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Determination of Nanogram Mass and Measurement of Polymer Solution Free Volume 

Using Thickness-Shear Mode (TSM) Quartz Resonators 

 

 
Anthony James Richardson 

 

ABSTRACT 

 

 More commonly referred to as a quartz crystal microbalance (QCM), thickness-

shear mode (TSM) quartz resonator devices utilize an acoustic wave to establish a bulk-

detection mechanism prompting their utilization as gravimetric sensors with nanogram 

mass sensitivity and capability to measure various film property dynamics, due to 

variations in the system environment, of thin-films that are uniformly distributed across 

the resonator surface.  The development of an absolute TSM-based nanobalance and an 

experimental technique using conventional TSM resonators for the real-time 

measurement of the change in the viscoelastic shear modulus and fractional free-hole 

volume of a poly(isobutylene) film due to the sorption of various organic vapors are 

presented in this thesis work.  

 

Development of an electrode-modified TSM quartz resonator that is responsive to 

nanogram mass loadings, while exhibiting a mass sensitivity profile that is independent 

of material placement on the sensor platform, is detailed in this thesis work.  The 

resulting nanogram balance would greatly enhance the field of mass measurement and 

become useful in applications such as droplet gravimetry, the study of non-volatile 

residue (NVR) contamination in solvents.  A ring electrode design predicted by an 
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analytical theory for sensitivity distribution to achieve the desired uniform mass 

sensitivity distribution is presented in this work.  Using a microvalve capable of 

depositing nanogram droplets of a polymer solution, and a linear stepping stage for radial 

positioning of these droplets across the sensor platform, measurements of the mass 

sensitivity distributions were conducted and are presented.  The measurements agree well 

with theory. Further improvements are possible and are identified to achieve better 

uniformity and to reduce the instability in the resonant frequency of these devices.  

Additionally, droplet gravimetric results for NVR in methanol droplets using the 

modified TSM devices are presented, which compare well with determinations made by 

evaporation of larger volumes of the stock solutions. 

 

Storage modulus, G', loss modulus, G", and, consequently, the shear modulus, G 

(G = G' + jG"), of polymer and polymer/solvent systems were measured in this work 

using a TSM quartz resonator.  The polymer poly(isobutylene) was spin-coated as a film 

of a few microns thickness on the surface of the TSM device and, upon inducing 

oscillation of the device at its resonance frequency (several mega-Hertz), the impedance 

characteristics were measured.  In addition, the poly(isobutylene) film was exposed to 

known weight concentrations, up to 20%, of benzene, chloroform, n-hexane, and 

dichloromethane vapors diluted in nitrogen gas, and the impedance characteristics were 

measured.   Data collected from the impedance analyzer were examined by modeling the 

polymer and polymer/solvent loaded TSM device with an electrical equivalent circuit and 

a mechanical perturbation model to reliably yield the shear modulus.  Using a 

superposition theory and the shear modulus, the fractional free volume of the 

polymer/solvent systems were determined.  These results correlate well with values found 

using the Vrentas-Duda free-volume (FV) theory.  A novel experimental technique for 

measuring fractional free-hole volumes of polymer/solvent mixtures is established in this 

thesis work. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 Motivation 

 

The motivation for measuring the viscoelastic shear moduli and the fractional 

free-hole volume of polymer/solvent systems, as well as, the development of a TSM-

based nanobalance are described below. 

 

 Given the importance of polymer films in industrial applications and the lack of 

polymer property data in literature, it is useful to study polymers and their dynamics 

within environments whose conditions are subject to change.  Characterizing the 

diffusive transfer of sorbents within a polymer film and the effects the sorbent have on 

the film are important in scientific and industrial research.  To accurately describe the 

diffusion of a species through a polymer film and extract a diffusion coefficient, it is 

necessary to determine the free-hole volume of the polymer system which is the 

predominant driving force for diffusive mass transfer through a rubbery polymer film.  A 

technique utilizing a TSM resonator for the real-time determination of the polymer free-

volume through monitoring the changes in the viscoelasticity of pure polymer and 

sorbent-loaded polymer films is established in this work.  A study of the viscoelastic 

shear moduli upon the sorption of varying concentrations of benzene, chloroform, n-

hexane, and dichloromethane vapors in a poly(isobutylene) film using a TSM resonator 

was performed in this thesis work.  From the shear moduli data and a superposition 
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principle, the fractional free-hole volume of poly(isobutylene)/solvent systems was 

extracted. 

 

Utilizing available TSM resonators for gravimetric analysis down to the 

nanogram level is possible provided that the deposited mass is uniformly distributed and 

coupled across the active area of the device surface.  A uniform film is necessary because 

the mass sensitivity is non-uniform decreasing across the resonator surface in a Gaussian-

like distribution extending from the center to the edge of the substrate.  The non-

uniformity in mass sensitivity precludes the use of current TSM devices as absolute mass 

balances.  Modification of the electrode geometry, the influencing factor setting the mass 

sensitivity profile, was conducted in this thesis work to establish an active area exhibiting 

uniform mass sensitivity in order to create an absolute TSM-based nanobalance.  A 

working TSM-based nanobalance would allow the mass measurement of any nano-scale 

mass loading deposited within the area of constant mass sensitivity including non-

uniform films such as non-volatile residue (NVR) from an evaporated solvent droplet. 

Additionally, the reliance on mechanical/analytical mass balances, which are expensive, 

limited to microgram mass sensitivity, and susceptible to mechanical vibration instability, 

can be reduced with the advent of a TSM nanobalance.      

 

1.2 Thickness-Shear Mode (TSM) Quartz Resonators 

 

Typically referred to as a quartz crystal microbalance (QCM), a TSM quartz 

resonator consists of a quartz disk, the thickness of which depends upon the operating 

resonance frequency, with metallic planar electrodes deposited on both faces.  Placement 

of a constant voltage load between the parallel electrodes results in the formation of an 

electric field.  The applied electric field prompts mechanical vibration of the quartz 

substrate due to the piezoelectric effect.  Initially, the amplitude of vibration is small, 

however, when the frequency of the driving field approaches the natural harmonics of the 

quartz substrate, resonance in the quartz is observed.  Typical resonance frequencies are 

between 5 and 10 MHz [1, 2].  Resonance initiates the propagation of a shear horizontal 
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wave through the substrate establishing the bulk-detection mechanism of TSM 

resonators.      

 

1.3 Applications of TSM Resonators 

 

Due to their inherent bulk-detection mechanism resulting from the shear-

horizontal wave perturbation of the piezoelectric substrate, TSM resonators are utilized in 

a multitude of industrial and scientific applications. TSM resonators have recently been 

employed as reliable sensors for thin-film properties, contaminants in liquid and gaseous 

environments using a thin selective/sensitive film deposited across the device surface, 

characterizing the sorption/desorption of a species in a sorbent material, studies of 

biological and chemical reaction kinetics, corrosion monitoring, detection of biomarkers 

in biological environments, et cetera. However, the primary industrial application of 

these devices is as thickness monitors in deposition processes such as chemical vapor 

deposition (CVD) of thin metallic films. Based on the frequency shift of the resonator, 

the thickness of a uniformly developing film can be monitored in real-time.      

     

1.4 Thesis Organization 

 

Divided into six chapters, the following thesis work details two major projects 

conducted pertaining to TSM resonators.  Chapter 1 presents a fundamental discussion of 

TSM resonators and their widespread applications. A discussion of the extraction of the 

viscoelastic shear modulus and fractional free-hole volume of polymer/solvent systems 

using TSM resonators including polymer/solvent solution thermodynamics, a combined 

equivalent circuit/mechanical perturbation model, a superposition principle, and a 

theoretical FV model are presented in Chapter 2.  Chapter 3 presents the design and 

development of a TSM-based nanobalance for absolute gravimetry of mass loadings 

down to the nanogram level.  Experimental and data-extraction details for the 

measurement of the viscoelastic shear-moduli of polymer/solvent systems and the 
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fabrication and testing of electrode-modified TSM resonators are given in Chapter 4.  

Chapter 5 presents the results and detailed discussions of these results for the TSM 

resonator applications discussed in Chapters 2 and 3. Conclusions and suggestions for 

future work are given in Chapter 6. 
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CHAPTER 2 

 

VISCOELASTIC SHEAR MODULUS AND FRACTIONAL FREE-HOLE VOLUME 

OF POLYMER/SOLVENT SYSTEMS 

 

 

2.1 Introduction 

  

To viably utilize a polymer as a diffusive membrane, sensitive/selective sensing 

film, catalyst or catalytic platform, drug encapsulate, et cetera, it is essential to 

characterize the properties and dynamics of a thin-polymer film within these application 

environments. Fortunately, development of analytical/simulation and experimental 

techniques to characterize changes in polymer film properties resulting from variations in 

system environments including temperature, pressure, or the addition of sorbents has 

been extensive over the past few decades. Typically, polymer films are employed as thin-

films (< 1 micron) or small-mass depositions (a few nanograms) making it difficult to 

evaluate their macroscopic/microscopic properties using conventional microscopy, 

spectroscopic, chromatographic, or fluorometric techniques.  However, due to their 

nanogram mass sensitivity, TSM resonators are used prevalently to accurately measure 

and characterize polymer thin-film properties.  Given the mechanical detection 

mechanism of bulk-acoustic wave devices, measurements of bulk-film property dynamics 

of pure polymer and solvent-loaded polymer films deposited on the surface of any 

piezoelectric-substrate TSM device are possible.  Recent film property studies using TSM 

resonators have focused extensively on viscosity, phase changes (i.e. film-state 

transitions), thermodynamic properties, and diffusion rates due to changes in temperature 

or upon the sorption of analytes.  In this thesis work, characterization of the viscoelastic 
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shear modulus and, subsequently, the fractional free-hole volume of polymer/solvent 

systems using a TSM resonator were conducted. 

