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ABSTRACT

Non-viral delivery of plasmid DNA has traditionally relied upon physical forces applied

directly to target tissues. These physical methods typically involve contact between an ap-

plicator and the target tissue and often cause transient patient discomfort. To overcome the

contact-dependent limitations of such delivery methodologies, an atmospheric direct cur-

rent plasma source was developed to deposit ionized gas molecules onto localized treatment

sites. The deposition of charged species onto a treatment site can lead to the establishment

of an electric field with strengths similar to those used for traditional electroporation. In

vitro experiments proved that this technology could transiently permeabilize cell mem-

branes and that membrane restabilization followed first order kinetics. Optimum delivery

of tracer molecules to cell suspensions occurred after 10 minutes of plasma exposure and

was attained without adversely effecting cell viability.

In vivo testing of the plasma discharge demonstrated the capability of this system to de-

liver plasmid DNA to murine skin. Initial experiments involved the injection of plasmid

DNA encoding luciferase into the dermis of C57BL/6J mice and then exposing the tis-

sue to plasma discharge for 10 mintues. Delivery by this method resulted in increased

luminescence that was as much as 19-fold greater than DNA injection alone. Follow-up

optimization experiments demonstrated it was possible to obtain luminescence results that

were similar in magnitude to those obtained using electroporation, which under optimum

conditions resulted in about a 40-fold increase in peak luminescence. Finally, optimum

conditions were used to deliver a plasmid DNA encoding for the 120 kilodalton glycopro-

tein present on the surface of a macrophage tropic HIV. Results from this vaccination ex-

vii



periment indicated this method was capable of producing antigen specific humoral immune

responses at similar levels as when electroporation was utilized as the delivery method.
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CHAPTER I: BACKGROUND

1.1 DNA Therapies and Vaccines

Advances in the understanding of disease prevention and treatment have shown the utility of

deoxyribonucleic acid (DNA) based therapies and vaccines. Delivery of genetic material

to somatic cells results in the production of proteins which induces a biological, biochemi-

cal or immunological response. These responses can be used to treat acquired or inherited

diseases, as well as prevent disease through vaccination.

1.1.1 Cancer Treatments

Development of cancer treatments account for the majority of research activity in gene ther-

apy. This is likely due to the high fatality rate associated with this disease, which claimed

2.5 million lives in the United States between 1976 and 1996 (Ries et al. 1999). Genetic

immunotherapy is a common DNA-based strategy to treat cancer, and frequently involves

the transfection of neoplastic cells with cytokine encoding genes. An example of this is the

delivery of interleukin-12 (IL-12) to tumor cells. Increased production of IL-12 by these

cells activates many immune system components, predominately natural killer cells and

cytotoxic T lymphocytes (Caruso et al. 1996, Saudemont et al. 2002). The success of this

therapy in animal models is evident by published accounts of complete tumor regression in

hepatacellular carcinoma, adenocarcinoma, melanoma, mammary carcinoma and ovarian

cancer (Barajas et al. 2001, Wigginton et al. 2001, Lucas et al. 2002, Shi et al. 2002, Zhang

1



et al. 2003). Immunotherapy has also demonstrated promising preclinical effects in studies

targeting melanoma, liver carcinoma, human papillomavirus-induced tumors, human im-

munodeficiency virus (HIV) and hepatitis C (Weiss et al. 2007, Daud et al. 2008, Morrow

and Weiner 2010).

1.1.2 Gene Therapies

Gene therapies have also been evaluated as a treatment strategy for inherited diseases. Typ-

ically these strategies are applied against monogenetic disorders, where a single gene has

become mutated or deleted. This therapy attempts to repair the function of the cell by

inserting a wild type copy of the defective gene (El-Aneed 2004). One disease targeted

with this strategy is hemophilia B which is caused by a deficiency in factor IX, a critical

component in the blood clotting cascade. Introducing genes encoding for factor IX have

proved effective in mice, canines and non-human primates (Herzog et al. 1997, Herzog

et al. 1999, Nathwani et al. 2002). Human trials using this approach have been well tol-

erated by patients and have produced detectable, but sub-therapeutic, levels of circulating

factor IX (Emery 2004). Research in this area has focused on increasing the delivery yield

of the factor IX gene to provide a potentially effective treatment for this disease. Other

diseases targeted for novel gene therapies include X-linked severe combined immunod-

eficiency disorder, congestive heart failure as well as many circulatory disorders (Aiuti

et al. 2009, Dean 2010, Mancini and Farr 2010).

1.1.3 Vaccines

Vaccines are another application of DNA-based drugs and can be used to provide long-

term cellular and humoral immunity. Most DNA vaccines target infectious diseases, such

as anthrax, HIV, malaria, tuberculosis, influenza and human papillomavirus (Gurunathan

2



et al. 2000, Best et al. 2009, Livingston et al. 2010, Loudon et al. 2010). Traditional vac-

cination strategies for these diseases have proved ineffective, and unlike DNA vaccines

some of these carry the risk of secondary infection (Boyer et al. 2003). DNA vaccines

work by mimicking natural infection and synthesizing foreign proteins. Proteins produced

within the cell take the native confirmation, as post-translational modification is performed

by the host cell. These proteins are then processed by the major histocompatibility com-

plex (MHC) class I or class II pathways to produce antibody and T cell responses. At

the present time DNA vaccines have entered the veterinary market and provide protection

for horses to West Nile virus, salmon to hematopoietic necrosis virus and canines to oral

melanoma (Morrow and Weiner 2010). Recent approval of this technology for the veteri-

nary market is an indication DNA vaccines might soon be available for humans.
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1.2 Delivery Methodologies

These developing treatment strategies show DNA-based therapeutics as a promising tech-

nology. However, DNA treatments capable of producing these advantageous effects have

yet to enter mainstream clinical use. A factor hindering DNA therapeutics is the relative

size of linear and plasmid DNA, which prevents diffusion through cell membranes. This

has spurred development of DNA delivery mechanisms broadly classified as viral and non-

viral.

1.2.1 Viral Gene Delivery

Viral gene delivery is a very effective and popular means for delivering genetic material to

cells. This delivery technique commonly uses an adenovirus, adeno-associated virus, vac-

cinia virus and retrovirus vectors. Each of these viruses has a different capacity to carry

genetic material, different insertion characteristics and a different capacity for the viral par-

ticles themselves to evoke an immune response in the host. Adenoviruses have a capacity

of 30-38kbp of double stranded DNA, transiently infect the host genome, and produce

strong immune responses. Adeno-associated viruses have a capacity for 4.7kb of single-

stranded DNA, stably infect the host genome, and produce strong immune responses. Vac-

cinia viruses have the capacity for 190kbp of double stranded DNA, transiently infect the

host genome, and produces a relatively weak immune response. Finally, retroviruses have

the capacity for 3.5kb of single-stranded ribonucleic acid (RNA), stably infect the host

genome, and produces weak immune response (Verma and Somia 1997).

While viral delivery methods have been very attractive to perform, there are many draw-

backs to its use in vivo. The first problem is strong immune responses have the potential

to trigger fever that could potentially harm patients. A related issue involves exposure to

4



vectors that have previously induced immune responses in a patient either through ther-

apy or other infection. Exposure to a virus that has previously triggered an immune re-

sponse could induce anaphylaxis (Guo et al. 2008). This makes gene therapy regimens

and booster treatments that use the same vector extremely difficult. Another risk is integra-

tion into the host genome could result in insertional mutagenesis. This may cause normal

gene expression to be interrupted, which could lead the disruption of normal metabolism

or induction of cancer (Fischer and Cavazzana-Calvo 2008).

1.2.2 Microinjection

The drawbacks and complexity associated with viral delivery have led many researchers to

believe physical methods to insert naked DNA in cells are safer and have the potential to

be more effective. One of the oldest physical DNA delivery techniques is microinjection.

This technique is the most direct physical method for introducing foreign DNA into cells.

It utilizes a microcapillary pipette mounted to a micromanipulator. The micropipette is

carefully inserted through the cell membrane using fine adjustments on the manipulator

while visually monitoring the pipette position with a microscope. Once inside the cell

plasmid DNA is delivered by applying hydrostatic pressure to the solution contained in the

microcapillary pipette (Capecchi 1980). Despite being the most efficient physical delivery

method, it is very tedious and time consuming, because cells are injected manually one at

a time. The need for a microscope and the single cell manipulation approach make this

method impractical for in vivo applications.

1.2.3 Hydrodynamic Injection

Hydrodynamic injection is a method that uses mechanical force to deliver plasmid DNA to

internal organs. This method utilizes rapid high volume intravenous injections to disrupt
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the endothelial barrier. It is hypothesized that the mechanical stress opens pores in cells

allowing the uptake of exogenous DNA (Niidome and Huang 2002). This delivery method

would presumably cause a degree of discomfort and possibly tearing of the vasculature

leading to clotting issues.

1.2.4 Biolistics

Biolistics is another physical method used to introduce plasmid DNA into cells. This

method utilizes gold beads with a diameter of 1.0 to 1.5 µm that have plasmid DNA precip-

itated onto their surfaces. These doped microbeads are loaded into a chamber above the

target tissue and accelerated into the tissue with a rapid discharge of high pressure helium

gas. After the ballistic beads have been delivered to the cytoplasm their DNA payload

gradually dissociates away from the bead surface (Klein et al. 1987). When applied in

vivo this delivery technique is modestly effective assuming the targeted tissue is the epithe-

lium. If deeper tissues are targeted invasive surgery must be performed due to the limited

penetration depth of this technology (O’Brien et al. 2001). Also, targeting different tissues

requires modifying delivery parameters, such as particle size, doping level and velocity of

the microbeads (Matthews et al. 1993). The relevance of biolistics has decreased recently

due to the relatively low transfection rate of about 2%, complexity associated with operat-

ing the machine and the collateral damage caused to tissues surrounding the treatment site

(Karra and Dahm 2010).

1.2.5 Sonoporation

Sonoporation is a physical delivery method that uses high frequency mechanical oscilla-

tions to aid in the diffusion of plasmid DNA into cells. This delivery method uses a vibrat-

ing probe that is placed in direct contact with the target tissue. Vibrations from the probe
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are transmitted through the tissue in the kilohertz to megahertz range to cause acoustic cavi-

tation of microscopic air bubbles surrounding cells. These air bubbles eventually collapse

and release energy causing the formation of transient pores in adjacent cells (Greenleaf

et al. 1998, Haar 2007, Sboros 2008). The presence of these pores allows DNA to dif-

fuse past the membrane and into the cytosol. A major issue encountered when performing

sonoporation is a lack of control over the exposed area. The broad treatment zones associ-

ated with this technique lead to poor transfection efficiency and cell death in areas that are

over exposed to the field (Hassan et al. 2010).

1.2.6 Electroporation

Electroporation is currently the most developed and successful physical method for gene

delivery. This method utilizes electrodes placed in direct contact with tissues to impart

high-energy pulses. The electric field generated by these pulses cause ion movement inside

the cell that leads to a dielectric breakdown of the lipid bilayer (Weaver and Chizmadzhev

1996). The feasibility of this technology to deliver plasmid DNA in vivo took place almost

20 years ago when plasmids were delivered to cells in the skin and liver of rodent models

(Titomirov et al. 1991, Heller et al. 1996). Building on the success of these early works

electroporation has been used extensively to deliver plasmid DNA to cartilage, blood, mus-

cle, epithelial and loose connective tissue (Grossin et al. 2003, Weissinger et al. 2003, Ku-

nieda and Kubo 2004, Hirao et al. 2008, Yuan 2008). As well as these basic tissue types,

electroporation has also been applied to tumors to enhance the uptake of immunomodula-

tory genes (Lohr et al. 2001, Yamashita et al. 2001, Li et al. 2002, Lucas et al. 2002). While

electroporation is a highly effective method for performing molecular delivery it does have

several drawbacks. The most notable being high-energy pulses required to achieve sig-

nificant delivery often cause tissue damage and patient discomfort (Prausnitz 1996, Denet

et al. 2004). This leads to a balance between using electrical conditions severe enough to
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deliver an adequate amount of molecules to elicit a biological response and mild enough to

avoid destroying the very cells needed to produce the response.

These drawbacks have led many to design new techniques for performing electrically me-

diated delivery. One way of doing this is by changing the electrodes themselves. This

has been done by making electrode arrays that are placed on the surface of a tissue with

electrode pairs spaced closer than in previous applicators. This configuration allows lower

voltages to be applied to generate fields similar to traditional electroporation, which results

in reduced muscle stimulation without any effects on the efficacy of DNA delivery (Heller

et al. 2010, Broderick et al. 2010). Another change occurring in the field of electroporation

is the monitoring of changes in the electrical properties of tissues during electroporation

sequences. This approach would allow just enough energy to be delivered to the tissue

to induce membrane destabilization without over exposing the tissue and damaging cell

viability (Davalos et al. 2002, Connolly et al. 2009).
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1.3 Plasma

It is evident from the literature that all physical delivery methods exhibit some undesir-

able characteristics, such as patient discomfort, tissue damage, limited control, complex

optimization, and tedious operation. Therefore, the research described in this document

builds on the success of electroporation which, as previously stated, is currently the most

successful physical delivery. The general strategy was to address the source of pain and tis-

sue damage by decoupling the applicator from the treatment site. This was accomplished

through deposition of ionized gases, or plasma, onto a treatment site. Ion deposition on a

targeted tissue will lead to the accumulation of a steady state charge, causing an electric

potential to be established. It is speculated that achieving a high potential would lead to

the formation of pores, similar to electroporation, without the deleterious effects caused by

electrodes.

