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ABSTRACT

This thesis explores predictability in the market and then designs a decision

support framework that can be used by traders to provide suggested indications of

future stock price direction along with an associated probability of making that move.

Markets do not remain stable and approaches that are highly predictive at one mo-

ment may cease to be so as more traders spot the patterns and adjust their trading

techniques. Ideally, if these “concept drifts” could be anticipated, then the trader

could store models to use with each specific market condition (or concept) and later

apply those models to incoming data. The assumption however is that the future is

uncertain, therefore future concepts are still undecided.

Maintaining a model with only the most up-to-date price data is not neces-

sarily the most ideal choice since the market may stabilize and old knowledge may

become useful again. Additionally, decreasing training times to enable modified clas-

sifiers to work with streaming high-frequency stock data may result in decreases in

performance (e.g. accuracy or AUC) due to insufficient learning times. Our frame-

work takes a different approach to learning with drifting concepts, which is to assume

that concept drift occurs and builds this into the model. The framework adapts to

these market changes by building thousands of traditional base classifiers (SVMs, De-

cision Trees, and Neural Networks), using random subsets of past data, and covering

similar (sector) stocks and heuristically combining the best of these base classifiers.

This “ensemble”, or pool of multiple models selected to achieve better predictive per-
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formance, is then used to predict future market direction. As the market moves, the

base classifiers in the ensemble adapt to stay relevant and keep a high level of model

performance. Our approach outperforms existing published algorithms.

This thesis also addresses problems specific to learning with stock data streams,

specifically class imbalance, attribute creation (e.g. technical and sentiment analysis),

dimensionality reduction, and model performance due to release of news and time of

day. Popular methods for dealing with each are discussed.
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CHAPTER 1
INTRODUCTION

Predicting stock price direction is something individuals and financial firms

have researched for years. Books and papers have been written on the subject, but

rarely are the results repeatable. Recent research has shown greater predictability

in high-frequency stock data (by second or by minute, rather than daily or weekly),

but this research is often under represented in the academic literature. Historically,

this is due to the lack of availability of trade-by-trade data, and the difficulty in

working with such large quantities of it. Furthermore, determining future market

direction in practice requires special consideration since streaming stock data may

arrive faster than a model may produce results; a model that takes 30 minutes to

arrive at a prediction is of little value if the objective was to predict one minute in

the future. This thesis explores the predictability of stock market direction using

machine learning classification techniques and high-frequency stock data.

These techniques would be of considerable interest to quantitative traders who

produce mathematical models that account for as much of 55% of the total volume of

US traded stocks [2]. Our research objective is to build a decision support framework

that can be used by traders to provide suggested indications of future stock price

direction along with an associated probability of making that move. For example,

if a trader wanted to purchase an equity position, knowing whether to buy now or

wait and re-evaluate in n seconds could allow the trader to purchase the stock at a

lower price than was previously expected. Over time this could make a significant
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difference in the profitability of the strategy.

It is argued that the lack of published working models exists because there

is little incentive to publish such methods in academic literature. The incentive to

instead sell them to a trading firm is much greater, monetarily. Also Timmermann

and Granger [216] write of a possible “file drawer” bias in published studies due to the

difficulty in publishing empirical results that are often barely or border-line statisti-

cally insignificant; but markets, since they are partially driven by human emotions,

involve a large degree of error. This may result in a glut of research arguing that

the market is efficient, and thus unpredictable; Timmermann and Granger calls this

the “reverse file-drawer” bias. It is also possible that many traditional forms of stock

market prediction are simply inadequate or sponsoring companies may not wish to

divulge successful applications [245]. We demonstrate that inefficiency and moments

of predictability exist using 22 million stock transactions. This is discussed further

in Chapter 2.

When predicting stock price direction, practitioners typically use one of three

approaches. The first is the fundamental approach, which examines the economic

factors that drive the price of stock (e.g. a company’s financial statements such as

the balance sheet or income statement). The second approach is to use traditional

technical analysis to anticipate what others are thinking based on the price and

volume of the stock. Indicators are computed from past prices and volumes and these

are used to foresee future changes in prices. The goal of technical analysis is to identify

regularities by extracting patterns from noisy data and by inspecting the stock charts
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visually. Studies show 80% to 90% of polled professionals and individual investors

rely on at least some form of technical analysis [157, 162, 163, 213]. With recent

breakthroughs in technology and algorithms, technical analysis has morphed into

a more quantitative and statistical approach [154]; this is what we call quantitative

technical analysis and it is the third approach to predicting market direction. Whereas

traditional technical analysis is visual, quantitative technical analysis is numerical,

which allows us to easily program the rules into a computer. This is the method

explored in this thesis.

Markets do not remain stable; indicators that be highly predictive at one

moment may cease to be so as more traders spot the patterns and implement them

in their trading approaches. Widespread adoption of a particular trading strategy is

enough to drive the price either up or down enough to eliminate the pattern [201, 215].

This concept drift complicates the learning of models and is unique to streaming data.

As the concept changes, model performance may decrease, requiring an update in the

training data and/or change in the quantitative technical analysis indicators used

as attributes. Modern machine learning classification techniques provide solutions

and this, along with quantitative technical analysis, allows us to outperform existing

published methods of stock market direction.

We begin Chapter 3 with an introduction to the discussion of machine learn-

ing for streaming data and in particular high-frequency stock data. This includes

descriptions of traditional supervised learning methods and different ways of evaluat-

ing classifiers that are used for analysis later in the thesis. Chapter 4 then discusses
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the two main approaches to learning from streaming data: adaptive (online) and

wrapper methods. Adaptive methods learn data incrementally (as instances arrive)

and efficiently with a single pass through the data; they are ideal for use with high-

frequency streaming data because they require limited time and memory. Forgetting

factors can be integrated in the model to give less weight to older data, thus grad-

ually making older data obsolete. Wrapper methods use traditional classification

algorithms, such as support vector machines or neural networks (both are explained

in Chapter 3), that learn on collected batches of data. The models are then chosen

and combined to form predictions, such as through the use of ensembles.

High-frequency streaming stock data requires special consideration for three

main reasons: first, the market is constantly changing, so models quickly become

obsolete; second, speedy processing is required to make fast predictions; and third,

specific volumes of data are needed to make precise decisions. In Chapter 5 we address

problems specific to stock data such as imbalanced datasets, too much and irregularly

spaced data, and attribute creation and selection.

In Chapter 6, we discuss our new wrapper-based ensemble method that pro-

vides a solution for all three considerations outlined in Chapter 5. This method is

created by building thousands of models in parallel using price and volume data cover-

ing different periods of time and using different stocks, and then efficiently switching

between these models as time progresses. We then demonstrate an improvement over

existing methods using our new approach.

Lastly in Chapter 7 we summarize our thesis and discuss an additional idea
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for future work; specifically using misclassification costs to optimize decisions rather

than AUC.
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CHAPTER 2
BACKGROUND OF MARKET PREDICTABILITY

2.1 Overview

This thesis examines the use of machine learning algorithms for the predic-

tion of stock price direction in the near term (e.g. seconds to minutes in the future).

Mainstream finance theory has traditionally held the view that financial prices are

efficient and follow a random walk, so we address this question throughout this chap-

ter. How then is it possible to predict future prices if markets are efficient and thus

unpredictable? In Section 2.2 market efficiency is defined and from this we explain the

Efficient Market Hypothesis. In Section 2.3 we explore market inefficiency by running

a series of experiments using conditional probabilities to demonstrate that the mar-

ket has moments of high predictability that are not explained by traditional market

dynamics. Starting in Section 2.4 we explain the differences between the fundamental

and technical approaches to predicting stock prices, and provide a brief introduction

to how these quantitative methods can be used along with modern machine learning

algorithms to predict future price direction.

2.2 Market efficiency

2.2.1 Definition

Mainstream finance theory has traditionally held the view that financial prices

are efficient and follow a random walk and are thus unpredictable. The definition of

a random walk is a process by which the changes from one time period to the next
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are independent of one another, and are identically distributed. One of the earliest

studies of market efficiency was done by Fama in 1965 to describe how equity prices at

any point in time best represent the actual intrinsic value, with the prices updating

instantaneously to information [71]. Efficiency is associated with a trendless and

unpredictable financial market.

According to the theory of random walks and market efficiency, the future

direction of a stock is no more predictable than the path of a series of cumulative

random numbers [71]. Statistically it can be said that each successive price is inde-

pendent from the past; each series of price changes has no memory. If testing for

market independence, the probability of market directional-movement at time t is

compared against time t − 1. The same should hold as more prior information is

added since, according to market efficiency, the past cannot be used to predict the

future.

The theory of random walks and efficiency of market prices was expanded by

Fama in [71] to the Efficient Market Hypothesis (EMH) in the 1960’s. The theory

states that the current market’s price is the correct one, and any past information is

already reflected in the price. According to the EMH, although no market participant

is all knowing, collectively they know as much as can be known; for as a group, they

are the market. These individuals are constantly updating his or her beliefs about

the direction of the market, and although he or she will disagree on the direction of

the stock, this will lead, as noted by Fama, to “a discrepancy between the actual price

and the intrinsic price, with the competing market participants causing the stock to
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wander randomly around its intrinsic value [71].”

If markets are indeed efficient, then it implies that markets never over- or

under-react during the trading day. Any effort that an average investor dedicates to

analyzing and trading securities is wasted, since one cannot hope to consistently beat

the market benchmark. Any attempt to predict future prices is futile and although

high rates of return may be achieved, they are on the average, proportional to risk.

In addition, high risk may achieve high rates of return, but it also can deliver high

rates of loss. For example, when flipping a fair coin, a roughly 50% chance of getting

heads would be expected; however, expecting heads ten times consecutively would

come with high risk. The concept of an efficient market implies that consistently

predicting the market carries a high degree of risk1.

2.2.2 Purely random?

The Efficient Market hypothesis implies that consistently beating the returns

of the market benchmark comes with a high degree of risk. Although the probability

of outperforming the market is extremely small, given enough people trying to do so,

eventually someone will succeed by pure randomness. This argument can be used to

explain successful traders or the great wealth of Warren Buffett ($53.3 billion), who

is also considered one of the world’s greatest investors.

William Sharpe, as quoted in [156], describes Warren Buffett as an anomaly

1How much risk to take for a given return is a subject of study within financial engineering
first laid out by Markowitz in 1952 [159]; this provides a quantitative framework using
probability theory along with statistics [69]. This is beyond the scope of this dissertation.
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– a “3-sigma event.” Burton Malkiel in [158] writes “In any activity in which large

number of people are engaged, although the average is likely to predominate, the

unexpected is bound to happen. The very small number of really good performers we

find in the investment management business actually is not at all inconsistent with

the laws of chance.”

As described in [34, 183]2, if everyone in the United States flipped a coin every

day, after 25 days, it would be expected that nine individuals would have flipped

continuous heads3. Instead of flipping a coin, the argument could be transformed

into outperforming the market (or benchmark). In the case of Warren Buffet, he

outperformed the market (Standard and Poor’s 500 benchmark) 39 out of 48 years

[226]; as a binomial probability with a 50% likelihood of outperforming the market,

this probability would be
�48

n=39

�
48
n

�
0.50n (1− 0.50)48−n = 0.0000076 = 7.6 × 10−6

of an individual performing at least as well. Reverting back to the coin example, if

everyone in the United States flipped a coin for 48 days, 2283 individuals would have

landed on heads at least 39 times; while rare, some individuals will simply succeed

due to chance.

Buffett [34] counters the coin flipping argument by insisting that if a large

number of the 2283 individuals who got heads at least 39 out of 48 flips came from

a particular region (which he calls Graham-and-Doddsville), then statistical indepen-

2We updated the experiment from the original 1984 paper by researching Warren Buf-
fett’s returns via his investment firm Berkshire Hathaway Inc and updating the population
of the United States to 2013 levels.

3The probability would be 0.5025 = 2.98 × 10−8 and this would be multiplied by 300
million
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dence could not be assumed and therefore there must be something noteworthy about

their investment style (or in the example, coin flipping style). Buffett attributes his

success though to thoughtful analysis of companies and their stock price (i.e. buying

companies whose value is more than the price the market gives the stock at the time).

Research in [160, 183] analyzing his investment style give credibility to this.

A distinction should be made here between investing and trading approaches.

Buffett makes his money through investing, which is the process of building wealth

over an extended period of time by buying and holding stock in profitable compa-

nies. Trading is the process of buying and selling stocks more frequently, often by

examining irregularities in price. Since trades are done more frequently, small profits

of a few pennies per share can amount to significant sums over time. The point here

is that investing and trading are based on the assumption of market inefficiencies;

predictability is possible and not purely random. While this thesis does not make

claims of model profitability or that all stocks are predictable at all times or during

all intervals, having an idea about the future market direction in the short-term (e.g.

a few minutes in the future) can lead to significant sums of money.

2.3 Market inefficiency with conditional probabilities

2.3.1 Demonstrating market inefficiency

Andrew Lo tells a joke in [152]:

An economist strolls down the street with a companion. They come upon a

$100 bill lying on the ground, and as the companion reaches down to pick it up, the
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economist says, ’Don’t bother – if it were a genuine $100 bill, someone would have

already picked it up.’

While this is an exaggeration of reasoning, many of the followers of the Efficient

Market Hypothesis hold their view that the market is efficient no matter the evidence

to the contrary. This is still a hotly contested topic within finance and economics,

split between those who believe the market has moments of predictability versus those

who do not. This is an important topic for this thesis since efficiency would make

stock prediction futile and our research would end here.

To demonstrate statistical efficiency (or inefficiency) within the equity market,

conditional probabilities of upward versus downward market movements given prior

price movement are examined. The binary representation of price movements, can be

written as Pr(�pt = {up,down}|�pt−1 = {up,down},�pt−2 = {up,down}, . . . ,�pt−m =

{up,down}) where p is the price and�pt = pt−pt−1. Market independence would have

us believe that Pr(�pt = up|�pt−1 = down) should equal Pr(�pt = up). Upward

movements are abbreviated as (+) and downward movements as (−); for example,

the conditional probability of an upward movement given two previous downward

movements is written asPr(+|−,−).

To illustrate this visually, we offer a brief comparison between random and

actual data. Figure 2.1b shows the appearance of a downward trend, which appears

simplistically predictable. However, this chart was created by randomly choosing,

with equal probability, an upward or downward movement. Figure 2.1a is actual 1-

minute intra-day data for the stock SPY over the period January 3 through December
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30, 2005. The two charts appear remarkably the same in terms of existence of trends

and potential predictability. But when the 2m conditional probabilities for memory

depth m are computed for both datasets displayed in Figure 2.1, the results are

very different. For the random data there is, as expected, roughly 0.50 conditional

probability that the market will go up given prior information. However, for the

actual intra-day 1-minute data, a probability of an upward movement occurs with

roughly 0.50 probability, but only 0.422 that the market will go up given a downward

movement in price, Pr(+|−). With entirely independent data, this should not be

true.

2.3.2 Existing research demonstrating predictability

The first paper that we are aware of that used probabilities to examine the

existence of market trends and thus market inefficiencies in high-frequency data was

Niederhoffer et al. [170]. The authors in that paper found that the stock examined

had a higher probability to reverse directions from the previous price change than to

continue in the same direction. Much of the existence of predictability was explained

by traditional market dynamics, or the bouncing of the prices between the bid and ask,

also called the bid-ask spread. Niederhoffer et al. calls this “the natural consequence

of the mechanics of trading on the stock exchange.”

The bid-ask spread is a small region of price that brackets the underlying value

of the asset. The bid is the highest price an individual is willing to pay, and the ask

is the lowest price an individual is willing to sell his or her stock at the moment. The
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Figure 2.1: Real versus random stock prices
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Figure 2.2: Bid-ask spread schematic [192]

“value” can be thought of as somewhere between the bid and ask (see Figure 2.2).

For example, let us consider that Participant 1 wants to buy 100 shares of stock

at a price of $10.01; this is currently the best bid. Another participant, Participant

2, is attempting to sell his or her shares at a price of $10.02; this is currently the best

ask. A trade does not take place until Participant 1 either pays Participant 2’s ask of

$10.02, or Participant 2 lowers his ask to Participant 1’s bid of $10.01. Of course in

an actual market, there are often hundreds or even thousands of participants at any

given time who can participate in transactions. In an efficient market, the bid and

ask fluctuate randomly [192].

Furthermore, in widely traded stocks with multiple active participants, there

may be thousands of shares available at a bid or ask at any given time. In the short

run, these orders act as a barrier to continued price movement in either direction.

The larger the number of orders, or participants, at a given price level, the longer the

price will stay constrained within a small price bound. Only after the bid or ask is

eliminated, will the stock move to another price point [170].

Alexander [6] attempted to show predictability, and therefore the existence

of trends with another approach by using quantitative rules based on prior price
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history to create profits by buying and selling. If markets are random, zero profits

would be expected over a baseline amount; however, if a model can be introduced

that shows apparent profitability, then this opens the possibility of markets that do

occasionally trend. According to Timmermann and Granger [216], the existence of a

single successful trading model would be sufficient to demonstrate a violation of the

market efficiency hypothesis. A number of empirical studies using daily data, such

as Neely et al. [169], Chang and Osler [40], Levich and Thomas [144], and Sweeney

[211] found profitability of trading rules in excess of the risks taken. The consensus

of these papers is that the market is predictable, by way of trading rule profitability,

at least part of the time.

Timmermann [215] however, found forecasting models using daily and longer

interval data to predict stock returns mostly performed poorly. He did find some

evidence of short-lived instances of predictability, thus requiring the examination of

intra-day trading data. The theory is that if there are more instances of a particular

high-probability pattern during a timespan, they will more likely be spotted by traders

and implemented in their trading strategy. This widespread adoption of a particular

trading approach drives the asset price either up or down enough to eliminate the

pattern. Furthermore, while it is common for professional traders to use intra-day

data, this short of a time horizon is often underrepresented in the academic literature.

Ohira et al. [171], Tanaka-Yamawaki [212], Sazuka [199], and Hashimoto et

al. [100] examined market data at the lowest intra-day level available, trade-by-trade

(sometimes known as tick data) and found extremely high levels of predictability. For
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example, in [171] and [212] the authors report predictability as high as 79.7% and

75.0% respectively. While the movements are clearly predictable and raise doubt as to

the efficiency of the currency market, we theorize here that much of the predictability

in those two papers can be explained by the noisy continuation4 of the bid-ask market

dynamics5.

To escape the noisy influence of bid-ask market dynamics, some researchers

have sampled the market at even intervals such as 5, 10, and 60 minute intervals.

A paper by Reboredo et al. [189] found profitability over a benchmark for 5, 10, 30,

and 60 minute intervals of intra-day data using Markov switching, artificial neural

networks and support vector machine regression models. Additionally Wang and

Yang [225] found intra-day market inefficiency in the energy markets using 30 minute

intra-day prices.

2.3.3 Our research demonstrating predictability

2.3.3.1 Introduction

Unlike [189, 225], our research demonstrates, in most cases, the market has

gone back to efficiency and thus is unpredictable after a one-minute timespan. Fur-

thermore, while we agree that predictability exists in the tick-by-tick market, we again

4Continuation is a term used by [170] and refers to the pattern where the signs of at
least two non-zero consecutive changes are in the same direction. See also Section 2.3.3.4.

5While the currency-spot market is different from the equity market, such as the absence
of a reported last trade/transaction, market dynamics still apply [17]. The large number
of participants and lack of centralized reporting facility cause the bid and ask to fluctuate
in the currency-spot market, similar to the last trade/transaction in the equity market
bouncing between the bid and ask.
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believe that the high levels of predictability found in [171, 212] have more to do with

the bid-ask spread than the past price change. We empirically examine the conditional

probabilities of trade-by-trade (tick) data along with nine temporal timespans of 1,

3, 5, 10, and 30 seconds and 1, 5, and 30 minutes for 52 separate one-week periods in

2005 of a popularly traded stock, the Standard and Poor’s 500 index (symbol: SPY).

By investigating the conditional probabilities we find that the market escapes the

confines of the bid-ask spread after a 5 to 10 second timespan and find trends with

seemingly high levels of predictability; trends have high occurrences of continuing

rather than going against the trend, unless the trend is broken. Additionally, while

the bid-ask bounce has been discussed in academic literature previously, we believe

this is the first study of this size (data set includes 15 billion in share volume) and

level of detail (number of intervals examined) that examines when a stock escapes

the confines of the bid and ask spread.

2.3.3.2 Dataset and preprocessing steps

The stock that was used to examine conditional probabilities of upward versus

downward price movements is one of the most widely traded stocks in the world,

the Standard and Poor’s 500 Index (symbol: SPY). It is an electronically traded

fund (ETF) that holds all 500 Standard and Poor’s stocks and is considered repre-

sentative of the overall US market. The sheer number of transactions makes this an

interesting stock to observe, and makes analysis easier given the need to examine

longer-length series. The problem with sparseness, or the lack of transactions when
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sampling at narrow time intervals, is minimized since volumes per day for SPY in

2005 averaged 63,186,191 ± 19,474,197; the average number of transactions per day

was 91,981± 23,332. This large volume of transactions leads to a more efficient and

unpredictable stock as greater number of participants are driving the stock to an

equilibrium; findings of predictability would be especially noteworthy.

Trade-by-trade data was retrieved from Wharton Research Data Services for

the period January 3, 2005 to December 31, 2005. As noted in [30, 70, 101, 140, 187],

high-frequency trading data, such as the type used in this paper, requires special

consideration. All late-trades, trades reported out-of-sequence, or trades with special

settlement-conditions are excluded since their prices are not comparable to adjacent

trades. The data was then reduced to temporal timespans of 1, 3, 5, 10, 20 and 30

second and 1, 5 and 30 minute data using a volume-weighted average price approach

(VWAP). This is calculated using the following formula:

PVWAP =

�
j PjVj�
j Vj

where j are the individual trades that take place over the period of time and Pj is

the price and Vj is the volume of trade j. Using a volume-weighted average price

allows for a more realistic analysis of price movements, rather than sampling the last

reported execution during a specific timespan. In addition, half-trading days such as

the day after Thanksgiving and before Independence day were eliminated.

Trades were next encoded as either upward (+) or downward (−) as compared

against the previous transaction6. The data was split into one-week periods covering

6Similar to existing literature, non-movements were eliminated from the study.
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all 52 weeks in 2005. One-week periods allow for enough instances (of prior informa-

tion) of memory depth 5 (our longest depth) and as explained in [216], the existence

of predictability in markets will eventually lead to their decline once those anomalies

become “public knowledge.” Traders who use forecasting models will bid up prices of

stocks that are expected to rise, and sell off stocks that are expected to drop, thus

eliminating their predictability. To prevent this elimination of possible predictability

– the reversion back to randomness – we used 52 one-week timespans. From here, 2m

conditional probabilities for depthm = 5 are computed. The computation of separate

weekly conditional probabilities allows us to analyze how the predictability changes

over a weekly period.

Since the stock’s previous day’s closing price and the current day’s opening

price are often different, conditional probabilities for individual days are computed

separately. This discontinuity is a distinct disadvantage of equity data over currency

data, such as was used in [171, 212]. The worldwide nature of currency trading allows

for the market to be continually open somewhere on Earth, except for weekends.

The conditional probabilities of directional movements for the timespans can

be seen in Appendix A. The 30-minute timespan probabilities were not included

in this paper because of the lack of data for all of the events, and as this paper

demonstrates in the next section, predictability can not be assumed for the 30-minute

timespan.
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2.3.3.3 Experiment 1: Test of market independence

As explained previously, to test for market efficiency, the probability of a

given market directional-movement at time t is compared against the directional-

movement at time t− 1. Under the assumption of efficiency, more prior information

should not increase predictability. A violation of independence allows the possibility

of predictable trends based on prior information.

Conditional probabilities of upward versus downward price movement, given

prior price movement for each timespan, were computed separately for each of the

52 weeks in 2005. In addition, we calculated binomial 95% confidence intervals to

determine the number of weeks that were statistically-significantly outside of the

bounds of error. If prices followed a random walk, the probability of an upward

movement given prior information would be expected to equal the probability of an

upward movement for that particular timespan, while taking into consideration the

95% confidence intervals. The week’s probability was determined to be statistically

significant if the 95% confidence interval’s lower bound is above, or upper bound is

below, the probability of the same directional movement. For example, the probability

of an upward movement in price, given prior information (Pr(+|{+,−} . . . {+,−})),

is significantly greater or less than the probability of an upward movement in price

(Pr(+)).

