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Computer-Aided Modeling of Controlled Release through Surface Erosion

with and without Microencapsulation

Stephanie Tomita Wong

ABSTRACT

Predictive models for diffusion-controlled particle dissolution are important for designing

advanced and efficient solid products for controlled release applications. A computer-aided

modeling framework was developed to derive the effective dissolution rates of multiple particles

as the solid surface material eroded gradually into the surrounding liquid phase. The

mathematical models were solved with numerical methods using the computational software

MATLAB. Results from the models were imported into COMSOL Script to create three-

dimensional plots of the particle size data as a function of time. The release model found for the

monodispersed particles was manipulated to incorporate polydisperse solids, as these are found

more frequently in chemical processes. The program was further developed to calculate the

particle size as a function of time for particles encapsulated for use in controlled release. The

parameters, such as radius size, coating material and encapsulation thickness, can be altered in the

computer models to aid in the design of particles for different desired applications. Simulations

produced conversion profiles and three-dimensional visualizations for the dissolution processes.

Experiments for the dissolution of citric acid in water were performed using a reaction

microcalorimeter to verify results found from the computer models.
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Chapter 1 : Introduction

1.1 Background

Controlled release technologies are emerging as a novel solution to producing efficient

specialty products for applications extending far beyond their conventional use in medicine. The

worldwide market for controlled release materials in areas such as agriculture, food processing

and other consumer products is expected to grow to an estimated $787 million by 2012 [1].

Research and development of controlled release systems has concentrated on searching for

innovations which improve the efficiency of products while staying cost effective.

The dissolution of solid particles is frequently encountered in the chemical processing

industry and has been studied quantitatively for over a century [2, 3]. Pharmaceuticals, foods,

fertilizers, pesticides and detergents are examples of formulated solid products whose application

is reliant on the dissolution behavior [4-7]. Controlled release, the concept of sustaining or

prolonging the release of beneficial agents for a specified time is a novel approach to produce

safe and effective uses of active ingredients [8, 9 ]. In the 1960s, technology in controlled release

rapidly evolved as a solution for the application of active agents which had desired objectives

while avoiding adverse side effects [10]. Within the last decade, research in the dissolution of

solid substances has increased with the advent of sophisticated instrumentation and computer

access [11].

Mathematical models which quantitatively describe the transport mechanisms of

dissolution have many applications, including aiding in the prediction of release rate profiles,

understanding the effect of important formulation/processing parameters and optimizing

advanced delivery systems [12]. The knowledge of the fundamental factors which influence

dissolution is important for both the manufacturer and administrator of solid dosage forms [13].

Utilizing the essential models for dissolution, advanced models for controlled release can be

developed. Controlled release is used in various fields to supply an effective amount of necessary

material at a desired time and is most commonly attained using encapsulated particles [14]
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Among the most popular classifications of controlled release formulations are erodible

devices [15]. This category is defined by the release of the active agent as the carrier is eroded

away by the surrounding environment though physical processes [16]. A distinct advantage of

this device is that over time, the device disappears into the systems and no retrieval of the remains

is necessary after activation. There are two main erosion cases, surface and bulk erosion. Figure

1.1 illustrates these principal cases. In surface erosion, the solid surface degrades much faster

than the liquid intrusion into the bulk. Therefore, the resulting degradation occurs mainly on the

outer layers. In contrast, in bulk erosion, particles degrade slowly while the liquid uptake by the

system occurs rapidly. Erosion occurs throughout the particle, and is not restricted to the surface.

This paper focuses on surface erosion, in which during degradation, the physical integrity of the

particle, such as device shape or molecular weight, is maintained [17].

In this work, the variations in the application of controlled release devices in the fields of

pharmaceuticals, foods and pesticides will be reviewed. Then, the mathematical models for

dissolution will be summarized followed by a discussion on the recent advances using computer-

aided modeling. As with any mathematical model, limitations based on the simplifying

assumptions exist, and will then be discussed. Through this examination, the need and

importance for the development of advanced models for controlled release will be demonstrated.

Surface erosion

Bulk erosion

Figure 1.1: Schematic illustration of the principle of surface and
bulk erosion [52].
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1.2 Applications

1.2.1 Pharmaceuticals

Between the 1960s and the 1970s, there was a significant movement to research and

develop microencapsulation techniques, resulting in numerous patents on microencapsulation

innovation [18]. Microencapsulation involves surrounding tiny particles with a coating, such as

spraying a polymer on a fluidized bed of solid drug particles [19]. Utilization of these coated

particles allow drug release within the human body to be controlled and distributed over a broad

time period, allowing the active agent to be absorbed continuously [19]. Controlled release of

drugs have several advantages over conventional dosage forms, such as avoiding drug release in

specific organs [19], reduced dose frequency, minimizing adverse side effects, improved

pharmacological activity and prolonging a constant therapeutic effect [20]. In traditional drug

delivery systems, such as tablets or intravenous injections, the entire dose is administered at one

time. This results in suddenly elevated, close to toxic, concentrations of the drug in the plasma

which ultimately lead to adverse reactions [21]. The short duration times require the patient to

inconveniently repeat the administration, resulting in strong fluctuating drug levels in the body.

In contrast, controlled release offer a systematic release of the appropriate drug concentration for

a sustained time period. By providing the drug only where and when it is needed, drug delivery is

more predictable and efficient [21]. Erodible devices are especially useful in pharmaceuticals as

no surgery is required to remove the device from the body after the drug is depleted [17].

1.2.2 Foods

Encapsulation developed in the food industry as a technique to protect materials, such as

food ingredients or enzymes, from moisture, heat or other harsh conditions [22]. One of the most

common applications is for the incorporation functional foods, ingredients which exhibit

functional benefits beyond basic nutrition. These ingredients can be used to impart negative

properties like taste, such as bitterness or oxidation, or physical texture, like sedimentation or

phase separation [23] . Flavors are one of the most valuable ingredients in food formulas and are

a prime example of the utilization of encapsulation. Food manufactures are often concerned with

protecting flavors, such as aroma substances which are expensive and are usually delicate and

volatile. Coating the active ingredient can enhance the stability and viability by providing

additional protection against evaporation or an undesired reaction in the food [5]. Food

manufacturers are also utilizing encapsulation in foods to mask odors and tastes, since flavor
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control is important in food quality and acceptability. Encapsulation can also be used to release

active ingredients over prolonged periods of time, reduce the loss of ingredients through cooking

processes, and separate reactive or incompatible components [5]. However, due to the high costs

of specialized manufacturing and unavailability of food-grade materials, food encapsulation

techniques have been limited and remain as area of needed research [22].

1.2.3 Fertilizers, Pesticides and Detergents

In agriculture, controlled release techniques are used to produce accurate, reproducible

and predictable rates of administration of fertilizers and pesticides. Conventionally, fertilizers

and pesticides are distributed in periodic intervals which create sharp rises in the concentration

levels. The high concentrations may cause undesirable side effects to the target site of the system

and/or the surrounding environment. Following the initial peak of the active agent, the

concentration diminishes due to natural processes such as elimination from the system,

consumption or deterioration [16]. In the case of pesticides, protection from pests is required for

extended periods of time. Sustained release can be achieved using encapsulated devices which

reduce both the amount of pesticide used as well as the number of times it must be applied to the

crop. Membrane-regulated devices are used to slowly release fertilizers and pesticides through

the erosion of the membrane. These devices can also be formulated to include compounds with

low water solubility, creating low dissolution rates, and the use of nitrogenous compounds which

are activated by microbial action [8]. Figure 1.2 shows the improved application using

controlled release compared to conventional method of delivery. As shown, the conventional

application initially surpasses toxic concentration levels and then drop over time below the

minimum effective level. In contrast, controlled release provides sustained release within the

desired concentration range [6].
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Controlled release methods are also being applied to manufacture specialized detergents.

Encapsulation is used to protect and control the delivery of fragrances and softeners to clothes as

they are being washed. Techniques for encapsulation are currently being developed which aim at

protecting volatile fragrance materials in dry environments and then releasing them when

moisture is present [24]. Automatic dishwater detergents are also being encapsulated to release

rinse aids, water softeners, and shine additives at elevated temperatures [24]. Formulated models

for controlled release for fertilizers, pesticides and detergents are important for predicting the

delivery of the active ingredients aid in the design and marketing of these products [6].

1.3 Review of Dissolution Models

Dissolution research has been developing for about a century, and since then, several

approaches have been used to evaluate the release rate and dissolution behavior of substances.

Mathematical models for dissolution have been developed to aid in design of more sophisticated

and effective solid products. The principles of the actual processes occurring at the microscopic

level must therefore be understood in order to achieve accurate dissolution models which can be

applied in controlled release research. More sophisticated modeling and analysis is necessary in

the study of the dissolution of particles, because unlike tablets, the surface area and/or shape

Minimum effective
concentration

Toxic concentration

Time

Under dosing

Overdosing

Co
nc

en
tr

at
io

n

Figure 1.2: Common active ingredient application versus controlled
release application [6].
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changes as the dissolution process proceeds. Systems where surface recedes with time, also

classified as moving boundaries problems, are solved using numerical methods [25].

1.3.1 Historical Background

The basic diffusion-controlled model for solid dissolution was developed in 1897 by

Noyes and Whitney. The equation stated that the dissolution rate is proportional to the difference

between the instantaneous concentration, C at time t, and the substances saturation solubility, .

The change in concentration, -dC/dt, can be written as

)(
dt
dC

CCk s  (1.1)

where k is the intrinsic dissolution rate constant. Generally, this expression stated that the rate at

which the solid substance dissolved in its own solution is proportional to the difference between

the concentration of the solution and the concentration of the saturated solution [26].

The equation for dissolution was expanded in 1900, when research by Erich Brunner and

Stanislaus von Tolloczko showed that the rate of dissolution depends of the surface are exposed,

the structure of the surface, the stirring rate, temperature and arrangement of the apparatus [27].

The Noyes-Whitney was modified by allowing k=k1A, where A is the surface area. The model

was expressed in Eq. (1.2).

)(
dt
dC

1 CCk s  (1.2)

Then in 1904, Brunner worked with Walther Nerst to include specific relations between the

constants [28, 29]. Based on the diffusion layer concept and Fick’s second law, the Nerst-

Brunner equation was derived by letting k1=D/(Vh), where D is the diffusion coefficient, h is the

thickness of the diffusion layer and V is the dissolution medium volume. The equation can be

written in terms of the change in concentration, such as

)(
dt
dC

CC
Vh
DA

s  (1.3)

or in terms of change in mass of solid material, M, as shown in Eq. (1.4).

)(
dt

dM
CCA

h
D

s  (1.4)
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Modeling of dissolution kinetics of solid particles in a liquid is often described using the Nerst-

Brunner equation, as the concept of a diffusion layer of liquid on the solid surface allows the

complex dissolution process to be analyzed in a tractable fashion [3].

In 1931, Hixson and Crowell developed another diffusion-controlled model for single

spherical particle dissolution under sink conditions. Hixson and Crowell expressed the surface

area in terms of particle weight, w, using the assumption that the surface area, A, was proportional

to 3/2w [30]. When this assumption is applied to Eq. (1.2), integration of the expression yields

what is known as the cubic-root law, stated as

tkww 3
3/13/1

0  (1.5)

where w0 is the initial weight of the particle and k3 is a constant. According to resulting equation,

the cubic root of the weight of the particle is linear with the slope k3, which is a property of the

solid and hydrodynamic characteristic of the release system. Hixson and Crowell derived this

equation for single or monodisperse spherical particles under sink conditions. Monodisperse

particles, which are particles with the same initial radius, undergo dissolution at same rate as

shown in Figure 1.3. The cubic-root law is the widely accepted and most commonly used

dissolution model because of its simplicity and general applicability to a wide range of particulate

studies [31].

Time Zero t(1) t(2) Dissolution or

Critical Time

Zero

Zero

Zero

Figure 1.3: Dissolution of monodisperse powder [11].
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A semi empirical expression was developed by Niebergall, Milosovich and Govan in 1963 which

related time with the square-root of the particle weight [32]. This equation was written as

tkww 2
2/12/1

0  (1.6)

Through their research, they had found that a relatively constant dissolution constant, k2, could be

found by taking the square-root of the undissolved dissolution profiles. They also suggested that

the diffusion layer thickness may have a square-root dependence on the particle size.

In 1961, Higuchi published a mathematical model which described the release of a solute

in a diffusion-controlled system. Higuchi based his analysis on the pseudo steady-state of the

kinetic release of a drug homogeneously dispersed in a planar matrix into a medium under perfect

sink conditions [33]. The model states

tKM t  (1.7)

where Mt is the dissolved material at a given time, t, and K is kinetic constant for the Higuchi

model, represented as a composite constant with dimension time-1/2. The Higuchi model agrees

well with the experimental datafor the dissolution of fine particles, under 25μm[31]. However,

given the assumptions used to derive this model, it is recommended to only be used for the initial

60% of the release curves [34].

1.3.2 Additional Considerations

Polydisperse media, characterized by a wide spectrum of particle sizes, require the

population distribution to be incorporated into the model for dissolution.

Coated particles also add to the complexity of the model. Given the diffusion coefficient,

the release rate as a function of particle size and coating thickness can be determined.

1.3.3 Computer-Aided Modeling

The increasingly complicated mathematical models for dissolution can therefore best be

solved with numerical methods implemented in computational software. The management of

variables, data import, calculations, visualization and file development involved in the

quantitative analysis can be easily handled with computer programming the models for

dissolution.

Computer-aided modeling has been an attractive tool in solving release models due to its

ability handle complex systems. A numerical solution was presented by Mauger and Howard in
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1976, in which a System 360 Continuous System Modeling Program (CSMP) was developed to

solve the Higuchi-Hiestand equations for a log-normal distribution [35]. The CSMP was used to

solve time-variant problems, where the limits of integration where zero to time t or zero to

infinity. However, after the CMSP was developed it also could be easily applied to solve

statistical populations with various limits determined by the specific population being studied, for

example, a particle-size population.

Within the last decade, computer-aided dissolution research has continued to evolve. In

2004, Frenning developed a series of FORTRAN routines to solve coupled partial differential

equations (PDEs) used to describe the drug release and dissolution processes [36]. The

FORTRAN routine, provided by The Numerical Algorithms Group in the United Kingdom,

performed special discretization using finite differences to reduce the PDEs to a system of

ordinary differential equations (ODEs). Then using a backward differentiation formula method,

the resulting ODE system was solved. The work done by Stepanek in 2004, also demonstrated

novel computer-aided design methodology for dissolution studies. Stepanek conducted a

systematic computational study which related the granule structure to dissolution behavior [7].

The effects of granule microstructure and ingredient properties were investigated and it was

discovered that the release rate could be fine-tuned to a desired release rate by controlling the

granule porosity and binder-solids ratio. In 2005, Muro-Sune et al. developed predictive models

utilizing a computer-aided modeling framework to analyze the release models of pesticide

products. The research highlighted the benefits of incorporating controlled release models into a

computer platform. This included the ability to generate and test various formulations of the

product, prior to performing the final steps experimentally [6].

Research in computer-aided release modeling suggests a continued need for the

development of predictive models. The development of computer programs which incorporate

dissolution models allows for extended analysis of complex systems, since the solutions

generated for release models can be modified for various applications. In the area of controlled

release, computer models can optimize product formulation by identifying the effects of the

physical parameters of the active ingredient and predicting the results of multiple coating layer

alternatives. These advancements invoke the possibility of running virtual (in silico) experiments

rather than physical ones. Virtual dissolution experiments can be performed quickly and have the

unprecedented advantage in that the ‘experimental’conditions can be completely controlled [7].