Plasma refers to any gas that has been energized to the point of ionization. This unique

phase is composed of electrically charged particles with abundant energy. As such, this

gas-like phase is heavily influenced by electromagnetic fields and can act as a conductor.

Interestingly over 99% of the known universe is composed of plasma, but interaction with

this phase on Earth is relatively uncommon.

1.3.1 Types

Generally plasmas can be subdivided into two major categories based on their operating

temperature. The first type is a local thermodynamic equilibrium (LTE) plasma, which

are plasmas with equivalent electron and ion temperatures. These plasmas operate with

temperatures in the thousands of kelvin. The other type of plasma is a non-LTE, or cold,

plasma. Electron temperatures in non-LTE discharges are typically on the order of thou-

sands of kelvin, while ion temperatures remain in the hundreds of kelvin. Another dis-
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tinction between non-LTE and LTE plasmas is the extent of ionization within the plasma

volume. Normally LTE plasma volumes are composed entirely of ionized gases, while

non-LTE plasma volumes contain less than 5% of ionized species. This gives non-LTE

discharge volumes a much lower operating temperature; thus, they are referred to as cold

plasmas.

1.3.2 Generation

Generating a plasma requires a transfer of energy to the atoms or molecules to be ionized.

The amount of energy required to remove one electron from an atom or molecule is called

the first ionization energy. This energy follows a periodic trend, where alkali elements

require the least amount of energy to remove an electron and noble gases require the most.

Common methods employed in the ionization of gases are heating, bombarding the gas

with photons, or exposure to high electric fields.

Most plasmas classified as non-LTE are created by exposure to electric fields. These fields

are established between a pair of electrodes, where one is set to a high potential and the

other set at a low potential. The electric field, −→E , established between a pair of electrodes

can be determined by knowing the difference in the electrode potentials, V , and the geom-

etry of the generator.

~E =−∇V (1.1)

Plasmas produced by this method require the created electric field be strong enough to pull

electrons or ions from the surrounding atmosphere towards its opposing polarity electrode.

The vectoral force, ~Fe, placed on charged atmospheric species can be determined if the

electric field, −→E , and the charge of the species, q, are known.

~Fe = q~E (1.2)
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As these species are accelerated towards the electrodes they undergo inelastic collisions

with other atoms or compounds in the gas phase causing further ionizations (Conrads

and Schmidt 2000). These types of plasma have been employed in biology to treat both

prokaryotic and eukaryotic cells.

1.3.3 Applications

Plasma discharges used on prokaryotes typically aim to destroy these organisms. A promis-

ing application of these discharges is the decontamination of bacteria laden surfaces (Laroussi

2000, Vleugels et al. 2005). It is thought this technique works in a similar fashion to elec-

troporation, where the microorganism’s membrane is compromised by exposure to ionized

gases (Moreau et al. 2008). Membrane defects result from exposure to oxidizing com-

ponents in the plasma and not from dielectric breakdown as with electroporation. Stable

pores formed in the organism’s membrane prevent normal metabolic functions from occur-

ring, which results in cell death.

Plasmas have more recently been applied to eukaryotic cells for augmenting molecular

delivery. A study by Chalberg et al. used a microarray plasma generator surgically im-

planted in a bolus of plasmid rich solution that was injected into the retina of a rabbit.

This study utilized microsecond biphasic electrical pulses to generate a plasma capable of

vaporizing the conductive media surrounding the electrode array. It was speculated that

rapid vaporization of the media around the electrode causes the transmission of a mechan-

ical shock wave through the retina resulting in the delivery of DNA (Chalberg et al. 2006).

Another study published by Ogawa et al. showed that plasmas generated with radio fre-

quencies are capable of delivering plasmid DNA to primary cell cultures. In this study,

neuronal cells were exposed to a discharge source marketed for polymer surface modifi-

cation for one second (Ogawa et al. 2005). Disappointingly, the authors failed to mention

many of the operating parameters used such as frequency, current, voltage and discharge
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temperature. A more recent study by Ramachandran et al. utilized a stationary array of

needles positioned several millimeters above a treatment site to generate corona ions for

molecular delivery. Corona ions result from the ionization of atmospheric constituents.

This study proved corona ions are capable of driving molecular delivery for drugs and

genes in vitro and in vivo (Ramachandran et al. 2008).

Electroporation is the most developed physical delivery method, but has significant draw-

backs that lead to the investigation of methods that rely on electric fields without intimate

contact between an applicator and cells or tissues. Plasma provides a means of perform-

ing this treatment without directly contacting the targeted tissue. Proof of this delivery

method has been performed in vitro to deliver both drugs and genes. Corona discharges

have been used in vivo, but require the generator to operate in close proximity to the tar-

get tissue. Being close to the treatment site increases the risk of creating arcs, which can

decrease cell viability and cause transient pain. In order to avoid this and still invistigate

charge-based mechanisms for molecular delivery a generator that created a flowing stream

of ionized gas was designed and developed. The focus of this study was to characterize

the delivery capability of this noninvasive charge-based system. To accomplish this, the

plasma generator was first characterized in vitro. After characterization the system was

tested in vivo to determine the delivery capacity in animals. Finally, the system was used

to deliver a DNA vaccine, and the results of this delivery were compared to electroporation.

This dissertation discusses the results obtained from these studies.
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CHAPTER II: HYPOTHESIS AND RESEARCH AIMS

2.1 Hypothesis

It is evident from the literature that naked DNA therapies and vaccines will soon serve a

significant role in medicine. Generating therapeutic quantities of protein in humans from

DNA-based drugs will require their delivery be coupled with a forcing function. Current

physical forcing functions have features that make them undesirable for clinical applica-

tions. Electroporation is the most developed of these physical functions, but can cause

temporary pain and tissue damage. This served as the motivation to create a noninvasive

charge-based system for molecular delivery.

This research focused on the creation of a tool that used a stream of ionized gas to drive

molecular delivery. This stream was used to create a non-LTE discharge as it causes no rise

in the temperature of the treatment site, creates no painful sensations and can be deposited

to establish an electric field. Therefore, this research was designed to test the hypothesis

of whether direct current plasma discharges could be used to augment plasmid DNA uptake

in vivo without causing tissue damage.
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2.2 Research Aims

In order to investigate the utility of plasmas for molecular delivery it was necessary to first

design and construct a plasma generator. Then, the generator was tested in vitro to deter-

mine the extent of delivery attainable and viability effects caused by exposing mammalian

cells to plasma. Following this, the ability of the system to deliver plasmid DNA in vivo

was evaluated. After obtaining proof of concept, the plasmid dose and plasma exposure

time were optimized to give the maximum expression of a luciferase encoding plasmid.

Once optimized these conditions were evaluated with a biologically relevant plasmid to

determine the feasibility of using the discharge for DNA vaccine applications. Finally, an

electrostatic finite element model of the discharge was created to provide evidence of a

plausible delivery mechanism. Each of these items was addressed as a key research goal

in this investigation.

2.2.1 Aim 1: Creating a Plasma Discharge for In Vivo Use

An atmospheric plasma generator was designed and constructed to enable the application

of discharges to cells and tissues. The electrical characteristics of the discharge were deter-

mined by a series of heuristic experiments where the applied voltage and generator height

were modulated while current values were recorded. Ultraviolet and visual light spec-

troscopy were performed to determine the excited constituents in the plasma volume.

2.2.2 Aim 2: In Vitro Experimentation

Once a working generator was constructed and characterized, a series of in vitro exper-

iments was performed to determine the effects of plasma exposure on eukaryotic cells.

This experimental work examined the delivery efficacy, viability impact and kinetics of
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membrane restabilization following plasma exposure. These in vitro experiments were

performed with B16F10 and HaCaT cells.

2.2.3 Aim 3: Delivery of Plasmid DNA to Murine Skin In Vivo

Obtaining successful delivery in vitro allowed the investigation to move forward to in vivo

experiments. This work examined the ability of the plasma discharge to deliver plasmid

DNA to skin. To determine this, plasmid DNA encoding for luciferase was injected into

the dermis of mouse flank skin. Following injection, the skin was exposed to the noncon-

tact charge-based delivery system.

2.2.4 Aim 4: Optimization of Plasma Delivery In Vivo

Proof that the system could deliver not only small molecules in vitro, but plasmid DNA

in vivo enabled a more rigorous set of experiments to be performed. The aim of these

experiments was to optimize delivery to produce the maximum expression of luciferase.

In these experiments plasmid dose and treatment time were both analyzed to determine the

conditions that resulted in maximum expression.

2.2.5 Aim 5: Delivery of a DNA Vaccine In Vivo

At this point the conditions that resulted in the maximum expression of plasmid DNA

were known and were tested with a more biologically relevant protein. These experiments

focused on delivering plasmid DNA encoding for the 120 kilodalton envelope glycoprotein

present on the surface of a macrophage tropic HIV. Immune responses generated were

quantified by antibody levels in mouse serum.
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2.2.6 Aim 6: Transdermal Electric Field Simulation

After having shown the efficacy of the plasma system to deliver plasmid DNA in vivo, an

electrostatic model was created to determine the electric field strengths present during treat-

ment. This was performed by producing a two dimensional model of an ordinary mouse

during treatment. Electric potential measurements obtained from mouse skin during expo-

sure to positive and negative polarity plasma was curve fit and used as a boundary condition

in the model. After inputting the epidermal surface potential and other boundary condi-

tions, the model was solved to obtain the electric field intensity present in the skin during

treatment.
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CHAPTER III: MATERIALS AND METHODS

This chapter describes the equipment and techniques used to test the hypothesis. Each sec-

tion within this chapter corresponds to a research aim, previously mentioned in Chapter II.

The overall goal of this research was to construct a plasma generating device, characterize

the effects of plasma exposure on cells in culture and evaluate the capability of this novel

device to deliver plasmid DNA in vivo. After having performed these tasks the system

was tested with a more biologically relevant plasmid and simulated using a finite element

model. The results obtained for each of these sections can be found in the following chap-

ter.

3.1 Creating a Plasma Discharge for In Vivo Use

3.1.1 Plasma Generator

The first plasma generator prototype fabricated was made from a 15 cm long Teflon dowel.

This dowel was hollowed to create a tube having a 1 cm inner diameter and wall thickness

of 2 mm. Two electrodes were positioned at either end of the 15 cm long tube. A steel

hose barb attached to ground potential was positioned on one end of the tube to serve as a

ground reference electrode and interface with a gas inlet stream. A flat annular stainless

steel electrode with a 3.5 mm internal diameter occupied the opposite end of the Teflon

tube. This electrode was connected to a high voltage direct current power supply (Spell-

man Model CZE2000, New York, NY). A plasma discharge was created by applying a
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Figure 3.1: First generation plasma generator.

potential greater than 4 kV to the annular electrode while a stream of ultra high purity

helium (AirGas, Tampa, FL) was passed through the tube at a rate of 15 l/min. Figure 3.1

shows this plasma generator.

A software interface platform (National Instruments LabVIEW, Austin, TX) was used to

control the high voltage power supply and allowed the voltage, maximum current and ex-

posure time to be set prior to treatment. A current limit was set to 100 µA as a safeguard to

prevent sparking. Figure 3.2 and Figure 3.3 show the graphical user interface and source

code for the first generation plasma system.

3.1.2 Electrical Parameters

Current measurements were performed to determine the operating height and potential that

would be applied to the high voltage electrode to generate the optimum discharge. The

first step in these experiments was to position the bottom of the generator 1, 2, 3, 4 or 5
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Figure 3.2: Graphical user interface for the first generation plasma system.

cm above a 4cm2 stainless steel plate that was connected to ground potential through an

electrometer (Keithely Model 6517A, Cleveland, OH). Then the high voltage electrode was

swept from -10 kV to 10 kV at 1 kV intervals. At each potential the current delivered to

the grounded steel plate was recorded.

3.1.3 Optical Emission Spectroscopy

Ultraviolet and visual light spectroscopy was performed to determine the excited con-

stituents in the discharge plume. Spectra were collected by placing a fiber optic probe

(Ocean Optics QP230-1-XSR, Dunedin, FL) 0.5 cm perpendicularly from the plasma dis-

charge. This probe was connected to a spectrometer (Ocean Optics USB2000) with a dis-

persion range of 200 to 1100 nm. Spectral information was recorded with a 5 second

integration time and uploaded to a computer as a data matrix of wavelengths and intensities

utilizing the manufacture’s software package (Ocean Optics SpectraSuite). This matrix

was then analyzed in Matlab (The MathWorks, Natick, MA) with a peak detection algo-
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Figure 3.3: Source code for the first generation plasma system.
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rithm. Peaks found with the program were then compared to those listed on the National

Institute of Standards and Technology (NIST) Atomic Spectra Database. The intensity of

emissions in the ultraviolet range were quantified with a low illumination light meter (Sper

Scientific, Scottsdale, AZ).
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3.2 In Vitro Experimentation

3.2.1 Plasma Generator

The first generation plasma generator, described in Section 3.1.1, was used for this investi-

gation. During these treatments, the high voltage electrode was held at 8 kV while a stream

of ultra high purity helium (AirGas, Tampa, FL) was passed through the tube at 15 l/min.