In Figure 2.3, the probability of an upward movement is plotted for each of

the timespans, which is roughly 50% probable that the market will go up. The

variance of probabilities increases as the time between spans increases due to the
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Figure 2.3: Boxplot of Pr(+) for different timespans aggregated over 52 separate
weeks

decrease in data points. Figure 2.4a displays the probability of an upward movement

given a downward movement, Pr(+|−). The trade-by-trade (tick) data shows the

highest predictability given prior information with a 79.0% conditional probability of

an upward movement given a downward movement. At the 30 minute timespan, there

is only a 46.2% probability that the market will move up given a previous downward

movement. This can be subtracted from 1 to get the probability of a downward given

a previous downward movement, 1−Pr(+|−) = Pr(−|−). The probabilities over the

52 weeks for the 30 minute timespan range from a high of 66.7% to a low of 22.2%7.

The number of weeks out of 52 that are statistically significant can be seen

in Figure 2.4b. From this chart it can be seen that all 52 weeks of the tick data

were statistically significantly above Pr(+), while with 5 second data a total of 40

7For a summary of the conditional probabilities over each of the different timespans,
excluding the 30 minute timespan, please see Appendix A.
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(a) Pr(+|−) for different timespans

(b) The number of weeks that are statistically significant
for the corresponding timespan where the 95% confidence
interval’s lower bound and upper bound are above or be-
low the appropriate Pr(+) respectively

Figure 2.4: Boxplot of Pr(+|−) for different timespans, along with the number of
significant weeks
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weeks were statistically-significant, with 37 weeks significantly above Pr(+) and 3

weeks belowPr(+). For the 30 minute timespan, only 9 weeks out of the 52 weeks

are statistically significantly below that timespan’s Pr(+).

In addition, we use an independent samples t-test with a 95% confidence

interval to test the hypothesis below for each of the timespans over the 52 week

period:

H0 : Pr(+) = Pr(+|−); accept independence.

H1 : Pr(+) �= Pr(+|−); reject independence.

In testing the hypothesis for independence, the null hypothesis is rejected for

all but the 30 minute timespan (see Table 2.1). Therefore, in this statistical hypothesis

testing, we can reject the independence assumption for the trade-by-trade, 1, 3, 5,

10, 20, 30 second, 1 and 5 minute timespans; the independence still holds for the

30 minute data. We conclude that the market is inefficient, and prior information

impacts price movement, until approximately the 30 minute period at which time the

market begins to become more efficient.

As previously explained, much of the predictability of, at least, the trade-by-

trade data can be explained by the bouncing of the price between the bid and ask.

In our examined stock, the average trade size is roughly 700 shares and the median

trade is 100 shares; with bid and ask sizes of 5000+ shares per side common, the

transaction prices will fluctuate up and down between the bid and the ask until all

shares are depleted. The question remains as to when the high levels of predictability

cease to be explained by the market dynamics. The next experiment explores this
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Table 2.1: Results from t-test for the different timespans and assuming unequal vari-
ances

Timespan t value p value

tick -152.67 < 0.0001
1 second -84.13 < 0.0001
3 second -42.63 < 0.0001
5 second -7.66 < 0.0001
10 second 10.32 < 0.0001
20 second 28.18 < 0.0001
30 second 31.89 < 0.0001
1 minute 21.30 < 0.0001
5 minute 7.38 < 0.0001
30 minute 1.68 0.0968

question further.

2.3.3.4 Experiment 2: Escaping the bid/ask spread

Much of the predictability of trade-by-trade (tick) intra-day data can be ex-

plained by market dynamics; the price fluctuating between the bid and ask. As

explained previously, a bid is the best price at which an individual is willing to buy,

while an ask is the best price at which one is willing to sell. When a stock has a large

number of participants placing orders at the same price, but the average transaction

size executing against the bid or ask is smaller, it takes time before the stock’s bid or

ask is eliminated and the stock is allowed to move to the next price point.

Using the same terminology as [170], when the signs of two non-zero consecu-

tive changes are unlike each other, this pattern will be called a reversal, and when they

are in the same direction, the pattern will be called a continuation. Re-examining

Figures 2.4a and 2.4b, it can be observed that trade-by-trade data, up to a temporal



25

����

�����

�����

�����

������

������

������

���
��

���
��

��������

���

���

���

���

���

���

�
��

�
�
�
��
��
�

���������

�������

���������

�����

���������

�������

���������

Figure 2.5: Mean conditional probabilities of depth 2 for different timespans. Until 5
to 10 seconds, predictability is higher for reversals of trends, after which continuation
of trend is higher.

timespan of 5 seconds, has a higher probability of reversal, rather than a trend con-

tinuation. After 10 seconds, the market has a higher probability of continuation than

reversal. This can also be observed in Figure 2.5, where the probabilities for differ-

ent conditional probabilities up to depth 2 are plotted to show how the probabilities

change with the increase in time between data points. Thirty-minute intervals were

not included because of the lack of independence. As seen from the chart, market

reversals (Pr(+|−),Pr(+|−,−), Pr(+|−,+)) occur with a greater likelihood than

do continuations (Pr(+|+), Pr(+|+,+), Pr(+|+,−)) until 5 to 10 seconds. After

this period, continuations occur with greater probability than reversals. While the

variance increases as the interval between timespans becomes larger, the number of

statistically significant weeks remain high and stable over the 52 weeks until a one to
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Table 2.2: Comparing the conditional probabilities of directional movements for re-
versals versus continuations – brackets are the standard deviations

Event Probability
tick 5 second 20 second

Reversals Pr(+|−) 0.79 [0.01] 0.52 [0.02] 0.43 [0.02]
Pr(+|−,−) 0.85 [0.02] 0.49 [0.03] 0.44 [0.01]
Pr(+|−,−,−) 0.85 [0.03] 0.48 [0.03] 0.44 [0.02]
Pr(+|−,−,−,−) 0.84 [0.04] 0.47 [0.03] 0.44 [0.02]
Pr(+|−,−,−,−,−) 0.84 [0.07] 0.46 [0.03] 0.44 [0.03]

Continuations Pr(+|+) 0.21 [0.01] 0.47 [0.02] 0.56 [0.01]
Pr(+|+,+) 0.15 [0.02] 0.50 [0.03] 0.55 [0.01]
Pr(+|+,+,+) 0.15 [0.03] 0.52 [0.02] 0.56 [0.02]
Pr(+|+,+,+,+) 0.17 [0.03] 0.53 [0.03] 0.56 [0.02]
Pr(+|+,+,+,+,+) 0.18 [0.08] 0.53 [0.03] 0.55 [0.03]

five minute timespan.

Table 2.2 displays the probability of continuations and reversals for trade-by-

trade, along with a 5 second and 20 second timespan. Reversals occur with higher

probabilities for trade-by-trade data. For example, the Pr(+|−) occurs with prob-

ability 0.79 and Pr(+|+) occurs with probability of 0.21 which infers a reversal of

1 − Pr(+|−) = Pr(−|+) = 0.79. By the 20 second timespan, the reversal Pr(+|−)

occurs with probability 0.43, which infers a continuation of two downward movements

of 1− Pr(+|−) = Pr(−|−) = 0.57.

These probabilities are not fleeting. Figure 2.6 shows the trend continuation

events using 30 second interval data (with added 95% confidence intervals) by month.

All twelve months are statistically significant from a probability of an upward move-

ment during the same period. This further demonstrates the stability of events using

high-frequency data.
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Figure 2.6: Examining monthly stability of events using 30 second interval data

We theorize a 5 to 10 second timespan is the average length of time that the

market price breaks the confines of the bid and ask and can move freely outside

of these bounds. This observed reversal of directional movements before 5 seconds

reflects the price being trapped between the bid and ask. While these movements are

clearly predictable, they do not represent actual market changes, merely bounces of

price between the bid and ask.



28

2.3.3.5 Trends with high apparent predictability

An interesting pattern is observed in the data after a 10 second timespan,

which requires further analysis. Among some of the highest probabilities observed

with the strongest significance over the 52 weeks, is what we call the trend reversion-

to-mean (Sub-Figures 2.7c and 2.7d). This can be described as the market trending in

one direction, followed by an abrupt change in the opposite direction. The probability

that the next market directional movement will move in the same direction as the

last movement is higher.

By comparing the trend reversion-to-mean to the trend continuation (Sub-

Figures 2.7a and 2.7b), it can be observed that the probability of trend reversion-to-

mean occurs with a greater number of statistically significant number of weeks (see

Table 2.3). For example, in a 30 second temporal timespan, Pr(+|+,−,−,−) occurs

with a probability of 59.3% and is statistically significant compared to the probability

of an uptick (Pr(+)), 42 out of 52 weeks. We compare this to the probability of

Pr(+|+,+,+,+), which occurs with a probability of 55.3%, but is only statistically

significant 26 out of 52 weeks. Furthermore, the reversion-to-mean probabilities are

larger and occur with a greater number of statistical weeks than continuations of the

same depth. This pattern occurs in the 20 second, 30 second, 1 minute, and 5 minute

timespans.
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(a) Continuation: Pr(+|+, . . . ,+) (b) Continuation: Pr(−|−, . . . ,−)

(c) Reversion-to-mean: Pr(−|−,+, . . . ,+) (d) Reversion-to-mean: Pr(+|+,−, . . . ,−)

Figure 2.7: Examples of high-probability events: the trend continuation and the trend
reversion-to-mean
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Table 2.3: Comparing the probabilities and the level of significance for reversion-to-
mean and trend continuations for a 30 second timespan

Event Prob. # weeks that are stat.
sig. from Pr(+)

Reversion-to- Pr(+|+,−,−) 0.587[0.024] 49
mean Pr(+|+,−,−,−) 0.593[0.034] 42

Pr(+|+,−,−,−,−) 0.599[0.039] 34
Pr(−|−,+,+) 0.598[0.026] 50
Pr(−|−,+,+,+) 0.605[0.029] 49
Pr(−|−,+,+,+,+) 0.613[0.040] 41

Continuation Pr(+|+,+,+) 0.556[0.021] 42
Pr(+|+,+,+,+) 0.553[0.028] 26
Pr(+|+,+,+,+,+) 0.546[0.046 15
Pr(−|−,−,−) 0.563[0.021] 45
Pr(−|−,−,−,−) 0.56[0.029] 30
Pr(−|−,−,−,−,−) 0.559[0.034] 19

2.3.4 Conclusion

Market inefficiency was examined empirically by analyzing trade-by-trade data

at nine timespans. While statistically significant levels of predictability were found,

we theorize that the predictability for timespans prior to 5 to 10 seconds is due to

traditional market dynamics of prices fluctuating between the stock’s bid and ask.

By examining the stock’s probability of upward movements (Pr(+)) versus upward

given downward movements (Pr(+|−)), it was found that prior to a 5 to 10 second

timespan the probabilities of reversal movements occurred with higher probability

than continuation of price movements. After 5 to 10 second timespans, continuation

of price movements became more probable than reversals. We theorize this to be the

point at which the stock examined was escaping the confines of the bid and ask.

The probabilities of market reversions-to-mean were statistically higher than
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probabilities of continuations of the same depth; this occurred in 20 second, 30 sec-

ond, 1 minute, and 5 minute temporal timespans. We also observed higher numbers

of statistically significant weeks of market reversions-to-mean as compared to the

number of statistically significant weeks of market continuations for the same depth.

This suggests that the market is being pulled back to the equilibrium price. The

information presented here would be useful for traders when deciding to exit or hold

a position; if the probability is higher for the market to reverse directions than con-

tinue, a trader may decide to close the position, whereas with a higher probability

for the market to continue in the same direction, the trader may decide to hold the

position longer.

Given that the chosen stock (symbol: SPY) is an exchange-traded fund which

is comprised of the 500 stocks within the Standard and Poor’s 500 index, the results

are especially noteworthy. This stock, being one of the most widely traded stocks

in the world, would suggest that all inefficiencies were spotted by others and imple-

mented in their trading approach. This widespread adoption of the high-probability

events would drive the asset price either up or down enough to eliminate the pattern.

However, this is not what was found; stable, high-probability market movement, were

still found for this popular stock.

Further research would be necessary to determine the timespans at which other

stocks become inefficient/efficient. While the 30 minute market is the timespan at

which the examined stock became efficient, surely this would be different for each

stock, for stocks have different levels of trading activity and levels of participation.



32

This continued study would be necessary to understand in order to implement an

ideal trading model that takes advantage of inefficient markets and enable traders to

make better trading decisions.

While many in mainstream finance have reservations of market inefficiency, or

the existence of trends, Malkiel states that there may be a possible explanation of

why trends might perpetuate themselves [158]:

...it has been argued that the crowd instinct of mass psychology makes it so.

When investors see the price of a speculative favorite going higher and higher, they

want to jump on the bandwagon and join the rise. Indeed, the price rise itself helps

fuel the enthusiasm in a self-fulfilling prophecy. Each rise in price just whets the

appetite and make investors expect a further rise.

Whereas the efficient market hypothesis expects traders and investors to act

rationally and make the best decisions, behavioral economists argue that in the short-

run people do not make rational decisions to maximize profit. Humans are susceptible

to acting irrationally and making poor decisions when faced with greed [41]. Gross-

man and Stiglitz [93] argue that perfectly efficient markets are impossible; if markets

are efficient then there would be little reason to trade and markets would collapse.

These behavioral economists instead concentrate on the consequences of irrational

actions.

Why is market inefficiency so contested? Timmermann and Granger [216]

write of a possible “file drawer” bias in published studies due to the difficulty in

publishing empirical results that are often barely or border-line statistically insignifi-
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cant; but markets, since they are partially driven by human emotions, involve a large

degree of error. This may result in a glut of research arguing that the market is

efficient, and thus unpredictable; Timmermann and Granger calls this the “reverse

file-drawer” bias. Additionally, it is possible that it is not so much if a profitable

system can be created, it is if a researcher has enough incentive to publish a method

in an academic journal. An investment bank or other for-profit company would offer

a greater incentive – money. It is also possible that many traditional forms of stock

market prediction are simply inadequate or sponsoring companies may not wish to

divulge successful applications [245].

2.4 Methods of predicting

2.4.1 Introduction

In the previous section we raised doubts as to the efficiency of the market and

demonstrate that during specific market movements high levels of market predictabil-

ity exist. For those who believe that markets are predictable, there are two approaches

for predicting stock prices and therefore stock direction; these are the “fundamental”

and the “technical” approaches with practitioners typically called fundamentalists

and technicians respectively. The fundamentalist looks at the external and economic

factors to determine price change. The belief is that since stocks are shares of a

corporation, examining the fundamental indicators such as profits, sales, debt levels,

and dividends should provide an outlook into the future direction of the price. The

technician believes that the past performance of stocks can help forecast future price
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movements. He studies historical prices to try to understand the psychology of other

market participants (the crowds). The technician attempts to identify regularities in

the time-series of price or volume information; the thought is that price patterns move

in trends, and that these patterns often repeat themselves [6, 158]. We have already

seen one example of quantitative technical analysis using conditional probabilities to

examine market movements in Section 2.3. A further explanation follows.

2.4.2 Fundamental and technical type approaches

2.4.2.1 Fundamental analysis

As explained previously, the fundamental approach examines the economic

factors that drive the price of stock with the aim to reveal the intrinsic (fundamental)

value of the company [229]. For example companies release financial information

four times per year, with three quarterly 10-Q statements and a final year end 10-K

statement. Contained in these reports are the profits, sales, and debt levels which can

help to determine valuation of the business. The idea seems reasonable considering

stocks are shares of businesses and research [8, 36, 37, 51, 75, 188, 218] seems to

give credibility to this approach. The problem, as can be seen in Figure 2.8, is

these financial statements are released periodically thus they are of little use when

explaining the intra-day prices such as those plotted in Figure 2.98. In the first plot

the stock Piedmont Natural Gas (symbol: PNY) is shown over the course of 2012 and

pinpoints days where financial statements are released to the public. It does appear

8A slight price discrepancy exist between this and Figure 2.8. In Figure 2.8 the price is
adjusted for the stock dividend, whereas in Figure 2.9 the price excludes this adjustment.
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Figure 2.8: Examining the daily stock price of Piedmont Natural Gas (symbol: PNY);
arrows mark the dates that 10-Q (quarterly financial statements) and 10-K (annual
financial statements) are released

that leading up to, and after, many of these releases, the stock has large price swings

of volatility. This does not explain the intra-day movements shown in the second

plot. On that day of January 23, 2012 no financial information was released, yet the

stock moved erratically over the course of the day.

It could be argued that the stock Piedmont Natural Gas moved during the

course of the day because the price of natural gas/oil or interest rates or other stocks

moved erratically during this time. How though does this explain the drop of 3%

of Piedmont Natural Gas after the opening of the market after the terrorist attack

on September 11, 2001; a company that does business primarily in the Carolinas

and Tennessee? Or the 8% drop of Microsoft, a company that sells software inter-

nationally? Examining fundamentals (i.e. balance sheet, income statements, or any
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Figure 2.9: The intra-day stock price of Piedmont Natural Gas (symbol: PNY) for
January 23, 2012

news that has a direct or indirect bearing on the economy) would offer little to ex-

plain the drop. Behavioral economists would explain intra-day movements in terms

of psychology (how people think) and would blame this on both fear and greed. Ac-

cording to [153] these are the two most common culprits in the downfall of rational

thinking. Fundamental analysis though has a difficult time explaining these short

term movements and for this reason the fundamental approach is typically used when

predicting prices months and years in the future. This thesis goal is to predict stock

direction seconds and minutes into the future, thus another approach is needed, and

this approach is technical analysis.
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2.4.2.2 Technical analysis

Technicians (those who follow technical analysis) attempt to anticipate what

others are thinking based on the price and volume of the stock (see Figure 2.10).

Indicators are computed from past history of the prices and volumes and these are

used as signals to foresee future changes in prices. The core concept behind technical

analysis is the idea of a trend, with future prices more likely to continue in the direction

of the current trend than to reverse. Our experiments in Section 2.3 give credibility

to this idea in the short term. Technicians argue the trend is caused by an imbalance

of stock between supply and demand, with demand for the stock causing the increase

in the stock price [25]. Instead of interpreting the fundamentals of a news story, the

technician examines how the market reacts to the news. If the stock fails to react

to the news, it may be that the news is incorrect or does not accurately reflect the

underlying supply and demand [5].

One suggestion of why technical analysis may work is that followers often

create a self-fulfilling argument; traders, not wanting to miss the price increase, buy

in anticipation of the indicator, thereby helping to fuel the enthusiasm for the stock

and pushing it to higher levels [158]. This can work in the other direction as well,

traders, not wanting to miss the price decrease, sell in anticipation of the indicator,

thereby helping to fuel pessimism for the stock and pushing it to lower levels.

An example of a popular indicator that appears to be based more on a self-

fulfilling concept than on any specific reason is the head-and-shoulders indicator seen

in Figure 2.11. The characteristic of this pattern as described in [227] is:
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Figure 2.10: The stock Exxon on January 3, 2012 with the high, low and closing
prices shown on the top plot and the transaction volumes shown on the bottom plot

1. The “head” should be significantly taller than the “shoulder”

2. The top and bottom of the shoulders should be of roughly equal height

3. The spacing between the shoulders and head should be roughly symmetric

When the price intersects the “neckline”, which is a straight line connecting the

bottom of the left and right shoulders, the trader should sell short. Research by

Weller et al. [227] using intra-day tick-by-tick data on all stocks in the S&P 100 index

from 1999 to 2005, find statistically significant large movements consistent with the

predictions.

The use of technical analysis remain high, with studies showing adherence

among professionals and individual investors of up to 80% to 90% [157, 162, 163, 213].

As described earlier, a skew toward technical analysis exists in the literature when
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Figure 2.11: Example of a head-and-shoulders technical analysis indicator

considering shorter time horizons partially because fundamental analysis, such as

financial income statements, do not explain all of the price moves during the trading

day. Popular books on technical analysis include [1, 64, 167, 168].

2.4.2.3 Quantitative technical analysis

The goal of technical analysis is to identify regularities by extracting patterns

from noisy data. According to practitioners, specific patterns are empirically found to

be forebearers of either upward or downward moves in the market. Prior to widespread

use of computers these patterns were uncovered visually. With recent breakthroughs

in technology and algorithms, technical analysis has morphed into a more quantitative

and statistical approach [154]. We differentiate between technical analysis and call
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this quantitative technical analysis. Whereas traditional technical analysis is visual,

and often full of “vague rules”, quantitative technical analysis is numerical. This

allows us to easily program the rules into a computer.

An example of a quantitative technical indicator is the Bollinger Band, which

was named after John Bollinger, who popularized it. It is comprised of a middle,

upper, and lower band. The middle band is a moving average of size n of the high, low,

and closing transaction prices. The upper band is d standard deviations (generally

two) above the middle band, and the lower is d standard deviations below. It is

formalized below with t representing time:

MiddleBand(n) =
1

n

n�

i=1

hight−i + lowt−i + closet−i

3

UpperBand(d, n) = MidBand(n) + (d ∗ σ)

LowerBand(d, n) = MidBand(n)− (d ∗ σ) (2.1)

The Bollinger Band is an indicator of oversold (i.e. inexpensive, therefore buy

the stock) and overbought (i.e. expensive, therefore sell the stock) conditions. When

the price is near the upper or lower bands, it indicates that a reversal is imminent.

This is visualized in Figure 2.12 with oversold conditions marked with a green triangle

and overbought conditions marked with a red upside down triangle.

Our last example is the Moving Average Convergence Divergence Oscillator



41

� �� �� �� �� ���

����

����

����

����

����

����

����

����

����

����

�
��
�
��
�
��
��
�
�

�������������

��������������

�������������

��������������

����

���

Figure 2.12: Example of using Bollinger Bands as an quantitative technical analysis
indicator

(MACD) which was developed by Gerald Appel with the formalization following:

ShortEMA(n1) = exponential moving average of size n1

LongEMA(n2) = exponential moving average of size n2

MACD(n1, n2) = ShortEMA(n1)t − LongEMA(n2)t

SignalLine(n1, n2, n3) = exponential moving average of MACD(n1, n2) of size n3

DiffMACDSignal(n1, n2, n3) = MACD(n1, n2)t − SignalLine(n1, n2, n3)t

The MACD itself is the difference between a short and long-term exponen-

tial moving average and it generates overbought and oversold positions when an

exponential moving average of the MACD goes above or below zero (i.e. when the

DiffMACDSignal(n1, n2, n3) becomes positive or negative). This is represented graph-

ically in Figure 2.13; the bottom plot visualizes the DiffMACDSignal(n1, n2, n3) which
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Figure 2.13: Example of using Moving Average Convergence Divergence Oscillator
(MACD) as an quantitative technical analysis indicator

creates overbought signals in the top plot when it becomes positive and oversold sig-

nals in the top plot when it becomes negative.

Additional examples of over 20 groups of quantitative technical analysis indi-

cators used in this thesis are given in Appendix C.

Research [154, 178, 200, 229] has shown technical analysis to be useful to

predict stock direction. In [107] and [218] the authors use both fundamental and

technical analysis along with a dimensionality reduced classifiers (a support vector

machine and an artificial neural network, respectively) to predict stock prices with

good results. Shen et al. [206] uses an RBF neural network optimized heuristically

and obtained good results. In addition, Lai et al. [135] uses technical indicators with

decision trees to predict the Taiwanese market with ideal results. Chen et al. [48]

used Fibonacci numbers, which are commonly used in technical analysis, along with
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neural networks and achieved moderate success. Ghandar et al. [90] used technical

indicators as attributes in a fuzzy logic system and outperformed in profitability a

baseline model. However, all of these papers used daily data. Reboredo et al. [189]

uses 5, 10, 30 and 60 minute data and using artificial neural networks found slight

predictability in the Standard and Poor’s 500 Index (S&P 500). Lippi et al. [148]

produced a profitable model using technical analysis with a support vector machine

and intra-day data. Wang and Yang [225] also used technical indicators and found

intra-day inefficiency within the heating and natural gas markets.

None of these papers however specify if they are able to work in real-time

settings and according to [189] there remains a lack of published research using high-

frequency data. As noted previously the lack of published results may simply be that

existing methods are inadequate or sponsoring companies may not wish to divulge

successful applications [245]. This is the goal of this thesis – exploring the use of

modern streaming algorithms, such as adaptive and wrapper methods, for use in

predicting high-frequency stock prices.

2.5 Conclusion

An efficient market implies that the market can never be consistently beat or

predicted and although high rates of return may be achieved, they are on average,

proportional to risk. Furthermore a proponent of the Efficient Market Hypothesis

would believe research predicting market direction, such as this thesis, is futile.

Our research examined conditional probabilities of stock direction in a popular
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stock and found moments of predictability not explained by traditional market dy-

namics. These high probability events disappeared after several minutes. This gave

us confidence to examine stock price predictability further. Additionally we were

careful not to make claims that this predictability existed in all stocks or even that

this could lead to profitability. It is simply an exploration of and declaration of its

existance in some cases.