 

2.1.1 Viscoelastic Shear Moduli of Polymer Films 

 

Wave propagation into the bulk of a viscoelastic film coupled to the surface of a 

TSM resonator can result in significant dynamic film behavior. At the film/resonator 

interface, the viscoelastic film is driven synchronously with the resonator surface, 

however, in the upper regions of the film, substantial acoustic phase shift or lagging is 

observed resulting in an increase in shear deformation across the film thickness.  Figure 

2.1 illustrates the shear deformation in a viscoelastic film that is perturbated by a shear 

horizontal wave.  The establishment of a shear deformation gradient across the film 

causes elastic energy to be stored and dissipated in the film. A physical property that 

quantifies the effects of an applied shear stress and energy dynamics in a viscoelastic film 

is the complex shear modulus, G, which accounts for elastic energy density, represented 

by a storage modulus, G’, and power dissipation, loss modulus, G”. The overall 

expression for the complex shear modulus is  [3].  Depending on the type of 

viscoelastic film and system conditions (i.e. pressure, temperature, or presence of an 

adsorbed species), the shear modulus can vary significantly.  For pure polymer films, the 

magnitude of G is on the order of 1010 dyne/cm2 for a film in its glassy state (low 

temperature) and 107 dyne/cm2 for the rubbery state (moderate/high temperature) [4].  

The polymer poly(isobutylene) used in this study is tested at standard conditions and 

remains in its rubbery state regardless of solvent sorption.  

  



 

7 
 

 

Figure 2.1: A cross-sectional view of the shear-horizontal wave propagation through the 

quartz substrate and a viscoelastic layer coupled to the device surface.  

 

2.1.2 Fractional Free-Hole Volume of Polymer Films 

 

 A significant property influencing diffusion of gas molecules through a compliant 

film was introduced by Cohen and Turnbull in the 1950s which is the concept of “free-

hole” volume [5].  The free volume is defined as the volume not occupied by adjacent 

molecules in a fluid system.  Given the rigid and compact nature of the molecular 

framework of a polymer film, the mass transfer or self-diffusion of a penetrant species 

becomes dependent on the available volume between inter-locked monomer chains.  

Additionally, the energy of the penetrant to overcome attractive forces that inhibit 

migration between voids or holes in the chains is important. For diffusion of low-

molecular weight species in a polymer film, thermodynamic fluctuations in the film, 

without significant change in system energy, cause a random redistribution of free 

volume which increases the probability of species migration [6, 7], thereby, establishing 

the free-hole volume as the driving force for molecular transfer.  These fluctuations for 

polymer/solvent systems are described well by the thermodynamic model in Section 

2.3.2.  Some methods, analytical (i.e. equations of state) and experimental (e.g. positron 
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annihilation spectroscopy [8]), have been developed to quantify the free volume of 

polymer systems.  In this thesis work, a technique is proposed for determining the 

fractional free-hole volume of a solvent-loaded polymer film, the ratio of the available 

free volume to the total volume of the polymer system, using a TSM resonator.      

  

2.2 Sorption of Organic Solutes in Polymer Films 

 

 A great deal of confusion as to what constitutes sorption mass transfer of a solute 

in a solid or liquid exists.  Defining this concept accurately is important for the 

understanding of solvent activity in a polymer film as the changes in film properties are 

sensitive to the extent of penetration of the solute.  In this work, the system regimes that 

were studied involved intimate mixtures formed through absorption of the solvent in to 

the polymer film.  These solutions are equivalent to mixtures of small molecules that are 

in complete miscible form such as ethanol and water.                          

 

2.3 Polymer/Solvent Mixture Thermodynamics 

 

To reliably extract the viscoelastic shear modulus of a solvent-loaded polymer 

film requires the characterization of the extent of sorption of a solvent into the polymer 

film.  Sorption of the solvent will alter the morphology of the polymer and consequently 

the film thickness and mixture density.  The extent of sorption is measured by the weight 

fraction of the solvent in the polymer.  Typically, the weight fraction can be measured 

directly using a TSM resonator coated with a sensitive/selective polymer film as a mass 

balance.  As long as the pure polymer and solvent-loaded polymer film can be treated as 

an ideal mass layer, the individual mass loadings associated with the polymer film and 

the absorbed solvent can be determined by the resonator using the modified Sauerbrey 

model, which is described in section 2.4.1.  However, in this thesis work, the polymer 

and solvent-loaded polymer films are of thicknesses in the viscoelastic regime and do not 

exhibit ideal mass behavior.  Measuring the viscoelastic properties of these films using 
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the TSM resonator precludes the direct mass determination because dampening of the 

mechanical/electrical properties of the resonator is attributed to both the mass loading and 

viscoelastic effects caused by wave propagation in the bulk film [9]. Consequently, 

reliable polymer/solvent solution thermodynamics must be considered to determine the 

weight fraction of the solvent in the polymer film.       

 

2.3.1 Vapor/Liquid Equilibrium Modeling 

 

Before the activity of the solvent in the polymer film can be evaluated, the 

vapor/liquid equilibrium (VLE) between the generated solvent vapor and the inert carrier 

gas, nitrogen, must be established.  This is achieved by equating the vapor and liquid 

fagacities of the solvent in solution.  The following equilibrium model, Equations (2-1) 

through (2-11), was derived by Upadhyayula et al (see Equations (2-1) through (2-14) in 

Ref. [10]). 

 

 (2.1) 

 

Where,   and  are the liquid and vapor fagacities of the solvent, respectively.  

By definition, the fagacities of the solvent in the liquid and vapor phases are as followed: 

 

 (2.2) 

 

For a binary mixture, the fugacity coefficient of the solvent in the vapor phase is: 

 

 (2.3) 
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Where, , , and  are second virial coefficients. The primary subscripts 1 and 3 

denote the solvent and nitrogen gas, respectively.  is the ideal gas constant,  is the total 

system pressure, and  is the absolute system temperature.  The second virial coefficient 

of the solvent, , at the system temperature is estimated using a corresponding states 

theory developed by Tsonopoulos [11]. 

 

 (2.4) 

 

Where,  and  are the critical temperature and pressure of the solvent.  Pitzer’s 

acentric or compressibility factor, , accounts for non-ideality of the component in the 

gas phase [12].  and  are the reduced temperature and pressure of the solvent.  The 

terms  and  are defined as [11]: 

 

 (2.5) 

 

 (2.6) 

 

Calculated values of  and  for each solvent considered in this thesis at 298.15 K 

are tabulated in Table 2.1.  The second virial coefficient of pure nitrogen gas, , is -5.4 

cm3/mol.      
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Table 2.1: Second virial coefficients of the solvents at 298.15 K 

 

Solvent  

 

 

 

Benzene -1758.7 -152 

Chloroform -2053.0 -134 

n-Hexane -1841.0 -168 

Dichloromethane -1315.5 -114 

 

In the liquid phase, the solvent fugacity term, , is given by the following expression. 

 

 (2.7) 

 

Where, 

 

 (2.8) 

 

Here,  is the saturation pressure of the pure solvent at the absolute system 

temperature, T. The exponential term in Equation (2.7) is known as the Poynting 

correction factor and, under mild pressure conditions, approaches unity.  Many models 

are available for estimating the saturation pressure of volatile components including the 

well known Antoine equation, however, for best accuracy, Wagner’s equation is utilized 

in this thesis work.  The pressures are given in Torr. 

 

 (2.9) 
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Let, 

 

 

 

Saturation volume, , of the solvent at the system temperature, T, is correlated well 

with the modified Rackett equation. 

 

 (2.10) 

 

The Wagner equation constants [13] and the Rackett compressibility factor, , [12] for 

each solvent considered in this thesis work are tabulated in Table 2.2. 

 

Table 2.2: Wagner’s equation constants and Rackett compressibility factors  

 

Solvent  

 

    

Benzene -6.98270 1.33210 -2.6286 -3.3340 0.2698 

Chloroform -6.95546 1.16625 -2.1397 -3.4442 0.2750 

n-Hexane -7.46765 1.44211 -3.2822 -2.5094 0.2635 

Dichloromethane -7.35739 2.75460 -4.0704 3.5070 0.2618 
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After combining and simplifying the above equations, the general expression for the VLE 

model is: 

 

 (2.11) 

 

Here,  is the activity coefficient of the solvent.  Equation (2.11) is based on the 

assumption that the fugacity of the solvent at the specified system conditions is 

equivalent to the fugacity at saturation [12].  

 

2.3.2 Flory-Huggins Model for Polymer/Solvent Mixtures 

 

 The polymer/solvent solution thermodynamics is studied through the utilization of 

a modified Flory-Huggins model for the solvent activity in a polymer film.  This model 

was presented by Upadhyayula et al (see Equations (2-15) through (2-22) in Ref. [10]) 

and is described below.  The generalized Flory-Huggins model is given by the following 

expression [14-16].  

