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Abstract 

The work presented in this thesis aims to address the obstacles that side reactions 

create in aluminum / H2O2 galvanic cells by proposing to control the cathodic reactant, 

H2O2, via encapsulation. Encapsulation of the cathodic reactant is achieved utilizing a 

non-ionic surfactant vesicle (i.e. niosome).  Once encapsulated, a second control element 

over the cathodic reactant is provided. The use of a polymer will be implemented to 

achieve stability and render further control over the encapsulated H2O2 solution. 

Implementation of the proposed novel cathodic control system in aluminum / H2O2 

galvanic cells aims to minimize aluminum consumption and increase cell efficiency. Cell 

performance is evaluated by several electrical characteristics which include and are not 

limited to cell overall power output, cell operational time, and energy production per 

consumption of the aluminum anode. Results indicate an average energetic output value 

of 0.57 KJ +/- 0.09 KJ versus 0.542 KJ +/- 0.05 KJ without the implementation of the 

proposed cathodic control system. In addition, a decrease of 15% in average aluminum 

consumption value was achieved with the use of the proposed system. 
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Chapter 1: Introduction 

1.1 Thesis Outline  

This thesis presents a novel control system that will assist in the development of 

the selected aluminum / H2O2 electrochemical cell. Chapter one introduces the use of 

electrochemical cells implemented in a range of applications and further explains a cell’s 

components. In addition, a detailed explanation of thermodynamics and cell electrical 

characteristics are provided. Due to the fact that an aluminum anode electrochemical cell 

was chosen as the case study, background information on aluminum anode systems is 

included in chapter one. Chapter two provides preliminary information on the proposed 

system. Chapter three conveys details on the methodology and procedures followed 

throughout the experimentation process. Chapter four is a discussion of results acquired 

for this body of work. Chapter five summarizes the results and provides 

recommendations for future work on this project 

1.2 Electrochemical Cells 

In an electrochemical cell, chemical energy is converted directly into electric 

energy. This conversion of energy is due to oxidation and reduction reactions that occur 

within the cell [1]. Electrochemical cells that have spontaneous electrode 

reduction/oxidation reactions occurring are termed galvanic cells [2]. Electrochemical 

power sources are portable, flexible in size, and silent [3]. Currently electrochemical cells 

are utilized in a wide range of applications from powering portable electronic devices to 
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electric vehicles [1]. In addition, electrochemical cells are utilized in the extraction 

process of metals from aqueous solution. In air, metal ore is roasted to produce a metal 

oxide. Sequentially, it is dissolved in an acidified aqueous solution contained in the 

galvanic cell. Appling an electrical current to the cell will allow the metal to be 

electrochemically deposited at the cathode [2]. Metals such as Pb, Zn, Ni, Co, Cd, Cr, Sn, 

and Mn are electrochemically extracted.  

In addition, electrochemical cells are utilized in batteries. Batteries are comprised 

of more than one electrochemical cell connected in series, parallel, or a combination of 

both. Batteries have the ability to store electrical energy supplied from an external source 

and power portable devices [1]. The worldwide market for batteries value exceeds 100 

billion dollars with the majority resulting from lead-acid batteries [3]. 

Other electrochemical cells of interest are fuel cells. Fuel cells are similar to 

batteries in the way they operate. The difference between a battery and a fuel cell is 

where the reactants are contained. For fuel cells, there is an external fuel source 

supplying the electrochemical cell as for batteries, it is contain within the cell [1]. Fuel 

cells have been under extensive research over the years and incorporated in a range of 

applications from powering spacecrafts to unmanned underwater vehicles[4, 5]. In 

particular, the hydrogen  / oxygen fuel cell has been implemented into powering fuel cell 

vehicles [6]. A single hydrogen / oxygen fuel cell produces approximately 1 V under 

open circuit conditions and are connected in series, to form a stack, to obtain higher 

voltage values [7].  
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1.2.1 Electrochemical Cell Components 

There are three basic components to an electrochemical cell, as shown in Figure 

1. The first component is a negative electrode commonly known as the anode. Oxidation 

occurs at the surface of the anode generating electrons. The electrons flow through an 

external electrical circuit and reach the second component of the cell, the positive 

electrode commonly known as the cathode. At the cathode, consumption of the electrons 

occurs via a reduction reaction. Balancing the transfer of electrons, occurring in the 

external electrical circuit, are negative and positive ions present in an electrolyte medium. 

Positive ions flow towards the cathode and the negative ions flow towards the anode.  

This ionic conductor is the third component in an electrochemical cell known as the 

electrolyte [1]. Electrolytes that are not electrically conductive and have good ionic 

conductivity are ideal to use in cells [1].  
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Figure 1: Basic Components of an Electrochemical Cell 

 

1.3 Thermodynamics Explanation of Electrochemical Cells 

If the net reaction in an electrochemical cell is reversed by applying a current flow 

in the opposite direction, the cell is said to be reversible. The cell reaches an equilibrium 

state when no current is being drawn. The measured difference in potential across the 

terminals of a reversible cell at an equilibrium state is termed the electromotive force 

(emf) of the cell and also known as the open circuit voltage [3].  As chemical reactions 

arise in the electrochemical cell, there is a decrease in free energy that enables the cell to 

deliver electric energy to an external circuit [1]. This change in free energy is equaled to 

the thermodynamically available work. Utilizing the electrical energy produced by the 

electrochemical cell divided by the thermodynamically available work results in the cell’s 
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energy efficiency. The emf of a cell may be related to the change in free energy shown in 

Equation 1.  

 

                                                                         ∆𝐺𝑜 = −𝑛𝐹𝐸𝑜                               (1)                                                         

Where F = Faraday’s Constant, equaled to 96,500 Coulomb 

 n = number of electrons involved in stoichiometric reaction 

 Eo = Standard Electromotive force/ Standard Cell Potential  

 

Utilizing standard oxidation and reduction potentials for the anodic and cathodic 

electrode reactions, the standard potential for an electrochemical cell may be obtained 

(Equation 2 [8]).  These oxidation and reduction potentials are thermodynamically 

predicated values affiliated with a reference half reaction. The accepted half reaction 

reference is the standard hydrogen electrode where hydrogen gas at one bar is utilized to 

saturate an electrode comprised of a noble metal [3].  

𝐴𝑛𝑜𝑑𝑒 (𝑜𝑥𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙) +  𝐶𝑎𝑡ℎ𝑜𝑑𝑒 (𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙)

= 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐶𝑒𝑙𝑙 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙  

 

 

(2) 
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If conditions are not in the standard state, the Nernst equation may be used for any given 

cell (Equation 3).  

                                                             𝐸 = 𝐸𝑜 −  𝑅𝑇
𝑛𝐹

ln �𝑎
𝑣𝑝…..
𝑎𝑣𝑟…..

�                                        (3)                                                                 

Where F = Faraday’s Constant, equaled to 96,500 Coulomb 

 n = number of electrons involved in stoichiometric reaction 

 Eo = Standard Electromotive force / Standard Cell Potential  

 a= activity coefficient of individual components / species 

 vp=  stoichiometric coefficient for product species 

 vr= stoichiometric coefficient for reactant species 

Thermodynamically predicated cell potentials are always higher then cells under a 

load. The deviation from predicated values is termed the overpotential [8]. The difference 

in voltage values are due to losses within the cell from internal resistance [3]. During the 

presences of a current, internal resistance in the bulk of the electrode and electrolyte 

phases causes a decrease in cell potential [8]. The loss in voltage due to internal 

resistance (IR) is commonly known as ohmic loss / IR drop [3].  

Concentration and activation overpotentials are two factors that also contribute to 

a cell’s overpotential value [8]. Concentration overpotential is associated with the mass 

transfer limitations of reactants and products at the interface between the electrode and 

electrolyte. In other words, concentration gradients at the electrode surface inhibit current 

generation [3]. Activation overpotential incorporates limitations due to rate determining 
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steps in the electrode reaction. These rate determining steps dedicate how the reaction 

will proceed kinetically [8]. The contribution due to activation overpotential usually is 

not significant in a cell’s overpotential [8].  

1.3.1 Calculation of Cell Electrical Characteristics 

Once the cell is activated, voltage values versus cell operational time (defined as 

the time for a cell to reach a voltage value of 0.6 Volts) are closely monitored and are the 

basis for the parameters implemented in characterizing the cell’s performance. Figure 2 

and 3 are examples of cell potential versus time curves and instantaneous power versus 

time curves. Figures 2 and 3 are an average of five experimental runs. Standard deviation 

values were obtained and displayed in both figures.  

