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INFLUENCE OF CROSSLINK DENSITY ON SWELLING AND CONFORMATION OF 

POLY(N-ISOROPYLACRYLAMIDE) HYDROGELS 

 

Ryan Scott Cates 

 

ABSTRACT 

 

A stimuli-responsive microgel is a three-dimensional polymer network that is able 

to absorb and expel a solvent (commonly water). These materials are unique in the fact 

that their sponge-like behavior can be actuated by environmental cues, like temperature, 

ion concentration, pH, and light. Because of the dynamic properties of these materials 

they have found applications in drug-delivery systems, micro-assays, selective filtration, 

artificial muscle, and non-fouling surfaces. The most well-known stimuli-responsive 

polymer is Poly(N-isopropylacrylamide) or PNIPAAm and it experiences a switchable 

swelling or deswelling over a critical temperature ( 32cT ≅ °C). Below the critical 

temperature, the gel begins mixing with the surrounding solvent and swells; above this 

temperature, the opposite is true. The unconstrained hydrogel will continue to swell in all 

directions until equilibrium is established between its propensity for mixing with the 

surrounding solvent and the elastic restoring forces of the gel matrix. The strength of the 

elastic restoring forces is dependent on the interconnectedness of the polymer network 

and is therefore a function of crosslink density. An increase in crosslink density results in 
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a decreased swelling and vice versa. If the hydrogel is mechanically constrained to a 

surface, it can experience various wrinkling and buckling conformations upon swelling, 

as the stresses associated with its confinement are relieved. These conformation 

characteristics are a strong function of geometry (aspect ratio) and extent of swelling 

(i.e. crosslink density). In order to capitalize on the utility of this material, it is imperative 

that its volume transition is well characterized and understood. 

Toward this end, pNIPAAm gels have been created with 1x10-7 to 2x10-3 mol/cm3 

crosslink density and characterized. This was done by first examining its bulk, 

unattached swelling ability and then by evaluating its microscale properties as a surface-

confined monolithe. The latter was achieved through the use of confocal microscopy and 

copolymerization with a fluorescent monomer. This method allows for a detail analysis of 

the deformations experienced (bulk-structural bending and surface undulating) and will 

ultimately lend itself to the correlation between crosslink density and the onset of 

mechanical phenomena. 
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CHAPTER ONE: INTRODUCTION, MOTIVATION AND BACKGROUND 

 

1.1. Introduction to Poly(N-Isopropylacrylamide) 

Stimuli responsive polymers are unique materials with applications in drug-

delivery agents[1], microfluidics[2-5], molecular capture and release[6], and non-fouling 

surfaces[7, 8]. Poly(N-isopropylacrylamide) or  PNIPAAm, is the most well-known 

thermo-responsive hydrogel or water containing gel, which experiences a phase change, 

causing swelling or deswelling, over some critical temperature ( 32cT ≅ °C) [9-11]. Below 

the lower critical solution temperature (LCST), the gel is soluble in the surrounding 

solvent and the interconnected chains begin to extend and further mix with the solvent. 

Here the free energy of mixing (i.e. the energy that can be converted to do work) is 

greater than the elastic energy of the polymer chains (i.e. spring-like energy) which had 

previously kept the polymer matrix coiled or collapsed. Visuals of these coiled and 

collapsed states are provided in figure 1-1. Effectively, the driving force to mix with the 

solvent outweighs the forces keeping the polymer matrix collapsed. The exact reverse 

relationship is observed above the LCST. The swelling or deswelling of the gel matrix 

comes to a final equilibrium state when free energy is minimized (i.e. the two energies 

balance one another) [12, 13].  
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Figure 1-1: A representation of the swelling and deswelling of PNIPAAm. 

 

PNIPAAm can take on different physical and chemical properties through 

copolymerization and functionalization which gives its gels application specific tunability 

[15]. Through copolymerization with other monomers, PNIPAAm is able to be responsive 

to environmental cues other than temperature. Additional, copolymerization can be used 

to control the threshold value of stimulus needed to induce a transition and can even 

alter the rate of the volume phase transition (e.g. from a highly non-linear to a linear 

rate). 

If these PNIPAAm copolymers are to be used onboard devices and are 

mechanically adhered to a surface, it is found that, upon swelling, these gels assume 

different structural conformations as they change in size[14]. When this gel is confined to 

a rigid substrate and swollen, swelling primarily occurs in the direction normal to the 
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surface with less swelling in parallel directions[3, 15]. This is the result of limitations in 

solvent penetration due to surface confinement, and leads to anisotropic distribution of 

osmotic pressure throughout the gel and results in biaxial compressive stresses. The 

compressive stresses are not experienced in untethered gels and are the direct result of 

the immobilization of one plane of the gel[3, 15, 16]. The swelling nature of both 

unconfined and confined PNIPAAm gels are displayed in figures 1-2 and 1-3[17]. 

 

 
 
Figure 1-2: Hydrogel in three stages: fully swollen (left), after polymerization with 

ambient moisture content (center), fully collapsed (right). *Eraser added for size 

reference* 
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Figure 1-3: Cross-sectional profile of a surface-confined hydrogel in its swollen (a) and 

unswollen (b) states. 

 

 To relieve these compressive stresses, mechanical distortions in the form of 

surface wrinkling or edge undulating results[15, 18-20]. Additionally, it has been found 

that the geometry of the surface confined gel plays a significant role in determining the 

mechanical deformation, figure 1-4[21, 22]. In addition to geometry, the threshold and 

magnitude of mechanical deformations is contingent on the methods of preparation and 

the chemical composition of the media; including copolymers, initiators, and cross-

linkers[23-25]. This dependence on crosslink density for both unconstrained and 

constrained PNIPAAm gels is show in figures 1-5 and 1-6. 
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Figure 1-4: Surface confined microgel in the swollen and unswollen state. The swollen 

state displays mechanical deformation of the microgel. 
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Figure 1-5: PNIPAAm samples: Fully swollen at highest crosslink density (20 wt % BIS, 

left), at the lowest crosslink density (1.43 wt%, right) and the initial, unswollen state (top). 
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Figure 1-6: Surface-confined PNIPAAm samples swelling as a function of crosslink 

density. 

 

Herein, the dependence of swelling on cross-link density is examined; first 

through macrogel swelling test and then in surface patterned microgels. Both gels are 

synthesized using a fluorescent comonomer, which will enable the characterization of 

the patterned microgels by confocal microscopy.  



8 
 

 
 
 
 
 

CHAPTER TWO: FABRICATION OF POLY(N-ISOPROPYLACRYLAMIDE) 

MICROSTRUCTURES 

 

 Traditionally high aspect ratio microstructures or those greater in height than 

width, have been produced by a variety of techniques including photolithography and ion 

etching, such as deep reactive ion etching (DRIE) or focused ion beam (FIB) 

techniques[26, 27]. Because the equipment to run these processes is expensive and 

their operation is complicated to learn (often requiring a full time technician) the 

widespread use of them is limited[28]. By contrast, soft lithography techniques require 

comparatively inexpensive equipment and are straightforward to learn and apply[28]. 

Additionally, soft lithography can circumvent diffraction limitations associate with 

projection photolithography, produce quasi three dimensional structures, create 

structures or patterns on non-planer surfaces, and can be used with a wide variety of 

surface chemistries[28]  

 In this study techniques from both approaches are used. Photolithography is first 

used to generate a silicon patterned mold that can be used to create an elastomer (soft) 

relief mold. SU-8 photoresist epoxy is spun onto 4” silicon wafer and patterned using a 

sodalime quartz / chrome photolithography mask and UV irradiation. Once these 

“master” molds have been fabricated the siloxane elastomer is poured over the mold to 

generate a relief pattern. The photolithographic process is outline in the flow diagram in 

figure 2-1. This relief pattern is then used in a micro injection molding in capillary 

(MIMIC) technique to fabricate patterned, PNIPAAm microstructures. Additional surface 

treatments are also used to chemically adhere the structures to the substrate surface. 
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Using both techniques, allows for easy, repeatable fabrication of “soft” molds and a 

patterning process that may be carried out in an ordinary laboratory.  

