒𝑒
                                                                                  (117) 

�̅�𝛾 =
1
𝑉𝑉𝑒𝑒
� 𝛾𝛾23,𝑒𝑒𝑒𝑒𝑒𝑒

 

𝑉𝑉𝑡𝑡
𝑚𝑚𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒 =

∑𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒𝛾𝛾23,𝑒𝑒𝑒𝑒𝑒𝑒

𝑉𝑉𝑒𝑒
                                                                                  (118) 

where 

 𝜏𝜏2̅3 = the average of shear stress applied in the x-y direction in the models, 

 �̅�𝛾23 = the average of shear strain in the x-y direction in the models, 

 𝑉𝑉𝑒𝑒 = (𝐿𝐿𝑚𝑚𝛿𝛿)3 the total volume of the composite model, 

 𝜏𝜏23,𝑒𝑒𝑒𝑒𝑒𝑒 = the average of shear stress applied on a singular element, 

 𝛾𝛾23,𝑒𝑒𝑒𝑒𝑒𝑒 = the average of shear strain applied on a singular element, 

 𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒 = the volume of a singular element. 

Therefore the value of 𝐺𝐺23 can be determined by following equations 

𝜏𝜏23,𝑒𝑒 = �𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒𝜏𝜏23,𝑒𝑒𝑒𝑒𝑒𝑒                                                                                                                (119) 

𝛾𝛾23,𝑒𝑒 = �𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒𝛾𝛾23,𝑒𝑒𝑒𝑒𝑒𝑒                                                                                                                (120) 

𝐺𝐺23 =
𝜏𝜏2̅3
�̅�𝛾23

=
𝜏𝜏23,𝑒𝑒

𝛾𝛾23,𝑒𝑒
=
∑𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒𝜏𝜏23,𝑒𝑒𝑒𝑒𝑒𝑒

∑ 𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒𝛾𝛾23,𝑒𝑒𝑒𝑒𝑒𝑒
                                                                                         (121) 

where 
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 𝜏𝜏23,𝑒𝑒 = the total value of shear stress applied on the model, 

 𝛾𝛾23,𝑒𝑒 = the total value of shear strain applied on the model. 

Note that the equation from the Mori–Tanaka solution can only be used to calculate the result of 

models without voids. For models containing voids, the equation should be modified. 

The primary reason that the aforementioned equation should be modified is that although 

the voids have not taken the forces, they have provided various amounts of deformation. In other 

words, 𝛾𝛾23,𝑒𝑒 is no longer equal to ∑𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒𝛾𝛾23,𝑒𝑒𝑒𝑒𝑒𝑒 for the models containing voids. It should now be 

rewritten as 

𝛾𝛾23,𝑒𝑒 = �𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒𝛾𝛾23,𝑒𝑒𝑒𝑒𝑒𝑒 + �𝑣𝑣𝑣𝑣𝑜𝑜𝑖𝑖𝑑𝑑𝛾𝛾23,𝑣𝑣𝑜𝑜𝑖𝑖𝑑𝑑                                                                            (122) 

Therefore, the equation of shear modulus 𝐺𝐺23 for models containing voids should be written as 

𝐺𝐺23 =
𝜏𝜏2̅3
�̅�𝛾23

=
∑𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒𝜏𝜏23,𝑒𝑒𝑒𝑒𝑒𝑒

∑ 𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒𝛾𝛾23,𝑒𝑒𝑒𝑒𝑒𝑒 + ∑𝑣𝑣𝑣𝑣𝑜𝑜𝑖𝑖𝑑𝑑𝛾𝛾23,𝑣𝑣𝑜𝑜𝑖𝑖𝑑𝑑
                                                                       (123) 

However, a problem arises in that it is difficult to measure the strain caused by the 

deformation of the voids directly from elements ∑𝑣𝑣𝑣𝑣𝑜𝑜𝑖𝑖𝑑𝑑𝛾𝛾23,𝑣𝑣𝑜𝑜𝑖𝑖𝑑𝑑. This is due to the fact that the 

voids have not been defined by elements because their material properties cannot be specifically 

defined. The solution to this difficulty is to calculate the average strain produced by elemental 

volume weighting �∑𝑣𝑣𝑠𝑠𝛾𝛾23,𝑠𝑠
∑𝑣𝑣𝑠𝑠

� on the matrix elements surrounding the voids. Therefore, it can be 

concluded that the equation to determine the 𝐺𝐺23 value of composite models with voids can be 

rewritten as follows 

�𝑣𝑣𝑣𝑣𝑜𝑜𝑖𝑖𝑑𝑑𝛾𝛾23,𝑣𝑣𝑜𝑜𝑖𝑖𝑑𝑑 = �
∑𝑣𝑣𝑠𝑠𝛾𝛾23,𝑠𝑠

∑ 𝑣𝑣𝑠𝑠
��𝑣𝑣𝑣𝑣𝑜𝑜𝑖𝑖𝑑𝑑 = �

∑𝑣𝑣𝑠𝑠𝛾𝛾23,𝑠𝑠

∑ 𝑣𝑣𝑠𝑠
�𝑉𝑉𝑣𝑣(𝐿𝐿𝑚𝑚𝛿𝛿)3                               (124) 

𝐺𝐺23 =
𝜏𝜏2̅3
�̅�𝛾23

=
𝜏𝜏23,𝑒𝑒

𝛾𝛾23,𝑒𝑒
=

∑𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒𝜏𝜏𝑒𝑒𝑒𝑒𝑒𝑒,23

∑𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒𝛾𝛾𝑒𝑒𝑒𝑒𝑒𝑒,23 + �
∑ 𝑣𝑣𝑠𝑠𝛾𝛾𝑠𝑠,23
∑ 𝑣𝑣𝑠𝑠

� 𝑉𝑉𝑣𝑣(𝐿𝐿𝑚𝑚𝛿𝛿)3
                                            (125) 
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where 

 𝑣𝑣𝑠𝑠 = the volume of one element which is surrounding a void, 

𝛾𝛾23,𝑠𝑠 = the average of shear strain applied on one of the elements which are surrounding 

the void. 

2.5 Design of Experiments and Analysis of Variance 

Design of experiments (DOE) is a mathematical statistics method that is based on 

numerical analysis of existing data, systematically arranging the change of independent variables, 

as well as observing the change of dependent variables (Montgomery, 2008). The concept of DOE 

method is to first examine and make a preliminary hypothesis based on existing information and 

then to create a series of new experiments dependent upon the conclusions of the examinations 

and hypothesis. Those subsequences of experiments should confirm or overthrow the hypothesis. 

The function of DOE is to not only minimize the costs and number of experiments, but also to 

achieve the desired results and conclusions. 

Analysis of variance (ANOVA) is a common statistical method for models that involves 

dependent variables being influenced by two or more independent variables (Montgomery, 2008). 

Utilizing the concept of standard deviation, the ANOVA method can not only measure and 

differentiate the factors that have the greatest influence on the system from random noise but also 

determine the mixed-effect of multiple factors. 

Combined with ANOVA, the DOE method utilized in this research helps us to understand 

the impact of void prevalence, fiber-to-matrix Young’s moduli ratio, and fiber volume fraction on 

𝐺𝐺23. For example, these methods, when used in conjuncture, can show the importance and percent 

influence of the dominating factors as well as the maximum and minimum effect of void 

prevalence under different conditions from other variables.  
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Minitab® 15 Statistical Software (Minitab Inc., 2008) is statistical analysis software that 

provides ANOVA and DOE analysis. In this study, main effect plots and interaction plots are used 

for establishing the influence of each independent variable (fiber-to-matrix Young’s moduli 

ratio  𝐸𝐸𝑓𝑓 𝐸𝐸𝑚𝑚⁄ , fiber volume fraction 𝑉𝑉𝑓𝑓 , and void content 𝑉𝑉𝑣𝑣 ) on the transverse shear modulus 

ratio (𝐺𝐺23)∞ 𝐺𝐺𝑚𝑚⁄ . Pareto chart plots in the Minitab software are employed for defining the 

importance of individual factors and combinations of factors (Montgomery, 2008).  

The two-level factorial design could be displayed as cube plot shown in Figure 8. The eight 

vertices represent the eight extreme situations for all considered conditions in this research. 

 

Figure 8 The cube plot for two-level three factorial design. 
 
