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ABSTRACT

Localized drug delivery is emerging as an effective technique due to its ability to
administer therapeutic concentrations and controlled release of drugs to cancer sites in the
body. It also prevents the contact of harsh chemotherapy drugs to healthy regions in the

body that otherwise would become exposed to current treatments.

This study reports on a model chemotherapy drug delivery system comprising non-ionic
surfactant vesicles (niosomes) packaged within a temperature-sensitive chitosan network.
This smart packaging, or package-within-a package system, provides two distinct
advantages. First, the gel prevents circulation of the niosomes and maintains delivery in
the vicinity of a tumor. Secondly, the chitosan network protects the niosomes against
fluctuations in tonicity, which affects delivery rates. Tonicity is the sum of the
concentrations of the solutes which have the capacity to exert an osmotic force across the
membrane. Release rates were monitored from both bare niosomes alone and niosome-
embedded, chitosan networks. It was observed that chitosan networks prolonged delivery
from 100 hours to 55 days in low ionic strength environment and pH conditions similar to
a tumor site. The primary effect of chitosan is to add control on release time and dosage,
and stabilize the niosomes through a high ionic strength surrounding that prevents

uncontrolled bursting of the niosomes. Secondary factors include cross-link density of the

viii



chitosan network, molecular weight of the individual chitosan polymers, dye
concentration within the niosomes, and the number density of niosomes packaged within
the chitosan network. Each of these factors can be altered to fine-tune release rates.
Release rate experiments were conducted with 5,6-carboxyfluorescein, a fluorescent dye
and chemotherapeutics paclitaxel and carboplatin. /n vitro studies showed a preferential
affinity of the smart packaged system to ovarian carcinoma cell line OV2008 as
compared to normal epithelial cell lines of Ilow and MCC3. Further, feasibility of the
drug delivery system was evaluated in vivo. Toxicity studies revealed that the system was
non-toxic and feasible in vivo. The final outcome of this study includes tuning of the
variables mentioned above that will contribute to the development of low cost and
improved methods for drug delivery with application to intracavitary ovarian cancer

treatment and other types of cancer.
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CHAPTER 1 BACKGROUND AND MOTIVATION

1.1 Cancer Facts and Figures

Cancer is the second leading cause of death in the United States next to cardiovascular
disease [1]. There are more than 100 different types of cancers that exist with some being
more invasive and fast growing than others. In the year 2007 alone, 10 percent of the 58
million deaths worldwide occurred due to this disease [2]. Cancer occurs due to
uncontrolled growth and spread of cells leading to malignant tumors. However not all
tumors are cancerous. Benign tumors do not invade or metastasize to other parts of the
body, are less dangerous and can be removed [2]. On the other hand, malignant tumors

are cancerous and if not contained in full will invade adjacent tissues or metastasize [2].

Cancer can affect people at all ages, including fetuses. It is not site or region specific and
can develop in nearly any organ or tissue. However, certain parts of the world are seen to
have greater occurrences for some types of cancers. Japan, for instance, exhibits a higher
risk for gastric cancer due to their high dietary salt intake [3]. This type of cancer rarely
occurs in the United States [3]. In the same manner, colorectal cancer, whose risk factors

are associated with intake of diets rich in fat, alcohol or red meat is



more common in the United States and other developed countries [4, 5] and are rarely

found in developing countries, giving it the name ‘a rich man’s cancer’[4, 5].

Although the exact cause of cancer still remains unknown, several characteristics are
now being considered as risk factors that increase the probability of cancer. Diet and
obesity contribute to nearly 25-30% of cancer cases [6, 7]. Tobacco [6-8], infections [9,
10], radiation [11, 12], stress, lack of physical activity [13, 14], environmental pollutants

[15] are still other factors believed to increase the risk of cancer.

Over the years diseases such as heart diseases, cerebrovascular diseases, influenza &
pneumonia and cancer have showed a decrease in the death rate.[2] However if the
percentage decrease in death is taken into consideration, then an alarming trend can be
seen: communicable diseases like influenza and pneumonia showed a drastic percentage
decrease in death rate to the order of 95.55% [2]. Fatality due to heart diseases also
showed quite a dramatic decrease, 56.34%, closely followed by cerebrovascular diseases
[2]. However, the percentage decrease in death in cancer is extremely low, only 19.04%
[2]. This can be attributed to a number of factors such as insufficient research
investigations in the area and current treatment techniques not efficient enough to bring
down their numbers. Further, most of the cancer deaths are reported in developing
countries [2] due to high cost of treatment, lack of efficient drug delivery systems and

limited health care facilities.



Of the three factors listed above, the most appalling is the fact that nearly 70 percent of
all cancer deaths occur in developing and emerging economic countries. Several reasons
may be attributed to this growing problem, the most obvious being the lack of financial
resources and facilities [16, 17]. Since limited resources are available to governments in
such countries, they are left with the immense dilemma to determine the spending
priorities. It is not surprising that health expenditure takes a back seat when dealt with
much pressing problems like providing food and clean drinking water to the population.
All the more, the modest amounts that are spent on health care are for transmissible
diseases [17]. Most developing countries are well equipped to deal with communicable
diseases that require immediate attention. This leaves less room for specialized diseases

such as cancer and the like, hence the alarmingly high death rates in these countries.

1.2 Ovarian Cancer: Facts and Current Treatment Techniques

There are nearly 100 different types of cancers that occur in the human body. It can occur
in almost all parts of the body with some being easier to detect than others but all being

equally dangerous if not treated immediately.

Ovarian Cancer is the fourth leading cause of death due to cancer in women [18, 19], the
leading cause of death from gynecologic malignancies and the second most commonly
diagnosed gynecologic malignancy [20, 21]. There are nearly 30 types of ovarian
malignancies broadly classified into 3 categories depending on the type of cells in which

they originate [22]. It is the most commonly diagnosed and the leading cause of death in



American women [22, 23]. An estimated 15,280 deaths occurred in 2007 in the United
States alone [18, 19]. It occurs in female population of all ages, including infancy,
childhood and even in fetus [24]. But most of the cases have been reported in the age

group of 60-74 [21-24].

Of the various cancers, ovarian cancer is the hardest one to detect in its earlier stages.
This is because most of the women show absolutely no or just mild symptoms until it is
in an advanced stage and difficult to treat [19-21]. Hence the relative survival rate is very
low, only 46% [18, 19, 25] and it has not increased during the past 30 years. Surgery is
the first step in the treatment and is also frequently necessary for diagnosis [19, 20, 26].
Chemotherapy is used after surgery to treat any residual tumors [25, 27-30]. The
traditional clinical treatment technique, intravenous (IV) chemotherapy, involves infusing
the drugs directly into the blood stream [31-35]. This technique has been used over the
past years. It has been successful in containing the spread of tumors and hence treating
many a cancer type [33-35]. However, since it is not localized, it exposes the whole body
to chemotherapeutics [33-38]. Hence, apart from destroying tumor cells, they also attack
normal healthy cells [32-35] resulting in extensive temporary side effects such as nausea,
loss of appetite, hair-loss, rashes on the limbs, mouth sores, bleeding, fatigue and

infection or severe side effects like kidney or nerve damage [33-38].

Another technique which is in use in recent years is the intraperitoneal chemotherapy [33,
39-44]. This is more localized than the above mentioned technique since the drugs are

delivered directly into the intraperitoneal cavity [33, 39] using a catheter- a tube through



which drugs can be administered on a regular basis [40-44]. But this technique has
challenges of its own. It involves exposing tumors present in the abdominal cavity to
higher concentrations of the drug for longer periods of time resulting in increased
hematologic, metabolic and neurologic toxicity [32, 33, 39-45]. The catheters may
become plugged over time [45, 46] leading to infections and other complications [40-44,
46]. Moreover, this technique is available only to select patients with minimal residual

tumors [1, 46].

To overcome the tribulations associated with ovarian cancer treatment and to provide a
localized low cost drug delivery system, we have designed an ingenious ‘Smart Packaged
Drug Delivery System’ consisting of drug encapsulated non-ionic surfactant vesicle/
niosome embedded in a cross-linked temperature sensitive hydrogel (chitosan) network.
The term ‘Smart Packaged’ is used due to the fact that it is responsive to external
stimulus, in this case, to temperature. Our system is a clear liquid at 25°C (room
temperature), however, as the temperature is raised to 37°C (body temperature), it turns
into an opaque non-flowing gel. After surgery the tumor resection sites are
inhomogeneous [32, 46] which makes it difficult for the drugs to reach each and every
part of the tumor cavity [27, 39, 46]. Our system will be particularly useful here since in
the liquid state (at room temperature) it can be injected into the tumor cavity and as it
starts to gel (at body temperature) it can take up the shape of the cavity thus ensuring

uniform exposure of drugs to every part of the residual tumor.



1.3 Significance of this Research

The past decade has seen an enormous advance in the designing and development of new
and improved techniques for drug delivery. Localized and regulated release of drugs have
been achieved through their encapsulation in a variety of vehicles such as microspheres
[47-52], nano-particles [53-57], micelles [58-61], liposomes [62-67], niosomes [68, 69]
and biodegradable polymers [70-75]. Encapsulation of drugs not only facilitates a
protective environment for drugs that are labile, but is also effective in reducing the
toxicity to healthy cells by restricting the release of drugs to the required extent. A key
issue, nonetheless, concerns sustained release over extended periods of time with precise
control of drug dosage [76, 77]. In this study we present the validation of protecting the
drugs and providing controlled release by packaging them simultaneously in two
vehicles, a bilayer non-ionic surfactant vesicle- niosome and a thermo-sensitive cross-
linked hydrogel- chitosan. This double packaging or ‘package-within-a-package’ system

can be fine-tuned to achieve precise control over the release amount and release time.

Liposomes have been used for controlled delivery over the years. They are lipid bilayer
vesicles which can be used as delivery vehicles for intravenous administration [63, 65,
67, 78]. Their versatile nature allows for their application in diverse fields. They can be
used to encapsulate wide variety of drugs with different polarity, size and charge [63, 65,
67, 78]. Although liposomes have shown promise over the years, they have certain
inherent disadvantages. They are prone to degradation due to oxidation of the

phospholipids [63, 65, 67, 78, 79], hence making storage and handling difficult. In



addition, the synthesis of phospholipids is expensive as is the case with naturally
occurring phospholipids [63, 65, 67, 68, 78]. Another mode of drug delivery is a
microsphere which comprises of a hollow spherical shell [47-52]. They are made of
biodegradable polymers and are encapsulated with therapeutics. The sizes of these
particles are usually in the micrometer range [47-52]. The encapsulated therapeutic is
released at the targeted site by the degradation of the outer polymer shell [47-52].
Although microspheres provide localized delivery, their disadvantages far outgrow their
advantages. They are difficult to manufacture and each distinct application requires a
customized fabrication process [49-52, 80]. This puts a large burden on its cost
efficiency. All the more, nearly 25-50% of drugs can be lost during the encapsulation
process [49-52, 80] which adds to the cost of its manufacture, making it an inefficient
mode of drug delivery. The components used in this drug delivery design strategy were
chosen in view of their inherent advantages over other components. The first component
1S a non-ionic surfactant vesicle, also known as a niosome. Niosomes, which are closed
bilayer structures [79] with a hydrophilic core and a hydrophobic bilayer [68, 79, 81-84],
have been proven to be more chemically and physically stable in solution [81-85], less
expensive [79, 81-84] and easier to manufacture and store [68, 81-84] as compared to
other categories of bilayer vesicles such as liposomes and other drug delivery carriers
such as microspheres. The utmost advantage of niosomes is that since they are
uncharged, there is no charge-charge interaction between the encapsulated drug and the

niosome [81-84].



Hydrogels, which consist of a network of polymer chains, are insoluble in water although
they can absorb large quantities of water [53, 86-94]. Hydrogels possess many desirable
physicochemical characteristics and hence they find widespread applications in drug
delivery [73, 87, 89, 91, 92, 95]. Their manufacturing process is relatively simple and
thus cost effective [53, 86-94]. Hydrogels, such as poly-NIPAAm, though thermo-
responsive and biocompatible [96-99] tend to impart toxicity over extended periods of
time due to their lack of biodegradability [86, 100]. This characteristic of poly-NIPAAm
makes it an ineffective alternative for drug delivery over extended periods. Polyethylene-
glycol (PEG) is highly biocompatible [101-105]. However it is not biodegradable [101-
104], and hence it is difficult for the body to dispose it. Another thermo-responsive
system: PEG and poly(lactic acid) block copolymers [106-110], which gels when cooled
to 37°C from its solution state at 45°C, poses the risk of damaging the drug due to the
need to heat the system for drug incorporation [111]. This attribute makes the system less
realistic [111]. To accommodate for these shortcomings, we chose the second component
of our delivery system to consist of a biodegradable, cross-linked, thermo-responsive
polymer hydrogel chitosan, a biopolymer obtained from crustacean shells [112-117]. It
has innumerable advantages relating to its biodegradability, biocompatibility [100, 113-
117], non-toxicity [113-118], ease of availability and cost effectiveness [100, 113-117].
Nanoparticles and vesicles made from polymeric chitosan have been used to encapsulate
cancer drugs. However, when such systems are used, drug clearance occurs at high rates
and low control over release time is shown [119]. On the other hand, by enclosing the
drug first in the niosomes and then embedding them in the polymeric chitosan network,

complete control of the release amount and time can be achieved. Cross-linked chitosan,



can be made to respond to external stimuli such as temperature, pH and ionic strength
[95, 113-117]. In this study we concentrated on the former type rendered temperature

sensitive by the addition of a cross-linker, B-glycerophosphate [100, 112, 120].

The dual packaging concept in the novelty of this drug delivery mechanism is attributed
to the amalgamation of two packaging systems (niosome and chitosan), which ensures
the ability to control the release by fine tuning either the niosome/chitosan or both
lending a double control over the release. Control over the mesh size in the chitosan
network is important since niosomes would pack loosely or densely depending on this
parameter. Mesh size can be controlled by modifying the ratio of the cross-linker §3-
glycerophosphate to chitosan. This drug delivery system provides stability to the
niosomes and an additional control over the release rate. Since the mesh size of the cross-
linked chitosan can be controlled by the amount of B-glycerophosphate added, this
system can be applied directly to the tumor site, thus enabling the stabilization of the drug
and preventing systemic exposure to healthy cells. Other important characteristics that
make the niosome/chitosan system attractive is the ability of sustained drug delivery
over extended periods, which eliminates the need for frequent administration, and that the
drug efficacy remains intact since therapeutics are encapsulated in non-ionic systems
(niosomes), which guarantee drug stability. The components used in the system are
biocompatible and biodegradable and is readily available and cost effective. All these
characteristics make the chitosan-niosome an ideal drug delivery system. Potential
applications include intra-cavitary drug delivery in ovarian cancer, brain tumors, and in

the administration of labile drugs.