In Section 2.4 two popular approaches to predicting stock prices were examined

– the fundamental and technical. Fundamental approaches have been shown to be

useful in predicting stock prices through the use of balance sheets and financial income

statements, but this is for longer outlooks (e.g. weeks or months). This provides little

help for our problem of predicting higher-frequency events.

The second approach is the technical which examines prior stock prices and

volumes as a signal to foresee future changes in prices. This technical approach, with

the use of modern machine learning algorithms, is the method we use in this paper

and is largely ignored in academic research. The next chapter introduces machine

learning.
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CHAPTER 3
MACHINE LEARNING INTRODUCTION

3.1 Overview

In Section 2.4.2 of the last chapter we discussed technical analysis indicators

used by many traders to predict future market prices. However, the technical analysis

indicators shown thus far are simple if-then algorithms. For example, if the price

is above the upper band of the Bollinger Band, then the price is expensive, or over-

bought. These systems have evolved to more sophisticated methods using algorithms

from artificial intelligence and machine learning [51].

In this chapter we discuss what is meant by machine learning and how the al-

gorithms can be used to learn from data. Then in Section 3.3 we provide an overview

of popular machine learning algorithms, like artificial neural networks, support vec-

tor machines, and ensembles. Section 3.4 explores different methods of comparing

classifiers and lastly Section 3.5 examines different methods to evaluate unseen data

(especially streaming data), with holdout sets and sliding windows, using these per-

formance metrics.

3.2 Supervised versus unsupervised learning

Machine learning is a branch of artificial intelligence that uses algorithms, for

example, to find patterns in data and make predictions about future events. In ma-

chine learning a dataset of observations called instances is comprised of a number

of variables called attributes. Supervised learning is the modeling of these datasets
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Table 3.1: An example of a supervised learning dataset

Time x1 x2 x3 x4 x5 x6 x7 y

09:30 b n -0.06 -116.9 -21.7 28.6 0.209 up
09:31 b b 0.06 -85.2 -61 -21.7 0.261 unchanged
09:32 b b 0.26 -4.4 -114.7 -61 0.17 down
09:33 n b 0.11 -112.7 -132.5 -114.7 0.089 unchanged
09:34 n n 0.08 -128.5 -101.3 -132.5 0.328 down

containing labeled instances. In supervised learning, each instance can be represented

as (x, y), where x is a set of independent attributes (these can be discrete or con-

tinuous) and y is the dependent target attribute. The target attribute y can also

be either continuous or discrete; however the category of modeling is regression if it

contains a continuous target, but classification if it contains a discrete target (which

is also called a class label). Table 3.1 demonstrates a dataset for supervised learning

with seven independent attributes x1, x2, . . . , x7, and one dependent target attribute

y. More specifically, x1, x2 ∈ {b, n} and x3, . . . , x7 ∈ R and the target attribute

y ∈ {up,unchanged,down}. The attribute time is used to identify an instance and

is not used in the model. Also the training and test datasets are represented in the

same way however, where the training set contains a set of vectors of known label (y)

values, the labels for the test set is unknown.

In unsupervised learning the dataset does not include a target attribute, or a

known outcome. Since the class values are not determined a priori, the purpose of this

learning technique is to find similarity among the groups or some intrinsic clusters

within the data. A very simple two-dimensional (two attributes) demonstration is
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Figure 3.1: An example of an unsupervised learning technique – clustering

shown in Figure 3.1 with the data partitioned into five clusters. A case could be

made however that the data should be partitioned into two clusters or three, etc.; the

“correct” answer depends on prior knowledge or biases associated with the dataset to

determine the level of similarity required for the underlying problem. Theoretically we

can have as many clusters as data instances, although that would defeat the purpose

of clustering.

Depending on the problem and the data available, the algorithm required

can be either a supervised or unsupervised technique. In this thesis, the goal is

to predict future price direction of the streaming stock dataset. Since the future

direction becomes known after each instance, the training set is constantly expanding
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with labeled data as time passes. This requires a supervised learning technique.

Additionally, we explore the use of different algorithms since some may be better

depending on the underlying data. Care should be taken to avoid, “when all you

have is a hammer, everything becomes a nail.”

3.3 Supervised learning algorithms

3.3.1 k Nearest-neightbor

The k nearest neighbor (kNN) is one of the simplest machine learning methods

and is often referred to as a lazy learner because learning is not implemented until

actual classification or prediction is required. It takes the most frequent class as

measured by the weighted euclidean distance (or some other distance measure) among

the k closest training examples in the feature space. In specific problems such as text

classification, kNN has been shown to work as well as more complicated models

[240]. When nominal attributes are present, it is generally advised to arrive with a

“distance” between the different values of the attributes [236]. For our dataset, this

could apply to the different trading days, Monday, Tuesday, Wednesday, Thursday,

and Friday.

A downside of using this model is the slow classification times, however we can

increase speed by using dimensionality reduction algorithms; for example, reducing

the number of attributes from 200 to 20. Since the learning is not implemented until

the classification phase though, this is an unsuitable algorithm to use when decisions

are needed quickly.
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3.3.2 Näıve Bayes

The näıve Bayes classifier is an efficient probabilistic model based on the Bayes

Theorem that examines the likelihood of features appearing in the predicted classes.

Given a set of attributes X = {x1, x2, . . . , xn}, the objective is to construct the

posterior probability for the event Ck among a set of possible class outcomes C =

{c1, c2, . . . , ck}. Therefore, with Bayes’ rule P (Ck|x1, . . . , xn) ∝ P (Ck)P (x1, . . . , xn|Ck),

where P (x1, . . . , xn|Ck) is the probability that attribute X belongs to Cj, and assum-

ing independence1 we can rewrite as P (Cj|X) ∝ P (Cj)
n�

i=1

P (xi|Cj). A new instance

with a set of attributes X is labeled with the class Cj that achieves the highest

posterior probability.

3.3.3 Decision table

A decision table classifier is built on the conceptual idea of a lookup table. The

classifier returns the majority class of the training set if the decision table (lookup

table) cell matching the new instance is empty. In certain datasets, classification

performance has been found to be higher when using decision tables than with more

complicated models. A further description can be found in [124, 125, 127].

3.3.4 Support Vector Machines

Support vector machines [221] have long been recognized as being able to

efficiently handle high-dimensional data. Originally designed as a two-class classifier,

it can work with more classes by making multiple binary classifications (one-versus-

1The assumption of independence is the näıve aspect of the algorithm.
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one between every pair of classes). The algorithm works by classifying instances

based on a linear function of the features. Additionally non-linear classification can

be performed using a kernel. The classifier is fed with pre-labeled instances and by

selecting points as support vectors the SVM searches for a hyperplane that maximizes

the margin. More information can be found in [221].

3.3.5 Artificial Neural Networks

An artificial neural network (ANN) is an interconnected group of nodes in-

tended to represent the network of neurons in the brains. They are widely used in

literature, because of their ability to learn complex patterns. We present only a short

overview of their structure in this section.

The artificial neural network is comprised of nodes (shown as circles in Figure

3.2), an input layer represented as x1 . . . , x6, an optional hidden layer, and an output

layer y. The objective of the ANN is to determine a set of weights w (between the

input, hidden, and output nodes) that minimize the total sum of squared errors.

During training these weights wi are adjusted according to a learning parameter

λ ∈ [0, 1] until the outputs become consistent with the output. Large values of λ may

make changes to the weights that are too drastic, while values that are too small may

require more iterations (called epochs) before the model sufficiently learns from the

training data.

The difficulty of using artificial neural networks is finding parameters that

learn from training data without over fitting (i.e. memorizing the training data) and
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x1 x2 x3 x4 x5 x6

input layer

hidden layer

output layer

y

Figure 3.2: Example of a multilayer feed-forward artificial neural network

therefore perform poorly on unseen data. If there are too many hidden nodes, the

system may overfit the current data, while if there are too few, it can prevent the

system from properly fitting the input values. Also, a choice of stopping criterion

has to be chosen. This can include stopping based on when the total error of the

network falls below some predetermined error level or when a certain number of epochs

(iterations) has been completed [16, 25, 177]. To demonstrate this, see Figure 3.3.

This plot represents a segment of our high-frequency trade data that will be used later

in this thesis. As the epochs increase (by tens), the number of incorrectly identified

training instances decreases, as seen by the decrease in the training error. However,

the validation error decreases until 30 epochs, and after 30, starts to increase. Around

roughly 80 epochs the validation error begins to decrease again, however we need

to make a judgment call since an increase in epochs increases the training times

dramatically.

Yu et al. [245] state that with foreign exchange rate forecasting, which is similar

to stocks because of the high degree of noise, volatility and complexity, it is advisable

to use the sigmoidal type-transfer function (i.e. logistic or hyperbolic tangent). They
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Figure 3.3: Artificial neural network classification error versus number of epochs

base this on the large number of papers that find predictability using this type of

function in the hidden layer.

3.3.6 Decision Trees

The decision tree is one of the more widely used classifiers in practice because

the algorithm creates rules which are easy to understand and interpret. The version

we use in this paper is also one of the most popular forms, the C4.5 [186], which

extends the ID3 [185] algorithm. The improvements are: 1) it is more robust to

noise, 2) it allows for the use of continuous attribute, and 3) it works with missing

data.

The C4.5 begins as a recursive divide-and-conquer algorithm, first by selecting

an attribute from the training set to place at the root node. Each value of the attribute
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creates a new branch, with this process repeating recursively using all the instances

reaching that branch [236]. An ideal node contains all (or nearly all) of one class. To

determine the best attribute to choose for a particular node in the tree, the gain in

information entropy for the decision is calculated. More information can be found in

[186].

3.3.7 Ensembles

An ensemble is a collection of multiple base classifiers that take a new example,

pass it to each of its base classifiers, and then combines those predictions according

to some method (such as through voting). The motivation is that by combining

the predictions, the ensemble is less likely to misclassify. For example, Figure 3.4a

demonstrates an ensemble with 25 hypothetical classifiers, each with an independent

error rate of 0.45 (assuming a uniform 2 class problem). The probability of getting

k incorrect classifier votes is a binomial distribution, P (k) =
�
n
k

�
pk(1 − p)n−k. The

probability that 13 or more is in error is 0.31, which is less than the error rate of the

individual classifier. This is a potential advantage of using multiple models.

This advantage of using multiple models (ensembles) is under the assumption

that the individual classifier error rate is less than 0.50. If the independent classifier

error rate is 0.55, then the probability of 13 or more in error is 0.69 – it would be

better not to use an ensemble of classifiers. Figure 3.4b2 demonstrates the error rate

of the ensemble for three independent error rates, 0.55, 0.50, and 0.45 for ensembles

2The idea for the visualization came from [59, 82].
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(a) Probability that precisely n of 25 clas-
sifiers are in error (assume each has error
rate of 0.45)
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(b) Error rate versus number of classifiers
in the ensemble (employing majority vot-
ing) for three independent error rates

Figure 3.4: Ensemble simulation

containing an odd number of classifiers, from 3 to 101. From the figure it can be seen

that the smaller the independent classifier error rate is, and the larger the number of

classifiers in the ensemble is, the less likely a majority of the classifiers will predict

incorrectly [59, 82].

The idea of classifier independence may be unreasonable, given that the clas-

sifiers may predict in a similar manner due to the training set. Obtaining a base

classifier that generates errors as uncorrelated as possible is ideal. Creating a diverse

set of classifiers within the ensemble is considered an important property since the

likelihood that a majority of the base classifiers misclassify the instance is decreased.

Two of the more popular methods used within ensemble learning is bagging

[27] and boosting (e.g. the AdaBoost algorithm [78] described in Subsection 3.3.7.2

is the most common). These methods promote diversity by building base classifiers

on different subsets of the training data or different weights of classifiers.
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3.3.7.1 Bagging

Bagging, also known as bootstrap aggregation, was proposed by Breiman in

1994 in an early version of [27]. It works by generating k bootstrapped training sets

and building a classifier on each (where k is determined by the user). Each training set

of size N is created by randomly selecting instances from the original dataset, with

each receiving an equal probability of being selected and with replacement. Since

every instance has an equal probability of being selected, bagging does not focus on

any particular instance of the training data and therefore is less likely to over-fit

[177]. Bagging is generally for unstable3 classifiers such as decision trees and neural

networks.

3.3.7.2 Boosting

The AdaBoost (Adaptive Boosting) algorithm of Freud and Schapire [78] in

1995 is synonymous with boosting. The idea however was proposed in 1988 by

Michael Kearns [114] in a class project, where he hypothesized that a “weak” clas-

sifier, performing slightly better than average, could be “boosted” into a “strong”

classifier. In boosting, instances being classified are assigned a weight; instances

that were previously incorrectly classified receive larger weights, with the hope that

subsequent models correct the mistake of the previous model. In the AdaBoost algo-

rithm the original training set D has a weight w assigned to each of its N instances

{(x1, y1), . . . , (xn, yn)}, where xi is a vector of inputs and yi is the class label of that

3By unstable, it is meant that small changes in the training set can lead to large changes
in the classifier outcome.
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instance. With the weight added the instances become {(x1, y1, w1), . . . , (xn, yn, wn)}

and the sum of the wi must equal 1. The AdaBoost algorithm then builds k base

classifiers with an initial weight wi =
1
N
. Upon each iteration of the algorithm (which

is determined by the user), the weight wi gets adjusted according to the error �i of

the classifier hypothesis4. The points that were incorrectly identified receive higher

weights, and the ones that were correctly identified receive less. The desire is that on

the next iteration, the re-weighting will help to correctly classify the instances that

were misclassified by the previous classifier. When implementing the boosting en-

semble on test data, the final class is determined by a weighted vote of the classifiers

[78, 149].

Boosting does more to reduce bias than variance. This reduction is due to the

algorithm adjusting its weight to learn previously misclassified instances and therefore

increasing the probability that these instances will be learned correctly in the future.

This has had a tendency to correct biases. However, it tends to perform poorly on

noisy datasets and therefore the weights become greater, which causes the model to

focus on the noisy instances and over-fit the data [195].

3.3.7.3 Combining classifiers for ensembles

The last step in any ensemble-based system is the method used to combine

the individual classifiers; this is often referred to as fusion rules. Classifiers within

an ensemble are most commonly combined using a majority voting algorithm. There

4If the error is greater than what would be achieved by guessing the class, then the
ensemble is returned to the previously generated base classifier.
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are however, different methods of combining, which often depend on the underlying

classifiers used. For example, the Naive Bayes algorithm provides continuous valued

outputs, allowing a wide range of strategies for combining, while an artificial neural

network provides a discrete-valued output, allowing for fewer [133, 134, 247]. A

description of each follows:

• Majority voting

– Plurality majority voting – The class that receives the highest number of

votes among classifiers (in literature, majority voting typically refers to

version)

– Simple majority voting – The class that receives one more than fifty percent

of all votes among classifiers

– Unanimous majority voting – The class that all the classifiers unanimously

vote on

• Weighted majority voting – If the confidence in among classifiers is not equal,

we can weight certain classifiers more heavily. This method is followed in the

AdaBoost algorithm.

• Algebraic combiners

– Mean/Minimum/Maximum/Median rules – The ensemble decision is cho-

sen for the class according to the average/minimum/maximum/median of

each classifier’s confidence.
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Table 3.2: Confusion matrix

Predicted class
+ –

Actual + TP FN
Class – FP TN

While ensembles have shown success in a variety of problems, there are some as-

sociated drawbacks. This includes added memory and computation cost in keeping

multiple classifiers stored and ready to process. Also the loss of interpretability may

be a cause for concern depending on the needs of the problem. For example, a single

decision tree can be easily interpreted, while an ensemble of 100 decision trees could

be difficult [21].

3.4 Performance metrics

3.4.1 Confusion matrix and accuracy

A confusion matrix, also called a contingency table, is a visualization of the

performance of a supervised learning method. A problem with n classes, requires a

confusion matrix of size n × n with the rows representing the specific actual class

and the columns representing the classifiers predicted class. In a confusion matrix,

TP (true positive) is the number of positives correctly identified, TN (true negative)

is the number of negatives correctly identified, FP (false positive) is the number of

negatives incorrectly identified as positive, and FN (false negative) is the number of

positives incorrectly identified as negatives. An example of a confusion matrix can

be seen in Table 3.2.
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From the confusion matrix it is relatively simple to arrive at different measures

for comparing models. An example is accuracy, which is a widely used metric and

is easy to interpret. From Equation 3.1, accuracy is the total number of correct

predictions made over the total number of predictions made. While accuracy is a

popular metric, it is also not very descriptive when used to measure the performance

of a highly imbalanced dataset. A model may have high levels of accuracy, but may

not obtain high levels of identification of the class that we are interested in predicting.

For example, if attempting to identify large moves in a stock which is comprised

of 99% small moves and 1% large moves, it is trivial to report a model has accuracy

of 99% without additional information. A classifier could also have 99% accuracy

by simply reporting the class with the largest number of instances (e.g. the majority

class is “small moves”). In an imbalanced dataset, a model may misidentify all

positive classes and still have high levels of accuracy; pure randomness is not taken

into account with the accuracy metric. Accuracy’s complement is the error rate

(1− Accuracy) and can be seen in Equation 3.2.

Accuracy =
TP + TN

TP + TN + FP + FN
(3.1)

Error rate =
FP + FN

TP + FP + TN + FN
(3.2)

There are several approaches to comparing models with imbalanced datasets.

First is the precision and recall metrics and the accompanying harmonic mean, the

F-measure. The second metric is based on Cohen’s kappa statistic, which takes into

account the randomness of the class. The third metric is the receiver operating

characteristic which is based on the true positive and false positives rates. The
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fourth is a cost-based metric which gives specific “costs” to correctly and incorrectly

identifying specific classes. And the last method is based not on the ability of the

model to make correct decisions, but instead on the profitability of the classifier as it

applies to a trading system. A more detailed description of these metrics follows.

3.4.2 Precision and recall

Precision and recall are both popular metrics for evaluating classifier perfor-

mance and will be used extensively in this paper. Precision is the percentage that

the model correctly predicts positive when making a decision (Equation 3.3). More

specifically, precision is the number of correctly identified positive examples divided

by the total number of examples that are classified as positive. Recall is the percent-

age of positives correctly identified out of all the existing positives (Equation 3.4); it

is the number of correctly classified positive examples divided by the total number

of true positive examples in the test set. From our imbalanced example above with

the 99% small moves and 1% large moves, precision would be how often a large move

was correctly identified as such, while recall would be the total number of large moves

that are correctly identified out of all the large moves in the dataset.

Precision =
TP

TP + FP
(3.3)

Sensitivity (Recall) =
TP

TP + FN
(3.4)

Specificity =
TN

TN + FP
(3.5)

F-measure =
2(precision)(recall)

precision + recall
(3.6)

Precision and recall are often achieved at the expense of the other, i.e. high
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precision is achieved at the expense of recall and high recall is achieved at the expense

of precision. An ideal model would have both high recall and high precision. The

F-measure5, which can be seen in Equation 3.6, is the harmonic measure of precision

and recall in a single measurement. The F-measure ranges from 0 to 1, with a measure

of 1 being a classifier perfectly capturing precision and recall.

3.4.3 Kappa

The second approach to comparing imbalanced datasets is based on Cohen’s

kappa statistic. This metric takes into consideration randomness of the class and

provides an intuitive result. From [14], the metric can be observed in Equation 3.7

where P0 is the total agreement probability and Pc is the agreement probability which

is due to chance.

κ =
P0 − Pc

1− Pc

(3.7)

P0 =
I�

i=1

P (xii) (3.8)

Pc =
I�

i=1

P (xi.)P (x.i) (3.9)

The total agreement probability P0 (i.e. the classifier’s accuracy) can be be

computed according to Equation 3.8, where I is the number of class values, P (xi.)

is the row marginal probability and P (x.i) is the column marginal probability, with

both obtained from the confusion matrix. The probability due to chance, Pc, can be

computed according to Equation 3.9. The kappa statistic is constrained to the interval

5The F-measure, in the literature is also called the F-score and the F1-score.
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Table 3.3: Computing the Kappa statistic from the confusion matrix

(a) Confusion matrix – Numbers

Predicted class
up down flat

�

Actual up 139 80 89 308
class down 10 298 13 323

flat 40 16 313 369�
189 396 4157 1000

(b) Confusion matrix – Probabilities

Predicted class
up down flat

�

Actual up 0.14 0.08 0.09 0.31
class down 0.01 0.30 0.01 0.32

flat 0.04 0.02 0.31 0.37�
0.19 0.40 0.42 1.00

[−1, 1], with a kappa κ = 0 meaning that agreement is equal to random chance, and

a kappa κ equaling 1 and -1 meaning perfect agreement and perfect disagreement

respectively.

For example, in Table 3.3a the results of a three-class problem are shown, with

the marginal probabilities calculated in Table 3.3b. The total agreement probability,

also known as accuracy, is computed as P0 = 0.14 + 0.30 + 0.31 = 0.75, while the

probability by chance is Pc = (0.19×0.31)+(0.40×0.32)+(0.42×0.37) = 0.34. The

kappa statistic is therefore κ = (0.75− 0.34)/(1− 0.34) = 0.62.

3.4.4 ROC

The third approach to comparing classifiers is theReceiverOperatingCharacteristic

(ROC) curve. This is a plot of the true positive rate, which is also called recall or
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Figure 3.5: ROC curve example

sensitivity (Equation 3.10), against the false positive rate, which is also known as

1-specificity (3.11).

TPR =
TP

TP + FN
(3.10)

FPR =
FP

TN + FP
(3.11)

The best performance is noted by a curve close to the top left corner (i.e. a

small false positive rate and a large true positive rate), with a curve along the diagonal

reflecting a purely random classifier. As a demonstration, in Figure 3.5 three ROC

curves are displayed for three classifiers. Classifier 1 has a more ideal ROC curve

than Classifier 2 or 3. Classifier 2 is slightly better than random, while Classifier 3 is

worse. In Classifier 3’s case, it would be better to choose as a solution that is opposite

of what the classifier predicts.
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For single number comparison, the Area Under the ROC Curve (AUC) is

calculated by integrating the ROC curve. Random would therefore have an AUC of

0.50 and a classifier better and worse than random would have an AUC greater than

and less than 0.50 respectively. It is most commonly used with two-class problems

although with multi-class examples the AUC can be weighted according to the class

distribution. AUC is also equal to the Wilcoxon statistic.

3.4.5 Cost-based

The cost-based method of evaluating classifiers is based on the “cost” asso-

ciated with making incorrect decisions [61, 65, 102]. The performance metrics seen

thus far do not take into consideration the possibility that not all classification errors

are equal. For example, an opportunity cost can be associated with missing a large

move in a stock. A cost can also be provided for initiating an incorrect trade. A

model can be built with a high recall, which misses no large moves in the stock, but

the precision would most likely suffer. The cost-based approach gives an associated

cost to this decision which can be evaluated to determine the suitability of the model.

A cost matrix is used to represent the associated cost of each decision with the goal

of minimizing the total cost associated with the model. This can be formalized with

a cost matrix C and the entry (i, j) with the actual cost i and the predicted class j.

When i = j the prediction is correct and when i �= j the prediction is incorrect.

An advantage of using a cost-based evaluation metric for trading models is

the cost associated with making incorrect decisions is known by analyzing empirical
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data. For example all trades incur a cost in the form of a trade commission and

money used in a trade is temporarily unavailable, thus incurring an opportunity cost.

Additionally, a loss associated with an incorrect decision can be averaged over similar

previous losses; gains can be computed similarly. Consider, for example, a trading

firm is attempting to predict the directional price move of a stock with the objective

to trade on the decision. At time t, the stock can move up, down, or have no change in

price; at time t+n, the direction is unknown (this can be observed in Figure 3.6). For

time t+1, a prediction of up might result in the firm purchasing the stock. Different

errors in classification however would have different associated cost. A firm expecting

a move up would purchase the stock in anticipation of the move, but a subsequent

move down would be more harmful than no change in price. A actual move down

would immediately result in a trading loss, whereas no change in price would result in

an temporary opportunity cost with the stock still having the potential to go in the

desired direction. Additionally an incorrect prediction of “no change” would merely

result in an opportunity lost, but no actual money being put to risk since a firm would

not trade based on the anticipation of a unchanged market (no change). Table 3.4

represents a theoretical cost matrix of the problem, with three separate error amounts

represented: 0.25, 0.50, and 1.25.

3.4.6 Profitability of the model

While the end result of predicting stock price direction is to increase profitabil-

ity, the performance metrics discussed thus far (with the exception of the cost-based
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Figure 3.6: Possible directional price moves for our hypothetical example – move up,
down, or no change

Table 3.4: Hypothetical cost matrix

Predicted class
Down No change Up

Actual Down 0 0.25 1.25
class No change 0.50 0 0.50

Up 1.25 0.25 0

metric) evaluate classifiers based on the ability to correctly classify and not on overall

profitability of a trading system. As an example, a classifier may have very high ac-

curacy, kappa, AUC, etc. but this may not necessarily equate to a profitable trading

strategy, since profitability of individual trades may be more important than being

“right” a majority of times; e.g. making $0.50 on each of one hundred trades is not

as profitable as losing $0.05 95 times and then making $12 on each of five trades6.