A maximum current limit of 100 µA was set as a safety mechanism during treatment. The

generator utilized 10 µA of current at 8 kV while operating. At these conditions it pro-

duced a visible glow discharge that measured 3.0 cm in length.

3.2.2 Cell Culture

A portion of these in vitro experiments were performed using B16F10 (ATCC CRL-6475)

melanoma cells derived from C57BL/6J mice. These cells were propagated in McCoy’s

5A media (MediaTech, Herndon, VA) supplemented with 10% (v/v) fetal bovine serum

(MediaTech) and 50 µg/ml gentamicin sulfate (MediaTech). Cultures were incubated at

37◦C in a 5% CO2 atmosphere. Once cells were confluent on the culture surface they

were subcultured at a 1:12 ratio.

The remainder of these experiments were performed with immortalized human keratinocyte

cells, HaCaT (Cell Line Services, Eppelheim, Germany). These cells were propagated in

Dulbecco’s Modified Eagle Media (MediaTech) supplemented with 10% (v/v) fetal bovine

serum and 50 µg/ml gentamicin sulfate. These cells were also incubated at 37◦C in a 5%

CO2 atmosphere. Cells were subcultured at 90% confluency at a ratio of 1:6.
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3.2.3 Molecular Delivery

Experiments performed to determine the delivery capability of the plasma discharge were

carried out with B16F10 and HaCaT cell lines. Dual chambered tissue culture dishes (Bec-

ton Dickinson Falcon, Franklin Lakes, NJ) having an inner diameter of 15mm and outer

diameter of 60 mm were used to perform these experiments. Prior to treatment the inner

chamber was loaded with 1× 106 cells suspended in 500 µl of phosphate buffered saline

(PBS). The outer chamber was filled with 2 ml of PBS and contained a 22 gauge tinned

copper wire connected to ground through a 1.5GΩ resistor. This ring prevented the plasma

plume from being affected by air currents, which can change the nature of the discharge

during treatments. The height of the generator was set at 3 cm, which was determined to

allow the tip of the visible discharge plume to touch the cell solution in the inner well.

Exposure times of 0, 2, 5 and 10 minutes were performed. After plasma exposure was

complete 500 µl of 2 µM Sytox Green (Molecular Probes, Eugene, OR) was added to the

cell suspension in each dish. Sytox Green is a fluorescent tracer molecule that is only able

to enter cells having a compromised membrane. Once inside the cell this tracer molecule

binds with nucleic acids which increases its fluorescence by >500 fold (Gaforio et al. 2002).

After adding the nucleic acid probe, cells were incubated at 37◦C and 5% CO2 for 45 min-

utes. Following incubation, cells were resuspended by pipetting and three representative

samples of 150 µl were transferred to a black 96-well spectroscopy plate (Corning, Lowell,

MA). Fluorescence levels were quantified with a fluorescent plate reader (BioTek Instru-

ments FLx800, Winooski, VT) using a 485 nm excitation filter and 528 nm emission filter.

Each treatment condition was performed a total of 3 times per experiment and each exper-

iment was repeated 3 times in order to increase the statistical power.
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3.2.4 Viability Impact

Treatments performed to determine cell viability following plasma treatment were also car-

ried out with both B16F10 and HaCaT cell lines. Dual chambered tissue culture dishes,

as described above, were also used for this study. Before treatment the inner chamber

of the dual dish was loaded with a suspension of 1× 106 cells suspended in 500 µl of

supplemented growth media. The outer chamber of the dish contained the 22 gauge wire

immersed in 2 ml of PBS which was connected to ground through a 1.5GΩ resistor. An

operating generator height of 3 cm was used with exposure times of 2, 5 and 10 min-

utes. Following exposure, the cell suspensions were incubated at 37◦C and 5% CO2 for

4 hours. After incubation 50 µl of trypan blue (MP Biomedicals, Solon, OH) was added

to the cell suspension. This suspension was then pipetted into a dual chambered hemocy-

tometer (Hausser Scientific, Horsham, PA), and a dye exclusion viability assay was per-

formed by light microscopy. This procedure was repeated a total of three times per treated

sample. Each treatment condition was performed a total of 3 times per experiment and

each experiment was repeated 3 times.

3.2.5 Membrane Stabilization

Kinetic experiments were performed to determine the time after plasma treatment when

tracer molecules were no longer able to enter the cell. These experiments were carried out

by adding 1×106 B16F10 or HaCaT cells suspended in 500 µl of unsupplemented media

to a dual chambered tissue culture dish. As described above, the outer chamber of the dish

contained a 22 gauge wire, immersed in 2 ml of PBS, that ran through a 1.5GΩ resistance

to ground. The generator was set 3.0 cm above the fluid level and cells were exposed to

plasma for a total of 10 minutes. After exposure 500 µl of 2 µM Sytox Green was added to

the cell suspension. The suspension with the tracer molecule was mixed by pipetting and
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three representative samples of 150 µl were transferred into a 96-well spectroscopy plate.

Fluorescence levels were obtained at 60 second intervals for a total of 20 minutes with a

fluorescent plate reader using a 485 nm excitation and 528 nm emission filter set. Due

to processing time the first readings occurred 120 seconds after the dye was added to each

well. Each treatment was performed a total of 3 times per experiment and each experiment

was repeated 3 times in order to increase the statistical power.

3.2.6 Statistical Analysis

After gathering data from delivery, viability, and resealing experiments the mean and stan-

dard error were calculated for each identically treated group. Using the obtained infor-

mation a series of Student’s t-tests were performed with a confidence level of 95%. This

allowed relative comparisons to be made concerning the implications of each treatment

time.
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3.3 Delivery of Plasmid DNA to Murine Skin In Vivo

3.3.1 Plasma Generator

The first generation plasma generator was also used in this study. During these treatments

the high voltage electrode was held at either −8kV or 8kV while a stream of ultra high

purity helium was passed through the tube at 15 l/min. A current limit of 100 µA was

maintained as a safety mechanism during treatment. While operating the generator pro-

vided 10 µA of current flow at 8kV to the annular electrode and produced a visible glow

discharge that measured 3.0cm in length. Similarly,−10 µA was measured when the gen-

erator was run at −8kV which produced a glow discharge that measured 2.0cm.

3.3.2 High Impedance Ring

A high impedance ring was used in combination with plasma treatment for some treatment

conditions. This ring was made of a loop of 22 gauge tinned copper wire and had a di-

ameter of 2cm. The wire ring was placed symmetrically around the bolus created by the

injection of DNA into the murine skin. It was affixed to the tissue surface with two but-

terfly closure bandages (Dynarex, Orangeburg, NY) placed on opposing sides of the ring.

The other end of the wire was connected to ground potential through a 1.5GΩ resistive

load. This resistive value was chosen as it allowed for a limited amount of current flow,

about 2 µA, without disrupting the glow discharge characteristics.

3.3.3 Animal Model

Female C57BL/6J mice (National Institutes of Health, Bethesda, MD) were used for this

study. Treatments started when these animals were 6-7 weeks of age. All animals were
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humanely euthanized at the conclusion of the study in accordance with an approved Insti-

tutional Animal Care and Use Committee protocol.

3.3.4 Anesthesia

Prior to treatment mice were placed in a plexiglass induction chamber and anesthetized

with a constant supply of 2% isoflurane in oxygen (Caliper Life Sciences, Hopkinton, MA).

After the mice had been anesthetized, treatments were carried out while a constant supply of

2% isoflurane in oxygen was delivered by a nose cone to maintain a level anesthesia plane.

Animals were placed on a 32◦C warming pad (Gaymar Industries, Orchard Park, NY) to

prevent heat loss caused by the disruption of thermoregulatory mechanisms associated with

the anesthesia.

3.3.5 Treatments

This study consisted of six different treatment groups with luciferase encoding plasmid and

helium plasma to examine the ability of the charge deposition system to enhance DNA de-

livery. All plasmid injections were performed using a 1 cc syringe with a 30 gauge needle

(Becton Dickinson). A 50 µl volume containing 100 µg gWIZ luciferase plasmid in saline

(Aldevron, Fargo, ND) was injected intradermally for all animals that received DNA. For

each experiment, 4 animal groups were treated with each of the following methods: 1)

No treatment, not injected with plasmid and not exposed to plasma. 2) Luciferase plasmid

injection with no exposure to helium plasma. 3) Plasmid injection and exposure to posi-

tive plasma for 10 minutes. 4) Plasmid injection and exposure to negative plasma for 10

minutes. 5) Plasmid injection and exposure to positive plasma for 10 minutes with a high

impedance ground ring encircling the treatment area. And, 6) plasmid injection followed

by exposure to negative plasma for 10 minutes with a high impedance ground ring encir-

27



cling the treatment area. In total, 12 animals were treated in each of the 6 conditions over

three independent experiments. These treatments are summarized in Table 3.1.

Table 3.1: Summary of treatments performed in the initial in vivo experiment.

Treatment Performed
No Treatment

100 µg luciferase plasmid only
100 µg luciferase plasmid with 10 min positive plasma
100 µg luciferase plasmid with 10 min negative plasma

100 µg luciferase plasmid with 10 min positive plasma and high impedance ring
100 µg luciferase plasmid with 10 min negative plasma and high impedance ring

3.3.6 Luminescence Quantification

Luciferase expression was determined by injecting 150 mg of D-luciferin (Caliper Life

Sciences) per kg of body weight intraperitoneally in anesthetized mice 15 minutes be-

fore measurement of luminescence. After injection a light producing reaction occurs from

the oxidation of luciferin, which is facilitated by the presence of the luciferase enzyme.

Light emission caused by this reaction was captured by placing the anesthetized animals

into a Xenogen IVIS 200 series imaging system (Caliper Life Sciences). The photon flux

(photons/s−cm2) from each animal was calculated using Living Image software (Caliper Life

Sciences). This procedure was repeated and luminescence data were gathered at days 0,

2, 4, 6, 8, 10, 18 and 26 following the experiment.

3.3.7 Statistical Analysis

After all data was gathered the mean response and standard error of photon flux was calcu-

lated for identically treated groups on each of the follow-up days from 0 to 26. With these

data, a two-sided Student’s t-test was performed with a 95% confidence level between the

6 treatment groups for each day that data was collected. This allowed consideration of dif-
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ferences between groups of the amounts of expressed luciferase, indicated by photon flux

quantity, produced by each treatment.

3.3.8 Histological Analysis

To study the effects of plasma exposure on the skin a concomitant experiment was per-

formed that involved the injection of 100 µg gWIZ luciferase plasmid followed by expo-

sure to plasma. All plasmid injections were performed using a 1 cc syringe with a 30

gauge needle. This experiment was composed of the following groups: 1) No treatment,

not injected with plasmid and not exposed to plasma. 2) Plasmid injection with no expo-

sure to plasma. 3) Plasmid injection and exposure to positive plasma for 10 minutes. 4)

Plasmid injection and exposure to negative plasma for 10 minutes. In total seven animals

were treated with each of the four conditions.

Full thickness skin biopsies of the treatment sites were harvested from animals on days 0,

1, 2, 5, 7, 14 and 21. Harvested sections were immediately placed in 10% neutral buffered

formalin (Protocol, Pittsburgh, PA). Skin samples were sectioned at 5 µm, stained with

hematoxylin and eosin and mounted on glass slides.
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3.4 Optimization of Plasma Delivery In Vivo

3.4.1 Plasma Generator

A new plasma generator was fabricated for this study which was also made from a 15 cm

long Teflon dowel. Similar to the first generation system, this dowel was hollowed to cre-

ate a tube having a 1 cm inner diameter and wall thickness of 2 mm. Two electrodes were

positioned at either end of the 15 cm long tube. A brass encased 5mW red laser pointer

(Instapark, Santa Fe Springs, CA) was positioned on one end of the tube and connected

to ground potential. This not only served as the reference ground in the system, but also

allowed for more accurate targeting of the treatment site. A flat annular stainless steel elec-

trode with a 3.5 mm internal diameter occupied the opposite end of the Teflon tube. This

electrode was connected to a high voltage direct current power supply. The gas stream was

plumbed into the tube with a polypropylene hose barb that was placed just below the laser

pointer. Figure 3.4 shows the second generation plasma system.

A software interface platform was used to control the high voltage power supply and al-

lowed the voltage, maximum current and exposure time to be set prior to treatment. This

platform also allowed monitoring and logging of the current and potential leaving to the

high voltage electrode and current returning to ground through the high impedance ring.

A current limit of 100 µA was set as a safeguard measure during treatment. Under op-

erational conditions the generator provided a reading of 17.7 µA at 8kV to the annular

electrode and produced a visible glow discharge that measured 3.0cm in length. When

the generator was operated at −8kV a reading of −15.1 µA was obtained, and the visible

discharge measured 2.0cm in length. Figure 3.5 and Figure 3.6 show the user interface

and source code for the second generation system.
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Figure 3.4: Second generation plasma generator.

3.4.2 Animal Model

Female C57BL/6J mice 6-7 weeks of age were used for this study. All animals were hu-

manely euthanized at the conclusion of the study in accordance with an approved Institu-

tional Animal Care and Use Committee protocol.