 

 (2.12) 

 

Here, 
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 (2.13) 

 

Where, and  are the solution volume fractions of the solvent and polymer, 

respectively.  and  are the molar specific volumes of the solvent and polymer.  These 

are estimated through a summation of Van der Waals group volumes and are tabulated in 

Table 2.3 [17].  The group volume of poly(isobutylene) was determined from the mass-

average molecular weight.  Solvent and polymer weight fractions are expressed as  and 

, respectively. 

 

Table 2.3: Molar specific volumes of each component at 298.15 K   

 

Component  

 

Benzene 3.1878 

Chloroform 2.870 

n-Hexane 4.4998 

Dichloromethane 3.2479 

Poly(isobutylene) 20,184 

 

The interaction parameter, , in Equation (2.12) accounts for the energy associated with 

the inter-dispersion of the solvent and polymer molecules [14].  Since the interaction 

parameter exhibits composition dependence, a linear regression model for  based on 

experimental solvent activity data is utilized.  

 

 (2.14) 
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To derive the modified Flory-Huggins model, evaluation of the total Gibbs free energy of 

the polymer/solvent system is necessary.  The total Gibbs free energy of the mixture 

assuming a linear dependence of  with composition is [14, 15]: 

 

 (2.15) 

 

Here, A and B are regression coefficients.  The number of total moles of solvent and 

polymer are given by  and , respectively.  Taking the partial derivative of Equation 

2.15 in terms of  yields the expression for the solvent activity in the polymer film 

which is known as the modified Flory-Huggins model. It should be noted that the activity 

of the solvent in the polymer film is assumed to be equivalent to the activity in the vapor 

phase allowing the combination of Equations 2.11 and 2.16.  

 

 (2.16) 

 

Based on data from a previous gravimetric study of the sorption of organic vapors 

into an ideal-mass poly(isobutylene) film using a TSM resonator (described in Section 

2.4.1), the Flory-Huggins regression parameters A and B were calculated using a non-

linear Levenberg-Marquardt regression of Equation 2.16 (data from this internal study 

has not been published). The regression fits were compared to reliable free-volume (FV) 

models for predicting the molecular activity in mixtures including UNIFAC-FV [18] and 

Entropic-FV [19] and correlated well.  The A and B parameters are tabulated in Table 2.4 

for each poly(isobutylene)/solvent system considered in this work. 
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Table 2.4: Flory-Huggins regression parameters for each poly(isobutylene)/solvent 

system  

 

Solvent  

 

 

Benzene 0.6169 1.1618 

Chloroform 0.3174 1.0627 

n-Hexane 0.3471 0.8636 

Dichloromethane 0.2540 1.5783 

 

Given the good agreement between the experimental solvent activity data (i.e. the 

modified Flory-Huggins regression fit) and the FV models, the weight fractions of the 

solvent in the polymer for a film of a thickness within the viscoelastic regime can be 

extracted assuming the solvent activity is independent of film thickness.  

 

2.4 Polymer/Solvent Mixture Film Properties 

 

2.4.1 Film Thickness Determination 

 

As mentioned previously, a primary industrial application of TSM resonators is 

the real-time thickness monitoring during thin-film deposition.  Deposition of a foreign 

mass, either in the form of a thin mass layer or point mass that is inertially coupled to the 

device surface, causes a reduction in the resonance frequency.  This reduction is due to 

the mechanical detection mechanism of bulk-acoustic wave sensors. In a bulk-acoustic 

wave device, the propagating wave is generated through the bulk of the piezoelectric 

substrate, in this case quartz.  Since the wave propagates the entire substrate, it is 

expected that the wave would cross the surface boundary between the quartz and 

deposited mass.  The transmission of the wave into the deposited mass alters the 
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characteristics of the wave propagation path, thereby, affecting the wave velocity or 

amplitude.  The mechanical dampening of the wave by the added mass results in the 

reduced device frequency. Coupled mass loadings on the surface of a TSM resonator and 

their effects on the mechanical and electrical properties of the device have been well 

studied.  

 

Provided that the mass loading is uniformly deposited across the resonator surface 

and of a thickness within the ideal mass regime, changes in the resonant frequency of the 

device can be directly correlated to the mass deposited and, subsequently, the film 

thickness.  Several criteria must be followed to establish an ideal mass layer on the 

resonator surface.  A mass exhibiting ideal behavior should be infinitesimally thick in 

comparison to the thickness of the quartz substrate.  The electrode thickness is neglected.  

Additionally, the transverse oscillation of the film must remain in phase with the 

propagating wave meaning minimal shear deformation of the film must be observed.  In 

other words, the shear displacement, ux(y), should be constant across the film thickness, 

hf. [9, 20]. Figure 2.2 shows the motion of the shear-horizontal wave through the quartz 

substrate and an ideal mass layer coupled to the resonator surface.  The mass layer moves 

synchronously with the quartz surface acting as merely an extenuation of the quartz 

substrate.  To ensure ideal mass behavior, the added motional series circuit resistance of 

the resonator (described in Section 2.5.1) contributed from the total deposited mass 

should not exceed 100 ohms.   
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Figure 2.2: A cross-sectional view of the shear-horizontal wave propagation through the 

quartz substrate and an ideal-mass layer coupled to the device surface.  

 

Developed by Sauerbrey in the early 1950s, a model for relating the frequency 

shift of the TSM resonator to the resultant mass loading is given by the following 

expression [21]: 

 

 (2.17) 

 

Where,  is the measured frequency shift and  is the solution film mass density which 

permits the extraction of the film mass and thickness.  The change in frequency due to the 

added mass is sensitively dependent on the mass sensitivity of the TSM device.   
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From the Sauerbrey equation, the theoretical mass sensitivity factor of any quartz 

resonator is defined by: 

 

 (2.18) 

 

Where  is the fundamental-mode resonance frequency.  The shear modulus or stiffness 

of the quartz substrate, , is 2.947 x 1011 g cm-1 s-2 and the quartz mass density, , is 

2.648 g cm-3 [22].   However, application of a TSM resonator as an organic vapor or film 

property sensor requires modification of the mass sensitivity factor to account for the 

increased sensitivity due to the sensing layer, typically thin polymeric films, and the 

selectivity of that film to organic analyte sorption.  An expression for the experimental 

mass sensitivity factor is derived below [23]. 

 

From the Sauerbrey equation the total frequency shift of the TSM device resulting 

from perturbation of the pure polymer and solvent-loaded polymer film can be separated 

into the sum of two terms. 

   

 (2.19) 

 

Here,  and  are the measured frequency shift associated with the pure polymer film 

and the solvent, respectively.  By establishing the total frequency shift of the resonator as 

a summation of the shifts resulting from the polymer and solvent, the total areal mass 

change can be similarly expressed: 

    

 (2.20) 

 

 



 

20 
 

In Equation 2.20, the total areal mass of the solvent-loaded polymer film, , and the 

areal mass of the pure polymer film, , can be defined as: 

  

 (2.21) 

  

 (2.22) 

 

Where,  and are the film thickness and mass density of the solvent-loaded polymer 

film. The film thickness and mass density of the pure polymer film are   and . 

 

Additionally, the experimental weight fraction of the solvent in the polymer film, , is 

defined with respect to both mass change and frequency shift: 

 

 (2.23) 

 

After solving Equation 2.23 for  and substituting it back into Equation 2.20 along 

with 2.22, the total areal mass change in terms of the solvent weight fraction becomes: 

  

 (2.24) 
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From Equation 2.24, the experimental mass sensitivity factor of a selective/sensitive film-

coated TSM device is: 

 

 

 

(2.25a) 

or 

 
 

 (2.25b) 

 

Equations 2.25a and 2.25b are a modification of the Sauerbrey model. Using this model, 

the weight fraction of the solvent and the film thickness of the solvent-loaded polymer 

film, provided it remains an ideal mass layer, can be measured gravimetrically using a 

TSM resonator. A discussion of determining the mass density of the solvent-loaded 

polymer film is given in Section 2.4.2.  

 

In this thesis work, the polymer film is uniformly developed on the surface of the 

TSM resonator to a thickness beyond that of an ideal mass into the viscoelastic regime 

meaning the film thickness cannot be monitored gravimetrically.  From the 

polymer/solvent solution thermodynamics derived in Sections 2.3.1 and 2.3.2, the film 

thickness dynamics of a viscoelastic polymer film upon the sorption of a solvent can be 

modeled as: 

     

 (2.26) 

 

Equation 2.26 assumes that the polymer swells uniformly upon solvent sorption in a 

vertical direction within the test cell. 
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2.4.2 Mixture Density Determination 

 

 Another film property that can be measured gravimetrically using a TSM 

resonator is the change in the mass density of a polymer film due to solvent sorption.  

This is achieved by following the model algorithm derived in Section 2.4.1.  However, as 

with the film thickness, consideration of the solution thermodynamics is necessary to 

extract the change in mass density of a viscoelastic solvent-loaded film.  The solution 

mass density of the solvent-loaded polymer film is defined as [24]:  

 

 

 

(2.27) 

 (2.28) 

 

Here,  is a concentration expressing the molar amount of solvent per volume of 

polymer. 