1.4 Components in the Drug Delivery System

A number of components have been employed in this drug delivery system. These are

described in detail in the following sections.

1.4.1 Non-Ionic Surfactant Vesicles/ Niosomes

The first component in our drug delivery system is a non-ionic surfactant vesicle also
known as a niosome. It is a bilayer vesicle formed by the self-assembly of non-ionic
amphiphiles [68, 69, 81, 83, 84] (Figure 1.1). This process occurs in an aqueous medium
and the bilayer formation transpires through the application of either physical agitation or
heat as it is not a spontaneous process [68, 69, 81, 83, 84]. Hydration leads to vesicle
formation where the hydrophilic head group is in contact with the aqueous solvent and
the hydrophobic tail group is shielded from the same [68, 69, 84, 121]. The resulting
vesicle has a hydrophilic core and a hydrophobic bilayer [68, 69, 84]. Therapeutics can
be encapsulated either in their core or the bilayer depending on their polarity.
Additionally, the surfaces of the niosomes can be functionalized for targeted delivery.
Niosomes are non-toxic [68, 69, 84] and increases the therapeutic efficiency of the drug
by restricting its action to the target cells, thus preventing exposure of normal cells to the
therapeutics [68, 69, 84]. It also provides a protective shield to the encapsulated
therapeutics and maintains its efficacy and stability [68, 69, 84]. Since the therapeutics is
encapsulated within the niosomes, they aid in the controlled delivery as well. The
surfactants used in niosome formulation are biocompatible, biodegradable as well as non-

immunogenic making niosomes an ideal candidate for drug delivery [68, 69, 84]. Above
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all, the storage and handling of niosome does not require any unique condition, making it
cost effective as well. Niosomes are also osmotically active and swell or shrink
depending on the tonicity of [44] their environment. Osmotic swelling, in particular, can
drastically enhance the permeability of niosomes [45] and alter release rates. Release
from niosomes, however, can be modulated [46] independent of environment by

embedding the niosomes in chitosan.

o
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7

Figure 1.1 Illustration of a non-ionic surfactant vesicle/niosome

The niosomes used for this study were prepared by thin film hydration of the surfactant
sorbitan monostearate, Span-60 (figure 1.2), cholesterol (figure 1.3) and dicetyl
phosphate (figure 1.4) in chloroform. Vesicle stability is provided by cholesterol which
decreases their permeability and enhances solute retention [68, 122, 123]. Encapsulation
efficiency would be lowered if the membrane were more permeable (cholesterol free)
since such a membrane would entrap lower amounts of the drug [68, 69, 123]. The third

constituent in niosome formulation, dicetyl phosphate is used to prevent aggregation of
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the vesicles by providing electrostatic stabilization [69, 85, 123]. Surfactants form
vesicles depending on the following two conditions: 1) the hydrophobic lipophilic
balance (HLB) and ii) the critical packing parameter (CPP) [68, 69, 84]. The surfactant
used in this study, Span-60 or sorbitan monostearate has been found to form a vesicle
when the HLB falls between 4 and 8 [69, 124, 125]. CPP, which is a dimensionless
number, is a measure of the aggregation ability of the amphiphiles [68, 69]. It is
measured using the formula CPP = v /l.ap; where v = hydrocarbon chain volume, .=
critical hydrophobic chain length (the length above which the chain fluidity of the
hydrocarbon may no longer exist), and a,= area of hydrophilic head [123-125]. A CPP
value of 0.5 — 1.0 was indicated as the range where the amphiphiles would form a vesicle

[121, 123-125].

o
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Figure 1.2 Structure of Span-60 (sorbitan monostearate)
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Figure 1.3 Structure of cholesterol

Figure 1.4 Structure of dicetyl phosphate (DCP)

Another factor to be considered in vesicle formation is the temperature of hydration. This
temperature must be above the gel to liquid transition temperature of the surfactant [124,
125]. The niosomes used in this work was found to have a hydration temperature of 60°C

which is the transition temperature of the surfactant Span-60 [121]. The type and physical

13



nature of the molecule encapsulated within the niosome influences their stability [68, 69,
85]. Niosome dispersion is considered to be stable when their sizes do not change with
time and the quantity of the encapsulated molecule remains constant without any leakage
[68, 69, 85]. Additionally, the membrane constituents should not produce any
precipitation with time. The storage temperature of niosome is another factor that
determines whether they would remain stable for a longer period of time [68, 69, 85].
Changes in storage temperature would lead to changes in the properties of the individual
constituents or the system as a whole and hence results in an unstable system [68, 69, 85].
Further, incorrect storage temperature would also result in an increase in the release of
the encapsulated molecules. Hence, in the formulation of niosomes certain factors are
essential such as the hydration type and temperature, the nature of the encapsulated

molecule, storage temperature [68, 69, 85] etc.

1.4.2 Temperature Sensitive Cross-Linked Chitosan Hydrogel

Chitosan (figurel.5) is an amino-polysaccaride obtained by alkaline deacetylation of
chitin (figure 1.6), which is a natural component of shrimp or crab shells [112, 113, 120,
126, 127]. It is a copolymer of glucosamine and N-acetyl glucosamine [120, 126]. Chitin
is a naturally occurring polysaccharide. However, its application in biomedical field is
limited because of its chemical inertness. Deacetylation of chitin with concentrated
alkaline solution converts the acetamide groups to amino groups [120, 126]. The resulting
product is known as chitosan- a biocompatible and biodegradable pH dependent cationic

polymer [112, 113, 126, 127]. It does not produce any inflammation or allergic reactions
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in the human body and is not toxic [118]. It is known to act as an antimicrobial agent and
has the ability to absorb harmful metals like lead (Pb), cadmium (Cd) and mercury (Hg)
[112]. Itis digestible by lysozyme depending on the amount of N-acetyl groups and their
distribution in the backbone [100]. Over a period of time, chitosan breaks down to amino
sugars [112, 113, 127] which are harmless to the human body, and hence, it is readily

absorbed.

Chitosan is mucoadhesive and is a cationic polymer which means it has a positive charge
[112, 118, 120]. Its structure is similar to cellulose. It is a long chain polymer and its
average molecular weight ranges between 3,800 and 500,000 Da [112, 120].
Commercially, chitosan is available in two molecular weight ranges: i) low molecular
weight chitosan which has an average molecular weight from 50,000-190,000 Da; ii) and
medium molecular weight chitosan with average molecular weights from 190,000-
310,000 Da [112, 113, 127]. Chitosan is insoluble in water due to the presence of free
amino groups [126, 128]. Hence, it has to be dissolved in an acidic medium [126, 128].
For this study, 0.1M HCI was used as the dissolving medium for chitosan. The free amino
groups provide sites that are readily available for cross-linking. Since chitosan is cationic,
it permits ionic cross-linking [112, 113, 127]. Hence multivalent anions are suitable

candidates as cross-linkers.

Chitosan has been formulated in a variety of particles for drug delivery. These include
capsules, microspheres/ microparticles, nanoparticles, beads, films and gels [53, 112,

113, 126-129]. Formulation of these particles has shown to be advantageous over
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conventional methods since they can improve the efficacy of the encapsulated
therapeutics and reduce their toxicity [112, 113, 127]. Further, it also increases patient
compliance. However, encapsulating therapeutics directly into these particles has certain
disadvantages. Since the pores of these particles are relatively large, they provide
channels for drug passage [53, 126, 128]. Thus a greater clearance for therapeutics is
observed as compared to particles formulated from surfactants and the like [126, 128,
129]. This study provides a solution to this problem by encapsulating therapeutics
initially into nanoparticles niosomes and further embedding these particles into the

chitosan gel which prevents premature clearance of therapeutics from chitosan.

OH
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Figure 1.5 Structure of chitosan
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Figure 1.7 Structure of the cross-linker B-glycerophosphate
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Chitosan can be made to respond to external stimuli such as temperature, pH and ionic
strength [95, 112, 113, 127]. In this study we worked on chitosan, rendered temperature
sensitive by the addition of a polyol B-glycerophosphate (figure 1.7). Chitosan is typically
not soluble in water, but its solutions can be obtained in acidic aqueous medium which
protonate chitosan amino groups, rendering the polymer positively charged and thereby
overcoming associative forces between chains [112, 113, 120, 127]. B-glycerophosphate
plays three essential roles: 1) to increase the pH to the physiological range of 7.0-7.4; ii)
to prevent immediate precipitation or gelation and iii) to allow for controlled hydrogel
formation when an increase in the temperature is imposed [100, 120, 126]. The resulting
chitosan- B-glycerophosphate system is a liquid at room temperature (25°C) and gels as
the temperature is increased to 37°C , the body temperature [100, 112, 113, 120, 127]
(figure 1.8). Three types of interactions are involved in the gelation process: 1)
electrostatic attraction between the ammonium group of the chitosan and the phosphate
group of the glycerophosphate; ii) hydrogen bonding between the chitosan chains as a
consequence of reduced electrostatic repulsion after neutralization of the chitosan

solution with GP and iii) chitosan- chitosan hydrophobic interactions [95, 112, 113, 127].

Figure 1.8 Schematic of cross-linked chitosan
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1.4.3 Molecules Encapsulated

In this research various molecules were encapsulated into the delivery system as

described below:

1.4.3.1 Fluorescent Molecule 5,6-carboxyfluorescein

HO,C

Figure 1.9 Molecular structure of 5,6-carboxyfluorescein

5,6-carboxyfluorescein is a fluorescent synthetic yellow orange organic compound
available in solid form (figure 2.3) [130]. Its chemical formula is C,;H;,07 and molecular
weight is 376g/mol [130]. It is soluble in DMF/DMSO or in water having a pH greater
than 7.0 [130]. The molecular structure of 5,6-carboxyfluorescein[130] is shown in

figure 1.9. It has an absorbance at 494nm and emission at 519 nm.
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Increase in the pH (above 7.0) of this molecule results in deprotonation of the hydroxyl
group making it a trivalent anion [130]. The carboxyl group can be attacked at either the
5 or 6 carbon in the structure [130]. It is a membrane impermeant and can be loaded into
cells by microinjection [131]. Since it is a fluorescent molecule it should be stored at a

temperature of 4°C and should be protected from direct light [130].

1.4.3.2 Paclitaxel

Paclitaxel is a white to off-white powder with molecular formula C4;Hs5;NO;4 and
molecular weight 853 Da [39, 132]. Its melting point is 217°C (Figure 1.10) [132]. Itis a
diterpenoid pseudoalkaloid- a mitotic inhibitor, which was first isolated from the bark of
the pacific yew tree in 1967 [132]. Its anti-tumor activity stems from the fact that it is
very effective in stabilizing the microtubules to depolymerization, thus interfering with

the process of cell division [39, 132].

Microtubules are involved in cellular activities such as mitosis and transport of organelles
within the cell and paclitaxel interferes with their normal breakdown thus restricting the
abnormal growth of cells [39, 45, 132]. It is used as an anti-tumor agent against a wide
variety of tumors like ovarian cancer, breast cancer, head and neck cancers, lung cancer

and prostate cancer [39, 45].
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Figure 1.10 Molecular structure of paclitaxel

Although paclitaxel has an immense anti-tumor activity, it has few shortcomings as well.
It is highly hydrophobic and hence poorly soluble in aqueous medium although it can be
dissolved in organic solvents [39, 45]. Also, pH manipulation does not enhance its
solubility since paclitaxel lacks ionizable functional groups in a pharmaceutically useful
range [39, 132]. Other forms of increasing the solubility such as production of alternate
salts are also not feasible for paclitaxel [39, 132]. Owing to its highly hydrophobic nature
it has to be administered in combination with other formulation vehicles [39, 132]. One
such formulation which is commonly used is Cremophor EL, which is a polyoxyethylated
castor oil [39, 132]. Cremophor EL is associated with a number of side effects like
peripheral neuropathy, nephrotoxicity, aggregation of erythrocytes, hyperlipidemia and
hypersensitivity [39, 132]. Improvements in the formulation vehicle would not only

enhance the efficacy of the drug but also help reduce toxicity associated with traditional
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formulation vehicles. This is where our drug delivery system holds a plethora of benefits.
Encapsulating paclitaxel in niosome followed by their embedment in the cross-linked
chitosan can entirely eliminate the need for Cremophor EL. Additionally, the ability to

fine tune the drug delivery system promises control over the release rates as well.

Paclitaxel conjugated with BODIPY 564/570 [133] has also been used in this study.
BODIPY 564/570 (figure 1.12) is a red-orange fluorescent dye with an excitation of 564
nm and emission of 570 nm [133]. This fluorescent dye is attached to the N-benzoyl
substituent of the 3-phenylisoserine part of paclitaxel [133]. In this study, conjugated

paclitaxel [133] was used for in vitro studies using confocal microscope.

Figure 1.11 Molecular structure of BODIPY 564/570
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1.4.3.3 Carboplatin

NH,

Pt_ NHz

Figure 1.12 Molecular structure of carboplatin

Carboplatin is a white crystalline solid with molecular formula C¢H;2N,O4Pt and
molecular weight 371.249 g/mol [134]. It is soluble in water and almost insoluble in
ethanol, acetone and dimethylacetamide [134]. Carboplatin is an anticancer drug used in
the treatment of several cancers especially ovarian cancer [135-138]. It is an alkylating
agent and a second generation platinum drug, the first generation being its analogue drug
cisplatin [139] (Figure 1.12). Carboplatin is an improvement over the platinum drug
cisplatin with similar chemical mechanisms [140] but with better biochemical
characteristics [136, 140] and hence lower toxicity. Carboplatin has a bidentate
dicarboxylate ligand [135, 140] which differentiates it from its analogue cisplatin

consisting of labile chloride ligands [137].
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Carboplatin is usually administered as part of a combination drug therapy regimen
consisting or two or more drugs [39]. It is used for a wide variety of tumors such as
ovarian cancer, lung cancer, head and neck cancers and stomach cancer [39]. Cancer cells
are destroyed by carboplatin when the drug attaches to DNA [135, 139, 140] and interfere

with the repair mechanism of the cell. This leads to cell growth inhibition and cell death.