Advanced numerical methods are presenting new analytical short-time approximations for
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dissolution models, providing an increasingly more descriptive analysis than available from

model formulations developed previously [37].

1.4 Limitations

Despite the significant progress in the development of dissolution models, discrepancies

between theory and experimental data are still present [3]. Research has not distinguished

whether the problems originate from experimental factors or limitations in the mathematical

models. Models formulated through mathematical modeling are always based on simplifying

assumptions, which in effect, influence the accuracy of the model [38]. For example, the release

of a drug often involves two mechanisms, diffusion and dissolution. However, since the

verification of a model involving both mechanisms would be complex, mathematical models are

often simplified by modeling only dominating mechanism while ignoring the other less

predominant one [39].

Polydispersity and encapsulation further complicate the models for dissolution. In the

case of polydisperse solids, assumptions which ignore the size distributions of the particles lead

to significant errors in dissolution calculations. Heterogeneous systems, such as those with

multiple particle sizes, need special consideration in the dissolution modeling process [40]. The

incorporation of encapsulated particles into dissolution models also demands specialized

attention. In the preparation of the coated particles, it is necessary to balance the release rate with

an appropriate coating thickness. Designing an effective encapsulated particle requires

accounting for the active ingredient present, the mechanism of release, and the final fate of the

combined ingredients [41].

1.5 Purpose of Study

As previously stated, dissolution modeling has applications in a wide variety of fields,

making in an important area of research for advanced particulate technology. Historically, there

have been several classical dissolution rate expressions which have been used to interpret particle

dissolution rate phenomena, most commonly described by the Noyes-Whitney, Nernst-Brunner

and Hixson-Crowell equations. While each of these models provides insight into the dissolution

rate behavior, limitations based simplifying assumptions are still present.
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In addition, polydisperse solids and encapsulated materials significantly complicate the

existing models. For that reason, computer–aided modeling appears to be the only suitable

platform to perform such vigorous computations found in these advanced models.

The scope of this thesis involves developing a general programming code to solve

complex time-variant dissolution problems which can be modified and extended for various

applications. The computer programming development of this project was structured as follows:

1. Develop a general code using the programming platform MATLAB to solve the

dissolution model for monodisperse particles (Chapter 3).

2. Modify the code in Step 1 for monodisperse particles to account for polydisperse

particles, where varying particle size distributions are present (Chapter 4).

3. Modify the original code in Step 1 for the dissolution monodisperse particles to

account for encapsulated particles, in which two different materials are present, the

active core ingredient and the coating material (Chapter 5).

4. Combine the models developed in Steps 2 and 3 to produce a unifying program

accounting for the dissolution of polydisperse encapsulated particles (Chapter 6).

The aim of this work was to incorporate the most descriptive mathematical model for dissolution

into the interactive programming environment of MATLAB. Once this was accomplished, a

second software, COMSOL Multiphysics Script, was utilized to produce various graphs and 3D

visualizations of the dissolution processes. The results of the computer models were then

compared to the experimental results found for the dissolution of citric acid in water using a

reaction microcalorimeter in Chapter 7. This chapter compares the theoretical results to those

found experimentally, and discusses the discrepancies found. The final chapter, Chapter 8,

examines the implications of computer-aided modeling for particle design and discusses the

future work possible in this area. It was hoped that the simulations developed could be used in

facilitating the design of specialized controlled release systems, whose release profile would be

predictable and whose composition parameters could be manipulated to achieve the most optimal

design.
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Chapter 2 : Overview

2.1 General Dissolution

Mathematical models for the dissolution of solid particles involve accounting for the

complicated changes in the surface area and/or shape which occur during dissolution [3]. Solid

particles in liquids can be modeled using Nernst-Brunner type kinetics [28]:

)(
dt

dM
CCA

h
D

s  (2.1)

where M is the mass of solid material at time t, k is the dissolution rate constant, A is the area

available for mass transfer, D is the diffusion coefficient of the dissolving material, h is the

diffusion boundary layer thickness, C is the concentration and Cs is the concentration solubility.

In addition, the following considerations were used to model the dissolution of

monodisperse particles [42] :

1. The surface area of the particles changes as the particle dissolves.

2. Dissolution of all the particles in the sample contributes to the overall

concentration of the solute.

3. The diffusion boundary layer thickness has been shown to decrease for particles

below a certain size, depending on the material dissolving and the dissolution

conditions. Dissolution is modeled more accurately when the boundary layer

thickness during particulate dissolution is approximated by the particle radius.
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2.2 Governing Equations

A general mathematical model was derived from Nernst-Brunner type kinetics which

could be used to predict the theoretical time required for dissolution of monodispersed particles.

The surface area of a spherical particle is given by

24 rA  (2.2)

where r is the radius of the particle. The volume of the spherical particle is

3

3
4

rV  (2.3)

The change in volume can be written as

drrdrAdV 24 (2.4)

where dV is the change in volume and dr is change in radius. The mass of the particles is given

by

VNM   (2.5)

where M is the total mass of the particles, N is the number of particles of radius r and ρ is the 

density. Substitution into Eq. (2.1) yields

)(4
4 2

2

CCrN
r
D

dt
drrN

dt
dVN

dt
dM

s 





 


(2.6)

Cancelation of like terms gives

)( CC
r
D

dt
dr

s 


(2.7)

The concentration C can be derived from a mass balance which finds the total mass dissolved at a

given time

mmm

d

V

rNrN

V
MM

V
M

C
3

3
43

03
4

0 






(2.8)

where Md is the mass dissolved at a given time, M0 is the initial mass, M is the mass remaining,

Vm is the dissolution medium volume, and r0 is the initial particle radius. Replacing C in Eq.

(2.7) by (2.8) gives

)(
3

3
43

03
4

m
s V

rNrN
C

r
D

dt
dr 


 

(2.9)
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Rearrangement, shown in full detail in Appendix A, yields

dt
V

ND
rc

drr

m










3
4

33


(2.10)

where

3
1

4
33
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











N
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rc ms
(2.11)

Integration of differential Eq. (2.10), which describes the rate of change of the radius with respect

to time leads to

t
V

ND
k

c

cr

crc
rc

crc
drr

m
 













 

3
4

3

2
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3

1
)(

ln
6
1 1

3

33

33

 (2.12)

where

c

cr

crc

rc
c

k
3

2
tan

3

1
)(

ln
6
1 01

3
0

3
0

3 





 

(2.13)

The derived Eq. (2.12) describes the relationship of time and particle radius and will be used in

dissolution calculations. Rearranging Eq. (2.12) provides the relationship between time and

radius as shown in Eq. (2.14).

mV
ND

k
c

cr

crc
rc

c
t















3
4

3

2
tan

3

1
)(

ln
6
1 1

3

33

 (2.14)

2.3 Modeling Assumptions

As with all models, simplifications and assumptions were made in the derivation of

mathematical equations describing the dissolution of solid particles in a liquid. All particles are

assumed to be spherical in shape, where all surface area of the sphere is exposed to the liquid.

The particles are considered isotropic spheres where the geometric shape does not change. The

assumption is that the solution is well stirred, however, no convection forces are accounted for in

the model. In addition, both the solubility and diffusion coefficient are assumed to remain as

constants throughout the process.
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Chapter 3 : Monodisperse Particle Dissolution

3.1 MATLAB

MATLAB was selected as the main programming and computational platform for solving

the multiple equations involved in particle dissolution. The interactive environment of MATLAB

allowed for advanced algorithm development, management of variables, import and export of

data, numeric computation, data analysis and visualization [43]. In addition, MATLAB has the

ability to solve technical computing problems much faster than traditional programming

languages such as C, C++ or Fortran [43]. The software environment allowed codes, files and

data to be managed while performing advanced mathematical functions such as linear algebra,

statistics and numerical integration. MATLAB also supports the vector and matrix operations

needed to implement the programming code effectively.

3.2 Program Design

Computational modeling of dissolution was achieved by designing a program in MATLAB

which solved for the particle radius as a function of time as developed in Section 2. The

properties for a given substance were to be inputted into the program, which would then be used

to calculate various transport phenomena parameters, that in turn would be used to solve the

governing dissolution equation. The process is outlined in Figure 3.1 and was implemented in

MATLAB using the following algorithm:

1. First the program is started using a call function which invokes the first m-file to begin

calculations.

2. Based on temperature and properties of solute and solvent, the diffusion coefficient is

determined.
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3. The total number of particles is

calculated using the given initial

particle radius, total grams and

density of material.

4. Using the calculated values from

the previous programs, the radius at

incremented times is found using

the procedure outlined in Section 2.

5. The calculated radius at each given

time is converted to concentration

which is then changed into

conversion.

6. Finally, the results are plotted as

concentration and conversion

versus time graphs. Additional

visualization using 3D plots are

used to show the overall change in particle size over time.

The following sections will discuss the implementation of the particle dissolution problem in

MATLAB, revealing the programming code necessary for the calculations. Then the program

will be used to solve the specific problem of citric acid particles dissolving in water.

3.2.1 Starting the Program

Since this program involved running multiple subroutines, an initial call function was created

under the name of Start.m. The purpose of this m-file was to organize and sequence the

following sub-programs: The first program is DiffPart.m, which calculates the diffusion

coefficient, then the program NumPart.m calculates the total number of particles. The values

from these programs are implemented into FindRadius.m, which finds the radius at each given

time. Next, ConcConv.m converts the radius to concentration and conversion. The final

Start

Calculate diffusion coefficient

Calculate the number of particles

Find the radius
for given time

Calculate total concentration change
and total conversion

Plot results

Figure 3.1: : Program algorithm for monodisperse
particles model.
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program PrintResults.m plots the results in graphs. Once the m-file Start.m is called, the rest of

the programs are run automatically and initiated. The complete source code for the monodisperse

particle dissolution model is given in Appendix B.

3.2.2 Determination of Diffusion Coefficient for a System

The diffusion coefficient of the solid particle in the liquid solute was estimated using the

Wilke and Chang correlation [45] as shown in Eq. (3.1).














 
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)(
104.7

V

TM
D




(3.1)

M2is the molecular weight of the solvent (g/mol), T is the temperature (Kelvins), μ2 is the

viscosity of the solvent solution (centipoises), V1 is the molar volume of the solute at normal

boiling point (cm3/g mol) and φ is the association parameter of the solvent.

3.2.3 Calculation of the Number of Particles based on Mass

In general, the numbers of particles in a given sample is rarely known. This is due to the

small, sometimes microscopic, sizes of the particles being examined as well as the large sample

amounts used in experiments which drastically increase the number of particles to an amount

which is impractical to physically count. To obtain an estimated number of particles, calculations

involving the volume of the particle and sample were used.

The parameters of r0, the initial radius of the particle, MT, the total mass of sample and ρ, 

the substances density must first be defined. The total volume, VT, of the sample can then be

calculated as


1

 TT MV (3.2)

The volume of a single particle, VP, is then calculated using the initial radius and the assumption

that the particle is spherical in shape

3
03

4
rV p  (3.3)
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The number of particles, N, in the sample is then found by dividing the total volume of the

sample by the volume of a single particle as given in Eq. (3.4).

P

T

V
V

N 
(3.4)

3.2.4 Radius Relationship to Time

The expression relating the radius of the particle at a given time was derived in Section 2

and given as
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In order to solve the given equation, the value for the constant c must first be calculated using the

provided r0, initial particle radius (cm), Vm, dissolution medium volume(mL), Cs, solubility of the

solute (g/mL),and ρ, density of particles (g/cm3). The number of particles calculated earlier in

this section is then used in the equation
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to solve for the constant c.

Using the constant c, the constant of integration, k, can then be determined using the

formula
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Once the constant c and the integration constant k is found, Eq. (2.12) can be solved at various

times. The constants derived are then used in the main equation F, as shown in
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MATLAB can then be implemented to solve at various times of t for when the function F equals

zero, to calculate the radius r at the given time.
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% CALCULATION OF CONSTANT, c
%Solubility of the solute, Cs
Cs = 1.33; % g/mL
%Dissolution Medium Volume, Vm
Vm = 1; % 1 mL H2O
%Constant with respect to time, c
c =nthroot((r0.^3.-(3.*Cs*Vm)./(N.*rho*4*pi)),3);

% CONSTANT OF INTEGRATION, k
k = (1./(6*c)).*log((c.^3-r0.^3.)/(c-r0).^3.)-

(1./(sqrt(3)*c)).*(atan((2*r0+c)./(sqrt(3)*c)));

% FINAL FUNCTION RELATING TIME AND RADIUS
F=(((1./(6*c)).*log((c.^3-r.^3.)./(c-r).^3.)-

(1./(sqrt(3)*c))*(atan((2*r+c)./(sqrt(3)*c))))-k)-(((D12*N*4*pi)*t)/(3*Vm));
MATLAB code 1: Calculation of constants and insertion into dissolution function.

% Initial time to start loop
t = 0;
% Loop set from 1-100
for i = 1:100

% Assign value for time
Time(i)= t;
% Solve function for radius at each given time
CalR = fzero(@Function,r0);

% Check that calculated radius is not negative, and if it is, assign
% the particle radius to equal zero.
if CalR < 0

r(i) = 0;
else

r(i) = CalR;
end

% Update increment t
t = t + 100;
MATLAB code 2: Loop created to solve for radius at each specified time.

3.2.5 Relationship of Radius to Concentration and Conversion

The derived radii are then converted to concentration and conversion using ConcConv.m ,

making the data easier to analyze. The initial mass of the particles, M0, in group g, can be

calculated using the initial radius of the particle using the equation

3
00 3

4
rNM   (3.9)

Similarly, the mass of the particle remaining, M, at a given time t can be found using equation

3

3
4

rNM   (3.10)

Therefore, the mass of the material dissolved, Md, is can be found as the difference of the initial

mass and the mass remaining. This can be written as

MMM d  0 (3.11)
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To convert to concentration, the equation from Section 2 relating concentration to mass of

material dissolved in the dissolution medium volume is used. Concentration at a given time is

given as
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The initial concentration is defined as

mV
M

C 0
0  (3.13)

Finally the conversion X can be calculated by Eq. (3.14).

0C
C

X 
(3.14)

3.2.6 Visualization of Results

The function PrintResults.m first converts the time in seconds to time in minutes. Then

plots of concentration and conversion versus time are displayed.

3.3 An Example

The following section will used the designed program in the case study of citric acid

particles dissolving in water at room temperature.

3.3.1 Simulation Setup

For this test study, the sample of citric acid is assumed to be monodispersed particles,

indicating that the particles are uniform in shape and size. The parameters used in the simulation

are as tabulated in Table 3.1.

Table 3.1: Parameters for citric acid used in test case.
Total grams of citric acid
Density of citric acid
Molecular weight of solvent
Temperature
Viscosity of solution (solvent)
Molar volume of solute
Association parameter of solvent
Solubility of the solute
Dissolution medium volume (water)

MT

rho
M2

T
μ2

V1

Φ
Cs

Vm

= 0.1086 g
= 1.665 g/cm3

= 18.015 g/mol
= 298 K
= 0.91 centipoises
= 319.88 g/cm3∙mol
= 2.6
= 1.33 g/mL
= 1 mL
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3.3.2 Some Results

The simulation was carried out for various initial radii sizes ranging 0.05-0.20 cm. The

number of particles for each size, diffusion coefficient, constants c and k are listed in Table 3.2.

The conversion of citric acid for varying radius sizes was plotted in Figure 3.2.