3.4.3 Anesthesia

Before treatment mice were placed in a plexiglass induction chamber and anesthetized

with a constant supply of 2% isoflurane in oxygen. After the mice had been anesthetized,

treatments were carried out at a constant plane of isoflurane in oxygen delivered by a nose

cone. During treatments animals were placed on a 32◦C warming pad to prevent heat loss.
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Figure 3.5: Graphical user interface for the second generation plasma system.

32



Figure 3.6: Source code for the second generation plasma system.
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Table 3.2: Summary of plasma dose response experiments.

Treatment Performed
No Treatment

100 µg luciferase plasmid only
100 µg luciferase plasmid with 2 min positive plasma
100 µg luciferase plasmid with 2 min negative plasma
100 µg luciferase plasmid with 5 min positive plasma
100 µg luciferase plasmid with 5 min negative plasma
100 µg luciferase plasmid with 10 min positive plasma
100 µg luciferase plasmid with 10 min negative plasma
100 µg luciferase plasmid with 20 min positive plasma
100 µg luciferase plasmid with 20 min negative plasma

3.4.4 Plasma Dose Response Treatments

This study consisted of 10 different treatment conditions that involved the injection of lu-

ciferase encoding plasmid and treatment with either negative or positive polarity helium

plasma. All plasmid injections were performed using a 1 cc syringe with a 30 gauge nee-

dle. A 50 µl volume containing 100 µg gWIZ luciferase plasmid in saline was injected in-

tradermally for all animals that received DNA. For each experiment, 4 animals were treated

with each of the following methods: 1) No treatment, not injected with plasmid and not

exposed to plasma; 2) Luciferase plasmid injection with no exposure to helium plasma; 3)

Plasmid injection and exposure to positive plasma for 2 minutes; 4) Plasmid injection and

exposure to negative plasma for 2 minutes; 5) Plasmid injection and exposure to positive

plasma for 5 minutes; 6) Plasmid injection and exposure to negative plasma for 5 minutes;

7) Plasmid injection and exposure to positive plasma for 10 minutes; 8) Plasmid injection

and exposure to negative plasma for 10 minutes; 9) Plasmid injection and exposure to pos-

itive plasma for 20 minutes; 10) Plasmid injection and exposure to negative plasma for 20

minutes. Table 3.2 summarizes these treatments. In total, 12 animals were treated with

each of the 10 conditions over three independent experiments.
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3.4.5 Plasmid Dose Response Treatments

The second set of experiments conducted, modulated the plasmid dose while keeping the

plasma dose fixed. In these experiments injections of 50 µg, 100 µg and 200 µg of gWIZ

luciferase were made to determine the effect increasing plasmid concentration would have

on plasma mediated molecular delivery. Injection volumes remained at 50 µl while gWIZ

luciferase concentrations used were 1 mg/ml, 2 mg/ml and 4 mg/ml prepared in saline. Animals

were treated in groups of 4 with each of the following methods: 1) No treatment, not

injected with plasmid and not exposed to plasma; 2) A 50 µg injection of luciferase plasmid

with no exposure to helium plasma; 3) A 50 µg injection of luciferase plasmid and exposure

to positive plasma for 10 minutes; 4) A 50 µg injection of luciferase plasmid and exposure

to negative plasma for 10 minutes; 5) A 100 µg injection of luciferase plasmid with no

exposure to helium plasma; 6) A 100 µg injection of luciferase plasmid and exposure to

positive plasma for 10 minutes; 7) A 100 µg injection of luciferase plasmid and exposure

to negative plasma for 10 minutes; 8) A 200 µg injection of luciferase plasmid with no

exposure to helium plasma; 9) A 200 µg injection of luciferase plasmid and exposure to

positive plasma for 10 minutes; 10) A 200 µg injection of luciferase plasmid and exposure

to negative plasma for 10 minutes. All plasma treatments were performed with a high

impedance ring encircling the treatment area. In total, 12 animals were treated with each

of the 10 conditions over three independent experiments.

Animals were also treated with electroporation at each of the plasmid concentrations listed

above to serve as a comparison. Electroporation pulses were applied with a four plate elec-

trode, shown in Figure 3.7. A total of eight pulses were delivered after the 50 µl injection

was made in the dermis. These pulses had a field strength of 100 V/cm, duration of 150ms

and a 1s duty cycle. To ensure electrical contact was made with the tissue the electrode

surfaces were coated with conductive gel (Parker Laboratories Spectra 360 Electrode Gel,

Hellendoorn, Netherlands) prior to treatment. In total 3 groups of 4 animals per group
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Figure 3.7: Four plate electroporation applicator.

were exposed to electroporation. The groups for this section of the experiment were: 1)

A 50 µg injection of luciferase plasmid with electroporation; 2) A 100 µg injection of lu-

ciferase plasmid with electroporation; 3) A 200 µg injection of luciferase plasmid with

electroporation. As with the plasma treatments, 12 animals were treated with each of the 3

electroporation conditions over three independent experiments. Table 3.3 summarizes the

plasma and electroporation treatments performed in this experiment.

3.4.6 Luminescence Quantification

Luciferase expression was determined by injecting 150 mg of D-luciferin per kg of body

weight intraperitoneally in anesthetized mice 15 minutes before measurement of lumines-

cence. Light emission created by the reaction of luciferase with luciferin were captured

by placing the anesthetized animals into a Xenogen IVIS 200 series imaging system. The

photon flux (photons/s−cm2) from each animal was calculated using Living Image software.
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Table 3.3: Summary of plasmid dose response experiments.

Treatment Performed
No Treatment

50 µg luciferase plasmid only
100 µg luciferase plasmid only
200 µg luciferase plasmid only

50 µg luciferase plasmid with electroporation
100 µg luciferase plasmid with electroporation
200 µg luciferase plasmid with electroporation

50 µg luciferase plasmid with 10 min positive plasma
50 µg luciferase plasmid with 10 min negative plasma
100 µg luciferase plasmid with 10 min positive plasma
100 µg luciferase plasmid with 10 min negative plasma
200 µg luciferase plasmid with 10 min positive plasma
200 µg luciferase plasmid with 10 min negative plasma

This procedure was repeated and luminescence data was gathered at days 0, 2, 4, 7, 10, 14,

21 and 30 following the experiment.

3.4.7 Statistical Analysis

After all data was gathered the mean photon flux and standard error was calculated for

identically treated groups on each of the follow-up days from 0 to 30. With these data,

a two-sided Student’s t-test was performed with a 95% confidence level between all the

treatment groups for each day that data was collected. This allowed consideration of dif-

ferences between groups of the amounts of expressed luciferase, indicated by photon flux

quantity, produced by each treatment.
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3.5 Delivery of a DNA Vaccine In Vivo

3.5.1 Plasma Generator

The second generation plasma generator was also used in this study. During treatments

the high voltage electrode was held at either −8kV or 8kV while a stream of ultra high

purity helium was passed through the generator body at 15 l/min. A current limit of 100 µA

was kept as a safety mechanism during treatment. While operating at these conditions

the generator provided 18.1 µA of current at 8kV to the annular electrode and produced a

visible glow discharge that measured 3.0cm in length. Similarly,−14.8 µA of current was

measured when the generator was run at −8kV which produced a glow discharge 2.0cm

in length.

3.5.2 Animal Model

Female BALB/c mice (National Institutes of Health) 6 weeks of age were used for this

study. All animals were humanely euthanized at the conclusion of the study in accordance

with an approved Institutional Animal Care and Use Committee protocol.

3.5.3 Anesthesia

Prior to vaccination, animals were anesthetized in an induction chamber with 2% isoflurane

mixed with oxygen. After induction, the mice were maintained in an anesthetized state

by delivering 2% isoflurane through a nose cone. To prevent excessive heat loss due to

anesthesia exposure mice were placed on a 32◦C heating pad during vaccination.
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Table 3.4: Summary of vaccination conditions.

Treatment Performed
No Treatment

100 µg pVAX backbone only
100 µg JRFLgp120 plasmid only

100 µg pVAX backbone with electroporation
100 µg JRFLgp120 plasmid with electroporation

100 µg pVAX backbone with 10 mins positive plasma
100 µg pVAX backbone with 10 mins negative plasma

100 µg JRFLgp120 plasmid with 10 mins positive plasma
100 µg JRFLgp120 plasmid with 10 mins negative plasma

3.5.4 Vaccination

Plasmid injections were performed with a 1 ml syringe and a 30-gauge needle. Injections

were delivered into the dermis and contained 100 µg pJRFLgp120 suspended in 50 µl of

saline. Plasma exposure times of 10 minutes were selected based on previous evidence

showing high levels of expression with this treatment time. Each of the vaccination condi-

tions were performed on groups of mice containing four animals. The following vaccina-

tion groups were evaluated in this study: 1) No treatment, not injected with plasmid nor ex-

posed to plasma; 2) Injection with 100 µg pVAX plasmid backbone only; 3) Injection with

100 µg pVAX backbone with 10 minutes of positive plasma exposure; 4) Injection with

100 µg pVAX backbone delivered with 10 minutes of negative plasma exposure; 5) Injec-

tion with 100 µg pVAX backbone followed by 8 electroporation pulses at 100 V/cm and 150

ms in duration; 6) Injection with 100 µg pJRFLgp120 only; 7) Injection with 100 µg pJR-

FLgp120 with 10 minutes positive plasma exposure; 8) Injection with 100 µg pJRFLgp120

with 10 minutes negative plasma exposure and 9) Injection with 100 µg pJRFLgp120 fol-

lowed by 8 electroporation pulses at 100 V/cm and 150 ms in duration. Table 3.4 outlines

these treatments. This protocol involved an initial treatment on day 0, followed by three

booster vaccinations on days 14, 28 and 130.
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Figure 3.8: Vaccination time line for the JRFLgp120 study.

3.5.5 Serum Collection

Submandibular bleeds were performed 10 days after each vaccination to collect the blood

necessary to detect antibody responses. Samples containing approximately 200 µl were

collected in serum separation tubes (Becton Dickinson Micro-Fine Tubes). After collec-

tion, the samples were separated by centrifugation at 10,000 rpm for 5 minutes. Once sep-

arated the serum was aspirated from the tubes and transferred to micro PCR tubes (Becton

Dickinson), which were stored at −20◦C. Figure 3.8 indicates the time line for vaccina-

tion and sample collection for the study.

3.5.6 Antibody Quantification

To analyze serum samples for anti-gp120 antibodies an indirect ELISA assay was per-

formed. The antigen used in this assay was ADA gp120, which shares 87.3% amino acid

homology with the JRFLgp120 envelope protein. ELISA micro titer plates (Immulon Mi-

crotiter 96-Well Plates, Waltham, MA) were coated with this antigen by adding 50 µl of a

2 µg/ml solution of ADA gp120 (ImmunoDiagnostics, Woburn, MA) to every well and incu-

bating 24 hours at 4◦C. After incubation nonspecific sites were blocked by adding 100 µl

of a 2% bovine serum albumin solution prepared in PBS, commonly known as blocking

buffer. This solution was also incubated 24 hours at 4◦C. Sera dilutions were made in
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blocking buffer and ranged from 1:64 to 1:131,072, which was added to the ADA gp120

coated plates in duplicate and incubated for 24 hours at 4◦C. Plates were then incubated

with goat anti-mouse horseradish peroxidase conjugated IgG (Promega, Madison, WI) at

37◦C for 4 hours. These plates were then developed in a 0.05M phosphate-citrate buffer

containing tetramethylbenzidine (Sigma-Aldrich, St. Louis, MO) at 37◦C for 30 minutes.

Finally, development of the plates was stopped by adding 25 µl of 2M sulfuric acid to

each well. Optical densities were determined at 450 nm (BioTek ELx800). This indirect

ELISA methodology follows protocols that have been previously published (MacGregor

et al. 1998, Ugen et al. 1992).

3.5.7 Statistical Analysis

Statistical differences between endpoint geometric mean antibody titers for the various

groups was determined by a nonparametric Kruskal-Wallis analysis of variance test. Re-

sults found to contain significant differences were further investigated by the Student’s

t-test to ensure significance. Each of these tests was performed with a 95% confidence

level.
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3.6 Transdermal Electric Field Simulation

3.6.1 Surface Potential

To determine the electrical potentials along the surface of the mouse, plasma treatments

were performed following normal protocols. Once the plasma discharge was treating the

animal skin, potential measurements were made by contacting the epidermal surface with

a high voltage probe (Fluke 80K-40, Everett, WA) interfaced with an ammeter. This pro-

cedure was carried out with positive and negative polarity plasmas. Data gathered from

these experiments was fit with a exponential function, and used as a boundary condition in

the model.

3.6.2 Finite Element Model

To model the electric field present in skin a generalized electrostatics model was used in

a finite element software package (COMSOL Multiphysics, Burlington, MA). Laplace’s

equation,

−∇• (σ∇V ) = 0, (3.1)

was used to calculate the electrical characteristics present in the specified geometry. In

this model σ represents the conductivity and V represents the electric potential.