Carboplatin is less potent than cisplatin [136] even though the clinical dosage of
carboplatin is four times that of cisplatin [135, 136]. However, the effectiveness of
carboplatin can be increased by incubating it in NaCl solution before administration [135,
136, 140]. In this study, carboplatin was used to study the release rate when encapsulated
in the hydrophilic core of the niosome. Its effect was also studied in the ‘cocktail
niosomal formulation’ when the hydrophobic drug was encapsulated in the hydrophobic

bilayer with carboplatin encapsulated in the hydrophilic core.

The main disadvantage of carboplatin is that it is a myelosuppressant [139], which causes
the platelet and blood cell output from bone marrow to decrease drastically [137, 139].
This can lead to further complications like increased chances of infections [137], which

can become fatal if not remedied immediately.

In summary, figure 1.13 shows a schematic illustration of the drug delivery system that
was employed for this study. This drug delivery strategy was designed to fulfill the
following tasks: 1) to provide controlled and targeted delivery to tumor cells while

sparing normal cells; ii) to reduce the toxicity resulting from chemotherapeutics; iii) to
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provide a delivery system that would be easy to manufacture and most importantly be

cost effective.

This system, also called the ‘Smart Packaged Drug Delivery System’ consists of non-
ionic surfactant vesicle/ niosome which is encapsulated with therapeutic molecules. The
term ‘Smart Packaged’ is used due to the fact that it is responsive to external stimuli, in
this case, to temperature. The molecules used for encapsulation are either 5,6-
carboxyfluorescein/ paclitaxel/ conjugated paclitaxel/ carboplatin. These encapsulated
niosome dispersions are embedded into a cross-linked temperature sensitive hydrogel
(chitosan) network The ‘Smart Packaged Drug Delivery System’ is a liquid at room
temperature (25°C) and forms a non-flowing gel at body temperature (37°C). The system
has been designed such that each cross-link mesh size commensurate the size of
niosomes. With time, chitosan, being a biocompatible and biodegradable polymer, breaks
down into simple compounds such as amino sugars. This exposes niosomes to body
fluids which eventually lead to their breakage and release of the encapsulated molecules.
Desired release kinetics can be obtained by fine-tuning the properties of niosomes and
chitosan such as the concentration of encapsulated molecules, size of the niosome,
chitosan cross-link mesh dimensions and packaging density of the niosomes. Detailed
studies of each of these parameters are discussed in the following chapters. Localized
drug delivery systems might be the missing link for effective, low cost treatments that

could have a significant impact in developing countries too.
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Figure 1.13 Schematic of the smart packaged drug delivery system
26



CHAPTER 2 EXPERIMENTAL PROCEDURES

2.1 Materials

The following materials were purchased from Sigma Aldrich : Sorbitan monostearate
(Span-60) (catalog# S7010-250G), Cholesterol (catalog# C8503), Dicetyl phosphate
(catalog#D2631) , Chitosan (medium molecular weight -catalog# 448877), low molecular
weight- catalog# 448869 and practical grade- catalog# 419419), Beta-glycerophosphate
(catalog# G9891), PBS (Phosphate Buffer Saline- catalog#P5368 and Slide-A-Lyzer
Mini Dialysis Units (10K MWCO- catalog# 69570). 5,6-carboxyfluorescein (catalog#
51013) was purchased from Biotium Inc. Paclitaxel (catalog# AC32842), carboplatin
(catalog# ICN19887325), round bottom flask 50ml (catalog# 10-068-1A) and glass vials
(catalog#14-955-319) were purchased from Fisher Scientific. Ultracentrifuge tubes
(catalog# 41121703) and caps (catalog# 338906) were purchased from Beckman Coulter.
Materials for the extrusion process- mini extruder (catalog#610000), filter support
(catalog#610014), 1mL syringe (catalog#610017), heating block (catalog#610024),
Teflon seals (catalog#610029), plunger assembly (catalog#610032), polycarbonate (PC)
membrane(catalog# 610004) were purchased from Avanti polar lipids. (Paclitaxel-
BODIPY® 564/570 (catalog# P7500) was purchased from Invitrogen. Glass bottom
dishes (catalog# P35G-1.5-20-C.S) for confocal imaging were purchased from Mattek

Inc. All other chemicals were reagent grade.
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2.2 Methods

2.2.1 Preparation of Niosomes

2.2.1.1 Niosomes with 5(6)-Carboxyfluorescein

5(6)-carboxyfluorescein was dissolved in 0.01M PBS and concentrations of 2mM, SmM,
10mM, 15mM and 20mM were prepared. Niosomes were prepared by the thin film
hydration method [68, 79, 85]. Surfactant Span 60, cholesterol and dicetyl phosphate
were taken in a 1:1:0.1 molar ratio respectively and dissolved in 3 ml of chloroform. This
solution was transferred to a 50mL round bottom flask attached to a Buchi rotary
evaporator. Chloroform was allowed to evaporate leaving behind a thin film. The film
was left to dry overnight. Hydration of the film was performed in the following way:
3mL of 5(6)-carboxyfluorescein solution was added to the flask containing the thin film
and placed in rotary evaporator maintained at 60°C. After the film dissolved, the flask
was taken out. This process takes an hour. The next step is the size reduction process
which was done using a mini extruder. Mini extruder consists of a heating block over
which the extruder and two syringes were placed as shown in figure 2.1(A). Syringes
were inserted into the extruder. Niosome solution was taken in one syringe and passed
through the extruder into the other syringe. This process was repeated 12 times. The

extrusion process was carried out at 60°C by placing the heating block over a hot plate.

Two different protocols were followed for niosome synthesis: 1) the first one involved

making thin films, hydrating them with a fluorescent dye 5,6-carboxyfluorescein,
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constricting their size by extrusion (Figure 2.1) and removal of the free dye by
ultracentrifugation (60000 rpm for 40 minutes); ii) in the second method all the steps till
the hydration were the same after which they were sonicated for 15min. The free dye was
removed using gel exclusion chromatography. Niosomes were prepared with various

concentrations of the dye and were stored at 4°C prior to embedding into the chitosan

network.

Figure 2.1 Experimental set up for mini extruder. The mini extruder consists of a heating
block, two Iml syringes inserted into the extruder containing polycarbonate membranes
(A); Extrusion process consists of passing niosomes through the mini extruder 12 times
at 60°C which gives niosomes with narrow size distribution (B)
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2.2.1.2 Niosomes with Paclitaxel

Surfactant Span-60, cholesterol and dicetyl phosphate in 1:1:0.1 molar ratio respectively
were dissolved in chloroform. Paclitaxel was added to this solution and thin films were
made using round bottom flask and Buchi evaporator as described in section 2.2.1.1.
Hydration was done using 3ml of 0.01M PBS at 60°C. As with the previous methodology
the size was constricted by extrusion. Free dye was removed by ultracentrifugation.

Concentrations of paclitaxel used were 2mM, SmM, 10mM, 15mM and 20mM.

2.2.1.3 Niosomes with Carboplatin

The same methodology as with 5(6)-carboxyfluorescein encapsulation (section 2.2.1.1)
was followed here also. Thin films were made with the surfactant Span-60, cholesterol
and dicetyl phosphate in 1:1:0.1 molar ratio respectively. Hydration was done using 3ml
of carboplatin solution. Size constriction was done by extrusion and free drug removal by
ultracentrifugation. Concentrations of carboplatin used were 2mM, 5SmM, 10mM, 15mM

and 20mM.

2.2.1.4 Cocktail Niosomal Formulation

This formulation was designed in our lab. Using this niosomal formulation it is possible
to encapsulate multiple drugs of varied polarity into the same niosome vesicle. The
integrity of each drug is maintained since they are encapsulated at different sites in the

same niosome and are not in contact at any time until they are at the site of delivery.
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Procedure for ‘cocktail niosome’ formulation is as follows: surfactant Span-60,
cholesterol and dicetyl phosphate in 1:1:0.1 molar ratio respectively were dissolved in
chloroform. Paclitaxel was added to this solution and thin films were made. Hydration
was done using carboplatin, size constricted by extrusion and free dye removed by
ultracentrifugation. Paclitaxel and carboplatin concentrations used were 2mM, 5mM,

10mM, 15mM and 20mM.

2.2.2 Preparation of Thermo-Sensitive Cross-Linked Chitosan Solution

The second packaging system was prepared as reported in literature with slight
modifications: 3ml of 65% (w/v) B-glycerophosphate solution (in water) was added to
9ml of 2.78% (w/v) chitosan solution (in 0.1M HCI) drop-wise, stirring continuously
over an ice-bath. The final solution was stirred for an additional 10 minutes to ensure
complete mixing. This solution contained a molar ratio of 4:1 of B-glycerophosphate:
chitosan (Figure 2.2). A range of cross-link molar ratios were used in this study ranging

from 3.0:1 to 5.0:1.

2.2.3 Preparation of Niosome Embedded Chitosan Solutions

This procedure which was designed in our lab is as follows: niosomes, stored at 4°C was
allowed to equilibrate to room temperature. They were then embedded into the chitosan
network by adding them into the prepared chitosan- B-glycerophosphate solution. It was

then mixed thoroughly at 25°C (room temperature). It was then heated to 37°C (body
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temperature) to facilitate cross-linking. Niosome to chitosan-f3-glycerophosphate molar

ratios of 0.15:1 to 0.45:1 were used for this study.

B-glycerophosphate Crosslinked Chitosan

Room Temperature, 252C Body Temperature, 372C

Figure 2.2 Preparation of cross-linked chitosan solution using the cross-linker f-
glycerophosphate. The resulting solution shows thermo-responsive behavior.
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Parameters of importance in a drug delivery system are related to the quality of the
packaging system and its composition. The parameters evaluated in this study are the
effects of chitosan molecular weight, its cross-link density and the packaging density. For
the cell-free studies different composition of the niosome-chitosan solution were
prepared:

a) for studies on the effect of the molecular weight on the release rate three different
chitosan grades were used: 1) medium molecular weight (190,000-310,000 Da); ii) low
molecular weight (50,000-190,000 Da) and iii) practical grade (190,000-375,000 Da).
The molar ratio of B-glycerophosphate to chitosan used was 4:1 and the niosome to
chitosan-f-glycerophosphate molar ratio used was 0.35:1.

b) For studies on the effect of the cross-link density, medium molecular weight chitosan
and niosome to chitosan-B-glycerophosphate molar ratio 0.35:1 were chosen. Molar ratios
of B-glycerophosphate to chitosan used ranged from 3.0:1 to 5.0:1.

c) For studies on the effect of the packaging density, medium molecular weight chitosan
and a molar ratio of B-glycerophosphate to chitosan of 4:1 were chosen. Niosome to

chitosan-f-glycerophosphate molar ratios of 0.15:1 to 0.45:1 were used.

2.2.4 Viscosity Measurements

The change in the viscosity of chitosan- B glycerophosphate solution with increasing
temperature was measured using a falling sphere viscometer [141]. Chitosan- f
glycerophosphate solution was taken in a vertical glass tube placed over a water bath. A

steel sphere of known size and density was allowed to descend through this solution and
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the time taken for the sphere to fall through the solution was measured from which the
terminal velocity (V;) of the sphere was calculated. Knowing this velocity, the size and

density of the sphere, and the density of the liquid, the equation for terminal velocity

r* g(p, —Pr)

from Stokes’ law V_ = %
9 n

was used to calculate the dynamic viscosity (n) of

the fluid [58], in this case chitosan- B glycerophosphate solution. In this equation, g
represents gravitational acceleration, p, the density of the particle and ps, the density of
chitosan- B glycerophosphate, r the radius of the particle. Viscosity of Chitosan-3

glycerophosphate solution at temperatures ranging from 25°C to 37°C was measured.
2.2.5 Conductivity Measurements

Ionic strength of the experimental solutions were extrapolated by measuring the
conductivity of niosome, chitosan solution and the media used- PBS buffer (pH 7.4) and
salt free water (pH 6.0), using a multimeter [142]. The electrodes of the multimeter were
kept at a finite distance (1cm) and the resistance was measured. This value of resistance
is also the resistivity since the distance between the electrodes is unity (1 cm). The

inverse of resistivity is the conductivity of the test sample.
2.2.6 Size Analysis of Niosomes

Size is an important parameter in the delivery of the encapsulated molecules. The
analysis of size of the niosomes was obtained by two independent methods: Dynamic

Light Scattering (DLS) and Transmission Electron Microscopy (TEM).
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2.2.6.1 Dynamic Light Scattering (DLS)

A one-tenth (1/10) dilution of niosome dispersion was made with 0.01M phosphate
buffer saline (PBS). The size distribution was measured using dynamic light scattering
(DLS) (Zetasizer Nano ZS) manufactured by Malvern Instruments in the following way:
Iml of the niosome solution was taken in a cuvette and placed in the DLS. The
temperature was set at 25°C and the cuvette was equilibrated for 10 minutes. The

measurements were then taken.

DLS is a size profile determination technique which makes use of the Brownian motion
of small particles in a solution/dispersion [143, 144]. When monochromatic light is shone
over small particles undergoing Brownian motion it produces a shift in the wavelength
also known as the Doppler Shift which is caused when light hits the particles in motion
[143, 144]. This shift is correlated to the size of the particle [143, 144]. The size
distribution of the particles could then be computed by measuring the diffusion

coefficient and using Einstein- Stokes equation [143, 144].

2.2.6.2 Transmission Electron Microscopy (TEM)

Transmission electron microscopy (TEM) is a useful technique in directly visualizing
biological systems with high spatial resolution [145, 146]. In this technique, a high
energy electron beam is transmitted through a thin film of the sample to image the

structure of the sample with atomic scale resolution [145, 146].
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Imaging of niosomes was done as follows. One drop of the niosome solution was
deposited on a carbon-coated copper grid (Formvar/Carbon 150 mesh copper grids from
Electron Microscopy Sciences) and left to adhere for one minute. The excess solution
was absorbed using the tip of a filter paper and left to dry for Smin (Figure 2.3) before
loading it into the vacuum chamber. The sample was then observed under TEM

(Morgagni 268D TEM) at an accelerating voltage of 80kV.