 
Based on the plot, the values on the eight extremes are 

𝐺𝐺23,𝑜𝑜 𝐺𝐺𝑚𝑚⁄ = the average transverse shear modulus ratio (𝐺𝐺23)∞ 𝐺𝐺𝑚𝑚⁄  at point  𝑉𝑉 is 

𝐸𝐸𝑓𝑓 𝐸𝐸𝑚𝑚⁄ = 20,𝑉𝑉𝑓𝑓 = 40%,𝑉𝑉𝑣𝑣 = 0%, 

𝐺𝐺23,𝑎𝑎 𝐺𝐺𝑚𝑚⁄ = the average transverse shear modulus ratio (𝐺𝐺23)∞ 𝐺𝐺𝑚𝑚⁄  at point  𝐻𝐻 is 

𝐸𝐸𝑓𝑓 𝐸𝐸𝑚𝑚⁄ = 80,𝑉𝑉𝑓𝑓 = 40%,𝑉𝑉𝑣𝑣 = 0%, 

𝑏𝑏𝑐𝑐 
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𝑏𝑏 𝐻𝐻𝑏𝑏 

𝐻𝐻𝑏𝑏𝑐𝑐 
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𝐺𝐺23,𝑏𝑏 𝐺𝐺𝑚𝑚⁄ = the average transverse shear modulus ratio (𝐺𝐺23)∞ 𝐺𝐺𝑚𝑚⁄  at point  𝑏𝑏 is 

𝐸𝐸𝑓𝑓 𝐸𝐸𝑚𝑚⁄ = 20,𝑉𝑉𝑓𝑓 = 70%,𝑉𝑉𝑣𝑣 = 0%, 

𝐺𝐺23,𝑐𝑐 𝐺𝐺𝑚𝑚⁄ = the average transverse shear modulus ratio (𝐺𝐺23)∞ 𝐺𝐺𝑚𝑚⁄  at point  𝑐𝑐 is 

𝐸𝐸𝑓𝑓 𝐸𝐸𝑚𝑚⁄ = 20,𝑉𝑉𝑓𝑓 = 40%,𝑉𝑉𝑣𝑣 = 3%, 

𝐺𝐺23,𝑎𝑎𝑏𝑏 𝐺𝐺𝑚𝑚⁄ = the average transverse shear modulus ratio (𝐺𝐺23)∞ 𝐺𝐺𝑚𝑚⁄  at point  𝐻𝐻𝑏𝑏 is 

𝐸𝐸𝑓𝑓 𝐸𝐸𝑚𝑚⁄ = 80,𝑉𝑉𝑓𝑓 = 70%,𝑉𝑉𝑣𝑣 = 0%, 

𝐺𝐺23,𝑎𝑎𝑐𝑐 𝐺𝐺𝑚𝑚⁄ = the average transverse shear modulus ratio (𝐺𝐺23)∞ 𝐺𝐺𝑚𝑚⁄  at point  𝐻𝐻𝑐𝑐 is 

𝐸𝐸𝑓𝑓 𝐸𝐸𝑚𝑚⁄ = 80,𝑉𝑉𝑓𝑓 = 40%,𝑉𝑉𝑣𝑣 = 3%, 

𝐺𝐺23,𝑏𝑏𝑐𝑐 𝐺𝐺𝑚𝑚⁄ = the average transverse shear modulus ratio (𝐺𝐺23)∞ 𝐺𝐺𝑚𝑚⁄  at point  𝑏𝑏𝑐𝑐 is 

𝐸𝐸𝑓𝑓 𝐸𝐸𝑚𝑚⁄ = 20,𝑉𝑉𝑓𝑓 = 70%,𝑉𝑉𝑣𝑣 = 3%, 

𝐺𝐺23,𝑎𝑎𝑏𝑏𝑐𝑐 𝐺𝐺𝑚𝑚⁄ = the average transverse shear modulus ratio (𝐺𝐺23)∞ 𝐺𝐺𝑚𝑚⁄  at point  𝐻𝐻𝑏𝑏𝑐𝑐 is 

𝐸𝐸𝑓𝑓 𝐸𝐸𝑚𝑚⁄ = 80,𝑉𝑉𝑓𝑓 = 70%,𝑉𝑉𝑣𝑣 = 3%. 

Therefore, the effects of all factors are calculated by the following equations (Montgomery, 2008): 

𝐴𝐴 =
1

4𝑖𝑖
�
𝐺𝐺23,𝑎𝑎

𝐺𝐺𝑚𝑚
+
𝐺𝐺23,𝑎𝑎𝑏𝑏

𝐺𝐺𝑚𝑚
+
𝐺𝐺23,𝑎𝑎𝑐𝑐

𝐺𝐺𝑚𝑚
+
𝐺𝐺23,𝑎𝑎𝑏𝑏𝑐𝑐

𝐺𝐺𝑚𝑚
−
𝐺𝐺23,𝑜𝑜

𝐺𝐺𝑚𝑚
−
𝐺𝐺23,𝑏𝑏

𝐺𝐺𝑚𝑚
−
𝐺𝐺23,𝑐𝑐

𝐺𝐺𝑚𝑚
−
𝐺𝐺23,𝑏𝑏𝑐𝑐

𝐺𝐺𝑚𝑚
�            (126) 

𝐵𝐵 =
1

4𝑖𝑖
�
𝐺𝐺23,𝑏𝑏

𝐺𝐺𝑚𝑚
+
𝐺𝐺23,𝑎𝑎𝑏𝑏

𝐺𝐺𝑚𝑚
+
𝐺𝐺23,𝑏𝑏𝑐𝑐

𝐺𝐺𝑚𝑚
+
𝐺𝐺23,𝑎𝑎𝑏𝑏𝑐𝑐

𝐺𝐺𝑚𝑚
−
𝐺𝐺23,𝑜𝑜

𝐺𝐺𝑚𝑚
−
𝐺𝐺23,𝑎𝑎

𝐺𝐺𝑚𝑚
−
𝐺𝐺23,𝑐𝑐

𝐺𝐺𝑚𝑚
−
𝐺𝐺23,𝑎𝑎𝑐𝑐

𝐺𝐺𝑚𝑚
�           (127) 

𝐶𝐶 =
1

4𝑖𝑖
�
𝐺𝐺23,𝑐𝑐

𝐺𝐺𝑚𝑚
+
𝐺𝐺23,𝑎𝑎𝑐𝑐

𝐺𝐺𝑚𝑚
+
𝐺𝐺23,𝑏𝑏𝑐𝑐

𝐺𝐺𝑚𝑚
+
𝐺𝐺23,𝑎𝑎𝑏𝑏𝑐𝑐

𝐺𝐺𝑚𝑚
−
𝐺𝐺23,𝑜𝑜

𝐺𝐺𝑚𝑚
−
𝐺𝐺23,𝑎𝑎

𝐺𝐺𝑚𝑚
−
𝐺𝐺23,𝑏𝑏

𝐺𝐺𝑚𝑚
−
𝐺𝐺23,𝑎𝑎𝑏𝑏

𝐺𝐺𝑚𝑚
�            (128) 

𝐴𝐴𝐵𝐵 =
1

4𝑖𝑖
�
𝐺𝐺23,𝑜𝑜

𝐺𝐺𝑚𝑚
+
𝐺𝐺23,𝑐𝑐

𝐺𝐺𝑚𝑚
+
𝐺𝐺23,𝑎𝑎𝑏𝑏

𝐺𝐺𝑚𝑚
+
𝐺𝐺23,𝑎𝑎𝑏𝑏𝑐𝑐

𝐺𝐺𝑚𝑚
−
𝐺𝐺23,𝑎𝑎

𝐺𝐺𝑚𝑚
−
𝐺𝐺23,𝑏𝑏

𝐺𝐺𝑚𝑚
−
𝐺𝐺23,𝑎𝑎𝑐𝑐

𝐺𝐺𝑚𝑚
−
𝐺𝐺23,𝑏𝑏𝑐𝑐

𝐺𝐺𝑚𝑚
�        (129) 

𝐴𝐴𝐶𝐶 =
1

4𝑖𝑖
�
𝐺𝐺23,𝑜𝑜

𝐺𝐺𝑚𝑚
+
𝐺𝐺23,𝑏𝑏

𝐺𝐺𝑚𝑚
+
𝐺𝐺23,𝑎𝑎𝑐𝑐

𝐺𝐺𝑚𝑚
+
𝐺𝐺23,𝑎𝑎𝑏𝑏𝑐𝑐

𝐺𝐺𝑚𝑚
−
𝐺𝐺23,𝑎𝑎

𝐺𝐺𝑚𝑚
−
𝐺𝐺23,𝑐𝑐

𝐺𝐺𝑚𝑚
−
𝐺𝐺23,𝑎𝑎𝑏𝑏

𝐺𝐺𝑚𝑚
−
𝐺𝐺23,𝑏𝑏𝑐𝑐

𝐺𝐺𝑚𝑚
�         (130) 