 

Figure 2-1: Photolithography process. 

 

2.1 Creation of Photolithographic Mask Using AutoCAD 

Over the course of this investigation two masks were designed (Monolithe I and 

II) in AutoCAD and manufactured by Advanced Reproductions, Inc. These mask were 

created with the known physical properties and limitation of SU-8 photoresist, PDMS and 

PNIPAAm in mind and were tailored to investigate unknown or poorly understood 

phenomena of PNIPAAm microstructures.  

 

2.1.1. Monolithe I 

 Monolthe I was designed based on the results from the previously used 

photolithography mask, which yielded microgel monolith structures that displayed buck 

out-of-plane bending and edge undulations and cylindrical microgels that showed in-

plane twisting upon swelling. More information was desired from these two shapes 
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regarding all of these phenomena and they were included in greater geometric variety in 

Monolithe I. Additionally these structures were spaced more liberally from one another to 

avoid problems with underdevelopment and PDMS fouling in the trenches between 

adjacent microstructures, shown in figure 2-2. 
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Figure 2-2: Underdeveloped photoresist pattern and the trapping of the molding 

polymer. 
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This mask was designed to investigate the affect that width, length and curvature 

had on the surface-confined swelling of monolithe structures and how diameter and arc 

length altered the swelling of surface confined cylindrical structures. To this end, the 

following structures were designed: single beams varying in length (100 µm to 5 mm) 

and width (5 µm – 100 µm), single waves varying lengths (1 mm & 3 mm), arc angles 

(10° - 90°) and periodicities (1 – 3), single saw waves varying in length (200 & 400 µm), 

width (5 µm – 100 µm) and periodicity (1 – 4), and circles varying in diameter (0.5 mm & 

1.5 mm), arc angle (5° - 180°), and periodicity (1-4). A full schematic of this design is 

displayed in figure 2-3 and its key in table 2-1. 
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Figure 2-3: AutoCAD schematic of the “Monolithe I” photolithographic mask. 
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Table 2-1: Dimensions key for Monolithe I schematic. 

Structure Dimensions (µm) Structure Dimensions (µm) 
Axy   Dxyz   
x=1-4  (length) 100.500.1000.5000 x=1 (length) 3000 

y=a-e (width) 5.10.20.50.100 
y=a-e (Arc 
Angle) 25.20.15.10.5 

Bxyz   
z=1-2 
(Periodicity) 1.2 

x=1-2 (length) 200.400. Exyz   
y=a-e (width) 5.10.20.50.100 x=1-2 (length) 1000.3000. 
z=1-4 
(Periodicity) 1.2.3.4 

y=a-d (Arc 
Angle) 90.50.25.10 

Cxyz   
z=1-3 
(Periodicity) 1.2.3 

x=1-2 
(Diameter) 500.1500. 
y=a-e (Arc 
Angle) 180.90.50.25.5 
z=1-3 
(Periodicity) 1.2.3 

 

2.1.2. Monolithe II  

 Monolithe II was design to further investigate the unique properties of single, 

linear, surface-confined structures and to speed up the production of these samples, 

through the creation of battery groups. These groups included single, constant width 

monolithes ranging from 5-100 µm, monolithes descending in width from 100-5, 100-10, 

60-4, 40-20 and monolithes that descend and then ascend to their original width. With 

the remaining mask space, patterns for creating low aspect ratio bar structures with 

different geometric pits, and free standing doughnut structures were designed to look at 

potential encapsulation applications. Lastly, single lines of text were also worked into the 

design. An AutoCAD drawn schematic of Monolithe II is shown in figure 2-4 and a close-

up of a select structure in displayed figure 2-5. 
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Figure 2-4: AutoCAD schematic of “Monolithe II” photolithographic mask. 
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Figure 2-5: Close-up of the 40x20x40 µm structure on the AutoCAD schematic of the 

“Monolithe II” photolithographic mask. 

 

2.2. Photolithography Process 

To achieve different aspect ratios, the thickness of the SU-8 micromolds (height 

of the photoresist) was varied by different SPIN speeds and photoresist viscosity. 

Photoresists SU-8 3025, SU-8 2035 or SU-8 100 were used to achieve photoresist 

thicknesses of 25-50 µm, 40-70 µm and 80-100 µm samples respectively. 

 

2.2.1. Piranha Clean 

Before beginning the photolithography process, it is important that the 

silicon substrate is cleared of all impurities to insure proper adhesion of the photoresist. 
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One way by which this is accomplished is through wet etching, in this case a Piranha 

etch. This was accomplished by using a solution of H2SO4 and H2O2 (3:1 volume ratio) 

which produces a very exothermic oxidation reaction[29-31]. This solution is capable of 

removing organic residues and hydroxylating the substrate’s surface, all without altering 

surface topography[29-31]. Because of the differences in density and the tendency of 

acid to flash boil when mixed incorrectly, it is advised that the sulfuric acid is added to 

the hydrogen peroxide and that all of this is performed with extensive PPE (e.g. a face 

mask, chemical resistant gloves and apron) [29]. In most microprocessing clean rooms, 

this process is performed on a well ventilated hood because of the possibility of noxious 

products and because of the exothermic nature of this reaction. 

Once the Piranha solution is mixed, the n-type, single-side polished 4” silicon 

wafers were added and allowed to etch for 15 minutes. At the end of 15 minutes, the 

reaction was slowed to a stop by dilution with a constant stream of de-ionized water (DI 

water) for approximately 5 minutes. From here the wafers were removed, further rinsed 

with DI and dried by a continuous flow of nitrogen. To insure all residual water was 

removed and would not interfere with the future photoresist film, the wafers were further 

dried by a dehydration bake for 30 minutes at 250°C. 

 

2.2.3. Photoresist Application 

 In order to achieve a uniform coating of photoresist across the surface of the 

wafer, a spin coating technique was used. Different film thicknesses were achieved by 

varying the viscosity of the photoresist, SU-8, and by using different spin recipes 

recommended by the manufacturer, MicroChem. SU-8 was chosen because of its high 

optical transmission, its ability to reliably reproduce high aspect ratio, high resolution 

structure (+/- 5 µm) and for its ease of coating. For smaller features (those <5 µm), other 
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techniques such as, Deep Reactive Ion Etching or Focus Ion Beam, could be used. A 

Model P6700 spin coater was used for photoresist application. 

 Spin coating regime suggested by MicroChem[32]:  

• Dispense: 1 ml of photoresist per inch of wafer diameter on top of wafer-

spin coater setup. 

• Start-up: Start spin process at 500 RPM for 5-10 seconds (5 seconds 

used) with an acceleration of 100 rpm/second. This cycle is responsible 

for the initial spreading of the photoresist. 

• Spread cycle: Begin the spread cycle at the recommended speed and 

duration at 300 rpm/second. Speeds and durations are provided by 

MicroChem.  

Table 2-2 list some of the recipes used for SU-8 application and the resulting structure 

heights. 

 

Table 2-2: SU-8 Spin recipes used and the results achieved 

SU-8 Thickness Goal 
(µm) 

Spread Speed 
(RPM) 

Spin Speed 
(sec @ RPM) 

Achieved 
Height (µm) 

2035 35 10 @ 500 35 @ 4000 32 
2035 45 10 @ 500 35 @ 3200 45 
100 100 10 @ 500 35 @ 3000  80 

 

It was found that dispensing the photoresist from the vendor’s (MicroChem) 

container (i.e. as opposed to the use of eyedroppers pipettes or other containers) kept at 

room temperature and un-stirred prevented most common application defect. These 

defects included bubbles, spider webs (uneven, often stringing spreading) and severe 

edge beads. The age of the SU-8 was also a major factor in the consistency of large 
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batches of wafers. All this was accounted for in the end with profile characterization. In 

order to correct for edge beading, a cotton swab coated with photoresist developer was 

used to remove any excess photoresist. The soft bake directly followed to facilitate 

solvent evaporation and reflowing of the SU-8. 

 

2.2.4. Soft Bake 

 After the photoresist application, the sample was heated on a hot plate in 

accordance with the vendor’s specification in Table 2-3.  