TEM was also used to characterize the cross-linked chitosan with embedded niosomes in
the following manner. One drop of the niosome-chitosan-B-glycerophosphate solution
was stratified into a copper grid, left to adhere for one minute and placed on a spin coater
for one minute at 4000 rpm. The grid was then placed on a petridish over a 37°C bath for
15 minutes in order to facilitate cross-linking. It was then left to dry for 5 minutes and

observed under the TEM at an accelerating voltage of 80kV.

Optical analysis of the images was accomplished using Kontron Elektronik KS Lite

digital analysis program v2.0. Using this program we were able to measure the area of

each cross-link mesh in the image.
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Excess solution wiped off.
Grid dried for 5 min

Grid placed on a spin
coater (1min ,4000 rpm).
Incubated at 370C

Figure 2.3 TEM sample preparation method

2.2.7 Dye Release Studies

Figure 2.4 shows the experimental setup for the release rate studies. Three models were

developed for the release rate studies. The first two models were set up to characterize the

behavior of the niosomes alone without the chitosan network and the third model with the

chitosan network.
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Intensity measurements using
Fluorescence spectroscopy
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Figure 2.4 Experimental set-up for release rate studies

The first model was designed to mimic the behavior of niosomes alone when exposed to
tumor-like conditions. For this, 200 pL of niosomes (dispersed in 0.01M PBS) were
placed in mini dialysis units containing cellulose membrane (MWCO 10,000). Since
tumor sites have a slightly acidic pH [147] around 6.0, this condition was mimicked for

our model using water at pH 6.0 as the solution medium.

The second model mimicked the behavior of the niosomes when exposed to normal
physiological conditions. Phosphate buffer saline (0.01M PBS) with a pH of 7.4 was used
as the medium in this case. Mini dialysis units containing niosomes were placed on
dialysis floats and submerged in 100ml of their respective media maintained at 37°C and

200 rpm. Samples (600 pL) were collected at specified time intervals and its
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concentration was measured by evaluating its fluorescence (Figure 2.4) using a

fluorescence spectroscopy.

In our third model, the release rate was studied with niosomes embedded into the cross-
linked chitosan network. Chitosan with different characteristics such as molecular
weights, cross-link densities ranging from molar ratios 3.0:1 to 5.0:1 and niosome to
chitosan ratios ranging from 0.15:1 to 0.45:1 were used for this study. In each case, the
niosome mixed chitosan-B-glycerophosphate solution at 25°C was transferred to a 30ml
beaker and placed in a 37°C bath. The solid gel thus formed was then placed in a beaker
containing 100 ml of water solution of pH 6.2 maintained at 37°C and 200 rpm. Samples
of 600 pL each were collected at specified time intervals and were tested for their
fluorescence. Since niosomes can also be prepared in a cocktail mixture, release studies
for niosomes packed with paclitaxel, carboplatin or both the drugs were done following
the above protocol. The drug concentration of the niosomes embedded in chitosan
released into water (pH 6.0) were analyzed and quantified using a high performance
liquid chromatography (HPLC) system. Details of the equipment are mentioned in the

following section.

2.2.8 Equipment and HPLC Conditions

A Shimadzu HPLC system was used for quantitative studies for paclitaxel and
carboplatin in the drug delivery system. The HPLC system consists of a system controller

(SCL-10AVP), a pump (LC-10ATVP), a degasser (DGU- 14A), a uv-vis detector (SPD-
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10AVP) and an autoinjector (SIL-10AD). The separation column used was a Sum, 25cm
x 4.6mm Inertsil ODS-3V column from GI Sciences. The mobile phase consisted of
0.2um filtered acetonitrile and water. The sample (20uL) was injected into the system
and the flow rate was maintained at ImL/min. The detection was carried out at a

wavelength of 227nm.

2.2.9 Studies with Cells

2.2.9.1 Cell Culture and Plating

Ovarian carcinoma cell line OV2008 and normal epithelial ovarian cell lines Ilow and
MCC3 were grown in culture medium (M199 + 10% FBS + L-glutamin + pennicillin +
streptomycin) at 37°C with 5% CO,. Tissue culture flasks containing the cells were
trypsinized with 1ml trypsin three times and placed back into the incubator for 5 minutes.
SmL of medium was then added and thoroughly mixed to separate out the cells. Next,
glass bottom culture dishes (Mattek corporation P35G-1.5 20-C.S) with 1.5mL of culture
medium were incubated at 37°C for 30 minutes. The medium was then taken out and
10x10° cells were plated in the center of each mattek plate and left to adhere for 2 hours
after which 2mL of the culture medium was added and placed in the incubator overnight

(figure 2.5).
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Cells Media

Figure 2.5 Experimental set up for cell plating. 10x10° cells were plated in the center of
the glass bottom dish and 2ml of the medium was added to the outer edges till the cells
were fully covered.

2.2.9.2 Confocal Imaging and Quantitative Analysis

The glass bottom dishes plated with the cells were taken out of the incubator right before
the imaging. The media from the outer edge of the dish was pipetted out and 300uL of
chitosan-niosome system encapsulated with fluorescent tagged paclitaxel (red-orange
fluorescent BODIPY 564/570 paclitaxel (P7501) from Invitrogen) added to the outer
edges of the dish. The dish was then placed in the incubator for 3 minutes to facilitate
cross-linking of chitosan. After this 400uL of media was added to the dish and imaging
of each sample were obtained with a Leica TCS SP5 laser scanning confocal microscope

through a 63 x/1.4NA or 100 x/1.4 NA (Leica Microsystems, Germany) (figure 2.6).
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Cells were plated in the Chitosan-niosome with 400pL of media added
centre of the dish and drug added to the outer after 3 minincubation
incubated overnight edge of the plate at 37°C

Figure 2.6 Experimental set up for confocal imaging. 10x10° cells were plated in the
center of the dish and incubated overnight. The next day media from the outer edge of the
dish was pipetted out and 300uL of chitosan-niosome system encapsulated with
fluorescent tagged paclitaxel (red-orange fluorescent BODIPY 564/570 paclitaxel added
to the outer edges of the dish. After 3 minute incubation at 37°C, 400uL of media was
added. The samples were images using confocal microscopy

2.2.9.3 Attenuated Total Reflectance- Fourier Transform Infra-Red (ATR-FTIR) of
Cell Lines- Interactions between Cell Lines and the ‘Smart Packaged System’

For these experiments a flow cell containing ZnSe crystal attached to a temperature
controller was used. Cells were grown in tissue culture flasks, trypsinized, counted and
placed in culture tubes. The cell lines OV2008 and Ilow were incubated at 37°C and the
spectra were collected for 240 min to study changes in the spectra with time. The flow
cell was maintained at 37°C using the temperature controller. The reference medium
used was the culture medium (minimum essential medium (MEM) + 10% FBS + L-
glutamin + pennicillin + streptomycin). Chitosan was added after 240 min (4 hours) and
spectra were collected for 24hours. The background used was ZnSe with ‘media’. Media

refers to the solution in which the cells were incubated.
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2.2.10 In Vivo Studies

In vivo studies were performed on 8 week old female mice, Strain: FVB/NJ. Whole body
imaging of the mice was done using Xenogen Bioluminescence Imaging System
(Xenogen IVIS Spectrum from Caliper Life Sciences). Xenogen is a high-sensitivity, low
noise, non-invasive light imaging technique that is capable of imaging bioluminescence
and fluorescence in living animals. It consists of a light imaging chamber coupled to a
highly sensitive CCD camera system cooled to -95°C which can quantify single-photon
signals emanating within the tissue of the living animal. It is useful in the visualization
and tracking of cellular and genetic activity within a living organism. Xenogen is
connected to an integrated isoflurane gas manifold that provides temporary anesthesia to
the mice during the imaging process. It has the capability of imaging five mice

simultaneously.

For this study, mice were anesthetized in isoflurane chamber and transferred to a
thermoregulated, dark chamber of the in Vivo Imaging System. 500uL of chitosan-
niosome-dye system was injected subcutaneously into the left flank of the mice. Imaging
was done every 3hours on the first day. Subsequent images were taken every morning for
2 weeks. After each imaging session the mice were awakened by placing them in the
isoflurane chamber and switching off the isoflurane flow and thus allowing only oxygen
to flow into the chamber. The complete Xenogen workstation contains the isoflurane
anesthesia system (with induction chamber and oxygen scavenging), light and

temperature controlled (37°C) chamber with anesthesia nose cone manifold, CCD
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camera, cryogenic unit (for cooling the camera), and computer to control and analyze

biofluororescent imaging.
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CHAPTER 3 CONTROLLED RELEASE NIOSOME EMBEDDED CHITOSAN
SYSTEM: EFFECT OF CROSS-LINK MESH DIMENSION ON DRUG

RELEASE!

3.1 Introduction

A sustained drug release for extended periods of time with precise control over drug
dosage is an important issue to be addressed for drug delivery systems [80]. A dual
packaging system affords a feasible solution for this continual release over time.
Liposome packaged in a polymer network has been shown to deliver small molecular-
weight hydrophilic compounds for weeks together [63, 95, 100]. In this chapter, the
author explores a more effective analogous system, a niosome embedded chitosan gel
matrix, in an effort to assess the relationship between the embedded niosomes, gel

structure and release characteristics.

Niosomes are non-ionic closed bilayer structures with a hydrophilic core and a
hydrophobic bilayer [68, 69, 81, 84, 85]. They are osmotically active and swell or shrink

depending on the tonicity of their environment [69]. Their osmotic swelling in particular,

'The figures and tables in this chapter are part of a previously published article (Williams et al., 2012) [161]
and are utilized with permission of the publisher.
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can drastically increase the permeability of niosomes and alter the release rates [68,69].
This chapter shows that, by embedding the niosomes in chitosan, the release from
niosomes can be regulated independent of external environment. The author here uses a
thermo-gelling chitosan network. The structure of this network is controlled by the
addition of B-glycerophosphate. The amino moieties present in the chitosan network
provides localized counterions and increase the tonicity around the embedded niosomes
[127]. This protects the niosomes from fluctuations in external environment. The
relationship between the gel structure and the release of the drug molecules encapsulated
in the embedded niosomes is not yet clearly understood. It is postulated that long-term
release profiles will be sensitive to the niosome packing density, the cross-link density,
and local structure of the chitosan gel around the niosome. No systematic investigations
have yet been carried out to find out these relationships. If the niosomes fail to
completely fit into the spaces between cross-links, the gel would burst out the niosomes.
A more open structure might also fail to protect the niosomes properly. An optimum in
the characteristics of gel structure is desired for a long-term sustained drug release. The
author in this chapter carries out detailed investigations of the size of the mesh, the
niosome size characteristics, and how controlled drug release could be achieved by
changing either or both of these parameters. The results obtained demonstrate that the
slowest release rates are achieved when the embedded niosome is of the order of the
mesh size of the network. This is an important finding in design criterion and must be
adhered to for obtaining the longest release rate as desired by the administrator. This
would have significant positive implications for the use of these systems in intra-cavitary

drug delivery in ovarian cancer, brain tumors, and in the administration of labile drugs.
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3.2 Results and Discussion

The factors that affect the release of an encapsulated cargo from the niosomes are the

niosome size and permeability which can be expressed by the equation:

£ = exp(—ﬁtj
C, R (1)

where, C, is the initial concentration of the cargo, R is the radius of the niosome with a

permeability P, (C/C,) is the fraction of cargo remaining after time t.

Two methods for dye encapsulation-extrusion and sonication were employed for these
studies. Analysis of the two methods revealed that extrusion led to a higher encapsulation
efficiency (Table 3.1). Hence it was selected as the preferred method to encapsulate 5,6-
carboxyfluorescein in Span-60 niosomes. The residual dye after encapsulation was

removed through the process of ultracentrifugation.

Release of 5,6-carboxyfluorescein dye from Span-60 niosomes into PBS buffer is shown
in Figure 3.1. Concentrations of 5,6-carboxyfluorescein ranging between 2-20 mM in
PBS buffer were used for encapsulation in niosomes. The initial release is adequately
described by equation (1) for all 5,6-carboxyfluorescein concentrations till a value of
C/C, > 0.6. Beyond the value of 0.6 there is a deviation in the release rates from the
prediction in equation (1) with a slowing down of the release. It was found that the initial
dye concentration in the niosomes has an influence on the release rate. This was most

likely due to the osmotic effect of the encapsulated dye.
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Since the exterior and interior of the niosomes contain PBS of identical ionic strength, the
dye concentrations must be adequate to enhance osmotic swelling of the niosome. It is

this osmotic swelling that augments the permeability of the niosomes.

Table 3.1 Encapsulation efficiency of niosomes containing various dye concentrations.

Concentration of encapsulated dye in | Encapsulation efficiency (%)

niosomes [mM]

2 60.27
5 62.89
10 64.41
15 66.99
20 68.05
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Figure 3.1 Fraction (C/C,) of 5,6-carboxyfluorescein dye retained in Span-60 niosomes
upon exposure to PBS as a function of the initial dye concentration. The broken lines
represent fits to Equation 1, n=3
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The release rate of the encapsulated cargo is also dependent on the niosome size as
predicted by equation (1). The dynamic light scattering method was used to determine the
niosome size distribution. Shearing of niosomes in the extrusion process determines the
final niosome size which is largely controlled by pore size. Table 3.2 shows that under
identical extrusion conditions, the niosome increases in size as the concentration of the
dye is increased (from 0.799 um at 2 mM to 1.220 pm at 20 mM). We hypothesize that
hydrogen bonding between the carbonyl group of the dye and the alcohol head group of
Span-60 alters the rigidity of the niosome and enhances resistance to shear. Hence as the
dye concentration is increased, the size of the niosome also increases accordingly. To
verify that the niosome size is a function of the encapsulated reagents type, niosomes
were prepared without the dye, which only encapsulated either PBS or water. In both
these cases, it was observed that the size distribution obtained were similar and much
smaller than niosomes with dye (0.248 um for niosomes containing PBS and 0.235 um
for niosomes containing water). This implies that the dye molecules have an influence
over the size of the niosomes. According to the prediction in equation (1), the increase in
radius of the niosome with increasing dye concentration should lead to slower release
rates. This is opposite the trend as seen in figure 3.1. Consequently, this indicates that the
osmotic difference across the niosomal wall, and not the niosome size, is the root cause
of concentration dependent release rates. Further, an increase in the hypo-tonicity of the
external medium would augment the release rates. To investigate the dependence of
external tonicity on the release of the encapsulated cargo, the niosomes were exposed to
an extremely hypotonic medium consisting of salt free water at pH=6.0. The

corresponding release rates are shown in figure 3.2. In this case also the release rate could
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be predicted with equation (1), where the equation remains true till a value of C/C,
greater than 0.4. Beyond this value the release deviates from the prediction and begins to
slow down. Figure 3.3 shows the half-times, t;,, for complete release for niosomes
exposed to either PBS buffer or salt-free water at pH=6.0. Half-time is the time taken for
50% of dye release. The half-time for niosomes exposed to PBS buffer is between 20-100
hours, whereas in salt-free pH=6.0 water, the half-time is between 4-10 hours which is an
order of magnitude greater than in PBS buffer. The half-time decreases with
concentration in both the cases, confirming dependence of release on osmotic swelling of
the niosomes. Hence, these results validate that the release of the encapsulated cargo
from the niosomes is sensitive to the tonicity of the external and internal environment of

the niosomes.