Table 3.2: Results from simulation for various radii sizes for 0.10 grams citric acid.
r0 (cm) N D12 (cm2/s) C k
0.04 243 -0.0896 2.2992
0.05 125 -0.1120 1.8393
0.06 72 5.2086 x 10-6 -0.1344 1.5328
0.07 45 -0.1568 1.3138
0.08 30 -0.1792 1.1496
0.10 16 -0.2240 0.9197

As expected, the results show that for larger particle radii, the time for complete conversion

(X=1) is much longer. The slope is very steep for the particles of small radii, indicating that for

particle sizes 0.01-0.07 cm, total dissolution occurs in under 10 minutes. Using the average

radius size of 0.059 cm, the conversion versus time was found for the given amount of 0.1086g

CA, as shown in Figure 3.3. The second simulation was done for the initial radius size of r0 = 0.06

cm for temperatures of 298K, 308 K and 318K. The program produced results seen in Figure 3.4.



Figure 3.2: Monodisperse model for 0.10 grams citric acid for various radius sizes.
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Figure 3.3: Monodisperse model for 0.10 grams citric acid with initial radius of 0.059 cm.

Figure 3.4: Monodisperse model for 0.10 grams of citric acid at different temperatures.
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The graph shows that increased temperatures increase the rate of dissolution of the

particles, which agrees with thermodynamic predictions. Increasing the temperature increases the

calculated diffusion coefficient. For 298 K the diffusion coefficient is 5.2086 cm2/s, whereas at a

high temperature of 318 K the diffusion coefficient is found to be 5.5581 cm2/s.

The simulation was then run for the average particle size of 0.059 cm for varying initial

amounts. A plot, Figure 3.4, was created showing the conversion versus time for amounts of

0.02-0.50g of citric acid in 1 mL H2O at 298K.
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Figure 3.5: Monodisperse model for citric acid with different initial amounts.
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3.4 COMSOL Script

COMSOL Script was chosen as an additional scripting language for its advanced

technical computing and visualization capabilities [46]. The powerful modeling capabilities

allow for more advanced visualization of the calculated data found from the MATLAB program.

A graphical function was written in COMSOL Script which converted the radius data found in

the MATLAB into a 3D plot in a new figure display window. The first part of the program

parametrically converts the sphere of radius, r, centered at the origin. This is accomplished using

the following equations for spherical coordinates.

x = ρ cos θ sin φ (3.15)

y =ρsinθsinφ (3.16)

z = ρ cos φ (3.17)

For these equations, θ  is the azimuthal coordinate from 0 to 2π, φ  is the polar coordinate from 0 

to π and ρ  is the radius.  The parametric conversion and meshgrid are implemented in COMSOL

Script using the code seen in COMSOL code 1.

phi=0:pi/20:pi;
theta=0:pi/10:2*pi;
[Phi,Theta]=meshgrid(phi,theta);

%Next we use the parametrization above.
X=r*sin(Phi).*cos(Theta);
Y=r*sin(Phi).*sin(Theta);
Z=r*cos(Phi);
COMSOL code 1: Parametric conversion of sphere.

The radius, r, for a give time is found from the MATLAB data in the variable vector Pr.

Importing the initial radius, r0, time,t, and particle radius for at all given times, Pr, into

COMSOL Script enables the creation of 3D animations showing the change in a spherical particle

as a function of time. A sample source code for developing the animation in COMSOL Script is

given in Appendix C.
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3.5 Visualization

The data from MATLAB for the dissolution of particles with the average initial radius of

r0 = 0.059 cm was imported into COMSOL Script to create 3D visualizations of the process at

various times. The 3D plots generated are shown with the corresponding conversion versus time

graphs in Figure 3.6 for 0.10 grams of citric acid from 0 to 8 minutes.
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a)
Figure 3.6: Visualization with corresponding conversion at a) t = 0 min, b) t = 2 mins, c) t = 4 mins, d) t = 6 mins
and e) t = 8 mins.



29

b)
Figure 3.6 (Continued).
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c)
Figure 3.6 (Continued).
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d)
Figure 3.6 (Continued).
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e)
Figure 3.6 (Continued).
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a) b)

c) d)

Figure 3.7: Visualization of 3D particle at a) t = 0 min, b) t = 2 mins, c) t = 4 mins and d) t = 6 mins.

The particle is completely dissolved at about t = 7.5 mins. COMSOL Script enables the user to

visually monitor the decreasing radius size of the dissolving particle over a period of time. All

particles are assumed to be monodisperse, and so the change in a single particle is assumed to

represent the change of all the particles in the system.

3.6 Summary of Results

Several assumptions were made in developing the MATLAB code in this section. First,

the particles were assumed to be monodispersed. The initial particle radius for the monodisperse

particles was estimated using the average initial radii of all the particles. In addition, the particles

were assumed to be spherical in shape, as this greatly simplified the mathematical computations.
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Second, the diffusion layer thickness of the particle is assumed to remain constant throughout the

particle dissolution. Third, sink conditions were considered when analyzing the experimental

data in order to simplify the mathematical analysis of a changing bulk solution concentration.

Lastly, parameters used in the calculations, such as the diffusion coefficient of citric acid in water

were assumed to be constant throughout the process. Based on the Brunner’s proposed model, 

the constant k, in the equation lumps the effects of exposed surface area, rate of stirring,

temperature, structure of the surface and arrangement of the apparatus on the rate of dissolution

[34].

The results of the computer model provide a reasonable estimate for the dissolution rate

found experimentally. Calculations based on the theoretical model assume ideal conditions, such

as even exposed surface area of the particles to the solvent. These conditions are most likely not

found in reality, for instance, particles are often in contact with each other, which reduces the

exposed surface area of the particle making the process non-ideal. The assumption of

monodisperse particles also limits the accuracy of the model, since the influence of particle size

distributions are ignored. This aspect will be further explored in Chapter 4.
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Chapter 4 : Polydisperse Particle Dissolution

In the chemical processing industry, the dissolution of most solid particles in liquids

involve a wide distribution of particle sizes [2]. It has also been showed that models formulated

in terms of the average particle size can led to substantial errors in calculating dissolution

behavior [40]. The program design from Chapter 3 modeled a collection of monodisperse

spheres having an average initial particle size. This chapter will modify the existing program to

account for the polydispersity found in most solid particle populations. The results of this model

will then be compared to those previously generated.

4.1 Programming Modifications

The method used for calculating polydisperse particles followed the same program flow

as developed previously with modifications made to account for particle size distributions. The

same call function Final.m was used to initiate the same sub-routines developed before.

Modifications were made to categorize the particles into several groups based on their average

particle sizes. The program was updated to evaluate each of these particle size categories

separately, allowing for dissolution data to be found for each of the individual groups. The data

was then complied so that the overall dissolution behavior resulting from all size distributions

could be accounted for.
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The program has an algorithm

similar to the monodisperse model

developed in Chapter 3. After the

program is started, the diffusion

coefficient is calculated. Next the

number of particles in a particular size

group is calculated. Then the radius is

calculated for a given time and if

additional size groups exist, the program

is looped to recalculate the number of

particles in that given size group and

the radius is found for the same time.

After the radii for all sizes are

calculated, the concentration and

conversion for each group is found. For

a given time, the total concentration and

total conversion is found by summing

the contributions from each of the size

groups. The final plots include the

individual size group concentration

changes as well as the total

concentration and total conversion plots.

The program structure is diagramed in

Figure 4.1.

4.1.1 Calculation of Number of Particles with Varying Size Distribution

The program file PartDist.m was modified to account for the size distribution changes.

This was achieved by separating the particles into groups based on the particle radius size. Size

ranges for the groups were designated, along with a weight of particles in that size range,

indicating the percent of the total particles that were in the designated group. Groups are

assigned integer values, beginning at 1, and are designated with the variable g. For each group,

Start

Calculate diffusion
coefficient

For given size
group, calculate

number of
particles

Find the radius
for given time

Calculate total concentration change
and total conversion

If additional
size groups

exist

Plot results

Compute
concentration and

conversion for each
size group

Figure 4.1: Program algorithm for polydisperse particles
model.
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the percent size and average radius are assigned as follows: Ps(g) is the percent of particles with

radius size range in group g and r0(g) is the average radius size for particles in group g.

Next, it is necessary to calculate the volume percent of each particle size distribution in

order to find the total number of particles in each group. The percentages of particles with a

given average radius are converted to volume percents which are then used to find the percent

mass in each size distribution. First, the volume of a single particle in each group is calculated

using the average initial radius, r0(g), by

3
0 )(

3
4

)( grgV   (4.1)

where V(g) is the volume of a particle in group g. The volume percent of each size distribution,

Vp(g), is given by Eq. (4.2).

)()()( gPgVgV sp 
(4.2)

The total volume,VT, is calculated by summing the volume percents in each size distribution as

expressed as Eq. (4.3).





g

i
pT iVV

1

)( (4.3)

Time Zero Critical Time t(3) Dissolution Time

Zero

Zero

Zero

Size

rmax

rmin

Figure 4.2: Schematic illustration of polydisperse particle dissolution.
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The percent by volume, PV(g), of each size group is then given as Eq. (4.4).

T

p
V V

gV
gP

)(
)(  (4.4)

Using this percent by volume, the weight of each particle size distribution, W(g), can be found

from Eq. (4.5).

TV MgPgW  )()( (4.5)

Converting weight of each size distribution to volume, Vs(g) is achieved by using Eq. (4.6).


1

)()(  gWgVs (4.6)

Dividing the total volume in each size distribution by the volume of a single particle in the given

group gives the total number of particles, N(g). The number of particles in a given size

distribution group is given by Eq. (4.7).

)(
)(

)(
gV
gV

gN s
(4.7)

4.1.2 Calculation of Constants for All Size Distributions

After the numbers of particles in each size distribution have been calculated, the constant

c is recalculated for each group using the formula shown in Eq. (4.8).

3
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4)(
3
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0 


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







gN
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(4.8)

The integration constant k is also calculated for each group given by Eq. (4.9).
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(4.9)

The calculations of the constants for each of the size groups are implemented in the program as

shown in MATLAB code 3. The initial mass, M0(g), is calculated for each size distribution using

Eq. (4.10).

3
00 )(

3
4

)( grgM   (4.10)
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The initial concentration, C0(g), is calculated for each size distribution is given by Eq. (4.11).

mV
gM

gC
)(

)( 0
0 

(4.11)

The total initial concentration, C0T, is the sum of all size distribution as shown in Eq. (4.12).


g

i
OT gCC )(0 (4.12)

% CALCULATION OF CONSTANT,c
% Solubility of the solute, Cs
Cs = 1.33; % g/mL
% Constant with respect to time, c
% Creates loop the length of the size distribution
for g=1:length(Ps)

% Checks if the percent of the size distribution is greater than
% zero, and if so calculates the constant c
if Ps(g) > 0;

c(g) = nthroot((r0(g)^3.-(3.*Cs*Vm)./(N(g)*rho*4*pi)),3);
% If the percent in a size distribution is zero, c is assigned the
% value of zero
else

c(g) = 0
end

end
% CONSTANT OF INTEGRATION, k
% Creates loop the length of the size distribution
for g=1:length(Ps)

% Checks that the percent of the size distribution is greater than
% zero, and calculates the constant of integration
if Ps(g) > 0;

k(g) = (1./(6*c(g))).*log((c(g)^3-r0(g).^3.)/(c(g)-r0(g)).^3.)-
(1./(sqrt(3)*c(g))).*(atan((2*r0(g)+c(g))./(sqrt(3)*c(g))));

else
% Otherwise assigns the constant of integration to be equal to zero

k(g) = 0;
end

end
% INITIAL MASS OF PARTICLES IN EACH SIZE DISTRIBUTION, Mo

Mo = (r0.^3)*(4/3)*rho.*N*pi;

% INITIAL CONCENTRATION OF PARTICLES IN EACH SIZE DISTRIBUTION, Co
Co = Mo./Vm;

MATLAB code 3: Calculating constants for various size groups.

4.1.3 Determination of Radii for each Group at Specified Times

A loop in MATLAB was generated to include all size distributions groups which solved

for the radius as a function of time. The general equation for F(g), which again was solved for
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the radius, r, when it was equated to zero at a given time, t, is given by Eq. (4.13).
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(4.13)

In the MATLAB code, it was necessary to write the function groups using the variable j, since g

had previously been defined as a local variable and could not be used as a global variable.

% TIME AS FUNCTION OF PARTICLE RADIUS
F=(((1./(6*c(j))).*log((c(j).^3-r.^3.)./(c(j)-r).^3.)-

(1./(sqrt(3)*c(j)))*(atan((2*r+c(j))./(sqrt(3)*c(j)))))-k(j))-
(((D12*N(j)*4*pi)*t)/(3*Vm));
MATLAB code 4: Extended function for various size groups.

Due to the increased data size, a matrix was created including the following

)(),( gFgtPr  (4.14)

where Pr(t,g) is the particle radius of the size group g at time t. The particle radius for each group

is then used to find the mass and concentration at a given time.

% Creates loop to include all size distributions
for j = 1:length(r0) % Initial time set to zero

t = 0;
% Checks that the percent in size distribution is greater than zero
if N(j) > 0

for i = 1:100
% Assigns value for time
Time(i) = t;
% Calculates the radius at each time given
CalR(j,i) = fzero(@Function2,r0(j));
% Checks that the value of radius
check=isnan(CalR(j,i));
% If the radius value can not be found assigns zero for the mass
% and concentration
if CalR(j,i)<0 | check == 1

Pr(j,i) = 0;
M(j,i) = 0;
C(j,i) = 0;

else
% If the radius is found it assigned as the particle radius and the
% mass and concentration are calculated

Pr(j,i) = CalR(j,i);
M(j,i) = (Pr(j,i)^3)*(4/3)*rho*N(j)*pi;
C(j,i) = M(j,i)/Vm;

end
% Updates the value of t

t = t + 10;
end

MATLAB code 5: Loop created to find radius for all size groups at given time.
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% When the percent in size distribution is less than zero
else

% Creates loop which assigns zero for the values of time, particle
% radius, mass and concentration
for i = 1:100

Time(i) = t;
Pr(j,i) = 0;
M(j,i) = 0;
C(j,i) = 0;
t = t + 10;

end
end

end
MATLAB code 5 (Continued).

4.1.4 Relating Radius to Concentration and Conversion for Each Group

The mass of size group g at time t is given as M(t,g) as

)()),((
3
4

),( 3 gNgtPgtM r   (4.15)

The concentration, C(t,g), for a size group g at a given time is found by

mV
gtM

gtC
),(

),( 
(4.16)

while the total concentration of the solution, CT(t), is calculates by summing all size distributions

at each given time in Eq. (4.17).


g

i
T gtCtC ),()( (4.17)

The concentration of dissolved material, Cd(t), at a given time is found by

)()( 0 tCCtC Td  (4.18)

and the total conversion is then found by Eq. (4.19).

0

)(
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C
tC

tX d (4.19)
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4.1.5 Visualizing the Results of the Polydisperse Model

The function PrintResults.m first converts the time in seconds to time in minutes. Then

plots of concentration and conversion versus time are displayed. The first graph displays the

concentration versus time results for each size distribution.

4.2 Examples using the Polydisperse Model

The following section will use the designed program in several case studies of citric acid

particles dissolving in water at room temperature.

4.2.1 Simulation for Test Cases

First, the MATLAB code was tested to see the results of changing the particle size

distribution. The parameters used for citric acid (Table 3.1) were used in the test runs. All cases

used an initial amount of citric acid of 0.25g. Five test cases were run, each with different size

distribution shapes, as shown in Table 4.1.