Figure 3.7 represents a trading model represented in much of the academic

literature, where the classifier is built on the data with a prediction of up, down, or

no change in the market price with the outcome passed to a second set of rules. These

6An argument can also be made that a less volatile approach is more ideal (i.e. making
small sums consistently). This depends on the overall objective of the trader – maximizing
stability or overall profitability.
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Figure 3.7: Trading algorithm process

rules provide direction if a prediction of “up”, for example, should equate to buying

stock, buying more stock, or buying back a position that was previously shorted. The

rules also address the amount of stock to be purchased, how much to risk, etc.

When considering profitability of a model, the literature generally follows the

form of an automated trading model, which is “buy when the model says to buy,

then sell after n number of minutes/hours/days [161]” or “buy when the model says

to buy, then sell if the position is up x% or else sell after n minutes/days/hours

[138, 164, 202].” Teixeira et al. [214] added another rule (called a “stop loss” within

trading), which prevented losses from going past a certain dollar amount during an

individual trade.

The goal of this thesis is not to provide an “out of the box” trading system with

proven profitability, but to instead help the user make trading decisions with the help

of machine learning techniques. Additionally, there are many different rules in the

trading literature relating to how much stock to buy or sell, how much money to risk

in a position, how often trades should take place, and when to buy and sell; each of

these questions are enough for entire dissertations. In practice, trading systems often

involve many layers of controls such as forecasting and optimization methodologies
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Table 3.5: Importance of using an unbiased estimate of its generalizability – trained
using the dataset from Appendix B for January 3, 2012

January 3, 2012 (training data) January 4, 2012 (unseen data)

Accuracy 94.713% 37.31%

that are filtered through multiple layers of risk management. This typically involves

a human supervisor (risk manager) that can make decisions such as when to override

the system [69]. The focus of this paper therefore, will remain on the classifier itself;

maximizing predictability when faced with different market conditions.

3.5 Methods of testing

Once a model has been built using a training set, and its parameters are

adjusted using a validation set, its performance needs to be evaluated on an unseen

subset of the data, the test set. An unseen subset is used since the model is biased

toward the training set and may therefore over-fit the data, resulting in an artificially

high performance measure. For example, a C4.5 decision tree built on our balanced

three class dataset (see Appendix B) using January 3, 2012 data and then tested on

our training set results in an accuracy of 94.71%, while more realistically testing it

on the following day’s data results in an accuracy of 37.31% (see Table 3.5).

The following subsection reviews some of the methods used to evaluate the

performance of classifiers.
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3.5.1 Holdout

The holdout method is when the labeled dataset D is split into two disjoint

sets, a training set Dtrain and a testing set Dtest, where Dtrain ∪ Dtest and Dtrain ∩

Dtest = ∅. The split varies from a 50-50 to a two-thirds for training and a one-

third split for testing; although this varies widely in the literature and is typically

dependent on the underlying problem and the amount of data available.

There are problems associated with the holdout method that needs to be taken

into consideration. First, splitting the data into disjointed training and testing sets

reduces the amount of data available for learning, with many instances never being

accounted for by the model. This can be mostly eliminated by using random sub-

sampling. In this process, the holdout method is repeated several times with different

subsets in each dataset. The performance metric is then averaged.

The second potential problem of the holdout method is the performance metric

(such as accuracy) can be high, depending on the distribution of the instances in the

training and test sets. For example, one class overrepresented in the training set and

underrepresented in the test set can result in mediocre model performance [177, 149].

This is especially pertinent when evaluating streaming stock data, where the under-

lying structure of the data may change over time due to changing market dynamics.

As an example, a problem may arise if training a model on an upward moving stock

market, where the class “large moves up” dominates “large moves down”, and then

testing on a downward moving market, where the class “large moves down” dominate

“large moves up.” This is also known as concept drift and will be discussed in detail
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Figure 3.8: Demonstrating a problem with the holdout method – averaging out pre-
dictability

in Section 4.2.

The third potential problem when evaluating using the holdout method is

inconsistent predictability throughout the test set. This is due to concept drift, or

the changing of the underlying concept or target variable and is particularly important

when evaluating streaming stock data. For example, in Figure 3.8 both moments of

high and low predictability can be seen; this is consistent with concept drift. The

results of the testing set would show little predictability because the moments of high

predictability are “averaged out” by the moments of low predictability. The use of

the sliding window, prequential, and interleavened test-then-train methods can help

alleviate this problem.
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Figure 3.9: An example of the sliding window approach to evaluating the data stream
performance

3.5.2 Sliding window

The sliding window is a modified holdout method specific to data streams that

works by using a window of size w that contains training data at time t to t−w+1.

The test set is a subset of future instances in a window of size f containing the

instances at time t + 1 to t + f . The desired performance metric is then computed

for each window.

For example in Figure 3.9 a sliding window (w = 5, f = 3) is demonstrated

with the initial model built using training data from time 9:30 to 9:34. This model

is then tested on the unseen data at 9:35 to 9:37. The model then incorporates the

(now historical) data into the model and the process continues.

A sliding window approach is perhaps the most intuitive, and it is the main

method that we will be using in in our approach. The size of w (the training set size)

and f (the testing set size) can be determined a priori or via an adaptive algorithm
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that takes the level of concept drift in the dataset into consideration. This will be

discussed later.

3.5.3 Prequential

The prequential approach [55, 56] has become popular in data stream learning

[86, 87] because it monitors the error of a model over time by predicting unseen

instances one-by-one and then adding those instances into the training set after the

observed value is known. The error is computed using an accumulated sum of a loss

function between the observed values yi and predicted values ŷi, Si =
n�

i=1

L(yi,ŷi),

with the mean loss computed as a simple average M = 1
n
× S.

At the beginning of the dataset, few instances are included in the model, often

with high error rates. This lead to the inclusion of a forgetting factor in the model

which will give less weight to previously seen examples. The forgetting factor can

include either a sliding window of size n or a decay factor. More information can be

found in [86].

3.5.4 Interleaved test-then-train

Interleaved test-then-train is an evaluation process for streaming algorithms

described in [21] such that every nth incoming instance is used to test the model before

it is used for training. The performance metrics are then incrementally updated.

Individual instances become less significant as more instances are seen, therefore

when plotting the performance a smooth representation is obtained. This is both an

advantage and a disadvantage of this metric; it allows for single number comparisons
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of the model at the end of the evaluation of the data stream, however it also obscures

the performance at any given instance. For this reason, we do not use it in the

evaluation of models.

3.5.5 k-fold cross-validation

Cross-validation is the process of splitting the dataset into k equal subsets.

Training uses k − 1 subsets and the remaining subset is then used as the testing set.

This is repeated k times so that each subset is used as a testing set once. The total

error is computed by summing up the errors obtained during all k runs, with the

performance metric (such as accuracy) computed as the average across runs [177].

While cross-validation has been used in the literature for streaming data, we

feel that it is not appropriate for stock data since the future market conditions are

being “leaked”, resulting in sometimes overly optimistic, biased classifiers. Models

should be tested only on data that was not available at the time of model creation.

For example in Table 3.6 a hypothetical stream of stock data contains three

attributes containing current and past stock prices from time t to t−3 and a predicted

class (the dataset is also demonstrated in Figure 3.10). The objective of the model is

to predict the next one-minute price direction of either “up” or “down.” Splitting the

data into three subsets for 3-fold cross-validation may result in subsets 1 and 3 being

used in the learning model to predict subset 2; subset 3 was not available during

subset 2, therefore leaked this data. This also occurs when subsets 2 and 3 are used

to predict subset 1. For this reason, we do not use cross-validation in our evaluation
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Table 3.6: Data stream with data partitioned into three subsets for cross-validation

Subset ID Attributet Attributet−1 Attributet−2 Attributet−3 Classt+1

subset 1

9:30 13.509:30 13.499:29 13.489:28 13.479:27 up9:31
9:31 13.529:31 13.509:30 13.499:29 13.489:28 up9:32
9:32 13.559:32 13.529:31 13.509:30 13.499:29 down9:33

subset 2

9:33 13.549:33 13.559:32 13.529:31 13.509:30 down9:34
9:34 13.539:34 13.549:33 13.559:32 13.529:31 up9:35
9:35 13.569:35 13.539:34 13.549:33 13.559:32 up9:36

subset 3

9:36 13.599:36 13.569:35 13.539:34 13.549:33 up9:37
9:37 13.639:37 13.599:36 13.569:35 13.539:34 up9:38
9:38 13.649:38 13.639:37 13.599:36 13.569:35 down9:39

Figure 3.10: Data stream with data partitioned into three subsets for cross-validation

of models.

3.6 Conclusion

This chapter introduced machine learning with a particular emphasis on su-

pervised learning techniques used in later chapters. Methods of comparing classifier

performance were also examined such as AUC, which we use to evaluate and compare

the performance of our new framework with existing classifiers (more in Chapter 6).

AUC was used both for its popularity within the machine learning community
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and its improvement over existing methods such as accuracy or error rate. As ex-

plained in this chapter, accuracy is problematic within imbalanced datasets because

the result can be high yet provide little predictive ability of the class that is important.

AUC provides a nice framework for comparison – above 0.50 is better than random

and below 0.50 is worse than random, no matter the class distribution – simple, yet

descriptive. Additionally AUC provides, through the ROC curve, for determining

alternate cutoffs for class probabilities. By examining the curve, a threshold that

maximizes the trade-off between sensitivity and specificity can be determined [73].

This provides for a confidence of the prediction. It is this “confidence of

decision” that we believe would be particularly important to a trader. As mentioned

previously, the idea with this research is not to provide an “out of the box” trading

system with proven profitability, but to provide automated price direction predictions

so that the trader can make up his/her own mind depending on the objective.

This chapter also examined different approaches to testing, such as hold-

out methods and sliding window evaluation, and described why traditional cross-

validation methods are problematic when using streaming data with lagged indicators.

Incorrect use of cross-validation can lead to leakers, which would provide overly opti-

mistic performance evaluations. With an introduction of machine learning techniques

and evaluation out of the way, the next chapter introduces predicting streaming data.
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CHAPTER 4
DATA STREAM PREDICTION

4.1 Introduction

High-frequency stock data streams require special consideration not often seen

when learning from static datasets. Markets do not remain stable, instead they are

inherently noisy; technical indicators that show high predictability during one moment

may disappear as more traders spot the pattern and implement them in their own

trading strategies. Timmermann [215] noted that as traders search for and exploit any

market pattern or high-probability event, the predictability disappears, thus making

the market constantly evolve. Therefore, classifiers with high initial predictability

may decrease in performance as the patterns are discovered and implemented by

others.

As market dynamics change, model performance may decrease, requiring an

update in the training data and/or change in the quantitative technical analysis

indicators used as attributes. This task of keeping models relevant in the face of

changing market dynamics, referred to as concept drift, is unique to data streams.

Ideally, if the concept drifts could be anticipated, then the trader could store models

to use with each specific market condition (or concept) and later apply those models

to incoming data. The assumption however is the future is uncertain, therefore future

concepts are still undecided.

Schulmeister [200] suggests that technical analysis indicators that previously
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worked to predict market direction no longer work since widespread adoption of a

particular trading approach is enough to drive the price either up or down enough

to eliminate the pattern1. Instead he finds evidence that predictability has moved

to higher-frequency intraday data. This high resolution is more difficult to examine

by traders and thereby reduces the number of eyes viewing the patterns. Higher

predictability with high-frequency data is in line with our result from Section 2.3 in

Chapter 2 and in our paper [190].

This focus on high-frequency data to make predictions requires special consid-

eration. As the amount of data increases, limitations in time prevent existing methods

from learning; an algorithm that takes 30 minutes to arrive with a prediction is of

little value if the goal is to predict price direction just one minute in the future. How-

ever, an algorithm that quickly and efficiently produces incorrect decisions is of little

value. Thus practical trade-offs between efficiency and performance can occur [80].

This chapter discusses these problems and examines the existing paths researchers

have followed to arrive at solutions for predicting future events in data streams.

In Section 4.2 we first provide a formal definition of concept drift and discuss

different methodologies for learning when faced with it. For example, in much of the

literature about stock predictability, a hold-out method is used. With this method,

2
3
of the data is used to train the model and 1

3
of the data is used for testing (see

Figure 4.1). While this is easy to implement and requires little programming skill, it

1The popularity of technical analysis is evident by doing a simple query on Amazon.com.
Using the words “technical analysis, stocks” our query returned over 1600 books (July 31,
2013).
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Figure 4.1: Näıve method of learning and testing models using stock data – using 2
3

data to train and then 1
3
of the data to test

is a näıve approach to use in a real-time setting since markets rarely remain stable.

The most common approach to dealing with this concept drift is with the use of

sliding windows; classifiers are trained on a moving subset of the data stream. We

propose fixed and adjustable sized sliding windows for our framework and this will

be discussed in a later chapter.

We then discuss in Section 4.3 models for use with streaming data. These

models can be divided into two methodologies for learning: adaptive and wrapper-

based methods [21, 121]. Adaptive methods are algorithms that have been adapted

to work with data streams. They learn data incrementally (Figure 4.2a), as the

instances arrive, and learn with one pass through the data; speed is essential to these

algorithms. Wrapper methods require the data to be collected into subsets (Figure

4.2b) so that a traditional classifier (such as a support vector machine or neural
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Time

(a) Incremental learning

Time

(b) Wrapper learning

Figure 4.2: Learning instance-by-instance versus by chunk of instances

network) can be used to learn.

In Section 4.4 we discuss, as noted by Gaber et al. [80], the trade-off between

performance (accuracy) and efficiency (speed) of the algorithm. This infers then

that frameworks for high-speed streaming stock data must sacrifice performance for

a necessary quick decision. Typically longer training times achieve better results;

a brute force method would eventually lead us to a global optimum. Through a

demonstration we determine that this is often a more complicated discussion. More

data leads to greater training times, which generally leads to better results, but there

is a point of diminishing return where more data may lead to worse results.

4.2 Concept drift

4.2.1 Definition and causes

The changing of the underlying concept, or target variable, often complicates

the learning of models from streaming data. This concept drift is unique to data

streams and makes the task of keeping models relevant difficult. As the concept
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changes, model performance may decrease, requiring a change or update in the train-

ing data. Ideally, if the concept drifts could be anticipated then the trader could

store models to use with each specific market condition (or concept) and later apply

the model to incoming data. The assumption however is that the concept generating

function is unknown and although it can be estimated or predicted, there is no cer-

tainty [250]. And while the market periodically displays reoccurring2 behavior such

as economic cycles [12, 85, 103, 198, 237] or behavioral moods [23, 53, 99], rarely are

specific market conditions consistently known a priori. Additionally, the idea of using

the most recent training data may not be valid for all problems, but this is domain

specific [3].

Providing a definition for concept drift can be difficult considering that there

is not a standard terminology; authors use different names for the same concepts, or

use the same names for different concepts [166]3. Kelly et al. in [115] gives perhaps

the most common definition of concept drift explaining it in three forms that concept

drift can occur: (1) the class priors, P (ci), i = 1, 2, 3, . . . k may change over time,

where k is the number of classes; (2) the distribution of the classes may change,

P (X|ci), where i = 1, 2, 3, . . . k and X is a vector of labeled instances; and (3) the

2Some of the literature also refers to this as seasonal or cyclical data.

3Moreno-Torres et al. [166] provides a list of several terms used in the literature within the
past few years. These include “concept shift” or “concept drift”, “change of classification”,
“changing environments”, “contrast mining in classification learning”, “fracture points” and
“fractures between data.” Their paper provides yet another term “dataset shift” and the
authors provide a reasonable discussion of why it should be named so. However a simple
Google Scholar search on June 23, 2013 returns 830 hits for “concept shift” and only 235
for “dataset shift”; we therefore use the most popular term in this thesis.
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posterior distribution of the class membership P (ci|X), i = 1, 2, 3, . . . k may change.

The posterior distribution of the class membership Kelly et al. explains is the only

type of change that actually matters; the class priors P (ci) and distribution of classes

P (X|ci) may change but the posterior P (ci|X) will remain constant. However a

change in P (ci|X) will always result in a change in either P (ci) or P (X|ci).

Hoens, Polikar, and Chawla [104] do not differentiate between the three forms

of Kelly et al. [115]. Their reasoning is with skewed and imbalanced datasets, changes

in the class may require updates or retraining of the model. This occurs when the

majority class is underrepresented in the dataset. In streaming datasets, the positive

class (the class one is most interested in learning) may occur infrequently, or not at all,

during the timespan being used in the training data. For example the classifier may

minimize the error rate by predicting everything as the majority class, thus ignoring

the small number of positives that we are interested in predicting.

In traditional offline learning, the training and testing data are assumed to be

from a stationary distribution with the same concept generating function [104]. This

assumption however is often violated in real-world scenarios. In streaming stock data,

often known for drastic and irregular movements, a stationary distribution cannot be

assumed. Many adaptive algorithms built for streaming data, without modifications,

can have difficulty maintaining high performance in the face of concept drift, which

is further exacerbated by noise. Overreacting to noise may result in the underlying

training data being changed too often and the model loses past knowledge that may be

helpful in the future. Not updating training data frequently enough leads to a model
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with poor performance. This is often referred to as a stability-plasticity dilemma,

where stability refers to the ability of the model to maintain existing knowledge and

concepts within the model, and plasticity refers to the ability of the model to acquire

new data [104, 180]. Elwell and Polikar [67] write about the need of models facing

concept drift to strike a balance between prior and new knowledge. They suggest

that irrelevant knowledge should be dropped until needed, while relevant knowledge

should be reinforced.

Concept drift occurs in the market for a number of reasons. For example,

traders preference for stocks change; increases in a stock’s value may be followed by

decreases. The appearance of trends can cause other traders, not wanting to miss

the price increase, to buy, thereby helping to fuel the enthusiasm for the stock and

pushing it to higher levels [158, 207]. However as explained previously, a widespread

adoption of a particular trading approach is enough to drive the price either up or

down enough to eliminate the pattern [215]. This would cause a decrease in the

predictability of a particular trading indicator, and thus concept drift would occur.

4.2.2 Approaches to learning with concept drift

Before we discuss approaches to learning with concept drifts, it is first im-

portant to demonstrate how concept drift can affect classifier performance. We chose

four stocks (symbols: XOM, ANR, APC, BHI) and trained a Support Vector Machine

(polynomial degree kernel) on 30,000 minutes and then tested on subsequent intervals

of 60 minutes (a full description of the attributes used can be found in Appendix C).
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Figure 4.3: Demonstrating train once and test multiple times

This method of training on one subset of data and then testing on multiple subse-

quent holdout sets can be seen in Figure 4.3. The results of this testing for four

random stocks from our dataset can be seen in Figure 4.4. Using a prequential AUC

evaluation (see Subsection 3.5.3) the performance decreases the further the testing

gets from the data used to train the model. This indicates occurrence of concept

drift, signaling a need for an update to the training data.

Through the demonstration, it can be seen (when not using concept adapting

models), that performance often (although not always) decreases when the time be-

tween between testing and training data increases. Building an algorithm to learn

with drifting concepts generally takes one of two forms. The first is to detect concept

drift, such as through the use of novelty detection algorithms, and upon detection,

adapt the classifiers to this change of concept [83]. This adaption (i.e. retraining)
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(d) Baker Hughes Incorporated

Figure 4.4: Demonstrating the loss in performance (AUC) as testing gets further
away from last training data

of the model to the new concept is often slow, therefore researchers often focus on

the use of modified classifiers that learn/train quickly. The second form of adapting

to concept change is to assume that drift occurs, and to take this assumption into

consideration when building the model; the actual level of concept drift or even if it

actually does occur may not be measured. An example of this is to retain models

at fixed intervals, such as through the use of sliding windows. Another solution is

through the use of ensembles, such as the work of Street and Kim [210], which uses

a pool of previously trained classifiers that are updated according to a heuristic. A

discussion of both forms follows.
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4.2.2.1 Find evidence of concept drift and then re-train

Klinkenberg et al. [122, 123] describes several methods for the prediction of

concept drift. The first method is found by examining the change of the distribu-

tion of the classes (i.e. class priors) within the data over time, with the assump-

tion that class imbalances will create a need for a new classifier. For example, in

Figure 4.5 we visualized the class distribution of the stock Exxon over 30-minute

intervals for the first week in 20124. The predicted class is the change in price

over a one minute period,
�
pricet − pricet−1

�
> $0.02 is considered a large move

up, $0.02 ≥
�
pricet − pricet−1

�
≥ −$0.02 is considered an insignificant move, and

�
pricet − pricet−1

�
< −$0.02 is considered a large move down. As can be seen, the

class distribution does not remain stable over the 30 minute intervals. However, while

this is interesting and gives us a better understanding of the dynamics of the stock,

such as class imbalance, the information is not necessarily useful. A statistical test

may determine that the class distribution has changed, but if the classifier is still

performing well, there is no need to change or update the training data or classi-

fier. Instead we use observation and detection of class imbalance to rectify classifier

bias toward the majority class, thus misclassifying the minority class instance. The

subject of learning under imbalance will be discussed further in Chapter 5.

The second method of determining when concept drift occurs, according to

Klinkenberg et al. [122, 123], is by examining the performance measures over time,

such as the accuracy, precision, recall, etc. of the classifier. A decrease in performance

4Due to an exchange holiday on Monday, the week only included four trading days.



86

��
�
��
��
�
�
�
�
��
�
�
��
�

��
��
��
��
��
��
��
�
��
�

��
��
��
��
��
��
��
�
��
�

��
��
��
��
��
��
��
�
��
�

��
��
��
��
��
��
��
�
��
�

��
��
��
��
��
��
��
�
��
�

��
��
��
��
��
��
��
�
��
�

��
��
��
��
��
��
��
�
��
�

��
��
��
��
��
��
��
�
��
�

��
��
��
��
��
��
��
�
��
�

��
��
��
��
��
��
��
�
��
�

��
��
��
��
��
��
��
�
��
�

��
��
��
��
��
��
��
�
��
�

��
�
��
��
�
�
�
�
��
�
�
��
�

��
��
��
��
��
��
��
�
��
�

��
��
��
��
��
��
��
�
��
�

��
��
��
��
��
��
��
�
��
�

��
��
��
��
��
��
��
�
��
�

��
��
��
��
��
��
��
�
��
�

��
��
��
��
��
��
��
�
��
�

��
��
��
��
��
��
��
�
��
�

��
��
��
��
��
��
��
�
��
�

��
��
��
��
��
��
��
�
��
�

��
��
��
��
��
��
��
�
��
�

��
��
��
��
��
��
��
�
��
�

��
��
��
��
��
��
��
�
��
�

��
�
��
��
�
�
�
�
��
�
�
��
�

��
��
��
��
��
��
��
�
��
�

��
��
��
��
��
��
��
�
��
�

��
��
��
��
��
��
��
�
��
�

��
��
��
��
��
��
��
�
��
�

��
��
��
��
��
��
��
�
��
�

��
��
��
��
��
��
��
�
��
�

��
��
��
��
��
��
��
�
��
�

��
��
��
��
��
��
��
�
��
�

��
��
��
��
��
��
��
�
��
�

��
��
��
��
��
��
��
�
��
�

��
��
��
��
��
��
��
�
��
�

��
��
��
��
��
��
��
�
��
�

��
�
��
��
�
�
�
�
��
�
�
��
�

��
��
��
��
��
��
��
�
��
�

��
��
��
��
��
��
��
�
��
�

��
��
��
��
��
��
��
�
��
�

��
��
��
��
��
��
��
�
��
�

��
��
��
��
��
��
��
�
��
�

��
��
��
��
��
��
��
�
��
�

��
��
��
��
��
��
��
�
��
�

��
��
��
��
��
��
��
�
��
�

��
��
��
��
��
��
��
�
��
�

��
��
��
��
��
��
��
�
��
�

��
��
��
��
��
��
��
�
��
�

��
��
��
��
��
��
��
�
��
�

��
�
��
��
�
�
�
�
��
�
�
��
�

�

��

��

��

��

���

�
�
��
�
�
��
�
�
��
��
��
�
�

������
�
������

���
������

�����������
�
������

���
�������

������
�
������

���
�������

Figure 4.5: Demonstrating via a stacked bar chart the change of class priors for 30
minute/instance periods for the stock Exxon for the first week of 2012

may signal a change in concept, which would indicate new training data should be

used within the classifier or older data should be dropped.