The performance of the aluminum anode galvanic cell is evaluated by taking into 

account the obtained instantaneous power, which is dependent on the electrical load 

subject upon the cell [9]. Integrating instantaneous power with respect to time defines the 

discrete amount of work produced, equation shown in Table 1. By knowing the amount 

of provided work, overall power output values can be calculated (equation displayed in 

Table 1 [9]). 
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Table 1: Equations for Electrical Performance Characteristics for               
Electrochemical Cells [8] 
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Figure 3: Example of Instantaneous Power Curve for Niosome Experimental Run                       
Utilizing 99.99% Al Purity (Average of Five Experiments Conducted); Area Underneath 

Curve is Equal to the Cell’s Energetic Output   

 

1.4 Aluminum Anode Electrochemical Cells 

Low density materials with high theoretical oxidation potentials are ideal for the 

manufacturing of the negative electrode/anode in an electrochemical cell. Other qualities 

such as stability, conductance, and cost contribute in the selection process [1]. Focus on 

the use of magnesium and aluminum as anodes have been noted in literature [10]. 

Aluminum, in particular, is attractive as a negative electrode material due to its oxidation 

potential of +1.7V and low density [11, 12]. In addition, aluminum’s reported theoretical 

energy density is among the highest in electrochemical cells with a value of 24.7 KJ / 

gram [12]. 
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The usage of Aluminum for electrode material has been around since 1850s  and 

was first introduced as an negative electrode material in the Buff cell in 1857 [13]. 

Reporting’s of an aluminum zinc alloy anode for chlorine depolarized batteries emerged 

in 1948 and by 1950 considerable efforts occurred in the development of aluminum 

anode power systems [13]. Since then several systems have emerged implementing the 

use of aluminum as the anode material, refer to Table 2.  

Table 2: Electrochemical Cells Incorporating the Use of Aluminum [13, 14] 

 
Al Anode Electrochemical Cells    

 
Al / MnO2 

    
 

Al / AgO 
    

 
Al / S 

 
   
 

Al / FeCN 
 

   

 

                 Al / NiOOH 
 

 

Al / C3N3Cl3O3 

 
 

 
Al / Na2O2 

 
   
 

Al / H2O2 
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1.5 Aluminum / Hydrogen Peroxide Galvanic Cell 

Zaromb in 1960 pioneered initial research on aluminum / hydrogen peroxide 

galvanic cells [11].  This system implements the use of hydrogen peroxide as the cathodic 

reactant present in an alkaline media [13]. The initial presence of hydroxide ions is 

required to initiate the electrochemical reaction for the aluminum / hydrogen peroxide 

galvanic cell, refer to Equation 4 [5, 9, 13]. The electrochemical reaction for the 

aluminum hydrogen peroxide system has a theoretical standard potential (Eo) of 3.2 Volts 

[12]. In order for the electrochemical reaction to establish its self, the cathode reaction, 

shown as Equation 5, must occur [9, 15]. 

Electrochemical Reaction: 2Al(s) + 3H2O2(aq) + 2OH-1
(aq) → 2Al(OH)-1

4(aq)  Eo = 2.3V  (4)                                      

Cathode Reaction: H2O2(aq) + OH-1
(aq) + 2e → 3OH-1

(aq)                      Eo = 0.87 V         (5)                                                        

As the electrochemical reaction proceeds, it has been reported in literature that the 

concentration of aluminate, 2Al(OH)-1
4, increases and the concentration of the hydroxide 

ion decreases [5]. This decrease in concentration of hydroxide ions is interrupted by the 

precipitation of aluminum hydroxide, 2Al(OH)3, shown by Equation 6 [16].   

Al(OH)-1
4 → Al(OH)3 + OH-                    (6) 
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Side reactions do arise and in return interfere with the electrochemical reaction 

and ultimately reduces energy production. These side reactions are parasitic in nature 

consuming both anode and cathode materials. There are three main side reactions of 

concern.  

 The corrosion of aluminum [5, 11, 17]: 

2Al(s) + 3H2O → 2Al(OH)3(s) + 3H2(g)                                                            (7)                                                                                  

 The direct reaction of aluminum with hydrogen peroxide [5, 9]: 

2Al(s) + 3H2O2(aq) → 2Al(OH)3(s)                                                                    (8)                                               

 The decomposition of hydrogen peroxide[15, 17, 18]: 

2H2O2(aq) → O2(g) + 2H2O(l)                                                     (9) 

In the corrosion of aluminum, the anode material is consumed inadequately and 

hydrogen gas is created. The corrosion of aluminum reaction is detrimental to the cell’s 

efficiency and the creation of hydrogen gas forms bubbles that hinder viable electrode 

surface area. The direct reaction of aluminum with hydrogen peroxide forms precipitates 

of aluminum hydroxide. A thin coating on the anode is developed as a result of the direct 

reaction.  Another parasitic reaction is the decomposition of hydrogen peroxide where 

cathodic reactant is exhausted. Hydrogen peroxide reacts in the presence of contaminates 

and innately decomposes [11].  

In an attempt to control parasitic reactions from occurring, the use of small 

amounts of other materials infused into the aluminum anode has been investigated [19]. 

Previously evaluated aluminum alloys incorporate the use of Ga, In, Sn, Zn, Ma, Ca, Pb, 

and Mn [20]. Altering cell structure has been noted in literature to improve cell efficiency 
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by adjusting anode to cathode surface area [9]. The use of a cationic surfactant, cetyl 

trimethyl ammonium bromide (CTAB), in combination with lupine seed extract has been 

investigated to inhibit the aluminum corrosion reaction that occurs [21]. To prevent the 

direct reaction of H2O2 with aluminum, an ion diffusion membrane has been used in 

previous studies to obstruct the passage of H2O2 molecules [22]. In cell designs where an 

ion diffusion membrane is absent, additives have been explored, such as gallium oxide 

and sodium plumbate, that assist in the removal of the formed thin coating on the anode 

that results from the direct reaction [19]. In addition, the use of a Pd- Ir catalyst and 

metallic silver catalyst (deposited onto a Ni foam substrate)  have both been explored to 

improve upon the reduction of H2O2 (positively affecting the electrochemical efficiency) 

[17, 23]. Furthermore, attempts to improve cell efficiency have focused on the use of 

slow dissolving solid oxidizers [24]. Conjointly, the solid oxidizers were encapsulated 

utilizing gelatin and acrylamide polymers [25]. Adequate encapsulation of liquid 

oxidizers for use in galvanic cells may be challenging.  
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1.6 Research Aims 

The work presented in this thesis aims to address the obstacle that side reactions 

create by proposing to control the cathodic reactant, H2O2, via encapsulation. Once 

encapsulated, the use of a polymer will be implemented to further control the release of 

H2O2. Implementation of the proposed novel control system is hypothesized to minimize 

aluminum consumption, reduce side reactions and increase cell efficiency. Research aims 

are shown below. 

 Increase Power Generation- Through consuming material adequately by 

reducing parasitic reactions via novel reagent control system. 

 Reduce Aluminum Consumption- Results in material conservation and 

prolongs the utilization of the electrochemical cell. 

1.7 Proposed Cathode Control System 

The first component of the proposed system is a non-ionic surfactant vesicle 

known as a niosome. These vesicles are formed through the self-assembly of non-ionic 

amphiphilic surfactants, in an aqueous media, into spherical bilayer structures [26]. 

Factors that contribute to vesicle formation include the temperature of the medium, 

surfactant monomer structure, and concentration [27]. The structure of a niosomes is 

composed of a hydrophobic shell and a hydrophilic core [28]. Niosomes differ from other 

types of vesicles, such as liposomes or polysomes, in their basic unit of assembly. 

Liposomes are composed of natural, charged amphiphilic lipids and polysomes are built 

with copolymers of amphiphilic characteristics  [28]. The preferred use of niosomes over 

liposomes is attributed to its chemical stability, lower cost of chemicals, and a substantial 

amount of surfactant options [29]. Initial research on non-ionic surfactants vesicles was 



15 
 

conducted in the seventies by the cosmetic industry [26].  Since then, there utilization has 

expanded into the biomedical industry, where they have been investigated as drug 

carriers [26-28]. 

The niosomes will be utilized, in this body of work, to encapsulate aqueous 

hydrogen peroxide solutions (oxidizer) providing an initial control over the release rate. 

To minimize instability due to osmotic pressure caused by differences in solute 

concentrations, the niosomes are suspended into the same hydrogen peroxide solution 

used in the encapsulation process [27]. The suspended niosome solution is exposed to a 

second control element proposed in the present work.  

The second component of the proposed system is a three dimensional polymer 

network chemically crossed linked into a gel-like substance [30]. Implementing the use 

of a polymer allows for a second control over the release of hydrogen peroxide. Figure 4 

illustrates the proposed system presented in this body of work. Diffusion of encapsulated 

hydrogen peroxide and hydrogen peroxide molecules into the polymer network will occur 

once the polymer is in contact with the suspended niosome solution ensuring a second 

control over the cathodic reactant.  