Table 3.2 Physical parameters of niosomes with encapsulated dye

Encapsulated dye Size(um) Surface area/Volume(um™)
concentration(mM)
2 0.799 7.509
5 0.872 6.881
8 0.920 6.522
10 0.992 6.048
13 1.035 5.797
15 1.110 5.405
20 1.220 4918
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Figure 3.2. Fraction (C/C,) of 5,6-carboxyfluorescein dye retained in Span-60 niosomes
upon exposure to salt-free pH=6.0 water as a function of the initial dye concentration.
The broken lines represent fits to equation (1), n=3
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function of the initial dye concentration, n=3
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Since encapsulated cargo release is sensitive to external pressure gradients, the niosomes
were embedded in a temperature-responsive cross-linked chitosan gel which provides
stability to the niosomes. The cross-linker used is B-glycerophosphate. Gelling of
chitosan occurs at 37°C as shown in figure 3.4. Figure 3.5 shows the release rate
comparison plots for niosome embedded chitosan gel exposed to salt-free pH=6.0 water
versus bare niosomes in PBS buffer or salt-free pH=6.0 water. The initial concentration
(C,) of encapsulated cargo, 5,6-carboxyfluorescein in all the cases is SmM. As mentioned
earlier, the initial release corresponds to C/C, > 0.4 for the bare niosomes in salt free
pH=6.0 water and C/C, > 0.6 for the bare niosomes in PBS. As with bare niosomes, the
embedded niosome release could also be predicted with equation (1). However, in this
case the equation holds true only for values of C/C, > 0.9. Hence, for all the three cases
the initial fast release could be predicted through equation (1), beyond which there is a
deviation from the predicted values followed by a subsequent slowing of the release. For
embedded niosomes, the slow regime occurred continually for 55 days (1320 hours) with
corresponding half-times in excess of 25 days (600 hours), despite the fact that the
niosome-chitosan composite was exposed to salt-free pH=6.0 water. In contrast, bare
niosomes in salt-free pH=6.0 water has a half-time of only 8 hours and bare niosomes in
PBS buffer has a half-time of 80 hours (more than 3 days). The large difference in t;,, for
embedded niosomes as compared to bare niosomes is due to the presence of counterions
associated with the amino moieties of chitosan, which are charged at acidic to neutral pH.
The counterions provide local hypertonicity that limits swelling of the niosomes even

when placed in a hypotonic environment.
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Figure 3.4 Viscosity of chitosan-f glycerophosphate solution as a function of
temperature. Viscosity increased gradually up to 35°C. At 36°C, a steep increase was
noticed and at 37°C, the solution completely transformed into a non-flowing solid gel.
Hence viscosity measurement was not possible. Images depicting the transformation with
temperature is also shown where chitosan- glycerophosphate, which exist in liquid state
at 25°C transforms into a non-flowing opaque sold gel at 37°C, the body temperature
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Figure 3.5 Comparison of 5,6-carboxyfluorescein release from chitosan-embedded
niosomes and bare niosomes. The initial concentration of dye for all samples was 5 mM.
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Apart from local tonicity of the medium, the structure of chitosan also affects release of
encapsulated cargo from niosomes. In the next few paragraphs and figures, the author
discusses the influence of chitosan structure on the release of the cargo, which can be
altered by changing any of the following three parameters- the niosome packing ratio, the
cross-link density of the chitosan gel, and the molecular weight of chitosan. The
concentration of niosomes loaded into the chitosan network, also known as the packing
ratio, remarkably influenced the rate of dye release for extended time periods. Niosome
to chitosan molar ratios ranging from 0.15:1 to 0.45:1 were investigated for these studies.
The corresponding release rate plots are shown in figure 3.6 for three molar ratios 0.15:1,
0.35:1, and 0.45:1. The release rates for all the ratios are characterized by two regimes, an
initial fast release period till roughly 20 hours, followed subsequently by a slower regime
with a slow continual release for 55 days (1320 hours). During the initial fast release
period, all the ratios have approximately similar release rates. Beyond this region, the
release diverges with the slowest release obtained with the 0.35:1 packing ratio. This
behavior can be explained by structural differences of chitosan gel at various molar
ratios. Figure 3.7 compares the percentage of dye released at the end of 55 days. The
TEM images in insets in figure 3.7 show the structural differences for various packing
ratios. Remarkably, at the slowest release ratio of 0.35:1, the niosomes fit into the natural
mesh of the chitosan network. At the lowest packing ratio of 0.15:1, since the niosomes
were not evenly distributed in the chitosan gel, they were subject to local variations in the
structure of the gel. Finally, at the highest packing ratio of 0.45:1, the density of
niosomes is too large to completely commensurate with the chitosan mesh. Hence, this

result demonstrates the sensitivity of the release to the local structure of chitosan gel.
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Figure 3.6 Fraction (C/C,) of 5,6-carboxyfluorescein dye retained in embedded Span-60
niosomes as a function of the mass packing ratio. The initial concentration of dye for all
samples was 5 mM
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Figure 3.7 The % release of the content of the niosomes embedded in the chitosan gel as
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(0.15:1), medium (0.35:1) and high (0.45:1) packaging density are shown above of each
column.
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The second parameter of the chitosan structure that affects the release rate was the cross-
link density of the chitosan gel. The manipulation of this parameter alters the mesh size
of the chitosan gel. The corresponding TEM images are shown in figure 3.8. Addition of
the cross-linker was seen to have an effect on the pH of the resultant solution. Table 3.3
shows the various ratios of the cross-linker B-glycerophosphate and chitosan and their
corresponding pH. Since gelling of the system occurred only in the ratio range 3.5:1 to
4.5:1, only this range was investigated for release rates. Chitosan gel with a cross-link
ratio 3.5:1 forms a loose network with a uniform mesh with an average mesh area of
0.124 umz (Figure 3.8A). The mesh area for a cross-link ratio of 4:1 (Figure 3.8B) was
0.096 pm?, and for a cross-link ratio of 4.5:1 (Figure 3.8C) was 0.0702 um”. Addition of
the niosomes to the gelling solution resulted in a slight loosening of the compact structure

of chitosan as seen in figure 3.8D.

The release rate with each cross-link ratio is shown in figure 3.9. The slowest release
occurred at the cross-link ratio of 4:1. This behavior occurs due to the fact that at this
ratio, the size of the mesh is entirely commensurate with the size of a niosome. Higher
release rates are obtained when the mesh size and the niosome size are not similar. The
mesh size is smaller than the niosome size for the ratio 4.5:1. Hence, it is postulated that
the niosomes interfered with the formation of the gel resulting in higher number of
imperfections. Furthermore, the smaller mesh size promoted the accumulation of
niosomes in the outer surface of the chitosan gel which additionally augmented the

release rates.
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Figure 3.8 TEM images showing chitosan formulations with: crosslink ratio 3.5:1 (loose
network) (A); crosslink ratio 4:1 (B); crosslink ratio 4.5:1(tight network) (C); chitosan-
(5mM) niosome formulation with a crosslink ratio 4:1 (D).
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Figure 3.9 Fraction (C/C,) of 5,6-carboxyfluorescein dye retained in embedded Span-60
niosomes as a function of the cross-link ratio. The initial concentration of dye for all
samples was 5 mM.
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Table 3.3 pH variation with the cross-link density

pB-GP: 3.0:1 3.25:1 3.5:1 4.0:1 4.5:1 4.75:1 5.0:1
Chitosan
pH 6.6 6.7 6.9 7.4 7.9 8.1 8.3
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Figure 3.10 Fraction (C/C,) of 5,6-carboxyfluorescein dye retained in embedded Span-60
niosomes as a function of molecular weight and purity. The initial concentration of dye
for all samples was 5 mM.
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The precursor chitosan’s molecular weight and purity also play an important role in the
release rates of the encapsulated cargo. Here again, the release depends on the
compactness or closely packed structure of the cross-linked mesh network of chitosan.
For these experiments, chitosan with two different molecular weight ranges and two
different purities were used. A constant cross-link density of 4:1 molar ratio of f-
glycerophosphate to chitosan was maintained for all these samples. Corresponding
release rates are plotted in figure 3.10. By comparing same purity and different molecular
weights of precursor chitosan, a slower release rate is attained for pure grade medium
molecular weight (MMW) chitosan (190,000-310,000 Da) as compared to pure grade low
molecular weight (LMW) chitosan (50,000-190,000 Da). This behavior occurs due to the
fact that at lower molecular weights, there are more chain ends in the mesh network
which leads to the formation of less organized or looser mesh network since each chain
end signifies a flaw in the final networked structure. With the increase in the molecular
weight, there is a reduction in chain ends, augmentation of inter-chain bonding, and chain
packing. The resulting chitosan gel forms a well-organized and compact mesh structure
thereby reducing paths for cargo diffusion, hence promoting a slower release rate. For the
same molecular weight and different purities, the precursor chitosan with a lower purity
resulted in a higher release. This arises due to the presence of insolubles that obstruct the
strong bonding and packing between the precursor chitosan and the cross-linker B-
glycerophosphate resulting in a less organized mesh network. Hence these results confirm
the dependence of release rates on the local structure of chitosan, with higher release

obtained for less organized or looser mesh structures which promotes greater clearance
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rates for dye diffusion and a slower controlled release obtained from a tightly packed

mesh structure.

3.3 Conclusion

In this chapter the author highlights the importance of the sizes of the cross-link mesh
network and niosome in the controlled release of the encapsulated cargo. The results
demonstrate that control in the release rates could be attained by fine tuning either or both
of these parameters. Contingent to external tonicity, the release of the encapsulated cargo
can be regulated to culminate from 24 hours (1 day) to more than 1320 hours (55 days).
Bare niosomes exposed to tumor-like conditions imparted absolute release in 144 hours
(6 days). Controlled release is achievable by providing bare niosomes with a protective
layer in the form of a cross-linked chitosan network, which can be used to regulate the
release of encapsulated cargo till more than 55 days. Additionally, parameters of the
precursor chitosan such as the cross-link density, packing density, molecular weight and
purity can be manipulated as needed to obtain desired release rates of drugs. An optimum
in the release rates are achieved with high purity medium molecular weight chitosan with
a cross-link density of 4:1 (B-glycerophosphate: chitosan) and a packing ratio of 0.35:1
(niosome: chitosan). This “Smart Packaged Drug Delivery” design approach, due to its
fine tuning ability, will have huge positive implications for application in localized intra-
cavitary drug deliveries in ovarian cancer, brain tumors, and in the administration of
labile drugs, and can be very effectively exploited by medical practitioners for these types

of drug deliveries.
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CHAPTER 4 A COMPARATIVE STUDY OF THE BEHAVIOR OF NIOSOME
EMBEDDED CROSS-LINKED CHITOSAN IN THE DELIVERY OF

HYDROPHILIC AND HYDROPHOBIC MOLECULES

4.1 Introduction

The current treatment regimen for ovarian cancer includes administration of the
chemotherapeutic drug paclitaxel [1, 39]. Recent studies have shown that a combination
of Paclitaxel and a Platinum analogue Cisplatin/ Carboplatin [39] is more effective than
the traditional one drug approach. Paclitaxel, being a hydrophobic drug is conventionally
administered along with a formulation vehicle Cremophor EL [132, 148]. However,
reports suggest numerous disadvantages associated with this formulation vehicle.
Aggregation of erythrocytes, hyperlipidaemia, peripheral neuropathy [148] are some of
the shortcomings of this vehicle. In addition it has also been shown to alter the toxicity
profile of certain drugs [148]. In recent years localized drug delivery has gained
prominence due to the various advantages it possesses over existing treatment techniques
in systemic delivery [149]. A varied number of therapeutic loaded particles have been
proposed and investigated in literature. All of these particles have been shown to provide
a better alternative than the traditional drug administration technique. However, there are

certain drawbacks associated with each of these particles. For instance, polymeric
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nanoparticles provide greater clearance for drugs compared to nanoparticles formulated
from lipids and surfactants [150]. Lipid nanoparticles are prone to degradation due to
oxidation of the phospholipids [63, 64, 66, 79, 82], hence making storage and handling
difficult. In addition, the synthesis of phospholipids is expensive as is the case with
naturally occurring phospholipids [63, 64, 66, 68, 82]. Microspheres, on the other hand,
are difficult to manufacture and each distinct application requires a customized
fabrication process [47-52, 80]. This puts a large burden on its cost efficiency. All the
more, nearly 25-50% of drugs can be lost during the encapsulation process [80].
Niosomes are a better alternative for therapeutic encapsulation since they are chemically
and physically stable in solution [85], less expensive [79] and easier to manufacture and
store [68] as compared to other categories of bilayer vesicles such as liposomes and drug
delivery carriers such as microspheres. The utmost advantage of niosomes is that, since
they are uncharged, there is no charge-charge interaction between the encapsulated drug

and the niosome.

This chapter focuses on the benefit of using an improved and inventive version of our
earlier one drug niosome. The new version, also called the °‘cocktail niosomal
formulation’ has the ability to encapsulate multiple drugs in a single niosome. Drugs with
different polarity can be packaged into the same niosomal vehicle. Ovarian cancer drugs
paclitaxel and carboplatin are the drugs of interest which have been used in this study.
Hydrophobic drug paclitaxel was encapsulated in the bilayer and carboplatin in the core
of the niosome. Since the drugs are enclosed in different areas within the niosome they do

not interact hence preserving the efficacy of the drugs. The “cocktail niosomal
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formulation” eliminates the need of Cremophor EL for paclitaxel altogether. This further
indicates elimination of the drawbacks associated with Cremophor EL. Additionally, the
niosomal formulation, when embedded in cross-linked chitosan provides an added

advantage of controlled delivery.