3.6.3 Geometric Objects

This two dimensional simulation contained geometric elements consistent with measure-

ments obtained from an animal during treatment. A vertical cross section of a mouse dur-

ing treatment was created from two concentric ellipses having a major and minor axis with

a 1.5mm difference. A skin layer was created by the outer ellipse which had a thickness
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Figure 3.9: Geometric elements created for the finite element model.

of 1.5mm, electrical conductivity of 0.0002 S/m and relative permittivity of 40. The inner

ellipse was 4cm wide by 1.8cm tall, had an electrical conductivity of 0.82211 S/m and rel-

ative permittivity of 80. Beneath the animal was an insulating heating pad with a height

2.5cm and 10cm width. This pad had an electrical conductivity of 1×10−12 S/m and rela-

tive permittivity of 7. At the bottom of this stack was a grounded stainless steel table with

a height of 2cm and width of 12cm. The electrical characteristics of this table were set

to a conductivity of 4.032×106 S/m with a relative permittivity of 1. Figure 3.9 shows the

geometric elements used in this model.

3.6.4 Boundary Conditions

To solve this model the appropriate boundary conditions were added for each of the geom-

etry elements. First the operating table was set as the relative ground in the simulation,

V = 0. (3.2)
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The next boundary condition was to place the electrical potential on the epidermal surface

of the animal skin,

V = Aexp(−Bx)+C. (3.3)

This equation allowed the electrical potential to take values that were experimentally dis-

covered and fit with an exponential function to determine the value of A, B, and C. All

other elements in the model took on the continuity boundary condition,

−→n •
(
~J1−~J2

)
= 0. (3.4)

This condition specifies the normal component of the current density is continuous across

the boundary.
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CHAPTER IV: RESULTS

4.1 Creating a Plasma Discharge for In Vivo Use

4.1.1 Construction

To investigate the utility of ionized gases for molecular delivery a plasma generator first

had to be constructed. The first generation system consisted of a 15cm long Teflon dowel.

This dowel was hollowed to create a tube having a 1cm inner diameter and wall thick-

ness of 2mm. Two electrodes were positioned at either end of the tube. A steel hose barb

attached to ground potential was positioned on one end of the tube to serve as a ground

reference electrode and interface the tube with a gas inlet stream. A flat annular stainless

steel electrode with a 3.5mm internal diameter occupied the opposite end of the Teflon

tube. This electrode was connected to a high voltage direct current power supply. A soft-

ware interface platform was used to control the high voltage power supply and allowed the

voltage, maximum current and exposure time to be set prior to treatment. As a safeguard

the maximum current was set at 100 µA. Figure 4.1 shows the first generation plasma

generator.
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Figure 4.1: CAD rendering of the first generation plasma generator.

Due to the desire to treat biological samples and cause a minimal effect to viability, helium

was chosen as the medium. Helium was selected as it is known for its ability to create

a stable plasma volume when operating in air, and its high ionization energy acts as a

safeguard to prevent arcing (Kang et al. 2002, Laroussi 2000, Laroussi and Lu 2005). Also,

the excitation of helium in air at standard temperature and pressure creates a non-LTE

discharge, or cold plasma, which should reduce the thermal impact on treated samples.

4.1.2 Electrical Parameters

To generate a consistent plasma a series of experiments were performed to determine the

operating height of the generator and potential that would be applied to the high voltage

electrode. To perform these experiments the generator was placed 1, 2, 3, 4 or 5cm above

a 4cm2 stainless steel plate. This plate was connected to ground potential through an elec-
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trometer. Current measurements were taken as the high voltage electrode was swept from

−10kV to 10kV. Figure 4.2 shows the obtained current data.

The electrical data gathered indicated that as the potential increased or the height decreased

the current increased. Operating at a height of 1cm or 2cm with a positive potential ap-

peared to be too close to the plate as the maximum current from the generator was being

supplied well before 10kV was reached. Operating at 3cm allowed the full range of cur-

rents to be generated, while further distances used less than half of the current capacity of

the power supply. When a negative potential was applied a spacing of 1cm allowed the

full current range to be utilized. Heights more than this decreased the maximum currents

to 80% or less.

Due to the positive plasma generating the full current range of 0 to 100 µA without arcing at

a spacing of 3cm this was chosen as the operating distance. Due to the desire to avoid the

possibility of developing an arc or spark a value of half that of the maximum current value,

50 µA, was selected as the optimum current. This correlated to an operating voltage of 8

kV. As these were selected based on the positive data, -8 kV was chosen as the operating

voltage for negative polarity treatments. A similar current of −47 µA was generated at -8

kV when a height of 2 cm was used, so this was selected as the height that would be used

during treatment.

4.1.3 Physical Characterization

Operating at these conditions produced a visible glow discharge emanating from the annu-

lar electrode that was 3.0cm in length for positive polarity and 2.0cm in length for nega-

tive polarity. Therefore, operating at the chosen potential and distances would allow the

tip of the plasma to touch the treatment site throughout exposure. Temperature measure-

ments made with an infrared thermometer (Fluke Model 62) throughout the plasma volume
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Figure 4.2: Current measurements obtained by modulating the voltage and distance be-
tween the generator and ground plate. A represents data collected at negative polarity and
B represents data collected at positive polarity.
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showed no deviation in temperature from that of gas alone. Figure 4.3 shows the plasma

discharge operating at atmospheric conditions.

4.1.4 Optical Emission Spectroscopy

Ultraviolet and visual light spectroscopy was performed to determine the reactive con-

stituents produced by the plasma generator. Figure 4.4 shows spectra collected from the

discharge at the opening of the generator. These spectral emissions are dominated by ni-

trogen and nitrogen ions. Emission lines in the range of 300-400 nm correspond to OH,

N2 and N+
2 ; 400-600 nm to N2 and N+

2 ; and 600-900 nm to O and He (Laroussi and

Lu 2005, NIST atomic spectra database [electronic resource] 1995). The prevalent he-

lium excitation line in the spectroscopic data occurs at 706.5 nm corresponding to the

1s2p–1s3s atomic configuration (Kang et al. 2002). Peaks from species other than helium

are suggested to result from the transfer of energy to molecules in the ambient atmosphere

at the opening, plasma region, of the generator. The majority of emission lines prevalent in

these spectra occur in the ultraviolet range and have an irradiance of 28 µW/cm2 for negative

polarity and 30 µW/cm2 for positive polarity.

4.1.5 Conclusions

Creating the plasma generator and performing initial testing allowed treatment protocols to

be established for this system. It was determined all treatments would be carried out at a

potential of 8kV, irrespective of the polarity. To generate similar currents at this potential

a treatment height of 3.0cm was selected for positive polarity and 2.0cm for negative.

Operating at these conditions creates a stable discharge that is non-thermal in nature. The

excited species produced by the generator appear to be mostly a consequence of energy
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Figure 4.3: First generation plasma generator producing an atmospheric glow discharge.
Image was captured with a 15 second exposure.
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Figure 4.4: Ultraviolet and visual light spectra collected from the glow discharge. The
reference point of the spectrometer was the opening of the generator and spectra were
collected with a 5 second integration time. Plot A shows spectral peaks collected with
negative polarity plasma and plot B shows peaks from positive polarity plasma.
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transfer from metastable helium to ambient air, as the majority of spectral peaks are char-

acteristic for nitrogen. Many of the spectral peaks observed reside in the ultraviolet region

of the spectra, but have an overall irradiance of less than 30 µW/cm2. This level of irradi-

ance is comparable to the background emissions from a standard fluorescent light. Having

performed initial characterization of the discharge allowed it to be used in vitro and in vivo.
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4.2 In Vitro Experimentation

4.2.1 Introduction

In order to gain insight into the mechanism and establish feasibility of plasma for molecular

delivery a series of in vitro experiments were performed. This work examined the delivery

efficacy, viability impact and restabilization kinetics following plasma exposure.

4.2.2 Plasma Characterization

The plasma generator fabricated for this study created a stable discharge and was capable

of operating in a reproducible manner. This generator was operated at a potential of 8kV

on the high voltage annular electrode with a helium flow rate of 15 l/min. Operating under

these conditions the generator supplied an average current of 10 µA to the high voltage

electrode, which corresponded to a maximum power consumption of 80mW by the plasma

discharge. The visible plume created by this discharge measured approximately 3cm in

length. Infrared temperature measurements made at 0.5cm intervals throughout the visible

discharge showed no thermal variations from that of the flowing gas alone. Figure 4.5

shows the plasma generator operating 3cm above a tissue culture dish.
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Figure 4.5: Positive polarity plasma treating the inner well of a tissue culture dish. In this
image the generator was positioned 3cm above the inner chamber of a tissue culture dish.
The outer chamber of dish contains a 22 gauge wire connected to ground through a 1.5GΩ

resistor.

4.2.3 Molecular Delivery

Molecular delivery experiments were performed with HaCaT and B16F10 cells to deter-

mine the ability of plasma to enhance the uptake of small molecules in vitro. These ex-
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periments were performed using the setup discussed in the Molecular Delivery section of

the Materials and Methods chapter. Cell suspensions were treated with the plasma dis-

charge for 2, 5 and 10minutes. After exposure a fluorescent nucleic acid stain was mixed

with the cell suspension to quantify the extent of delivery attainable at each treatment time.

Figure 4.6 shows cells stained with the nucleic acid probe Sytox Green. Fluorescent val-

ues of HaCaT cells following delivery had a mean rise of 13% for 2minutes, 41% for

5minutes and 62% for 10minutes relative to untreated control samples. Similar increases

of 7%, 21% and 55% were obtained when B16F10 cells were plasma treated for 2, 5 and

10minutes respectively. Figure 4.7 displays fluorescence quotient data for B16F10 and

HaCaT cells, which was obtained by dividing the fluorescence value of the treated sam-

ple (F) by the respective control value fluorescence (F0). Statistical analysis performed on

these data conclude at the 95% confidence level that HaCaT and B16F10 cells exposed to 5

and 10minutes had a mean fluorescence higher than that of their respective control groups.

Figure 4.6: Fluorescent images of cells obtained after treatment with 10 minutes of posi-
tive polarity plasma and incubation with Sytox Green. A 45 minutes incubation was per-
formed with the nucleic acid probe at 37◦C and 5% CO2. (A) No exposure to plasma prior
to incubation. (B) Plasma exposure for 10 minutes prior to incubation.
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Figure 4.7: Fluorescence quotient of cells after plasma mediated delivery of the nonper-
meant nucleic acid stain Sytox Green. Fluorescence values have been divided by their
respective controls (F/F0) to show a relative increase in delivery. Error bars indicate stan-
dard error of the mean.

4.2.4 Viability Impact

The next set of experiments ascertained the effect plasma treatment had on cell viability.

In these experiments HaCaT and B16F10 suspensions were again exposed to the plasma

plume for 2, 5 and 10minutes. Immediately following treatment the cell suspensions were

incubated at 37◦C and 5% CO2 for four hours. Trypan blue assays were then performed

to determine cell survival following plasma exposure. Initial HaCaT cell viability was

96.5%, which decreased in the control sample to 92.7% after processing the cells for

treatment and incubation. Cells from the treatment groups had a viability of 90.5% for

2minutes of plasma exposure, 93.0% for 5minutes and 90.8% for 10minutes. B16F10

cells had an initial viability of 96.0%, which decreased to 90.2% in the control group four

hours later. Treatment group viability was found to be 88.9% for 2minutes, 87.9% for
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Figure 4.8: Effects of plasma exposure on cell viability 4 hours after treatment. Trypan
blue assays were performed to quantify cell viability. Error bars indicate the standard error
of the mean.

5minutes and 89.2% for 10minutes. Results are summarized in Figure 4.8. Analysis of

these data conclude at the 95% confidence level that HaCaT and B16F10 cells exposed to

ions generated at the tested conditions do not significantly alter cell viability.

4.2.5 Membrane Stabilization

A final set of experiments were performed to elucidate the duration of membrane defects in

both B16F10 and HaCaT cells. These experiments exposed suspended cells to plasma for

10minutes and followed the uptake of a nucleic acid probe by fluorescence measurements

taken at one minute intervals. It was expected that membrane permeabilization would en-

able the uptake of molecules by the cells causing an increase in fluorescence. The rate of

fluorescence increase should slow and eventually cease with time corresponding to cells re-
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Figure 4.9: Kinetic fluorescence measurements of Sytox Green uptake following 10 min-
utes of plasma exposure. Mean fluorescence, in arbitrary units (AUF), are plotted at one
minute intervals along with the standard error of the mean.

gaining their membrane integrity. Figure 4.9 below shows raw fluorescence measurements

obtained over a 20 minute acquisition period for plasma treated B16F10 and HaCaT cells.

As expected, the rate of Sytox Green influx slowed with time in both cases and changes in

the fluorescence levels became statistically insignificant at six minutes for B16F10 cells and

five minutes for HaCaT cells. This observation was due to the permeability of the mem-

brane decreasing with time. Differentiating the fluorescence, represented by the symbol

F, with respect to time allowed the data to be curve fit to determine the rate constant asso-

ciated with dye exclusion from the cell, which was then correlated to a re-stabilizing cell

membrane. The integrated rate law for a first order reaction,

Y = Y0e−kt , (4.1)
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provided an excellent fit for the differentiated data. In this equation Y represents the

change in fluorescence with respect to time, Y0 is the initial change in fluorescence, k is

the rate constant and t corresponds to time. The r-squared values for the fit of the exper-

imental data were over 0.99 for both HaCaT and B16F10 cells. Figure 4.10 displays the

differentiated fluorescence data (dF/dt) at each observation for B16F10 and HaCaT cells

and its associated curve fit. The rate constant, k, found in the HaCaT fit of membrane

restabilization was 0.28minutes−1 and the constant for B16F10 membrane restabilization

was 0.25minutes−1. This shows that cells treated with ions to enhance molecular delivery

respond similarly to cells that have been electroporated (Rols and Teissie 1990, Neumann

et al. 1998).
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Figure 4.10: Fluorescence measurements differentiated with respect to time after 10 min-
utes of plasma exposure. These plots display differentiated data for (A) B16F10 and (B)
HaCaT cells. Plotted markers indicate the mean and error bars show the standard error of
the mean for the data collected. Curves show the fit for a first order kinetic equation.
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4.2.6 Conclusions

The results obtained using the plasma discharge are encouraging with regard to plasma me-

diated molecular delivery. These experiments show a dose-response relationship between

exposure time and the delivery of fluorescent tracer molecules, with significant delivery

beginning in both HaCaT and B16F10 cells at 5minutes. Maximum delivery of tracer

molecules occurred at 10minutes of plasma exposure and led to a rise in fluorescence of 62

and 55 percent for HaCaT and B16F10 cells respectively. At the tested plasma exposure

levels delivery was attainable without harm to the short term cell viability.