𝐵𝐵𝐶𝐶 =
1

4𝑖𝑖
�
𝐺𝐺23,𝑜𝑜

𝐺𝐺𝑚𝑚
+
𝐺𝐺23,𝑎𝑎

𝐺𝐺𝑚𝑚
+
𝐺𝐺23,𝑏𝑏𝑐𝑐

𝐺𝐺𝑚𝑚
+
𝐺𝐺23,𝑎𝑎𝑏𝑏𝑐𝑐

𝐺𝐺𝑚𝑚
−
𝐺𝐺23,𝑏𝑏

𝐺𝐺𝑚𝑚
−
𝐺𝐺23,𝑐𝑐

𝐺𝐺𝑚𝑚
−
𝐺𝐺23,𝑎𝑎𝑏𝑏

𝐺𝐺𝑚𝑚
−
𝐺𝐺23,𝑎𝑎𝑐𝑐

𝐺𝐺𝑚𝑚
�         (131) 

𝐴𝐴𝐵𝐵𝐶𝐶 =
1

4𝑖𝑖
�
𝐺𝐺23,𝑎𝑎

𝐺𝐺𝑚𝑚
+
𝐺𝐺23,𝑏𝑏

𝐺𝐺𝑚𝑚
+
𝐺𝐺23,𝑐𝑐

𝐺𝐺𝑚𝑚
+
𝐺𝐺23,𝑎𝑎𝑏𝑏𝑐𝑐

𝐺𝐺𝑚𝑚
−
𝐺𝐺23,𝑜𝑜

𝐺𝐺𝑚𝑚
−
𝐺𝐺23,𝑎𝑎𝑏𝑏

𝐺𝐺𝑚𝑚
−
𝐺𝐺23,𝑎𝑎𝑐𝑐

𝐺𝐺𝑚𝑚
−
𝐺𝐺23,𝑏𝑏𝑐𝑐

𝐺𝐺𝑚𝑚
�      (132) 

 
where 𝐴𝐴, 𝐵𝐵, and 𝐶𝐶 are variables depending on specified factors only. To clarify, 𝐴𝐴 is dependent 

only upon the fiber-to-matrix Young’s moduli ratio  𝐸𝐸𝑓𝑓 𝐸𝐸𝑚𝑚⁄ , 𝐵𝐵  is only affected by the fiber 
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volume fraction 𝑉𝑉𝑓𝑓, and 𝐶𝐶 is influenced solely by the void content, 𝑉𝑉𝑣𝑣. The variables 𝐴𝐴𝐵𝐵, 𝐴𝐴𝐶𝐶, 

and 𝐵𝐵𝐶𝐶 are governed by their individual factors. 𝐴𝐴𝐵𝐵𝐶𝐶 is the variable which is affected by all 

three factors. 

To specifically describe the importance of all factors, comparing percentage contribution 

of these factors simplifies the analysis. According to Montgomery (2008), the percentage 

contributions of these factors are able to be simply calculated by their sum of square 𝑆𝑆𝑆𝑆. The sum 

of square 𝑆𝑆𝑆𝑆 of each factors are simply the square of their effect values. For instance, the sum of 

square of 𝐴𝐴 factor could be written as 

𝑆𝑆𝑆𝑆𝐴𝐴 = 𝐴𝐴2                                                                                                                                      (133) 

Note that the effect values are derived from the average 𝐺𝐺23 value of all extreme conditions. Also, 

we can define the total sum of square 𝑆𝑆𝑆𝑆𝑇𝑇 for percentage contribution calculation 

𝑆𝑆𝑆𝑆𝑇𝑇 = 𝑆𝑆𝑆𝑆𝐴𝐴 + 𝑆𝑆𝑆𝑆𝐵𝐵 + 𝑆𝑆𝑆𝑆𝐶𝐶 + 𝑆𝑆𝑆𝑆𝐴𝐴𝐵𝐵 + 𝑆𝑆𝑆𝑆𝐴𝐴𝐶𝐶 + 𝑆𝑆𝑆𝑆𝐵𝐵𝐶𝐶 + 𝑆𝑆𝑆𝑆𝐴𝐴𝐵𝐵𝐶𝐶                                                 (134) 

Therefore, each of the percentage contribution 𝛼𝛼 could be written as each of their sum of square 

𝑆𝑆𝑆𝑆  divided by the total sum of square  𝑆𝑆𝑆𝑆𝑇𝑇 . For instance, the percentage contribution of 𝐴𝐴 

factor 𝛼𝛼𝐴𝐴 could be written as 

𝛼𝛼𝐴𝐴 =
𝑆𝑆𝑆𝑆𝐴𝐴
𝑆𝑆𝑆𝑆𝑇𝑇

                                                                                                                                      (135) 

There are two common ways to define the importance of factors through two-level factorial 

design: default-generators method and specified-generators method. However, the assumption of 

the analysis is that the dependent variable, dimensionless shear modulus ratio 𝐺𝐺23 𝐺𝐺𝑚𝑚⁄  in this 

study, has linear relationship between the maximum and minimum of independent variables, which 

are fiber-to-matrix Young’s moduli ratio 𝐸𝐸𝑓𝑓 𝐸𝐸𝑚𝑚⁄ , fiber volume fraction 𝑉𝑉𝑓𝑓, and void content 𝑉𝑉𝑣𝑣. 

The specify-generators method, on the other hand, allows user inputting adequate 

experimental data and processes, however would not produce Pareto Chart of the Effects. The 
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reason is that the degree of freedom for the error term is larger than zero. Therefore, Minitab would 

produce Pareto Chart plot of the Standardized Effects. 

Note that the 𝑒𝑒-axis of the Pareto Chart plot of the Standardized Effects is called student 

t-value in statistics. The 𝑉𝑉-value in Minitab is defined as 

𝑉𝑉 =
𝐶𝐶𝑉𝑉𝑒𝑒𝑓𝑓

𝑆𝑆𝐸𝐸 𝐶𝐶𝑉𝑉𝑒𝑒𝑓𝑓
                                                                                                                               (136) 

where 

 𝐶𝐶𝑉𝑉𝑒𝑒𝑓𝑓 = the coefficient of each terms of regression equation, where the equation is: 

𝐺𝐺23
𝐺𝐺𝑚𝑚

= constant + 𝐶𝐶𝐴𝐴 �
𝐸𝐸𝑓𝑓
𝐸𝐸𝑚𝑚

� + 𝐶𝐶𝐵𝐵�𝑉𝑉𝑓𝑓� + 𝐶𝐶𝐶𝐶(𝑉𝑉𝑣𝑣) 

+𝐶𝐶𝐴𝐴𝐵𝐵 �
𝐸𝐸𝑓𝑓
𝐸𝐸𝑚𝑚

𝑉𝑉𝑓𝑓� + 𝐶𝐶𝐴𝐴𝐶𝐶 �
𝐸𝐸𝑓𝑓
𝐸𝐸𝑚𝑚

𝑉𝑉𝑣𝑣�+ 𝐶𝐶𝐵𝐵𝐶𝐶�𝑉𝑉𝑓𝑓𝑉𝑉𝑣𝑣� + 𝐶𝐶𝐴𝐴𝐵𝐵𝐶𝐶 �
𝐸𝐸𝑓𝑓
𝐸𝐸𝑚𝑚

𝑉𝑉𝑓𝑓𝑉𝑉𝑣𝑣�                                 (137) 

 𝑆𝑆𝐸𝐸 𝐶𝐶𝑉𝑉𝑒𝑒𝑓𝑓 = the standard error of each regression coefficient terms. 

Same as the processes in the default-generators method, after we have the standardized 

effect of each factors, specify-generators method in two-level factorial design calculate the 

percentage contribution 𝛼𝛼 from their sum of square 𝑆𝑆𝑆𝑆. 

Moreover, the two-level factorial design would help us further explore on the decreasing 

of normalized transverse shear modulus 𝑁𝑁𝐺𝐺23 responded from the increase of void content. In 

this research, two analysis methods in two-level factorial designs (default-generators and 

specified-generators) are adopted for this requirement but for inputting normalized transverse 

shear modulus 𝑁𝑁𝐺𝐺23 instead of 𝐺𝐺23 𝐺𝐺𝑚𝑚⁄  values. The normalized transverse shear modulus 𝑁𝑁𝐺𝐺23 

is given by 

𝑁𝑁𝐺𝐺23 =
𝐺𝐺23/𝑚𝑚,𝑣𝑣𝑜𝑜𝑖𝑖𝑑𝑑

𝐺𝐺23/𝑚𝑚,0%
                                                                                                                    (138) 

where 



43 
 

 𝐺𝐺23/𝑚𝑚,0% = (𝐺𝐺23)∞ 𝐺𝐺𝑚𝑚⁄  value of composite models with no voids, 

 𝐺𝐺23/𝑚𝑚,𝑣𝑣𝑜𝑜𝑖𝑖𝑑𝑑 = (𝐺𝐺23)∞ 𝐺𝐺𝑚𝑚⁄  value of composite models with void, 

 (𝐺𝐺23)∞ 𝐺𝐺𝑚𝑚⁄ = the estimated transverse shear modulus ratio. 