Table 4.1 : Size distributions percents for five test cases.
Radius Size (cm) Test 1 Test 2 Test 3 Test 4 Test 5

> 0.04 16.67% 2.15% 34% 2.15% 34%
0.05 16.67% 13.6% 34% 2.15% 13.6%
0.06 16.67% 34% 13.6% 13.6% 2.15%
0.07 16.67% 34% 13.6% 13.6% 2.15%
0.08 16.67% 13.6% 2.15% 34% 13.6%

< 0.09 16.67% 2.15% 2.15% 34% 34%

Test 1 had an equal percents of all radius sizes, test 2 had a standard normal distribution, test 3

had a high percent of radii in the low range, test 4 had a high percent of radii in the high range

and test 5 had a U-shaped distribution. The percents were graphed to illustrate the size

distribution and the results of the conversion versus time graphs from MATLAB were plotted.
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a)
Figure 4.3: Conversion versus time graphs and radius size distributions for a) Test 1, b) Test 2, c) Test 3, d) Test
4 and e) Test 5.
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b)
Figure 4.3 (Continued).
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c)
Figure 4.3 (Continued).
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d)
Figure 4.3 (Continued).
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e)
Figure 4.3 (Continued).
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Figure 4.4: Polydisperse model for citric acid at different initial amounts.
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4.2.2 Determination of Experimental Radius Size Distribution

As part of the particle size analysis, particles are estimated to be spherical in shape so that

an equivalent spherical diameter (ESD) can be derived [47-49]. The citric acid obtained from

Fisher Chemicals had crystal geometries that were not well defined, therefore, it was convenient

to estimate the structure of the citric acid used in the experiments in terms of equivalent spherical

shape. For this analysis, the equivalent radius was defined as the radius of a sphere with equal

surface area. The measurements were made using a scanning electron microscope (Hitachi S-

800) to image the surface of the particles of citric acid. Images of six samples of < 30 particles

were taken at a magnification of 13X.

Shape Actual
Shape

Equivalent spherical
shape

Surface area of
shape

Equivalent spherical radius using equivalence by
surface area

Undefined
geometry-

Crystal Structure
SA r = (SA/π)1/2

Figure 4.5: Equivalent spherical radius.
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a)

b)

c)
Figure 4.6 : SEM and particle numbering for collection of equivalent area for six samples a)-f).
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d)

e)

f)
Figure 4.6 (Continued).
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a)

Radius Size Percent
> 0.04 11.4%

0.05 31.4%
0.06 34.3%
0.07 17.1%
0.08 5.7%

< 0.09 0 %

b)

Radius Size Percent
> 0.04 9.8%

0.05 31.7%
0.06 31.7%
0.07 22.0%
0.08 4.9%

< 0.09 0 %

c)

Radius Size Percent
> 0.04 4.8%

0.05 35.7%
0.06 40.5%
0.07 9.5%
0.08 4.8%

< 0.09 4.8%

Figure 4.7: Radius size distributions for six samples a)-f).
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d)

Radius Size Percent
> 0.04 3.0%

0.05 21.2%
0.06 35.4%
0.07 24.2%
0.08 12.1%

< 0.09 3.0%

e)

Radius Size Percent
> 0.04 5.7%

0.05 42.9%
0.06 25.7%
0.07 14.3%
0.08 8.6%

< 0.09 2.9%

f)

Radius Size Percent
> 0.04 11.1%

0.05 30.6%
0.06 27.8%
0.07 22.2%
0.08 5.6%

< 0.09 2.8%

Figure 4.7 (Continued).
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Radius Size > 0.04 0.05 0.06 0.07 0.08 < 0.09
Percent 7.7% 32.4% 32.9% 18.0% 6.8% 2.3%

Figure 4.8: Average radius size distribution of six samples using equivalent area from SEM.

4.2.3 MATLAB Output

Since the average area is not a usual measurement that would be known, this was

converted to the equivalent mass percent. This would allow the user to adjust the radius size

distribution in an experimental setup by measuring the desired mass of citric acid from a given

radius size. The equivalent mass percent of the distribution found in Figure 4.8 is given below.

Table 4.2: Average mass percent of each radius size.

Radius Size < 0.04 0.05 0.06 0.07 0.08 < 0.09
Mass Percent 2.1% 17.8% 30.9% 26.9% 15.1% 7.2%

.

By representing the distribution as a mass percent, the user simply has to multiply the

mass percent by the total initial amount of citric acid to find out how much citric acid in a given

size distribution must be used.

The mass percent is inputted into MATLAB in the NumPart.m section of the program

and the average radius for each size distribution is assigned. The program is designed to allow as

many size groups as necessary. For this example six size groups are defined.
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% PARTICLE DISTRIBUTION PERCENT AND AVERAGE PARTICLE RADIUS
% Percent of particles with radius size less than 400 um (micrometers)

Ps(1) = 0.0214;
r0(1) = 0.04; % cm

% Percent of particles with radius between the size of 401-500 um (micrometers)
Ps(2) = 0.1768;
r0(2) = 0.05; % cm

% Percent of particles with radius between the size of 501-600 um (micrometers)
Ps(3) = 0.3098;
r0(3) = 0.059; % cm

% Percent of particles with radius between the size of 601-700 um (micrometers)
Ps(4) = 0.2696;
r0(4) = 0.07; % cm

% Percent of particles with radius between the size of 701-800 um (micrometers)
Ps(5) = 0.1508;
r0(5) = 0.08; % cm

% Percent of particles with radius between the size of 801-1000 um (micrometers)
Ps(6) = 0.0716;
r0(6) = 0.1; % cm

MATLAB code 6: Assignment of mass percent for each radius size group.

The program generated for polydisperse particles was more complicated because it

involved multiple data sets for the different size groups. Therefore, three graphs were produced

to visualize the changes. The first graph, Figure 4.9, showed the concentration change in each

size group as function of time. The number of particles for each group was calculated using the

average mass percents found in the samples of citric acid and is shown in Table 4.3.

Table 4.3: Number of particles in each radius size distribution.
Initial Radius, r0 Number of particles, N
> 400 μm 5

401-500 μm 22
501-600 μm 23
601-700 μm 12
701-800 μm 5
< 900 μm 1
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Figure 4.9: Concentration versus time for each radius size group.

The second graph represented the total concentration change. This was calculated by summing

the concentration changes from each of the radius size groups.

Figure 4.10: Total concentration change of polydisperse particles.



57

Then by dividing the total concentration for a given time by the total initial concentration,

the conversion (X) of the entire system as a function of time was found.

Figure 4.11: Total conversion of polydisperse particles.

The slope of the total conversion graph using the polydisperse was noticeably less steep than the

conversion graphs produced using the monodisperse model. For radius sizes of less than 0.1 cm,

the time for dissolution to complete was also longer than for the monodisperse particle model.

4.2.4 Results for Various Initial Concentrations

The average radius size distribution was applied to calculate the conversion for initial

concentrations varying from 0.2-0.5g CA. The percent of each radius size found in Figure 4.8

was based on the equivalent area found from the SEM.

The program for polydisperse particles was run for initial concentrations of 0.02-0.50

grams of citric acid, the same as done previously for the monodisperse model. The polydisperse

model resulted in a smoother and more prolonged conversion. For example, complete conversion

of 0.10 grams of citric acid in the monodisperse model occurred at 7.5 minutes, while for the

polydisperse model, dissolution was complete in 21 minutes. The polydisperse model resulted in

an increase for dissolution time for all concentrations, as seen in Figure 4.12.
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Figure 4.12: Polydisperse conversion versus time for citric acids at different initial concentrations.
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4.3 Visualization for Multiple Particles

The COMSOL script code developed in Chapter 3 was adjusted to simultaneously output

3D graphs for particles of six different initial radius sizes. For the test case of 0.10 grams of citric

acid and the size distribution found through SEM techniques, the graphs representing the change

of radius for a polydisperse particle system produced are shown in Figures 4.13-18. The graphs

show the changes for the six size groups from the initial time of 0 minutes to 20 minutes. It can

be seen from the polydisperse results that the radius size has a significant effect on the time

required for dissolution. While the monodisperse model for 0.10 grams using an average radius

of 0.059 cm took only 8 minutes for complete dissolution, the polydisperse model using the

average size distribution has a longer dissolution time of almost 20 minutes.
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Figure 4.13: Polydisperse particle dissolution for a) t = 0 min, b) t = 2 mins, c) t = 6 mins, d) t = 10 mins e) t = 15
mins and f) t =20 mins.

a)
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Figure 4.13 (Continued).

b)
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Figure 4.13 (Continued).

c)
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Figure 4.13 (Continued).

d)
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Figure 4.13 (Continued).

e)
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Figure 4.13 (Continued).

f)
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4.4 Summary

By incorporating the radius size distribution into the MATLAB program, an increasingly

comprehensive code was generated. For every size group created, it was necessary to re-run the

initial code, produced in Chapter 3, using the radius size of the specified group. In addition, the

results from all radius size groups needed to be combined to describe the overall effect. The

polydisperse particles model provided more realistic results for dissolution, since most industrial

chemicals involve particle size distributions.

The program produced in this section also has additional benefits in optimization and

product design. By manipulating the percentages of each of the radius size distributions, the rate

of dissolution can be changed significantly, even when total initial weight remains constant. This

allows the manufacturer to determine the best radius size to use for a given application while

keeping the amount of resources used to a minimum. When a desired dissolution profile is given,

the program can be used to back-calculate what size distributions will produce the desired effect.
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Chapter 5 : Encapsulated Monodisperse Particles

Controlled release through encapsulation has been studied for use in pharmaceuticals

[17], chemicals [2], cosmetics, foods [5] and pesticides [6]. The encapsulation of citric acid has

benefits in manufacturing, storage and use. The encapsulation can increase the processing speed

of the particles and allows for more durability by hardening the outer shell. The additional layer

also protects the core citric acid material from undergoing undesired reactions during storage.

Finally, the encapsulation improves the functionality of the citric acid by controlling of the acid

release allowing for the creation products which can be tailor desired to meet the manufacturers

needs.

For simplification purposes, the encapsulated particles in this section are assumed to be

monodispersed. The core material considered is citric acid and is designated as the red material

in Figure 5.1. Glucose was chosen as a suitable coating material and is represented using the

color green. Since this application considered the dissolution in water, glucose was an

appropriate coating material because it was a water soluble carbohydrate which could be

manufactured using spray dried glucose syrup. Glucose is also an approved sweetening food

additive, making it a safe choice for use applications in the food industry. Processed citric acid

has functional benefits in pharmaceuticals, food applications, health care and detergents.

a) b) c)
Figure 5.1: Encapsulated particle a) full view b) side section view c) front section view.
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The mathematical model used to

describe the dissolution of encapsulated

monodisperse particles is similar the one

developed in Chapter 3. Since all the

particles are assumed to be initially the same

size and have the same encapsulation

thickness, the dissolution of all the particles

occurs at the same time, as seen in Figure

5.4. The encapsulation layer complicates

the model by requiring two sets of chemical

property parameters, one for the

encapsulation layer and the second for the

inner particle. Calculations for the eroding

encapsulation layer are performed first until

all of the coating is dissolved. Then the

inner particle calculations are performed in

a manner resembling the method developed

for monodisperse particle dissolution.

The concentration and conversion

must be calculated twice, once for the

encapsulation material and the second for

the inner particle material. The

concentration and conversions for both

materials will be totaled and plotted as a

function of time. The program algorithm is

shown in Figure 5.2.

Calculate diffusion coefficient for
encapsulation material

Find radius of
encapsulated particle

for given time

If encapsulated
radius < particle

radius

Find the inner particle
radius for given time

If encapsulated
radius > particle

radius

Plot results

Calculate the number of particles

Calculate diffusion coefficient for
innermost particle

Start

Calculate concentration change and
conversion for inner particle and

encapsulation

Calculate total concentration change
and total conversion

Figure 5.2: Program algorithm for encapsulated
monodisperse particles model.
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5.1 Model for Encapsulation

In this section, the program designed in Chapter 3 was extended to include calculations

for an erodible layer encapsulated around the original spherical particle. Similar assumptions on

the derivation on the dissolution kinetics were made for the layer of encapsulation, however the

program was designed to include separate calculations based on the parameters of the material

used in the coating layer. The program also had to be designed to check for when the coating

layer completely dissolved, and to begin calculations at that time for the inner particle dissolution.

Figure 5.3: Inner particle radius, r0, with encapsulation layer thickness, h, yields radius of encapsulated particle
r0enc.

5.1.1 Calculation of Diffusion Coefficient for the Encapsulated Layer

The thickness of the encapsulation layer is given as h. The radius of the encapsulated

particle, which includes the inner particle and the coating layer, is defined as

hrr enc  00 (5.1)

where r0enc is the initial radius of the encapsulation and particle and r0 is the initial radius of the

particle. Following the procedure outlined in Section 3.2, the diffusion coefficient using the

Wilke-Chang method was found for the coating material, D12enc, by
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Time Zero t(1) t(2) t(3) t(4) Dissolution or
Critical Time

Zero

Zero

Zero

where M2 is the molecular weight of the solvent (g/mol), T is the temperature (Kelvins),μ2 enc is

the viscosity of the solvent solution (centipoises), V1 enc is the molar volume of the solute at

normal boiling point (cm3/g mol) andφenc is the association parameter of the solvent for the

encapsulation material specified.

5.1.2 Determining the Radii of Encapsulated Layer

The addition of the encapsulated layer increases the complexity of the problem by

creating two separate radii which must be solved in a sequential order. The dissolution of the

outer coating is calculated first. Since the coating material differs from the particle being

encapsulated, different constants must be calculated for use in the equation to solve for the radius

at a given time. The constant c for the encapsulated material, expressed as cenc, is given by

3
1

4

3 _3
0 













enc

mencs
encenc N

VC
rc (5.3)

where Cs_enc is the solubility of the solute (g/mL) and ρenc is the density of the encapsulation

material. Using the constant cenc, the constant of integration, kenc, for the encapsulation material

can then be determined using the formula given in Eq. (5.4).

Figure 5.4: Schematic illustration for encapsulated monodisperse particle dissolution.
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The constant cenc and the integration constant kenc, for the encapsulation material are then inserted

into the main equation, Fenc, which relates the radius of the encapsulated particle, renc, to each

given time as
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The radius for the encapsulated particle, renc, is calculated using Eq. (4.24) until the

coating is completely dissolved, when renc=0. When this occurs, the program records the time at

which renc=0, and begins solving the inner particle dissolution using this as the starting time. The

procedure for solving the inner particle dissolution using the same program developed in

Chapter 3.

5.1.3 Concentration and Conversion of Encapsulation Material

The mass of the encapsulation material, Menc, at a given time t is

0
3)(

3
4

)( MNtrtM encencenc 



   (5.6)

where renc(t) is the radius of the encapsulated material at time t and M0 is the initial mass of the

particle as derived in Eq. (3.9). The mass of the encapsulated material can be converted to

concentration by

m
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(5.7)

where Cenc(t) is the concentration of the encapsulation material at time t. The initial concentration

of coating material is calculated based on the initial encapsulated particle radius using

m

encenc

enc V

Nr
C





 


 3

0

0
3
4

(5.8)

The concentration of dissolved encapsulation material, Cdenc, is found by
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The amount dissolved is used to find the conversion of the encapsulated material by applying the

definition of conversion as given in Eq. (5.10).
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5.1.4 Visualization of Results for Encapsulated Model

The function PrintResults.m first converts the time in seconds to time in minutes. Then

plots of concentration and conversion versus time are displayed. The encapsulation material and

inner particle are represented as different colors and plotted on the same graph.