 

2.5 Viscoelastic Shear Moduli Extraction 

 

Given the difficulty to directly observe and characterize the dynamic behavior of 

a perturbated viscoelastic film on the resonator surface, it is possible to determine the 

effect the film has on the electrical and mechanical properties of the resonator.  A 

mechanical coupling between the shear displacement across the film and the electric field 

in the quartz substrate, established when a axial voltage load is put across a piezoelectric 

substrate, causes a significant change in the response of the TSM resonator [25].  The 

near-resonance electrical characteristics of the unperturbed and film-coated resonator can 

be modeled through an equivalent circuit analysis.  From the equivalent circuit model, a 

combined mechanical impedance/film perturbation model can be established to 
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accurately extract the storage, G', and loss, G", moduli of a pure polymer or solvent-

loaded polymer viscoelastic film [4, 9, 26].  

  

2.5.1 Butterworth-Van Dyke (BVD) Equivalent Circuit 

 

To model or simulate the near-resonance electrical characteristics of a TSM 

resonator coated with a viscoelastic film, the Butterworth-Van Dyke (BVD) equivalent 

circuit can be used [27].  The equivalent circuit is established through a simple lumped-

element electrical analysis of the TSM resonator.  These lumped-elements can be directly 

correlated to the physical properties of the substrate and a deposited film.  Within the 

circuit for the uncoated resonator, there are two branches, a static branch consisting of a 

static capacitance, , and a motional branch that results from the electro-mechanical 

coupling indicative of an excited piezoelectric substrate.  The motional branch introduces 

a circuit resistance, , attributed to the energy loss in the substrate, an inductance, , 

from friction loss, and a capacitance, , from the quartz mechanical elasticity.  Figure 

2.3 is a schematic of a BVD circuit representing a perturbed and unperturbed TSM 

resonator.  The above electrical elements are defined as follows [20]. 

 

 

 

(2.29) 

 

 

(2.30) 

 

 

(2.31) 

 (2.32) 
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Here,  and  are the area of the electrode and thickness of the quartz substrate. , , 

, and  are the quartz electro-mechanical coupling coefficient, dielectric permitivity, 

effective viscosity, and shear stiffness, respectively.  The coefficient  corresponds to the 

harmonic resonance mode with N = 1 being the fundamental mode.  Angular frequency 

of the bare quartz, , is defined as  where  is the series resonant frequency.  

A mass loading coupled to the resonator surface contributes additional motional elements 

to the equivalent circuit which are represented by a series-motional resistance, , and 

inductance, , in Figure 2.3.  These electrical parameters are defined and discussed in 

Section 2.5.2.  

 

C0

R1

L1

L2

R2

C1

Unperturbed TSM Resonator

Viscoelastic Film

 

Figure 2.3: BVD equivalent circuit representing the unperturbed and perturbed TSM 

resonator.  

 

2.5.2 Combined Mechanical Impedance and Film Perturbation Model 

 

To connect the physical properties of a viscoelastic film to the electrical and 

mechanical response of the resonator requires the establishment of a motional mechanical 

impedance model based on the above equivalent circuit.  Deposition of a viscoelastic film 
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induces an increase in the motional impedance at the film/substrate interface introducing 

a complex load impedance, .  This complex load impedance relates the shear wave 

characteristic impedance of the quartz, , to the shear mechanical surface impedance 

transmitted from the film,  [9, 22, 26].  

 

 

 
(2.33) 

 (2.34) 

 

The expression for the surface impedance contributed from the film is derived by 

assuming the steady-state sinusoidal shear stress, , acting on the film at the surface 

center of the resonator is indirectly proportional to the surface particle velocity,  [22].  

See Figure 2.1 for the Cartesian coordinate placement. 

 

 (2.35) 

 

Noting that Equation 2.35 yields a complex quantity,  can be expressed in complex 

form in terms of the motional equivalent circuit elements contributed from the film,  

and  [26]. 

 

 (2.36) 
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Combining Equations 2.33 and 2.36 results in direct expressions for  and . 

  

 (2.37) 

  

 (2.38) 

 

Considering a TSM resonator that is only coated with a finite-thickness viscoelastic film, 

a model for the shear mechanical impedance, , at the resonator/film interface can be 

written with respect to the complex shear modulus of the viscoelastic film, G.  This 

model is derived from a transmission line theory applied to a viscoelastic film-coated 

TSM resonator [28]. 

 

 (2.39) 

 

Where,  is the characteristic impedance of the viscoelastic film and denoted as 

.  Due to the complex nature of the film shear modulus, G, a precise 

approximation of Equation 2.39 must be used to further develop the impedance model in 

order to directly extract the storage, G', and loss, G", moduli.  A Taylor series expansion 

of the tangent function, retaining the first three terms, provides an adequate 

approximation [29]. 

       

 (2.40) 
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From the Taylor series expansion,  becomes: 

 

 (2.41) 

 

Upon separation of the real and imaginary parts in Equation 2.41 and decomposition,  

is rewritten as [4]: 

  

 

 

(2.42) 

Substitution of Equation 2.42 into 2.33 provides an analytical expression for the complex 

load impedance,  in terms of G' and G". 

 

 

 

(2.43) 
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Using Equation 2.36, reduction of Equation 2.43 into explicit expressions for the film 

storage, G', and loss, G", moduli is possible [4, 26]. 

 

 (2.44a) 

  

 (2.44b) 

 

Where, 

 

 

 

(2.44c) 

 (2.44d) 

  

 (2.44e) 

 

Employing either an impedance or network analyzer, admittance data obtained for 

the perturbed and unperturbed resonator are fitted to the BVD equivalent circuit model 

and the electrical elements determined [9].  From these elements, namely  and , the 

storage, G', and loss, G", moduli of a pure or solvent-loaded viscoelastic film can be 

extracted.  
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2.6 Fractional Free-Hole Volume Extraction 

 

 Extraction of the fractional free-hole volume of a pure polymer or solvent-loaded 

polymer viscoelastic film is possible provided that the viscoelastic shear moduli, G, is 

known for the film under the respective system conditions.  The extraction method is 

provided in this section along with an accurate FV model for correlation.      

 

2.6.1 Superposition Principle 

 

 The storage, G', and loss, G", moduli of a pure poly(isobutylene) viscoelastic film 

at 293.15 K under various oscillation frequencies was studied by Ferry and are given in 

Figure 2.4. [3]. 

 

 

Figure 2.4: Storage, G', and loss, G", moduli of a pure poly(isobutylene) film versus 

apparent oscillation frequency.  

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

1 2 3 4 5 6 7 8 9

lo
g(

G
' a

nd
 G

",
 d

yn
e/

cm
2 )

log(ω')

G' G"



 

30 
 

From the “master curves” in Figure 2.4, a superposition principle can be applied to equate 

the shear moduli of a pure poly(isobutylene) film at 293.15 K to that of a 

poly(isobutylene) film resonating at a different frequency, at another system temperature, 

or subjected to solvent sorption [24, 30].  

 

 (2.45) 

 

Where,  and  are the apparent probe angular frequencies of the pure PIB film at 

293.15 K and a film at different system conditions, respectively.  The translation in the 

polymer relaxation time is given by .  

 

2.6.2 Doolittle Equation 

 

 The shift factor, , relating the storage, G', and loss, G", moduli of 

complementary viscoelastic polymer films can be expressed in terms of the fractional 

free-hole volume using the well known Doolittle equation.  Similar to the Williams-

Landel-Ferry (WLF) model [31], the general Doolittle equation accounts for the effects 

of temperature on the polymer free volume in terms of  and is given as followed [32]. 

  

 (2.46) 

 

Here, B is the Doolittle constant and is taken as unity (B = 1).  The fractional free-hole 

volume of a polymer film at a reference temperature, , is given by .   

 

 

 



 

31 
 

For a polymer film at a temperature above its glass transition temperature, Tg, the 

fractional free-hole volume , can be expressed as: 

 

 (2.47) 

 

Where,  is the thermal expansion coefficient of a polymer averaged over a wide-range 

of temperatures.  Model parameters for poly(isobutylene) are tabulated in Table 2.5. 

 

Table 2.5: Doolittle equation parameters for poly(isobutylene)    

 

Parameter Value 

 205 

 2.5 x 10-4 

 293.15 

 0.05 

Reference [24] 

 

The Doolittle equation can be extended to account for solvent-sorption effects on the 

fractional free-hole volume of a polymer film: 

 

 (2.48) 

 

Where,  is the volume fraction of the solvent in the polymer film (see Section 2.3.2).   
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The empirical plasticizing parameter, , represents the solvent effect on polymer free 

volume. 

  

 (2.49) 

  

Using storage, G', and loss, G", moduli data determined using a TSM resonator 

for the poly(isobutylene)/solvent systems considered in this study, experimental 

fractional free-hole volume as a function of solvent concentration can be extracted from 

the superposition principle and modified Doolittle equation. 