 

Table 2-3: Recommended soft bake times for different SU-8 thicknesses. 

SU-8 
Product 

Thickness 
(µm) 

Recommended Prebake 
Time @65°C (Min) 

Recommended Soft Bake 
Time @65°C (Min) 

2025 35 3 6 

2035 45 3 6 

100 100 20 50 
 

Heating the sample before exposing it allows for the photoresist to reflow and 

compensate for any non-uniformities in the applied film. it is imperative that the hot plate 

is level and is placed on a level surface to prevent variation in structure height[32]. The 

vendor also advises against using a convection oven as this could lead to the formation 

of a skin on the photoresist, which could further blemish results[32].  

2.2.5. Exposure 

 The photomasks discussed above were used to selectively block UV light from 

reaching the sample’s surface, thereby preferentially crosslinking portions of the 
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photoresist film. To achieve this, a Carl Suss Mask Aligner was used and the samples 

were illuminated for periods of time that varied as a function of light intensity and were 

dictated by photoresist type and thickness. The samples were actually dosed with 125% 

of the prescribed values of the vendor to insure complete developing, as problems with 

underdevelopment were experienced following their prescription verbatim. In Table 2- 4 

a list of exposure amounts can be found for all pertinent samples. 

 

Table 2-4: 125% of the recommended UV dosages for different SU-8s and desired 

thicknesses. 

SU-8 
Product 

Thickness 
(µm) 

Recommended UV Dosage 
(mJ/cm2) 

Exposure Time 
(Sec.) 

Lamp Output 
[39 mW/cm2] 

2025 30 155 10 
2035 45 160 10 
100 100 240 15 
 

 To screen out UV radiation below 350 nm of wavelength, a Hoya UV-34 filter was 

used. It is important to limit the amount of high intensity UV radiation because it has the 

propensity to cause overdevelopment of the superficial layers of the photoresist, 

resulting in uneven sidewalls or “T-topping” upon developing[5]. To further increase 

pattern resolution, the photoresist/photomask separation distance was minimized to 

reduce errors resulting from diffraction[33]. This technique was also cited by Revzin 

(2001) who found that the minimum resolution is directly proportional to the square root 

of the photoresist/photomask separation distance[34].  

Due to separation distance imposed by an unlevel photoresist film, variation in 

height and structure resolution were seen in all samples, In the future this could be 
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further avoided by using a technique developed by Chuang (2002), whereby glycerol is 

placed in the photoresist/photomask gaps to reduce Fresnel diffraction[33].  

 

2.2.6. Hard Bake 

 After exposing the sample, a post exposure hard bake was performed in 

accordance with the vendor’s recommendation. During this time, the appearance of the 

photomask image was used as confirmation that the sample was given an ample UV 

dosage to develop the photoresist. In Table 2-5, a list bake times and temperatures can 

be found for all pertinent samples. 

 

Table 2-5: Post exposure bake times recommended by Microchem Corp. for different 

SU-8 samples and thicknesses. 

SU-8 Product Thickness (µm) Bake Time (Min)
@ (65°C) 

Bake Time (Min) 
@ (65°C) 

2025 30 1 6 
2035 45 1 6 
100 100 1 12 
*These samples were allowed to return to room temperature before being developed* 

 

2.2.7. Development 

 All samples were developed in a shallow Pyrex dish under gentle agitation for the 

amount of time recommended by the vendor[32]. The developer used was a proprietary 

SU-8 photoresist developer provided by MicroChem. After the prescribed time, the 

sample was removed from the developer and rinsed with lab grade isopropyl alcohol, 

IPA, to quench the developing reaction and to test for completion. If a white film resulted, 

this indicated incomplete developing and additional time was given. Once the sample 
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finished developing, it was removed and rinsed with IPA and DI water and then dried 

with a stream of nitrogen. In table 2-6 a list developing times can be found for all 

pertinent samples. 

 

Table 2-6: Developing times for different SU-8 samples and thicknesses. 

SU-8 Product Thickness (µm) Developing time (min.)
2025 30 6.5 
2035 45 7 
100 100 15 
 

 When working with large structures or those with high aspect ratios, it is 

important to use caution when using nitrogen streams to dry the sample, as the high 

pressure could delaminate the SU-8 structures.  

 

2.2.8. Characterization 

 After developing the microstructures, all samples were examined under a light 

microscope to check for broken patterns or other irregularities. If a sample was too badly 

marred or was not to specification, the SU-8 was removed by Reactive ion etching at 

100 mTorr and 10°C with 200 W with 80 sccm O2 and 8 sccm CF4. To verify the 

microstructure heights, a Tencor Alphastep 200 Profilometer was used.   

 

2.2.9. Extended Hard Bake 

 Per recommendation of the vendor, the final samples were heated on a hot plate 

to 200 °C for a period of approximately thirty minutes. In past attempts to use SU-8 

microstructures as master molds for soft lithography, delamination of the SU-8 has been 

an issue. This final annealing step increases the strength of the mold thereby decreasing 
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the likelihood of delamination. After heating, the samples were allowed to return to room 

temperature on the hotplate to avoid thermal shocking. 

 

2.3. Soft Lithography 

Soft lithography is a non-photolithographic field that is founded on self-assembly 

and mold casting over patterned relief structures for the fabrication of structures ranging 

from 30 nm to 100 µm[28, 35]. Microcontact printing (µCP), replica molding (REM), 

solvent-assisted micromolding (SAMIM), microtransfer molding (µTM) and micromolding 

in capillaries (MIMIC) are the most prevalent staple techniques of soft lithography[28, 

35]. With one or multiple of these techniques three-dimensional microstructures can be 

built, often even stacked layer-by-layer, to give rise to such micro devices as: mixers[36], 

fluidic channels[37], valves[38], pumps[39], and tweezers[40]. 

 At the center of all of these methods, the patterned elastomeric block material 

must be selected according to the materials that are to be patterned. These materials 

include: unsensitized polymers (e.g. polyurethane, polyethylene, epoxy, etc.), colloidal 

materials and biological macromolecules[28]. Poly(dimethylsiloxane), PDMS, is a 

prevalent patterned block material because of its ease of processing, relative 

inexpensive and favorable chemical characteristics[28]. In addition to being 

biocompatible, which makes PDMS ideal for patterning proteins and cells, it is 

permeable to gases, optically transparent to about 300 nm, and can coat small surface 

features with relatively high fidelity (~+/- 5 µM) [40, 41]. The elasticity of cured PDMS, in 

conjunction with its low interfacial surface energy (21.6x10-3 Jm-2) and chemically inert 

nature, allow for an easy removal of the patterned block from complicated and fragile 

positive reliefs. Lastly, PDMS is not hydroscopic and will not swell in ambient humidity 
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and is very durable, which allows for repeated use (50+ stampings) over a several month 

span without significant loss in structural fidelity[28].  

While PDMS has many favorable characteristics for its application as a patterned 

relief mold, it is not without its drawbacks and limitations. While the elasticity and 

interfacial surface energy are favorable, PDMS still imposes mechanical stress on 

photoresist microstructures, especially those of a high aspect ratio, and can delaminate 

or otherwise destroy these microstructures. We have observed that in small features of 

the photoresist microstructures (<~10µm), the PDMS will flow and polymerize but may 

sometimes tear away from the bulk relief mold upon liftoff. This lowers the fidelity of the 

relief mold and potentially fills in small features on the photoresist pattern. Also, upon 

curing there is a loss in volume of the PDMS, as it will shrink about 1%[28]. This affect is 

noteworthy but not significant to the microstructure fidelity. Furthermore, adhesive, 

capillary and gravitational forces impose stresses on the PDMS stamp, causing the 

patterns to collapse or bow and thus produce defective prints[39]. Such defects are a 

strong function of geometry. Delamarche (1997) notes that the aspect ratio in these 

PDMS relief stamps must be within 0.2 and 2 in order to achieve defect free stamps[39].  