The selected polymer was synthesized from N-isopropylacrylamide (NiPAAm) 

monomers by free radical polymerization. Poly(N-isopropylacrylamide) is a thermo-

responsive hydrogel that exhibits a phase transition at temperatures higher than 32 

degrees Celsius [31]. The hydrogel will transition from a swollen to a shriveled state once 

temperatures are above 32 degrees Celsius [32]. At these higher temperatures, the 

expulsion of solvent that occurs is due to hydrophobic interactions [30].  Thermo-
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responsive hydrogels are an attractive class of material and are currently being studied in 

applications of separation systems [33, 34], chemo-mechanical values [35], and drug 

delivery systems [36]. 

 

 
 

 

Figure 4: Illustration of Proposed System 
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Chapter 2: Cathode Control System 

2.1 Niosome Composition 

The niosomes utilized for this body of work are composed of a non-ionic 

surfactant, cholesterol, and dicetyl phosphate free acid. The non-ionic surfactant chosen 

are two sorbitan esters. The first is Sorbitan Monopalmitate (SPAN 40) with a molecular 

weight of 402 𝑔
𝑚𝑜𝑙𝑒

 and a molecular formula of C22H42O6. The second sorbitan ester is 

Sorbitan Monostearate (SPAN 60) with a molecular weight of 430.63 𝑔
𝑚𝑜𝑙𝑒

 and a 

molecular formula of C24H46O6. Both SPAN 40 and 60 were acquired from Sigma-

Aldrich and their catalog numbers are 388920-250G and S7010-250G respectively. It has 

been previously noted in literature that entrapment efficiencies are highest with the 

implementation of either SPAN 40 or SPAN 60 surfactant for niosome formation [37]. 

   

                                                      

 

Figure 5: A.) Sorbitan Monopalmitate (SPAN 40, 14 Carbon Chain), B.) Sorbitan 
MonoStearate (SPAN 60, 15 Carbon Chain) [28] 

A.)                                                                                      B.) 

R = A or B 
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The second component is cholesterol having a molecular weight of 386.66 𝑔
𝑚𝑜𝑙𝑒

 

and a molecular formula of C27H46O. Figure 6 shows the chemical structure of 

cholesterol. Incorporating cholesterol in niosome formation has been cited to contribute 

to the niosome’s stability and to provide certain rigidity in the assembly process [28]. The 

cholesterol purchased was ovine wool > 98% grade from Avanti Polar Lipids, catalog 

number 700000p (5 g).  

 

Figure 6: Cholesterol Structure [38] 

 

 

The third component is dicetyl phosphate free acid (DCP) having a molecular 

weight of 546.85 𝑔
𝑚𝑜𝑙𝑒

  and molecular formula of C32H67O4P. Figure 7 shows its’ 

chemical structure. This compound was purchased from MP Biomedicals LLC, catalog 

number 101546 (1 g). The utilization of dicetyl phosphate helps protect against 

flocculation of vesicles in suspension [27].  

 

                               

Figure 7: DCP Structure [39]  

http://www.avantilipids.com/images/structures/700000s.gif
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2.2 Polymer Composition 

N-isopropylacrylamide (NIPAAm) functional monomer has a molecular formula 

of C6H11NO and a molecular weight of 113 𝑔
𝑚𝑜𝑙𝑒

(Figure 8 ). NIPAAm was purchased 

from Sigma-Aldrich, catalog number 415324 (97%). The solvent utilized to dissolve the 

monomer is deionized (D.I.) water. The chemical cross-linker selected is N,N’-

methylenebisacrylamide (BisAAm). The chemical cross-linker has a molecular formula 

of C7H10N2O2 and molecular weight of 154.17 𝑔
𝑚𝑜𝑙𝑒

 (Figure 9). BisAAm was purchased 

from Sigma-Aldrich, catalog number 146072 (99%). The initiator chosen is ammonium 

persulfate (APS). The initiator has a molecular formula of (NH4)2S2O8 and a molecular 

weight of 228.20 𝑔
𝑚𝑜𝑙𝑒

.  APS was purchased from Sigma-Aldrich, catalog number 248614 

( ≥ 98.0% ). The activator used is N,N,N’,N’-tetramethylethylenediamine (TEMED). 

The activator has a chemical formula of C6H16N2 and a molecular weight of 116.21 𝑔
𝑚𝑜𝑙𝑒

. 

TEMED was purchased from TEKNOVA, catalog number T0761 (ultra-pure grade). 

 

Figure 8: NIPAAm Chemical Structure [40] 

  

 

Figure 9: BisAAm Chemical Structure [41]  
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Chapter 3: Experimental Procedures 

3.1 Niosome Preparation 

The niosomes were prepared in a 1:1:0.95 molar ratio of SPAN 60: cholesterol: 

DCP. The mass amount of SPAN 60 used for niosome formation is 0.098g (0.092g of 

SPAN 40 was used for the preparation of SPAN 40 niosomes). As for DCP and 

cholesterol, 0.013g and 0.88g were utilized respectively. The three chemicals were 

dissolved into 3 mL of chloroform and placed into a 100 mL round bottom flask. The 

solution was rotated in a water bath having a temperature of 60 degrees Celsius. This 

temperature was selected due to it being above the phase transition temperature of SPAN 

60 (about 50 degrees Celsius [37]). Once all the chloroform was evaporated, a thin film 

was formed (approximately 20 minutes). The thin film was purged with nitrogen for 

approximately 5 minutes and covered with parafilm®. The covered flask remained 

clapped upside down to further dry for 8-24 hours.    

The film was hydrated with 4 mL 30% wt solution of hydrogen peroxide creating 

the self-assembly formation of niosomes as shown in Figure 10. Stock solutions of 30% 

wt hydrogen peroxide were obtained by further diluting 50% wt hydrogen peroxide 

solution purchased from Fisher, catalog number H341-500, with D.I. water. Stock 

solutions of 30% wt hydrogen peroxide were remade after a period of 5-7 days. The 

niosome solution was sonicated for 15 minutes. Once sonicated, the niosome solution 

was extruded through a polycarbonate membrane, purchased from Avanti Polar Lipids 
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catalog number 610004 pore size of 0.08 micrometer. The niosome solution was 

suspended into 30% wt hydrogen peroxide solution. A volume ratio of 0.25 (niosome 

solution formed after hydration / hydrogen peroxide solution) was utilized. 

 

                                                 

 

   Figure 10: Thin Film Hydration Method; Figure A: Hydration of Thin Film, Figure B: 
Formation of Niosomes Once Thin Film is no Longer Visible    

Thin Film Dissolved 

60 0 C Water Bath 

Hydration of Thin Film 

Formed Niosomes 

A: B: 
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3.2 NIPAAm Preparation 

The selected polymer was synthesized from N-isopropylacrylamide (NIPAAm) 

monomers by free radical polymerization. The amount of NIPAAm utilized for 

polymerization was 0.290 g and was dissolved into 6 mL of D.I. water. Once dissolved, 

62 µL of 0.1 M HCl solution was used to assist in pH adjustment of the monomer in 

solution. The pH was adjusted approximately to the pH of the H2O2 solution utilized 

during niosome formation. The HCl solution was acquired from Acros Organics (catalog 

number 124630010, 37% solution in water) and further diluted with D. I. water to 

achieve desired concentration.  

Solutions of 0.005g/mL, 0.01g/mL, 0.02g/ mL, 0.025g/mL, and 0.04g/mL of 

BisAAm were made and the use of 34 µL of each was required in the polymerization of 

NIPAAm. Solutions of the initiator were made consisting of 0.1 g of APS in 1 mL of D.I. 

water. The amount of APS solution used in the polymerization process was 11.44 μL. 

The activator, TEMED, is a liquid solution and 36 μL were used. Once the monomer was 

dissolved into D.I. water, the process in which the remaining chemicals were utilized is 

as follow: 

 HCl Solution 

 BisAAm Solution 

 APS Solution 

 TEMED Solution 

All samples were purged with nitrogen for five minutes after the addition of 

BisAAm solution and ten minutes after the addition of TEMED. Purging the samples 
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with nitrogen assisted in the removal of oxygen. Samples were left to polymerize for 

approximately 8 hours at room temperature.  

3.3 Cell Potential Experiments versus Time 

A cell stack comprised of six cells was utilized to run cell potential experiments 

as shown in Figure 12. The cell was manufactured from ABS plastic at SRI  International 

[42]. Individual cells each had a volume of 65mL. The aluminum anode’s dimension is 

3.81 cm by 8.26 cm displayed in Figure 11. Different aluminum purities were utilized: 

99.90%, 99.99%, and 99.998%. The aluminum foil of purity 99.90% was acquired from 

aluminum, catalog number 1145H. The aluminum foil of purity 99.99% and 99.998% 

were purchased from Alfa Aesar, catalog numbers are 40760 and 44492 respectively. An 

aqueous solution of NaOH was the electrolyte selected. Solutions were prepared with the 

use of NaOH (food grade) purchased from AAA Chemicals. A dielectric material 

(Polyester; with the same dimension as the anode) separates the anode from a thin silver 

electrode (catalyst electrode utilized) and prevents short circuiting within the cell.  