5.2 Example for Encapsulated Model

The following section will used the designed program in the case study of citric acid

particles encapsulated with glucose dissolving in water at room temperature. The properties for

citric acid were assumed to be the same as given in Table 3.1 and the coating material of glucose

properties were listed in Table 5.1. The thickness of the encapsulation layer must also be

specified at this time, and is given by h. For this example, a thickness of 0.001 cm of glucose

encapsulation is considered.

Table 5.1: Parameters for glucose coating material.
Density of glucose
Molecular weight of solvent
Temperature
Viscosity of solution (solvent)
Molar volume of solute
Association parameter of solvent
Solubility of the solute
Dissolution medium volume (water)
Encapsulation layer thickness

ρ
M2

T
μ2

V1

Φ
Cs

Vm

h

= 1.54 g/cm3

= 18.015 g/mol
= 298 K
= 0.91 centipoises
= 319.88 g/cm3∙mol
= 2.6
= 0.91 g/mL
= 1 mL
= 0.001 cm

5.2.1 Simulation Setup for Encapsulation Model

The parameters for glucose were inputted into the MATLAB program in the

DiffusionEnc.m and Function2.m sections. The diffusion coefficient for the glucose
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encapsulation layer is found to be 5.67 x 10-6 cm2/sec, compared to the diffusion coefficient of

citric acid in water of 5.21 x 10-6 cm2/sec. It is important to note that the diffusion coefficient

calculated in Chapter 3 is used in this section only as an estimate for citric acid, since the solvent

properties will differ due to the glucose dissolved in the solution. Since tests had not be done to

determine the new ternary system properties, the values calculated in this section provide a

reasonable estimate of the diffusion characteristics. It was not within the scope of this project to

experimentally find the changes in the diffusion rate of citric acid in a glucose solution, however,

results from this type of investigation could significantly improve the accuracy of the model.

After the program was run, two resulting graphs were produced. The first was showed

the change of the encapsulation and inner particle concentration, shown in Figure 5.5, while the

second graph monitored the conversion of the two materials, as shown in Figure 5.6. The

encapsulation thickness is very thin in this example, so it has little effect on the release rate of

citric acid. Within the first minute, the glucose coating is completely dissolved, exposing the

inner particle. Once the water is in contact with the citric acid, dissolution occurs in a fashion

similar to the one described in Chapter 4.

Figure 5.5: Concentration versus time for encapsulation thickness of 0.0010 cm.
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Figure 5.6: Conversion versus time for encapsulation thickness of 0.0010 cm

5.2.2 Effect of Encapsulation Thickness

A similar simulation was completed for an encapsulation thickness of 0.01 cm, a 10%

increase from the thickness tested previously. The results from this run are shown in Figures 5.7

and 5.8. The results showed that the concentration of the encapsulating material dropped from

0.06 grams of glucose to 0 grams in about 4 minutes and the concentration of citric acid at this

time remained constant. After all of the glucose is dissolved, the citric acid begins dissolution

until there is no longer any citric acid is present, which occurs at around 11 minutes. Compared

to the unencapsulated particles modeled in Chapter 3, which had a total dissolution time of

around 7 minutes, the an encapsulated particle will not complete dissolution for an addition 4-5

minutes. This characteristic could be useful in designing functional particles where the activity of

the acid needs to be delayed. For food applications, postponement of acid release can prolong the

flavor enhancement of a product. In pharmaceuticals, the active ingredient may want to be

protected until it reaches a target site, such as a specific organ, before it is released. The same

control is also desired in detergents, since certain cleaning agents should not be released until a

specific time in the washing cycle.
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Figure 5.7: Concentration versus time for encapsulation thickness of 0.010 cm.

Figure 5.8: Conversion versus time for encapsulation thickness of 0.010 cm.
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5.2.3 COMSOL Visualization for Encapsulated Model

COMSOL was used to visualize the changes in radius of the particle as dissolution

proceeded. Data calculated from the MATLAB program was imported into COMSOL Script and

3D graph of the spherical particle was generated. The code was written to display the

encapsulation material in green and in the inner core particle as red.
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a)
Figure 5.9: Encapsulated particle conversion for a) t = 0 min, b) t = 1 mins, c) t = 3 mins, d) t = 5 mins, e) t = 7
mins and f) t = 9 mins.
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b)
Figure 5.9 (Continued).
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c)
Figure 5.9 (Continued).
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d)
Figure 5.9 (Continued).
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e)
Figure 5.9 (Continued).
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e)
Figure 5.9 (Continued).
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f)
Figure 5.9 (Continued).
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5.2.4 Encapsulation Thickness Effect

The thickness of the encapsulation can be modified to fit a desired release profile. To

study the effect of the glucose thickness on the delay of citric acid release, five thickness between

0.0025-0.02 cm were tested. The amount of glucose required for each test was also calculated

and could be used in determining the material demands for a specific project, perhaps aiding the

decision of the most economical design.

Table 5.2: Effect of encapsulation thickness on glucose amount and dissolution time.
h (cm) Glucose (g) Delay in Dissolution

Time of Citric Acid (mins)
0.0025 0.0133 1.5
0.0050 0.0278 2.5
0.0100 0.0602 4.5
0.0150 0.0977 6.5
0.0200 0.1407 9.0

As predicted, the increase in thickness of the encapsulation layer can significantly delay

therelease of the citric acid.  A thin layer of glucose, 0.0025 cm or 25 μm, delays the release of

citric acid by 1.5 minutes, while a thicker layer of 0.0200 cm,or 200 μm, delays the release by

almost twice that amount, giving a total dissolution time of 9 minutes. The amount of glucose

required for this increased thickness is amount 0.13 grams. The cost of this additional material

could be used to determine whether the functional design is also an economically favorable

choice.
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Figure 5.10: Effect of encapsulation thickness on the delayed conversion of citric acid.
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Chapter 6 : Encapsulated Polysdisperse Particle Dissolution

As discussed previously, substantial errors can occur when the dissolution of particles is

assumed to be monodispersed. The program developed in Chapter 5 for the encapsulated

particles can be further improved when multisized encapsulated particles are considered. This

was accomplished by combing the technique developed in Chapter 4 for polydispersed particles

with the modeling method for encapsulated particle dissolution found in Chapter 5.

6.1 Program Build Up

The methods for solving multisized particles and encapsulated particles were combined

in this design. The program would first be initialized and the diffusion coefficients would be

solved for the encapsulation and the inner particle material, following the code developed from

Eq. (3.4) and Eq. (5.2). Next, the number of particles in each size group would be determined

based on the given percents in each size distribution, similar to those found in Eqs. (4.1 - 4.7).

The radius for the encapsulated layer was calculated until all of the coating had eroded. This

calculation was

Time Zero Critical Time t(3) Dissolution Time

Zero

Size

rmax

rmin

Zero

Zero

Figure 6.1: Schematic illustration for encapsulated polydisperse particles.
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was repeated until all of the size

groups. When the encapsulation

layer completely eroded, the

program would begin calculations

for the inner particle. Again, this

was repeated for all of the size

groups present. Finally, the total

concentration and conversion for the

inner particle and encapsulation was

calculated for all size groups. The

concentration and conversion data

for encapsulation layer and inner

particle were plotted. The program

algorithm for this model is shown in

Figure 6.2.

6.1.1 Calculating Equivalent

Number of Particles

The rate of diffusion is

dependent on the concentration

gradient between the solute and

solvent. A technique similar to the

one used in Chapter 4, for

polydisperse particles, was

developed to calculate the

equivalent number of particles in

each size distribution for a specified

concentration. This equivalent

number of particles was used to

calculate the rate of dissolution

based on the total concentration gradient of the system, and then was adjusted to match the actual

size distribution.

Find radius of
encapsulated particle

for given time

If encapsulated
radius < particle

radius

Find the inner particle
radius for given time

If encapsulated
radius > particle

radius

Plot results

Calculate diffusion coefficient for
innermost particle

Start

Calculate diffusion coefficient for
encapsulation material

For given size group, calculate
number of particles

If additional
size groups

exist

Calculate concentration and
conversion for inner particle and
encapsulation for all size groups

Calculate total concentration change
and total conversion

Figure 6.2: Program algorithm for encapsulated polydisperse
particles model.
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6.2 Encapsulated Polydisperse Particle Example

For comparison purposes, a simulation for polydisperse citric acid encapsulated with

glucose was tested. The parameters for citric acid and glucose were the same as provided in

Table 3.1 and Table 5.1, respectively. The size distribution found experimentally from SEM

techniques, Figure 4.8, was used in this test run. In addition, the encapsulation layer thickness

was set to 0.0010 cm, the same as the test run completed in Chapter 5. The first graph, Figure

6.3, produced by this program shows the concentration changes for each of the size groups. The

dashed line represents the encapsulation layer and the solid line represents the inner particle. The

encapsulation results can be viewed better by zooming in on the area between 0-30 seconds,

shown in Figure 6.4. Since the encapsulation layer is small with respect to the total size of the

particle, it has virtually no effect on delaying the release of citric acid.

Figure 6.3: Concentration changes for encapsulation and inner particle for all size distributions.
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Figure 6.4: Concentration change for various size distributions.

The main difference with the polydisperse encapsulated model can be seen in the time for

citric acid to complete dissolution. In the model developed in Chapter 5, total dissolution of citric

acid occurred in about 8 minutes. For the polydisperse model, the citric acid took twice the

amount of time, about 16 minutes to complete. As would be expected based on the results found

in Chapter 4, the dissolution curve for the polydisperse model was less steep and had a much

smoother curve.
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Figure 6.5: Total concentration versus time for polydisperse encapsulated particles.

Figure 6.6: Total conversion versus time for polydisperse encapsulated particles.
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6.3 Effect of Encapsulation Thickness

For comparison purposes, an increased encapsulation layer thickness was tested to see its

effect on the release rate of the citric acid. The glucose layer was increased from 0.0010 cm to

0.01 cm. The graphs are shown in Figure 6.7 and Figure 6.8.

Figure 6.7: Increased encapsulation layer thickness for polydisperse model.

Figure 6.8: Concentration change versus time for all size distributions with increased coating
thickness.



92

Figure 6.9: Encapsulated polydisperse particle dissolution for a) t = 0 mins, b) t = 2 mins, c) t = 4 mins, d) t = 6
mins, e) t = 8 mins, f) t = 10 mins and g) t = 12 mins.

a)
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Figure 6.9 (Continued).

b)
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Figure 6.9 (Continued).

c)
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Figure 6.9 (Continued).

d)
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Figure 6.9 (Continued).

e)
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Figure 6.9 (Continued).

f)
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Figure 6.9 (Continued).

g)
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Chapter 7 : Results and Discussion

The previous chapters outlined the development of a comprehensive computer code to aid

in estimating the dissolution rates of substances for controlled release applications. While the

long term goals of such a program would be to eliminate unnecessary experimental testing, the

initial validation of the models must be completed by comparing the model results to those found

in experiments. This chapter is dedicated to examining the results found experimentally with the

simulated results found from Chapters 3-6.

Dissolution tests of citric acid in water were performed experimentally to validate the

results found in the simulation. An OmniCal Technologies SuperCRC 20-305-2.4 reaction

microcalorimeter was used was used to measure the conversion versus time. The process for

experimentally measuring the conversion with the use of a reaction microcalorimeter is outlined

in the following section.

7.1 Experimental Validation

Reaction heat flow calorimetery has been used in many technical fields from drug

discovery to process development [50-55]. Microcalorimeters are used to monitor the change in

heat which accompanies the chemical and physical processes as they undergo mechanisms such

as adsorption, dilution, dissolution, mixing or chemical reactions. Microcalorimeters measure the

heat quantity of a chemical process along with its time derivative, heat flow. Heat flow is also

proportional to the reaction rate and can be used to calculate a other reaction kinetic parameters.

The heat flow, q, measured during an experiment is proportional to the reaction rate. r.

where ΔHrxn is the heat of the reaction and V is the volume.

q = ΔHrxn∙V∙r
(11.1)
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The integration of the observed heat flow versus time curves yields the heat of reaction. The

fractional conversion can alo be obtained by using the calculated fractional area under the

temporal heat flow curve. The following equation can be used to calculate the fractional

conversion










f

t

dtq

dtq
X

0

0

(11.2)

The numerator is found by calculating the are under the heat flow curve to any time point t and

the denominator is the total area under the heat flow curve. The heat evolved and the calorimetric

response can be found by monitoring the reaction progress and measuring the enthalpic changes

of the chemical reactions.

7.1.1 Reaction Microcalorimeter Experiments

Experiments were conducted in a OmniCal Technologies SuperCRC 20-305-2.4 reaction

microcalorimeter, as shown in Figure 7.1 [51]. The reaction microcalorimeter uses a differential

scanning calorimeter (DSC) technique to measure the heat released or consumed in a sample

vessel compared to an empty reference vessel.

Figure 7.1: OmniCal SuperCRC reaction microcalorimeter.
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Reaction vessels were 16 mL screw-fit thread glass vials fit with Teflon-lined screw-

caps. The desired amount of anhydrous citric acid, obtained from Fisher Chemicals was

measured into the glass vial and was sealed. Both the vessel containing the citric acid and the

empty reference vessel were placed in the microcalorimeter for 35 minutes, allowing the system

to reach thermal equilibrium. Simultaneously, two liquid samples of 1 mL of water were

measured into two 5 mL syringes and placed into the sample barrels in the calorimeter and were

allowed to thermally equilibrate.

The microcalorimeter unit is turned on and the samples and syringe barrels were allowed

to come to thermal equilibrium with the calorimeter heat sink temperature. The microcalorimeter

operates on-line with the program software WinCRC Turbo, which is executed after the samples

have been inserted into the unit and the unit is turned on. WinCRC Turbo was used for both data

acquisition and conversion calculations. Samples were monitored until a smooth baseline in the

heat flow was maintained. The reaction was initiated by injecting the water into the vessels while

the temperature of the microcalorimeter was held at room temperature, approximately 25°C. The

internal thermal controller in the microcalorimeter held the temperature constant throughout the

process ensuring that the experiment was run under isothermal conditions. The detection and

collection of data was maintained until no changes were seen in the heat flow for at least 30

minutes. A heat flow curve was produced by measuring the heat flow from the reaction vessel in

increments of 3 samples per second, as seen in Figure 7.2. The data collected would then need to

be calibrated to account for the delay between the instantaneous heat flow evolved and the time

the thermopile sensor is able to detect the heat flow.

The process of calibration involved passing a known quantity of heat, produced by

passing a known current through a resistor, into the sample chamber of the calorimeter. The

WinCRC software then records the heat response curve. This curve is then transformed into a

square wave using the software, which allows for the response time of the microcalorimeter to be

calculated. Using the calculated response time, the software can then readjust the heat flow curve

data from the experimental reaction to account for the delays from the sensors. The new graph is

saved as a tau corrected graph. The tau corrected graph is used to calculate the fractional

conversion using the Eq. (7.2).



102

Figure 7.2: Reaction microcalorimeter heat flow and conversion graph.

The first experiment for citric acid was conducted at the same conditions as listed in

Table 3.1. The results of the simulation are shown in Figure 7.3. The experimental results do not

seem to fit any of the models for monodisperse particles with one given average radius. Instead,

the experimental data seem to be in between the results found for the average radius sizes of

range 0.05 to 0.10 cm. During the initial minutes of dissolution, the experiment closely follows

the model for the radius size of 0.05 and 0.06 cm. However, as time progresses, the time for total

dissolution is delayed and the curve appears to match the results for large particle radius sizes,

greater than 0.08 cm. This suggests that the particles used in the experiment include a range of

particle sizes, which is indeed the case, as was discovered using the SEM.