Based on the definition, the effect formulas of these factors are written as 

𝐴𝐴 =
1

4𝑖𝑖
�
𝐺𝐺23,𝑎𝑎𝑐𝑐

𝐺𝐺23,𝑎𝑎
+
𝐺𝐺23,𝑎𝑎𝑏𝑏𝑐𝑐

𝐺𝐺23,𝑎𝑎𝑏𝑏
−
𝐺𝐺23,𝑐𝑐

𝐺𝐺23,𝑜𝑜
−
𝐺𝐺23,𝑏𝑏𝑐𝑐

𝐺𝐺23,𝑏𝑏
�                                                                         (139) 

𝐵𝐵 =
1

4𝑖𝑖
�
𝐺𝐺23,𝑏𝑏𝑐𝑐

𝐺𝐺23,𝑏𝑏
+
𝐺𝐺23,𝑎𝑎𝑏𝑏𝑐𝑐

𝐺𝐺23,𝑎𝑎𝑏𝑏
−
𝐺𝐺23,𝑐𝑐

𝐺𝐺23,𝑜𝑜
−
𝐺𝐺23,𝑎𝑎𝑐𝑐

𝐺𝐺23,𝑎𝑎
�                                                                         (140) 

𝐶𝐶 =
1

4𝑖𝑖
�
𝐺𝐺23,𝑐𝑐

𝐺𝐺23,𝑜𝑜
+
𝐺𝐺23,𝑎𝑎𝑐𝑐

𝐺𝐺23,𝑎𝑎
+
𝐺𝐺23,𝑏𝑏𝑐𝑐

𝐺𝐺23,𝑏𝑏
+
𝐺𝐺23,𝑎𝑎𝑏𝑏𝑐𝑐

𝐺𝐺23,𝑎𝑎𝑏𝑏
�                                                                         (141) 

𝐴𝐴𝐵𝐵 =
1

4𝑖𝑖
�
𝐺𝐺23,𝑐𝑐

𝐺𝐺23,𝑜𝑜
+
𝐺𝐺23,𝑎𝑎𝑏𝑏𝑐𝑐

𝐺𝐺23,𝑎𝑎𝑏𝑏
−
𝐺𝐺23,𝑎𝑎𝑐𝑐

𝐺𝐺23,𝑎𝑎
−
𝐺𝐺23,𝑏𝑏𝑐𝑐

𝐺𝐺23,𝑏𝑏
�                                                                      (142) 

𝐴𝐴𝐶𝐶 =
1

4𝑖𝑖
�
𝐺𝐺23,𝑎𝑎𝑐𝑐

𝐺𝐺23,𝑎𝑎
+
𝐺𝐺23,𝑎𝑎𝑏𝑏𝑐𝑐

𝐺𝐺23,𝑎𝑎𝑏𝑏
−
𝐺𝐺23,𝑐𝑐

𝐺𝐺23,𝑜𝑜
−
𝐺𝐺23,𝑏𝑏𝑐𝑐

𝐺𝐺23,𝑏𝑏
�                                                                      (143) 

𝐵𝐵𝐶𝐶 =
1

4𝑖𝑖
�
𝐺𝐺23,𝑏𝑏𝑐𝑐

𝐺𝐺23,𝑏𝑏
+
𝐺𝐺23,𝑎𝑎𝑏𝑏𝑐𝑐

𝐺𝐺23,𝑎𝑎𝑏𝑏
−
𝐺𝐺23,𝑐𝑐

𝐺𝐺23,𝑜𝑜
−
𝐺𝐺23,𝑎𝑎𝑐𝑐

𝐺𝐺23,𝑎𝑎
�                                                                      (144) 

𝐴𝐴𝐵𝐵𝐶𝐶 =
1

4𝑖𝑖
�
𝐺𝐺23,𝑐𝑐

𝐺𝐺23,𝑜𝑜
+
𝐺𝐺23,𝑎𝑎𝑏𝑏𝑐𝑐

𝐺𝐺23,𝑎𝑎𝑏𝑏
−
𝐺𝐺23,𝑎𝑎𝑐𝑐

𝐺𝐺23,𝑎𝑎
−
𝐺𝐺23,𝑏𝑏𝑐𝑐

𝐺𝐺23,𝑏𝑏
+ 2�                                                           (145) 

 
The results in this study from implementations will be discussed later in Chapter 3 

(Montgomery, 2008).
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CHAPTER 3 RESULTS AND DISCUSSIONS 
 

In this research, we consider the effect of voids on the transverse shear modulus of a 

unidirectional composite. Before analyzing the effect of the voids, we present the model for 

transverse shear modulus without voids as a baseline and for comparing it with currently available 

analytical and empirical models. The effect on the transverse shear modulus ratio is studied as a 

function of the fiber-to-matrix Young’s moduli, fiber volume fraction and void fraction. 

To ensure pragmatic research results, this research uses the combination of three different 

fiber-to-matrix Young’s moduli ratio (𝐸𝐸𝑓𝑓 𝐸𝐸𝑚𝑚⁄ = 20, 50, 80), three different fiber volume fractions 

(𝑉𝑉𝑓𝑓 = 40%, 55%, 70%), and four different void contents (𝑉𝑉𝑣𝑣 =0%, 1%, 2%, 3%). The Young’s 

moduli ratios encompasses polymer matrix composites ranging from glass/epoxy to 

graphite/epoxy. The fiber volume fractions are typical ones used in the industry. Acceptable void 

fractions can range from 1% to 6%, but we concentrate on 1% to 3% range that is typically 

acceptable for high performance structures such as those used in aerospace.  

3.1 Transverse Shear Modulus Ratio of Models without Voids 

In this section, we discuss the dimensionless shear modulus ratio 𝐺𝐺23 𝐺𝐺𝑚𝑚⁄  without the 

voids. Since we are limited by domain size and computational time increases as the size is 

increased, we use extrapolation techniques to get a limiting value of the transverse shear modulus 

ratio.  

Fitting dimensionless shear modulus ratio 𝐺𝐺23 𝐺𝐺𝑚𝑚⁄  results of simplified simulation models 

without voids (domain size D 1 cell, 4 cells, 9 cells, and 16 cells) on the following equation 
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𝐺𝐺23
𝐺𝐺𝑚𝑚

= 𝛼𝛼 +
𝛽𝛽

(𝐷𝐷)𝛾𝛾                                                                                                                            (79) 

where α, β, and γ are constants, we predicted that the 𝐺𝐺23 𝐺𝐺𝑚𝑚⁄  values of the macroscopic composite 

materials in practical situations which contain a large number of cells. In the case of macroscopic 

composite materials, the cell size D of void-free models will increase in size until it reaches infinity 

and the curve will converge to the α value, as indicated by (𝐺𝐺23)∞ 𝐺𝐺𝑚𝑚⁄ , called transverse shear 

modulus ratio. The subsequent numerical analysis results are shown in Table 5 and are plotted in 

Figure 9. 

 

Table 5 Dimensionless shear modulus ratio 𝐺𝐺23 𝐺𝐺𝑚𝑚 ⁄ for different cell sizes in finite element 

simulation (𝜈𝜈𝑓𝑓 = 0.2, 𝜈𝜈𝑚𝑚 = 0.3) 

𝐸𝐸𝑓𝑓
𝐸𝐸𝑚𝑚
�  𝑉𝑉𝑓𝑓(%) Cell Size D Estimated

(𝐺𝐺23)∞ 𝐺𝐺𝑚𝑚⁄  1 × 1 2 × 2 3 × 3 4 × 4 

20 
40 1.9953 1.8405 1.8078 1.7941 1.7748 
55 2.6453 2.4864 2.4433 2.4255 2.3873 
70 3.5754 3.8798 3.9740 4.0176 4.1314 

50 
40 2.0522 1.8839 1.8487 1.8341 1.8138 
55 2.7652 2.5953 2.5484 2.5292 2.4869 
70 3.8314 4.2720 4.4148 4.4804 4.6670 

80 
40 2.0670 1.8950 1.8592 1.8444 1.8236 
55 2.7970 2.6244 2.5766 2.5570 2.5132 
70 3.9016 4.3870 4.5469 4.6204 4.8386 

 

The results shown in Table 5 indicate a decreasing tendency in the transverse shear modulus 

ratio as the cell sizes increases in the models where 𝑉𝑉𝑓𝑓 = 40%  and  55% ; yet, there is an 

increasing tendency in the transverse shear modulus ratio with increasing cell sizes for the models 

with 𝑉𝑉𝑓𝑓 = 70%. 
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Figure 9 Dimensionless shear modulus ratio 𝐺𝐺23 𝐺𝐺𝑚𝑚⁄  with cell size D for 𝑉𝑉𝑓𝑓 = 55%. 
 