The photolithography process discussed above, was used to generate SU-8 

patterned structures that serve as the positive mold for the PDMS stamp. PDMS 

prepolymer solutions were mixed from two parts, an elastomeric base and curing agent, 

in a 10:1 ratio, respectively. This prepolymer solution was then placed under vacuum 

(101.6 mm Hg) until all air bubbles were removed. This ensures complete mixing of the 

two prepolymer constituents and prevents air bubbles from coming in contact with the 

positive relief surface, thus causing pockets and other imperfections in the PDMS mold, 

as show in figure 2-6[28]. This prepolymer mixture was then poured over the SU-8 

patterned wafer and heated at 75°C for 60 minutes to cure the PDMS. Directly 

afterwards, the PDMS/wafer sample was removed, briefly allowed to return to room 
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temperature and then the PDMS was removed from the wafer. It is important that these 

PDMS molds are removed from the wafer in the direction of the length of the SU-8 

structures to prevent delamination of these structures. Leaving the PDMS on the wafer 

for extended periods of time allows for the PDMS to further cure and lose more of its 

elasticity. We have found that this increases the likelihood of damaging SU-8 patters, 

especially those of high aspect ratio, and therefore such practice is avoided. At this 

point, the PDMS molds are placed face down on a clean, dust-free, cutting surface and 

cut with an Exacto knife. A Petri dish was used as both a stencil for cutting and a 

container for storing. This is done so that the samples may be labeled and stored in a 

place where they are least likely to pick up dust or other particulate matter that may 

compromise the molds integrity. Later these samples will be revisited and structures of 

interest can be cut directly out of the PDMS without removing it from the Petri dish, as 

shown in figure 2-7. 
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Figure 2-6: Air bubbles in a PDMS stamp still on an SU-8 master mold. 
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Figure 2-7: PDMS relief in petri dish. 
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2.3.1. Micro Molding in Capillary (MIMIC) 

In MIMIC, the PDMS relief molds are placed, patterned side down, onto a 

substrate which forms a series of empty corridors[42]. At the open end of these 

corridors, a prepolymer solution is pooled and capillary forces pull the fluid through the 

corridors. Here the polymer is cured and the PDMS relief is removed, leaving behind the 

patterned polymer microstructures. It is important to note that the PDMS should be 

removed in the direction that runs with the length of the microstructures to prevent 

damaging the tops of thin structures. The entire MIMIC process is shown in figure 2-8. 

 

 

Figure 2-8:Micro injection molding in capillaries (MIMIC) process. 

 

2.4. Application of Silane Binder to Substrate 

In early attempts to deposit PNIPAAm structures onto glass surfaces, only 

rudimentary cleaning methods were used (acetone/methanol/isopropanol) but no 

fixatives were applied to the surfaces. The patterns could be cured on these surfaces 

and the small forces present were sufficient to adhere them to the surface, however, 
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when these structures swelled those weak forces were easily overcome and 

delamination often occurred. In response to this, all future surfaces were chemical 

enhanced with 3-(trichlorosilyl)propyl methacrylate (TPM, Aldrich). This self-assembled 

monolayer covalently bound the pNIPAAm microstructures to the glass slide during 

photopolymerization. 

In the field of self-assembled monolayers (SAMs), chlorosilanes or alkoxysilanes 

are employed on silica or glass substrates to achieve dense, thick (~22 ) monolayers 

with less surface roughness[43, 44]. Using a similar approach, glass cover slips 

(~0.170μm thick) were treated with a monolayer of TPM to give it adhesive 

properties[45]. In summary, the cover slides were first cleaned using a standard solvent 

rinse of methanol/acetone/isopropanol/DI water and then dried with high purity dry 

nitrogen. Subsequently, the slides were further cleaned with O2 plasma in a Harrick 

Plasma Cleaner/Sterilizer PDC-32G for 15 minutes at approximately 500 mTorr of 

pressure and at 6.8 Watts of RF power. Plasma cleaning removes any residual organic 

deposits by chemical reaction with highly reactive oxygen radicals and removal by 

oxygen ions and promotes hydroxylation (formation of OH groups) of the surface which 

will help with monolayer application. From here the glass slides were treated in 3 

chemical baths in glove bag, which provided an oxygen free environment. These slides 

were first treated for 5 minutes in a 1 mM solution of TPM in a 4:1 ratio of heptane to 

carbon tetrachloride at room temperature and atmospheric pressure. This was followed 

by subsequent soaking in hexane and then in DI water; each for 5 minutes. The 

mechanism for silanization is shown in figure 2-9. 
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Figure 2-9: Silanization mechanism. 
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It was found that if too much time passed between plasma cleaning and TPM 

application or if precautions were not taken to ensure that samples were kept in closed, 

clean containers and free of particulates, that a snowing effect could be expected when 

the TPM was applied. This effect, shown in figure, is speculated to be indicative of 

thicker deposition of TPM, as shown in figure 2-10. Use of these slides with MIMIC, 

yields poor adhesion between the patterned PDMS mold and the substrate, which leads 

to the creation of scum layers (polymer that seeps under the mold and polymerizes). 

This is shown in figures 2-11 and 2-12. Also, if silanized slides were not used 

immediately (usually within a few day) the likelihood of structure delamination seemed to 

increase.  

 
 
Figure 2-10: Dirty slide leading to heavy silane deposition. 
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Figure 2-11: Polymer microstructure with surrounding polymer scum layer. 
 

 
 
Figure 2-12: Deformed polymer pad (top-right corner) with surrounding scum layer 
exhibiting surface wrinkling. 

100 µm 
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2.5. Photopolymerization of Microgels 

 Microgels were created by MIMIC and used a prepolymer acetone/water (4:1) 

solution containing the following: 200 mg n-isopropylacrylamide monomer (97% Aldrich), 

2 mg of 2-dimethoxy-2-phenylacetophenone (DMPA, Aldrich) as the photoinitiator, 1 mg 

polyfluor 570 fluorescent monomer (Methacryloxyethyl thiocarbonyl Rhodamine B) 

(Polysciences, Inc), and the crosslinker N,N'-Methylenebisacrylamide (varied from 0-40 

mg, BIS, Chemzymes Ultra Pure).  

Patterns of interest were cut out of the PDMS relief molds and placed pattern-

down on the silanized surface. Because of PDMS’s excellent adhesive properties, no 

further measure is required to bind them to the surface. As discussed in the section on 

MIMIC, applying these relief patterns to the surface creates a network of corridors.  At 

the opening of these corridors, the pre-polymer solution is pooled and pressure created 

by capillary forces fills the corridors with the solution. Immediately after the pre-polymer 

solution has had time to fill the pattern, the assembly is photopolymerized using an 

uncollimated, 365 nm, 300 mW/cm2 light source (EFOS Ultracure 100ss Plus, UV spot 

lamp, Mississauga, Ontario) for 5 minutes. Here it is imperative to start the 

polymerization as soon as possible, else solvent evaporation and subsequent 

crystallization (figure 2-13 and 2-14) are eminent[46]. The mixing of the pre-polymer 

solution from the prefabricated stocks as well as the MIMIC process described above, 

were all performed in a nitrogen environment. 
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Figure 2-13: Slide with crystallized monomers (prepolymer solution) on it. 
 

 
 
Figure 2-14: Confocal microscope image of crystallized monomer on the slide surface. 
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The formation of the hydrogel microstructures is performed through the photo-

initiate free-radical polymerization of the acrylate end group in the NIPAAm monomers. 

In this reaction, DMPA is dissociated by the UV radiation, creating methyl radicals that 

then react with the carbon-carbon double bonds of the acrylate function group on the 

NIPAAm monomer. This reaction propagates between until it is terminated by the 

carbon-carbon double bond becoming oxygenated. 

The silanated cover slide will also participate in this free radical reaction because 

of the availability of the vinyl groups (C=C) offered by the monolayer. This happens 

when the methacrylate radicals present in the NIPAAm monomer react with the vinyl 

groups and it forms covalent bonds which anchor the polymer to the monolayer[34].  