One of the first algorithms for determining when concept drift occurred was

Kubat and Widmer’s Floating Rough Approximation algorithm (FLORA) in 1989

[130, 131, 232, 234]. FLORA was a supervised learning method that determined

when to update the classifier based on the appearance of concept drift in a data

stream caused by hidden features. The idea behind FLORA is that learning takes

place within a fixed-size moving window of instances. Instances that have not been

“confirmed” for a while by the FLORA algorithm must therefore be from another

concept and will hence be dropped and the classifier retrained. More specifically, the

methodology uses sets of disjunctive normal form expressions represented as an input

of positive and negative examples of target concepts. These concept descriptions
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are stored in three collections of symbolic description sets: (1) ADES contains all

positive examples, (2) NDES covers all negative examples, and (3) the PDES concept

description contains both positive and negative examples5. If any example has been

contradicted by the others, then the example is discarded. Each time an example

arrives from the stream, it will be added to the window (and therefore learned)

and the oldest example will be deleted. As the window moves along the stream of

examples, the contents in ADES, NDES, and PDES will change in content.

FLORA2 [232] is an improvement on FLORA and one of the first methods to

consider performance when adapting the sliding window size. It uses a heuristic to

shrink the size of the window whenever concept drift occurs (by examining accuracy),

thereby eliminating older instances, and grows the size of the window when the con-

cept remains stable. This enables the classifiers to train on more instances during

moments of stability and decrease during moments of increased concept drift.

FLORA3 [231, 233, 234] is an improvement upon FLORA2. By saving con-

cepts seen thus far for later use, it is able to facilitate learning on cyclical or recurring

concepts. When concept change is determined (i.e. by decreasing the size of the win-

dow as in FLORA2) the algorithm checks its reserve of concepts for another that

might describe the examples currently in the window better. In practice FLORA3

was found to be unstable during periods of slow concept drift and in very noisy periods

This lead to the creation of FLORA4, which was an improvement upon FLORA3.

5Accepted descriptors (ADES); Disjunctive normal form (DNF); Negative descriptors
(NDES); Potential descriptors (PDES)
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Similar to the FLORA family of algorithms in using variable-windows, is the

work of Bifet and Gavalda [18] with their Adaptive Window algorithm (ADWIN).

Their algorithm adjusts the window size according to the determination of concept

drift. The window size increases when no change is apparent (thus increasing the

size of the training set) and decreases when change occurs. The idea behind ADWIN

is that when two “large enough” subwindows of sliding window W exhibit “distinct

enough” averages, the older portion of the window is dropped. This portion is kept

until a statistical test is able to reject the null hypothesis that µt has remained

constant within the sliding window W with a level of confidence δ.

Another relevant work was that of Klinkenberg and Renz [123] who used mea-

surements of accuracy, recall and precision, and by measuring their changes over time,

determined when concept change occurred. First the average value and the standard

sample error are computed for each of the performance measurements using the last

M batches from a sliding window. If the current value of accuracy, recall, and preci-

sion were smaller than the confidence interval of α times the standard error around

the average value (where α > 0), then a concept change occurred.

Gama et al. [83] provided another method of monitoring the error rate to

determine when concept drift occurred, appropriately called Drift Detection Method

(DDM). After n instances, the probability of classifier error (i.e. of getting a False

and assuming Bernoulli trial) was determined for each instance i; this is calculated

after a set number of instances by dividing the number of classifier errors into the

total number of instances seen thus far. The standard deviation was given by si =
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Figure 4.6: Demonstrating the layout of our experiment using Gama et al. [83] concept
Drift Detection Method (DDM)

�
pi(1−pi)

i
. Additionally, a register of pmin and smin was kept. The algorithm gave a

warning when pi + si ≥ pmin + α · smin and a determination of concept drift when

pi + si ≥ pmin + β · smin. The paper used α = 2 and β = 3 with the idea that after

concept drift has been flagged, a new learner is created.

DDM is an often cited method so we demonstrate the algorithm on our stock

dataset. Using a support vector machine (with a polynomial degree kernel) we build

classifiers using 1000, 5000, 10000, 15000 and 20000 instances. Starting at four differ-

ent test instances6, we examine when concept drift is first detected by the algorithm

(where n > 30). Figure 4.6 demonstrates the layout of the experiment.

The results from Table 4.1 show the average number of instances until a con-

cept drift occurs according to the algorithm for each stock. This is where, according

to the algorithm, a new model would need to be built because the concept change

has made the model obsolete. For our experiment, we found no discernible pattern in

6Random times were chosen to begin testing: May 1, April 16, April 2, and June 15.
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Table 4.1: Demonstrating the number of instances (minutes) until the first appearance
of concept drift using Gama et al. [83] algorithm for detection of drift

Training set size ANR APA APC BHI Average

1000 instances 337±456 177±119 124±79 327±277 241±265
5000 instances 686±753 206±159 138±55 166±98 299±418
10000 instances 2091±2723 129±37 131±67 219±155 642±1494
15000 instances 824±1407 168±172 300±172 2226±3748 879±1981
20000 instances 519±698 101±23 201±242 462±374 320±410

the number of instances used in the training set, with neither a decrease in the first

occurrence of concept drift nor an increase. Instead the occurrence of first concept

drift appeared to be independent of stock, training set size, and start of the test set.

This experiment demonstrates however, that a large range of concept drift was found

in the dataset, with a range of first occurrence of concept drift appearing after 47 to

7247 instances, with a mean of 476.75 instances and a median of 149 instances (very

skewed). Since the dataset uses minutes as instances, this amounts to a median of

21
2
hours. This is relevant because it demonstrates that the occurrence of concept

drift cannot easily be anticipated. This brings us to our next method of learning

with drifting concepts – assuming that drift occurs, without determining if it actually

exists.

4.2.2.2 Assuming drift occurs

The second form of learning with changing concepts, is to assume that concept

drift occurs without determining if it actually does (from the previous experiments,

it is probably a safe assumption that stocks drift). This is done most often through
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assigning a decreasing weight to older examples or through the use of a sliding window

[72]. The sliding window approach constrains the training of classifiers on a moving

subset of the data stream (see also Subsection 3.5.2). In a fixed-sized sliding window,

a window of size n is determined a priori by the user. As time progresses, the model

is trained using the most recent data from t − n, where t is the current time. The

assumption is that the most recent data is most similar to the current and therefore

prevents stale or outdated data from influencing the model. A small training window

will therefore, in theory, reflect the current distribution better while a larger size

window will contain more training instances and have a stronger ability to perform

well during moments of stability. This method is not without consequences however,

since if the window is too small, the classifier does not contain a large enough number

of instances without over fitting; if the window is too large, the classifier may be built

using data that contains too many different concepts.

Methods do exist that take into consideration the level of concept drift, by

decreasing the size of the training window to allow for fast adaptability, and increasing

the window size to provide a larger training set during moments of stability [123].

However, for these “adaptive window management” techniques to work, it is necessary

to determine when the concept drift first appears. A nice example of this is the

previously described work of Kubat and Widmer [130, 131, 232, 234] with the FLORA

family of algorithms or Bifet and Gavalda [18] with the ADWIN algorithm.

There are also ensemble methods that are based on the assumption that con-

cept drift occurs, without explicitly checking for it. The motivation behind this
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method is that the most recent data may not always be the most important data

to incorporate in the learning algorithms [80]. One of the first uses of ensembles in

data streams was the work of Street and Kim [210] with their Streaming Ensemble

Algorithm (SEA) where d instances are read from a sliding window of data and used

to build a classifier. This classifier is compared against a pool of previously trained

classifiers (from previous sliding windows), and if it improves the ensemble quality it

is included at the expense of the worst classifier. This ensemble of classifiers is then

used to predict the next d instances. Wang et al. [224] constructed a weighted ensem-

ble of classifiers with one classifier from the most recent sliding window and the other

classifiers trained on past sliding windows. The classifiers are assigned a weight ac-

cording to their performance achieved via cross-validation on the most recent sliding

window. Gao et al. [89] provides another framework for learning from drifting con-

cepts where drifts occur as a result of imbalanced class distributions. Their method

samples from the previous (sliding window) minority class instances into the current

(sliding window) training data to compensate skewed class distribution; this is done

multiple times to create multiple training sets. An ensemble of hypothesis is then

created from these training sets.

Ensemble methods are an important part of this research and an especially

large part of the research within the wrapper framework. This will be discussed in

more detail in Subsection 4.3.2 later in this chapter.
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4.3 Adaptive models and wrapper frameworks

The importance of concept drift has been explained. As mentioned, there

are generally two methods of tackling concept drift. The first is to find evidence of

concept drift, such as through the use of novelty detection algorithms. When concept

drift has been detected, the learning algorithm (e.g. classifier) is updated with the

new training data. The second method is to assume that concept drift occurs and to

make updates to the model at intervals with the use of sliding windows. This second

method also includes the use of ensembles that combine models trained from different

intervals of data.

While we have covered the theoretical methods of learning with concept drift,

we have not covered how to rebuild classifiers in a manner that is efficient enough

to work with high-frequency data. For example, with the first method of using a

novelty detection algorithm to determine concept drift, we have discussed the process

of building a new classifier using the new concept, but have not discussed in how this

would work in practice. High-frequency data requires a very efficient algorithm (both

in terms of speed and accuracy). The second method of learning with concept drift,

makes assumptions on the nonstationarity of the data and uses sliding windows to

update the learning classifier at specific intervals; however, we have not yet discussed

how this is done or provided a framework. This section addresses these factors in detail

with exploration of the two approaches to learning from streaming data: adaptive

(online) and wrapper methods.

Adaptive models incorporate the instances into the model as they arrive,
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instance-by-instance, and efficiently with a single pass through the data. An ad-

ditional benefit is limited time and memory is required. Forgetting factors can be

integrated in the model to give less weight to older data, thus gradually making older

data obsolete. However, this ability to have the most-up-to-data classifier with the

most recent data also has the potential downside of not incorporating previously

instances that may useful once again in the future [224]. The wrapper-based ap-

proach uses traditional classification algorithms, such as the support vector machines

or neural networks, that learn on collected batches of data (through the use of sliding

windows).

4.3.1 Adaptive Models

4.3.1.1 Overview

Adaptive models, also referred to an incremental, continuous, online, any-

time, and real-time learning, are algorithms that have been adapted to work with

data streams in a real-time setting. Two characteristics of adaptive models are that

they provide “any-time learning” (the model processes the data as it arrives) and they

are efficient, only requiring one pass through the data. This means that the classifier

is constantly up-to-date, so if the system is stopped at time t, a solution is available.

Also since the data arrives incrementally (instance-by-instance), the model must be

computationally efficient, hence the need for one-pass data learning [132].
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4.3.1.2 Existing work

4.3.1.2.1 Very Fast Decision Tree

Domingos and Hulten in 2000 [62] introduced the Very Fast Decision Tree

(VFDT) algorithm which is one of the more popular algorithms to use with stream-

ing data. It works by incorporating training instances as the data arrives, versus a

decision tree that learns on batches of data (such as the C4.5 algorithm) that have

to be rebuilt entirely as each new training instance arrives. The batch decision tree

requires the full dataset to be read as part of the learning process. Also, if the stream-

ing data arrives too quickly, it would have to sample data to make-up for the increase

in learning times, thereby losing potentially valuable information. The VFDT does

not have this problem. Another benefit of the VFDT is that the output is nearly

identical to the conventional decision tree.

With the VFDT, the first instances that arrive from the data stream are used

to choose the split attribute at the root. Subsequent ones are then passed through

the tree until they reach a leaf, and then are used to split an attribute there; this

continues recursively [62, 109]. The decision of how many examples are necessary

at each node is difficult considering that not all of the data is available from the

beginning and are thus infinite. The use of Hoeffding inequality is used that provides

an upper and lower bound of the number of examples.

A problem with the VFDT is that it assumes that the data stream is drawn

from a stationary distribution (i.e. void of concept drift); this of course is inconsistent

with the needs of streaming stock data as was previously discussed. The Concept
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Drift Very Fast Decision Tree (CVFDT) [109] is a modified version of Domingos

and Hulten’s VFDT algorithm which uses fixed-width sliding windows to adapt the

model to concept drift. After building the tree, it adapts by growing new sub-trees

and disregarding old sub-trees [223].

VFDT has also been used with adaptive (variable length) sliding windows to

learn on data streams with high concept drift, such as Bifet and Gavalda’s Adaptive

Windowing (ADWIN) algorithm [18]. This algorithm increases the window size

during moments of low concept drift to include more training instances and decreases

the size of the sliding window during moments of high concept drift to include only

the instances in the most recent drift.

4.3.1.2.2 Exponential fading of data

Law and Zaniolo [139] make the assumption of concept drift by weighting

the more recent classifiers in an ensemble more than older ones in their Adaptive

Nearest Neighbor Classification Algorithm for Datastreams (ANNCAD). Because

the nearest neighbor algorithm is computationally expensive and often slow (i.e. it is

a lazy learner that learns at run time), ANNCAD speeds up the process by dividing

the feature space into discretized blocks of equal size. For each class, the number of

training instances are counted within a single feature-space block. If the training set

is unable to correctly differentiate between the classes according to a pre-determined

threshold value, a coarser level of division among the feature space is created (e.g.

going from fine 4× 4 to a coarser 2× 2). To adapt to concept drift, the model then
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uses exponential fading to give less weight to older data, thus gradually making older

data obsolete. In fact, this gradual forgetting period is one of the weaknesses of this

model; sudden concept drift may go unnoticed.

4.3.1.2.3 Online bagging and boosting

Ensembles often outperform their base models (the classifiers that comprise the

ensemble) so it is only natural that an ensemble has been adapted to work real-time

with streaming data7. However, most ensemble algorithms require batch learning, or

the repeatedly reading and processing of the entire dataset. For each base classifier,

one pass through the dataset is required, making the ensemble classifier unwieldy

to use for large streaming datasets. Oza solves this problem in [175] by creating an

online version of the Bagging and Boosting algorithms. This online version requires

only one processing of the training set regardless of the number of classifiers in the

ensemble; thus eliminating the need to store the training example for reprocessing,

since the model contains all of the training instances seen thus far [173].

In batch (non-online) bagging, since sampling with replacement is done, any

particular training set instance may be seen multiple times within the bootstrapped

samples. This is a binomial distribution, with K copies of each of the N original

training examples in each sample. The probability of seeing any specific training

example:

P (K = k) =

�
N

k

��
1

N

�k �
1− 1

N

�N−k

(4.1)

7For a theoretical explanation of why ensembles work, please see Subsection 3.3.7.
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The requirement in a batch setting is that the entire dataset of size N is finite and

supplied. In a streaming setting, the value of N can be assumed to be infinite and

hence the value is unknown. This makes the normal implementation of bagging not

possible without modifications.

As can be seen in Equation 4.2, as N → ∞, p is small (i.e. p = 1
N
), and λ =

Np, the binomial distribution, Bin(N, p), can be approximated by Poisson(λ = 1).

The “online” modification of bagging, for each classifier, takes each new labeled data

point and samples from the Poisson distribution ( 1
k!
e−1) to find the k, or the number

of copies of the new data point to place in the training set. The online and batch

bagging method continue the same from here with a majority vote determining the

label of the new data point.

�
N

k

�
(p)k (1− p)N−k =

N(N − 1) . . . (N − k + 1)

k!

�
λ

N

�k �
1− λ

N

�N−k

≈ λk

k!

�
1− λ

N

�N

≈ λk

k!
e−λ when N is large (4.2)

Online bagging provides similar results to batch (non-online) bagging when

using the same classifier and if the distribution is the same among the training sets

[173, 175].

As explained previously in Chapter 3, Section 3.3.7.2, batch boosting re-

adjusts the weights (at each iteration) according to the coinciding classifier. Instances

incorrectly classified receive larger weights and correctly classified ones receive lesser

weights. Oza describes in [175] his online version of boosting, which uses the Poisson
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distribution to do sampling with replacement in a similar fashion as was done in his

online bagging algorithm [173]. For example, the online AdaBoost method takes a

sequence of base classifiers {h1, . . . , hM} and the parameters {λcorrect
1 , . . . , λcorrect

M } and

{λincorrect
1 , . . . , λincorrect

M } for the sum of the correctly and incorrectly identified exam-

ples for each of the M base classifiers. The algorithm’s output is a new classification

function that has parameters λcorrect and λincorrect that contain the updated base mod-

els h. The training example (x, y), in its first iteration, is given a weight of λ = 1.

At each of the following iterations one of base models is updated by choosing a k

according to the Poisson (λ) distribution λk

k!
e−λ and is updated k times using (x, y).

If hm is correctly identified then λcorrect is increased otherwise λincorrect is increased.

This process is repeated for all M base models.

To illustrate online bagging and boosting and the similar results to the normal

implementation of batch bagging and boosting respectively, we examined the algo-

rithms on a simulated dataset called Waveform-21 generator. This dataset contains

100, 000 instances, 21 attributes and one predicted attribute containing 3 classes. All

tests were run using the Massive Online Analysis (MOA) [19] and Weka java libraries

[96].

The experiments used five synthetically created, randomly ordered Wavelet

datasets (the order of the instances matters to the online implementations) and all

ensembles were comprised of ten Näıve Bayes base classifiers. All experiments began

after the first 10,000 instances and continued training (using anywhere from 100 to

10,000 instances in the model) and testing using the next 90,000 instances with a
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prequential evaluation technique (every 100 instances). Each experiment was con-

ducted on five separate simulated datasets and the results were averaged over the five

datasets. The results comparing the online and batch versions of the bagging and

boosting algorithms can be seen in Figure 4.7.

For bagging, using 10,000 instances for training in the classifier, the percentage

correctly classified 8 was 80.44[±2.12] and 80.78[±2.09] for batch and online respec-

tively; it was not statistically different at the 95% level. Then for boosting, using

10,000 instances for training in the classifier, the average percentage correctly clas-

sified was 80.74[±1.99] and 80.86[±2.03] for batch and online respectively; also not

statistically different at the 95% level. Additionally, as explained previously, the ad-

vantage of the online versions of bagging and boosting is that the algorithms require

only one pass through the dataset rather than multiple passes for batch implementa-

tions.

For a more thorough analysis (more datasets), please see [20, 174]. The main

problem with this online method of boosting and bagging, is its inability to deal

with drifting concepts since it assumes a stationary distribution [49]. Bifet et al. [18]

provides an additional methods to enable Oza et al.’s ensemble methods to work with

concept drift by using sliding windows. Please see that paper for more information.

8The results were averaged over the five datasets.
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(a) Batch versus online bagging
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(b) Batch versus online boosting

Figure 4.7: Comparisons of batch and online bagging and boosting using a simulated
dataset

4.3.2 Wrapper Frameworks

4.3.2.1 Overview

Whereas adaptive methods are algorithms that have been adapted to work

with data streams in a real-time setting, the wrapper framework reuses existing

schemes [121]. Instead of increasing the computational speed of the classifier like

the adaptive methods (e.g. VFDT), the wrapper method is more of a framework that

uses traditional classifiers learned on chunks (i.e. subsets) of collected data. The data

must be chosen in such a manner that allows for enough data for generalization, yet

not too much so the learning time makes for an impractical algorithm for streaming

data. Additionally, a training set that is too large may include too many concepts,

thereby reducing predictability. However, if the dataset is too small, it will produce

a model too quickly with poor generalizability and therefore, poor performance.

Another difference between adaptive and wrapper methods, is that adaptive
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methods alone do not adapt to concept drift. Instead they use exponential fading

of data [139] or change detection algorithms based on some form of sliding windows

[18, 109]. The use of change detection algorithms to determine when to update models

makes for a costly model updating procedure. Once concept drift is detected, old data

is eliminated and the model is built from scratch with the new concept’s data. This

reliance on change detection algorithms often make the use of adaptive models, which

are built for speed, slower than they are in batch mode [224].

Wrapper methods offer additional advantages over adaptive ones, including

the ability to learn from data streams using traditional classifier types (i.e. artificial

neural networks, support vector machines, random forest, etc.) as well as the ability

to parallelize easily. A description of existing research on the wrapper framework

follows, which sets the stage for our new framework for predicting stock direction in

Chapter 6.

4.3.2.2 Existing work

One of the first and most popularly cited wrapper methods in data streams

is the Streaming Ensemble Algorithm (SEA) by Street and Kim [210]. In their

algorithm, d instances are read from a recent sliding windows Dt and used to build

classifier Ci (the authors use the C4.5 decision tree algorithm). The previous classifier

Ci−1 built on the previous sliding window Dt−1, is then evaluated on chunk Dt and

this is compared with the accuracy of the existing ensemble E (built with a pool of

previously trained classifiers). If the accuracy of classifier Ci−1 is better than the
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existing ensemble E, then the worse base classifier in the ensemble is replaced.

The dynamic nature of the SEA method in updating the classifiers in the en-

semble creates diversity, which minimizes the effects of concept drift. This is because

the poorest performing classifiers are replaced by higher performing classifiers. This

can also be a drawback, since old concepts will gradually be forgotten.

Wang et al. [224] provided another wrapper method consisting of a series of

classifiers formed into an ensemble. They construct a weighted ensemble of classifiers

with one classifier from the most recent sliding window and the other classifiers trained

on past sliding windows. The classifiers are assigned a weight according to their

performance achieved via cross-validation with the most recent sliding windows. Their

results found that the use of an ensemble worked better than training a single classifier

on the same amount of data. The authors rationalize their use of old data in the

model, stating that “maintaining a most up-to-date classifier is not necessarily the

ideal choice, because potentially valuable information may be wasted by discarding

results of previously-trained less-accurate classifiers.”

Fan [72] continued where the Wang et al. [224] paper stopped by addressing

the question – is it better to train using new data alone or new and old data (and

how much old data)? Using a series of tests, he concluded that the use of old data

“definitely helps” when the data stream contains no concept drift and if the new data

is insufficient. When concept drift does exist, old data helps if the new concept and

old concept share consistencies. The author discusses a framework for choosing ideal

old data for model building.
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The framework works by using cross-validation on old data to find the portion

of old data that complements the most recent data the most. This data is then used

to build a classifier and combined with the most recent classifier to form an ensemble.

A critique of the Fan [72] framework observed by [46] is the high level of granularity

of cross-validation used. More splits in the validation set (finer granularity) would

more accurately provide the desired proportion of old data, however this comes with

an increased computation time. The finer the granularity, the more it becomes a

brute force method, thus making it undesirable for high-speed learning.

Rushing et al. [194] propose another wrapper method, the Coverage Based

Ensemble Algorithm (CBEA). The algorithm is similar to Street and Kim’s SEA,

but the authors note that SEA has problems when learning from drifting concepts

with unevenly distributed datasets. CBEA uses an approach different from SEA for

deciding which classifiers to use and which ones to discard. Specifically the CBEA

framework keeps information relating to the range of possible values and the age of

the classifier as a means of keeping a variety of models covering a larger range of

values. Newer classifiers are preferred over older ones and classifiers with the most

similar coverage overlap (and are oldest) are discarded first. The algorithm chooses

the classifiers using k nearest neighbors. For example, the most recent batch of data

is compared with the training sets that built previous classifiers. The instances that

are nearest to the most recent batch of data (according to k nearest neighbors) are

identified. The classifiers that used these instances in their implementations receive

one vote; therefore one classifier may get multiple votes or even all of the votes. The
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idea is to prevent classifiers from being used on data dissimilar to data on which it

trained.

Chu and Zaniolo [49] provide another wrapper method that is both a fast

and light boosting algorithm that uses ensembles to learn on drifting concepts. The

method first works by breaking the data into blocks of equal size; then similar to

AdaBoost, the algorithm assigns larger weights to misclassified samples. The weights

of the samples are normalized and a classifier is then built on this weighted training

block.

Each classifier arrives at a prediction and a mean rule combines the probability

of the predictions; the class with the highest probability is the solution (see Subsection

3.3.7.3 for more information on “Combining classifiers for ensembles”). To deal with

drifting concepts, this wrapper method actively detects changes and discards old

ensembles when found. A downside to this method is old classifiers are deleted; thus

(possibly) useful knowledge is eliminated.

An approach by Brzezinski and Stefanowski [31], theAccuracyUpdatedEnsemble

algorithm (AUE2), uses incremental Very Fast Decision Trees (VFDT) within a wrap-

per framework. The VFDT incrementally builds classifiers Cj on evenly sized chunks

B1, B2, . . . , Bn each containing d instances. For every incoming chunk Bi the clas-

sifiers are evaluated and ranked. The worst performing classifier is replaced with a

classifier Cr, deemed “the perfect classifier”, that is build on the particular chunk

of data that the other classifiers were tested on (the most recent chunk of data).

All classifiers are then weighted with a formula that provides a larger weight on the
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best performing classifiers and an even heavier weight on “the perfect classifier.” The

classifiers chosen are now updated incrementally and they become part of a weighted

ensemble.