The estimated transverse shear modulus ratio  (𝐺𝐺23)∞ 𝐺𝐺𝑚𝑚⁄  of macroscopic composite 

materials relating to fiber-to-matrix Young’s moduli ratio 𝐸𝐸𝑓𝑓 𝐸𝐸𝑚𝑚⁄  and to fiber volume 

fraction 𝑉𝑉𝑓𝑓 are reproduced in Figures 10 and 11 respectively. Both fiber-to-matrix Young’s moduli 

ratio 𝐸𝐸𝑓𝑓 𝐸𝐸𝑚𝑚⁄  and fiber volume fraction  𝑉𝑉𝑓𝑓  have a positive correlation that contributes to the 

increase of  (𝐺𝐺23)∞ 𝐺𝐺𝑚𝑚⁄  ratio value. Furthermore, it is obvious that the fiber volume 

fraction  𝑉𝑉𝑓𝑓 factor has a more significant effect on the estimated transverse shear modulus 

ratio (𝐺𝐺23)∞ 𝐺𝐺𝑚𝑚⁄ , when compared to the fiber-to-matrix Young’s moduli ratio factor 𝐸𝐸𝑓𝑓 𝐸𝐸𝑚𝑚⁄ . Also, 

the high value of the 𝐸𝐸𝑓𝑓 𝐸𝐸𝑚𝑚⁄  ratio amplifies the effect of 𝑉𝑉𝑓𝑓 factor on the value of 𝐺𝐺23 𝐺𝐺𝑚𝑚⁄  ratio. 
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Figure 10 Estimated transverse shear modulus ratio (𝐺𝐺23)∞ 𝐺𝐺𝑚𝑚⁄  of macroscopic composite 
materials for fiber-to-matrix Young’s moduli ratio 𝐸𝐸𝑓𝑓 𝐸𝐸𝑚𝑚⁄ . 
 

 
Figure 11 Estimated transverse shear modulus ratio (𝐺𝐺23)∞ 𝐺𝐺𝑚𝑚⁄  of macroscopic composite 
materials for fiber volume fraction 𝑉𝑉𝑓𝑓. 
 

The theories for the composite models without voids discussed in Section 1.2 produced 

their own results for dimensionless shear modulus ratio 𝐺𝐺23 𝐺𝐺𝑚𝑚⁄  prediction. Based on the various 

theories, the results of 𝐺𝐺23 𝐺𝐺𝑚𝑚⁄  calculation for the combinations of three different fiber-to-matrix 
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Young’s moduli ratio (𝐸𝐸𝑓𝑓 𝐸𝐸𝑚𝑚⁄ = 20, 50, 80), and three different fiber volume fractions (𝑉𝑉𝑓𝑓 =

40%, 55%, 70% ) are shown in Table 6. Moreover, the percentage difference between 

each 𝐺𝐺23 𝐺𝐺𝑚𝑚⁄  theoretical value and the estimated  (𝐺𝐺23)∞ 𝐺𝐺𝑚𝑚⁄  values are given in parentheses in 

Table 6, where the equation is given by 

%difference(%) =
�(𝐺𝐺23)∞
𝐺𝐺𝑚𝑚

� − �
𝐺𝐺23,𝑒𝑒ℎ𝑒𝑒𝑜𝑜
𝐺𝐺𝑚𝑚

�

�(𝐺𝐺23)∞
𝐺𝐺𝑚𝑚

�
× 100                                                            (146) 

where 

 𝐺𝐺23,𝑒𝑒ℎ𝑒𝑒𝑜𝑜 = theoretical 𝐺𝐺23 value based on the theory. 

 

Table 6 Estimated transverse shear modulus ratio from different theories (𝜈𝜈𝑓𝑓 = 0.2, 𝜈𝜈𝑚𝑚 = 0.3) and 

the percentage difference (given in parenthesis) with estimated (𝐺𝐺23)∞ 𝐺𝐺𝑚𝑚⁄  

𝐸𝐸𝑓𝑓
𝐸𝐸𝑚𝑚�  

𝑉𝑉𝑓𝑓 
(%) 

 Different Theories 
Current 
Model 

Halpin - 
Tsai 

Elasticity 
Approach 

Saravanos 
- Chamis 

Mori - 
Tanaka's Bridging Whitney 

and Riley 

20 

40 1.7748 1.9032 
(-7.23%) 

1.9994 
(-12.65%) 

2.8626 
(-61.29%) 

2.3686 
(-33.46%) 

2.9068 
(-63.78%) 

0.5746 
(67.62%) 

55 2.3873 2.5974 
(-8.80%) 

2.8418 
(-19.04%) 

2.2620 
(5.25%) 

2.3686 
(0.78%) 

2.9068 
(-21.76%) 

1.0062 
(57.85%) 

70 4.1314 3.8480 
(6.86%) 

4.3446 
(-5.16%) 

1.7680 
(57.21%) 

2.3686 
(42.67%) 

2.9068 
(29.64%) 

1.7654 
(57.27%) 

50 

40 1.8138 1.9682 
(-8.51%) 

2.0852 
(-14.96%) 

2.9900 
(-64.85%) 

2.4778 
(-36.61%) 

3.1564 
(-74.02%) 

0.6266 
(65.45%) 

55 2.4869 2.7456 
(-10.40%) 

3.0628 
(-23.16%) 

2.3218 
(6.64%) 

2.4778 
(0.37%) 

3.1564 
(-26.92%) 

1.1284 
(54.63%) 

70 4.6670 4.2380 
(9.19%) 

4.9634 
(-6.35%) 

1.7966 
(61.50%) 

2.4778 
(46.91%) 

3.1564 
(32.37%) 

2.0722 
(55.60%) 

80 

40 1.8236 1.9838 
(-8.78%) 

2.1086 
(-15.63%) 

3.0238 
(-65.81%) 

2.5064 
(-37.44%) 

3.2266 
(-76.94%) 

0.6422 
(64.78%) 

55 2.5132 2.7872 
(-10.90%) 

3.1252 
(-24.35%) 

2.3374 
(7.00%) 

2.5064 
(0.27%) 

3.2266 
(-28.39%) 

1.1622 
(53.76%) 

70 4.8386 4.3498 
(10.10%) 

5.1506 
(-6.45%) 

1.8044 
(62.71%) 

2.5064 
(48.20%) 

3.2266 
(33.32%) 

2.1658 
(55.24%) 
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The results and the percentage differences shown in Table 6 indicate that the Halpin – Tsai 

model has high credibility for lower fiber volume fraction �𝑉𝑉𝑓𝑓 = 40� cases, though it considerably 

underestimates the value for higher fiber volume fraction �𝑉𝑉𝑓𝑓 = 70%� cases; the Mori-Tanaka's 

model is most accurate for mid-range fiber volume fraction �𝑉𝑉𝑓𝑓 = 55%�,  but has a large 

difference in other cases; the Elasticity Approach model is able to more accurately estimate 

𝐺𝐺23 𝐺𝐺𝑚𝑚⁄  value for higher fiber volume fraction �𝑉𝑉𝑓𝑓 = 70%� cases, but not for other cases. 

3.2 Effect of Voids on Transverse Shear Modulus Ratio 

Huang and Talreja (2005) mentioned that “For instance, for every 1% increase of void 

volume fraction, the reported inter-laminar shear strength reduction of 5–15% was reported in 

different works.” In this research, we find out that the tendency of 𝐺𝐺23 𝐺𝐺𝑚𝑚⁄  values, as expected, 

decreases with the increase in void content. 

As mentioned in Section 1.4, voids distribution is not going to be considered in this 

research, because the voids positions are not controllable during manufacturing processes. To 

minimize the deviation of voids distribution, we take the average from the 𝐺𝐺23 𝐺𝐺𝑚𝑚⁄  results of a 

model with three random distribution of voids under same fiber-to-matrix Young’s moduli 

ratio 𝐸𝐸𝑓𝑓 𝐸𝐸𝑚𝑚⁄ , fiber volume fractions 𝑉𝑉𝑓𝑓 and void contents 𝑉𝑉𝑣𝑣. 