 

2.6.3 Vrentas-Duda Free-Volume (FV) Theory 

 

 Correlation of experimental fractional free-hole volume of polymer/solvent 

systems can be accomplished reliably using available FV-based equations of state (EOS) 

that are derived from lattice-fluid theory including the Sanchez-Lacombe (SL) EOS [33] 

and the Simha-Somcynsky (SS) model [34], as well as, empirical models which 

incorporate free volume properties of pure associating fluids.  An example of an 

empirical model is the Vrentas-Duda FV model.  The Vrentas-Duda FV model is given 

by [35, 36]: 

            

 (2.50) 

 

Where,  is defined as the total available free-hole volume of the system per gram of 

polymer. Determined from temperature-pressure viscosity data for a pure fluid,   and 

 are the solvent free volume parameters.  For the pure polymer, the parameters are 

 and .  Glass transition temperatures of the solvent and polymer are represented by 

 and , respectively. The fractional free-hole volume of the polymer/solvent system 
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is found by multiplying Equation 2.50 by the solution mass density.  Free volume 

parameters for the poly(isobutylene)/solvent systems considered in this work are 

tabulated in Table 2.6.   

 
Table 2.6: Vrentas-Duda FV model parameters for poly(isobutylene)/solvent systems  

 

Solvent Benzene Chloroform n-Hexane Dichloromethane 

 1.51 x 10-3 7.12 x 10-4 1.96 x 10-3 1.05 x 10-3 

 3.16 x 10-4 3.16 x 10-4 3.16 x 10-4 3.16 x 10-4 

 -94.32 -29.43 -41.08 -62.0 

 -117.93 -117.93 -117.93 -117.93 

Reference [6] [6] [6] [37] 
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CHAPTER 3 

 

TSM QUARTZ RESONATOR BASED MASS NANOBALANCE 

 

 

3.1 Introduction 

 

 Development and testing of a modified electrode TSM resonator that exhibits a 

uniform mass sensitivity profile over a large active area is presented in this thesis work 

for the purpose of producing an absolute nanobalance.  An absolute TSM-based 

nanobalance should permit the mass measurement of any mass loading regardless of 

placement within the active area of the resonator.  Commercially available TSM 

resonators are capable of measuring mass loadings to nanogram precision, however, their 

non-uniform mass sensitivity profile limits the mass characterization to uniform films.  

The advent of a practical and robust nanobalance would revolutionize the mass 

characterization industry and reduce reliance on mechanical/analytical mass balances 

which are expensive, limited to microgram sensitivity, and vulnerable to considerable 

mechanical vibration instability.  A study of the effects of simple electrode geometries on 

the mass sensitivity of TSM resonators and an optimized electrode design predicted to 

generate a uniform mass sensitivity distribution are discussed in this section.   
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3.2 Mass Sensitivity of TSM Quartz Resonators 

 

 Extensive analytical and experimental studies of TSM resonators have indicated 

that the mass sensitivity is heavily dependent on both the electrode and quartz surface 

geometries [38, 39].  The profile or shape of the mass sensitivity is attributed to the 

electrode geometry, whereas, the broadness of the distribution is set by the contour of the 

quartz surface.  Therefore, to manipulate the mass sensitivity distribution, consideration 

of the electrode design is necessary. The electrodes considered in this study are an ‘n-m’ 

design consisting of two equivalent-diameter circular electrodes deposited on either face 

of the quartz substrate (the electrode configuration of current TSM resonators) and a 

single ring electrode on the top face with a circular electrode on the bottom.  Figure 3.1 

illustrates these electrode designs.   

 

(a) 
 

 

(b) 

 

Figure 3.1: Simple electrode designs for a TSM quartz resonator: (a) solid ‘n-m’ 

electrode configuration, and (b) single ring electrode configuration.   

 

Top View
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Side View
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Non-uniformity in mass sensitivity across the surface plane of current TSM 

devices is well documented [1, 2, 38, 40, 41].  This non-uniformity is attributed to the 

reduction in particle displacement amplitude extending from the center.  At the device 

center, the resonating wave drives the quartz from all radial directions prompting 

maximum displacement and, consequently, mass sensitivity.  Moving away from the 

center, the displacement amplitude tapers off with radial position producing a Gaussian-

like distribution in the mass sensitivity, depicted by the distribution for the ‘n-m’ 

electrode design in Figure 3.2.  The mass sensitivity distributions in Figure 3.2 were 

generated using the analytical models in Ref. [42].  

 

 

Figure 3.2: Mass sensitivity distributions for simple electroded 5 MHz TSM resonator:  

(a) ‘n-m’ electrode configuration with top and bottom diameters of 4 and 10 mm, 

respectively, with R = 0.0036 and (b) ring electrode configuration with inner and outer 

diameters of 4 and 10 mm, respectively, with R = 0.0334. 
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Additional contributions to the non-uniformity of the mass sensitivity arise from 

the anisotropic structure of the quartz.  Observed deviations in sensitivity measurements 

from other studies, sweeping multiple radial axes of the resonator from , 

indicates that the wave propagation characteristics are notably different depending on the 

axis of motion in the quartz substrate [41].  Although the studies were not explicitly 

driven towards reducing the effects of the anisotropy of piezoelectric substrates on the 

wave propagation and mass sensitivity profile, previous research has considered 

alternative quartz surface geometries including plano-convex, with the top face of the 

crystal convexly contoured and the bottom remaining planner, to eliminate the destructive 

coupling observed between the fundamental and flexural (parasitic) oscillating modes in 

plano-plano devices.  Cancellation of the fundamental operating mode by these flexural 

modes upon the deposition of electrode mass on the plano-plano resonator device 

dampens the energy of the resonator prompting a lower quality factor, Q [39].  The 

decoupling of these modes for electroded plano-convex surfaces forces all of the energy 

of the driving acoustic wave to the center with minimal energy trapping extending out to 

the crystal edge.  As a result, the Q-factor and mass sensitivity is higher, by a factor of 

two, for the plano-convex resonator compared to the plano-plano [41].  Reduction of the 

anisotropic effects would be observed using the plano-convex surface with the 

concentration of the energy within a small active area at the center of the resonator.  

However, an increase in Q-factor prompts a narrowing of the mass sensitivity distribution 

which would make achieving a uniform mass sensitivity distribution potentially difficult.  

The broad-distribution indicative of the plano-plano quartz resonator is inherently 

capable of producing the bimodal profile necessary to achieve uniformity over a large 

sensing area.                       

  

3.3 Theoretical Modeling of the Mass Sensitivity Profile for Simple Electroded TSM 

Resonators 

 

Development of analytical mathematical models for predicting the mass 

sensitivity of TSM devices having simple electrode configurations has continued since 
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Sauerbrey’s initial study of the frequency shift due to mechanical loading on the device 

surface.  Typically, these models are generated through either a resonant frequency 

analysis or three-dimensional perturbation modeling of the wave motion in the quartz 

substrate.  However, these techniques share a common assumption that the mass 

sensitivity is proportional to the square of the quartz particle displacement amplitude [38, 

43-45].  In this study, a model is employed that is based upon a resonance analysis across 

the sensor platform, which is capable of producing displacement amplitude distributions 

for the ‘n-m’ and ring electrode designs shown in Figure 3.1 [38].  

 

As mentioned previously, the radial mass sensitivity profile of a TSM device is 

predominantly influenced by the electrode configuration.  From previous analytical 

studies of the mass sensitivity of a ring electrode TSM resonator, it is known that the 

sensitivity profile exhibits a bimodal response across the resonator surface (See Figure 

3.2) [38, 42].  The ability to establish a uniform mass sensitivity distribution over a large 

active area is less difficult when dealing with a bimodal response compared to a 

Gaussian-like response in mass sensitivity. Therefore, the analytical model for mass 

sensitivity for the ring electrode case is considered in this work and derived below [42].   

  

Mechanical mass sensitivity for any TSM quartz resonator, , as a function of 

the quartz radius, is governed by the particle displacement amplitude, , resulting 

from the shear horizontal wave propagating through the quartz substrate. 

 

 (3.1) 
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By assuming the resonator to be a cylindrical system, the particle displacement amplitude 

across the resonator surface can be represented by a scalar Helmholtz wave equation [46]. 

 

 (3.2) 

 

Where,  is a wave propagation constant set by resonance boundary conditions across 

the resonator surface.  These boundary conditions for a ring electrode device are the 

partially electroded region located between the resonator center and the inner ring radius, 

a, the fully electrode region, between the inner and outer ring radii, a and b, and the un-

electroded region, from b to the edge of the resonator.  Figure 3.3 depicts these regions.  

For each of these regions,  is defined as: 

 

 (3.3) 

 

Here,  is the operating frequency of the resonator and  is the cutoff frequency in each 

electroded region. Equations for the cutoff frequencies are presented in Appendix A.  The 

thickness of the quartz substrate, which is dependent on the resonance frequency of the 

TSM resonator, is given by .  
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Figure 3.3: Electroded regions across a ring electrode TSM resonator. 

 

Operation of a TSM resonator in the fundamental operating mode results in the particle 

displacement being invariant with angular direction, θ, and only dependent on radial 

placement across the resonator surface [38].  Therefore, Equation 3.2 can be rewritten as: 

 

 (3.4) 

 

Taking the form of a Bessel function differential equation, the solution of Equation 3.4 

becomes: 

 

 (3.5) 

 

 

 

y

x

a b
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Applying the boundary conditions of the ring electrode TSM resonator and properties of 

Bessel functions [47], the exact solution for the particle displacement amplitude for the 

ring electrode resonator is: 

 

 (3.6) 

 

To solve for the amplitude constants, A, B, C, and D, a set of homogeneous equations can 

be derived from Equation 3.6 by assuming the following continuity conditions [38]. 

 

Continuity Conditions: 

 

i).  

ii).  