Results from the kinetic experiments offer evidence that plasma exposure and electropo-

ration effect cell membranes similarly. Treatment of cells with either of these modalities

causes a temporary increase in the diffusion of exogenous molecules into the cytosol, which

is a result of membrane destabilization. In both cases the recovery of membrane integrity

and subsequent dye exclusion follows first order kinetics with similar rate constants (0.25

and 0.28min−1) for the two cell lines tested. These data were consistent with literature on

resealing times for electroporation (Rols and Teissie 1990, Neumann et al. 1998).

The results from these experiments show this non-contact charge-based delivery system

is capable of improving the delivery of small molecules, such as cell tracers or drugs.

This work provides evidence that ion deposition causes a transient increase in membrane

permeability without the deleterious effects of other field driven modalities.
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4.3 Delivery of Plasmid DNA to Murine Skin In Vivo

4.3.1 Introduction

After determining the atmospheric plasma delivery system was capable of creating tran-

sient membrane destabilization in vitro, the system was tested in vivo to determine the

delivery capacity of larger molecules, such as DNA. Successful delivery of DNA in vivo

would allow this tool to also be used for gene therapy and DNA vaccine applications. This

investigation involved the injection of plasmid DNA encoding luciferase into the dermis

of mouse flank skin. After injection the skin was exposed to the noncontact charge-based

delivery system for 10 minutes. Expression levels were followed by injecting luciferin and

quantifying luminescence over a period of 26 days.

4.3.2 Plasma Treatment

Plasma treatments were performed with an applied potential of +8 kV or -8 kV and a helium

flow rate of 15 l/min. A portion of the treatments were carried out with a 1.5GΩ ring en-

circling the treatment area. Figure 4.11 shows the relative positions of the plume, animal

flank, and high impedance ring during plasma treatment. Operating at these conditions

produced a visible glow discharge emanating from the annular electrode that was 3.0cm

in length for positive polarity and 2.0cm in length for negative polarity. These distances

were used to set the distance between the generator and skin during experiments. Temper-

ature measurements made with an infrared thermometer during the treatments showed no

deviation in normal skin temperature throughout plasma exposure.
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Figure 4.11: Positive polarity plasma treating a mouse flank with the high impedance ring
encircling the treatment site.
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Figure 4.12: Representative Xenogen images demonstrating photon emissions per second
acquired on day 2. These images show animals that received (A) no treatment, (B) injec-
tion of plasmid only, (C) plasmid with positive plasma treatment, (D) plasmid with positive
plasma treatment and high impedance ring, (E) plasmid with negative plasma treatment,
and (F) plasmid with negative plasma treatment and high impedance ring.
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4.3.3 Molecular Delivery

Figure 4.12 shows Xenogen images of animals from each group two days after treatment.

Images A and B in the figure are from animals that received no treatment and injection of

plasmid encoding for luciferase, respectively. Note that some luminescence was observed

with injection of the plasmid alone. This was anticipated as injection of DNA alone typi-

cally results in a low level of expression (Lucas et al. 2001). Image C is from day 2 in the

follow up period and represents animals that received plasmid followed by positive plasma

treatment for 10 minutes. Image D was taken on the same day from animals that received

plasmid and positive plasma treatment with the high impedance ring. Similarly, images E

and F were taken on day 2 of animals that received plasmid followed by negative plasma,

E, and plasmid and negative plasma treatment that included the high impedance ring, F.

Such images suggest that the four treatments involving exposure of the injection site to

plasma appeared to have increased expression relative to animals that received only an in-

jection of luciferase encoding plasmid and no subsequent plasma exposure. This increased

expression, relative to controls, persisted throughout the 26 day follow-up period.

Mean quantitative luciferase levels for all groups treated with negative polarity plasma

are shown in Figure 4.13 for the entire 26 day follow-up period. Similarly, Figure 4.14

shows this same mean data for animals treated with positive polarity plasma to deliver the

luciferase encoding plasmid. Day 0 images were taken prior to any treatment, plasmid or

plasma, and were used to determine background luminescence levels shown in each figure.

For molecular delivery with both negative and positive plasma, maximum expression levels

resulted on day 2 and remained nominally at this level until day 18 when luminescence

began to decrease.

Mean luciferase level comparisons were made on day 2 relative to the response that resulted

from the animals injected with the luciferase encoding plasmid only. These comparisons

indicated a 3.8 fold increase (Figure 4.14) when positive plasma was used to treat the

65



Figure 4.13: Luminescence data collected for all animals exposed to negative polarity
plasma. Mean photon flux (photons/s−cm2) and standard error of the mean are shown for
animals that received (�) no treatment, (•) injection of plasmid only, (N) plasmid with nega-
tive plasma treatment, and (H) plasmid with negative plasma treatment and high impedance
ring. Each of these groups consisted of 12 animals that were treated 4 at a time in 3 sepa-
rate, but identical experiments.
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Figure 4.14: Luminescence data collected for all animals exposed to positive polarity
plasma. Mean photon flux (photons/s−cm2) and standard error of the mean are shown for
animals that received (�) no treatment, (•) injection of plasmid only, (N) plasmid with pos-
itive plasma treatment, and (H) plasmid with positive plasma treatment and high impedance
ring. Each of these groups consisted of 12 animals that were treated 4 at a time in 3 sepa-
rate, but identical experiments.
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plasmid injection site and a 4.5 fold increase when negative plasma (Figure 4.13) was used.

These relative levels increased to 8.9 fold when positive plasma and the high impedance

ring encircling the treatment site were used together (Figure 4.14). A 9.3 fold increase in

response resulted from treating the plasmid injection site with negative plasma combined

with a high impedance ring (Figure 4.13).

Statistical analysis was performed between groups using a two sided t-test with a con-

fidence level of 95%. This analysis indicated that animals exposed to negative polar-

ity plasma to facilitate plasmid delivery exhibited a statistically significant higher peak,

day 2, expression compared to the plasmid injection only group. Subsequent data points

for this treatment group showed statistically insignificant rises over the plasmid injection

only control group. Animals treated with negative polarity plasma coupled with the high

impedance ring for DNA delivery also showed a statistically significant rise over the plas-

mid injection only group on day 2; however, these data remained significantly different

from the control thorough day 18. This treatment group also had significantly higher lu-

ciferase levels on days 2 through 18 when compared to the group that utilized the negative

plasma alone.

Treatment with positive polarity plasma also resulted in significant increases in luciferase

expression relative to the plasmid injection only group. Animals that were exposed to

positive polarity plasma to deliver DNA resulted in significantly higher luciferase levels on

days 2 and 4 compared to the injection only control group. Data on the other days from

the positive polarity group were not different at a 5% level of significance when compared

to control. Animals that had DNA delivered using positive polarity plasma with the high

impedance ring showed statistically significant increases over the injection only group for

days 2 through 18. Interestingly, luciferase photon flux data resulting from positive po-

larity delivered plasmid that incorporated the high impedance ring were not statistically

different from the results obtained by using positive polarity plasma alone on any of the
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Table 4.1: Summary data collected for animals exposed to plasma with and without the
high impedance ring. The first data column represent the mean luminescence increase
seen on day 2 when compared to control. The next column summarizes the period of time
that each condition was found to be statistically significant when compared to control.
Significance was established by performing a t-test with a 95% level of confidence.

Treatment
Luminescence

Increase
Days of

Significance
Positive Plasma 3.8 fold 4
Negative Plasma 4.5 fold 2

Positive Plasma with High Impedance Ring 8.9 fold 18
Negative Plasma with High Impedance Ring 9.3 fold 18

follow up days. This is in contrast to the significant difference that resulted when the

mean luciferase level from the negative plasma with the high impedance ring group was

compared to the negative plasma only group. This may speak to a difference in the influ-

ence of the ring on the net charge density in the region of the injected DNA when positive

and negative polarities are used. Data collected from these experiments is summarized in

Table 4.1.

4.3.4 Histological Analysis

Exposure of animal skin to plasma created with these generator conditions caused no ap-

parent muscle contractions and no visible damage to the skin, such as burns, redness,

swelling, or scaling both immediately after treatment or throughout the follow-up period.

Figure 4.15 shows the treatment sites from animals exposed to either positive plasma or

negative plasma immediately after treatment and at 24 hours.

Biopsies of the treatment sites confirm these gross observations. The tissue samples col-

lected showed no damage occurring to the dermis or epidermis as a result of exposure.

Further none of the characteristic hallmarks of inflammation, such as infiltration of leuko-

cytes or changes in vascularity, were observed immediately after treatment or throughout

the 21 day period samples were collected. Figure 4.16 shows representative skin sections

collected.
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Figure 4.15: Photograph of plasma treatment sites on the flanks of C57Bl/6 mice. These
images show animals (A) prior to treatment with positive polarity plasma, (B) immediately
following treatment with positive plasma, (C) 24 h after treatment with positive plasma,
(D) prior to treatment with negative plasma, (E) immediately after treatment with negative
plasma, and (F) 24 h after treatment with negative plasma.
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Figure 4.16: Plasma exposed skin sections stained with hematoxylin and eosin and pho-
tographed at 20x magnification. Images in row A are from the no treatment group, B are
animals only injected with plasmid, C are animals injected with plasmid and exposed to
positive plasma, and D are animals injected with plasmid and exposed to negative plasma.
Samples in column 1 were collected immediately after treatment, 2 were two days after
treatment, and 3 is seven days after treatment.
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4.3.5 Conclusions

This study has clearly shown that the deposition of the downstream products of a direct

current plasma glow discharge in helium can be used to facilitate the uptake of DNA by

cells in murine skin. In contrast to other physical delivery methods available, this method

does not appear to cause damage to the skin that often results from the intimate contact of

an electrode or applicator with the treatment site which is especially true for electroporation

(Mehier-Humbert and Guy 2005). This study demonstrated that non-thermal plasma can

achieve significantly higher, as much as 9.3 fold, expression when compared to injection

of plasmid DNA alone. Further, similar levels of expression were obtained with either

positive or negative potential applied to the high voltage electrode.

One potential mechanism for this delivery method is that charge deposition by the plasma

stream may lead to a local electric field in the skin and cause local charge exchange. This

could result in a mechanism that is similar to electroporation in that it is generally ac-

cepted as a field driven process (Weaver and Chizmadzhev 1996). Additional work with

this delivery technology focused on optimizing treatment conditions to determine if greater

increases in expression could be obtained.
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4.4 Optimization of Plasma Delivery In Vivo

4.4.1 Introduction

After having shown the efficacy of this plasma-based delivery system in vitro and in vivo a

more rigorous set of experiments were performed to optimize delivery. These experiments

were conducted with the second generation plasma generator, because of its ability to more

accurately target the treatment site and provide electrical data concerning the performance

of the system. The goal of these optimization experiments was to determine the plasmid

dose and plasma exposure time that corresponded to the highest peak and longest duration

expression. Due to the extremely large number of experimental variables these goals were

addressed individually, where treatment time was first addressed and the results from these

experiments were used to optimize the plasmid dose.

4.4.2 Plasma Characterization

Throughout these experiments only slight variations were observed by switching to the sec-

ond generation system. Data collected from this system allowed monitoring of the electri-

cal characteristics of the plasma generator, as well as electrical data concerning the treat-

ment site. During the plasma treatments discussed in this section the system maintained

an average voltage of 7.96kV for positive polarity treatments and −7.92kV for negative.

While operating at these voltages the high voltage electrode consumed an average current

of 17.7 µA for positive and −15.7 µA for negative polarity. The mean current observed

returning to ground through the 1.5GΩ resistor electrode encircling the treatment site was

3.7 µA for positive polarity and −3.3 µA for negative. Applying Ohm’s Law,

V = IR (4.2)
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Table 4.2: Electrical characteristics of the generator and return electrode during treatment.
All reported vales represents the mean of data points gathered throughout each treatments.

Positive Polarity Negative Polarity
Generator Potential 7.96 kV -7.92 kV
Generator Current 17.7 µA -15.1 µA

Return Current 3.7 µA -3.3 µA
Epidermal Potential 5.6 kV -5.0 kV

where V is the voltage present on the high impedance ring, I is the current flowing through

the ring to ground and R is the total resistance present on the ring, allows the voltage

present on the ring to be calculated. Essentially this means the treatment site on the animal

reaches a potential of 5.6kV for positive treatment and −5.0kV for negative treatment. A

summary of these findings is presented in Table 4.2.