After the same curve fitting process as given by Equation (79), the subsequent estimated 

(𝐺𝐺23)∞ 𝐺𝐺𝑚𝑚⁄  values with different void contents (𝑉𝑉𝑣𝑣 = 0%, 1%, 2%, 3%)  are calculated and 

shown in Tables 7- 9 for three void fractions of 1%, 2% and 3%, respectively.  
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Table 7 Dimensionless shear modulus ratio 𝐺𝐺23 𝐺𝐺𝑚𝑚 ⁄ for different cell sizes for 1％ void content in 

finite element simulation (𝜈𝜈𝑓𝑓 = 0.2, 𝜈𝜈𝑚𝑚 = 0.3) 

𝐸𝐸𝑓𝑓
𝐸𝐸𝑚𝑚
�  𝑉𝑉𝑓𝑓(%) Cell Size Estimated

(𝐺𝐺23)∞ 𝐺𝐺𝑚𝑚⁄  1 × 1 2 × 2 3 × 3 4 × 4 

20 
40 1.9530 1.8207 1.7873 1.7735 1.7469 
55 2.5355 2.4120 2.3787 2.3628 2.3301 
70 3.4450 3.6909 3.7916 3.8202 3.9624 

50 
40 1.9995 1.8632 1.8255 1.8138 1.7841 
55 2.6548 2.5097 2.4793 2.4595 2.4352 
70 3.6818 4.0579 4.1965 4.2308 4.3836 

80 
40 2.0216 1.8760 1.8381 1.8210 1.7875 
55 2.6749 2.5496 2.5056 2.4918 2.4414 
70 3.7376 4.1594 4.2693 4.3973 4.7216 

 

Table 8 Dimensionless shear modulus ratio 𝐺𝐺23 𝐺𝐺𝑚𝑚 ⁄ for different cell sizes for 2％ void content in 

finite element simulation (𝜈𝜈𝑓𝑓 = 0.2, 𝜈𝜈𝑚𝑚 = 0.3) 

𝐸𝐸𝑓𝑓
𝐸𝐸𝑚𝑚
�  𝑉𝑉𝑓𝑓(%) Cell Size Estimated

(𝐺𝐺23)∞ 𝐺𝐺𝑚𝑚⁄  1 × 1 2 × 2 3 × 3 4 × 4 

20 
40 1.9123 1.7950 1.7621 1.7427 1.7009 
55 2.4930 2.3701 2.3270 2.3118 2.2586 
70 3.3456 3.6289 3.7076 3.7308 3.7908 

50 
40 1.9674 1.8337 1.8038 1.7821 1.7516 
55 2.5897 2.4634 2.4216 2.4163 2.3847 
70 3.5704 3.9688 4.0517 4.1076 4.1756 

80 
40 1.9759 1.8466 1.8111 1.7937 1.7573 
55 2.6177 2.4821 2.4427 2.4434 2.4227 
70 3.6330 4.0793 4.1649 4.2102 4.2588 

 

Table 9 Dimensionless shear modulus ratio 𝐺𝐺23 𝐺𝐺𝑚𝑚 ⁄ for different cell sizes for 3％ void content in 

finite element simulation (𝜈𝜈𝑓𝑓 = 0.2, 𝜈𝜈𝑚𝑚 = 0.3) 

𝐸𝐸𝑓𝑓
𝐸𝐸𝑚𝑚
�  𝑉𝑉𝑓𝑓(%) Cell Size Estimated

(𝐺𝐺23)∞ 𝐺𝐺𝑚𝑚⁄  1 × 1 2 × 2 3 × 3 4 × 4 

20 
40 1.8849 1.7698 1.7411 1.7157 1.6692 
55 2.4254 2.3337 2.2923 2.2648 2.0501 
70 3.2475 3.5941 3.6363 3.6620 3.6738 

50 40 1.9248 1.8117 1.7766 1.7514 1.6814 
55 2.5244 2.4226 2.3814 2.3500 2.1528 
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Table 9 (Continued) 

50 70 3.4607 3.9090 3.9712 4.0367 4.0716 

80 
40 1.9370 1.8213 1.7839 1.7646 1.7100 
55 2.5490 2.4419 2.4050 2.3682 2.1791 
70 3.5283 3.9885 4.0882 4.0841 4.1236 

 
Similar to the results shown in Table 5, the dimensionless shear modulus ratio 𝐺𝐺23 𝐺𝐺𝑚𝑚⁄  

decreases as cell size is increased in the models where 𝑉𝑉𝑓𝑓 = 40% and 55%, and yet show an 

opposite tendency in the models where 𝑉𝑉𝑓𝑓 = 70%. 

After reorganizing the estimated transverse shear modulus ratio (𝐺𝐺23)∞ 𝐺𝐺𝑚𝑚⁄  from Tables 

5-9, the relationship of various void contents and their effect on undermining the values of 

transverse shear modulus listed in Table 10 would be conducive to this observation. The percentage 

difference shown in Table 10 for (𝐺𝐺23)∞ 𝐺𝐺𝑚𝑚⁄  value is given by 

%𝑚𝑚𝑖𝑖𝑓𝑓𝑓𝑓 =
𝐺𝐺23/𝑚𝑚,0% − 𝐺𝐺23/𝑚𝑚,𝑣𝑣𝑜𝑜𝑖𝑖𝑑𝑑

𝐺𝐺23/𝑚𝑚,0%
× 100%                                                                           (147) 

where 

 𝐺𝐺23/𝑚𝑚,0% = the (𝐺𝐺23)∞ 𝐺𝐺𝑚𝑚⁄  value of composite models with no voids, 

 𝐺𝐺23/𝑚𝑚,𝑣𝑣𝑜𝑜𝑖𝑖𝑑𝑑 = the (𝐺𝐺23)∞ 𝐺𝐺𝑚𝑚⁄  value of composite models with following void contents. 

 

Table 10 Estimated transverse shear modulus ratio (𝐺𝐺23)∞ 𝐺𝐺𝑚𝑚⁄  in finite element simulation for 

different void contents and their percentage difference with void-free models 

𝐸𝐸𝑓𝑓
𝐸𝐸𝑚𝑚
�  𝑉𝑉𝑓𝑓(%) Void content 𝑉𝑉𝑣𝑣 

0% 1% 2% 3% 

20 

40 1.7748 
(-) 

1.7469 
(1.57%) 

1.7009 
(4.16%) 

1.6692 
(5.95%) 

55 2.3873 
(-) 

2.3301 
(2.40%) 

2.2586 
(5.39%) 

2.0501 
(14.13%) 

70 4.1314 
(-) 

3.9624 
(4.09%) 

3.7908 
(8.24%) 

3.6738 
(11.08%) 
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Table 10 (Continued) 

50 

40 1.8138 
(-) 

1.7841 
(1.63%) 

1.7516 
(3.43%) 

1.6814 
(7.30%) 

55 2.4869 
(-) 

2.4352 
(2.08%) 

2.3847 
(4.11%) 

2.1528 
(13.43%) 

70 4.6670 
(-) 

4.3836 
(6.07%) 

4.1756 
(10.53%) 

4.0716 
(12.76%) 

80 

40 1.8236 
(-) 

1.7875 
(1.98%) 

1.7573 
(3.64%) 

1.7100 
(6.23%) 

55 2.5132 
(-) 

2.4414 
(2.86%) 

2.4227 
(3.60%) 

2.1791 
(13.29%) 

70 4.8386 
(-) 

4.7216 
(2.42%) 

4.2588 
(11.98%) 

4.1236 
(14.78%) 

 

Some conclusions could be drawn from the Table 10. For all of the cases, void contents 𝑉𝑉𝑣𝑣 

bring negative effect on transverse shear modulus ratio (𝐺𝐺23)∞ 𝐺𝐺𝑚𝑚⁄  values. The 1% void content 

reflects 1%  to 4%  decreasing tendency on estimated transverse shear modulus 

ratio (𝐺𝐺23)∞ 𝐺𝐺𝑚𝑚⁄ ; the 2% void contents reflect 3% to 7% decreasing tendency on estimated 

 (𝐺𝐺23)∞ 𝐺𝐺𝑚𝑚⁄ ; the 3% void contents reflect 5% to 14% decreasing tendency on (𝐺𝐺23)∞ 𝐺𝐺𝑚𝑚⁄ . 

Furthermore, for most of the cases, the increasing tendency along fiber volume fractions  𝑉𝑉𝑓𝑓 

aggravates the sensitivity of the negative effect of void contents, especially when 𝑉𝑉𝑓𝑓 = 70%. 