 

From these conditions, the set of homogeneous equations are: 

 

  

 

(3.7) 

 

Here, I, J, N, and K are Bessel functions with the subscripts denoting the zeroth and first 

kind. The amplitude constants are calculated by finding the non-trivial solutions for the 

equation set in Equation 3.7.  Finding the non-trivial solutions is achieved by determining 

the adjoint of the coefficient matrix.  With the amplitude constants known, the particle 

displacement profile across the resonator surface can be resolved. 
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However, to generate the mass sensitivity profile, a definite solution to the 

integral in the numerator of Equation 3.1 is required.  A definite integral is obtained by 

squaring Equation 3.6, shown below in Equation 3.8, and taking an integral over the 

boundary conditions.  The integral is given in Equations A.7 through A.10 in Appendix 

A. 

 

 (3.8) 

 

From this model, the mass sensitivity profile for a simple ring electrode TSM 

resonator having any dimensions and electrode mass loading factor, R, can be predicted.  

The electrode mass loading factor is the ratio of the overall electrode areal mass, ρehe, to 

that of the quartz substrate, ρqhq.  This is an important term in that it sets the magnitude of 

the maximum mass sensitivity of the TSM resonator and the extent to which the mass 

sensitivity tapers toward the center of a ring electrode resonator (See Figure 3.2).  

 

 (3.9) 

      

3.4 Optimization of Electrode Design 

 

 To fabricate and test a TSM resonator that exhibits a uniform mass sensitivity 

distribution over a large active area requires modification and optimization of the 

electrode configuration. Utilizing computations based upon the analytical modeling in 

Section 3.3, it can be shown that electrode mass loading factors, R, exist which can 

theoretically produce uniform mass sensitivity distributions for many ring electrode 

configurations.  For example, with a ring electrode having inner and outer diameters of 4 

and 10 mm, respectively, a uniform mass sensitivity profile over a large active area is 

produced at an R value of 0.0025 which corresponds to Cr/Au electrode thicknesses of 75 
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Å and 1050 Å, respectively.  Figure 3.4 shows the effect of varying the R value from 

0.0025 to 0.0088 on the mass sensitivity profile of a 5 MHz resonator with a 4-10 mm 

ring electrode. 

 

 

Figure 3.4:  Mass sensitivity distributions for a ring electrode 5 MHz TSM resonator 

having inner and outer diameters of 4 and 10 mm, respectively, with:  (a) R = 0.0025, (b)  

R = 0.0033, (c) R = 0.0042, and (d) R = 0.0088. 

 
Based on the findings above, 4-10 mm ring electrode 5 MHz TSM resonators were 

fabricated and tested in this work to verify the establishment of a uniform mass 

sensitivity profile.  Although these ring electrode design parameters do indeed 

theoretically produce a uniform sensitivity distribution, it should be noted that the 

maximum sensitivity is considerably less, one order of magnitude, than commercially 

available 5 MHz ‘n-m’ electrode TSM devices.  The reduced mass sensitivity of the ring 

electrode design results from the confinement of both the excited acoustic wave and the 

energy associated with the driving wave within the fully electroded region, between the 

ring radii a and b [38].  All the same, the mass sensitivity of the proposed ring design is 

sufficient for most nanogram mass detection applications.  
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3.5 Droplet Gravimetry of Non-Volatile Residue (NVR) in Solvents 

 

 A major industrial application that would benefit from the advent of a TSM based 

nanobalance is the measurement of non-volatile residue (NVR) in high-purity solvents 

[48, 49]. Required by law, solvent producers must report the level of NVR in each batch 

of purified solvent that is sold.  A current method to characterize NVR per volume of 

solvent involves a thermal gravimetric technique where a large quantity of solvent is 

evaporated and the remnant NVR weighed in a mechanical/analytical balance.  This 

process is both expensive and time consuming.  Fortunately, a TSM resonator that 

exhibits a uniform mass sensitivity distribution would enable the determination of NVR 

in solvents by droplet gravimetry where only a nanogram droplet is needed for 

measurement.  The experimental process of droplet gravimetry is given in Section 4.3. 
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CHAPTER 4 

 

EXPERIMENTAL PREPARATIONS AND PROCEDURES 

 

 

4.1 Viscoelastic Shear Modulus Measurements 

 

 Section 4.1 provides details of the experimental technique to measure the 

viscoelastic shear moduli of poly(isobutylene)/solvent systems including the process of 

organic vapor generation, polymer film preparation and deposition on the resonator 

surface, the overall experimental apparatus, and procedure.      

 

4.1.1 Vapor Generation 

 

 Generation of the necessary organic solvent vapors is achieved using a specially 

designed dilution system [10, 23].  Contained in a bubbler flask, the solvent is cooled to 

the desired saturation temperature, in this case 288.15 K, by circulating water 

surrounding the flask.  The water temperature is maintained using a calibrated water bath 

(Lauda Heater/Chiller Water Circulator).  It should be noted that the chosen saturation 

temperature is well below the system temperature, 298.15 K, to ensure that the generated 

vapor does not condense.  After cooling, the solvent is charged with a certain flow rate of 

pure nitrogen (UHP grade, Airgas) forcing it to vaporize at a vapor pressure 

corresponding to the saturation temperature.  This pressure is approximated well by the 

Wagner equation which is discussed in Section 2.3.1.  The resulting vapor is further 

diluted downstream by two pure nitrogen streams to the desired concentration and 

delivered to the TSM resonator test cell.  To achieve increasing solvent vapor 
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concentration, the flow of nitrogen entering the bubbler is increased while the dilution 

streams are decreased; however, the total nitrogen flow is kept at a constant 100 sccm.  

Nitrogen flow is maintained using a series of mass flow controllers, relays, and Teflon-

reinforced solenoid valves.  The dilution system is capable of producing organic vapor in 

nitrogen to partial pressures ranging from 0 to 100 % of the vapor pressure.  Figure 4.1 

presents the dilution system configuration.  

 

4.1.2 Polymer Film Preparation 

 

 The polymer poly(isobutylene), (PIB),  with a reported mass-average molecular 

weight of 420K, was obtained from Sigma-Aldrich Chemical Co. and used as received.  

To achieve the necessary film coating for the measurement of the viscoelastic shear 

modulus of pure PIB and solvent-loaded PIB viscoelastic films using a TSM resonator, 

the polymer was dissolved in chloroform to a solution concentration of 7.0 % by-weight.  

Using a spin-coater (Laurell Tech.) to ensure uniform coating, the PIB film was spun-

casted at 3500 rpm for 35 seconds on the surface 1-inch diameter 5 MHz TSM quartz 

resonator.  After annealing in a vacuum oven at 90ºC in a vacuum oven at a pressure of 25 

in Hg for one hour, the film thickness was measured by profilometry to be approximately 

13.0 ± 0.2 µm, an appropriate thickness for a pure PIB film to exhibit viscoelastic 

tendencies [9]. 

 

4.1.3 Experimental Apparatus 

  

A combined schematic of the vapor dilution system and the TSM resonator 

testbed is given in Figure 4.1.  Details of the function of each component are incorporated 

in the experimental procedure given in Section 4.1.4. 

 

 



 

47 
 

 
A – Nitrogen Cylinder F-3 – MKS Mass Flow Controller (Dilutant 2) 

B-1-4 – Vapor Generator Units G – TSM Resonator Stainless-Steel Test Cell 
C – Water Bath H – Agilent 4294A Impedance Analyzer 

D – Thermo Neslab RTE 740 Heater/Chiller Water Circulator I – Computer Workstation 
E – Lauda Heater/Chiller Water Circulator J – Relay Junction 

F-1 – MKS Mass Flow Controller (Carrier Gas) K – MKS Mass Flow Meter 
F-2 – MKS Mass Flow Controller (Dilutant 1) S-1-8 – Solenoid Valves 

 
 

 

Figure 4.1: Experimental apparatus for vapor generation apparatus and TSM resonator 

testing.   

 

4.1.4 Experimental Procedure 

 

 The technique for determining the viscoelastic shear moduli of PIB and solvent-

loaded PIB viscoelastic films using a TSM resonator is described by the following 

procedure.   A 1-inch diameter polished Cr/Au 5 MHz TSM AT-cut quartz resonator was 

obtained (Inficon, formerly Maxtek, Inc.) and cleaned using a solvent rinse 

(acetone/methanol/isopropanol) and plasma-cleaner (Harrick, model PDC-23G).  After a 
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thorough cleaning, the resonator was placed in a specially designed stainless steel test cell 

with drilled channels allowing heated water circulation for maintaining the desired 

system temperature, in this case 298.15 K.  Using an impedance analyzer (Agilent, model 

4294A), the frequency and admittance data for the bare TSM resonator were recorded.  

The impedance analyzer has a built-in regression algorithm for fitting the admittance data 

to the BVD equivalent circuit discussed in Section 2.5.1 allowing the real-time 

measurement of the equivalent circuit elements of the resonator.  With the bare crystal 

electrical parameters known, the resonator was removed from the test cell and coated 

with a viscoelastic PIB film as discussed in Section 4.1.2.  The coated resonator was then 

placed back in the test cell and allowed to stabilize at the system temperature.  Upon 

stabilization, monitored by observing the resonant frequency of the perturbed resonator, 

the added motional equivalent circuit elements contributed from the pure film were 

recorded.  Sequential exposure of the film-coated TSM resonator to varying 

concentrations of benzene, chloroform, n-hexane, and dichloromethane vapors (Sigma-

Aldrich, HPLC grade) followed using the dilution system discussed in Section 4.1.1.  