While this process has been very useful in creating these microstructures, it is 

very inflexible in the variety of structures that can be made. This is due to the fact that 

the structures must be hydraulically connected. Thus isolated structures are an 

impossibility or must be created as hydraulically connected patterns and modified after 

the fact; a very tedious and altogether impractical endeavor. Also, this method, which 

relies on capillary forces, is only valid so long as the viscous forces at the corridor 

boundaries do not dominate; that is long patterns will experience too much viscous drag 

and will not fully fill with the pre-polymer mixture. However, interestingly enough, 

patterns that are short enough will fill even if the corridors have closed ends. It is thought 

that this occurs because small amounts of gas are able to diffuse into the PDMS 

elastomer[28]. Lastly, mechanically these PDMS relief patterns could be reused multiple 

times but due to the absorption of acetone and contamination, subsequent uses don’t 

yield desired results. 
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2.6. Fabrication of Fluid Cells 

The fluid chamber was created by adhering individual glass cover slides 

(Corning, No. 1½, 25 mm2), each containing a single microstructure, to a plexiglass slide 

having dimensions of standard microscope slides. The plexiglass overlay was 

prefabricated with holes, such that each microstructure would be encased in the 

plexiglass (forming a fluid well). This design is shown in figure 2-15 and 2-16. The 

design presented in figures 2-15 and 2-16 is the most recent design but the evolution of 

the fluid cell design can be seen in figure 2-17. Nail polish was used to adhere the 

plexiglass to the glass substrate. From here DI water can easily be added or removed 

from this minimalistic design that easily accommodates the inverted confocal 

microscope.  

 
 
Figure 2-15: Top and side view of assembled fluid cell. 
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Figure 2-16: Top and bottom view of fluid cell with sample slide adhered. 
 

 
 
Figure 2-17: Chronicle evolution of fluid cell design. First design (left) was an enclosed 

design that used a plexiglass cover with ports. The latter two (to the right) were open top 

designs with open tops.   
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2.7. Remarks 

 All pattern PNIPAAm microstructures that are created with this method seem to 

display a decrease in structure height at the midway point between hydraulic pads. It is 

not certain whether this is caused by bowing of the PDMS relief mold or if the tops of the 

structures in that part of the pattern are being torn off. The latter is not supported by 

closer examination of the PDMS stamp after polymerization. Further investigation is 

needed. 
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CHAPTER THREE: CHARACTERIZATION OF EXTENT OF SWELLING AND 

CROSSLINK DENSITY 

 

3.1. Introduction 

The most important characteristic of thermo-responsive gels is their ability to 

readily swell and deswell. This makes absorption capacity the most crucial property of 

these gels. The primary variables that control this property are the ion content of the 

polymer matrix, the crosslink density and the solvent interaction parameter ( 1χ ) [47].  

Because PNIPAAm is a nonionic polymer and the solvent used is constant, the crosslink 

density is the remaining variable which must be determined experimentally. Of the 

available experiments for determining crosslink density (stretching, compressing, 

indenting, etc…), equilibrium swelling was chosen to characterize this parameter.  

Knowledge of the swelling limits of the hydro gel can then be combined with equilibrium 

swelling theory and Flory-Huggins mixing theory to determine the crosslink concentration 

[47]. 

 

3.2. Characterization of Extent of Swelling in Bulk Gels  

In order to get a general understanding of the swelling dependence on crosslink 

density, marcoscale swelling test were conducted for 15 different samples over a spread 

of 0-20 wt% BIS (weight ratio BIS/NIPAAm ~= wt% BIS). This was accomplished by 

fabricated 15 (1ml) microgel samples at different crosslink concentration and placing 

them in water baths below and then above the LCST and measuring the changes in 
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mass. With the given density of water (0.997 g/cm3 and 0.992 g/cm3) at these operating 

temperatures (21.5°C and 40°C, on average), the volume change and hence the degree 

of swelling can be calculated.  

 

3.2.1. Experimental Procedure 

PNIPAAm gels were fabrication in 12 x 75 mm disposable culture tubes in a nitrogen 

environment at room temperature and pressure. The procedure is as follows: 

 

3.2.1.1. Preparing the Stock Solutions 

The desired prepolymer solution contains 200mg of monomer N-isopropylacrylamide, 2 

mg of photoinitiator 2,2-dimethoxy-2-phenylacetophenone (DMPA), 0.5 mg of 

fluorescents monomer polyfluor 570 (Methacryloxyethyl thiocarbonyl Rhodamine B), and 

5 mg of crosslinker N,N’-methylenebisacrylammide (MBS) all in a 1 ml portion of solvent. 

In order to make multiple prepolymer solutions with accuracy, weighing out small 

quantities was avoided and instead stock solutions of all of the constituents were 

created. To make for easy variability of the MBS, the mass of each of the solute needed 

in the final solution was added to 1 ml of acetone and then the concentrations of all four 

were quadrupled to yield the following in table 3-1. 

 

Table 3-1: Initial prepolymer solutions recipe. 
 

Solute mg. of solute 
Conc. of Stocks 
(mg/ml) 4 x Conc. wt% solutes 

NIPAAm 200 200 800 96.3855% 
DMPA 2 2 8 0.9639% 
Rhodamine 0.5 0.5 2 0.2410% 
MBS 5 5 20 2.4096% 
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 For this base recipe, which has been used in previous work by DuPont et al[17], 

the current weight ratio of BIS to NIPAAm is 2.5%. It is desire to have a maximum weight 

ratio of 20% and a minimum of 0%.  At 20 wt%, the concentration of the BIS solution 

climbs to 160 mg/ml. To achieve this, a battery of 15 samples were created to cover this 

span by altering the concentration of the BIS stock with acetone to maintain and equal ¼ 

volume contribution to the prepolymer mix, as shown by table 3-2. 

 

Table 3-2: BIS dilution chart. 

Solution MBS (mg) wt% MBS/NIPAAm Actetone (µl) BIS stock (µl)
1 0 0.00% 250.00 0.00
2 11.429 1.43% 246.43 3.57
3 22.857 2.86% 239.39 10.61
4 34.286 4.29% 229.13 20.87
5 45.714 5.71% 216.04 33.96
6 57.143 7.14% 200.60 49.40
7 68.571 8.57% 183.41 66.59
8 80.000 10.00% 165.07 84.93
9 91.429 11.43% 146.20 103.80

10 102.857 12.86% 127.41 122.59
11 114.286 14.29% 109.21 140.79
12 125.714 15.71% 92.04 157.96
13 137.143 17.14% 76.27 173.73
14 148.571 18.57% 62.10 187.90
15 160.000 20.00% 0.00 250.00

 

Unfortunately, BIS has a solubility of ~8 mg/ml in pure acetone. Trying to stay as close to 

the original solvent as possible, so that data collect on microgel from previous work 

would still be prudent, a solubility test with acetone/water mixtures conducted with BIS, 

as shown in figure 3-1. 
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Figure 3-1: Solubility plot of BIS concentration verses water to acetone volume ratios 

 

Based on this, a stock of BIS was made with a 25/75% water/acetone mixture 

and it was found to form a suspension with a low settling rate. In lieu of switching to a 

different solvent this was used. Also, to maintain a 25/75% solvent mixture, the DMPA 

stock was quadrupled again (now 8x the original) and added as 1 part DMPA stock to 3 

parts DI water for the DMPA’s contribution to the prepolymer solution. The final recipe 

and dilution table now read as follows in tables 3-3 & 3-4. 

 

y = 810.67x3 - 1563.4x2 + 784.76x + 8.1714
R² = 0.9998
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Table 3-3: Revised prepolymer recipe for equal volume contribution. 

Solute mg of solute Conc. of Stocks (mg/ml) 4 x Conc. wt% solutes
NIPAAm 200 200 800 96.3855%
DMPA 2 2 16 0.9639%
Rhodamine 0.5 0.5 2 0.2410%
MBS 40 40 160 19.2771%
 

Table 3-4: Dilution chart for BIS. 