4.2 Results and Discussion

The figures below show the schematic representation of the ‘cocktail niosomal
formulation’. The following sections show the comparison between different niosomal
formulations and the advantages of each system:

a) System 1: Single drug niosomal formulation where the hydrophobic drug was
encapsulated in the hydrophobic bilayer of the niosome. The schematic representation of
the formulation is shown in figure 4.2. TEM images are shown in figure 4.3 (A), and the
size distribution as obtained from dynamic light scattering apparatus in table 4.2.

b) System 2: Single drug niosomal formulation where the hydrophilic drug carboplatin is
encapsulated in the hydrophilic core of the niosome. The schematic representation of the
formulation is shown in figure 4.2. The corresponding TEM image is shown in figure 4.3
(B) and the size distribution is shown in table 4.2.

c) System 3: ‘Cocktail niosomal formulation’ where the hydrophobic drug paclitaxel is
encapsulated in the hydrophobic bilayer and the hydrophilic drug carboplatin in the
hydrophilic core of a single niosome. Figure 4.1 shows the schematic representation of
the ‘cocktail niosomal formulation’. TEM image is shown in figure 4.3 (C) and the size

distribution in table 4.2.
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HYDROFHOBIC DRUC (PACLITAXEL)

Figure 4.1 Hydrophobic drug paclitaxel and hydrophilic drug carboplatin encapsulated in
the same niosome, the ‘cocktail niosomal formulation’.

HYDROPHORBIC DRUG HYDROPHILIC DRUG
(PACLITAXEL) (CARBOPLATING

Figure 4.2 Schematic representation of the niosomal system containing two types of
niosomes: i) hydrophobic drug paclitaxel within the bilayer; ii) hydrophilic drug
carboplatin in the hydrophilic core.
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Figure 4.3 TEM images showing various niosomal formulations. (A) niosome
encapsulated with SmM paclitaxel; (B) niosome encapsulated with SmM carboplatin; (C)
‘cocktail niosomal formulation’ encapsulated with SmM of paclitaxel and SmM of
carboplatin
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Table 4.1 shows the entrapment efficiencies of encapsulated molecules in the niosomes.
Niosomes encapsulated with paclitaxel only, show an entrapment efficiency of 85%. This
is a huge improvement from the values reported in literature for paclitaxel encapsulated
bilayer vesicles where the entrapment efficiency was 70% [151]. Even this entrapment
was possible only after the addition of a non-ionic surfactant in the formulation of the
liposomes. Lipids by themselves were seen to form very unstable vesicles with paclitaxel,

with even lower entrapment efficiencies [78, 151].

Non-ionic surfactants have been reported in literature to have an increase in paclitaxel
solubility and entrapment in vesicles [132]. This is where our system holds an enormous
advantage over other liposomal systems. Since the niosomal bilayer is formulated with
non-ionic surfactants, they provide a suitable environment for paclitaxel to reside as
compared to liposomes. This is probably the reason for the higher encapsulation

efficiency of the drug in niosomes.

It also needs to be noted that in lipid systems, there is a limit to which the surfactants can
be added, since the large hydrocarbon tail of the surfactant was believed to penetrate the
lipid bilayer leading to leakage [152]. Since the entrapment is directly related to the
amount of surfactants, this also limits the entrapment efficiencies. Also, drug-to-lipid

molar ratio higher than 3% led to the formation of precipitates of paclitaxel [153].

Niosomes do not face these problems since the bilayer is made of surfactants itself and

these vesicles were found to encapsulate very high concentrations of paclitaxel upto
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20mM with stabilities lasting over 3 months. Niosomes encapsulated with carboplatin
showed an encapsulation efficiency of 68% consistent with those reported in literature
[154]. The two drug niosome showed similar encapsulation efficiency for paclitaxel.
However, for carboplatin, the efficiency showed a slight decrease which could be due to

the rigidity of the paclitaxel containing bilayer.

Table 4.1 Encapsulation efficiencies of niosomes with various entrapped molecules

Niosome with | Niosomes with | Cocktail niosomal formulation
Paclitaxel Carboplatin
Paclitaxel Carboplatin
Encapsulation
efficiency (%) 85.04 68.24 85.01 66.33

The size distributions of niosomes encapsulated with various molecules are shown in
table 4.2. For niosomes encapsulated with paclitaxel only, the size was seen to increase
with the drug concentration. Balasubramanian et al. [152] reported that a hydrophobic or
low polarity environment leads to concentration dependent self-aggregation of paclitaxel
by forming intermolecular hydrogen bonds. Since in our system, the paclitaxel is
encapsulated in the hydrophobic bilayer of the niosome, the observation holds true in this
case as well. This aggregation is certainly the reason for the increased niosome size with

the paclitaxel concentration.
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Niosomes encapsulated with both paclitaxel and carboplatin also showed a similar trend
in the size distribution pattern with an increase with the paclitaxel concentration.
Niosomes encapsulated with carboplatin on the other hand showed only slight increase in

size with concentration.

Table 4.2 Average size distribution for various niosomes

Concentration Size Distribution (nm)
(mM)
Niosome with Niosomes with Cocktail niosomal
Paclitaxel Carboplatin formulation
2 253 257 259
5 260 262 264
10 272 268 269
15 281 283 280
20 293 298 301

The plot shown in figure 4.4 compares the release rate of two hydrophilic encapsulated
molecules, carboplatin and 5(6) carboxyfluorescein, as well as a hydrophobic molecule
paclitaxel encapsulated in the bilayer of the niosome. The site of encapsulation was seen
to have an influence over the release of the molecules. The hydrophilic molecules which
were encapsulated in the hydrophilic core had a higher release rate as compared to the
hydrophobic molecule. The addition of a hydrophobic molecule into the niosomal bilayer

increases its hydrophobicity while decreasing the permeability [78]. This creates a barrier
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for the release of the encapsulated molecule. When molecules are encapsulated into the
hydrophilic core of the niosomes it does not affect the bilayer membrane. Since the
stability and permeability of the membrane are not altered, the release would undoubtedly
be higher in this case. It needs to be mentioned that the niosomes encapsulated with 5(6)-
carboxyfluorescein showed higher release than those with carboplatin. As discussed
earlier, the release from the chitosan-niosome system depends on the mesh size of the
chitosan cross-link as well as the size of the niosome, with the slowest release observed
when their sizes were commensurate. The size of carboplatin encapsulated niosome was
much smaller (300nm) whereas those with 5(6)-carboxyfluorescein were around 800nm.
The optimum cross-link ratio for the carboxyfluorescein niosome was found to be 4:1
(data shown in chapter 3). To accommodate for the smaller sized carboplatin niosomes
the cross-link density was increased to a molar ratio of 4.5:1. The average mesh area for
this ratio was found to be 0.07 pm® which commensurate with the cross-sectional area of
a 0.3um niosome. This resulted in a lower release from carboplatin niosome as compared

to carboxyfluorescein at the same cross-link ratio.

Figure 4.5 shows the release rates of ‘one drug niosome’ encapsulated with various
concentrations of paclitaxel. Predictably, the release was observed to decrease with
concentration. As mentioned before, the presence of paclitaxel in the bilayer membrane
increases the niosomal rigidity. Rigidity restricts the swelling of the niosome thereby
decreasing its permeability. With decreased permeability the passages for the drug

diffusion decreases, thereby hampering the release of encapsulated drug from its bilayer.
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Figure 4.4 Effect of encapsulation site on the release rates. Paclitaxel encapsulated into
the bilayer of the niosome showed the slowest release since it interfered with the
membrane stability and permeability. Hydrophilic molecules, carboplatin and 5(6)-
carboxyfluorescein encapsulated into the core of the niosome had a higher release rate.
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Figure 4.5 Increasing the paclitaxel content in the bilayer of the niosome increases the
stability while decreasing the permeability of the niosomal membrane. Hence as the
concentration of paclitaxel increases the release rate decreases.
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It needs to be mentioned that although the niosome size increased with concentration, the
increase was not significant enough to be a limiting factor. The cross-link mesh
dimensions were large enough to be able to accommodate the niosomes without
significantly affecting the release. Hence, in this case the membrane permeability appears
to be the limiting factor in the release of paclitaxel. Therefore as the concentration of

paclitaxel increased in the bilayer, the release rate decreased.

Figure 4.6 shows the comparison of release rates of carboplatin from two niosomal
systems: 1) where the carboplatin was encapsulated in a single niosome; and ii) where
carboplatin was encapsulated into the ‘two drug niosome’ where the amounts of
paclitaxel content in the bilayer was varied. In all these experiments the concentration of
carboplatin was kept constant at SmM. Although the carboplatin concentration was
identical in all the cases, their release rates were dissimilar. For ‘two drug niosomes’ an
interesting phenomenon was observed. The release of carboplatin from the hydrophilic
core was dependent on the amount of the hydrophobic paclitaxel content in its bilayer.
The release decreased with increased paclitaxel content. This can be explained by the
increased stability and decreased permeability of the bilayer restricting the release rates.
It is interesting to note that varying the paclitaxel content not only affects the paclitaxel
release but also it can be used to alter the release of the encapsulated carboplatin from the
niosomal core. As expected, single drug carboplatin niosomes had a higher release rate as

compared to the multi-drug niosomal formulation.
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In order to study the release behavior of carboplatin from the hydrophilic core of the ‘two
drug niosome’, the paclitaxel content in the bilayer was kept constant while changing the
carboplatin concentration. A change in the release trend was noticed in such a case.
Paclitaxel showed a comparable release irrespective of its encapsulation in either a single
drug niosome or a multi-drug niosome (Figure 4.7A). This further goes to prove that the
release from the hydrophobic bilayer is independent of the concentration of molecules
encapsulated in the hydrophilic core. Since paclitaxel is encapsulated inside the bilayer, it
has two pathways for diffusion. It could either diffuse into the exterior of the niosome or
into the interior hydrophilic core. Since the niosome exterior consists of a salt free pH 6.0
medium, it is more hypotonic than the interior and would be the preferred pathway for
paclitaxel diffusion. Hence addition of molecules into the core does not affect the release

from the bilayer.

In this system, however, carboplatin showed an interesting trend. The release increased
with concentration (Figure 4.7B). It needs to be mentioned that although the total
percentage release was still lower than the single drug carboplatin niosome, the trend was
similar, which is, an increase in the release with concentration. This result is consistent
with our earlier results with carboxyfluorescein niosomes and is due to the osmotic
difference across the membranes. Since the niosomes were exposed to a hypotonic salt
free medium at pH 6.0, the tonicity difference between the niosome interior and exterior
caused the swelling of the niosomes, thereby increasing the permeability. With
permeability the release increases as well which is undoubtedly the reason for the

increase of carboplatin release with concentration.
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Figure 4.6 Niosomes with similar carboplatin concentrations showed different release
rates which were seen to be dependent on the paclitaxel concentration.
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Figure 4.7 Increasing the hydrophilic drug concentration was seen to have no effect on
the hydrophobic drug release (A). However, under the same conditions the hydrophilic
drug release showed an increase (B).

80



4.3 Conclusion

The results presented in this chapter illustrate that niosomes were able to encapsulate a
higher percentage of paclitaxel as compared to traditional bilayer vesicles such as
liposomes since: i) non-ionic surfactants aid in the solubility of paclitaxel and; ii)
presence of long alkyl chain of Span-60 increases the hydrophobic environment or area in
the bilayer. The permeability of the bilayer membrane decreases with the addition of
paclitaxel. This in turn provides an additional control over the release rates of the
encapsulated molecules from either its hydrophilic core or the hydrophobic bilayer.
Increase in paclitaxel concentration decreases the rates of carboplatin release in addition
to a decrease in its own release. However, addition of carboplatin in the core does not
affect the bilayer and its release followed a trend similar to niosomes with 5(6)
carboxyfluorescein as seen in chapter 3. These results demonstrate that fine control over
the release of the encapsulated drugs from the bilayer or core can be achieved by altering
the concentration of the drug in the bilayer. Hence, desired release rates can be attained
by fine tuning of the bilayer characteristics of the niosomes in the ‘Smart Packaged Drug

Delivery System’.
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CHAPTER 5 SELECTIVE DRUG DELIVERY IN VITRO USING SMART

PACKAGED DRUG DELIVERY SYSTEM

5.1 Introduction

Through the years localized and targeted delivery has proven to be more effective than
conventional methods of drug delivery. Systemic delivery has varied shortcomings.
Frequent drug dosage, fluctuations in circulating drug levels, little control over drug
release kinetics are some of the drawbacks of systemic delivery [45, 155-158]. However,
the greatest disadvantage of current chemotherapeutics is its inability to isolate cancer
cells for its preferential treatment [45, 80, 155, 156, 158]. The inability of the drugs to
distinguish between cancer and normal cells is the root cause of many of the side effects
associated with the treatment. Recent studies have shown the benefits of attaching
receptors to the drugs in the enhancement of the drug efficacy [159-160]. The receptors
are molecules that have an enhanced/preferred affinity to cancer cells while showing
lesser affinity to normal cells, thus sparing them from the harmful effects of the

therapeutics [159-160].

This chapter explores the potential of the niosome-chitosan drug delivery system in

preferential treatment in cell lines such as ovarian carcinoma and normal ovarian
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epithelial cells. Each of the cell lines were studied for their drug uptake, drug efficacy,
toxicity and their affinity to the chitosan-niosome system. This drug delivery system
holds promise not only in the controlled and localized delivery of chemotherapeutics but

it also shows potential in targeted delivery as well.

5.2 Results and Discussion

Paclitaxel conjugated with BODIPY 564/570 has been used in this study. BODIPY
564/570 is a red-orange fluorescent dye with an excitation of 564nm and emission of
570nm. Live cell imaging were obtained with a Leica TCS SP5 laser scanning confocal
microscopy through a 63 x/1.4NA or 100 x/1.4 NA (Leica Microsystems, Germany).
Confocal microscopy is a technique used for optical imaging. It works by illuminating the
specimen point-by-point thus eliminating out of field light. This enables shallow depth of
field imaging. Imaging of successive optical sections in thick samples is hence possible
through this technique. The resulting images have high contrast and resolution. This
technique is advantageous over conventional fluorescence microscopy where the whole
sample has to be illuminated thus leading to blurred images due to the interference by the

out of field light.