Conversion Curve

Area under Heat
Flow Curve
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Figure 7.3: Experimental data versus monodisperse model for varying initial radii.
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After establishing that the particles included a distribution of radius sizes, the

experimental results were compared to the model developed for polydisperse particles. The

distribution found through SEM, Figure 4.8, was inputted into the program for polydisperse

particles and the results were graphed along with the experimental data in Figure 7.4. For this

concentration, 0.10g citric acid in 1 mL water, the results from the polydisperse model provided a

good estimate of the dissolution time. Both the experiment and polydisperse model had an

approximate dissolution time of 15 minutes. The polydisperse model appeared to be a better fit

for the experimental data provided. For a more detailed examination, the experimental data was

plotted against both models in Figure 7.5. The noticeable difference between the models is the

final dissolution time. The polydisperse model is twice as long as predicted with the

monodisperse model and appears to have the same curve shape as found experimentally.

Figure 7.4: Experimental data versus polydisperse model for 0.10 grams of citric acid.
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Figure 7.5: Comparison of experimental data for 0.10 grams citric acid with both models.

7.1.2 Additional Experimental Tests

Following the sample run of 0.01 grams of citric acid in 1 mL of water, several additional

tests were done for concentrations below and above this amount. The results showed the limits

on the accuracy of the models for concentrations in the extreme ranges, from dilute to more

concentrated solutions. The possible explanations for the discrepancies of the models are

investigated later in this chapter.

A total of nine experiments were conducted for citric acid weights of 0.02, 0.04, 0.08,

0.10, 0.20, 0.30, 0.40 and 0.50 grams in 1 mL of water at approximately 298 Kelvin. The

experimental results were plotted in Figure 7.6. In general, increasing in the amount of citric acid

added increased the total dissolution time of the particles.
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Figure 7.6: Experimental results for different amounts of citric acid.

Next, graphs comparing each of the experimental concentrations with the corresponding results

found from the monodisperse and polydisperse models were plotted. These graph were produced

in a similar manner to the one produced for the first sample of 0.10 grams of citric acid. The

values for the experimental data for six sample data sets for concentrations of 0.2-0.20 grams of

citric acid are given in Appendix E. The different concentrations were also tested using the

monodisperse model and polydisperse model. The residuals between the experimental data and

the two models showed that the monodisperse model was more accurate for low concentrations

while the polydisperse model more accurately described the dissolution behavior at higher

concentrations.
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Figure 7.7: Comparison of experimental data for 0.02 grams citric acid with both models.

Figure 7.8: Comparison of experimental data for 0.04 grams citric acid with both models.
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Figure 7.9: Comparison of experimental data for 0.06 grams citric acid with both models.

Figure 7.10: Comparison of experimental data for 0.08 grams citric acid with both models.
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Figure 7.11: Comparison of experimental data for 0.20 grams citric acid with both models.

Figure 7.12: Comparison of experimental data for 0.30 grams citric acid with both models.
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Figure 7.13: Comparison of experimental data for 0.40 grams citric acid with both models.

Figure 7.14: Comparison of experimental data for 0.50 grams citric acid with both models.
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7.2 Interpreting Discrepancies

For concentrations of citric acid between 0.06-0.10 grams, the models for dissolution

provide a good estimate for release rate behavior. For concentrations below 0.06 grams, the

experimental data shows a faster dissolution time than predicted. For concentrations above 0.10

grams, the experimental data shows a much longer dissolution time than the models predict. This

section will look at the two main causes for these discrepancies: modeling assumptions and

experimental inaccuracies.

7.2.1 Modeling Assumptions

Numerous assumptions were made in the analytical derivation of the original model for

calculating the dissolution time of monodisperse particles, as listed in Chapter 2. Many of the

assumptions made conflict with the actual experimental setup. For instance, the particle shape

was assumed to be perfectly spherical. SEM results show that the actual citric acid particles are

not spherical and are not uniform in shape, as can be seen in Figure 7.15. Particle shape has a

significant effect on the release rate characteristics, since the rate of dissolution is dependent on

the surface area of solute exposed to the solvent. As discussed in Chapter 4, the polydisperse size

distribution was approximated using the equivalent spherical area of the particles. While a

spherical shape provides a good initial estimate, it does not accurately describe the dissolution of

particles with cylindrical, cubic or rectangular geometries.

Figure 7.15: SEM photos of non-spherical citric acid particles.

Further assumptions reguarding the size distribution also have an effect on the modeling

results. The mass percent of each of the size distributions is inputted into the MATLAB program
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and is used to back calculate the number of particles in each size group. The assumption is that

every citric acid sample tested has the same size distribution. However, it was seen in the SEM

results, in Figure 4.6, that the size distribution varied for each sample. For small sample sizes,

such as 0.02 grams, there are only a few particles and inaccuracies in predicting the number of

particles with a given radius size dramatically change the results produced.

The model for monodisperse particles utilized the concentration gradient between the

solubility of the solute, Cs, and the concentration at a given time, C, as the driving force for

dissolution. The assumption that the concentration of C around the particle is representative of

the concentration of the entire surrounding solution further implies that the system is well stirred.

However, the additional effects of stirring are not incorporated into the model. This includes

considering the agitation a stirrer would have on the system and additional convective mass

transfer effects resulting from the moving liquid. To monitor the effects of stirring, five samples

of citric acid were tested experimentally. The dissolution of the concentrations of 0.02, 0.06,

0.10, 0.30 and 0.50 grams in 1 mL of water were tested with the addition of a an electromagnetic

stir bar. The stirred dissolution experiments completed much faster than the unstirred tests and

can be seen in Figure 7.16. The results for the stirred dissolution experiment of 0.10 grams of

citric acid were plotted along with the non-stirred experimental results, monodisperse and

polydisperse model in Figure 7.17. The data for the stirred experiment showed a steeper slope

but had a final dissolution time similar to the monodisperse model. The models appeared to be a

combination of the results of stirred and unstirred experiments, which is also suggested by

research [52].

Finally, the parameters for the chemical substances are assumed to be constant which

can lead to erroneous calculations. Viscosity and temperature are assumed to be constant, which

causes the diffusion coefficient to be calculated as a constant as well. In actuality, the

temperature of the system changes because the reaction of citric acid and water is endothermic.

The decrease in temperature would have an effect on the rate of the diffusion, however that was

not considered in these models. Another influential parameter, Cs, the solubility of the solute,

was considered to be constant throughout the dissolution process. Although this was helpful in

simplifying the mathematics involved, it does not fairly represent the system, since solubility is

never constant and is highly dependent on temperature [53-54]. Simplifications made in the

derivation of the dissolution model explain some of the discrepancies seen between experimental

data and the results model predicted.
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Figure 7.16: Stirred experimental data for citric acid for different initial amounts.
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Figure 7.17: Comparison plot for stirred data using 0.10 grams of citric acid.

7.2.2 Experimental Inaccuracies

The experimental procedure and data analysis should also be considered while relating

the results to the accuracy of the models. First, the calorimetric setup used was an OmniCal

Technologies SuperCRC 20-305-2.4 reaction microcalorimeter. The reaction took place on a

micro scale, involving less than 5 mL of solvent. The small sample size made experimental

measurements difficult, especially for dilute solutions. At low concentrations, the amount of

citric acid present was minuscule, and the change in heat flow measured was very small. With

such low measurements, the limitations of the equipment could have affected the results found.

While the experiment was conducted using the isothermal setting in the calorimeter, the

initial temperatures of each of the experiments had slight variations. All experiments were

conducted at room temperature, but room temperature varied depending on the temperature of the

day the experiment was run. The tau correction, which is used to establish the corrected time of

the calorimeter, required raising the temperature of the system for an extended time, a period of

about 30 minutes. Following the tau correction procedure, the system could never return exactly

to the initial temperature, it always remained a few percentages higher than the starting

temperature. It was shown in Chapter 3, in Figure 3.4, that temperature can has a slight affect on

the dissolution time. Therefore, the variations in the initial temperatures of each of the

experimental runs should be considered.
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Reaction microcalorimeters have been used in dissolution testing by providing the heat

flow produced by a reaction with respect to time. The integration of the heat curve allows for the

determination of the conversion as a function of time. The total conversion represents the

integration of the complete heat curve generated by the reaction. Errors from this calculation can

be found at high concentrations near the solubility limit. Even in instances where the particles

have not completely dissolved, such as in cases near the solubility limit, the integration of the

complete curve would suggest 100% conversion. This implies that the DSC results always need

to be validated at high concentrations to ensure that complete dissolution is has indeed taken

place.

7.3 Encapsulated Models

At the time this project was completed, glucose encapsulated citric acid particles were not

available for testing. For that reason, it was not possible to test the encapsulated particles

experimentally to the simulated models. It was, however, possible to estimate the effects of the

glucose encapsulation layer by testing glucose concentration in water and then using the glucose

water solution to dissolve citric acid. The two step process provided an initial estimate to the

dissolution behavior an encapsulated particle might have.

For the monodisperse model an encapsulation thickness of 0.001 cm was used, which is

approximately 0.01 grams of glucose. For the polydisperse model, an encapsulation thickness of

0.016 cm was used, around 0.10 grams of glucose. The dashed lines represent the encapsulated

layer while the solid lines are the inner particle. The amounts of 0.01 grams and 0.10 grams of

glucose are graphed along with the inner particle data. The polydisperse model assumed the same

radius size distribution as found in Chapter 4. All particles were assumed to have equal

encapsulation layer thicknesses.
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Figure 7.18: Experimental results for citric acid encapsulated with 0.01 and 0.10 grams of glucose.

Figure 7.19: Monodisperse model for citric acid encapsulated with 0.01 and 0.10 grams of glucose.
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Figure 7.20: Polydisperse model for citric acid encapsulated with 0.01 and 0.10 grams of glucose.

7.3.1 Sources of Error

Comparisons of the experimental data, monodisperse encapsulated model and

polydisperse encapsulated model show similar discrepancies to the ones outlined in Section 7.1.

It also appears that for 0.10 grams of glucose, the dissolution behavior is much different than

expected. One explanation for the discrepancies is that both the monodisperse and polydisperse

model assume the glucose is a thin layer surrounding each particle. The reaction

microcalorimetry experiments conducted with 0.01 and 0.10 grams of solid particle glucose,

which has completely different surface area characteristics. The particle size distribution of the

glucose was not taken into account and therefore does not represent the size of an encapsulated

particle as assumed.

As mentioned previously, the parameters associated with the glucose-water solution and

citric acid particles were not known for the experimental conditions. Once further

experimentation is done to establish that the diffusion coefficients calculated are appropriate for

the system, more confidence can be given to the models developed.
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7.4 Comparison of Methods

The models developed in this work were primarily based chemical engineering transport

phenomena principles. The main difference between the models developed in this work with the

dissolution models reviewed in Chapter 1 is that chemical properties alone can be used to

determine the dissolution behavior of the system. For the classical Nernst-Brunner equation, Eq.

(1.2), and Hixon-Crowell cube root equation, Eq. (1.5), several constants k1 and k3 are needed to

evaluate the model. These constants are generally determined by best fitting experimental data.

)(
dt
dC

1 CCk s  (1.2)

tkww 3
3/13/1

0  (1.5)

Another difference in the model used is that it incorporates the radius of the particle in the

dissolution model, rather than only total concentration. This can be exceedingly useful in the

design of particles with radius size distributions, such as in polydisperse systems, and can not be

examined with models which consider concentration or particle weight alone.
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Chapter 8 : Conclusion

In this work, the analytical derivation for the dissolution of solid particles in liquid

solvents was formulated in mathematical terms. The structure of the program consisted of

developing a simple core structure which allowed for the particle radius size to be calculated as a

function of time. Following the design, additional levels of complexity were added to the

computational model including accounting for polydispersity of particles and encapsulation. The

comprehensive computer program from the four programs developed is shown in Figure 8.1. A

parametric study of the effects of particle size, concentration, and composition was performed to

be utilized in the development of specially design particles for controlled release.

The initial time delay in the release of the active core ingredient was observed when the

particles were encapsulated with a water-soluble compound. The dissolution rate was found to be

dependent on the particle size. Parameters associated with the composition mainly affected the

calculation of the diffusion coefficient, while concentration determined the number of particles

and also impacted the release rate characteristics. Accounting for polydispersity produced more

natural curves, which more accurately resembled the data found experimentally.

8.1 Implications

The methodology for computer-aided design of specialized particles has been developed

in this work. The program can be utilized in several design approaches. First, the simulation can

be used to predict the results of a given particle. The program can be modified to see the affect of

various parameter changes on the given particles, such as particle size or concentration.

Additionally, encapsulation options can be investigated if a delay in the release rate is desired.

The second approach, which is the inverse of the first approach, involves starting with a desired

release rate profile and manipulating the parameters and particle characteristics to determine the

type of particle which can produce the desired effect.
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Figure 8.1: Comprehensive flowsheet for all four programs developed in this work.
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Since all the computations are carried out numerically, the virtual experiments can be

carried out numerous times before the appropriate particle formulation is discovered. A variety

of particle options which meet a specified dissolution time can be compiled, and theses can then

be compared to determine the most feasible alternative based on material and manufacturing

factors.

8.2 Future Work

While the main framework for the computer program was developed, potential

improvements to the code exist. Several options can be added which expand versatility of

program and would ultimately increase the accuracy of the computations.

In the analytical derivation of the time required for dissolution, the diffusion boundary

layer thickness, h, was approximated by the particle radius. This is applicable for large particles,

where the diffusion boundary layer thickness decreases with decreasing particle radius. If the

diffusion boundary layer is constant, then the time for particles to dissolve can be modeled using

the derivation from Sertsou [42] in Eq. (8.1),
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where r is the constant diffusion layer thickness. This equation is used to describe the transition

of a constant diffusion boundary layer to a boundary layer which changes with the radius, as

derived in Chapter 2. Based on the dissolving material and dissolution conditions, both of the

expressions may be required to find the best fit to experimental data.

The program code can be further improved by adjusting the derivations to include

descriptions of non-spherical shapes, non-uniform coating, and multiple layered coating. Some

possible non-spherical geometric shapes for particles are shown in Figure 8.2. While the

assumption of perfectly spherical particles was made in the models used in this work,

incorporating the derivation additional shapes can dramatically influence the dissolution

behavior. For instance, the derivation of controlled drug release for cylindrical binary system

similar to was derived by Marentette and Grosser in [56]. Recent research conducted by Ansari

and Stepanek, [57], focused on the dissolution of granules, which are agglomerations of primary
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solid particles. Incorporation of increasingly advanced geometries can expand the applications of

the program.

Figure 8.2: Other non-spherical geometric shapes of particles.

Further improvements to the model can be made by accounting for contact of the

particles with other particles and the system container. The more contact a particle has with its

surroundings, the less surface area is exposed which affects the dissolution time, as shown in

Figure 8.3. As was seen in Chapter 7, the models for monodisperse and polydisperse particles

fall between the experimental results for unstirred and stirred solutions. If the unstirred case is

considered, then modifications on the model must be made to account for concentration of the

stagnant film surrounding the particle, which do not represent the total concentration of the

system. If the stirred case is considered, then the model must be adjusted to account for the

agitation the stirring produces, such as an increase in convective mass transfer.

The incorporation of additional equations to model the chemical parameters of the system

could also improve the results. Many of the parameters which were assumed to be constant

change throughout the dissolution process and should be more accurately described using a

function. For instance, temperature is assumed to be constant throughout the process, but the

reaction is endothermic, meaning the temperature will decrease as the reaction proceeds.