4.4 Performance and efficiency

Changing market dynamics (i.e. concepts) create a need for a methodology that

updates training data and/or models. Large amounts of data streaming in at high

speeds also require this methodology to be efficient. As mentioned in the introduction

to this thesis, an algorithm is of little value to the trader if it takes thirty minutes

to arrive at a solution for the prediction of stock price direction one minute in the

future. Gaber et al. [80] discusses a tradeoff between speed of the algorithm and the

performance, with a shortening of algorithm learning times tending to cause decreases

in algorithm performance, such as accuracy. This is generally true, with individual

classifiers most often performing worse than ensembles (with longer training times).

Additional time also gives us more time to search, often through brute force, for a

global optimum. We demonstrate however, that this is often a more complicated

discussion; more data leads to greater training times, which generally leads to better

results, but there is a point of diminishing returns where more data may lead to worse

results.

Increases in training times do not necessarily improve performance. We demon-

strate this with the use of a support vector machine (polynomial degree kernel) in an

experiment with the stock ANR from our dataset (i.e. our stock problem of predicting
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Figure 4.8: Demonstrating performance (blue) and increases in training times (red)
due to increases in instances

up, down, or no change). An increase in the number of instances increase weighted

AUC9 to a point (see Figure 4.8) and longer training times did not necessarily equate

to better performance. A possible explanation is that the larger dataset was including

too many different concepts, which decreased predictability. We also performed this

test multiple times with different stocks and received different cutoffs at which more

data began to decrease profitability. This illustrates that more data is not always

better when training classifiers for predicting future stock direction.

9AUC is generally for two class problems. Weighted AUC [228] however, is the class prior
probability weighted AUC. The dataset that we use is a three class problem so therefore we
use weighted AUC.
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4.5 Conclusion

In Section 4.2.2 the definition of concept drift was discussed and its negative

influence on stock price prediction was demonstrated in an experiment. Two methods

for learning with drifting concepts are: 1) explicitly detecting concept drift and upon

detection adapt the classifiers by retraining and 2) assume that concept drift occurs

and build classifiers at fixed width sliding windows or through the use of an ensemble

(where base classifiers are updated at specified intervals). Existing research covering

both methods were discussed. Our framework to be discussed in Chapter 6, follows

this second approach. We also initiated an experiment using the drift detection

methods of Gama et al. [83] to determine when drift occurs within our stock dataset.

We next examined two model approaches to adjust for concept drift: the

adaptive and wrapper framework. The adaptive model provides a solution for solving

the first method of learning with concept drift (i.e. retraining after detecting concept

drift) within the constraints of the time needed for prediction. An example of an

adaptive model is the popular Very Fast Decision Tree by Domingos and Hulten

[62]. The fast training times of adaptive models provide for a reasonable solution

when time constraints require a fast decision. However, adaptive models comprised

of single classifiers are generally outperformed by approaches based on ensembles of

classifiers (as we showed theoretically in Subsection 3.3.7). Also, adaptive models

that work with concept drift are built on the assumption that the most recent data

is more valuable for training than earlier data. With stock data, as we will explore

in Chapter 5, this assumption is questionable. The second approach is the wrapper
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framework which requires lengthier training times than adaptive classifiers (which

are built for speed), but this is somewhat offset by the need to only train model

periodically. Wrapper frameworks also offer a distinct advantage of adjusting for

concept drift automatically. Furthermore, problems pertaining to stock datasets,

such as class imbalance and dimensionality reduction, are more easily solved using

full subsets of data available with wrapper frameworks. The next chapter discusses

this further along with additional solutions for optimizing and decreasing learning

times with stock data.
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CHAPTER 5
ADDRESSING PROBLEMS SPECIFIC TO STOCK DATA

5.1 Imbalanced data streams

5.1.1 Overview

In the previous chapter we discussed different approaches to learning from

data streams and overcoming concept drift; however, this was under the assumption

of having a balanced data stream with an equal number of predicted classes. It is more

realistic for stock datasets to have imbalance, with more instances of a particular class

than others (see Figure 4.5). Learning from such a dataset usually results in a classifier

having a bias toward the majority class; thus the classifier tends to misclassify the

minority class instances. This is due to the rules predicting the larger number of

instances being strongly weighted to favor accuracy1, and therefore cause the instances

belonging to the minority class to be misclassified more frequently [155]. In a highly

imbalanced dataset, a classifier may have high accuracy while misclassifying most of

the minority classes.

When predicting stock direction we are most interested in the large movements

(most often the minority class); moves of a few cents are relatively unimportant in

predicting stock direction and less profitable. For example in Figure 5.1, the minute-

by-minute stock price of Exxon (symbol: XOM) is shown on January 3, 2012 with

the price in Figure 5.1a and the difference of the price at time t from time t − 1 in

1From Section 3.4, accuracy or TP+TN
TP+TN+FP+FN , is the total number of correct predictions

made over the total number of predictions made.
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Figure 5.1b. The movements outside of a $0.05 difference (i.e. |pricet − pricet−1| >

$0.05 ) make up only 11.8% of the moves on the particular day, yet those moves

are of most interest to a trader. Making this a three class problem, we would have

�
pricet − pricet−1

�
> $0.05 comprising of 5.6% of movements,

�
pricet − pricet−1

�
<

−$0.05 comprising of 6.1% , and 0.05 ≥
�
pricet − pricet−1

�
≥ −$0.05 comprising of

88.2% movements. This can be observed in Figure 5.1c.

Stock data streams, as we have previously discussed, suffer from both concept

drift and class imbalance. According to [104, 105], one of the advantages of wrapper

approaches is their ability to deal with reoccurring concepts. Thus ensembles are

often built from past subsets (batches) of data that can be reused to classify new

instances from the new concept, similar to the class distribution of the old concept.

Another advantage of wrapper methods is, since they are built on batches of data

using traditional classification algorithms, proven strategies to overcome imbalance

can be used. This includes adding bias along with over- and under-sampling. For

example, one of the simplest methods to overcome imbalance is to over-sample the

minority class by randomly sampling the minority class instances with replacement.

Another method is to under-sample the majority class; however, this results in the

loss of knowledge that could have been useful.

In this section we describe strategies and algorithms for working with imbal-

anced datasets for streaming data.
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(a) Price at time t
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(b) Difference of price t from time t− 1
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(c) Histogram of difference of price t from time t− 1

Figure 5.1: Demonstrating the price change of symbol XOM on January 3, 2012
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5.1.2 Strategies

5.1.2.1 Over- and under-sampling and synthetic training generation

Gao et al. in [88, 89] tackles imbalanced data streams (using a wrapper frame-

work) in a relatively simple way. In their method, the incoming data stream ar-

riving in sequential chunks is represented as St−i, . . . , St−1, St, St+1 with St as the

most up-to-date chunk and St+1 representing the next chunk. The arriving set S is

then split into the (minority) positives Pt−i, . . . , Pt−1, Pt and the (majority) negatives

Nt−i, . . . , Nt−1, Nt. The classifier is trained using the most recent negative instances

{Nt} and the most recent positive instances going back as far as needed to get a

more balanced distribution {Pt−i . . . Pt} of positives and negatives. Additionally, the

training set comprised of negative instances {Nt} is under-sampled.

After the work of Gao et al. [88, 89], other researchers developed modifications

to the selection of the minority classes from previous chunks of data. For example, in

Chen and He [45] the authors develop SElectively Recursive Approach (SERA) to

work on unbalanced datasets with concept drift. Their method is similar to [89], but

instead of taking random positive (minority) examples from previous chunks of data,

they choose the positive instances based on similarity to the current training data

chunk. Chen et al. [47] then expanded their SERA method with Multiple Selectively

Recursive Approach (MuSERA) by using a hypothesis built on every training chunk

and built over time, as opposed to their original SERA method which kept only one

hypothesis.

Another method is used by Liu et al. [151] in theirReusingData ForClassifying
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Skewed Data Streams (RDFCSDS) algorithm to partition the data {Xt, yt} into se-

quential chunks of equal sizes St−i, . . . , St−1, St, St+1 with St as the most up-to-date

chunk and St+1 representing the next chunk. Sampling is used to create balanced

datasets similar to the previously cited Gao et al. [89] and classifiers in each chunk

are used to compose an ensemble Et at the current time t. If the expected value of the

ensemble is not equal to the actual value, then concept drift has occurred and only

new classifiers are used in the data. If concept drift has not occurred, then classifiers

from previous chunks are chosen according to their AUC on the current chunk of

data.

An additional method, that is popular for dealing with imbalanced data, ar-

tificially creates the minority class based on similarities between existing examples

in the dataset. This is the Synthetic Minority Oversampling Technique (SMOTE)

by Chawla et al. [43] (and with an addition of a boosting algorithm is SMOTE-

Boost [44]). A regular boosting algorithm without synthetically generated minority

instances would have a learning bias toward the majority class cases; SMOTEBoost

reduces the bias from class imbalance by increasing the weights for the minority

class. In each round of boosting, synthetically generated minority class instances are

created, and by doing so, increase the probability for the selection of the minority

class.

These methods of over- and under-sampling along with synthetic generation

approaches can be implemented with data streams through the use of sliding win-

dows (similar to modifying adaptive methods to work with concept drift). In these
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approaches, classifiers that are trained on old data are discarded and new classi-

fiers are built on new data as needed. For adaptive (online) learning, the SMOTE

algorithm is used by Ditzler et al. [60] with their Learn++.NSE2 algorithm; more

information can be found in that paper.

There are drawbacks to sampling methods however, such as the uncertainty of

how much over- and under-sampling to apply. According to Hoens in his dissertation

on learning with imbalance [105], it would be ideal to promote the learning of the

minority class with over-sampling without over-fitting the model to the data. Addi-

tionally, under-sampling might not retain information knowledge about the majority

class. One possible solution is through careful use of training sets and validation sets

(i.e. build the model on the training set and carefully test on a validation set). There

is some evidence however [50], that this is not as effective as building ensembles of

classifiers that work without the need for sampling. As we discussed previously, Hoens

et al. [104, 105] writes that one of the advantages of batch approaches is their ability

to deal with reoccurring concepts – to learn on past batches of data and reuse this

information to classify new instances on new concepts with similar class distributions

as old concepts.

5.1.2.2 Cost-based solutions

Cost-based learning is another method for adapting to concept drift. With

over- and under-sampling, the training set is modified to account for imbalanced

2Learn++ [181] is a family of algorithms for incremental, online learning. Learn++.NSE
stands for Nonstationary environment.
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datasets; however, with cost-based learning, the classifier is modified. For example,

with traditional classification, the cost of error is uniform; this is not very realistic in

practice since some errors are more expensive than others (see Section 3.4.5). Through

the use of a cost-matrix (see Subsection 3.4.5), penalties can be implemented for mis-

classifying instances. The classifier minimizes the cost of misclassification rather than

the misclassification errors (through optimization). Instead of creating an imbalanced

data stream through sampling, cost sensitive learning targets the imbalance by using

different cost matrices [102]. An imbalanced dataset can therefore be thought of as

a cost-dependent problem; the error of minority misclassification can receive higher

cost than a misclassification of the majority class.

According to [155], three cost-based solutions have been described. The first

is the use of sampling (both over- and under-sampling) according to the weight of the

class considered cost matrix. For example, if the bias is toward avoiding errors on

the “large move” instances (because the errors are penalized more), the “large move”

instances can be sampled at a much higher weight [236]. In addition to sampling,

modifying the decision threshold can also be used in proportion to the cost matrix.

The second solution is by changing the process by which the classifier learns. For

example, a cost matrix can influence an attribute to split data when building a deci-

sion tree or can determine if a subtree can be pruned. The third cost-based solution

is based on Bayes decision theory that assigns instances to the class with minimum

expected cost; an example of this is MetaCost [61, 155].

MetaCost [61] builds separate classifiers on individual bootstrapped training
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sets (with replacement) and then modifies the voting threshold for the classes (i.e.

using each class’ fraction of the total vote as an estimate of its probability given the

example). Because of its good results, MetaCost is one of the most popular methods

[236].

Overviews for learning from imbalanced data streams can be found in [91, 104,

105].

5.2 Preprocessing of data

5.2.1 Overview

Data preprocessing is the process of preparing the data for use in a classifier

to make the model more robust. Electronic trading has increased the reliability of

trading data from the past, when trades were executed without the use of computers

and clerks inputted the transaction price and volume amount manually. However,

preprocessing is still an important task required for the analysis of stock movements to

ensure the integrity of the models built. This includes cleaning the data, determining

the need for more or less data, transforming the data for use in a specific classifier,

de-trending, among others [184].

The New York Stock Exchange (NYSE) has offered ultra high-frequency datasets

since the 1990s, which is marketed as TAQ trade data (Trades and Quotes). This

is the finest granularity of data with each trade-by-trade transaction being recorded

at non-uniform increments. See an example of TAQ data in Table 5.13. Data from

3SYMBOL is the stock symbol; PRICE is the traded price; SIZE is the number of shares
traded; G127 stands for “Combined G Rule 127” a NYSE rule for special trades; COND is
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Table 5.1: TAQ trade data

SYMBOL DATE TIME PRICE SIZE G127 CORR COND EX

IBM 20050103 12:17:28 98.06 100 40 0 N
IBM 20050103 12:17:29 98.07 500 40 0 N
IBM 20050103 12:17:33 98.06 400 40 0 N
IBM 20050103 12:17:37 98.64 1700 0 0 B T
IBM 20050103 12:17:45 98.06 100 40 0 N
IBM 20050103 12:17:56 98.06 300 40 0 N
IBM 20050103 12:17:58 98.05 400 40 0 N
IBM 20050103 12:17:58 98.05 400 40 0 N

other providers, such as Bloomberg and Reuters, also provide the stock price data in

times of 1 second, 1 minute, 5 minute, daily, weekly, etc.

In this section, we discuss the need for preprocessing data. This includes

finding and dealing with noise and bad trade data, deciding what to do with too

much and too little data, and methods for standardizing and normalizing streaming

data.

5.2.2 Bad trade data and noise

The importance of preprocessing can be seen in Figure 5.2, which shows every

transaction for the stock IBM on January 3, 2005 from 12:04 pm to 12:21 pm. Prices

move within a small range until approximately 12:17 at which an outlier can be

seen priced $0.58 away from the previous transaction. This outlier transaction is an

example of a conditional bunched trade (shown as a B under COND in Table 5.1).

This occurs when a trader combines several small orders into one, resulting in a price

the condition of the sale; and EX is the exchange the trade took place.
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Figure 5.2: Demonstrating IBM stock price with bad trade (January 03, 2005)

away from the current traded price (in this example, the bunch trade occurs $0.58

away from the previous traded price). Many researchers [30, 70, 101, 190] recommend

the removal of conditional trades, late-trades, trades reported out-of-sequence, or

trades with special settlement-conditions. Not removing these trades (such as the

one in Figure 5.2) result in noise and incorrectly calculated signals, many of which

are discussed later in this paper. Thus the removal is extremely important, not only

to improve model performance, but also (and perhaps more importantly) to prevent

an automated trade from activating, based on a false signal.

Brownlees and Gallo [30] find noise using a heuristic shown in Equation 5.1.

Price (tick-by-tick) in the formula is represented as {pi}Ni=1, with p̄i(k) and σi(k)

the sample mean and standard deviation of the preceding k prices respectively. A

granularity parameter γ is a constant. Because prices from preceding days may be

very different from the current, the formula only uses observations from the current
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day.

(|pi − p̄i(k)| < 3σi(k) + γ) =





true : observation i is kept

false: observation i is removed

(5.1)

The formula is a heuristic, with the choice of parameter having a significant

difference in outcome. The Brownlees and Gallo paper recommends the size of k to

be small for lightly traded stocks and larger for more highly traded ones. The choice

of γ should be some variation of the price volatility.

Brownlees and Gallo report only the number of noisy trades that are removed

but do not compare their results with a benchmark, but instead state “the judgment

on the quality of the cleaning can be had only by a visual inspection of the clean

tick-by-tick price series graph.” While a manual visual inspection of each data point

could be valuable, we believe it’s helpful to have a quantitative benchmark against

which to measure. In our own experiment of Brownlees and Gallos’ algorithm, we

chose the transactions labeled by the New York Stock Exchange as out-of-sequence,

or those prices that were transacted at an earlier time as a benchmark. Also, since

not all transactions that are labeled out-of-sequence are away from the surrounding

prices, we test how well the algorithm works when the out-of-sequence trades are

more than $0.03 away from the previous non out-of-sequence trade. Using data for

the stock SPY from the first week of 2005, the results for a subset of the data can be

seen in Figure 5.3. Our full experimental results can be found in Table 5.2.

From Table 5.2, as can be expected, the algorithm detects out-of-sequence

trades that are $0.03± from the previous trade more readily; however at the al-
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Figure 5.3: A subset of our experimental results of finding noise with the Brownlees
and Gallo algorithm (noise as determined by algorithm has a green dot)

Table 5.2: Our experimental results of the Brownlees and Gallo algorithm to detect
actual out-of-sequence trades

out-of-sequence trade |out-of-sequence difference| ≥ $0.03
γ k Sensitivity Precision Accuracy Sensitivity Precision Accuracy

0.02

25 0.157 0.311 0.998 0.345 0.311 0.999
50 0.239 0.221 0.998 0.527 0.220 0.998
100 0.280 0.203 0.998 0.600 0.197 0.998
150 0.239 0.171 0.998 0.527 0.172 0.998
200 0.215 0.153 0.998 0.470 0.154 0.998

0.06

25 0.060 0.615 0.999 0.145 0.615 0.999
50 0.115 0.538 0.999 0.255 0.538 0.999
100 0.124 0.468 0.998 0.272 0.468 0.999
150 0.124 0.480 0.998 0.272 0.483 0.999
200 0.124 0.440 0.998 0.272 0.441 0.999



122

gorithm’s “best” of k = 100 and γ = 0.02, only 60% of the transactions are found

(sensitivity) and only 19.7% of the algorithm’s predictions are correct. The algorithm

would therefore remove many in-sequence trades.

Additional methods for reducing noise include increasing the sampling interval

from irregular tick-by-tick data to longer intervals such as 1, 2, 5 minute [172], or

using volume-weighted averaging [190, 217] over longer intervals of time. This will be

discussed more in the next section.

While research has shown the ability of models to learn with greater pre-

dictability when noise is removed, Falkenberry [70] indicates the need to be careful

not to eliminate actual market conditions which may be highly volatile and chaotic

at times. This is a problem: reducing noise while not eliminating volatile market

conditions which may distort the remaining data.

5.2.3 Too much and too little trade data

Trade data does not often arrive at regular intervals (see Figure 5.4), which

makes it difficult to build classifiers. The abundance of trade data is a concern when

the speed of incoming data is higher than the model can efficiently use (i.e. in online

adaptive models) and when the size of data becomes a constraint on storage resources.

Transactions can also occur sporadically and too little data may result in a model

with poor generalizabilty. Both problems of too much and too little data require

efficient solutions.

One solution when faced with too much data is to employ sampling methods or
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Time

9:30 9:31 9:32 9:33 9:34 9:35

Figure 5.4: Trades (transactions) often arrive at irregular time, thus causing problems
when building learning algorithms

to transform irregularly spaced tick-by-tick observations to regularly spaced intervals

such as 1 second, 1 minute, etc. [29, 70]. The latter is perhaps one of the more

common methods in literature we have explored and one that we use in this paper4.

To demonstrate this transformation and reduction of data, in Figure 5.5 the stock

SPY is shown with tick data in Figure 5.5a and then below in Figure 5.5b the reduced

granularity 1 minute data. Because tick data is irregular, during the first 10 minutes

of the trading day nearly 6000 transactions occur, while during 9:50 to 10:00 a.m.

fewer than 4000 transaction occur. To keep as much knowledge as possible while

reducing the number of data instances, it is common to keep both the trade volumes

(i.e. the number of shares traded) and the open, high, low, and closing prices during

the interval (see Figure 5.6).

Other advantages of sampling include the reduction of noise and, according

to [30, 70], outliers from high-frequency data may be less problematic when the data

is sampled or averaged over longer intervals such as 1, 5, 10 minutes [172]. Feature

subset reduction can also reduce the size of the dataset while having the advantage of

4Another name for reducing the incoming data to increase the learning algorithm’s pro-
cessing speed is loadshedding. Additional information can be found in [3, 4].
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(a) Tick-by-tick

(b) 1 minute (green triangles represent high and low prices during that in-
terval

Figure 5.5: Demonstration of the reduction of granularity of SPY stock on January
3, 2005 from 9:30 to 10:00 a.m.
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Figure 5.6: Open, high, low and close over a n interval period, where n = 10 minutes
in this example
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increasing generalizability. More information on feature selection and dimensionality

reduction is in Subsection 5.2.6.

Depending on the stock traded, problems with sparseness may occur, which

is the lack of transactions during a specific timespan. The cause of sparseness may

be due to infrequent trading of the particular stock or due to too much data being

discarded when cleaned. Sparseness of data can also lead to problems such as class

imbalance, or uneven distributions of class. Various strategies have been used to

address this problem, such as oversampling (with replacement) of trading data and

oversampling with synthetically generated samples (see SMOTE algorithm in [43]).

More information on addressing imbalance can be found in [42, 102]. Other solutions

include reducing the sparse variables and re-gathering data using additional data

sources. In other words, sparsity can sometimes be solved. This however remains a

difficult and important problem since lack of data may result in a model with poor

generalizability, or the inability to predict future prices.

5.2.4 Transformations

5.2.4.1 Discretization

Some machine learning classification algorithms require data to be in categor-

ical forms. Discretization, also called binning, is the process of transforming a contin-

uous attribute into a categorical one. Binarization is the transforming of discretized

attributes into binary form (i.e. dummy variables). Proper use of discretization can

also improve the generalizability of the classifier and decrease training times [118].
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The two most popular methods of discretization are equal width and equal

frequency discretization. In equal width discretization, the attributes are divided into

k intervals (determined a priori) with the widths determined by vmax−vmin

k
, where

vmin and vmax are the minimum and maximum attribute values respectively. In equal

frequency discretization the values are divided into k categories (again determined a

priori) with each category containing the same number of training instances [242].

An additional difference between these two methods is the equal width discretiza-

tion method requires one pass through the data, whereas with the equal frequency

discretization method it is slightly more computational since the data must first be

sorted. Both methods are unsupervised ; they do not take the class label into con-

sideration. The value of k can be determined by a visual inspection of the training

dataset, trial-and-error by building the classifier on the training set and then inspect-

ing on the validation set, or by using Sturges’ simple rule of thumb for determining

the value of k: k̂ = 1 + log2(n), where n is the number of training instances [203].

A popular supervised method is the often cited work of Fayyad and Irani with

their entropy minimization heuristic discretization [74] to determine cut points5 for

continuous attributes in decision trees. An additional supervised method is Kerper’s

ChiMerge [117]. In ChiMerge, within each interval, class frequencies are relatively

consistent. If the class frequencies are not consistent within an interval, then the

interval is split to express the difference; if two adjacent intervals have similar class

5An example of a cut-point is a continuous interval [a, b] is partitioned into [a, c] and
[c, d]; the cut-point then is c since it divides the range into two intervals. Example taken
from [150]
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frequencies, then they are merged together. A χ2 test of independence is used to test

the hypothesis that two adjacent intervals of an attribute are independent of the class.

If found to be independent, then the intervals are combined (otherwise they are kept

separate). A description of methods that have built upon ChiMerge can be found in

[243]. Surveys of additional discretization methods can be found in [129, 150, 243].

In streaming data, especially stock data, one cannot assume that the past

determinations of the discretization parameters will remain the same in the future

since the distribution of the underlying data may change (see Section 4.2 on Concept

Drift). One solution for this is to discretize over fixed and sliding time windows batch

learning classifiers [32, 33, 66, 84, 204]. The idea is that when the underlying concept

remains stable, the size of the window increases to allow for more data; when the

concept drifts, the window shrinks. If the window is too small, the classifier does not

contain enough instances without over fitting; if it’s too large, the classifier may be

built using too many concepts. Using sliding windows therefore allows for the use of

many of the traditional established methods of discretization with streaming data.

Many of the established successful methods for discretization that work well

with wrapper learning do not work well with online learning. This is due to the

need for tighter time constraints in an online setting for the algorithm to adjust to

changing (drifting) concepts.

For online streaming data, Domingos and Hulten [62] introduced the Very

Fast Decision Tree (VFDT) and its descendant, which accounts for concept drift

with sliding windows, the Concept-adapting Very Fast Decision Tree (CVFDT)
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[109], but both algorithms used categorical attributes. Work by Jin and Agrawal

[112] extended the VFDT to use numerical attributes by using Numerical Interval

Pruning (NIP) to first partition the range of numerical attributes into intervals of

equal-width. These bins were then statistically tested to determine if they would be

unlikely to include a split point.