Confocal images of two cell lines: 1) normal ovarian epithelial (Ilow) and, ii) epithelial
ovarian carcinoma (OV2008) when in contact with the cross-linked hydrogel chitosan are
shown in Figure 5.1 Within 10 minutes of contact, chitosan was seen to accumulate

around OV2008 (ovarian cell line). This behavior was absent in Ilow (normal ovarian
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epithelial cell line). This behavior is due to the fact that chitosan is known to be highly

mucoadhesive, especially to the antigen MUC 1.

Ilow at 10min Ilow at 1hour

\

Chitosan

OV2008 4t 10min OV2008at 1hour

Chitosan

Figure 5.1 Confocal images depicting chitosan accumulation in OV2008 (ovarian
carcinoma) cells due to the affinity of chitosan to MUCI antigen over-expressed in
ovarian carcinomas. Such accumulation was not observed for Ilow (normal ovarian
epithelial) cell line. The magnification of the images is 1890x

84



MUC 1 is a tumor associated antigen that is over expressed in certain carcinomas [149].
It is a highly O-glycosylated protein where carbohydrates constitute 50-90% of the
molecular mass [163]. MUCI1, a trans membrane glycoprotein, consists of a
phosphorylated cytoplasmic tail [163] and a large extracellular domain (1000-2200

amino acids) [149] .

MUCI is expressed at low levels in the ducts and glands of simple secretory epithelial
tissues [149, 162] and is over expressed in carcinomas such as ovarian, breast and colon.
Over-expression generally correlates with metastatic potential and poor survival [163].
The over-expression of MUC 1 however can be turned into our advantage since it
provides a favorable condition for chitosan adhesion and can essentially be used in its

selective treatment.

The confocal images show the affinity of chitosan to cells where the expression of MUC
1 was high enough for the adhesion effect. Although MUC 1 is expressed in normal cells
as well, its expression is low so as not to warrant chitosan adhesion. The accumulation of
chitosan to the cells could be observed within 10 minutes. By the end of an hour, chitosan
buildup around the cells was seen to increase rapidly. In normal cells, although chitosan

could be seen in the vicinity, it was not observed to accumulate around the cells.
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OV2008 at 10min | OV2008at 1hour

OV2008at2hours OV2008at3hours

Figure 5.2 OV2008 exposed to chitosan over time. The cells did not show a change in
their morphology with time. The magnification of the images is 1890x
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Chitosan by itself does not have any adverse effect on the cells. The morphology of the
cells which were exposed to chitosan were not altered (Figure 5.2). And the cells seemed
to survive and thrive beyond 24hours. Apart from the increase in the chitosan
accumulation with time on the surface of OV2008, the cells did not seem to be critically
affected by chitosan. This is expected since chitosan is a naturally occurring biopolymer

and is biocompatible, biodegradable and not known to be toxic.

Chitosan is a safe haven for cells and it has been reported in literature that cells can
actually grow on the surface of chitosan microspheres. Chitosan microspheres have been
used in the delivery of chemotherapeutics in recent years. However, the problem
associated with such systems is that they provide a greater clearance for the transport of
drugs thus preventing its controlled delivery. This is where our drug delivery system
holds advantage since the presence of niosomes in the chitosan gel prevents the
premature release of drugs, and the presence of cross-link mesh in the chitosan network

adds an additional control by immobilizing the niosomes.

To evaluate how the system compares with the traditional route of drug administration,
the cells were exposed to the drugs alone as opposed to when they were packaged in the
chitosan-niosome drug delivery system. Figure 5.3 shows the confocal images of the
normal ovarian epithelial cell line Ilow. When the cells were exposed to the drug
paclitaxel without the chitosan-niosome packaging, the effect on the cells was almost
instantaneous. The cells were seen to be saturated with the drug within the first 10

minutes of treatment. Blebbing was seen on the surface of these cells instantaneously
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which implies the initiation of apoptosis. Within 1 hour shrinkage of the cells were
observed. By the end of 2 hours cell death was observed with shrinkage and absolute

blebbing of the cells along with condensed morphology and nuclear fragmentation.

Ilow with paclitaxel at 10min INow with paclitaxel at 1hour Tow with paclitaxel at 2hours

Ilow with chitosan-niosome-p aclitaxel §§ How with chitosan-niosome-paclitaxel How with chitosan-niosome-paclitaxel
at 10min at l1hour at2hours

Figure 5.3 Normal ovarian epithelial cells (Ilow) when exposed to: 1) 0.4 uM paclitaxel
alone and ii) chitosan-niosome-paclitaxel system containing 0.4 puM paclitaxel. The
magnification of the images is 1890x
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Ilow cells exposed to the chitosan-niosome packaged paclitaxel showed a controlled
release of the drug from the delivery system. Slight staining of the cells with the drugs

was observed within the first 10 minutes of treatment.

A quantitative analysis revealed that the intensity of paclitaxel in the cells almost doubled
in an hour and a 4 fold increase was observed within 2 hours. However it needs to be
mentioned that the intensity of paclitaxel in these cells at 2 hours were only one third of
those exposed to paclitaxel alone at 10 min. Blebbing of the cells had not initiated by the

end of the second hour although shrinking and condensed morphology had commenced.

Instantaneous cell death occurs when the cells are exposed directly to paclitaxel whereas
a slow death occurs for cells exposed to the chitosan-niosome packaged paclitaxel. One
of the reasons why the slow process is beneficial is that it would give the chitosan enough
time to attach to the ovarian cells as opposed to normal cells and assist in its preferential

treatment.

Figure 5.4 and 5.5 show the confocal images of OV2008 exposed to various
concentrations of paclitaxel packaged in the chitosan-niosome system. Cell death can be
extended to last from hours to days by decreasing the paclitaxel concentration. Three

concentrations of the drug were used for these studies: 0.4uM, 0.04uM and 0.01uM.
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paclitaxel at 2hours

0V2008 with chitosan-niosome-0.04uM

paclitaxel at 10min

0OV2008 with chitosan-niosome-0.04uM

paclitaxel at lhour

0V2008 with chitosan-niosome-0.04uM
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OV2008 with chitosan-niosome-0.01 M

paclitaxel at 10min

0V2008 with chitosan-niosome-0.01M

paclitaxel at lhour

OWV2008 with chitosan-niosome-0.01uM

paclitaxel at 2hous

Figure 5.4 Ovarian carcinoma cell line OV2008 exposed to chitosan-niosome-paclitaxel
system with varying concentrations of paclitaxel. The magnification of the images is
1890x
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With the highest concentration of 0.4uM, blebbing was seen within 3 hours. Paclitaxel
was seen to accumulate in the cytoplasm of the cell and cell shrinkage occurred within an
hour. With a tenfold decrease in the paclitaxel concentration, cell death was extended
from 3 hours to 24 hours. At the point of cell death, the intensity of paclitaxel in the cells
was almost 8 times higher in the first case (0.4puM) than in the second case (0.04 uM). It
is interesting to note that cell death occurred in the second case without saturation of the
cells with paclitaxel, suggesting that lower doses are just as effective in promoting cell
death as higher doses and the potency of paclitaxel is intact at very low doses. A further
decrease in the paclitaxel concentration to 0.01uM increased the time of cell death to 48

hours providing additional proof of the paclitaxel potency at very low concentrations.

0OWV2008 with chitosan-niosome- 0.4pM OV2008 with chitosan-niosome 0.04uM OV2008 with chitosan-niosome0.01 M
paclitaxel at 3hours paclitaxel at 2dhours paclitaxel at 48hous

Figure 5.5 Ovarian carcinoma cell line OV2008 showing cell death at different time
points when exposed to chitosan-niosome-paclitaxel system with varying concentrations
of paclitaxel. The magnification of the images are 1890x (A), 2000x (B,C)
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To investigate chitosan affinity and interaction towards specific cell lines (OV2008)
while showing no interaction to others (Ilow), Attenuated Total Reflectance- Fourier

Transform Infra-Red (ATR-FTIR) spectroscopy was employed.

ATR-FTIR spectroscopy is a surface diagnostic technique which has been utilized since
the past three decades. The infra-red beam is focused at an angle of 45°C onto the
beveled faces of the ATR crystal. The beam undergoes multiple internal reflections as it
traverses through the sample. This creates an evanescent electric field, E(z) that
permeates into the film on the crystal surface and interacts with IR-active species (e.g.,
C-Hx and N-Hx, COx or COC) in the film [164, 165]. Each reflection adds to the IR
absorbance, which results in sub-monolayer detection sensitivity to surface adsorbates

[164, 165].

Figure 5.6 A shows comparative spectra showing OV2008 cell lines, OV2008 exposed to
the chitosan in the “Smart Packaged System” and, chitosan from “Smart Packaged
System” alone. One of the main differences is that the chitosan strong vibration bands
from C-O-C compounds disappeared after being in contact with OV2008 (centered at
1100 cm-1). We believe MUCI is responsible for such dramatic change. The fingerprint
for MUCI1 is convoluted in the Amide I band (from 1600-1700 cm-1), so it cannot be
appreciated in these spectra. However, one can appreciate that the Amide I band
intensifies. Figure 5.6 B shows comparative spectra of two cell lines OV2008 and Ilow
exposed to chitosan in the “Smart Packaged System” and chitosan from “Smart Packaged

System”. The spectra seem to suggest that interaction between chitosan and OV2008
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could be through increases in the intensity and shifts in -OH peak from 3237cm'to 3357

cm™ and the Amide I peak from 1647cm™ to 1637cm™. Such changes were not observed

for the normal cell line Ilow exposed to the “Smart Packaged System” depicting a lack of

interaction with chitosan.
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Figure 5.6 Comparison between OV2008 cell lines and OV2008 cells exposed to the
“Smart Packaged Drug Delivery System”. (A); Comparison between OV2008 and Ilow
cells exposed to the “Smart Packaged Drug Delivery System” (B)

In order to test the efficiency of the system in preferential treatment in ovarian cells, the

following treatment regimen was proposed. The cell lines were each given a 15 minute

treatment after which the chitosan-niosome-paclitaxel system was removed and the cells

incubated for 5 days. Confocal images were taken for an hour on the first day and at time

points 24, 48, 51 54, 72, 75, 78 and 120 hours which are shown in figures 5.7 A and B.

In the first 15minutes of the treatment, not much change in the cell structure and

morphology were observed. Attachment of chitosan to the OV2008 cell surface could be
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seen whereas such a behavior was not observed for the normal cell line MCC3. The
intensity of paclitaxel was low in both the cell lines. In the first hour the morphology
remained unaffected. In the next 24 hours, the morphology showed a slight change with
the cells rounding up in both the cases. Cell death was observed for OV2008 in the
following 54 hours. However the MCC3 did not show much change in its morphology in
54 hours and total cell death was achieved in 78hours. OV2008 showed complete
destruction at a much faster rate than MCC3. A glance at figure 5.8 would assist in
explaining this behavior. The plot shows the average intensity of the cell lines for
different time points. The error bars represent the standard deviation (SD) at each time
point with p< 0.05 and n=15. The intensity was observed to increase within the first 15

minutes of the treatment after which a gradual decrease was observed till the 5™ day.

Another significant observation is that the intensity of paclitaxel was much higher in
OV2008 than MCC3 for all the time points. Since chitosan has an affinity for MUCI
over-expressed in ovarian carcinoma they accumulate on the surface of these cells. Hence
after the 15 minute treatment more paclitaxel was available to OV2008 than MCC3 and
this is the reason for the delayed cell death for MCC3. These results suggest that our drug
delivery system has great potential for targeted delivery and would aid in the preferential

treatment of ovarian carcinoma.
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OV2008 with chitosan-niosome 0.01pM MCC3 with chitosan —niosome 0.01pM
paclitaxel at 15min paclitaxel at 15min

OV2008 with chitosan-niosome-0.01pM MCC3 with chitosan —niosome-0.01pM
paclitaxel at 24hours paclitaxel at 24hours

Figure 5.7 A Ovarian carcinoma OV2008 and normal ovarian epithelial MCC3 cell lines
exposed to 15 minutes of treatment. Time points of 15minutes and 24 hours are shown
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OV2008 with chitosan-niosome-0.01pM - _ MCC3 with chitosan —niosome-0.01pM
paclitaxel at S4hours & paclitaxel at S4hours

MCC3 with chitosan —niosome-0.01pM
paclitaxel at 78hours

Figure 5.7 B Ovarian carcinoma OV2008 and normal ovarian epithelial MCC3 cell lines
exposed to 15 minutes of treatment showing cell death at different time points. The
magnification of the images is 2000x
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Figure 5.8 Plot showing intensity of paclitaxel in the cell lines OV2008 and MCC3 after
they were each given a 15 minute treatment with chitosan-niosome-paclitaxel system (0.1
uM paclitaxel with a fluorescence probe). The error bars represent the SD at each time
point with p< 0.05 and n=15.
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5.3 Conclusion

From the results described in the previous section it can be safely concluded that chitosan
has high affinity towards ovarian carcinoma cell lines (OV2008) but not to normal cells
(Ilow and MCC3). Confocal imaging showed that chitosan accumulated around OV2008
within 10 minutes of application of the ‘Smart Packaged Drug Delivery System’ and its
buildup around the cells increased with time. Quantitative analysis of the fluorescence of
paclitaxel conjugated with BODIPY® 564570 on OV2008 and MCC3 cells after 15
minute treatment showed that the intensity of paclitaxel- BODIPY® 564570 conjugate
was significantly higher in OV2008 than MCC3 for all the time points. This proves that
there is a preferential affinity of the ‘Smart Packaged Drug Delivery System’ to ovarian
carcinoma cells (OV2008) than to normal epithelial cells (MCC3). Hence, this system

can be exploited for preferential treatment to cancer cells.
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CHAPTER 6 TOXICITY AND RELEASE STUDIES OF THE ‘SMART

PACKAGED SYSTEM’ IN VIVO

6.1 Introduction

The previous chapters have shown the efficiency of the drug delivery system in cell free
system as well as in ovarian carcinoma and normal cell lines. The ‘smart packaged
system’ was shown to be biocompatible and non-toxic to the cells. Further, results
showed that the system could be manipulated to meet the dosage requirements. Cross-
link mesh dimensions as well as the niosome packaging ratio contributed to the ability to
fine tune the system for dosage requirements. What needed to be done next was to test
the feasibility of the system in vivo. This chapter focuses on the rheological behavior of
the ‘smart packaged system’ in solution, in addition to its toxicity and release rates in
vivo. The gelling behavior as well as the release characteristics were examined in this

chapter and were compared to the previous results.