 

 

 

 

 

 

 

Thin Silver Electrode 

Dielectric Material 

 

Al Electrode Approximately  

3.81 cm by 8.26 cm 
 

Figure 11: Electrodes and Dielectric Material  
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A Fluke 189 True RMS Multimeter was used to collect cell potential data during 

experimental runs. Data was collected until a value of 0.60 volts was achieved. For each 

experiment 2 mL of the encapsulated hydrogen peroxide solution and 45 mL of 1 M 

NaOH solution were utilized. The NaOH was first introduced into the cell followed by 

the hydrogen peroxide solution and data collection began.  For experiments consisting of 

the use of polymers, the 2 mL hydrogen peroxide solution was mixed in the polymer 

container and allowed to sit for ten minutes to ensure diffusion of niosomes and H2O2 

molecules into polymer before each experiment as shown in Figures 13 and 14. The 

polymer and niosome solution was further placed into the cell after the ten minutes and 

45 mL of the 1 M NaOH solution was added. Once NaOH was in the cell, data collection 

commenced.  
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Figure 12: A.) Figure of Experimental Setup at Cell Position 6;  B.) Figure of 
Experimental Setup at Cell Position 4; C.) Top View of Cell Stack with Numbered Cells 

 

 

 

Figure 13: Polymer before Mixing Niosome Solution, Clear Separation 

 

A.) B.) 
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Figure 14: Polymer after Mixing Niosome Solution 
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Chapter 4: Results and Discussion 

4.1 Niosome Size Characterization  

4.1.1 Niosome Size Distribution Study 

Particles in solution undergo a random displacement due to collisions amongst 

other particles, solvent molecules, or by an external force. The displacement of particles 

and molecules due to these collisions is termed Brownian motion [43]. To measure this 

displacement, a small region of a sample is illuminated and scattered light is detected. As 

the particles or molecules are in motion, there are fluctuations in light. Obtaining light 

fluctuations versus time results in the particles or molecules displacement in a small 

region. This information can be related to the rate of diffusion of molecules in and out of 

the small region. Applying the relationship between diffusion and particle size derived by 

Albert Einstein, hydrodynamic diameters (defined as the diameter for the particles in 

solution) can be obtained. This technique for measuring the diameter of particles in 

solution is termed dynamic light scattering (DLS) and was utilized to determine the size 

distribution of the niosomes in solution [43].   

The methodology used to form niosomes incorporates extrusion with the goal of 

achieving a uniform size distribution among the niosome solution. We have hypothesized 

that by having a uniform size distribution of niosomes in the cell, amounts of hydrogen 

peroxide being released, by rupturing niosomes, will be similar throughout a cell’s 

operational time.  The first step in confirming this hypothesis is obtaining the size 
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distribution of niosomes after extrusion. Three batches of SPAN 60 niosomes 

encapsulated with 30% wt of H2O2 and resuspended into 30% wt of H2O2 solution ( 

having a volume ratio of 0.25 as explained in section 3.1) were prepared and the 

niosomes’ hydrodynamic diameter distribution was obtain by a Zetasizer Nano-S 

(Marvin,PA). Measurements were conducted on the day of preparation. Samples were 

prepared as follow:  100 µL of SPAN 60 niosome solution, described above, was further 

diluted into 900 µL of 30% wt of H2O2 solution. Three samples per batch were tested and 

their average size distribution is shown in Figures 15, 16, and 17.  Reviewing results 

obtained by the DLS apparatus indicate that a uniform size distribution is not achieved 

after the niosomes have been extruded. In addition, the size distribution for each of the 

three batches is inconsistent with each other. The smallest range for niosome diameter is 

approximately 350 to 1500 nm (Batch 1). The largest range for niosome diameter is 

approximately 700 to 3500 nm (Batch 3). Imaging was conducted with a transmission 

electron microscope (TEM) of Batch 3 (largest niosome size distribution) and displayed 

in Figures 19 and 20. All imaging was conducted within 24 hours of niosome preparation. 

Figure 19 exhibits niosomes in the lower end of the size distribution curve. Figure 20 

exhibits niosomes in the upper end of the size distribution curve. 
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Figure 15: Size Distribution for SPAN 60 Niosomes: Batch 1; Measurement Taken on the 
Day Niosomes were Prepared 
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Figure 16: Size Distribution for SPAN 60 Niosomes: Batch 2; Measurement Taken on the 
Day Niosomes were Prepared 
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Figure 17: Size Distribution for SPAN 60 Niosomes: Batch 3; Measurement Taken on the 
Day Niosomes were Prepared 
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Figure 18: TEM Image of Sample from Batch 3 (SPAN 60 Niosomes) at 7.1KX 
Magnification: Image Displays Niosomes on the Lower End of the Size Distribution 

Curve Shown in Figure 17 

 

 

 

Batch 3 
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Figure 19: TEM Image of Sample from Batch 3 (SPAN 60 Niosomes) at 7.1KX 
Magnification: Image Displays Niosomes on the Upper End of the Size Distribution 

Curve Shown in Figure 17 

 

 

 

Batch 3 
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4.1.2 Dynamic Behavior of Niosome’s Diameter for Long Term Stability 

To further assess niosome size distribution after extrusion, the previous niosome 

batches, discussed in section 4.1.1, were monitored versus time. Only the highest 

intensity reading for fluctuation in light was considered as the niosomes’ hydrodynamic 

diameter value. As an example of the highest intensity peak that will be considered as the 

niosomes’ hydrodynamic diameter value refer to Figure 16. There are two intensity peaks 

for Figure 16, the average diameter of the particle in solution for the highest intensity 

peak will be considered as the niosomes’ hydrodynamic diameter value utilized in the 

following investigation. Samples were prepared as follow:  100 µL of SPAN 60 niosome 

solution was further diluted into 900 µL of 30% wt of H2O2 solution. The reported 

niosome hydrodynamic diameter (diameter size with the highest intensity fluctuation in 

light) for each batch is an average of 3 readings taken from each batch on days 0, 3, 6, 

and 9. Results in Figure 20 indicate the niosomes in each different batch to be instable 

(due to the niosomes rupturing and reforming into different sized vesicles as time 

increases).  Although Figure 20 suggest that the niosomes converge to a similar size after 

9 days, further testing is required.  
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Figure 20: Niosomes’ Hydrodynamic Diameter versus Time for Batch 1, 2, & 3 
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4.1.3 Niosome Size Distribution Before and After Extrusion 

 Results from section 4.1.1 conclude that a uniform size distribution of niosomes 

is not achieved after the extrusion process. A study was conducted to determine niosome 

size distribution before and after extrusion. After the hydration of the thin film is 

accomplished during niosome preparation, the niosome solution is sonicated for ten 

minutes. Extrusion proceeds after sonication. For this study (effects of extrusion to 

niosome size distribution), niosomes are suspended into 30% wt hydrogen peroxide 

solution (having a volume ratio of 0.25 explained in section 3.1). Two different niosome 

batches were prepared and measurements for niosome size distribution before and after 

extrusion were obtained. Samples were prepared as follow for DLS measurements:  100 

µL of SPAN 60 niosome sonicated solution was further diluted into 900 µL of 30% wt of 

H2O2 solution. Results acquired were unexpected, indicating a more uniform distribution 

of size before the extrusion of niosomes as shown in Figures 21 and 22. During the 

extrusion process, niosomes are forced through a porous membrane of 0.08 micrometer 

pore size. They are forced to rupture and reform into vesicles. With enough passes 

through the membrane, niosomes are believed to reform into small enough vesicles that 

will pass through the membrane without rupturing. However, we have hypothesized that 

the niosomes are potentially aggregating and as a result different size distribution profiles 

are achieved.  It is a possibility that the membrane pore size is not properly adequate for 

encapsulated H2O2 niosome extrusion.  Further investigation is required to properly 

assess size distribution before and after extrusion that would incorporate additional 

niosome batches, measurements taken before sonication, and altering membranes with 
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different pore sizes. Future work might indicate that the sonication of niosomes, 

excluding extrusion, might suffice and ultimately save future users time and money.  
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Figure 21: Size Distribution for Niosomes Before and After Extrusion; Batch 1  
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Figure 22: Size Distribution for Niosomes Before and After Extrusion; Batch 2 
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4.2 Investigation of Proposed System Compared to Traditional Al / H2O2 System  

4.2.1 Premise of Investigation 

In this study, experimental data was collected for four distinctive cases under a 

constant load of 10 ohms. The first case is set as a control (the use of H2O2 solution only) 

to monitor and compare the effectiveness of the proposed cathodic control system.  The 

second case utilizes the niosomes suspended in the same weight percentage of H2O2 

solution encapsulated inside the vesicles without being exposed to the polymer. 