4.4.3 Plasma Dose Response Study

The goal of the first set of delivery experiments was to determine the treatment time that

generated the greatest overall plasmid expression. To perform these treatments 100 µg of

luciferase expressing plasmid was injected intradermally in a volume of 50 µl. Following

injection the sites were treated with either positive or negative polarity plasma for 2, 5, 10

or 20 minutes. Expression was followed by quantifying luminescence for 30 days after

treatment.

Mean luciferase levels are shown for all groups treated with either polarity plasma in Fig-

ure 4.17. Data points expressed at day 0 represent luminescence values prior to treatment.

In all groups peak expression occurred on day 2 and remained at the same relative level

until day 21.

Mean luciferase level comparisons were made on day 2 relative to the response that resulted

from injecting animals with the luciferase encoding plasmid only. Data collected from 2

minutes of plasma exposure revealed a rise of 12.9 fold when positive plasma was used
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Figure 4.17: Luminescence data collected for animals that were exposed to various plasma
treatment times. Mean photon flux (photons/s−cm2) and standard error of the mean are shown
for animals that received (�) no treatment, (•) injection of plasmid only, (N) plasmid with
positive plasma treatment, and (H) plasmid with negative plasma treatment. Data repre-
sented in plot A corresponds animals exposed to plasma for 2 minutes, plot B corresponds
to 5 minute exposures, plot C corresponds to 10 minute exposures and plot D corresponds
to 20 minute exposures. Each of these groups consisted of 12 animals that were treated 4
at a time in 3 separate, but identical experiments.
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Figure 4.18: Peak luminescence for animals exposed to various plasma treatment times.
Luminescence is represented by photon flux (photons/s−cm2) observed on day 2 for animals
exposed to either (A) negative or (B) positive polarity plasma. Error bars represent stan-
dard error of the mean. A break in the y-axis was provided to allow visualization of the
plasmid only group.

to treat the injection site and 20.6 fold when negative plasma was used. Exposure for 5

minutes resulted in an increase of 13.8 fold for positive and 18.4 fold for negative polarity.

Exposure for 10 minutes resulted in increases of 37.3 fold for positive and 27.1 fold for

negative. Finally, 20 minutes of exposure increased expression by 16.7 fold and 24.5 fold

for positive and negative polarity, respectively. Figure 4.18 shows the data collected on

day 2 to formulate these comparison values.

Analysis of these data conclude at the 95% confidence level that significant rises exist in

all groups exposed to the plasma discharge following plasmid injection when compared

to plasmid injection alone. Additional data collected for the 2 minute exposure condition

showed significantly higher expression for 7 of the 30 follow up days. Data from the 5

minute exposures showed significantly higher expression for 21 days. Animals exposed to

10 minutes of plasma retained significantly higher expression for 14 days. Finally animals
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Table 4.3: Summary of findings for the examined plasma exposure conditions. The first
two columns represent the mean increase seen on day 2 when compared to control for
positive and negative plasma treatments. The next column summarizes the period of time
that each plasma exposure condition was found to be statistically significant when com-
pared to control. Significance was established by performing a t-test with a 95% level of
confidence.

Positive Plasma Negative Plasma Period of Significance
2 minutes 12.9 fold 20.6 fold 7 days
5 minutes 13.8 fold 18.4 fold 21 days

10 minutes 37.3 fold 27.1 fold 14 days
20 minutes 16.7 fold 24.5 fold 21 days

exposed to 20 minutes of plasma following injection retained higher expression for 21 days.

Table 4.3 summarizes the findings of this section.

4.4.4 Plasmid Dose Response

The goal of the second set of delivery experiments was to determine if a dose-response

relationship could be established between the plasmid dose and the amount of expression

generated with the most effective plasma treatment time. Performing these experiments

involved intradermally injecting either 50, 100 or 200 µg of plasmid DNA, suspended in

50 µl of saline, and treating the bolus with the optimum plasma treatment time from the

first set of experiments. As a basis for comparison electroporation was performed with the

same plasmid doses using a four plate electrode. The electroporation signature selected

imparted 8 pulses at a field strength of 100 V/cm with a duration of 150ms each; this pulsing

condition was selected as it had already been optimized for this electrode with a similar

plasmid construct (Heller et al. 2007).

Mean luminescence values are shown for all groups treated in Figure 4.19. Data points

shown at day 0 represent luminescence values prior to performing treatments. As in the

first experiments, all groups exhibited their peak expression on day 2.
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Figure 4.19: Luminescence data collected for animals injected with various concentra-
tions of plasmid and treated with 10 minutes of plasma. Mean photon flux (photons/s−cm2)
and standard error of the mean are shown for animals that received (�) no treatment, (•)
injection of plasmid only, (N) plasmid with positive plasma treatment, (H) plasmid with
negative plasma treatment and (�) plasmid with electroporation. Data represented in plot
A corresponds animals that received 50 µg of plasmid, plot B corresponds to 100 µg injec-
tions and plot C corresponds to 200 µg injections. Each of these groups consisted of 12
animals that were treated 4 at a time in 3 separate, but identical experiments.
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Mean luminescence levels were compared on day 2 relative to those animals receiving in-

jection of luciferase encoding plasmid only. Data collected from animals injected with

50 µg of plasmid and treated with positive plasma had an increase of 16.4 fold, nega-

tive plasma increased luminescence by 19.4 fold, and electroporation increased lumines-

cence by 25.5 fold. Animals injected with 100 µg of plasmid and treated with positive

plasma had an increase of 38.4 fold, negative plasma increased luminescence by 27.6 fold,

and electroporation increased luminescence by 42.3 fold. Finally, animals injected with

200 µg of plasmid and treated with positive plasma had an increase of 32.0 fold, negative

plasma increased luminescence by 19.1 fold, and electroporation increased luminescence

by 66.5 fold. Figure 4.20 shows the data collected on day 2 to formulate these comparison

values.
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Figure 4.20: Peak luminescence for animals injected with various concentrations of plas-
mid and treated with 10 minutes of plasma. Luminescence is represented by photon flux
(photons/s−cm2) observed on day 2 for animals injected with 50 µg, 100 µg or 200 µg of plas-
mid prior to exposure to positive plasma, negative plasma or electroporation. Error bars
represent standard error of the mean

Analysis of these data at the 95% confidence level showed significant rises over injection

alone for each of the treatments carried out following the administration of the plasmid.

Additionally, data collected for the 50 µg plasmid dose showed significantly higher expres-

sion in the plasma treated and electroporated groups for all 30 of the follow-up days. In

this group no statistical difference was present between those treated with positive plasma,

negative plasma or electroporation. Data collected for the 100 µg plasmid dose showed

significantly higher expression in the plasma treated groups for 14 days and all 30 days

retained statistical significance for electroporation treated groups. At this level no statis-
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Table 4.4: Summary of findings for the various injected plasmid amounts. Each column
represents the amount of increase observed on day 2 for the specified group compared to
the group that received plasmid injection only.

Positive Plasma Negative Plasma Electroporation
50 µg 16.4 fold 19.4 fold 25.5 fold
100 µg 38.4 fold 27.6 fold 42.3 fold
200 µg 32.0 fold 19.1 fold 66.5 fold

tical differences were present between those treated with positive plasma, negative plasma

or electroporation for 14 days. However, on days 21 and 30 the animals treated with elec-

troporation had significantly higher means than animals treated with the plasma discharge.

Data collected from the highest dose, 200 µg, showed significantly higher expression in the

plasma treated and electroporated groups for 14 days compared to injection alone. This

dose level showed no statistical differences between those treated with positive plasma,

negative plasma or electroporation. Table 4.4 summarizes the relative increases seen for

each plasmid dose.

4.4.5 Conclusions

This study has shown the second generation technology is also capable of augmenting

molecular delivery, and appears to do so in a dose-response fashion. The results obtained

by increasing the exposure time indicated as treatment times rise, so too does the lumi-

nescence. The first set of experiments show the maximum luminescence occurs with 10

minutes of plasma exposure. Exposing the previously injected flank skin for this amount

of time correlated with a rise of 37.3 fold for positive plasma and 27.1 fold for negative

plasma, when compared to animals that had only been injected with plasmid. Exposing

the tissue beyond 10 minutes does not appear to increase expression, as animals exposed

to 20 minutes of plasma had a decrease in luminescence compared to those exposed for

10 minutes. This decrease is likely due to cells dying due to the extended presence of

membrane defects.
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Proceeding with the optimum 10 minute treatment time from the first set of experiments,

the effects of modulating the DNA dose also gave some surprising results. As the dose

was escalated from 50 to 100 µg a statistically significant increase in luminescence was

seen in all groups. However, as the dose was raised from 100 to 200 µg the effects be-

came insignificant in the plasma treatment groups. This allowed an optimum DNA dose

to be determined, with this system. This 100 µg dose coupled with 10 minutes of plasma

exposure gave similar results to those found with electroporation.
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4.5 Delivery of a DNA Vaccine In Vivo

4.5.1 Introduction

After establishing the delivery capacity of the plasma discharge with luciferase encoding

plasmids, the focus of the work shifted to a more biologically relevant protein. In this

work, a plasmid was delivered encoding the 120 kilodalton envelope glycoprotein present

on the surface of a macrophage tropic HIV. Delivery of the plasmid should invoke an im-

mune response proportional to the extent of delivery. In this study immune responses were

ascertained by antibody levels in the serum of mice. Antibody responses obtained by this

technique provided the basis for an alternative delivery method for DNA vaccines.

4.5.2 Results

The major goal of this study was to determine if plasma could be used to deliver a DNA

vaccine to enhance the induction of antigen specific antibody responses. To perform this

vaccination study the JRFLgp120 plasmid was selected due its relatively low immuno-

genicity when delivered without a forcing function, such as electroporation. Weak im-

mune responses produced by the plasmid only vaccination group allowed the antibody

levels caused by the application of plasma to be more easily ascertained. To perform this

study 100 µg of JRFLgp120 plasmid was injected intradermally in a volume of 50 µl. Fol-

lowing injection the bolus was exposed to positive or negative polarity plasma for 10 min-

utes, as these conditions generated the greatest luminesence levels in the luciferase work.

For comparison other groups were only injected with the plasmid and some were injected

and electroporated. Those animals that received electroporation were treated with a four

plate electrode that applied a pulsing sequence of 8 rectangular waves at a field strength of

100 V/cm with a 150ms duration. A total of four vaccinations were performed on days 0,

14, 28 and 130.
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Figure 4.21: Ratio of optical densities after the third vaccination with 100 µg JRFLgp120
plasmid. Plots show data from animals that received (A) injection only, (B) injection fol-
lowed by electroporation, (C) injection followed by 10 minutes of negative plasma and (D)
injection followed by 10 minutes of positive plasma. Error bars indication the standard
error of the mean.

The data presented in Figure 4.21 was generated from sera samples collected from the

different vaccination groups on day 38. This day corresponded to 10 days after the third

DNA vaccine was administered. Antigen specific antibody responses from the first two

immunizations failed to produce significant antibody responses in any of the treatment

groups, when compared to sera collected from naive animals.

These data show the optical density values observed at serial dilutions ranging from 1:64

down to 1:8192. As expected the optical densities tail off by diluting the samples, which
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causes a reduction in the number of antibodies available to bind to the gp120 antigen on the

ELISA plate. Statistically comparing the data collected at each dilution factor with that of

naive animals yields the maximum dilution factor where significant binding is observed,

known as the titer. Data collected after three vaccinations with JRFLgp120 showed a titer

of 512 for animals that received plasmid only, 512 for plasmid with electroporation, 512

for plasmid with negative plasma and 4096 for plasmid with positive plasma.

Performing another vaccination boosted the responses observed in all groups. The results

from the fourth vaccine are summarized in Figure 4.22. Data collected after the fourth

vaccine administration with JRFLgp120 gave a titer of 4096 for animals that received plas-

mid only, 4096 for plasmid with electroporation, 4096 for plasmid with negative plasma

and 8192 for plasmid with positive plasma.

Figure 4.23 shows the anti-gp120 geometric mean antibody titers (GMT) for the different

vaccination groups after the final vaccination. The GMT values for the plasmid alone,

plasmid with electroporation, plasmid with negative plasma and plasmid with positive

plasma were 76, 181, 256 and 3444 respectively. A non-parametric Kruskal-Wallis anal-

ysis at the 95% confidence level between the different groups indicated the plasmid injec-

tion with positive plasma delivery group was significantly higher than the other groups.

Also, further analysis indicated that the GMTs of the plasmid alone and plasmid with elec-

troporation were not significantly different. Whereas, plasmid with negative plasma was

marginally significantly elevated compared to plasmid injection alone. These results in-

dicate that positive plasma, based on GMT values, was 45 and 19 fold more effective in

inducing antigen specific antibodies than the plasmid alone and plasmid with electropora-

tion groups, respectively. This initial study indicated positive plasma was more effective in

enhancing induction of humoral immune responses than electroporation, under the electric

pulsing conditions utilized in this study.
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Figure 4.22: Ratio of optical densities after the fourth vaccination with 100 µg JRFLgp120
plasmid. Plots show data from animals that received (A) injection only, (B) injection fol-
lowed by electroporation, (C) injection followed by 10 minutes of negative plasma and (D)
injection followed by 10 minutes of positive plasma. Error bars indication the standard
error of the mean.
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Figure 4.23: Comparison of the antigen specific geometric mean antibody titers among the
different vaccination groups following administration of the final vaccine. The treatment
conditions shown are: P Only = gp120 plasmid alone; P + PP = gp120 plasmid with posi-
tive plasma delivery; P + NP = gp120 plasmid with negative plasma delivery; and P + EP =
gp120 plasmid with electroporation delivery. The asterisk indicates statistically elevated
GMT values compared to the other groups at the 5% level.
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4.5.3 Conclusions

Enhancement of delivery and subsequent expression of plasmid DNA encoding for anti-

gens is thought to be important for the utility and success of plasmid vaccine strategies.