Solution MBS (mg) wt% MBS/NiPAAm Actetone (µl) Stock (µl) 
1 0 0.00% 250.00 0.00
2 11.429 1.43% 246.43 3.57
3 22.857 2.86% 239.39 10.61
4 34.286 4.29% 229.13 20.87
5 45.714 5.71% 216.04 33.96
6 57.143 7.14% 200.60 49.40
7 68.571 8.57% 183.41 66.59
8 80.000 10.00% 165.07 84.93
9 91.429 11.43% 146.20 103.80

10 102.857 12.86% 127.41 122.59
11 114.286 14.29% 109.21 140.79
12 125.714 15.71% 92.04 157.96
13 137.143 17.14% 76.27 173.73
14 148.571 18.57% 62.10 187.90
15 160.000 20.00% 0.00 250.00

 

The stock solutions for NIPAAm were made with 5 ml of acetone for the stock, while 20 

ml was used for the remaining solutes. 

 The first two batches of samples and swell test were conducted using this recipe 

and method until it was discovered that an error had been made; the solvent added to 

the BIS stock was pure acetone instead of a 25/75 volume ratio of water and acetone. 

This would have thrown off the whole ratio of the solvent which was to be maintained at 
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25/75 to preserve optimal solvating conditions. The dilution table was reworked, as 

shown in table 3-5, and the next two batches of samples and swell test were conducted 

with this correction. 

 

Table 3-5: Revised dilution chart for BIS. 

Solution mg MBS wt% MBS/NiPAAm 25/75% Water/Actetone ul Stock 
1 0 0.00% 250.00 0.00
2 11.429 1.43% 246.43 3.57
3 22.857 2.86% 239.39 10.61
4 34.286 4.29% 229.13 20.87
5 45.714 5.71% 216.04 33.96
6 57.143 7.14% 200.60 49.40
7 68.571 8.57% 183.41 66.59
8 80.000 10.00% 165.07 84.93
9 91.429 11.43% 146.20 103.80

10 102.857 12.86% 127.41 122.59
11 114.286 14.29% 109.21 140.79
12 125.714 15.71% 92.04 157.96
13 137.143 17.14% 76.27 173.73
14 148.571 18.57% 62.10 187.90
15 160.000 20.00% 0.00 250.00

 

3.2.1.2. Sample Preparation 

 The 15 samples were prepared five at a time with the same procedure for each 

of the 4 total batches. Each batch was placed in a test tube rack outside of the nitrogen 

tent and was dispensed its prescribed BIS concentration and the 3 parts DI water that 

was to be added to the DMPA’s aliquot (187.5 µl). In order to maintain a consistent 

suspension of BIS, the BIS stock solution was first agitated on a Vortex Genie 2 (Model 

G-560) for 10 minutes and then place on a stir plate to maintain agitation for the duration 

of the sample preparation. The remaining ingredients were added in the glove bag under 

a positive pressure of nitrogen. After all of the ingredients were added the culture tubes 
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were all stirred well to insure proper mixing of the prepolymer solution. At this point the 

samples were irradiated with a UV spot lamp for 15 minutes under constant agitation. 

Once polymerized, all samples were removed from the glove bad and either shaken 

from their culture tubes or the tubes were gently fractured and the sample were 

removed. All samples were then placed in 60 ml graduated glass bottles and labeled 

with their respective BIS concentration.  

   

3.2.1.3. Experimental Setup and Data Collection  

 Once all samples were finished, 20 ml of DI water at 21.5 °C (on average) was 

added to each specimen container and then they were sealed. Mass measurements 

were recorded by removing the samples and drying off any superficial water before 

recording a data point. Data of all of the samples were taken every 30 minutes during 

the initial 3 hours of swelling due to the steep rate of change. After each recorded mass, 

20 ml of fresh DI water was added to replace the used water. This was done do limit the 

affects of excess solvent or unreacted monomer. All subsequent readings occurred only 

as often as needed.  

After 120 hours of data collection had past, all sample’s DI water was replaced 

by heated DI water at approximately 40 °C and then they were placed in 1000 ml 

beakers containing 200 ml of DI water also at approximately 40 °C. The increments at 

which data was nearly identical to regiment followed for the swelling portion of the 

experiment. Deswelling data was also taken for the duration of 120 hours. 

After deswelling, all samples were placed in labeled Pyrex Petri dishes and 

heated in an Isotemp® vacuum oven (Model 280A) furnace at 75 °C under a constant 

2.92 mmHg of vacuum for 24 hours. Samples were then removed and their dry mass 

was recorded. All samples were stored in their dry state. 
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3.2.2. Remarks and Results 

To calculate the crosslink density from extent of swelling data, one only needs 

the volume of the original sample, the most swollen state and the dry state but additional 

data was collected over the duration of the swelling so that a qualitative assessment of 

the data may be made. The swelling and deswelling data for all 4 batches is listed in 

figures 3-2 through 3-17. It is important to note that samples 1 and 2 were created with 

the acetone rich recipe. Sample 3 and 4 were made with the recipe that keeps a 

constant 25/75 volume % of water and acetone, respectively.  
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Figure 3-2: Swelling of 1ml PNIPAAm samples with variable BIS (crosslinker) 

concentrations. 
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Figure 3-3: Swelling of 1ml PNIPAAm samples with only four select weight ratios of 

BIS/NIPAAm shown. 

 

 

 

 

0

1

2

3

4

5

6

7

8

9

10

0 20 40 60 80 100 120 140

N
or

m
al

iz
ed

 W
ei

gh
t (

gr
.)

Time (Hrs.)

Swelling Sample I: Weight vs. Time at Different wt% of BIS

1.43%
2.86%
10.00%
20.00%



49 
 

 

 

 

 

 

 

 

Figure 3-4: Swelling of 1ml PNIPAAm samples with variable BIS (crosslinker) 

concentrations. 
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Figure 3-5: Swelling of 1ml PNIPAAm samples with only four select weight ratios of 

BIS/NIPAAm shown. 
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Figure 3-6: Swelling of 1ml PNIPAAm samples with variable BIS (crosslinker) 

concentrations. 
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Figure 3-7: Swelling of 1ml PNIPAAm samples with only four select weight ratios of 

BIS/NIPAAm shown. 
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Figure 3-8: Swelling of 1ml PNIPAAm samples with variable BIS (crosslinker) 

concentrations. 
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Figure 3-9: Swelling of 1ml PNIPAAm samples with only four select weight ratios of 

BIS/NIPAAm shown. 
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Figure 3-10: Deswelling of 1ml PNIPAAm samples with variable BIS (crosslinker) 

concentrations. 
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Figure 3-1: Deswelling of 1ml PNIPAAm samples with only four select weight ratios of 

BIS/NIPAAm shown. 
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Figure 3-2: Deswelling of 1ml PNIPAAm samples with variable BIS (crosslinker) 

concentrations. 
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Figure 3-3: Deswelling of 1ml PNIPAAm samples with only four select weight ratios of 

BIS/NIPAAm shown. 
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Figure 3-4: Deswelling of 1ml PNIPAAm samples with variable BIS (crosslinker) 

concentrations. 
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Figure 3-5: Deswelling of 1ml PNIPAAm samples with only four select weight ratios of 

BIS/NIPAAm shown. 
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Figure 3-66: Deswelling of 1ml PNIPAAm samples with variable BIS (crosslinker) 

concentrations. 
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Figure 3-7: Deswelling of 1ml PNIPAAm samples with only four select weight ratios of 

BIS/NIPAAm shown. 
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3.3. Crosslink Density Determination 

The theory that allows for the determination of the crosslink density based on the 

swelling limits is the equilibrium swelling theory, which state that a polymer will absorb its 

neighboring solvent until the solvent chemical potentials inside and outside of the 

polymer are equal. In terms of osmotic swelling pressure, this can be written as,  

 0mix elastic ion elecΠ +Π +Π +Π =  (3.1) 

It is important to note that this equation makes the assumption that all contribution to the 

swelling pressure are independent[47].  Here the mixΠ  is the tendency of the polymer of 

dissolve into the solvent, elasticΠ  is the elastic response of the network due to 

crosslinking, ionΠ is the contribution to osmotic pressure due to differences in ion 

concentration between the gel and the water and elecΠ  is the electrostatic interactions of 

charges on the polymer chains[47]. Typically the  elecΠ  is very small in comparison to the 

to ionΠ and, for sake of brevity, these will not be discussed at any further length as 

PNIPAAm is a nonionic polymer and these terms will not be used in its calculations[47].  