Incorporating the change in temperature would affect the calculation of the diffusion coefficient.
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The solubility of the solute is also taken to be constant, but is actually a function of temperature,

and should be written as an equation rather than inputted as a single value.

a) b)

Figure 8.3: Surface area changes between a) low concentration and b) high concentration of solid particles.

Further advancements to the existing framework of the code could potentially be

developed to simulate dissolution testing of the release of solid dosage forms for pharmaceuticals.

According to the U.S. Department of Health and Human Services Food and Drug Administration

[58], dissolution tests are usually conducted in dissolution mediums of 500, 900, or 1000 mL.

The aqueous medium used usually has a pH range between 1.2 to 6.8, with a pH of 6.8 used to

simulate intestinal fluid. The computer model developed should be tested under these conditions

to determine if the results match those found experimentally. The program should then be

adjusted to match the methods approved by the U.S. Pharmacopeia (USP) for solid dosage forms

testing. The improved program could be a valuable tool in drug development and design of the

controlled release of pharmaceutical agents. Current research suggests that controlled-release

dosage forms can significantly enhance clinical efficacy while decreasing treatment costs,

providing additional economic value over immediate-release dosage forms [59]. The initial

challenge of controlled release is the determination of the formulation for a desired release

profiles. Computer-aided design, based on the fundamental understanding of the dissolution

process, could reduce the trial and error associated with experimental prototype testing. In the

future, computer simulations could be used to optimize drug delivery systems by aiding in the

design of specialized controlled release formulations.
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Appendix A: Derivation of Dissolution of Solid Particles in a Liquid

The following mathematical model was developed by Sertsou [42] for the dissolution of

solid particles in a liquid. The paper omitted several mathematical steps for deriving the needed

equations, which are shown in this section. The equations were imperative to developing the

MATLAB code used throughout this thesis.

Dissolution of solid particles in a liquid as described by Nernst-Brunner type kinetics:

)( CCA
h
D

s 
dt

dM
(A.1)

where M = mass of solid material at time t, k=dissolution rate constant, A = area available for

mass transfer, D = diffusion coefficient of the dissolving material, and h = diffusion boundary

layer thickness. For a spherical particle, the surface area is
24 rA  (A.2)

The volume is

3/4 3rV  (A.3)

Therefore the change in volume

drrdrAdV 24 (A.4)

Substitution of (4) into (1) and substituting r for h yields
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where the total mass of the particles is VNM   , where = density, N=number of particles

of radius r. Canceling like terms gives:

)( CC
r
D

dt
dr

s 


(A.6)

The mass dissolved at any time, Md, is given as

MMMd  0 (A.7)

where M0 is the initial mass of the particles, and M = mass of the particles remaining.
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A mass balance of Md divided by the dissolution medium, Vm, gives the concentration, C
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where r0 = initial particle radius. Substituting (8) into (6) yields
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Expanding
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Dividing by ρ
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Multiply by r










m

ms

V
rNrNVCD

dt
drr )443(

3
1 33

0
(A.13)

Multiply by dt
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rearranging gives
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c is a constant with respect to time. Eq. (A.21) describes the rate ofchange of the particle’s 

radius with respect to time. Integration of the left hand side yields
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where k = integration constant. Simplifying
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Expand and rearrange
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For initial conditions where r = r0 at t =0
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Then since r = r0 at t =0
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To solve for time,
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where k = constant of integration. Applying the initial conditions of r = r0 at t= 0
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For the dissolution of large particles until the time when diffusion boundary layer thickness

begins to decrease with decreasing particle radius, the following differential equation is

applicable
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where h = an approximate constant diffusion boundary layer thickness. Integration of (14) yields

t

Vh
ND

k
c

cr

crc
rc

c

rc
dr

m





















3
4

3

2
tan

3

1
)(

ln
6

1
1

1
23

33

2

33

 (A.34)

where k1 = the constant of integration. Applying initial conditions of r = r0 at t= 0
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For cases when the diffusion boundary layer thickness is decreasing and approximated by the

particle radius,
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this corresponds to finding the root of Eq. (A.32). For cases when the diffusion boundary layer

thickness is constant, the time for particles to dissolve corresponds to
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The following is the MATLAB source code for the monodisperse particle model. The

function Start.m initiates the program to run from the command window. The resulting plots seen

after the program has completed calculations is shown at the end of this section.

1 % MONDISPERSE PARTICLE DISSOLUTION
2 % START.m 2007
3 % START calls the three subrountines in this program
4 % 1) NUMPART calculates the total number of particles
5 % 2) DIFFPART finds the diffusion coefficient
6 % 3) FINDRADIUS calculates the radius at each given time
7 % 4) CONCCONV calculates the concentration and conversion
8 % based on the radius
9 % 5) PRINTRESULTS creates table including time, conversion
10 % and concentration
11 % Plots graph of conversion and concentration versus time
12
13 global Cs D12 N r0 rho t Vm
14
15 % NUMPART calculates the total number of particles
16 NumPart
17 % DIFFPART finds the diffusion coefficient
18 DiffPart
19 % FINDRADIUS calculates the radius at each given time
20 FindRadius
21 % CONCCONV calculates the concentration and conversion based on the radius
22 ConcConv
23 % PRINTRESULTS creates table including time, conversion and concentration
24 PrintResults

1 % MONDISPERSE PARTICLE DISSOLUTION
2 % NUMPART.m 2007
3 % NUMPART calculates the number of particles
4
5 % Given parameters
6 %Initial Radius of One Particle
7 r0 = [0.06]; % cm
8 %Total Grams of Citric Acid, Mt
9 Mt = [0.1086]; % grams
10 %Density of particle, rho
11 rho = 1.665; % g/cm^3
12
13 % Calculations
14 %Total Volume of Citric Acid, Volume_CA
15 Vt = Mt*(1/rho); % cm^3
16 %Volume of One Particle, Particle_Volume
17 Vp = (4/3)*pi*r0.^3; % cm^3
18 %Number of particles, N
19 N = Vt./Vp; % particles of Citric Acid



138

Appendix B: (Continued)

1 % MONDISPERSE PARTICLE DISSOLUTION
2 % DIFFPART.m 2007
3 % DIFFPART calculates the diffusion coefficient for the particle
4 % in solution
5
6 global Cs N r0 rho t Vm
7
8 % ESTIMATION OF DIFFUSION COEFFIECENT
9 % (Properties of Gases and Liquids Reid, R.C. and Sherwood T.K)
10 % Wilke and Chang
11 % Given Parameters
12 % Molecular weight of solvent, M2
13 M2 = 18.015; % grams
14 % Temperature, T
15 Temp = 318.15; % Kelvin
16 % Viscosity of solution (solvent), v2
17 v2 = 0.91; % centipoises
18 % Molecular weight of solute, M1
19 M1 = 192.12; % grams
20 % Molal volume of the solute at its normal boiling point, V1
21 V1 = rho*M1; % cm^3/g mole
22 % Association parameter of solvent, phi
23 phi = 2.6; % recommended by Wilke and Chang for water
24 % Calculation of diffusion coefficients
25 % Mutual diffusion of solute 1 in solvent 2 at very low solute
26 % concentration (cm^2/sec), D12
27 D12 = 7.4e-8*(((phi*M2)^(1/2)*Temp)/(v2*V1^0.6));

1 % MONDISPERSE PARTICLE DISSOLUTION
2 % FINDRADIUS.m 2007
3 % FINDRADIUS creates a loop between 1-10000 seconds in increments
4 % of 100 and calculates the radius as each time. The radius
5 % is calculated using the fzero function for the equation in
6 % FinalDiss.
7
8 global Cs D12 N r0 rho t Vm
9
10 % Initial time to start loop
11 t = 0;
12 % Loop set from 1-100
13 for i = 1:100
14 % Assign value for time
15 Time(i)= t;
16 % Solve function for radius at each given time
17 CalR = fzero(@Function,r0);
18
19 % Check that calculated radius is not negative, and if it is, assign
20 % the particle radius to equal zero.
21 if CalR < 0
22 r(i) = 0;
23 else
24 r(i) = CalR;
25 end
26 % Update increment t
27 t = t + 100; end
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1 % MONDISPERSE PARTICLE DISSOLUTION
2 % FUNCTION.m 2007
3 % FUNCTION calculates the constant, c, and the integration
4 % constant, k, for the particle and the final eqaution is written as
5 % function F.
6
7 function F = Function(r)
8
9 global Cs D12 N r0 rho t Vm
10
11 % CALCULATION OF CONSTANT, c
12 %Solubility of the solute, Cs
13 Cs = 1.33; % g/mL
14 %Dissolution Medium Volume, Vm
15 Vm = 1; % 1 mL H2O
16 %Constant with respect to time, c
17 c =nthroot((r0.^3.-(3.*Cs*Vm)./(N.*rho*4*pi)),3);
18
19 % CONSTANT OF INTEGRATION, k
20 k = (1./(6*c)).*log((c.^3-r0.^3.)/(c-r0).^3.)-
21 (1./(sqrt(3)*c)).*(atan((2*r0+c)./(sqrt(3)*c)));
22
23 % FINAL FUNCTION RELATING TIME AND RADIUS
24 F=(((1./(6*c)).*log((c.^3-r.^3.)./(c-r).^3.)
25 (1./(sqrt(3)*c))*(atan((2*r+c)./(sqrt(3)*c))))-k)-(((D12*N*4*pi)*t)/(3*Vm));
26
27 end

1 % MONDISPERSE PARTICLE DISSOLUTION
2 % CONCCONV.m 2007
3 % CONCCONV calculates the concentration and conversion using the
4 % radius found in FINDRADIUS.
5
6 global Cs D12 N r0 rho t Vm
7
8 %Initial Mass of Particles, Mo
9 Mo = (r0.^3)*(4/3)*rho.*N*pi;
10 %Mass of Particles Remaining, M
11 M = N*rho*(4/3)*pi*r.^3;
12 %Concentration of solid, C1
13 C1 = (M)/Vm; % g/mL
14 %Conversion, X
15 Md=(Mo-M);
16 if (Md==0)
17 X=1;
18 else
19 X = ((Mo-M)/Vm)/(Mo/Vm);
20 end

1 % MONDISPERSE PARTICLE DISSOLUTION
2 % PRINTRESULTS.m 2007
3 % PRINTRESULTS converts time into minutes then displays
4 % concentration and conversion in a table. Then plots of the
5 % concentration and conversion of citric acid are displayed.



140

Appendix B: (Continued)

6 global Cs D12 N r0 rho t Vm
7
8 %Time Converted to Minutes
9 TimeMin=Time/60;
10
11 PRINT RESULTS
12 plot(TimeMin, C1,'-r','LineWidth',3)
13 xlabel('Time(min)'); ylabel('Concentration of Citric Acid (g/mL)');title(‘Monodisperse
14 Model Concentration versus Time ');grid on
15 hold on;
16 figure;
17 plot(TimeMin, X,'Color',[1 0.2 0.2],'LineWidth',3)
18 xlabel('Time(min)'); ylabel('Conversion of Citric Acid (X)');title('Monodisperse Model
19 Conversion versus Time');grid on
20 ylim([0 1.1]);
21 xlim([0 20]);
22 hold off;

Two graphs are produced by this program which are displayed in the command window. The

first graph shows the concentration of citric acid as a function of time:

Figure B.1: MATLAB resulting plot for concentration for monodisperse model.
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The second graph shows the conversion of citric acid as a function of time:

Figure B.2: MATLAB resulting plot for conversion for monodisperse model.

The total time for conversion was under 8 minutes for the monodisperse model.
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This section describes how to import the data results calculated by MATLAB into a

predesigned function in COMSOL Script which creates three-dimensional visualizations of the

shrinking spherical particle.

The first step involves copying the data vectors for variables r0and Pr from the

Workspace window in MATLAB and inputting the data into the Command Prompt window in

COMSOL. The following figure demonstrates this technique.

---------------------------------------------------------
COMSOL Script 1.1.0.511
Copyright (c) COMSOL AB 1994-2007
Type 'help' to see available functions.

---------------------------------------------------------
C» ParticleR= [0.06 0.057891 0.055721 0.053481 0.051161

0.048748 0.046228 0.04358 0.040778 0.037787 0.034557
0.031009 0.027018 0.022345 0.016411 0.0063142 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0];

C» r0=0.06;

Figure C.1: Command prompt window in COMSOL Script.

After the data values are inputted, the function MonodisperseMOVIE is called. This

function parametrically converts the radius data inputted in the ParticleR variable vector. It also

displays the three-dimensional sphere and corresponding plot for a give time. Animation

capabilities are also available, since each frame is saved in avi format and can be played using

Windows Media Player.

The following is a sample source code for the function which generates three-

dimensional spherical animations of the particles for a given time range:

1 % MONODISPERSE MODEL MOVIE
2 global r0 ParticleR
3 phi=0:pi/20:pi;
4 theta=0:pi/10:2*pi;
5 [Phi,Theta]=meshgrid(phi,theta);
6 %Equations used in parametrization of sphere
7 X=sin(Phi).*cos(Theta);
8 Y=sin(Phi).*sin(Theta);
9 Z=cos(Phi);
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10 %Plot the surface, and scale the axes so that it looks like a sphere
11 h = surf(X,Y,Z,'EdgeColor','interp','FaceColor',[1 0.2 0.2]);
12 axis([-r0 r0 -r0 r0 -r0 r0]);
13 % Save the frames to create a movie
14 m=movie('width',800,'height',600);
15 for i=1:60
16 delete(h)
17 a=ParticleR(i);
18 X1=a*X;
19 Y1=a*Y;
20 Z1=a*Z;
21 h = surf(X1,Y1,Z1,'EdgeColor','interp','FaceColor',[1 0.2 0.2]);
22 axis([-r0 r0 -r0 r0 -r0 r0]);
23 title(['Particle at t = ', num2str(i), 'sec']);
24 grid on;
25 m.addFrame;
26 % Creation of animation file
27 m.generate('Monodisperse Model Movie');
28 end

The resulting plot and animation will be represented graphically on the a grid resembling the one

seen below.

Figure C.2: COMSOL Script visualization of spherical particle.
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Appendix D: Experimental Procedure using Reaction Microcalorimeter

For the dissolution studies of sold particles in liquid, an OmniCal Technologies

SuperCRC 20-305-2.4 reaction microcalorimeter was used. Individual samples of citric acid

were weighed directly into the 16 mL glass vials. Anhydrous citric acid, C6H8O7, was obtained

from Fisher Chemicals. A Teflon-lined screw-top was used to seal the vials and used to avoid

any loss of material during the experiment. Vial-picking needles were used to place the vials into

the CRC unit. The liquid samples, 1 mL of water, were measured using into two syringes and

placed into the syringe sample barrels. The CRC unit is turned on and the samples and syringe

barrels were allowed to come to thermal equilibrium with the calorimeter heat sink temperature,

usually at least 30 minutes were given for this step.

The CRC calorimeter operates on-line with the program software WinCRC Turbo, which

is executed after the samples have been inserted into the unit and the unit is turned on. The

operational program WinCRC Turbo is the microcalorimeter operational program. The setup

window is shown in Figure D.1. WinCRC Turbo was used for both data acquisition and

conversion calculations. Samples were monitored until a smooth baseline in the heat flow was

maintained. Then the liquid was injected into both the sample and reference vial, and the

detection and collection of data was maintained until no changes were seen in the heat flow for at

least 30 minutes. An example of a resulting heat curve is shown in Figure D.2.
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Figure D.1: WinCRC Turbo microcalorimeter program setup window.

Figure D.2: Heat flow curve from reaction.
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The following steps were preformed so that a dynamic correction could later be

calculated for the data. Since the heat rate curves were to be used for the reaction kinetics, it was

important to have the most accurate heat flow peak values and curve fitting of the heat flow data.