Comparison between case number one and two will provide insight of the niosomes’ 

contribution to the cell’s characteristics, such as overall cell power output and aluminum 

consumption. The third case is niosomes implemented with the polymer (the proposed 

system). In the third case, niosomes in suspension are exposed to the polymer and are 

further mixed to ensure uniform exposure of the niosome solution. Cell characteristic 

values obtained for case three were compared to case two to acquire information in 

regards to the effects the polymer exposure created.  Furthermore, case three was 

compared to case one (the control) and will assist in determining the effects that the 

proposed cathodic control system had to the cell’s characteristics. Involving the use of the 

selected polymer provides the second control element over the release of H2O2. Case four 

was developed involving the exposure of H2O2 solution (without suspended niosomes) to 

the selected polymer and cell characteristic values obtained were compared against 

values for the proposed system. This comparison will provide insight as to the 

contribution the niosomes in the proposed system have on the cell’s characteristics.  A 

total of three replicates were conducted for each case (1-4) involved in the investigation. 
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The comparison of average obtained cell characteristic values to the control (case 1) was 

utilized to calculate percent change values for cases 2 through 4.  

Both the corrosion of aluminum and decomposition of hydrogen peroxide 

consume material. The direct reaction of aluminum with hydrogen peroxide forms 

precipitates of aluminum hydroxide that forms a thin coating on the anode interfering 

with the electrochemical reaction. All three parasitic reactions hinder the electrical 

performance of the Al / H2O2 electrochemical cell. The aim for this investigation is to 

decrease parasitic reactions by implementing a novel methodology to control reagent 

release, in this case hydrogen peroxide. 

4.2.2 Results from Investigation of Proposed System Utilizing Al Purity of 99.99% 

The cell’s operational times were recorded at the conclusion of each experimental 

run. The end of each experimental run is defined in this work when cell potentials reach 

0.60 Volts. The integration of instantaneous power as a function of time divided by the 

cell’s operational time results in the cell’s overall power output, equation displayed in 

Table 1. There were five replicates achieved to provide an average overall cell power 

output value for the study incorporating aluminum purity of 99.99 % (with the exception 

of case 4 where three replicates were conducted).  Figure 23 displays the results of all 

four cases previously explained. The comparison of average values to the control (case 1) 

was utilized to calculate percent change values, in all cell characteristics, for cases 2 

through 4.  

 The introduction of niosomes in suspension to the system resulted in highest 

increase in power output compare to the control (case number one) with a 6 % increase in 
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the average value (0.126 W +/- 0.01 W and 0.119 W +/- 0.01 W respectively). Statistical 

significance testing (student’s t-test) was conducted on experimental values obtained for 

the control against experimental values obtained for niosomes in suspension. The null 

hypothesis is that the two mean values for power output are the same. A two-sample t-test 

results in failure to reject the null hypothesis at the 5% significance level. The increase in 

power output value is attributed to the amount of work obtained with the utilization of 

niosomes in suspension in the Al / H2O2 electrochemical cell (0.606 KJ +/- 0.096 KJ with 

niosomes in suspension versus 0.542 KJ +/- 0.05 KJ value for control). This leads to 

indicate that the niosomes are successfully decreasing parasitic reactions that influence a 

cell’s overall power generation (as time progresses the niosomes are rupturing and 

releasing hydrogen peroxide). The use of the polymer implemented with the niosomes 

caused a decrease of 8% compared to the control’s average value (as well as the use of 

the polymer with no niosomes present). The decrease can be accounted by the overall cell 

power output equation in Table 1, where a cell’s overall power output value is equal to 

the amount of work obtained divided by a cell’s operational time. The average amount of 

work obtain with the novel proposed system is higher than the control’s average amount 

of work (0.57 KJ +/- 0.09 KJ and 0.542 KJ +/- 0.05 KJ respectively) and the average cell 

operational time is higher by 13% (87 min +/- 12.1 min and 77 min +/- 12.4 min 

respectively, shown in Figure 24) causing the value in cell power to be lower compared 

to the control. Statistical significance testing (student’s t-test) was conducted on 

experimental values obtain for the control against experimental values obtained for the 

proposed system for energetic values. The null hypothesis is that the two mean values for 

energy output are the same. A two-sample t-test results in failure to reject the null 
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hypothesis at the 5% significance level. The presence of niosomes in the novel proposed 

system increases the average amount of work obtained versus the use of the polymer 

without niosomes (0.57 KJ +/- 0.09 KJ and 0.52 KJ +/- 0.047 KJ respectively). Results 

support aim of consuming material adequately by reducing parasitic reactions.  

 

Figure 23: Average Cell Overall Power Output Utilizing Al Purity 99.99% 
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Figure 24: Average Cell Op. Times Utilizing Al Purity 99.99% 
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consumption with the proposed novel system (niosomes exposed to the polymer). Results 

confirm that the presence of niosomes is attributed to the decrease in aluminum 

consumption. This statement is supported by comparing aluminum consumption values 

between the novel proposed system and the use of a polymer without the presence of 

niosomes in a Al / H2O2 electrochemical cell. Results for the novel proposed system in 

Figure 25 supports the aim of lowering aluminum consumption for material conservation 

that will in return prolong the utilization of the cell.   

 

Figure 25: Average Al Consumption Values Utilizing Al Purity of 99.99% 

 

In order to assess the effects of implementing niosomes and a polymer into an 

aluminum anode H2O2-alkaline electrochemical cell, the energetic output was determined 
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increase in this value is encouraged, indicating an increase in energy or a decrease in 

aluminum consumption. Introducing niosomes into the system did not result in a 

significant increase in the average value (energy per gram of Al consumed) as illustrated 

in Figure 26. Utilizing the novel proposed system (polymer implemented with suspended 

niosomes) resulted in an increase in energy per gram of aluminum consumed due to the 

15% decrease in the average aluminum consumption value (compared to the control’s 

average value) observed in Figure 25. 

 

 

Figure 26: Energy per Al Consumed in Grams Utilizing Al Purity of 99.99% (Numbers in 
Red Indicated Percent Change Compared to Control) 
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4.2.3 Comparison of Cell Characteristics between SPAN 40 and SPAN 60 

Composed Niosomes 

The following investigation was conducted to determine the effects altering the 

surfactant would have on the cell characteristics. The work that has been currently 

presented involves the use of Sorbitan Monostearate (SPAN 60) as the non-ionic 

surfactant incorporated in niosome formation. In the following investigation utilizing 

aluminum purity 99.99%, as in the previous results above, the non-ionic surfactant 

component is altered to Sorbitan Monopalmitate (SPAN 40). Differences between SPAN 

40 and 60 arise in the length of the hydrophobic hydrocarbon chain in the niosome’s 

composition. The use of SPAN 40 theoretically results in smaller niosomes due to a 

shorter chain length compared to SPAN 60 (molecular structure shown in Figure 5). An 

investigation was conducted to determine the effects SPAN 40 versus SPAN 60 would 

have on the systems in this study. The SPAN 40 niosomes were formed following the 

same procedure conducted for SPAN 60 niosomes with replacing the non-ionic surfactant 

component. The number of moles for SPAN 60 was equaled to the number of moles for 

SPAN 40 used in the niosome preparation procedure. The amount of cholesterol and DCP 

for both SPAN 60 and 40 niosomes remained constant. Two cases were developed and 

tested. In the first case, the niosomes are suspended in the same weight percentage of 

H2O2 solution encapsulated inside the vesicles (having a volume ratio of 0.25 explained 

in section 3.1). Case number two, involves the use of the proposed system where 

suspended niosomes are exposed to the selected polymer [poly(N-isopropylacrylamide)] 

for control of cathodic reagent release. For figures 29-31, results from the use of 

niosomes with non-ionic surfactant SPAN 40 are displayed in aqua blue and SPAN 60 in 
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dark grey. A total of five replicates were conducted for each case involved in the 

investigation.  

Size distribution curves were obtained for SPAN 40 and 60 niosomes utilized. 