 While theoretical a priori calculations can’t accurately determine the equilibrium 

swelling of hydrogels, some theoretical predictions of different parameters of swelling do 

agree with empirical results. The Flory-Huggins theory defines the mixing contribution by 

introducing the polymer-solvent interaction parameter ( 1χ ), as follows: 

 
2

1 2 2 1 2[ / ][ln(1 ) ]mix RT V υ υ χυΠ = − + +
 (3.2) 
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where R is the gas constant, T is absolute temperature, 1V  is the solvent molar volume 

and 2υ  is the polymer volume fraction[47]. The polymer-solvent interaction parameter 

takes into account the free energy changes that are caused by mixing and is a function 

of both temperature and concentration[47]. Its value is typically between 0 and 1, where 

low values of 1χ  are indicative of good solvents (those that favor minimizing and cause 

the polymer to swell) and higher values indicate poor solvents (elasticity of the polymer 

matrix dominates causing the polymer to collapse)[47]. While 1χ  has theoretical 

backing, it is most often determined empirically and there exist many sources for these 

values[47, 48]. Heuristics are available for determining 1χ  but since they are inaccurate 

in systems where hydrogen bonding is significant, it is unlikely they would be a 

responsible approach for hydrogels[47, 48].  

The elasticΠ  term is primarily governed by the elastic restraining forces of the 

crosslinked polymer chains and is a limiting parameter on extent of swelling[47]. These 

elastic restraining forces are entropic in nature because stretching of the polymer matrix 

reduces the number of available chain conformations[47]. For an ideal polymer matrix 

that is crosslinked in the bulk state, this can be shown as: 

 
1 3 2
2[ 0.5 ].elastic xRTρ υ υΠ =− −  (3.3) 

If the polymer is prepared in solution, where the chains are in their “relaxed” 

conformation, equation (3.3) becomes: 

 1 3
2, 2 2, 2 2,[( ) 0.5( )]elastic r x r rRTυ ρ υ υ υ υΠ =− −  (3.4) 
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where 2,rυ is the polymer volume fraction at the time of polymerization[47]. Equation 

(3.4) reduces back to equation (3.3) in the case that a polymer is not polymerized in the 

present of the solvent, i.e. 2,rυ =1[47]. 

As stated before, for a nonionic gel, the Flory-Rehner theory represents the total gel 

pressure as a sum of the osmotic pressure contributions of mixing and elasticity. 

Combining equations (3.2) and (3.4) we arrive at an equation for the total swelling 

pressure: 

 1 32
2, 2, 1 2, 1 2, 2, 2, 2, 2,[ln(1 ) ] / [( ) 0.5( )]s s s r x s r s rVυ υ χυ υ ρ υ υ υ υ− + + + −  (3.5) 

This relationship can easily be solved for the crosslink density from here and is 

reported to be a good approximation for organic solvents. Because the solvent-

interaction parameter cannot account for the hydrogen bonding that will take place in this 

hydrogel, this calculation of crosslink density stands only as an approximation. 

Additionally, this calculation assumes that the polymerization goes to completion, which 

is not always the case. 

3.4 Remarks and Results 

As expected, the sample without any crosslinker polymerized and exhibited a 

noticeable change in viscosity but did not congeal and therefore was not included in the 

swelling test. As for the remaining samples, they calculated crosslink densities are listed 

below in tables 3-6. 
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Table 3-6: Crosslink density values (mol/cm3) calculated from the swelling data using 

the Flory-Rehner equation. 

Batch       

Sample 1 2 3 4

1 N/A N/A N/A N/A 

2 8.11E-09 1.15E-08 3.78E-07 2.33E-07

3 3.63E-06 5.13E-06 3.93E-06 1.27E-06

4 4.26E-05 4.39E-05 4.38E-05 2.73E-05

5 1.33E-04 8.58E-05 1.24E-04 5.99E-05

6 4.21E-04 4.16E-04 3.73E-04 2.28E-04

7 7.56E-04 4.54E-04 1.53E-03 5.55E-04

8 2.76E-04 2.49E-04 1.00E-03 6.58E-04

9 9.10E-04 1.21E-03 1.27E-03 4.45E-04

10 1.56E-03 1.36E-03 2.20E-03 1.38E-03

11 3.72E-03 2.50E-03 2.37E-03 7.12E-04

12 2.06E-03 2.79E-03 4.09E-03 2.93E-03

13 2.05E-03 2.80E-03 1.43E-03 1.83E-03

14 6.89E-03 3.82E-03 1.42E-03 7.12E-04

15 3.89E-03 3.47E-03 1.45E-03 1.15E-03

 

In order to makes these calculations, an interaction parameter of 0.5 and a dry 

density of 1.37 g/cm3 were used to solve the Flory-Rehner equation[49-51]. 

There is a significant swelling difference (~60%) between samples created with 

the acetone rich recipe and the intended 25/75 mix. Plots of swelling and deswelling 

kinetics are displayed in figures 3-2 through 3-17. A possible explanation for this may be 

that the additional water present is enough to have a swelling effect on the PNIPAAm 
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samples as they are polymerizing. This swelling would limit chain conformations and 

subsequently hinder network formation. Hence, the water rich system would be less 

developed and not capable of swelling to the same magnitude as the acetone rich 

sample.  

Additional variability in the data is likely the result of structural defects that 

occurred during deswelling. Upon deswelling some samples, typically those with the 

lowest crosslink density formed an opaque skin inhibited deswelling, while other 

fractured across the top or along multiple planes, expediting deswelling. These two 

effects are shown in figures 3-18 and 3-19. 

 

 
 
Figure 3-8: Collapsing gel that forms an outer skin layer. 
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Figure 3-9: A PNIPAAm that fractured in the process of swelling. 

 

Also, the swelling data collected has confirmed that there are only small changes 

in the extent of swelling or in swelling kinetics when the crosslinker concentration is 

beyond 5-7 wt% BIS/NIPAAm. Therefore, investigating the swelling properties of these 

densities is of little worth to the nature of this work, as these gels aren’t likely to swell 

enough to enter a deformation regime.  

 

  



69 
 

 
 
 
 
 

CHAPTER FOUR: CHARACTERIZATION OF CONFORMATION OF PNIPAAm 

MICROSTRUCTURES BY LASER SCANNING CONFOCAL MICROSCOPY 

 

4.1. Laser Scanning Confocal Microscopy Introduction 

Wide-field fluorescence microscopy is commonly used for the investigation of 

organic or inorganic substances on a micron or submicron range by using florescence or 

phosphorescence phenomena, as opposed to adsorption and reflection[52]. It operates 

by evenly irradiating the sample with light and exciting those portions of the sample 

simultaneously causing it to fluoresce[52]. The emitted fluorescence is captured by 

photodetectors or cameras and then translated into a coherent image[52]. This method 

is limited by the microscopes ability to filter out background information, concisely control 

the depth of field and collect optical sections of thicker specimens[53]. These are the 

exact limitation that Marvin Minsky sought to overcome in the 1950’s when he invented 

confocal microscopy.  

In contrast to fluorescence microscopy, confocal microscopy uses pin-point 

illumination and a pinhole aperture that is positioned in the conjugate plane (confocal) 

with the illumination point on the specimen and a second pinhole aperture in front of the 

detector (a photomultiplier tube)[53]. A schematic of the confocal microscope setup and 

a comparison of wide field vs confocal illumination volumes can be seen in figures 4-1 

and 4-2. Once the laser is emitted it is reflected by the chromatic mirror and rastered 

across a specific focal plane of the specimen where it excites secondary fluorescence 

and sends light back through the dichromatic mirror to the detector pinhole aperture, 

filtering out-of-focus or out-of-plane light and propagating all other light to the 
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photomultiplier detector[53]. With the out-of-focus light excluded from the emissions 

data, a more accurate account of the specimen can be rendered.  

 

 

Figure 4-1: A schematic of the confocal microscope concept. 
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Figure 4-2: Difference in illumination volume between wide-field and confocal 

microscopy. 