Therefore, the thermal lag, or thermal inertia of the heat conduction reactor station system, was

measured and accounted for[51]. After the reaction heat flow signal remains at the baseline for

30 minutes, as the previous step mentioned, the calibration heater was turned on for 30 minutes

and the heat flow was allowed to stabilized. Then the heater was switched off and 10 minutes are

allotted for the calibration heat flow signal to return to the baseline. The data collection is then

stopped and saved. Figure D.3 shows an example of the resulting graph.

Figure D.3: Dynamic correction using heat curve option.
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The data was analyzed in the WinCRC Turbo and the curve was imported from the

operational panel. In the curve operation menu, the red curser was dragged to the position 5

minutes in front of the heating peak and the green cursor was moved to 5 minutes after the peak.

In the dynamic corrections section, values for the 1storder τ1 and 2ndorder τ2 time constants are

manipulated until a square curve results. The tau corrected curve is then saved. To apply the

determined correction to the actual heat flow data, the red cursor is moved to 5 minutes in front of

the actual reaction heat peak and green cursor is moved to 5 minutes after the peak. Using the

same correction constants, the dynamic correction icon in the toolbar is clicked and a corrected

heat rate curve will be generated, as shown in Figure D.4. The tau corrected heat flow data

should then be saved.

Figure D.4: Applying tau correction to reaction heat flow curve.
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In another program menu, open the saved data and import the curve. The start and end points of

the curve should be selected. In the integration menu, the baseline construction selection should

be point-to-point nonlinear. The integration should be calculated and the total should be

recorded. The data should be trimmed, starting from the point of injection and ending about 30

minutes after the heat peak, using the curve operation as shown in Figure D.5. The trimmed

curve will have to be saved as a reconstructed curve.

Figure D.5: Trimmed corrected heat flow curve.

Another program menu must be opened and the curve should be reopened. Using the red cursor

select the starting point and with the green cursor select the end point. The process of integration

should be repeated, with the construction of a baseline point-to-point nonlinear.
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Figure D.6: Integrated heat flow curve and conversion.

The integration should be recalculated and compared to the total integration previously found, so

that the value can be validated. If the value calculated is reasonable, the File menu is opened and

the save conversion data option is selected. The conversion data can also be seen in the program

window as a black line, as shown in Figure D.6.
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This section includes sample data obtained experimentally compared with values calculated from

the computer models. Data for citric acid amounts of 0.02-0.20 grams in 1 mL H2O at 298K with

no stirring is given in the following tables. Data for 0.02 grams of citric acid:

Time(mins) Experiment Model 1: Monodisperse Model 2: Polydisperse Residual 1 Residual 2

0 0.0001 0 0 0.0001 0.0001

0.5 0.0108 0.10545 0.094921 0.09465 0.084121

1 0.179 0.2066 0.18576 0.0276 0.00676

1.5 0.4091 0.30334 0.27239 0.10576 0.13671

2 0.5841 0.39554 0.35461 0.18856 0.22949

2.5 0.7054 0.48303 0.43218 0.22237 0.27322

3 0.789 0.56563 0.50471 0.22337 0.28429

3.5 0.8478 0.64311 0.57132 0.20469 0.27648

4 0.8901 0.71518 0.63255 0.17492 0.25755

4.5 0.9211 0.78148 0.68829 0.13962 0.23281

5 0.943 0.84153 0.73724 0.10147 0.20576

5.5 0.9587 0.8947 0.777 0.064 0.1817

6 0.97 0.94 0.81281 0.03 0.15719

6.5 0.9778 0.97582 0.84459 0.00198 0.13321

7 0.9841 0.99834 0.8711 0.01424 0.113

7.5 0.9889 1 0.88992 0.0111 0.09898

8 0.9926 1 0.90692 0.0074 0.08568

8.5 0.9956 1 0.92246 0.0044 0.07314

9 0.9983 1 0.93637 0.0017 0.06193

9.5 1.0003 1 0.94833 0.0003 0.05197

10 1.0019 1 0.95745 0.0019 0.04445

10.5 1.0037 1 0.96325 0.0037 0.04045

11 1.0049 1 0.96863 0.0049 0.03627

11.5 1.0058 1 0.97355 0.0058 0.03225

12 1.0067 1 0.97793 0.0067 0.02877

12.5 1.0072 1 0.98169 0.0072 0.02551

13 1.0079 1 0.98458 0.0079 0.02332

13.5 1.0086 1 0.98612 0.0086 0.02248

14 1.0091 1 0.98761 0.0091 0.02149

14.5 1.0097 1 0.98904 0.0097 0.02066

15 1.01 1 0.9904 0.01 0.0196

Sum of Residuals 1.69373 3.259341
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Data for 0.04 grams of citric acid

Time(mins) Experiment Model 1: Monodisperse Model 2: Polydisperse Residual 1 Residual 2

0 0.0001 0 0 0.0001 0.0001

0.5 0.0108 0.10554 0.094988 0.09474 0.084188

1 0.179 0.20692 0.18601 0.02792 0.00701

1.5 0.4091 0.30401 0.27291 0.10509 0.13619

2 0.5841 0.39665 0.35547 0.18745 0.22863

2.5 0.7054 0.48465 0.43341 0.22075 0.27199

3 0.789 0.5678 0.5063 0.2212 0.2827

3.5 0.8478 0.64583 0.5732 0.20197 0.2746

4 0.8901 0.71842 0.63474 0.17168 0.25536

4.5 0.9211 0.78517 0.69067 0.13593 0.23043

5 0.943 0.84555 0.73953 0.09745 0.20347

5.5 0.9587 0.89885 0.77921 0.05985 0.17949

6 0.97 0.944 0.81511 0.026 0.15489

6.5 0.9778 0.97917 0.84683 0.00137 0.13097

7 0.9841 1 0.87305 0.0159 0.11105

7.5 0.9889 1 0.89144 0.0111 0.09746

8 0.9926 1 0.90847 0.0074 0.08413

8.5 0.9956 1 0.92402 0.0044 0.07158

9 0.9983 1 0.93787 0.0017 0.06043

9.5 1.0003 1 0.94966 0.0003 0.05064

10 1.0019 1 0.95816 0.0019 0.04374

10.5 1.0037 1 0.96397 0.0037 0.03973

11 1.0049 1 0.96935 0.0049 0.03555

11.5 1.0058 1 0.97424 0.0058 0.03156

12 1.0067 1 0.97858 0.0067 0.02812

12.5 1.0072 1 0.98224 0.0072 0.02496

13 1.0079 1 0.98481 0.0079 0.02309

13.5 1.0086 1 0.98636 0.0086 0.02224

14 1.0091 1 0.98786 0.0091 0.02124

14.5 1.0097 1 0.98929 0.0097 0.02041

15 1.01 1 0.99066 0.01 0.01934

Sum of Residuals 1.6678 3.225288
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Data for 0.06 grams of citric acid

Time(mins) Experiment Model 1: Monodisperse Model 2: Polydisperse Residual 1 Residual 2

0 0.0001 0 0 0.0001 0.0001

0.5 0.0377 0.10536 0.094838 0.06766 0.057138

1 0.1721 0.20627 0.18545 0.03417 0.01335

1.5 0.3222 0.30263 0.27174 0.01957 0.05046

2 0.4506 0.39435 0.35354 0.05625 0.09706

2.5 0.5546 0.48129 0.43066 0.07331 0.12394

3 0.6382 0.5633 0.50276 0.0749 0.13544

3.5 0.7054 0.64019 0.569 0.06521 0.1364

4 0.7598 0.7117 0.62985 0.0481 0.12995

4.5 0.8036 0.77752 0.68533 0.02608 0.11827

5 0.839 0.83721 0.73435 0.00179 0.10465

5.5 0.8685 0.89021 0.77428 0.02171 0.09422

6 0.8928 0.93564 0.80996 0.04284 0.08284

6.5 0.9128 0.97207 0.84179 0.05927 0.07101

7 0.9293 0.99637 0.86872 0.06707 0.06058

7.5 0.9433 1 0.88805 0.0567 0.05525

8 0.9546 1 0.90498 0.0454 0.04962

8.5 0.9641 1 0.92052 0.0359 0.04358

9 0.9719 1 0.93449 0.0281 0.03741

9.5 0.9781 1 0.94663 0.0219 0.03147

10 0.9832 1 0.95632 0.0168 0.02688

10.5 0.9873 1 0.96235 0.0127 0.02495

11 0.9908 1 0.96773 0.0092 0.02307

11.5 0.9935 1 0.97267 0.0065 0.02083

12 0.996 1 0.97711 0.004 0.01889

12.5 0.9981 1 0.98097 0.0019 0.01713

13 0.9996 1 0.98405 0.0004 0.01555

13.5 1.0013 1 0.98583 0.0013 0.01547

14 1.0026 1 0.98731 0.0026 0.01529

14.5 1.0037 1 0.98873 0.0037 0.01497

15 1.0047 1 0.99009 0.0047 0.01461

Sum of Residuals 0.90983 1.700378



153

Appendix E: (Continued)

Data for 0.08 grams of citric acid

Time(mins) Experiment Model 1: Monodisperse Model 2: Polydisperse Residual 1 Residual 2

0 0.0002 0 0 0.0002 0.0002

0.5 0.0617 0.10527 0.094755 0.04357 0.033055

1 0.2249 0.20593 0.18514 0.01897 0.03976

1.5 0.3901 0.30191 0.27109 0.08819 0.11901

2 0.5247 0.39315 0.35248 0.13155 0.17222

2.5 0.6293 0.47954 0.42914 0.14976 0.20016

3 0.71 0.56097 0.50078 0.14903 0.20922

3.5 0.7721 0.63726 0.56667 0.13484 0.20543

4 0.82 0.7082 0.62713 0.1118 0.19287

4.5 0.8566 0.77353 0.68234 0.08307 0.17426

5 0.8847 0.83285 0.73136 0.05185 0.15334

5.5 0.9065 0.88566 0.77152 0.02084 0.13498

6 0.9238 0.93117 0.80707 0.00737 0.11673

6.5 0.9379 0.96814 0.83891 0.03024 0.09899

7 0.949 0.99395 0.86618 0.04495 0.08282

7.5 0.9579 1 0.88616 0.0421 0.07174

8 0.9649 1 0.90302 0.0351 0.06188

8.5 0.9705 1 0.91854 0.0295 0.05196

9 0.9748 1 0.93256 0.0252 0.04224

9.5 0.9784 1 0.94486 0.0216 0.03354

10 0.9812 1 0.95495 0.0188 0.02625

10.5 0.9837 1 0.96144 0.0163 0.02226

11 0.9858 1 0.96682 0.0142 0.01898

11.5 0.9877 1 0.97178 0.0123 0.01592

12 0.9892 1 0.97627 0.0108 0.01293

12.5 0.9906 1 0.98021 0.0094 0.01039

13 0.9919 1 0.98346 0.0081 0.00844

13.5 0.9932 1 0.98553 0.0068 0.00767

14 0.9941 1 0.987 0.0059 0.0071

14.5 0.9952 1 0.98841 0.0048 0.00679

15 0.996 1 0.98977 0.004 0.00623

Sum of Residuals 1.33113 2.337365
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Data for 0.10 grams of citric acid

Time(mins) Experiment Model 1: Monodisperse Model 2: Polydisperse Residual 1 Residual 2

0 0.0001 0.11214 0.094682 0.11204 0.094582

0.5 0.0541 0.21885 0.18487 0.16475 0.13077

1 0.2059 0.3201 0.27052 0.1142 0.06462

1.5 0.3586 0.41583 0.35155 0.05723 0.00705

2 0.4831 0.50595 0.42781 0.02285 0.05529

2.5 0.5797 0.59031 0.49907 0.01061 0.08063

3 0.6543 0.66874 0.56464 0.01444 0.08966

3.5 0.7123 0.74098 0.62476 0.02868 0.08754

4 0.7576 0.80669 0.67973 0.04909 0.07787

4.5 0.7932 0.86537 0.72871 0.07217 0.06449

5 0.821 0.91629 0.76912 0.09529 0.05188

5.5 0.8429 0.95827 0.80454 0.11537 0.03836

6 0.8602 0.98899 0.83638 0.12879 0.02382

6.5 0.8742 1 0.86389 0.1258 0.01031

7 0.8859 1 0.88451 0.1141 0.00139

7.5 0.8956 1 0.90131 0.1044 0.00571

8 0.9036 1 0.9168 0.0964 0.0132

8.5 0.9103 1 0.93085 0.0897 0.02055

9 0.916 1 0.94327 0.084 0.02727

9.5 0.921 1 0.95365 0.079 0.03265

10 0.9253 1 0.96065 0.0747 0.03535

10.5 0.9291 1 0.96602 0.0709 0.03692

11 0.9323 1 0.97099 0.0677 0.03869

11.5 0.935 1 0.97551 0.065 0.04051

12 0.9373 1 0.97952 0.0627 0.04222

12.5 0.9394 1 0.98289 0.0606 0.04349

13 0.9412 1 0.98527 0.0588 0.04407

13.5 0.9429 1 0.98673 0.0571 0.04383

14 0.9444 1 0.98814 0.0556 0.04374

14.5 0.9459 1 0.98949 0.0541 0.04359

15 0.9473 1 0.99078 0.0527 0.04348

Sum of Residuals 2.35881 1.433532
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Data for 0.20 grams of citric acid

Time(mins) Experiment Model 1: Monodisperse Model 2: Polydisperse Residual 1 Residual 2

0 0.0001 1.36E-16 0 1E-04 0.0001

0.5 0.0465 0.11166 0.094292 0.06516 0.047792

1 0.1784 0.21707 0.18342 0.03867 0.00502

1.5 0.3029 0.31635 0.26749 0.01345 0.03541

2 0.3997 0.40962 0.34659 0.00992 0.05311

2.5 0.4743 0.49695 0.42074 0.02265 0.05356

3 0.5328 0.57838 0.48989 0.04558 0.04291

3.5 0.5799 0.65389 0.55378 0.07399 0.02612

4 0.6186 0.72344 0.61203 0.10484 0.00657

4.5 0.6512 0.78688 0.66555 0.13568 0.01435

5 0.679 0.84398 0.71395 0.16498 0.03495

5.5 0.703 0.89436 0.75617 0.19136 0.05317

6 0.7243 0.93739 0.79078 0.21309 0.06648

6.5 0.7434 0.97195 0.82233 0.22855 0.07893

7 0.7605 0.99548 0.85048 0.23498 0.08998

7.5 0.7761 1 0.87447 0.2239 0.09837

8 0.7905 1 0.89202 0.2095 0.10152

8.5 0.8039 1 0.90728 0.1961 0.10338

9 0.8164 1 0.92135 0.1836 0.10495

9.5 0.8281 1 0.93412 0.1719 0.10602

10 0.8391 1 0.94544 0.1609 0.10634

10.5 0.8495 1 0.95498 0.1505 0.10548

11 0.8593 1 0.96163 0.1407 0.10233

11.5 0.8685 1 0.9666 0.1315 0.0981

12 0.8772 1 0.97122 0.1228 0.09402

12.5 0.8853 1 0.97545 0.1147 0.09015

13 0.893 1 0.97924 0.107 0.08624

13.5 0.9003 1 0.98253 0.0997 0.08223

14 0.9072 1 0.98514 0.0928 0.07794

14.5 0.9136 1 0.98666 0.0864 0.07306

15 0.9196 1 0.98798 0.0804 0.06838

Sum of Residuals 3.8154 2.106962
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