Between each concentration, the vapor was allowed to fully desorb from the film by 

purging the test cell with pure nitrogen gas.  The motional equivalent circuit elements and 

resonant frequency of the film-coated resonator upon vapor sorption were recorded 

continuously in real-time for each solvent exposure iteration.  Including vapor generation 

and data logging from the impedance analyzer, the entire apparatus was computer 

controlled through Labview 7.0.  
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4.2 Radial Mass Sensitivity Distribution Measurements of TSM Resonators 

  

Section 4.2 provides details of the experimental technique to measure the mass 

sensitivity distributions of modified electrode TSM resonators including the process of 

fabricating the TSM resonators, a detailed schematic of the experimental apparatus, and 

procedure.  

 

4.2.1 Modified Electrode TSM Resonator Fabrication 

 

To produce the modified electrode TSM resonators, a simple photolithographic 

process and metal deposition were conducted.  The blank quartz substrates utilized were 

polished 1-inch diameter AT-cut crystals with an operating frequency of 5 MHz 

(Tangidyne Corp.).  These quartz blanks were cut by the manufacturer at an angle of 35º 

with a one-minute precision and polished with 0.01 µm grit.  A 2.0 ml droplet of 

photoresist (Futurrex, Inc., NR9-1500PY) was deposited at the center of the blank and 

spun-off at 3500 rpm for 30 seconds in a spin-coater (Laurell Tech.).  The resulting 

thickness of the resist layer was not characterized.  Once the photoresist was soft-baked 

in an oven at 90°C for 15 minutes, it was exposed to viable electrode designs on a high-

resolution chromium/glass photomask (Advanced Reproductions Corp.) using a  long-

wave (365 nm) UV lamp for 45 seconds (Blak-Ray, model B-100W).   After exposure, 

the resist-coated crystal was baked again in the oven at 120°C for another 15 minutes, 

and developed in developer solution followed by a rinsing in deionized water.  The 

chromium adhesion and gold layers were deposited slowly at a rate of 0.1 Å/s under 

ultra-high vacuum (~10-6 torr) to the desired thicknesses in a thermal evaporator, 

approximately 75 ± 10 Å and 1050 ± 10 Å, respectively. Lift-off of the photoresist was 

done in acetone and facilitated in a sonic water bath.  The fabrication process was 

repeated for both sides of the crystal.  Good adhesion of the metallic electrode layers to 

the quartz surface was observed.    
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4.2.2 Experimental Techniques for Radial Mass Sensitivity Measurements 

 

Various techniques to measure the mass sensitivity across the surface plane of a 

TSM resonator have been developed including x-ray diffraction to characterize the quartz 

particle vibration, surface charge distribution measurement, and characterization of 

optical speckle patterning produced by coherent light incident across the quartz surface.  

However, all of these methods have significant limitations including the expense of 

equipment and processing time.  Further details are available in Refs. [2], [1], and [40].   

 

4.2.3 Experimental Apparatus 

 

 A schematic of the experimental apparatus for measuring the mass sensitivity 

profile of any TSM resonator is given in Figure 4.2.  A discussion of the function of each 

component is incorporated in the experimental procedure given in Section 4.2.4. 
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A – Newmark Systems Linear Micropositioner G – Thermo Neslab RTE 740 Heater/Chiller Water Circulator 
B – Newmark Systems Rotary Micropositioner H – TechElan Microvalve with Driver 

C – Manual Vertical Micropositioner I – Agilent Pulse Generator 
D – TSM Resonator Stainless-Steel Test Cell J – Gas Driven Syringe 

E – Stanford Research Systems QCM200 Frequency Counter and Oscillator 
Circuit 

K – Marsh Bellofram Low Pressure Regulator 

F – Computer Workstation L – Nitrogen Cylinder 
 

 

 

Figure 4.2: Experimental apparatus for mass sensitivity measurements of TSM 

resonators.   

 

4.2.4 Experimental Procedure 

 

An approach for measuring the mass sensitivity distribution of a TSM resonator is 

an ink dot method where dots from a fine-tipped felt pen are placed at precise radial 

positions and the resulting frequency shifts are recorded.   This technique is effective and 
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efficient provided that the mass of each dot deposited is reproducible.  In this study, a 

novel apparatus was developed using a similar technique; however, the issue of 

reproducible mass upon each deposit is eliminated.  The modified TSM resonators were 

placed in a stainless steel test cell with drilled channels allowing heated water circulation 

for maintaining temperature, set at 60°C, and facilitating droplet evaporation.  The 

frequency of the bare crystal at the system temperature was monitored using a high-

precision frequency counter (± 0.01 Hz) and simple oscillating circuit (SRS, model 

QCM-200), and allowed to stabilize.  Mass sensitivity measurements were made by 

depositing minute droplets of a 0.65 wt % hydroxypropylcellulose (HPC)/water solution 

using a microvalve (TechElan, model SMLD-5b, < 5% CV in dispensing) at radial 

positions extending from the resonator center.  Droplet mass was measured by dispensing 

150 droplets into a weighing dish filled with oil and measuring the resultant mass with a 

mechanical balance.  The precise positioning of the droplets along a radial axis was 

achieved using both a Newmark Systems linear (model NLE-50, 0.01 µm resolution) and 

rotary (model RT-2, 0.32 arc-seconds resolution) micro-positioner.  After deposition of a 

droplet, the frequency of the resonator was allowed to stabilize to ensure complete 

evaporation and the resulting shift determined.  Based on the known mass deposited and 

the frequency shift, the mass sensitivity at a radial position is quantified.  Measurements 

were taken along radial axes extending from θ = 0° to 180° with a step-interval of 30° to 

account for any anisotropic effects due to the quartz substrate. Experimental details are 

given in Table 3.1. 

 

Table 3.1: Experimental details for mass sensitivity measurements of the modified TSM 
resonators  
 

Parameter Value 

Droplets per position 2 

HPC mass deposited per position, ng 227 ± 20 

Position step interval, mm 0.5 

 



 

53 
 

4.3 Droplet Gravimetric Measurements of NVR in Solvents 

 

Section 4.3 describes the experimental process for determining the level of NVR 

in solvents by droplet gravimetry using the modified TSM resonators. 

 

4.3.1 Experimental Procedure 

 

In this study, incorporation of the fabricated modified TSM resonators into the 

MasscalTM G1 quartz crystal microbalance/heat conduction calorimeter was attempted to 

measure the NVR in solvent solutions by droplet gravimetry (www.masscal.com).  The 

G1 consists of a thermopile/aluminum heat sink and a simple oscillator circuit with 

frequency counter for simultaneous measurement of thermal power and resonator 

frequency shift.   Monitoring of heat flow and frequency shift allows for determining 

droplet volume (utilizing the latent heat of vaporization) and NVR residue mass 

accumulation on the TSM device surface, respectively.  Figure 4.3 provides a detailed 

schematic of the G1 instrument. 

 

 

 

Figure 4.3: Mass/heat flow sensor and sample chamber of the MasscalTM G1. 
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Droplet gravimetry is conducted in the G1 by depositing microliter size droplets 

of the solvent using a graduated syringe onto the resonator surface in the sample chamber 

and monitoring the thermal power flow and frequency shift until the system stabilizes.   It 

is essential that the system stabilize to ensure that the droplet has evaporated to dryness. 

NVR levels in solvents are determined by droplet gravimetry from the following 

equations [48].  

 

 

 
(4.1) 

 (4.2) 

 

Here, ∆f  is the frequency shift associated with the residue deposited, mr and Ar are the 

residue film mass and area, respectively, and Cf  is the sensitivity factor.   For a 5 MHz 

TSM device, the sensitivity factor is taken to be 56.3 Hz*cm2/µg.  Additionally, Q and 

P(t) are the integral heat required to evaporate the droplet and the measured thermal 

power, ρs and Vs are the solvent density and volume, ∆Hs
vap

 is the latent heat of 

vaporization of the solvent, and Ms is the molar mass of the solvent. 
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CHAPTER 5 

 

RESULTS AND DISCUSSION 

 

 

5.1 Viscoelastic Shear Moduli of Poly(isobutylene)/Solvent Systems 

 

Using the measured motional circuit elements of the TSM resonator, the model in 

Section 2.5.2 was used to extract the storage, G', and loss, G", moduli for the pure and 

solvent-loaded poly(isobutylene) films presented in this work.  Figures 5.1 through 5.4 

present these results.  The trends in the shear modulus components for these systems 

match a similar study characterizing the effect of temperature change on a pure 

viscoelastic poly(isobutylene) film [9], as well as, a study of vapor sorption in another 

rubbery polymer, poly(dimethyl siloxane) (PDMS), [50].  This correlation further 

emphasizes the viability of characterizing the dynamic behavior of an excited bulk film 

through analyzing its effects on the electrical/mechanical response of a TSM resonator.  

Error in the result measurements, denoted in the error bars expressing one standard 

deviation, is attributed to the uncertainty in the initial thickness of the pure 

poly(isobutylene) film deposited on the surface of the resonator which was measured by 

profilometry to be approximately 13.0 ± 0.2 µm.  It should be noted the viscoelastic shear 

moduli is a physical film property that should be independent of film thickness, however, 

the impedance model derived in Section 2.5.2 is sensitively dependent on film properties.  