 

On the downside, confocal microscopy is limited by the number of excitation 

wavelengths that are available by today’s lasers, which emit relatively narrow bands and 

are costly (especially in the UV spectrum)[53]. Concurrently, the high price of purchasing 

and operating a confocal microscope limits the number of facilities that can afford 

one[53]. Also, the high intensity lasers that are used in laser scanning microscopy can 

be harmful to living cells or organism[53]. This problem was circumvented by Nipkow 

disk confocal microscopy by using a multiphoton source at lower intensities but since 

this is neither a limitation to the current investigation nor an technique employed, this will 

not be discussed further[53]. 
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4.2. Characterization of Structural Morphology by Confocal Microscopy 

The images take with the scanning laser confocal microscope are individual 

slices or well-defined planes within a sample[53]. These may be taken from the x-y, x-z, 

or y-z planes over some desired thickness. Additionally, if an area of interest (AOI) is 

greater that the scan area, the boundaries of this AOI may be entered into the software 

interface and the microscope will split the AOI into separate image stacks that can then 

be fused together to form the larger AOI.  

The micrographs shown have been taken with a Leica TCS SP5 confocal laser 

scanning microscope (CLSM) through a 20X/0.7NA (Leica Microsystems, Germany). An 

Argon laser line with an emission at 543 nm was used to excited the fluorescent 

microstructures and an AOBS was used to filter the images. The images were recorded 

with photomultiplier detectors using LAS AF software (version 2.1.0, Leica 

Microsystems, Germany). Image stack were taken at z-steps (thickness spacing) 

between 0.25 and 1 µm.  

The 3-D images of the PNIPAAm microstructures were rendered using Imaris 

5.5.0 (Bitplane, Inc., St. Paul, Minnesota) software package. The RAW data from the 

scanning confocal microscope was imported into Imaris and then refined using the 

software’s thresholding ability to remove background fluorescence. From here the 

individual stacks were assembled to create and iso-surface of the microgel. 

 

4.3. Remarks and Results 

 Because of the inherent inaccuracies that come with adhering glass slides to 

Plexiglass covers with nail polish, samples have often been displacement between 

opposite ends that measure as much as 40 µm. Unfortunately, an AOI that runs 
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diagonally through a sample requires that the number of scan slice be increased to 

capture the data and the user must deal with the excess data. An illustration of this 

drawback is displayed in figure 4-3. 

 

 

Figure 4-3: Increased number of stacks to compensate for uneven adhesive layer. 

 

To this point, all PNIPAAm monolithe structures have been made using the first 

recipe (i.e. the one that uses pure acetone for dilution) for varying BIS concentrations 

and all resulting structures have exhibited sharply angled side-walls accompanied by 

deep concavities across the width. This concavity yield structural edges that vary along 

the monolithe between 15 µm and 18 µm on average and concave valleys that run the 

length of the structure and are an average of ~10 µm in height, as displayed in figure 4-

4. A thinner portion of the stack, about 20 µm in width, looks closer to what has been 

seen in the past but is <1/5th the height of the mold. This is show in figure 4-5. The 

swollen states of both of these also yield unusual findings. While they both exhibit the 

expected deformations, there are small nuances that do not follow with previous 

observation. The low aspect ratio structure displays edge undulation but the effect is less 

pronounced than usual and higher aspect ratio end buckles but the structural bulge that 

is often present on the outside of the wave is now pronounce on the inside. Both of 

these structures are show in figures 4-6 and 4-7. 
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Figure 4-4:  PNIPAAm monolith in the collapsed state. 

 

Figure 4-5: PNIPAAm monolith in the collapsed state. 
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Figure 4-6:  PNIPAAm monolith exhibiting surface deformations in the swollen state. 

 

Figure 4-7: PNIPAAm monolith exhibiting bulk mechanical deformation in the swollen 

state. 

100 µm 

Edge Undulations 
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Structures of this nature have only been observed using the variable BIS recipes 

described herein and have not been observed using original solution recipes. It is 

currently believed that the observed effect is the result of increased surface tension of 

the prepolymer solution that results in a meniscus or some other phenomena when 

applied to mimic. To this point, all other potential causes (PMDS or SU-8 height and 

PNIPAAm being torn off) have been disproven.  
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CHAPTER FIVE: SUMMARY, CONCLUSION AND FUTURE WORK 

 

 This study has examined the techniques used to reproducible construct surface-

confined Poly(N-isoropylacrylamide) microgels, measure crosslink density of these gels 

and how to characterize their buckling behavior in real time with the use of confocal 

microscopy. Many challenges were faced in these endeavors and these trials and 

triumphs will be covered here. Lastly, current and future approaches for establishing 

correlations between crosslink density and mechanical deformations will be discussed. 

 

5.1. Preparing Stock Solutions 

 Ultimately, using a suspended solution and a stir plate is not the most ideal 

approach but is suitable for the nature of this swelling test. A more analytical approach 

should be sought out to eliminate sources of potential error that are eminent with this 

approach. These source might include, changing BIS concentration over time due to the 

high volatility of the solvent, recrystallization of BIS along the edges of the container due 

to the volatility of this mixture and its supersaturated nature, and the error in samples 

taken when the stock is intermittently remove from the stir plate and allow to stop mixing 

before withdraw. Moreover, this method was used out of convenience and necessity of 

time.  
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5.2. Sample Preparation 

 There may be a small loss in accuracy when samples were removed by 

fracturing the culture tubes if the samples are marred in any way. When this approach 

was used, it was done with the utmost care to avoid such incidents. 

 

5.3. Experimental Setup and Data Collection 

 It is important to handle these samples with care as they are dried and weighed 

each time. It was found in the “beta test” (not included in the 4 batches listed herein), 

that dropping samples or picking this up with one’s fingers, were likely to result in a 

fractured sample. This made the remaining data collection very toilsome and the data 

less accurate. 

 Additionally, the beta test revealed that samples should be thoroughly collapsed 

before they are sent to dry in the vacuum furnace or they run the risk of exploding. Extra 

care was taken to avoid this. 

 

5.4. Confocal Microscopy 

These image stacks can also be take repeatedly over time. The 4-D data can 

allow for the in-situ view of PNIPAAm structures, as they transition from collapsed to 

swollen or vice-versa. However, due to the relative speed/quality of the resulting image 

stacks, changes may out-pace the raster ability. To overcome this, the nature of the 

solvent (water) can be changed by added salts. Do so allows for a step by step 

transformation of the PNIPAAm structures and allows for high-resolution image stack to 

be acquired at each stage. This technique is currently being employed to study the 

relationship between crosslink density and buckling conformations. 
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5.5. Future Works 

 

5.5.1. Soft Lithography 

A mentioned drawback to the MIMIC technique is that it requires the molding 

stamp patterns to have attached corridors through which the prepolymer solution may 

flow. With this technique, patterns without these fluid ducts can be achieved however 

this must be done through manual cleaving of the ducts after the polymer is formed. 

Since this is both in accurate and potentially damaging to the PNIPAAm structure, other 

soft lithography methods need to be investigate. Additionally, there are several patters 

on “Monolithe II” that would support such a technique and the methods for its application 

are well established. This could potentially give rise to free-standing, actuatable surfaces 

depressions for capturing or storing, free-standing monolithes and surfaces mimicking 

biological smooth muscle[54, 55].  

 

5.5.2. Preparing Stock Solutions 

 In light of some of the drawbacks mentioned above, future stock solutions will be 

prepared in a more analytical fashion. Instead of pipetting from a suspension of the 

crosslinker, excess solvent will be used to fully solvate the mass of BIS needed in the 

respective recipe and then evaporated off. The solvent required for this aliquot can be 

added in after the fact and will allow for the entire process to take place inside of the 

glove bag. Adding this extra solvent to the NIPAAm stock solution would also help with 

lower its propensity to crystallize on the edges of the stock container. 
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5.5.3. Confocal Microscopy Characterization 

 Additional characterization still needs to be done to determine the effect that 

crosslink density has on surface confined structures and buckling morphologies. These 

structural conformations will be further studied and used to valid or disprove current 

elastic theory of surface confined hydrogels. 
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