Size distribution data was obtain by a Zetasizer Nano-S (Marvin,PA). Measurements 

were conducted once niosome preparation concluded. Samples were prepared as follow:  

100 µL of SPAN 40/60 niosome solution, described above, was further diluted into 900 

µL of 30% wt of H2O2 solution. Two samples per batch were tested and their average size 

distribution is shown in Figures 27 and 28.  Results for SPAN 60 niosomes are consistent 

with results discussed in section 4.1.1, where a non-uniform size distribution is not 

achieved once niosome are extruded. In addition, the range of niosome diameter for 

SPAN 60 niosomes are inconsistent compared to each batch measured. Size distribution 

curves obtained for SPAN 40 niosomes display a non-uniform distribution of size 

likewise, shown in Figure 28. In comparison to SPAN 60 niosomes, the range of niosome 

diameter for SPAN 40 niosomes is considerably greater. This is an indication that SPAN 

40 niosomes are instable. Furthermore, it is hypothesized that SPAN 40 niosomes might 

be aggravating and alterations to DCP amounts will assist in the prevention of 

aggravation. Size distribution results for SPAN 40 niosomes indicate further investigation 

is require for proper niosome size characterization. In addition, an improvement upon 

SPAN 40 niosome preparation procedure is deemed necessary evident from its large size 

distribution, refer to Figure 27.  
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Figure 27: Size Distribution Curve for SPAN 40 Niosomes (Three Different Batches) 
Utilized in SPAN 40 vs. 60 Niosome Experiments 



49 
 

0

10

20

30

40

50

60

70

0 200 400 600 800 1000 1200 1400

Size Distribution for SPAN 60 Niosomes

In
te

ns
ity

 (%
)

Size (d. nm)  

Figure 28: Size Distribution Curve for SPAN 60 Niosomes (Three Different Batches) 
Utilized in SPAN 40 vs. 60 Niosome Experiments 

 

For comparison purposes, percent difference in values between results for SPAN 

40 niosomes and SPAN 60 niosomes utilized average cell characteristic values. The use 

of SPAN 60 niosomes in case one proves to outperform SPAN 40 niosomes in overall 

cell power output with an average value of 0.126 Watts +/- 0.01 W compared to 0.11 

Watts +/- 0.02 (14% difference in power generation value from utilizing SPAN 40 versus 

SPAN 60, refer to Figure 29). This difference may be attributed to SPAN 60 niosomes 

rupturing at a slower rate compared to SPAN 40 niosomes. There was no difference 

observed in power output values between the use of SPAN 40 niosomes or SPAN 60 

niosomes for the novel proposed system. Both produced the same average value for the 
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amount of work of 0.57 KJ +/- 0.09 KJ and similar cell operational time values likewise 

(Figure 30).  
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Figure 29: Average Power Output Utilizing Al Purity 99.99%, SPAN 40 vs. SPAN 60 
Niosomes (Numbers in Red Indicated Percent Difference between Values) 
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Figure 30: Average Cell Op. Time Utilizing Al Purity 99.99%, SPAN 40 vs. SPAN 60 
Niosomes (Numbers in Red Indicated Percent Difference between Values) 

 

Differences arise in aluminum consumption values between SPAN 40 and SPAN 

60 niosomes. For case one, where niosomes in suspension was investigated, SPAN 40 

niosomes consumed less aluminum compared to niosomes composed of SPAN 60 

surfactant. The difference in average aluminum consumption values was expected due to 

the higher amount of work obtained from the use of SPAN 60 niosomes versus SPAN 40 

niosomes (0.606 KJ +/- 0.096 KJ and 0.51 KJ +/- 0.091 respectively). The percent 

difference between both aluminum consumption values is approximately 12%. In the 

utilization of the proposed system, the percent difference between Al consumption values 

is 7%. Statistical significance testing (student’s t-test) was conducted on experimental 
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aluminum consumption values obtain for SPAN 40 and SPAN 60 niosomes incorporated 

in the proposed system. The null hypothesis is that the two mean values for aluminum 

consumption are the same. A two-sample t-test results in failure to reject the null 

hypothesis at the 5% significance level. Although similar cell operational time and 

discrete work values were observed, SPAN 60 niosomes were successful in reducing 

parasitic reactions due to the difference in aluminum consumption (Figure 31). 
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Figure 31: Average Al Consumption Utilizing Al Purity 99.99%, SPAN 40 vs. SPAN 60 
Niosomes (Numbers in Red Indicated Percent Difference between Values) 
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Evaluating the ratio of energy per gram or dollar of aluminum consumed for the 

presence of niosomes suspended in solution between the use of SPAN 40 and 60 

niosomes resulted in a 6% difference in value (percent difference in value calculated with 

the use of data acquired from Tables 3 and 4). The ratio of energy per gram or dollar of 

aluminum consumed for the proposed system with the use of SPAN 40 and SPAN 60 as 

the surfactant component resulted in a 5% difference in value (% difference values 

calculated with the use of data acquired from Tables 3 and 4). Due to low percent 

differences in energy per gram or dollar of aluminum consumed ratios between using 

SPAN 40 versus SPAN 60 niosomes, the utilization of either is adequate (exclusively 

based on these two ratio parameters).  

Table 3: Amount of Energetic Output per Amount of Al Consumed for Niosomes in 
Suspension (Without Polymer) 

Work / Al Consumed :   KJ / g of Al Consumed   KJ / $ of Al Consumed 
  

    SPAN 40 Nio. 
 

2.87 
 

0.205 
  

    SPAN 60 Nio.  
 

3.04 
 

0.217 
  

     

 

Table 4: Amount of Energetic Output per Amount of Al Consumed for Novel Proposed 
System 

Work / Al 
Consumed :   

KJ / g of Al 
Consumed   

KJ / $ of Al 
Consumed 

  
    SPAN 40 Nio. 
 

3.48 
 

0.248 
  

    SPAN 60 Nio.  
 

3.67 
 

0.262 
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4.2.4 Comparison of Different Aluminum Purities on Proposed System 

Another factor influencing electrochemical cell’s characteristics is the purity of 

the aluminum anode. To determine the effects of altering aluminum purity, the following 

investigation, resembling the experimental set up in 4.2.2, was conducted utilizing 

aluminum purities of 99.998%, 99.99%, and 99.90%. Experimental data was collected for 

four distinctive cases under a constant load of 10 ohms. The first case is set as a control 

(the use of H2O2 solution only) to monitor and compare the effectiveness of the proposed 

cathodic control system. The second case utilizes the niosomes suspended in the same 

weight percentage of H2O2 solution encapsulated inside the vesicles without being 

exposed to the polymer. Comparison between case number one and two will provide 

insight of the niosomes’ contribution to the cell’s characteristics, such as overall cell 

power output and aluminum consumption. The third case is niosomes implemented with 

the polymer (the proposed system). In this case, niosomes in suspension are exposed to 

the polymer and are further mixed to ensure uniform exposure of the niosome solution. 

Cell characteristic values obtained for case three were compared to case two to acquire 

information in regards to the effects the polymer exposure created. Furthermore, case 

three was compared to case one (the control) and will assist in determining the effects 

that the proposed cathodic control system had to the cell’s characteristics. Involving the 

use of the selected polymer provides the second control element over the release of H2O2. 

Case four was developed involving the exposure of H2O2 solution (without suspended 

niosomes) to the selected polymer and cell characteristic values obtained were compared 

against values for the proposed system. This comparison will provide insight as to the 

contribution the niosomes in the proposed system have on the cell’s characteristics.  A 
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total of three replicates were conducted for each case (1-4) involved in the investigation 

on the influence of aluminum purities on the cell’s characteristics. The comparison of 

average obtained cell characteristic values to the control (case 1) was utilized to calculate 

percent change values for cases 2 through 4.  

Overall average cell power output values were highest amongst all experimental 

cases and aluminum purities for the use of niosomes in suspension (without exposure to a 

polymer). This is attributed to the niosomes achieving higher average work values 

compared to the control, the proposed system, and the use of the polymer without 

niosomes present. Percent change values, in comparison between the control to all three 

cases, were highest for aluminum purity of 99.998% when reviewing average work 

values and average cell operational times (refer to Figure 34). With the exception of case 

three, aluminum purity of 99.998% had the highest increase in value for energy per gram 

of aluminum consumed (Figure 35). Niosomes in suspension (without exposure to a 

polymer) for aluminum purity of 99.998% had a 12% increase in overall average power 

output value, compared to the average value for the control, and was the highest increase 

among the three different aluminum purities as reported in Figure 32. In consequence, the 

use of niosomes in suspension achieved the highest increase of aluminum consumption 

likewise (Figure 33).  

Average aluminum consumption values for aluminum purity of 99.90% 

significantly decrease by 32 % (compared to the control) with the use of the novel control 

reagent release system (niosomes exposed to a polymer) and the polymer without the 

presence of niosomes (H2O2 solution exposed to a polymer) and by 9.8% with the use of 

niosomes in suspension shown in Figure 33. Thus far, experimental cases with the 
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highest average power output value have the highest aluminum consumption. This trend 

is evident in comparing Figures 32 and 33 for aluminum purities of 99.998% and 99.99% 

however, aluminum purity of 99.90% behaves otherwise. For this purity the control 

consumed the greatest amount of aluminum.  

 

Figure 32: Average Overall Cell Power Output Values for Al Purities: 99.998%, 99.99%, 
& 99.90% (Numbers in Red Indicated Percent Change Compared to Control) 
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Figure 33: Average Aluminum Consumption Values for Al Purities: 99.998%, 99.99%, & 
99.90% (Numbers in Red Indicated Percent Change Compared to Control) 

 

 

Figure 34: Average Cell Operational Time Values for Al Purities: 99.998%, 99.99%, & 
99.90% (Numbers in Red Indicated Percent Change Compared to Control) 
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Diminishing average overall cell power output values are observed in Figure 32 as 

aluminum purity decreases. Reviewing numerical values for the different three cases 

reveals highest average work and cell operational time values for aluminum purity of 

99.99%, displayed in Table 5 and Figure 34. As a result of higher cell operational times, 

cell overall average power output values were below values for aluminum purity of 

99.998%.   