Meaning for a given motional response of a TSM resonator to a coupled mass loading, 

accurate pure or mixture film properties are necessary.      
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Figure 5.1: Measured storage, G', and loss, G", moduli of poly(isobutylene)/benzene 

systems versus benzene weight fraction, w1. 

 

 

Figure 5.2: Measured storage, G', and loss, G", moduli of poly(isobutylene)/chloroform 

systems versus chloroform weight fraction, w1. 
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Figure 5.3: Measured storage, G', and loss, G", moduli of poly(isobutylene)/n-hexane 

systems versus n-hexane weight fraction, w1. 

 

Figure 5.4: Measured storage, G', and loss, G", moduli of poly(isobutylene)/ 

dichloromethane systems versus dichloromethane weight fraction, w1. 
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5.2 Fractional Free-Hole Volume of Poly(isobutylene)/Solvent Systems 

 

 Results for the experimental fractional free-hole volume for the 

poly(isobutylene)/solvent systems compared to the Vrentas-Duda FV theory are 

presented in Figures 5.5 through 5.8.  The experimental results were determined using the 

measured shear modulus components presented in Section 5.1 and the superposition 

principle in Section 2.6.1.  A linear trend in the fractional free-hole volume data with 

solvent weight fraction is observed which is expected given the high correlation with the 

FV model.   Deviation in the experimental data from the empirical model can be 

attributed to the choice in the value of the fractional free-hole volume for a pure 

poly(isobutylene) film, either measured directly using a TSM resonator or obtained from 

literature.   Additionally, the free volume parameters employed in the Vrentas-Duda FV 

theory can vary depending on the accuracy of the temperature-pressure viscosity data 

from which they are determined.  

     

 

Figure 5.5: Experimental fractional-free hole volume of poly(isobutylene)/ benzene 

systems compared to the Vrentas-Duda FV model. 
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Figure 5.6: Experimental fractional-free hole volume of poly(isobutylene)/ chloroform 

systems compared to the Vrentas-Duda FV model. 

 

 

Figure 5.7 Experimental fractional-free hole volume of poly(isobutylene)/n-hexane 

systems compared to the Vrentas-Duda FV model. 
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Figure 5.8: Experimental fractional-free hole volume of poly(isobutylene)/ 

dichloromethane systems compared to the Vrentas-Duda FV model. 

 

5.3 Mass Sensitivity Measurements of Electrode Modified TSM Resonators 

 

Using the model predicted R value and 4-10 mm ring electrode configuration 

discussed in Section 3.4, devices were fabricated and tested. Figure 5.9 presents the 

experimental mass sensitivity measurements.  The experimental results represent multiple 

measurements taken over different radial alignments extending from θ = 0° to 180° with 

a step-interval of 30°.  Results agree well with theory, however, there still exists a 

remnant bimodal response in the distribution. Uncertainty in the electrode thicknesses, 

approximately ±10 Å, explains the discrepancy given that the mass sensitivity profile is 

sensitively dependent on the electrode mass loading.  Additionally, variable scatter in the 

measured data, denoted in the error bars expressing one standard deviation, was 

observed.  Anisotropy of the quartz is likely a contributor to the approximately 10-15% 

standard deviation (error bars) reported in Figure 5.9, where data are averaged over all 

radial directions.  This situation improves when mass sensitivity is measured along a 

single radial direction, in which case the standard deviation is 3%.  However, it is 
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difficult to design a practical nanobalance wherein mass is deposited along a single radial 

direction.  Hence, data averaged over all radial directions have been presented.  The 

inherent vibration instability of the ring electrode configuration due to energy trapping 

resulting from the coupling of the oscillating modes within the electroded region, 

between the radii a and b, [38, 39] also contributes to the scatter. 

 

 

Figure 5.9: Experimental mass sensitivity distribution for a ring electrode 5 MHz TSM 

device having inner and outer diameters of 4 and 10 mm, respectively, with R = 0.0025. 

 

5.4 Droplet Gravimetry Measurements Using Electrode Modified TSM Resonators 

 

Initial NVR measurements in histological grade methanol (Fisher Scientific) were 

conducted using the G1 microbalance/calorimeter and the modified TSM resonators.  The 

results from these measurements exhibited unreasonable standard deviations in the NVR.  

The microliter sized droplets dispensed from the syringe are too large for the modified 

TSM devices due to wetting effects prompting spreading of the droplets outside the 

sensing area of the device. Incorporation of a microvalve into the G1 would eliminate this 
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shortcoming and allow accurate measurement of NVR by droplet gravimetry.  

Additionally, chemical modification of the gold surface with an alkanethiol self-

assembled monolayer (SAM) would create a hydrophobic/hydrophilic surface for droplet 

containment.       

 

An equivalent method for determining NVR in solvent droplets using the mass 

sensitivity apparatus was utilized (see Figure 4.2).  Droplets of methanol were deposited 

using the microvalve within the area of constant mass sensitivity of the modified TSM 

resonators and the resulting frequency shifts recorded.  The mass of each droplet was 

determined to be 170.1 ± 8.4 µg by dispensing 150 droplets in a weighing tray full of oil 

and weighed using a mechanical mass balance (Denver Instrument Company, model 250-

A, 0.01 mg tolerance).  The 5% discrepancy in the droplet mass can be attributed to both 

the potential evaporation of methanol before it reaches the oil and the tolerance of the 

balance.  Droplet mass can also be determined from the integral heat associated with the 

droplet evaporation on the TSM device surface; with the incorporation of a microvalve 

for nanoliter dispensing in the Masscal G1 nanobalance/calorimeter.  Given a residue 

film area of approximately 0.042 cm2, determined by optical measurement of the residue 

radius, the residue mass and resulting NVR levels were calculated.  The optical 

measurements of the film radius were made using a transmission microscope (Leica, 

model DMI-4000B, 5 µm resolution).  Detailed droplet gravimetric results are given in 

Table 4.1.  
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Table 4.1: Detailed droplet gravimetric results  

 

Droplet # Δf, (Hz) mr, (ng) NVR, (ppm) 

1 -1.26 0.94 5.49 

2 -1.55 1.16 6.77 

3 -0.98 0.73 4.28 

4 -1.12 0.83 4.88 

5 -1.62 1.21 7.09 

total -6.53 4.84 5.70±1.2* 

* denotes average and standard deviation 

 
 

The gravimetric results of NVR levels in the methanol droplets are encouraging, 

given that they are within the range expected for the histological grade methanol utilized, 

even though the standard deviation in NVR is relatively high. NVR measurements of 

stock methanol solutions having a volume of 150 ml were conducted for comparison.  

These solutions were completely evaporated at 100°C in a water bath and dried in a 

vacuum oven for one hour at 101°C.  The residues were carefully weighed and, based on 

a methanol density of 0.7918 g/ml disclosed by the solvent manufacturer, the stock NVR 

level was determined to be within the range of 4.2 to 5.0 ppm.  Although there is good 

agreement between the droplet gravimetric and bulk volume evaporation NVR results, 

further improvement of the modified TSM devices is necessary to reduce the standard 

deviation observed.  
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CHAPTER 6 

 

CONCLUSIONS AND FUTURE WORK 

 

 

In summary, two applications of TSM resonators were studied in this thesis work. 

Firstly, a technique was proposed to determine the fractional free-hole volume of 

poly(isobutylene)/solvent systems from viscoelastic shear moduli, G, data of these 

systems measured using a TSM resonator.  Reasonable agreement between experimental 

results and empirical modeling indicates the technique is viable and can be used to 

evaluate the fractional free-hole volume for any polymer/solvent system which is 

necessary to evaluate diffusion dynamics.  However, extension to other systems requires 

the study of the viscoelastic behavior of other pure films to generate “master curves.”  

 

Secondly, a ring electrode design (with appropriate electrode mass loading factor) 

that produces a uniform mass sensitivity distribution across a TSM device is presented in 

this study. A new technique and apparatus to measure this mass sensitivity distribution is 

also presented. Fabricated devices utilizing model predictions were tested using this 

apparatus, and good agreement between theory and experiment is found.  A viable TSM 

device that can be utilized to construct a nanobalance is the result of this work, however, 

improvements are possible, both in terms of improved stability of the device resonance 

frequency and more uniform sensitivity distribution over a larger device surface.  Such 

designs require extensions of the analytical model utilized in this work, or finite element 

simulations, to geometries other than the ring electrode design. 
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Appendix A: Supplementary Equations 
 
A.1 Cutoff Frequencies from Equation 3.3 
 
The cutoff frequencies, , for each electroded region in Equation 3.3 are [38]:  
 

 (A.1) 

 (A.2) 

 
Where,  
 

 (A.3) 

 (A.4) 

 (A.5) 

 (A.6) 

 
Here, , , and  are the elastic stiffness, piezoelectric, and dielectric constants of 
AT-cut quartz.  is the electrode mass loading factor. 
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Appendix A: (continued) 
 
A.2 Definite Integral in Equation 3.1 
 
The definite integral in Equation 3.1 is [42]: 
 

 

(A.7) 

 
Where, 
 
 

 (A.8) 
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Appendix A: (continued) 
 

 

 

 

 

 

 
 

 

(A.9) 

  

 (A.10) 
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