ChiMerge is too slow for use in an online setting with a worse case time

of O(n log n). Elomaa, Lehtinen, and Saarela [66, 141] made modifications to the

ChiMerge algorithm to use a balanced binary search tree (BST)6 to maintain required

statistics needed for online computation. By using the BST, the time needed becomes

linear, thus decreasing its time dramatically.

Gamma and Pinto’s Partition IncrementalDiscretization algorithm (PiD) [84]

uses histograms for discretization with a two-layer approach. The first layer keeps

statistics on the incoming streaming data. The second layer then creates final dis-

cretization based on the results from the first layer’s statistics. In other words, a large

number of initial intervals are created in the first layer without seeing the data and as

the data streams in, counters are updated according to the interval it belongs. When

the counter of an interval meets a certain threshold, then the interval is split creating

a new interval in layer one7. The second layer then takes the intervals created by the

6Binary search tree is a popular data structure in computer science in which each internal
node has two children. The search begins at the root of the tree and then proceeds to one
of the two sub-tree below that node. It is efficient in that average search is O(logn) with a
worse-case complexity of O(n).

7If the interval that is triggered is the first or last, then a new interval with the same
step is created.
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first layer and creates either equal width or equal frequency bins from the intervals.

5.2.4.2 Data normalization and trend correction

Normalization, often synonymous with standardization in machine learning,

refers to the process of transforming the data for use in a training model. The most

common technique is Equation 5.2 but also used are Equations 5.3 and 5.4. When

using large numbers in the classifier such as stock trade volume, Equation 5.4 is

commonly used [176, 184].

xt =
xt − xmin

xmax − xmin

(5.2)

xt =
xt

xmax

(5.3)

xt =
xt − µ

σ
(5.4)

xt = log(xt) (5.5)

There are two main reasons why normalization is done. First, some models

such as artificial neural networks are prone to outliers; transforming the data helps

to eliminate this problem. Second, trends may be present in the timeseries. This is

called nonstationarity. Virili and Freisleben [222] write that the presence of trends

often degrades the performance of classifiers severely; transformations are used to

stabilize the variability of the series. In addition to the methods in Equations 5.2–

5.5, finding percentage changes or differences in the price at time t from time t − n

where n can be any number is also commonly used [52, 219]. An example in Figure

5.7 shows the change in variability from the pre- to the post-transformation of the

stock AXP for January 3, 2012 (Figures 5.7a and 5.7b respectively).
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(a) Price at time t (pre-transformation)
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(b) Percentage change of time t from time t− 1 (post-transformation)

Figure 5.7: Symbol AXP on January 3, 2012
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Later in our experiment section, we theorize that using the percentage change

of the stock price is ideal since it allows for direct inter-stock comparisons between two

stocks, whereas using the difference of price allows for only intra-stock comparison.

For example, a $20 move in a $200 stock is more likely than a $20 move in a $50

stock.

Normalization is more difficult in online learning since one cannot assume that

the future distribution of the data will remain the same as the past (see Section 4.2

on Concept Drift); the min and max values will not be known until all of the data is

available. Gaber et al. [81] recommend discretizing the data (see Subsection 5.2.4.1)

or binarizing to eliminate this problem in online learning. This problem does not

exist in wrapper learning since the classifiers are built with chunks with the entire

training set available at learning. However the minimum and maximum values must

still be stored to make similar comparisons with future data.

5.2.5 Attribute creation

5.2.5.1 Overview

Appropriate attributes need to be chosen to predict the direction in the short-

term. This is an extremely important step since ill-chosen attributes can either

demonstrate no predictability or simply disregard common sense. Leinweber in [142]

writes of finding strong statistical evidence between butter production in Bangladesh

and the Standard and Poor’s 500 (S&P 500); with butter production explaining 75%

of the variation in the S&P 500 over a 10 year period. Although Leinweber originally
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wrote it as a joke to emphasize the need to perform backtesting (see Section 3.5) and

to pick attributes that make sense, the sarcasm of butter production predicting stock

price seems to have been lost on some!

In Section 2.4.2 fundamental and quantitative technical approaches were dis-

cussed. As mentioned, fundamental approaches examine the economic and financial

factors that drive the price of the stock with the aim to reveal the intrinsic value

of the stock. Evidence in literature [8, 36, 37, 51, 75, 188, 218] seems to support

the predictive nature of these attributes in predicting future events. However, this

company-related financial information is of little use in predicting short-term (minute-

by-minute) price direction since its release is infrequent; occurring at a minimum of

four times per year. Quantitative technical approaches are however useful for short-

term prediction. A few are described in this section, with the rest in Appendix C.

5.2.5.2 Sentiment as indicators

Quantitative technical approaches refer to systematic empirical investigation

of information to forecast the direction of stock price change. Typically these technical

approaches attempt to anticipate what others are thinking based on the price and

volume of the stock. However, by analyzing trader sentiment we can attempt to

anticipate price movements based on their emotion; as we know from basic psychology,

emotion plays a significant role in the decision making process. A message board post

or news article may influence an investor’s or trader’s emotion which may indirectly

influence the stock’s price. Rechenthin et al. [191] writes of finding slight predictability
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when analyzing the sentiment on 80, 000 Yahoo Finance message board posts along

with historical price information for the next day’s stock price. This is further backed

by [10, 23, 57, 145, 193, 201, 230, 248, 249].

A problem addressed by Rechenthin et al. is the issue of trust on message

boards; message boards can be abused, since users can posts anonymously. DeMarzo

et al. [58] argue that people give more weight to the opinions of those with whom they

talk and this kind of belief makes it profitable to be an influential participant within

the message boards. Short sellers (those who profit when the stock drops in price)

trying to frighten others into panic selling are mixed into the boards. Arther Levitt,

former Security and Exchange Commission (SEC) Chairman stated “I encourage

investors to take what they see over chat rooms not with a grain of salt but with a

rock of salt.” An act where individuals disseminate false information through message

boards and/or email and then sell their stocks at artificially inflated prices is a “pump

and dump” scam [94]. This sudden increase in the stock’s price entices others to

believe the hype and to buy shares as well. When the individuals behind the scheme

sell their shares at a profit and stop promoting the stock, the price plummets, and

other investors are left holding stocks which are worth significantly less than what they

paid for it. A study by Frieder and Zittrain [79] examined stocks where “pumpers”

previously sent large quantities of emails to entice others to buy, and found that

investors who bought the stocks lost, on average, 5.25% in the two day period following

the touting.

While the previously mentioned research points to favorable outcomes when
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using sentiment to predict stock direction, we know of no papers that use sentiment to

predict stock direction in the short-term (the above papers look at granularity of one

day or more). This is most likely because of the (often) infrequent number of posts

on message boards. In Rechenthin et al. [191] the number of Yahoo Finance posts

averaged from a low of 40 to a high of 445 posts per day – far too little to be used

to predict intraday price direction. Due to this sparseness, we therefore determine

that solely using sentiment analysis to be of little use in predicting intraday stock

direction. Its use however in addition to other indicators, such as technical analysis

indicators (to be discussed in the next subsection), remains to be seen.

5.2.5.3 Technical analysis indicators

On many days, stocks move erratically without any economic news and are

thereby moving by some unobserved stimuli [38]. In Chapter 2, we questioned if

traders are instead being affected by the existence of trends within the market; traders

seeing stocks trend upward buy, since they don’t want to miss the profits, and sell

when the market turns around. This further fuels pessimism for the stock and pushes

it to even lower levels [158]. Technical analysis indicators are simply a way of at-

tempting to describe and quantify the trend of the stock price.

In Subsection 2.4.2.3, two technical analysis indicators were described, namely

Bollinger Bands (BBands) and Moving Average Convergence Divergence Oscillators

(MACD). The goal of technical analysis is to identify regularities by extracting pat-

terns from data. Questionnaires given to trading professionals find 80% to 90% of
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those polled use some form of technical analysis [157, 162, 163, 213].

The idea behind quantitative technical indicators is to give a numerical de-

scription of past stock trend to use as attributes in a machine learning classifier. In

addition to the BBands and MACD indicators discussed, we also use what we call

the “simple moving average % change” indicator. This formula follows:

SMA(n) =
1

n

n�

i=1

closet−i

SMA % change(n) =
closet − SMA(n)t

SMA(n)t
× 100

First, a simple moving average (SMA) is calculated over n instances. The

closing stock price at time t is compared against the moving average and a percentage

change is calculated (see Figure 5.8). By including this as a continuous variable

attribute, we can let the classifier algorithm determine ideal splits (if any) for the

given dataset. In addition to providing the indicator attribute at time t, we include

lagged attributes, at time t− 1, t− 2, t− 3, t− 4, and t− 5.

In Chapter 6 we explore the use of these quantitative technical analysis in-

dicators along with feature subset selection (Subsection 5.2.6.2 ) can lead to better

predictive algorithms. For a list of additional attributes, see the Appendix C.

5.2.6 Dimensionality reduction and data reduction

5.2.6.1 Overview

Dimensionality reduction serves several purposes including: (1) reducing the

number of attributes available to the model may increase its ability to generalize on

unseen data and therefore increase predictability. This is because in many cases,
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Figure 5.8: Demonstrating the “simple moving average % change” indicator

not all of the attributes are useful in predicting the outcome; many attributes are

irrelevant. (2) Reducing the number of features results in faster learning times. This

is especially relevant for adaptive (online) learning algorithms which rely on a fast

learning speed to process streaming data in an appropriate time. (3) Reducing the

number of features through data reduction and/or reducing dimensionality results in

smaller training sets, memory and storage requirements. (4) Results tend to be easier

to interpret when reducing dimensionality.

Many of the objectives of dimensionality reduction in data streams are sim-

ilar to that of feature discretization in Section 5.2.4.1. For example, proper use of

discretization can also improve generalizability of the classifier and decrease training

times [118].

There are multiple methods to reduce dimensionality. The first is by creating

new attributes that are a combination of existing attributes, such as combining stock
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price and earnings into the price-earnings ratio (e.g. dividing price by earnings there-

by creating the common P/E ratio). The second way to reduce dimensionality is

through the use of feature (attribute) subset selection [177].

The goal of any classifier should be parsimony, or the simplest explanation of

facts using the fewest variables [245]. Feature subset selection is the process of remov-

ing as much irrelevant information as possible. Techniques can be divided into three

methods: filter, wrapper feature selection, and embedded methods. Filter methods

do feature selection as a pre-processing step and is independent of the machine learn-

ing algorithm applied. Wrapper feature selection methods (not to be confused with

wrapper-based learning methodologies) apply the machine learning algorithm on sub-

sets of the data and use heuristics to search among the space of possible selections

to find the optimal subset based on the performance of the model on the tuning set

[110]. Lastly, embedded methods do feature selection as a normal process of the algo-

rithm (e.g. pruning a decision tree) [22, 177, 197]. Filter, wrapper feature selection,

and embedded methods are represented in Figures 5.9a, 5.9b and 5.9c respectively.

A more thorough explanation follows.

5.2.6.2 Filter-based feature selection

Filter methods do feature selection as a pre-processing step before learning

begins by examining intrinsic properties of the attributes. The search for features

continues until a pre-determined number is found or until another criteria is met [54].

After the selection of features, the classifier is built and evaluated.
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Figure 5.9: Three main divisions of feature selection

Many different filter techniques exists, such as, Information Gain, Gain Ratio,

χ2 Attribute Evaluation and Correlation-based Feature Selection, among others [77].

In Information Gain, entropy 8 is measured when the attribute is given versus removed

and a difference is calculated. The attributes with the largest values of information

gain (i.e. the greatest reduction in entropy) are then kept since this represents the

knowledge gained by including that attribute in the training set. Gain Ratio [186] is

a variate of Information Gain resulting from the later having a bias toward selecting

attributes with a large number of values. In the Gain Ratio approach, the information

8Entropy is the level of uncertainty in a training set due to the presence of more
than one possible classification. For example, Entropy can be calculated as follows:
E = −�C

i=1 pi log2 pi where C is the number of classes and piis the probability of see-
ing class i out of the total number of instances. An excellent introduction can be found in
[26].
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gain is adjusted for each attribute to account for the number of and uniformity of

values [26]. In χ2 Attribute Evaluation, the attributes are ranked according to the

χ2 statistic with respect to the class; attributes with larger χ2 values are kept since

higher values mean that the variation is more significant and not merely due to chance.

Papers by [241] and [77] found Information Gain, and to a lesser extent χ2 Attribute

Evaluation, performed best among the three filters described thus far; however, in

their experiments, no single filter worked well for all datasets.

Advantages of filters include fast computational times (generally much faster

than wrapper feature selection methods) and easy scalability. Scalability is of par-

ticular importance to high-speed stock data where the selection is needed quickly

and the dimensionality of data is high. A disadvantage of filters is that they ignore

the dependencies and correlations among the features (i.e. each feature is considered

independently) which may lead to poor representation of data and therefore poor

performance.

This disregard for dependencies and correlations lead to the creation of multi-

variate filter techniques, which attempted to incorporate some feature dependencies

[197]. An example of this is the Correlation-based Feature Selection (CFS) method

Mark Hall described in his dissertation [97]. This method measures the correlation

between the attribute and the class, with the hypothesis that an ideal set of features

should be highly correlated with the class, yet uncorrelated with other features. This

is to ensure that redundancies and numbers of features are minimized (explaining the

trend with as few of features as possible while still obtaining high performance). Pair-
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wise correlation among all N features results in a time-complexity for CFS of O(N2),

which is considerably larger than O(N), the complexity of the three previously dis-

cussed filter methods. Yu and Liu [246] with their Fast Correlation-Based Filter

(FCBF) method, provide a correlation-based filter without the need for computing a

pairwise correlation among all features, thus improving the time-complexity of CFS

with similar results9. Research has shown that the correlation-based filter methods

perform much faster than wrapper feature selection methods. However, according to

Hall [97, 98], correlation-based selection methods often perform worse than wrappers

when features are highly predictive of only a small part of the dataset. According to

Hall, the CFS tended to perform better than the filters previously mentioned.

5.2.6.3 Wrapper feature selection

Wrapper feature selection methods apply the machine learning algorithm on

subsets of data chosen with a heuristic(s) and compare the performance among the

total space of possible feature selections. This is achieved by creating a subset of

features from the training set and learning via an induction algorithm on this subset

of attributes. This model is evaluated on a tuning/validation set and compared to

previous subsets. The feature subset with the highest evaluation is chosen as the

final set, and is then run on the induction algorithm [126]. The argument is that

the estimated model performance achieved from using subsets of features is one of

the best measures of the value of features. Wrappers also have an advantage that

9Additional methods for improving the time-complexity of Correlation-based Feature
Selection (CFS) include best-first search and other heuristics.
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many filters do not; filters treat features as independent of others, whereas, wrappers

use subsets of attributes that explore the dependencies among the features. This

can be determined when subsets containing certain combinations of features have

higher levels of evaluated performance [54]. Wrappers tend to have superior results

over filters [95, 98], although their high computational requirements may make them

unsuitable for high-speed equity prediction where efficiency is needed. This however

does not exclude their use entirely, as this paper will later discuss.

Iterating over all possible combinations of features is not always ideal. Con-

sider, for example, choosing subsets of 5 attributes out of a total of 100 attributes

amounts to a total of
�
100
5

�
= 75, 287, 520 possible combinations. Assuming each

learning algorithm takes 5 seconds to evaluate each set, it would take a total of 12

years to evaluate all subsets! If predicting the stock market direction one minute into

the future, more than a decade wait would provide little value to the trader10. While

heuristics can be used to speed up the search by not enumerating through all possible

subsets, a cost is still incurred as multiple models must be learned and evaluated.

For this reason, wrapper methods are often impractical for large scale problems with

many features and a large number of instances when the decision of subset is required

quickly [77, 95]. This however does not exclude it use in trading models entirely, espe-

cially for predicting timespans further away and in wrapper-based ensemble methods.

Different heuristics exist for searching among the total space of possible fea-

10If enumerating over combinations of n features, where the minimum subset is of size
1 to a maximum of size n, the search space is O(2n). Enumerating then over 100 features
would take 2.0 × 1023 years.
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tures. Examples include forward selection, backward elimination [126], best-first

search, and genetic algorithms [110, 119, 120, 239, 244].

Genetic Algorithms (GA)[106] belong to the much larger family of Evolution-

ary Algorithms, which also include Genetic programming, Ant Colony optimization[63],

Particle Swarm optimization [116, 165], among others [25]. Implementing GAs in fea-

ture selection involves a population of chromosomes, each containing a random binary

string of bits equal to the number of features, with xi = 1 representing the inclusion

and xi = 0 indicating the exclusion of the ith feature (see Figure 5.10). A fitness

function for each individual chromosome performance11 is calculated (each chromo-

some represents a subset of features) and during each generation, a proportion of

chromosomes from the current population is selected, with higher fitness chromo-

somes having a greater probability of continuing to the next generation (i.e. roulette

wheel selection). In the next step, mating is accomplished with a randomly selected

crossover point to fuse the chromosomes together. To encourage diversity (variation

with the population) a mutation with a predetermined probability is added. The

process is continued for another generation unless a predefined fitness or generation

is reached [176, 244, 245]. A further explanation can be found in [35].

Additionally, hybrid methods have been explored that combine the speed ad-

vantage of filters and the subset evaluation ability of wrappers. These methods typi-

cally reduce the total problem-space with filters and then further explore subsets by

11Performance can be measured using accuracy or AUC or a number of other measures;
see Subsection 4.4 for more information.
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Initial population

Fitness

Selection

Mating

Mutation

Final
generation?

YesNo

Figure 5.10: Genetic algorithm schema [244]

way of wrappers. Das in [54] create the Boosted Decision Stump Feature Selection

algorithm (BDSFS) which uses information gain to determine the features to choose

and then the AdaBoost algorithm with one-level decision trees (Decision Stumps).

During each iteration of AdaBoost, the features with the highest information gained

that were previously unselected are used. Bermejo et al. in [15] uses a multi-start,

randomized subset that is improved with a local search method (hill-climbing had

high performance and fast speeds) to reduce the number of evaluations needed by the

wrapper. Yang et al. in [238] uses an Information Gain filter to reduce the features

and then uses a genetic algorithm for actual feature selection. They theorize that,

depending on the dataset, not all features are relevant to prediction. By eliminating

these features initially, the subset is reduced therefore increasing the computational

speed of the genetic algorithm.
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5.2.6.4 Embedded feature selection

Embedded feature selection has the advantage that it is part of (embedded

into) the induction algorithm and is less computationally expensive than wrappers.

Examples of embedded methods include weighted logistic, näıve Bayes algorithms

and decision trees [136, 197]. Decision trees, for example, implicitly split the data

according to the importance via information gain of the feature to the classification

task.

5.2.6.5 Experiment of time complexity

To demonstrate the time complexity of different feature selection methods, an

experiment was taken to reduce five subsets of data containing varying number of

instances from 275 attributes down to 30. Three filter methods, Information gain,

χ2 attribute evaluation, and a correlation-based method were examined along with

two wrapper methods, a genetic algorithm12 and a hybrid information gain/genetic

algorithm13. The dataset used for experimentation is one that will be used throughout

this paper (see B). This dataset contains 3-classes and 275 attributes with subsets

comprised of 5000, 10000, 2000, 30000, and 40000 instances. The results of the

experiment can be found in Table 5.3. Note that this test examines only the time

complexity of the algorithm, and is not based on a performance metric on unseen

12The genetic algorithm used a decision stump with 20 generations, with each containing
20 populations.

13Method used was similar to [238]; Information gain reduce features to 100 and then a
genetic algorithm comprised of a decision stump with 20 generations, with each containing
20 populations.



145

Table 5.3: Time complexity (seconds) of different filter and wrapper methods

Feature selection Number of instances
method used 5000 10000 20000 30000 40000

Information gain (filter) 1.4 2.8 8.9 17.5 30.0
χ2 attribute evaluation (filter) 1.1 2.8 9.3 16.1 28.1
Correlation-based (filter) 0.7 1.8 6.3 10.7 21.0
Genetic algorithm (wrapper) 84.0 560.9 1477.3 1696.6 2226.4
Hybrid IG/GA algorithm (wrapper) 27.3 124.6 439.3 505.9 656.7

data. Analysis of individual feature selection methods on training data and the

accompanying classifier performance on future data will be discussed in Chapter 6.

As can be seen in Table 5.3, the filter based methods topped the list with

correlation-based feature selection method performing quickest followed by the infor-

mation gain and χ2 attribute evaluation methods. The wrapper methods, as expected

followed last, however considerable speed increases were found by using the hybrid

information gain/genetic algorithm over the genetic algorithm, as was used in [238].

All feature selection experiments were done on a Intel i7-3520M CPU running at

2.90GHz with 8 gigs of ram.

5.3 News and its effect on price

In Subsection 2.4.2 the fundamental analysis approach was discussed, which

is the use of financial information to examine the intrinsic value of the company.

However, this financial information (e.g. the quarterly financial statement) is released

approximately four times per year, thus limiting the use of the fundamental approach

for long term prediction. Additionally we discussed the use of past price as a means
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of predicting stock price in the short term via technical analysis. An external event

not discussed thus far is the effect that U.S. government reports released through

various agencies have on stock prices in both short- and long-term. Unlike blog post-

ings or message board data, the release of the U.S. government reports are usually

pre-scheduled at specific times. Additionally the government released statistics are

related to overall economic development and not an individual stock. While not all

economic reports released by the government move markets, many are barometers

that provide an indication of the overall economy, which in turn can move mar-

kets [11, 92]. Examples of economic reports released by the government include the

natural gas weekly update (released every Thursday at 9:30 a.m CST by the U.S.

Energy Information Administration), the employment situation update (released the

first Friday of very month at 7:30 a.m. by the U.S. Bureau of Labor Statistics, De-

partment of Labor), the retail sales update (released monthly at 7:30 a.m. by the

U.S. Bureau of the Census, Department of Commerce), and the petroleum status

report (released every Wednesday at 9:30 CST by the U.S. Energy Information Ad-

ministration). As discussed in Jiang et al. [111] the interval before the release of

announcement, the pre-announcement, are characterized by information uncertainty,

while the post-annoucements are characterized by uncertainty resolution. This dif-

ference between uncertainty and resolution was shown by Jiang et al. to also equate

to differences in the underlying characteristics of the market or data. Similarly a

paper by Beber and Brandt [13] found that higher uncertainty about economic news

is associated with higher transaction volumes after the news is released.
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5.3.1 Experiments

We want to examine the price change in response to the U.S. government

petroleum weekly status update which arrives exactly at 9:30 CST (10:30 EST). This

economic indicator reports the week-to-week total change in crude oil and gasoline;

generally decreases in oil supply from the previous week raises oil prices which in turn

benefits oil services companies (i.e. company stock increases). Several questions that

we want to explore are as follows: 1) How does this information affect the market

with respect to the direction (slope) of the stock price five minutes before the report

and the direction five minutes after? 2) Do large gaps in price occur immediately

after the reporting of the update and is this larger than normal gaps in the price

during the day? 3) Does the volume of trades (number of shares traded) differ before

and after the economic news?

To test the first question of market effect, we run a sum of least squares14 on

five prices before and after the 10:30 EST economic number for 34 stocks in the oil and

gas services index on each Wednesday for six months from January 2012 to the end

of June 2012 for a total of 26 weeks. Four examples can be seen in Figure 5.11. From

our results, we find that the slope changes direction for all observations (covering all

stocks) 57.5% of the time. Additionally, for 26 out of 34 stocks we observe that for

more than 50% of the weeks (at least 14 out of 26), the slope changes direction. We

find that this is only statistically significant for three stocks when running a statistical

14We ignore the assumptions needed to run linear regression from a pure statistical stand-
point, but instead use it as a means of approximation.
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(a) Alpha Natural Resources, Inc. on Jan-
uary 25, 2012

(b) Apache Corp. on June 13, 2012

(c) Baker Hughes Inc. on January 11, 2012 (d) FMC Inc. May 5, 2012

Figure 5.11: Oil services stocks reacting to the U.S. Energy Information Administra-
tion release of the petroleum status report
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test at the 95% level. However, when the slope is positive before the release of the

economic number, the slope on average is 0.0163 (i.e. for every 1 minute the price

increases by an average of $0.0163); after the economic number when the slope is

positive, the slope on average is 0.0232 (i.e. for every 1 minute the price increases by

an average of $0.0232). When the slope is negative before the release of the economic

number, the slope on average is -0.0181 (i.e. for every 1 minute the price decreases by

an average of -$0.0181); after the economic number when the slope is negative, the

slope on average is -0.0205 (i.e. for every 1 minute the price decreases by an average

of -$0.0205). These are interesting observations because after the news the stocks on

average makes greater moves than before the release of the economic number. This

suggests that individuals are strongly reacting to the release of information; further

evidence that the market does not always price in information efficiently as suggested

by the strong form of the Efficient Market Hypothesis.