Table 5: Average Energetic Output for Al Purities: 99.998% & 99.99% 

Amount of Work ( KJ ) 99.998% Al   99.99% Al 
H2O2 Soln ( Control ) 0.358 +/- 0.025 

 
0.542 +/- .05 

  
   Niosomes in H2O2 Soln 0.525 +/- 0.109 

 
0.606 +/- 0.096 

  
   Niosomes Exposed to 

Polymer 0.496 +/- 0.052 
 

0.57 +/- 0.09 
  

   H2O2 Soln Exposed to 
Polymer 0.52 +/- 0.067 

 
0.52 +/- 0.047 

  
    

Average aluminum consumption values display a trend of increasing as aluminum 

purity decreases for all experimental cases.  Among all experimental cases, the use of 

niosomes in suspension with the polymer resulted in the lowest amount of aluminum 

consumed for purities 99.998% and 99.99%. Comparing average values between all cases 

for both purities resulted in less than a 10% difference in values. The average values were 

significantly highest with the use of 99.90% aluminum purity. Values for aluminum 

purity of 99.90% were more than 50% higher compared to those for 99.998% and 

99.99% aluminum purities. As an outcome to a large consumption of aluminum, values 

for energy per gram of aluminum where 70% less compared to aluminum purities of 
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99.99% and 99.998% (Figure 35). In addition, there was a significant decrease of more 

than two folds in cell operational times as a result of an increase in impurities present in 

the electrode’s material. In both aluminum purities of 99.998% and 99.99%, the novel 

control reagent release system accomplished highest energy per consumption of 

aluminum values (4% difference in value seen in Figure 35). Taking into consideration 

the cost of aluminum purity and the generated average value for energetic output, 

aluminum purity of 99.90% outperformed the higher purities of aluminum. Average 

energetic output values divided by dollar amount of aluminum consumed (cost of 

aluminum purities were $3.33 / gram of Al, $ 2.63 / gram of Al, and $ 0.02 / gram of Al 

for 99.998%, 99.99%, and 99.90% respectively) ratio values were highest with aluminum 

purity of 99.90% due to its’ low cost (in comparison to the other two purities) as reported 

in Figure 36. Reviewing ratio values for the two highest aluminum purities reveal 

aluminum purity of 99.99% achieved greater values for all experimental cases (Figure 

37). This is attributed to aluminum purity of 99.99% obtaining higher average energetic 

output values in comparison to aluminum purity of 99.998%, refer to Table 5.   
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Figure 35: Energy (KJ) per Consumption of Aluminum ( gram of Al ) for Al Purities: 
99.998%, 99.99%, & 99.90% 

 

Figure 36: Energy (KJ) per Consumption of Aluminum ( Dollar of Al ) for Al Purities: 
99.998%, 99.99%, & 99.90% 
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Figure 37: Energy (KJ) per Consumption of Aluminum ( Dollar of Al )                           
for Al Purities: 99.998% & 99.99% 
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4.2.5 Investigation of Proposed System with Alternating the Degree of Cross-linking 

for Poly(N-isopropylacrylamide) Polymer 

The polymer is the second control element over the release of H2O2. Results 

presented thus far have revealed the proposed system advantages over traditional Al / 

H2O2 electrochemical cells with lower average aluminum consumption values and higher 

obtained average energetic output values. In addition, longer cell operational times and 

higher energy per gram of aluminum consumed values were achieved. To improve upon 

the proposed system further, altering the degree of cross-linking for the selected polymer 

was considered. In the following study, the BisAAm (polymer cross-linker) solution 

density used in the polymerization process was varied, ranging from 0.005 g of BisAAm 

per mL of solution to 0.04 g of BisAAm per mL of solution. Heat was applied to 

solutions greater than 0.02 g of BisAAm per mL of solution to achieve a uniformed 

mixture. The results from this investigation of varying amounts of BisAAm (cross-linker) 

for polymers will offer insight into the affects a polymer’s degree of crosslinking  has 

once implemented into the proposed system under investigation (in this body of work) on 

cell characteristics. The cross-linker solution densities utilized and their corresponding 

mole amounts used during polymer preparation are shown below. 

 0.005 grams of BisAAm / mL of solution – 1.1 µmoles 

 0.01 grams of BisAAm / mL of solution – 2.21 µmoles 

 0.02 grams of BisAAm / mL of solution – 4.41 µmoles 

 0.025 grams of BisAAm / mL of solution – 5.51 µmoles 

 0.04 grams of BisAAm / mL of solution – 8.82 µmoles 
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There were three replicates conducted to provide an average cell overall power 

output value for all polymers of different degrees of cross-linking (as well as for other 

cell characteristics). All experiments were conducted with the use of aluminum purity of 

99.99%.  The reason as to why this purity was selected is due to its ability to achieve the 

highest average energetic output values and average cell operational times demonstrated 

in the 4.2.4. As the BisAAm solution becomes more concentrated, denser polymers will 

be achieved since there is an increase in the amount of BisAAm present in the polymer 

(cross-linker). Visa versa as the BisAAm solution decreases, the polymers that will result 

are less dense appearing less rigid in structure.  To better fine tune the proposed system 

with the use of altering the selected polymer’s degree of cross-linking, comparisons to the 

control where made and percent change values reported for all cell characteristics.   
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Figure 38: Average Cell Overall Power Output Values Utilizing Al Purity 99.99% with 
Varying Amounts of BisAAm (Polymer Cross-Linker) 
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Figure 39: Average Cell Op. Time Values Utilizing Al Purity 99.99% with Varying 
Amounts of BisAAm (Polymer Cross-Linker) 
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µmoles of BisAAm delivered higher average cell operational times of 79 min +/- 10.2 

min and 87 min +/- 12.1 min (Figure 39). As a result to an increase in cell operational 

time, average cell overall power output values attained were lower with a value of 0.11 

W for both polymers (in comparison to the control, 0.119 W). Polymers with 1.1 and 2.21 

µmoles of BisAAm had the lowest values for power output (0.107 W +/- 0.005 W and 

0.086 W +/- 0.02 W respectively). The polymer with 8.82 µmoles of BisAAm produced 

the prominent average power output value among all with a value of 0.114 W (Figure 

38). Statistical significance testing (student’s t-test) was conducted on experimental 

power output value obtain 8.82 µmoles of BisAAm against the control’s experimental 

power output value. The null hypothesis is that the two mean values for power output are 

the same. A two-sample t-test results in failure to reject the null hypothesis at the 5% 

significance level. 

 

Table 6: Percent Decrease in Power Output Value Compared to Control (0.119 W) 

µmoles of BisAAm Percent Change (%) 
  

 1.1 10 
  

 2.21 28 
  

 4.41 8 
  

 5.51 8 
  

 8.82 4 
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Percent change from the control’s average value of aluminum consumption (0.181 

grams) was calculated for the different polymers with varying amounts of BisAAm.  For 

polymers with amounts of 4.41 µmoles of BisAAm or higher, aluminum consumption 

values are lower than the control, as reported in Figure 40. This is attributed to the 

polymers’ rigidity in comparison to polymers with amounts of BisAAm below 4.41 

µmoles.   In addition in Figure 40, aluminum consumption was found to increase with 

amounts of 1.1 and 2.21 µmoles of BisAAm. Due to previous findings of a decrease in 

power output values, polymers with 1.1 and 2.21 µmoles of BisAAm are not improving 

cell efficiency. In contrast, polymers with 4.41 and 5.51 µmoles of BisAAm have 

achieved higher average amounts of work, longer cell operational times, and consume 

lower quantities of aluminum. Results in addition indicate that there is a maximum 

amount of cross-linker optimal for improving upon cell characteristics and that value is 

5.51 µmoles of BisAAm. Increasing the degree of cross-linking above 5.51 µmoles of 

BisAAm will prevent encapsulated niosomes from diffusing into the polymer (the second 

control element over the cathodic reactant H2O2).  