Based on the Table 10, plotting the decreasing tendency of (𝐺𝐺23)∞ 𝐺𝐺𝑚𝑚⁄  as void content 

increases are shown in Figures 12 and 13. The figures compare it for the various fiber-to-matrix 

Young’s moduli ratio 𝐸𝐸𝑓𝑓 𝐸𝐸𝑚𝑚⁄  (shown on Figure 12, for 𝑉𝑉𝑓𝑓 = 55%) and the various fiber volume 

fractions 𝑉𝑉𝑓𝑓 (shown on Figure 13, for 𝐸𝐸𝑓𝑓 𝐸𝐸𝑚𝑚⁄ = 50). 

The findings indicate that the most powerful factor of the three is fiber volume fraction 𝑉𝑉𝑓𝑓, 

the second most influencing factor is the void fraction  𝑉𝑉𝑣𝑣 , while the fiber-to-matrix Young’s 

moduli ratio 𝐸𝐸𝑓𝑓 𝐸𝐸𝑚𝑚⁄  has the smallest effect. 
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Figure 12 Estimated transverse shear modulus ratio (𝐺𝐺23)∞ 𝐺𝐺𝑚𝑚⁄  as a function of void contents 𝑉𝑉𝑣𝑣 
for fiber volume fraction 𝑉𝑉𝑓𝑓 = 55%. 
 

 

Figure 13 Estimated transverse shear modulus (𝐺𝐺23)∞ 𝐺𝐺𝑚𝑚⁄  as a function of void contents 𝑉𝑉𝑣𝑣 for 
fiber-to-matrix Young’s moduli ratio 𝐸𝐸𝑓𝑓 𝐸𝐸𝑚𝑚⁄ = 50. 
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3.3 Design of Experiments 

3.3.1 Analysis on Main Effect and Interaction Effect 

The main effect plot and the interaction plot produced from Minitab describe the influence 

and characteristics of the three factors (fiber-to-matrix Young’s moduli ratio 𝐸𝐸𝑓𝑓 𝐸𝐸𝑚𝑚⁄ , fiber volume 

fractions  𝑉𝑉𝑓𝑓 , and void contents  𝑉𝑉𝑣𝑣 ). According to the main effect plot shown in Figure 14, 

transverse shear modulus ratio (𝐺𝐺23)∞ 𝐺𝐺𝑚𝑚⁄  has higher sensitivity to the change of fiber volume 

fraction 𝑉𝑉𝑓𝑓 as compared to the change of two others, which is same as the conclusion in Section 

3.2. The main effect plot also indicates that the value of (𝐺𝐺23)∞ 𝐺𝐺𝑚𝑚⁄  increases exponentially with 

increasing 𝑉𝑉𝑓𝑓. Therefore, fiber volume fraction 𝑉𝑉𝑓𝑓 is a key factor for design of composite materials 

when pursuing high transverse shear modulus ratio. 

 

 

Figure 14 Main effect plots of fiber-to-matrix Young’s moduli ratio 𝐸𝐸𝑓𝑓 𝐸𝐸𝑚𝑚⁄ , fiber volume fraction 
𝑉𝑉𝑓𝑓, and void content 𝑉𝑉𝑣𝑣 on estimated transverse shear modulus ratio (𝐺𝐺23)∞ 𝐺𝐺𝑚𝑚⁄ . 

 
The results of interaction plot from the three factors are shown in Figure 15. The findings 

indicate that high value of fiber volume fraction 𝑉𝑉𝑓𝑓 would increase 𝐺𝐺23 𝐺𝐺𝑚𝑚⁄  when fiber-to-matrix 



55 
 

Young’s moduli ratio 𝐸𝐸𝑓𝑓 𝐸𝐸𝑚𝑚⁄  is increasing. On the other hand, high value of 𝐸𝐸𝑓𝑓 𝐸𝐸𝑚𝑚⁄  ratio would 

get higher results of 𝐺𝐺23 𝐺𝐺𝑚𝑚⁄  when 𝑉𝑉𝑓𝑓 increases. However, high value of fiber volume 

fraction  𝑉𝑉𝑓𝑓 would aggressively decrease the effect of (𝐺𝐺23)∞ 𝐺𝐺𝑚𝑚⁄  when void content 𝑉𝑉𝑣𝑣 is 

increasing. The phenomenon is reasonable because comparing the model with same void 

content 𝑉𝑉𝑣𝑣, the higher value of 𝑉𝑉𝑓𝑓 implies higher value of 𝑓𝑓𝑣𝑣. 

 

 

Figure 15 Interaction plots of fiber-to-matrix Young’s moduli ratio 𝐸𝐸𝑓𝑓 𝐸𝐸𝑚𝑚⁄ , fiber volume fraction 
𝑉𝑉𝑓𝑓, and void content 𝑉𝑉𝑣𝑣 on estimated transverse shear modulus ratio (𝐺𝐺23)∞ 𝐺𝐺𝑚𝑚⁄ . 
 
3.3.2 Analysis on Estimated Transverse Shear Modulus Results 

Pareto Chart Plots in Minitab software is used for defining the importance of individual 

and combination of factors. As mentioned in Section 2.5, specify-generators method 

(Montgomery, 2008) is used to describe the importance through two-level factorial design, where 

the cube plot is shown in Figure 16. The results from the specify-generators method are of equal 

or higher considerable referential importance as compared to the default-generators method. The 

reason was mentioned in Section 2.5 that the regression equation curve instead of linear reflection 
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as an assumption seems a more plausible way to describe the dependent variable (𝐺𝐺23)∞ 𝐺𝐺𝑚𝑚⁄  from 

these factors. 

 

 

Figure 16 Cube plot of transverse shear modulus ratio (𝐺𝐺23)∞ 𝐺𝐺𝑚𝑚⁄  for two-level factorial design 
in Minitab® program. 

 
The findings from two-level factorial design are shown in Tables 11 and 12, and Figures 

17 and 18. The Pareto Chart of the Effect from specify-generators is shown on Figure 17. The 

percentage contribution of the factors is shown in Figure 18. 

Note that to simplify the display of table, we call fiber-to-matrix Young’s moduli 

ratio 𝐸𝐸𝑓𝑓 𝐸𝐸𝑚𝑚⁄  as factor A; fiber volume fraction 𝑉𝑉𝑓𝑓 as factor B; void content 𝑉𝑉𝑣𝑣 as factor C. 

 

Table 11 Estimated effects and coefficients for estimated transverse shear modulus ratio 

(𝐺𝐺23)∞ 𝐺𝐺𝑚𝑚⁄  based on two-level factorial design 

Factor Effect Coef Standardized Effect 
constant  -1.2377 46.40 

A �𝐸𝐸𝑓𝑓 𝐸𝐸𝑚𝑚⁄ � 0.2584 -0.0165 1.7649 
B �𝑉𝑉𝑓𝑓� 2.4831 7.1420 16.959 
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Table 11 (Continued) 

C (𝑉𝑉𝑣𝑣) -0.3489 5.5082 -2.1751 
A*B 0.2747 0.0393 1.5318 
A*C -0.0505 0.2663 -0.25696 
B*C -0.2492 -26.0607 -1.2683 

A*B*C -0.0791 -0.5862 -0.32890 
 

Table 12 Estimated standardized effects and percent contribution for estimated transverse shear 

modulus ratio (𝐺𝐺23)∞ 𝐺𝐺𝑚𝑚⁄  based on two-level factorial design 

Factor Standardized Effect Sum of Squares Percent Contribution  
A �𝐸𝐸𝑓𝑓 𝐸𝐸𝑚𝑚⁄ � 1.7649 3.1149 1.04% 

B �𝑉𝑉𝑓𝑓� 16.959 287.5975 96.00% 
C (𝑉𝑉𝑣𝑣) -2.1751 4.7311 1.58% 

A*B 1.5318 2.3464 0.78% 
A*C -0.25696 0.0660 0.02% 
B*C -1.2683 1.6086 0.54% 

A*B*C -0.32890 0.1082 0.04% 
 

 

 

Figure 17 Pareto Chart of the Standardized Effect from two-level factorial design. 
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Figure 18 Percentage contribution of transverse shear modulus ratio (𝐺𝐺23)∞ 𝐺𝐺𝑚𝑚 ⁄ with their factors 
from two-level factorial design. 