A number of methods to enhance delivery have been implemented. Recently, the use of

in vivo electroporation has become a popular modality for enhancing the efficacy of DNA

vaccines. It has met with some success in enhancing both humoral and cellular immune

responses of antigen presenting DNA vaccines (Hirao et al. 2008, Hirao et al. 2010). How-

ever, effective non-contact delivery methods may be more useful in terms of clinical utility

due to the elimination or attenuation of some of the side effects noted with a contact de-

pendent approach which can include momentary shock and pain. This experiment demon-

strates a positive polarity plasma was able to significantly enhance the ability of a gp120

expressing plasmid DNA to induce antigen specific humoral immune responses, relative to

the administration of the gp120 expressing plasmid alone. Also, the data indicate that the

positive plasma delivery method was more effective than electroporation, under the condi-

tions utilized, in enhancing immunogenicity and presumably expression of antigen by the

DNA vaccine.

The results of the study warrant further investigation of the mechanism of enhanced im-

mune responses by this delivery method. As well, it will be useful to determine the ability

of this method to enhance antigen specific cellular immune responses. In particular, it will

be interesting to determine the reason for the lack of enhancement of immune responses

mediated by negative plasma delivery. This is particularly important in light of previous

results indicating positive and negative plasma have an equivalent ability to enhance the

expression of a luciferase reporter gene. Also, it will be important to determine whether

shorter intervals of plasma exposure will be able to mediate the immune response enhanc-

ing effect of the 10 minutes exposure. This will be relevant to establish since it is desirable,

in terms of potential clinical applicability.
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4.6 Transdermal Electric Field Simulation

4.6.1 Introduction

In an attempt to elucidate a plausible mechanism causing the delivery of plasmid DNA in

vivo a model was generated. The goal of this model was to analyze the transdermal electric

field resulting from the deposition of charge on the epidermal surface of mouse flank skin.

Finding an electric field magnitude similar to those encountered with electroporation would

supply evidence that these two techniques operate by similar fundamental principles.

To create this model a geometry was first constructed in a finite element software package.

The created model contained a two dimensional slice of an animal on top of an electrically

insulated heating pad, which sat on an electrically grounded stainless steel operating ta-

ble. After constructing the model experimentally measured electrical potentials were fit to

an equation and placed as a boundary condition on the epidermal surface of the mouse’s

skin. In this model the operating table served as the reference ground in the system. The

resulting electric fields were calculated by Laplace’s equation.

4.6.2 Surface Potentials

Prior to creating a model, steady state surface potentials were evaluated on mouse skin

during normal plasma treatment. Measurements made at 5mm intervals yielded the result

in Figure 4.24. These data points were fit with an exponential equation,

V = Aexp(−Bx)+C, (4.3)

which provided the voltage, V , at any distance from the treatment site, x. Evaluating the

fitting variables for positive plasma gave values of 5.936 for A, 36.160 for B and −0.145
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for C and correlated to an r-squared value of 0.985. Fitting the negative plasma potentials

yielded a value of −5.583 for A, 46.7 for B and 0.259 for C, which correlated to an r-

squared of 0.983.

4.6.3 Resulting Electric Field

Supplying these equations as boundary conditions in the models allowed electric fields

to be obtained in the finite element model. As would be expected the model showed the

greatest field strength occurs in the skin below the treatment site. At this point 7300 V/cm

was present for positive polarity plasma and 8000 V/cm for negative plasma. Figure 4.25

shows the typical results obtained with this electrostatic model for the case of positive

polarity plasma.

4.6.4 Conclusions

The results yielded by this model indicate the presence of a high magnitude electric field

across the skin. Field strengths of 7300 V/cm for positive polarity plasma and 8000 V/cm

for negative plasma are consistent with those found in the literature to induce the phenom-

ena called electroporation. A major difference in these two techniques is the duration of

exposure to the field. One factor accounting for this differential is the time required for de-

posited charges to accumulate over the entire epidermal surface of the animal being treated

with the discharge. Which is unlike electroporation where a pair of electrodes in direct

contact with the tissue generate an electric field by the application of high energy pulses.

Another major difference in these techniques is the passage of current through the treat-

ment site that occurs with electroporation, which does not occur with plasma exposure.

The presence of strong ionic currents in the tissue likely enhances the delivery process,

making it occur at much faster rates. However, this results in transient pain and damage to

the treatment site.
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Figure 4.24: Potential data collected on the epidermal surface of animals treated with (a)
positive and (b) negative plasma. Graphs display experimental data points (x) and expo-
nential curve fits.
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Figure 4.25: Electrostatic model showing the cross section of a mouse during treatment
with positive polarity plasma. Electric field intensities are represented by the thermal scale
and electric potentials on the boundaries are represented by the black and white scale. All
subdomains other than the mouse were suppressed.

Field strengths of these magnitudes are also likely to cause electro-kinetic diffusion of the

injected DNA in the tissue. This phenomena occurs due to the net negative charge car-

ried by DNA and the presence of an electric field across the tissue. In the case of positive

plasma exposure DNA should move in the direction of the more positively charged epider-

mis, which would result in expression of plasmid DNA in the papillary dermis and possibly

the basal cells of the epidermis. Conversely, exposure to negative plasma should cause a

migration of DNA deeper into the tissue, resulting in expression in the reticular dermis

and hypodermis. The location of DNA being expressed would change the nature of the

response in the skin.

To determine the effects plasma exposure has on skin it will be necessary to develop a

more detailed model. The presented model offers a simplistic representation of the skin.

Separating these layers will require electrically characterizing each individual layer and

rebuilding the model to reflect the permittivity and resistance associated with each layer.
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CHAPTER V: DISCUSSION AND FUTURE DIRECTIONS

5.1 Discussion

Current research has shown great potential for DNA-based drugs in the future of medicine.

A significant drawback to these therapies and vaccines is their reliance on the concomitant

application of a forcing function to aid in the uptake of exogenous DNA molecules. Of the

physical methods employed to augment delivery, electric fields are the most developed and

clinically relevant. While electric field application is an efficient way to produce thera-

peutic protein levels, current contact dependent methodologies generate tissue damage and

transient pain. An alternative means of applying these fields is through the deposition of

charge from an ionized gas source.

The source developed for these experiments relies on a static electric field to impart energy

to gas molecules. In this system helium gas is exposed to the greatest electric field strength

as it flows out of the generator. A transfer of energy caused by collisions between ambi-

ent charged molecules and helium gas creates a 1s2p–1s3s transition in helium. Energy

transfer from further collisions in the gas phase and photon emissions from helium causes

excitement of species present in the ambient air, which creates spectroscopic emissions for

O, OH, N2 and N+
2 . While the majority of these emissions occur in the ultraviolet range,

the total irradiance for negative polarity is 28 µW/cm2 and positive polarity 30 µW/cm2. This

level of irradiance is comparable to that generated by fluorescent lighting.

All treatments performed with this generator utilized a potential of about 8kV, irrespec-

tive of the polarity, on the high voltage electrode. Operating at this potential consumed on
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the order of 10 µA, so the generator operated at approximately 80mW. When operating

at these parameters a stable afterglow 2cm in length was measured for negative polarity

and 3cm for positive polarity. Temperature measurements made in the gas volume and

on treated surfaces showed no variation due to exposure to the discharge. It can be in-

ferred from these measurements that only a small fraction of the gas is being excited by the

generator; therefore, a non local thermal equilibrium discharge is created.

Exposure of the discharge to cells in vitro was successful in proving a capacity for me-

diating molecular delivery of small molecules existed. It was also apparent that a dose-

response relationship existed between exposure to plasma and rise in fluorescence. Max-

imum delivery of tracer molecules was attained at 10 minutes of plasma exposure and led

to a fluorescence increase of 62 and 55 percent for HaCaT and B16F10 cells respectively.

These results were achieved without adversely affecting short term cell viability.

Kinetic experiments performed in vitro offered some evidence that plasma exposure and

electroporation affect cell membranes similarly. Treatment of cells with either of these

modalities will cause a temporary increase in the diffusion of exogenous molecules into

the cytosol, which results from a destabilization of the cell membrane. In both cases the

recovery of membrane integrity and subsequent dye exclusion followed first order kinetics

with similar rate constants as electroporation, 0.25 and 0.28minutes−1 for the two cell lines

tested. These data were consistent with literature on resealing times for electroporation

(Rols and Teissie 1990, Neumann et al. 1998).

Experiments conducted in animal models support the findings of plasmas being a useful

tool for molecular delivery. Results obtained by modulating the treatment time show as

plasma exposure increases, so too does the amount of expression. The maximum expres-

sion in these experiments was found to occur at 10 minutes of plasma exposure, and was

correlated with a rise in luminescence of 37.3 fold for positive polarity and 27.1 fold for

negative polarity. Increasing the exposure time beyond 10 minutes was found to be inef-
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fective, which is likely due to cells becoming nonviable due to the extended presence of

membrane defects. Delivery of plasmids obtained with 10 minutes of plasma exposure

was determined to be similar to that obtained by electroporation, which produced a rise in

luminescence of 42.3 fold.

As 10 minutes was found to give the optimum expression of luciferase plasmid, a second

set of experiments was performed to determine the effects of modulating the DNA dose.

As the dose was escalated in these experiments from 50 to 100 µg a statistically significant

increase in luminescence was observed, but increasing the dose above 100 µg caused no

significant change in luminescence. Based on this data it was determined that 100 µg at

10 minutes of exposure generated the optimum results.

Following the success of delivering luciferase encoding DNA a more biologically rele-

vant plasmid was tested using a 100 µg DNA injection followed by exposure to plasma for

10 minutes. The plasmid delivered in these experiments encoded for gp120, which is a

surface antigen of HIV. After performing a treatment regimen that consisted of an initial

vaccination and three booster vaccinations, significant antigen specific antibody responses

were measured in the serum. Of the treatments performed positive plasma exposure gen-

erated the greatest antibody response, which correlated to a geometric mean titer of 3444.

Negative plasma and electroporation conditions generated geometric mean titers of 256 and

181 respectively.

The reason positive polarity plasma generated a greater immune response than negative

polarity is currently unknown. A possible explanation could be due to electrokinetic dif-

fusion of the DNA in the tissue during treatment. Exposure to negative polarity plasma

could have pushed the DNA into the subcutaneous fat tissue and positive polarity could

have pulled the DNA up into the upper layers of the dermis and possibly the epidermis

where there are a larger number of immune cells present.

The results obtained from these experiments give validity to plasma-based methods for
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molecular delivery. These experiments show plasma exposure is capable of destabilizing

cell membranes in a similar fashion as electroporation, which allows for the uptake of ex-

ogenous molecules. This destabilization phenomena is transient in nature and is attainable

without deleterious effects to cell viability. Unlike electroporation, delivery performed

by the plasma method does not cause tissue damage nor does it induce inflammatory re-

sponses.
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5.2 Future Direction

This research has produced an effective charge-based system for molecular delivery, which

served the purpose of a first generation technology. As such there is significant room to im-

prove upon the technology and findings generated in this research. A first step in moving

the technology forward is repeating the vaccine experiment with a larger group of animals.

This experiment was performed with groups of four animals per treatment, which creates a

situation with low statistical power. Repeating these experiments will also help to answer

the question concerning the effects of polarity on delivery.

Another future endeavor with this technology should focus on determining the mechanism

responsible for delivery. If it turns out this is a purely voltage driven phenomena exper-

iments should be performed with higher voltage and lower treatment times. If the phe-

nomena is related to current, experiments should be performed with higher current. This

must be improved as 10 minutes of treatment is going to dissuade all but the most moti-

vated of patient populations. Also long treatments will not be well received by scientist or

physicians.

Improving the knowledge base concerning the mechanism should also increase the ability

to make a new generation device. To make the device more accepted a modular device not

requiring a desktop computer, large power supply, flow meter and electronic components

should be sought after. Currently the generator and controlling equipment takes up the

better part of an operating table, which would be cumbersome for a physician to work with

on a regular basis.

Future research with this device should also test the delivery capacity attainable in tumor

models. Past research in this area with the corona based system failed to produce signifi-

cant delivery, it was hypothesized that this was due to a failure to treat deeper into tissue.

This should be investigated to determine if there is a depth limit to the current technol-
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ogy. Research in this area should involve the delivery of chemotherapeutic agents and

immunomodulatory genes.

Finally, research should be performed to determine if it is possible for the high voltage

generated by the plasma system to push drugs and genes into the tissue, similar to ion-

tophoresis. Performing research in this area would allow treatments to be performed en-

tirely needle-free. Successful transport into the skin and transfection of the cells would

revolutionize contact independent methods of drugs and gene delivery.
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