Table 7: Percent Change in Al Consumption Value Compared to Control (0.181 g Al): 
Red Value Indicate an Increase in Al Consumption 

µmoles of BisAAm Percent Change (%) 
  

 1.1 12 
  

 2.21 17 
  

 4.41 21 
  

 5.51 15 
  

 8.82 12 
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Figure 40: Al Consumption Average Values Utilizing Al Purity 99.99% with Varying 
Amounts of BisAAm (Polymer Cross-Linker) 

 

 

Due to lower quantities of aluminum consumption and higher energetic outputs, 

polymers with 4.41 and 5.51 41 µmoles of BisAAm (polymer cross-linker) achieved 

higher energy per grams or dollars of aluminum consumed values in comparison to the 

control (31% and 22% increase respectively) as reported in Table 8. The control’s energy 

per grams of aluminum consumed resulted to be approximately 3 (Figures 26). The 
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investigation of the effects a polymer’s rigidity has once implemented into the proposed 

system reveals that polymers with less than 4.41 µmoles of BisAAm are unsuitable.   In 

addition, the use of 4.41 and 5.5 µmoles of BisAAm in polymers are optimal for the 

proposed system.  The implementation of these polymers in the novel proposed system 

supports the aim of lowering aluminum consumption for material conservation that will 

in return prolong the utilization of the electrochemical cell.  

 

Table 8: Average Energetic Output Obtained / Average Value of Al Consumed; Values 
Utilizing Al Purity 99.99% with Varying Amounts of BisAAm (Polymer Cross-Linker) 

Work / Al Consumed :   KJ / g of Al    KJ / $ of Al  
  

    1.10 µmoles of BisAAm 
 

2.06 
 

0.147 
  

    2.21 µmoles of BisAAm 
 

1.67 
 

0.119 
  

    4.41 µmoles of BisAAm 
 

3.93 
 

0.28 
  

    5.51 µmoles of BisAAm 
 

3.67 
 

0.262 
  

    8.82 µmoles of BisAAm 
 

2.77 
 

0.198 
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Chapter 5: Conclusion and Future Work 

5.1 Summary of Findings 

Results obtained by the DLS apparatus indicate that a uniform size distribution is 

not achieved after the niosomes have been extruded. In addition, the size distribution for 

each of the three batches tested is inconsistent with each other. Niosome’s hydrodynamic 

diameter for three batches was monitored with time. Results indicate the niosomes in 

each different batch to be instable (due to the niosomes rupturing and reforming into 

different sized vesicles as time increases).  Although Figure 20 suggest that the niosomes 

converge to a similar size after 9 days, further testing is required. In addition, further 

investigation is required to properly assess size distribution before and after extrusion that 

would incorporate additional niosome batches, measurement taken before sonication, and 

altering pore size for membrane used during extrusion. Future work might indicate that 

the sonication of niosomes might suffice and ultimately save future users time and 

money.  

The investigation of the proposed system, utilizing aluminum purity 99.99%, 

demonstrated  that the introduction of niosomes in suspension resulted in the highest 

increase of average cell overall power output value compared to the control (with a 6 % 

increase). Even though average power output values were lower, the average amount of 

energetic output value obtained with the novel proposed system was higher than the 

control and additionally average cell operational time increased by 13%. The presence of 
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niosomes in the proposed system increases the average amount of work obtained versus 

the use of the polymer without niosomes justifying the need of niosomes. There was a 

decrease of 15% in average aluminum consumption value with the proposed novel 

system (niosomes exposed to the polymer).  Results confirm that the presence of 

niosomes is attributed to the decrease in aluminum consumption due to higher values 

with the use of a polymer without the presence of niosomes in the Al / H2O2 

electrochemical cell (experimental case 4). Utilizing the proposed system (suspended 

niosomes exposed to the polymer) resulted in an increase in energy per gram of 

aluminum consumed due to the 15% decrease in average aluminum consumption value 

(compared to the control). In conclusion, the proposed system supports the aim of 

lowering aluminum consumption for material conservation that will in return prolong the 

utilization of the cell.  

The investigation conducted to determine the effects SPAN 40 versus SPAN 60 

would have on the systems in this study concluded that the use of SPAN 60 niosomes in 

suspension outperformed SPAN 40 niosomes in average cell overall power output with a 

14% difference in value.  

The use of SPAN 40 niosomes in suspension consumed less aluminum compared 

to niosomes composed of SPAN 60 surfactant in suspension. The difference in average 

aluminum consumption values was expected due to the higher average amount of work 

obtained from the use of SPAN 60 niosomes versus SPAN 40 niosomes. The percent 

difference between both aluminum consumption average values is approximately 12%. In 

the utilization of the proposed system, the percent difference between average aluminum 

consumption values was 7%. Although similar average cell operational time and discrete 
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average work values were observed, SPAN 60 niosomes were successful in reducing 

parasitic reactions due to the difference in aluminum consumption. 

Investigating the influence of aluminum purity upon the comparison between the 

control to competing systems demonstrated that average cell overall power output values 

were highest amongst all experimental cases and aluminum purities for the use of 

niosomes in suspension (without exposure to a polymer). This is attributed to the 

niosomes achieving higher average work values compared to the control, the proposed 

system, and the use of the polymer without niosomes present. Percent change values, in 

comparison between the control to all three cases, were highest for aluminum purity of 

99.998% when reviewing average energetic output values and average cell operational 

times. Diminishing average overall cell power output values are observed as aluminum 

purity decreases. 

Average aluminum consumption values displayed a trend of increasing as 

aluminum purity decreased for all experimental cases.  The use of niosomes in 

suspension with the polymer resulted in the lowest average amount of aluminum 

consumed for purities 99.998% and 99.99%.  As a result, both aluminum purities of 

99.998% and 99.99% accomplished highest energy per consumption of aluminum values 

(small 2% difference in value between the proposed system with different purities).The 

values for aluminum consumption were significantly highest with the use of 99.90% 

aluminum purity. 

Average energetic output values divided by dollar amount of aluminum consumed 

(cost of aluminum purities were $3.33 / gram of Al, $ 2.63 / gram of Al, and $ 0.02 / 
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gram of Al for 99.998%, 99.99%, 99.90% respectively) ratio values were highest with 

aluminum purity of 99.90% due to its’ low cost (in comparison to the other two purities). 

Reviewing ratio values for the two highest aluminum purities reveal aluminum purity of 

99.99% achieved greater values for all experimental cases. This is attributed to aluminum 

purity of 99.99% obtaining higher average energetic output values in comparison to 

aluminum purity of 99.998%.  

To improve upon the proposed system further, BisAAm amounts (polymer cross-

linker) were varied to alter the polymer’s degree of cross-linking. Results reveal that 

polymers with less than 4.41 µmoles of BisAAm are unsuitable.   In addition, the use of 

4.41 and 5.5 µmoles of BisAAm in polymers are optimal for the proposed system.  The 

implementation of these polymers in the novel proposed system supports the aim of 

lowering aluminum consumption for material conservation that will in return prolong the 

utilization of the cell. Results in addition indicate that there is a maximum amount of 

cross-linker optimal for improving upon cell characteristics and that value is 5.51 µmoles 

of BisAAm. Increasing the degree of cross-linking above 5.51 µmoles of BisAAm will 

prevent encapsulated niosomes from diffusing into the polymer (the second control 

element over the cathodic reactant H2O2).  
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5.2 Future Work Recommendations  

5.2.1 Continuing Niosome Size Characterization 

Further investigation is required to properly assess size distribution before and 

after extrusion that would incorporate additional niosome batches, measurement taken 

before sonication, and altering pore size for membrane used during extrusion. Future 

work might indicate that the sonication of niosomes might suffice and ultimately save 

future users time and money. In addition, alteration to cholesterol and DCP amounts for 

the formation of SPAN 40 niosomes could possibly result in smaller size distributions.  

5.2.2 Future Cell Potential Experiments 

Future work to further the investigation on providing control over the release of 

the cathodic reagent, in order to reduce parasitic reactions, includes testing the proposed 

system under a range of loads as well as a range of different weight percentage of H2O2 

solutions. In addition, monitoring temperature during experimental runs would provide 

helpful insight upon the amount of energy exerted during each run. In literature, it has 

been speculated that increasing anode surface area in combination with a small cell 

volume would allow the use of lower H2O2 concentration and result in higher 

electrochemical reaction efficiencies [10]. Exploring the use of a granular aluminum 

anode [22] with the proposed system may increase cell efficiency and allow the use of 

lower H2O2 concentration.   

Furthermore, determining the concentration of niosomes present in each 

experimental run is a valuable piece of information worth perusing and acquiring for 

future cell potential experiments. Different concentration amounts of niosomes may have 
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an effect on experimental runs conducted (involving their use). In addition, if the 

niosomes were to be embedded into the polymer’s matrix this could potentially offer a 

significant increase over the control of the oxidizing reagent.  

5.3 Final Remarks 

In summary, results have revealed the proposed system advantages over the 

traditional Al/ H2O2 electrochemical cell with lower average aluminum consumption 

values and higher obtained average energetic outputs. In addition, longer cell operational 

times and higher energy per gram or dollar of aluminum values were achieved. Due to the 

achievement of longer cell operational times, the implementation of the proposed system 

resulted in lower cell overall average power output values. In contrary, the utilization of 

niosomes in suspension without the polymer did accomplish a higher average power 

output in comparison to the traditional Al / H2O2 electrochemical cell.  
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