 
The findings indicate that fiber volume fraction 𝑉𝑉𝑓𝑓 has the most influence on (𝐺𝐺23)∞ 𝐺𝐺𝑚𝑚⁄  

and the percentage contribution of 𝑉𝑉𝑓𝑓 on (𝐺𝐺23)∞ 𝐺𝐺𝑚𝑚⁄  is 96%. The importance of fiber-to-matrix 

Young’s moduli ratio 𝐸𝐸𝑓𝑓 𝐸𝐸𝑚𝑚⁄  and of void content 𝑉𝑉𝑣𝑣 is lower than 2%. 

3.3.3 Analysis on Normalized Transverse Shear Modulus Results 

Table 13 tabulates the same simulation document and calculates the normalized transverse 

shear modulus  𝑁𝑁𝐺𝐺23 value. The normalization is done by the corresponding transverse shear 

modulus ratio with no voids. Also, same as the processing of dealing with (𝐺𝐺23)∞ 𝐺𝐺𝑚𝑚⁄  previously, 

the cube plot shown on Figure 19 is produced to understand how the static method works in two-

level factorial design. 

To facilitate a better understanding of how the transverse shear modulus ratio gets affected 

by fiber-to-matrix Young’s moduli ratio, fiber volume fraction and void volume fraction, we 

normalize (𝐺𝐺23)∞ 𝐺𝐺𝑚𝑚⁄  by the (𝐺𝐺23)∞ 𝐺𝐺𝑚𝑚⁄  of the composite without any voids, and hence call it 
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𝑁𝑁𝐺𝐺23, which is given by 

𝑁𝑁𝐺𝐺23 =
𝐺𝐺23/𝑚𝑚,𝑣𝑣𝑜𝑜𝑖𝑖𝑑𝑑

𝐺𝐺23/𝑚𝑚,0%
                                                                                                                    (138) 

where 

 𝐺𝐺23/𝑚𝑚,0% = (𝐺𝐺23)∞ 𝐺𝐺𝑚𝑚⁄  value of composite models with no voids, 

 𝐺𝐺23/𝑚𝑚,𝑣𝑣𝑜𝑜𝑖𝑖𝑑𝑑 = (𝐺𝐺23)∞ 𝐺𝐺𝑚𝑚⁄  value of composite models with void, 

 (𝐺𝐺23)∞ 𝐺𝐺𝑚𝑚⁄ = transverse shear modulus ratio. 

Table 13 shows 𝑁𝑁𝐺𝐺23 as a function of fiber-to-matrix Young’s moduli ratio, fiber volume fraction 

and void volume fraction. 

 

Table 13 Estimated normalized transverse shear modulus 𝑁𝑁𝐺𝐺23 of finite element simulation for 

different void contents 

𝐸𝐸𝑓𝑓
𝐸𝐸𝑚𝑚
�  𝑉𝑉𝑓𝑓(%) Void content 𝑉𝑉𝑣𝑣 

0% 1% 2% 3% 

20 
40 1 0.9843 0.9584 0.9405 
55 1 0.9760 0.9461 0.8587 
70 1 0.9591 0.9176 0.8892 

50 
40 1 0.9837 0.9657 0.9270 
55 1 0.9792 0.9589 0.8657 
70 1 0.9393 0.8947 0.8724 

80 
40 1 0.9802 0.9636 0.9377 
55 1 0.9714 0.9640 0.8671 
70 1 0.9758 0.8802 0.8522 

 

From Figure 19, it is noticed that 𝑁𝑁𝐺𝐺23 is affected more at higher fiber volume fraction 

while the influence of Young’s moduli ratio is minimal. The estimated effects results, the Pareto 

chart plot of the effects of normalized 𝑁𝑁𝐺𝐺23 and the percentage contribution plot from two-level 

factorial design are shown in Tables 14 and 15, and Figures 20 and 21. 
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Figure 19 Cube plot of normalized transverse shear modulus 𝑁𝑁𝐺𝐺23 for two-level factorial design. 
 
 

Table 14 Estimated effects and coefficients for normalized transverse shear modulus 𝑁𝑁𝐺𝐺23 based 

on two-level factorial design 

Factor Effect Coef Standardized Effect 
constant  1.02578 341.72 

A �𝐸𝐸𝑓𝑓 𝐸𝐸𝑚𝑚⁄ � -0.00315 -0.00029 -0.46196 
B �𝑉𝑉𝑓𝑓� -0.03839 -0.04239 -5.6361 
C (𝑉𝑉𝑣𝑣) -0.10893 -1.59369 -14.599 

A*B -0.00699 0.00061 -0.83837 
A*C -0.00584 0.04425 -0.63893 
B*C -0.03477 -3.11462 -3.8050 

A*B*C -0.01245 -0.09225 -1.1127 
 

Table 15 Estimated standardized effects and percent contribution for normalized transverse shear 

modulus 𝑁𝑁𝐺𝐺23 based on two-level factorial design 

Factor Standardized Effect Sum of Squares Percent Contribution  
A �𝐸𝐸𝑓𝑓 𝐸𝐸𝑚𝑚⁄ � -0.46196 0.21340 0.08% 

B �𝑉𝑉𝑓𝑓� -5.6361 31.76540 12.13% 
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Table 15 (Continued) 

C (𝑉𝑉𝑣𝑣) -14.599 213.13956 81.37% 
A*B -0.83837 0.70286 0.27% 
A*C -0.63893 0.40823 0.16% 
B*C -3.8050 14.47833 5.53% 

A*B*C -1.1127 1.23815 0.47% 
 

 
Figure 20 Pareto Chart of the Standardized Effect of normalized transverse shear modulus 
𝑁𝑁𝐺𝐺23 for two-level factorial design. 
 

The findings indicate that the void content factor 𝑉𝑉𝑣𝑣 is the significant factor of decreasing 

the normalized transverse shear modulus 𝑁𝑁𝐺𝐺23, making up to 81% of the percentage contribution. 

Based on the analysis, other factors influencing 𝑁𝑁𝐺𝐺23 are fiber volume fraction 𝑉𝑉𝑓𝑓 with 12% 

contribution, and combined factor 𝑉𝑉𝑓𝑓*𝑉𝑉𝑣𝑣 with 5.5% contribution. However, the influence of fiber-

to-matrix Young’s moduli ratio 𝐸𝐸𝑓𝑓 𝐸𝐸𝑚𝑚⁄  is minimal. 
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Figure 21 Percentage contribution of normalized transverse shear modulus 𝑁𝑁𝐺𝐺23 with their factors 
for two-level factorial design. 
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CHAPTER 4 CONCLUSIONS AND RECOMMENDATIONS 
 

The usefulness of mathematical models of elasticity for composite materials is dependent 

on the accurate estimation of elastic moduli of unidirectional composites. In this study, we 

concentrated on one of the five elastic moduli, namely transverse shear modulus, and quantify the 

effect of three parameters – fiber-to-matrix Young’s moduli ratio, fiber volume fraction and void 

fraction. To reach the research goal, three steps were taken. 

The first step was to compare the estimate of the transverse shear modulus from existing 

analytical and empirical models with finite element models to comprehend which theories are more 

accurate. The study concentrated on typical values for polymer matrix composites: fiber-to-matrix 

Young’s moduli ratio from 20 to 80, fiber volume fraction from 40% to 70%. The second step was 

to evaluate the significance of void content in addition to the fiber-to-matrix moduli Young’s 

moduli ratio and the fiber volume fraction. The third step was to conduct a design of experiments 

study to evaluate the influence of these three parameters and their combinations. 

The conclusions of the study are as follows.  

• For no void content, the estimate of the transverse shear modulus by Halpin-Tsai model 

was found to have high credibility for lower fiber volume fractions; the Mori-Tanaka's 

model was most accurate for mid-range fiber volume fractions; the Elasticity Approach 

model was more accurate for high fiber volume fractions. 

• Using design of experiments, the fiber volume fraction is the most dominating of the 

three parameters on the transverse shear modulus with more than 96% contribution. It 

implies that the fiber-to-matrix Young’s moduli ratio and void content are negligible 
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contributors. 

• Since the transverse shear modulus is dependent so heavily on fiber volume fraction, a 

normalized transverse shear modulus was calculated for a design of experiments study. 

The normalization was done with respect to the shear modulus of a corresponding 

composite with no voids. The percentage contribution of the void content was now 

found to be more than 80%, while fiber-to-matrix Young’s moduli ratio had negligible 

contribution. 

Future work based on this study could explore more pragmatic geometry of voids. For 

instance, this study assumes that the voids are of uniform radii and lengths, and are of cylindrical 

shape. Voids could be generated randomly with differing radii and lengths, or by using 

experimental observation of void geometry. Another recommendation would be to choose periodic 

distribution of fibers which results in orthotropic behavior as opposed to that of transversely 

isotropic materials. These include rectangular as opposed to square or hexagonal distribution of 

fibers.
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