6.2 Results and Discussion

The gelling behavior of the thermo-responsive chitosan-niosome drug delivery system

becomes highly essential when considering the practicality of the system for use in live
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animals. The gelling behavior would determine whether the drug delivery system would
stay at the tumor site or be cleared away by the blood stream. To study the gelling
behavior, rheological measurements were made. These measurements of chitosan are
shown in figure 6.1. These studies were carried out on a TA Instruments rheometer
(model number AR 2000). The variation in storage modulus was recorded as a function
of time at 37°C. The frequency was set at 1Hz and the acquisition rate was set at one

point per 10 s.

The increase in the storage modulus, G’, indicates higher resistance to flow because of
the immediate phase transition of liquid chitosan-  glycerophosphate to solid gel. The
first plot represents the behavior for up to 10 min at constant shear rate. We observe that
initially the storage modulus (G’) slowly increases, and after 1.8 minutes the system
shows dynamic arrangements as we try to shear the hydrogel (reptation-like flow). This
behavior is classic and predictable in polymer melts or gels. The second plot in figure 6.1
is a zoom-in of the first when the maximum G’ value is about 200 Pa (red points in figure
6.1). It was noted that the increase in G’ starts immediately after a shear stress is induced.
The time scale in our formulation to reach a G’= 200 Pa corresponds to 84 seconds. This
is a huge improvement over the data reported from previous works (Ruel-Gariepy et al
[166]) which showed that it would take about 8-10 minutes for the chitosan formulation
to start gelling and inducing a resistance to flow, and it takes about 60 min to reach a G’
of 180 Pa. In addition, we also corroborate that with a steep increase in the slope, at about

18 s, the gelation process happens immediately.
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Figure 6.1 Storage modulus as a function of time for chitosan formulation at 37°C (body temperature)
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The first plot in figure 6.2 shows that there are two different regions of flow for the
niosomes-chitosan system. It was observed that within seconds of applying a constant
shear rate at 37°C, the system with niosomes embedded in chitosan showed a large
storage modulus, G’, which was much larger than that reported in literature by Ruel-
Gariepy et al [100, 166]. One flow pattern has a rapid increase at very short times, less
than 18 s, and then a low slope increase until about 8 min, followed by a rapid increase
on the storage modulus that surpasses the chitosan alone system. The low slope increase
confirms that the niosomes do not influence the gelation process. Rather, the presence of
niosomes adds an additional traction to mobility indicating an instant locking of the
niosomes in the chitosan gel. The inset shows how within 18 s of shearing, a storage
modulus of 570 Pa was attained which was much higher than 160 Pa, which is the

maximum value achieved by Ruel-Garipy et al [166]system after 60 min.

Rheological measurements were also made with our chitosan system and liposomes
prepared according to the procedure in Ruel-Gariepy [166]. Figure 6.3 shows the storage
moduli values as a function of time for the chitosan-niosome and chitosan-liposome
systems, and for chitosan alone at 37°C and constant frequency (1 Hz). Conversely to the
behavior found in the chitosan-niosome system, the chitosan-liposome system does not
show the expected abrupt change in the slope. Instead, it follows similar general trends
as presented in Ruel-Gariepy [166]. The values of G’, when liposomes are present are
lower than the values of G” when niosomes are embedded in chitosan (figure 6.3). This is
an indication of certain intermolecular interactions interfering with the chitosan

crosslinking process induced by liposomes, which results in a fluid-like behavior and
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prevents the formation of the mesh network. The reason for this behavior is that
liposomes are made of ionic surfactants and the charges would prevent the formation of

the links within the chitosan mesh.
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Figure 6.2 Rheology measurements showing the comparison between a chitosan-
niosome system vs. chitosan gel alone. The niosome concentration is SmM and the
packaging density is 0.15:1

Our chitosan system is designed to act much faster and it is more stable than the chitosan
system presented by Ruel-Gariepy et al. [166]. The values of storage modulus are
relatively higher than that of the chitosan-liposome system in the reference. However, the

chitosan does not completely gel even after 30 min of shearing at constant T (37°C) and

shearing velocity (1 Hz) (Figure 6.4). This is a direct indication that the liposomes
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interfere with the chitosan network, whereas the niosomes do not show such interaction.

The results above suggest that the gelling of the chitosan-niosome system is very rapid

and occurs within a few seconds and the presence of niosomes increases the storage

modulus in the initial time periods resulting in rapid gelling. These results show a huge

potential for the ‘Smart Packaged Drug Delivery System’ to be feasible in vivo. These

finding are discussed in the next section.
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Figure 6.3 Storage modulus vs. shearing time for chitosan-niosome system (m), chitosan-
liposome system (x), and chitosan alone (0) at 37°C and 1Hz. Insert shows the storage
modulus for 1.4 min at 37°C and 1Hz
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Figure 6.4 Storage modulus vs. shearing for 30 min at 37°C and 1Hz

Toxicity and release kinetics in vivo: For the in vivo studies, 8 week old female mice
(Strain: FVB/NJ) were chosen because of their short life span and fecundity. They have
higher than average activity, anxiety, basal body temperature and low stress-induced
hyperthermia. Although FVB/NJ typically does not develop spontaneous tumors, they are
highly susceptible to chemically induced squamous cell carcinomas with a high rate of
malignant conversion from papilloma to carcinoma. The average weight of the mice was
20grams. The hair was removed from the abdomen area of the mice so as to facilitate its

imaging using Xenogen.
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Xenogen is a high-sensitivity, low noise, non-invasive light imaging technique that is
capable of imaging bioluminescence and fluorescence in living animals. It consists of a
light imaging chamber coupled to a highly sensitive CCD camera system which is cooled
to -95°C. The CCD camera is sensitive enough to be able to quantify single-photon
signals emanating within the tissue of the living animal. It is useful in the visualization
and tracking of cellular and genetic activity within a living organism. Xenogen is
connected to an integrated isoflurane gas manifold that provides temporary anesthesia to
the mice during the imaging process. It has the capability of imaging five mice

simultaneously.

The ‘Smart Packaged Drug Delivery System’ was injected subcutaneously into the right
flank of the mice after they were anesthetized in the isoflurane chamber. The system was
inspected for gelling. Gelling of the system occurred within twenty seconds of the
injection and could be seen as a bulge on the flank. This result is comparable with the

previous results where the gelling time was 18 s.

The ‘Smart Packaged Drug Delivery System’ was observed to be non-toxic and the mice
survived for months after subcutaneous injection of the drug delivery system. In vivo
images obtained through Xenogen are shown in figure 6.5. Imaging was done for 14 days
with images collected every 10 minutes for the first 100 minutes after which they were

collected every hour for the next 9 hours and subsequently every 24 hours for 14 days.
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The image shows the release of the fluorescent dye from the injected chitosan-niosome
system which appears as a bolus in the abdomen area. From time points 1 to 100 minutes
the dye had spread from an area of 1.02cm? to 1.44cm’ and a subsequent decrease in the

intensity of the bolus was noticed.

A quantitative analysis of the intensity was performed using the Living image 3.1
program. Intensity decreased with time showing the release of the dye from the chitosan-
niosome bolus. With time the bolus decreased in size indicating the degradation of the
chitosan gel. Table 6.1 shows the decrease in size with time. By 312 hours (13 days) the

size was not measurable and is an indication of complete chitosan degradation.

Table 6.1 Change in the size of the chitosan-niosome bolus with time

Time(hours) 0 6 24 48 72 96 192 312

Size (cm) 2.01 1.97 1.51 1.02 0.74 0.38 0.05 -
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Figure 6.5 In vivo images obtained through xenogen showing the dye release. The first
scan is at 1 min. Release rate was captured by measuring the fluorescence intensity with
flow of time (5 minute interval)
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Figure 6.6 Release rate dependence of drug on the packaging density of the chitosan-
niosome system in mice. Each point represents the mean + standard deviation with n=3

Two parameters of the chitosan- niosome system were varied for in vivo studies: the
packaging density and the cross-link density. Figure 6.6 shows the release rate of the dye
obtained by varying the packaging density. Packing densities from 0.15:1 to 0.35:1 molar
ratios were used for this study. The release trend was similar to the in-vitro studies with
higher percentage release observed for greater niosome: chitosan ratios. Optimum value
was obtained at 0.25:1 (finest controlled release), which shows a slight deviation from in

vitro studies. The release in this case is a result of both diffusion through the niosomes
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and also niosomal bursting due to osmotic difference (when the niosomes are exposed to
body fluids as a result of chitosan degradation). This could be the reason for the deviation
of the optimum from the in vitro results. Depending on the packaging density, 40 - 80%
of release occurred within 24 hours, after which, the dye was released steadily. By the
13th day, 95% of dye was released. This is a huge improvement over the release rates
reported in literature where 90% of the drug was released within the first 24hours (T.

Yang et al. 2007).
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Figure 6.7 Release rate dependence of drug on the cross-link density of the chitosan-
niosome system in mice. Each point represents the mean + standard deviation with n=3
Cross-link density of the chitosan formulation was altered to evaluate its effect on the
release.
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Figure 6.7 shows the percentage released from the chitosan-niosome drug delivery
system. The results indicate a trend similar to that observed in the in vitro studies with the
cross-link molar ratio of 4:1 showing the slowest controlled release. As discussed earlier
the size of the niosomes and the chitosan cross-link mesh was commensurate at this ratio.
The local structure or compactness of the chitosan gel affects the release from the system
with ‘looser’ mesh structure leading to greater clearance of the drugs and hence a higher
release. An optimum is obtained when the sizes of the niosomes and the chitosan mesh
are similar and each niosome is embedded into a single mesh. Although the release rates
in vitro could be observed well after 55 days, the release in vivo was much faster with
complete release occurring in two weeks. However, this release is still a huge
improvement over the reported release times with similar systems where majority of the

drugs were released within the first 24 hours.

6.3 Conclusion

Mice studies proved that the system is feasible in in vivo and has a great potential for
controlled drug delivery. Gelling of the chitosan-niosome system is very rapid which
would prevent the premature release of the encapsulated molecule. Release rate can be
controlled to last from 24 hours to 14 days by fine tuning the chitosan or niosome

parameters.
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CHAPTER 7 SUMMARY AND CONCLUSIONS

The results presented in this work illustrate that the ‘Smart Packaged Drug Delivery
System’ has great potential to provide control over the drug release rates by fine tuning
either of its components i.e. chitosan/ niosome or a combination of both. Release rates
can be controlled to last from 24 hours (1 day) to more than 1320 hours (55 days)
depending on the conditions to which niosomes are exposed. Exposing naked niosomes
themselves to solutions of low tonicity resulted in an absolute release within 144 hours (6
days) whereas the addition of chitosan to the system resulted in a controlled release for
more than 55 days. Dye concentration and size, chitosan molecular weight, cross-link
density, packaging density are some of the characteristics that can be altered so as to
obtain release rates as desired. The finest controlled release was obtained with medium
molecular weight chitosan with a cross-link ratio of 4:1 (B-glycerophosphate: chitosan)
and a packaging ratio of 0.35:1 (niosome: chitosan). Further it has been shown that
niosomes were able to encapsulate a higher percentage of paclitaxel as compared to the
traditional liposomes since non-ionic surfactants aid in the solubility of paclitaxel. The
permeability of the bilayer membrane decreased with the addition of paclitaxel. This in
turn affected the release rates of the encapsulated molecules either in its hydrophilic core
or the hydrophobic bilayer. Increase in the paclitaxel concentration decreased the rates of

carboplatin release in addition to a decrease in its own release. In vitro studies showed
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that chitosan has affinity towards ovarian carcinoma cell lines (OV2008), but not to
normal cells (Ilow and MCC3). Confocal imaging showed that chitosan accumulated
around OV2008 within 10 minutes of application of the ‘Smart Packaged Drug Delivery
System’ and its buildup around the cells increased with time. Quantitative analysis of the
fluorescence of paclitaxel conjugated with BODIPY® 564/570 on OV2008 and MCC3
cells after 15 minute treatment showed that the intensity of paclitaxel- BODIPY®
564/570 conjugate was much higher in OV2008 than MCC3 for all the time points. This
proves that there is a preferential affinity of the ‘Smart Packaged Drug Delivery System’
to ovarian carcinoma cells (OV2008) than to normal epithelial cells (MCC3). Hence, this
system can be exploited for preferential treatment to cancer cells. Toxicity studies proved
that the system is feasible in in-vivo and has a great potential for controlled drug delivery.
Gelling of the chitosan- niosome system is very rapid (18 s) which would prevent the
premature release of the encapsulated molecule. Further, release rates could be controlled

to last from 24 hours to 14 days by fine tuning the chitosan or niosome parameters.

Hence, this design strategy, due to its ability to be tailored according to the need at hand,

can be extended to include a wide variety of applications from administration of labile

drugs to localized drug delivery for ovarian cancer and brain tumors.
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CHAPTER 8 FUTURE DIRECTIONS

The ‘cocktail niosomal formulation’ can be employed to include a wide variety of
hydrophobic and hydrophilic drugs. Another combination that will be significant in future
studies is to encapsulate triciribine and carboplatin. Prolonged chemotherapy regime
leads to resistance of cells to drugs resulting in ineffective treatment. Latest studies
indicate that triciribine prevents this behavior by disrupting a specific signaling pathway
associated with chemo-resistance and cancer cell survival in ovarian cancer [51]. Hence
using these drugs in combination in the niosomal formulation would ensure prolonged
administration of the cancer drug carboplatin with reduced chances of developing cell
resistance. The present research examined the effect of ‘Smart Packaged Drug Delivery
System’ on cell lines using one drug niosome. An extension of this work would be to
study the effect of the system on cell lines containing ‘cocktail niosomes’. This
technology can further be examined in various carcinoma cell lines. Another possible
area for future investigation involves characterization of the ‘Smart Packaged Drug
Delivery System’ in vivo in mice tumor models. ‘Smart Packaged Drug Delivery System’
containing either ‘cocktail niosomes’ or one drug niosome can be utilized here employing

either subcutaneous or intraperitoneal tumors.
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