For our next experiment we test the second question: do large gaps in price

occur immediately after release of the petroleum status report, and how does this

compare to normal differences in price at time t to the price at time t− 1 throughout

the day? We begin by examining the 34 stocks in the oil and gas services index on

each Wednesday throughout the day and find that the (absolute) difference between

the current price at time t and the previous price at time t− 1 is on average $0.0316.

However, the (absolute) price difference immediately after the release of the news is

on average $0.0615; this is statistically significant for 32 out of 34 stocks at the 5%

level. We conclude therefore that the release of news does affect the stock price.
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For our last experiment we test the third question: does the volume of trades

differ before and after the release of petroleum weekly status update. We begin by

examining the mean transaction volume (number of shares traded) before and after

the news release for all 34 stocks. The mean volume across stocks was found to be

14671[±16632] before and 16135[±16095] after the release of the news. This change

in volume was found to be statistically significant in only three of the stocks at the

5% level.

5.3.2 Discussion

From our experiment we discovered that the market is often surprised by these

economic releases with the slope of the market price changing directions 57.5% of the

time after the release. Increases in volatility were also found as measured by change

in stock price before and after the economic news. This provides evidence that time

(in some form) should be included in the framework. In Subsection 6.4.6 we include

several time attributes and examine its effect on model performance.

5.4 Conclusion

In this chapter we addressed problems specific to stock data and provided

suitable solutions. This includes direction on what to do not only with imbalanced

data streams, but also when presented with too much, too little, and erroneous trade

data. An experiment was run in Subsection 5.2.2 using the algorithm by Brownlees

and Gallo [30] to detect noisy prices, which we then compare to prelabeled out-of-

sequence trades. In Subsection 5.2.4 we covered transforming data in data streams
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to improve generalizability. Standardizing was particularly important to allow us to

use base classifiers created with sector stocks in a pool of classifiers that we then use

to improve our model performance. This will be discussed more in the next chapter.

Another important topic in this chapter was the discussion of attributes in

stock data streams. We created as many attributes as possible and then used sev-

eral approaches discussed in Section 5.2.6, to reduce the attributes to a manageable

number.

Lastly, we examined the change in market volatility after the release of pre-

scheduled economic news. The next chapter covers our wrapper-based framework to

predict stock direction.
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CHAPTER 6
OUR WRAPPER FRAMEWORK FOR THE PREDICTION OF

STOCK DIRECTION

6.1 Overview

In Chapter 4 we examined the two methods for predicting high-speed data

streams, specifically adaptive and wrapper-based approaches. Shifting market con-

ditions such as those discussed in Chapter 5 and also seen in Figure 4.4, can create

changes in the underlying concept, which in turn affects the model performance. Two

main approaches to learning with concept drift are discussed in Subsection 4.2.2. The

first is by either detecting anomalies in the data (which could affect classifier perfor-

mance) or by examining actual decreases in classifier performance which could signal

a change in concept (see Subsection 4.2.2.1). Upon detection of a change in con-

cept, the model is updated (i.e. retrained) with new data. This approach is generally

used by adaptive learning algorithms (see Subsection 4.3.1). The second approach

to learning with concept drift makes the assumption that the underlying data drifts

without determining if it actually does (see Subsection 4.2.2.2). This approach makes

use of sliding windows by either keeping the classifier up-to-date with recent data or

by using wrapper-based ensemble methods (see Subsection 4.3.2) that use classifiers

built on prior concepts.

An issue raised with adaptive methods is that the most up-to-date data is

not necessarily the most ideal choice; this research (discussed in greater detail in

Subsection 4.2) suggests that stocks display reoccurring behavior, such as responding
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to economic cycles and behavioral moods1. The ability to use traditional classifiers,

such as artificial neural networks, support vector machines and decision trees, but also

old concepts and knowledge from past days, weeks and years are distinct advantages

of wrapper-based learning methods.

In this chapter we describe a new framework for the prediction of stock price

direction in the short term. Advantages of this new approach include not only the reg-

ular advantages of wrappers (i.e. ability to use traditional classifiers, work in parallel,

and work with prior concepts), but also the ability to transfer knowledge contained

within additional stocks (Section 6.2.2). Bottlenecks that exists in existing wrapper

methods (e.g. having to wait for classifier training to complete before prediction can

be implemented) are mostly eliminated in our framework. Furthermore, increases in

ensemble diversity are observed using different classifier types, different feature selec-

tion methods, and different subsets of data. All will be explained in greater detail in

this chapter.

6.2 Our wrapper framework

The basic layout of our wrapper-based framework can be seen in Figure 6.1.

The first step is the training of classifiers from random-length chunks of prior data.

The chunks are represented as chunk(timestamps, timestampe) where timestamps is

start time and timestampe is the end time. For example, chunk(2500, 9200) represents

a chunk of data from timestamp t − 2500 to timestamp t − 9200, where t is the

1We demonstrated in an experiment in Section 5.3 that the market reacts (in often
predictable ways) to economic news.
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current time. Additionally, the size of the chunk is constrained by some minimum

and maximum size, where sizemax > (timestampe − timestamps) ≥ sizemin. The

chunk maximum and minimum sizes are chosen in such a manner that allow for

enough data for generalization yet are small enough to include as few concepts as

possible. Ideally, all data within a chunk are from the same concept and generated by

the same distribution, but because the future is unknown, it is unclear which training

sets may be useful. For this reason the classifiers are built using random-length (and

often overlapping) datasets as an attempt to include as few concepts, yet as much of

that particular concept as possible (see Figure 6.2). As the classifiers are built, they

are added to a pool. To include additional diversity, we use different classifier types

(C4.5 decision tree, non-linear SVM, ANN, etc.) along with different feature subset

selection methods to both increase generalization and decrease training times. We

also train classifiers using the data not only from the stock of which we are predicting

the future price direction, but also from the highly correlated stocks within the same

sector. Using training data that is similar to the stock we are predicting gives us

more knowledge. Correlation among stocks within the same sector will be discussed

in Section 6.2.2.

In step 2 (Figure 6.1) we evaluate the performance of each classifier from the

pool by testing on the instances from the most recent sliding window. Classifier

performance is determined using a class weighted AUC (see Section 3.4.4).

In step 3 we choose the top k classifiers from the pool (as evaluated on the

most recent data) to form an ensemble, and then in step 4 we use this newly formed
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Figure 6.1: Our wrapper-based framework for the prediction of stock direction

ensemble to make a prediction on future stock price direction. The base classifiers

in the ensemble are combined using the mean of each classifier’s confidence rather

than using a simple majority vote (see Subsection 56). After n instances, the process

begins again at step 2 (step 1 is continuously training new base classifiers).

Benefits of our new wrapper framework include: 1) the process is easily dis-

tributed, specifically in steps 1 and 2, which allows for decreases in computational

times; 2) it uses knowledge from highly correlated stocks, thus increasing the amount

of data available for training classifiers in the pool; and 3) classifiers used for the

pool can include models that are generally slower to train, such as artificial neural

networks and those that use computationally expensive feature selection methods. As
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Figure 6.2: Our wrapper-based framework – random starting and ending periods and
random classifier types

previously discussed, stocks may be cyclical; therefore, models that may take hours

to train, while not available to be included in the pool for the next interval, may still

be useful when a similar concept appears.

6.2.1 Slow training versus fast evaluation of classifiers

As discussed in Section 4.3, most learning methods that rely on quick classi-

fication for changing, high-speed data streams (such as stock data) take the adap-

tive learning approach. The choice of an adaptive, incremental classifier approach is

largely due to speed – existing wrapper methods such as those discussed in Section

4.3.2, require the base classifiers trained on the last interval of data to be completed

before it is evaluated for inclusion in the ensemble.

This creates a bottleneck in existing wrapper methods, since the ensemble

cannot output a prediction until all base classifiers have been trained and evaluated.

This method of training classifiers is costly, and it is the reason why some approaches

in classification of high-frequency data use adaptive learning methods instead. Our

framework side-steps these problems since classifiers are continuously built for in-
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clusion in the framework pool and our ensemble selection heuristic does not rely on

the completion of training of any specific classifier for any specific period of time.

Our classifiers are built with random start and end times and therefore completion

of training of any particular base classifier is relatively unimportant. The pool will

contain hundreds or thousands of pre-built classifiers that can be evaluated at any

given time. If the classifier is not ready for immediate use, it may still provide value

for another future event.

In Table 6.1 the training times in minutes for 25 C4.5 decision trees and 25 non-

linear SVM classifiers are displayed (for a visualization see Figure 6.3). Taking into

consideration different training subset lengths and number of attributes (selected with

an Information Gain feature selection method) the C4.5 decision tree is 1 to 30 times

faster than the non-linear SVM. On average, the C4.5 decision tree is 7 times faster

than the training time of a comparable non-linear SVM classifier. The time needed to

train 25 decision trees with 20, 000 instances and 150 attributes is roughly 13 minutes

and for a comparable non-linear SVM the time is roughly 2 hours. All experiments

in this section were conducted on a single-core 64 bit i7-3770 Intel processor running

at 3.4GHz with 16 gigabytes of ram.

Evaluation of existing classifiers is substantially faster than building new clas-

sifiers. For example, to evaluate a pool of 25 pre-built classifiers (such as in our

framework) takes roughly 0.5 seconds. This is similar to the C4.5 decision tree and

the non-linear SVM classifier for all ranges of attribute counts and training set sizes.

More specifically, this includes the time needed to locate the stored classifier from
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Table 6.1: Classifier (DT and SVM) training times (for 25 classifiers) in minutes for
specific training set sizes and attribute counts

(a) C4.5 decision tree classifier results

Training Attribute count

set size 30 50 70 90 110 130 150 170 190 210 230 250 276 (all)

4000 0.3 0.4 0.6 0.7 0.9 1.1 1.3 1.7 2.0 2.2 2.5 2.8 3.0

5000 0.4 0.6 0.7 1.0 1.4 1.6 2.0 2.3 2.6 3.0 3.4 3.7 4.0

6000 0.5 0.8 1.0 1.3 1.6 1.9 2.4 2.5 2.9 3.4 3.8 4.3 4.8

7000 0.6 0.9 1.2 1.7 2.1 2.5 3.2 3.8 4.5 5.3 5.1 5.7 6.3

8000 0.7 0.9 1.4 1.9 2.2 2.6 3.2 4.3 5.4 6.2 5.9 6.8 8.2

9000 0.9 1.2 1.6 2.1 2.6 3.2 4.0 4.4 5.2 6.8 7.0 8.0 9.6

10000 1.0 1.4 2.0 2.5 3.3 3.8 4.9 4.9 5.8 6.6 7.5 8.9 10.1

11000 1.2 1.6 2.0 3.1 3.9 4.7 4.9 6.3 6.7 8.7 9.5 10.7 11.3

12000 1.4 2.0 2.7 3.4 3.9 5.1 5.8 6.4 7.8 9.2 10.6 11.6 13.5

13000 1.6 2.3 3.1 4.1 4.7 5.8 6.4 7.7 9.1 10.7 12.7 14.6 15.6

14000 1.7 2.5 3.1 4.6 5.2 5.9 7.1 8.0 9.3 10.0 11.6 12.3 14.8

15000 1.9 2.6 3.6 5.2 6.3 6.9 8.9 9.8 10.9 12.4 14.0 16.7 19.6

16000 2.1 3.0 4.1 5.4 7.1 7.9 9.3 10.3 11.6 13.4 14.6 18.7 19.0

17000 2.3 3.2 4.9 6.7 7.6 9.2 10.9 12.3 13.9 16.0 17.6 19.6 23.2

18000 2.7 3.8 5.0 6.3 7.6 10.9 11.0 12.9 14.4 17.0 19.5 20.8 22.5

19000 2.9 3.7 5.7 7.3 8.3 10.2 11.0 12.1 15.3 17.4 18.6 22.1 26.1

20000 2.9 3.9 5.6 8.1 9.8 11.3 12.9 14.7 17.0 19.4 23.0 23.7 27.0

(b) Non-linear SVM classifier results

Training Attribute count

set size 30 50 70 90 110 130 150 170 190 210 230 250 276 (all)

4000 2.0 1.2 2.9 2.3 2.7 3.7 4.6 6.0 6.3 7.6 8.0 9.2 7.7

5000 1.7 2.0 2.8 3.9 4.7 6.4 8.8 9.4 12.7 13.5 12.7 16.7 16.5

6000 2.0 2.6 3.4 5.2 5.4 9.4 11.6 13.6 14.0 16.4 21.0 18.9 22.3

7000 4.8 6.1 5.0 7.8 10.0 13.6 17.0 19.1 18.3 26.2 27.3 29.3 30.9

8000 2.5 4.3 6.3 8.2 13.1 19.7 20.9 26.9 32.3 26.8 30.5 40.6 42.1

9000 4.3 8.7 51.2 10.3 77.0 19.4 25.7 31.4 44.0 39.6 111.0 50.2 61.4

10000 3.8 7.9 14.1 11.6 14.4 18.2 29.7 38.1 44.2 47.5 48.9 51.3 51.9

11000 6.2 12.2 18.3 44.9 18.2 25.9 30.3 52.2 52.2 62.3 59.3 71.3 78.2

12000 4.3 9.2 41.7 13.8 25.0 30.3 38.7 50.6 65.2 75.0 75.6 79.4 92.4

13000 3.3 10.8 26.4 88.8 23.2 43.8 53.8 71.8 76.7 85.6 85.2 106.8 113.4

14000 4.6 11.5 65.6 122.0 30.2 42.5 48.5 65.8 167.1 108.1 99.7 107.9 158.4

15000 4.4 14.0 43.9 98.9 125.3 51.1 64.2 78.9 103.1 102.1 110.8 126.3 163.2

16000 3.1 8.7 46.1 89.9 125.0 63.8 76.8 108.3 105.9 116.6 146.4 152.9 185.0

17000 2.7 7.4 10.1 17.9 68.7 58.3 67.7 108.4 123.2 159.5 145.9 164.2 193.4

18000 3.1 6.3 10.1 49.5 68.1 66.0 86.7 122.8 131.7 143.8 164.5 170.4 196.5

19000 4.2 8.3 12.3 58.9 82.3 73.6 99.6 124.9 157.1 156.9 186.5 179.2 230.0

20000 4.9 10.4 34.8 68.7 79.7 52.3 114.3 133.0 193.5 208.9 189.7 234.6 217.6
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(a) C4.5 decision tree classifier results – visualization of Table 6.1a
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(b) Non-linear SVM classifier results – visualization of Table 6.1b

Figure 6.3: Classifier training times (for 25 classifiers) – visualization of Table 6.1
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the pool (previously written to a file), to load it into memory and to evaluate the

AUC performance on a 60-instances interval of time. This process is repeated for

each classifier in the pool (e.g. for our example it is repeated 25 times for each of

the 25 classifiers in the pool). For a pool with 1000 classifiers, the time needed to

evaluate all classifiers would take approximately 20 seconds, while the time to train,

from start to finish, would take approximately 196 minutes and 1188 minutes for a

C4.5 decision tree and non-linear SVM classifier respectively (assuming a training set

of 10,000 instances and 150 attributes). Keep in mind that experiments were run on

a single-core machine; evaluating classifiers on past data is easily distributable over

multiple-cores to increase performance.

The speed of evaluating pre-built classifiers allows our framework to compare

the predictability of hundreds of pre-built (and continuously built) classifiers in the

same time as is needed to train just one classifier from start to finish using other

existing wrapper frameworks. This is a distinct advantage of our approach.

In comparison to a traditional C4.5 classifier, the Very Fast Decision Tree

(VFDT) was 5.5 times faster, and 56 times faster than a non-linear SVM classifier.

For example, to train a 20,000 instance subset containing all 276 attributes took 11.6

seconds using the VFDT, 64 seconds using the traditional C4.5, and 650 seconds using

the non-linear SVM. However, in the same 11.6 seconds needed to build one VFDT,

we could have evaluated roughly 580 previously trained classifiers with our method

(having been built on different stocks and different timespans). While our framework

may not be as fast as some adaptive methods, our results are better than the ones
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tested and is fast enough for the time span needed.

6.2.2 Use of additional stocks

There is a saying among traders “a rising tide floats all boats” which references

the observation that most stocks go up at around the same time; the opposite of this

can also be true. This observation was especially evident in the “flash-crash” of

May 6, 2010 when almost 8,000 stocks and indices plummeted 5 to 15% within a

few minutes only to rebound equally as fast [205]. Additionally, 20,000 trades in 300

stocks traded substantially lower. For example, Procter & Gamble Company (symbol:

PG) was trading for $61 a share before the crash and then was momentarily trading

for just a penny a share. The initial cause, according to an investigation by the U.S.

Securities and Exchange Commission [205], was a mutual fund that (erroneously) sold

75,000 futures contracts (worth $4.1 billion) of the Standard and Poor’s 500 Index

(S&P 500). Not only did the 500 stocks of which the S&P 500 is composed sell off,

but also nearly the entire market plunged. In theory only the stocks within the S&P

500 should have sold, but because of the high level of inter-security correlation, this

caused a sell-off of almost the entire market2. After the selling subsided, the prices

quickly recovered and the day ended at almost the same level as it was before the

2According to the investigation [205], the initial plunge was absorbed by high-frequency
traders who took the opposite side of the initial drawdown. However, after further decreases
in price, many of these initial buyers turned to sellers which further exacerbated the price.
As the stocks fell, the liquidity vanished, which caused even further decreases to the prices.
Within 15 seconds the S&P 500 dropped 1.7% and within 41

2 minutes it had dropped 5%.
And while the market had dropped dramatically (extremely uncharacteristic), many market
participants were reported to have feared “the occurrence of a cataclysmic event of which
they were not yet aware.” This lead to a loss of confidence among many participants and
an unwillingness to participant in the buying.
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(b) January 19, 2012
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(c) February 16, 2012
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(d) March 15, 2012

Figure 6.4: Visually demonstrating the high level of intraday correlation among 34
oil services stocks (each line represents a different normalized stock price)

crash.

The “flash-crash” demonstrated a highly-correlated market, albeit in a very

severe way. These high levels of correlation within intraday prices are also observed

in Allez et al. [7] and Preis et al. [182] and in Figure 6.4. This figure visually demon-

strates the high level of intraday price correlation among 34 stocks in the oil services

sector over the course of four random days: January 9, January 19, February 16, and

March 15, 2012 (a full six months of correlations for these stocks can be found in the

author’s YouTube video3.

In Figure 6.5 we provide an additional view of stock price correlation over 15

3http://bit.ly/17Myvv4
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minute intervals using Spearman’s rank correlation coefficient4 and a heatmap (red

represents strong positive correlation and blue represents strong negative correlation).

While Figures 6.4 and 6.5 demonstrates correlation among stocks, it does not quantify

the change in correlation throughout the day; we demonstrate this with an animated

version of Figure 6.5 in a YouTube video5.

These visualization demonstrate the high intraday price correlation among the

stocks within the sector6. With such high levels of correlation, it would therefore seem

rational to use these stocks to subsidize our existing data. In Subsection 6.4.3.1,

we will compare the inclusion versus exclusion of additional stocks to the model

framework and its effect on model performance.

6.3 Benchmarks

To analyze the performance of our wrapper framework, we first compare

against several widely used benchmarks. The dataset used for training and test-

ing purposes is the stock dataset used elsewhere in this paper. This 34 stock time-

series contains 276 attributes and covers the change in price (as compared against the

prior minute) for the first seven months of 2012. The predicted class is the percentage

change in price over a one minute period,
�
pricet−pricet−1

pricet−1

�
> 0.05% which is considered

a large upward move, 0.05% ≥
�
pricet−pricet−1

pricet−1

�
≥ −0.05% is considered an insignifi-

4Unlike the Pearson correlation coefficient, Spearman’s correlation coefficient was cho-
sen because of its ability to measure the relationships between stock prices that are not
necessarily linear. Each stock was normalized.

5http://bit.ly/1nkJ5WW

6According to a white-paper by J.P. Morgan [128], this is called cross-asset correlation.
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(a) Jan 3, 2013 13:30-13:44 (b) Jan 3, 2013 13:45-13:59

(c) Jan 3, 14:00-14:14 (d) Jan 3, 2013 14:15-14:29

(e) Jan 3, 2013 14:30-14:44 (f) Jan 3, 2013 14:45-14:59

Figure 6.5: Visualization over 15 minutes of the changing nature of the Spearman
correlation coefficient matrix over time for stocks within the same sector (oil services)
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cant move, and
�
pricet−pricet−1

pricet−1

�
< −0.05% is considered a large downward move. For a

description of the stocks, a preview of the actual price change over the seven months,

and a description of attributes along with calculations, please see Appendices B and

C.

We evaluate the performance of the baseline models using AUC over a 60

minute sliding window (see Section 3.4.4). AUC is used both for its popularity within

the machine learning community and its improvement over other methods such as

accuracy or error rate (error rate = 1 − accuracy). Accuracy is problematic within

imbalanced datasets, such as ours, because high levels of accuracy can be obtained

by reporting the class with the largest number of instances (see Subsection 3.4.1 for

more information). AUC also measures the confidence of the prediction, whereas

with accuracy the confidence of decision is ignored; accuracy simply increases when

the class with the largest probability estimate is the same as the actual class [108].

Several baselines have been determined so that our framework can be compared

(with results in Table 6.2). The first (and also the most näıve method) is to use the

class from the prior interval that is observed the most (the majority class). The

second benchmark is an approximation to the Concept Drifting Very Fast Decision

Tree (CVFDT) explained in Subsection 4.3.1.2.1 and uses a C4.5 decision tree. As

mentioned in Subsection 4.3.1.2.1, the CVFDT uses fixed-width sliding windows to

adapt the model to concept drift and because it uses a VFDT, the output is nearly

identical to the conventional C4.5 decision tree.
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The third comparison uses an approximation to another adaptive method,

Oza’s online bagging and boosting algorithms (see Subsection 4.3.1.2.3). As demon-

strated in an experiment from that subsection, the solutions from a traditional C4.5

bagging and boosting algorithm should be very similar to the online bagging and

boosting method respectively, although the time will be much slower with our con-

ventional learner. As an example, it took over 30 hours to run a 30,000 instance

boosted decision tree with sliding windows on an 8-core machine. Both bagging and

boosting algorithms used 25 base classifiers in the ensemble.

The last benchmark comparison uses the Streaming Ensemble Algorithm (SEA)

of Street and Kim [210], which is covered in detail in Subsection 4.2.2.2. Similar to

the results obtained by Street and Kim, we found that 20 base classifiers obtained

the highest levels of AUC when compared with using 10 and 50 base classifiers.

The results from the baseline test can be seen in Table 6.2 and are visualized

in Table 6.3. In the visualization, darker shades of green represent that the particular

classifier is outperforming the average of all the classifier’s performances on the stock,

and darker shades of red represent varying levels of underperformance. As mentioned,

all baselines contain 5, 000, 10, 000 and 30, 000 instances updating with a sliding

window every 60 instances and tested on future intervals of 60-instance length. By

updating these models using sliding windows, we are in effect accounting for concept

drift, thus making for a more realistic baseline.

Building a classifier using the majority class of the previous interval performed

worst. This is partially because of our inability to get a probability estimate of our
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Table 6.4: Average baseline classifier rank covering all 34 stocks used in the study

Baseline Avg. Rank

Majority class previous interval 12.65
5,000 instance sliding window 10.74

C4.5 (CVFDT approximation) 10,000 instance sliding window 10.09
30,000 instance sliding window 10.15
5,000 instance sliding window 3.35

C4.5 Bagging (Online bagging 10,000 instance sliding window 2.62
approximation) 30,000 instance sliding window 2.03

5,000 instance sliding window 6.21
C4.5 Boosting (Online boosting 10,000 instance sliding window 5.59
approximation) 30,000 instance sliding window 5.06

5,000 instance sliding window 7.56
Streaming Ensemble Algorithm 10,000 instance sliding window 7.44
(SEA) 30,000 instance sliding window 7.53

class prediction and therefore are unable to rank our predicted probability decisions

in order to get AUC. The best baseline was the online bagging approximation (C4.5

bagging algorithm) which outperformed (or performed as well as) the other baselines

in 33 of the 34 stocks. From the visualization in Table 6.3, it is obvious that the

ensemble methods greatly outperform individual classifiers.

To extend the analysis provided in Tables 6.2 and 6.3, we compare the average

rank of the benchmark classifiers over the 34 stocks in Table 6.4 (the lower the rank,

the better). From this table, the Online bagging approximation benchmark with

30,000 instances is clearly the highest performing classifier (in terms of AUC) and the

majority class benchmark is the worst. Generalizing this, Online bagging performs

best, followed by Online boosting, Streaming Ensemble Algorithm, Concept Drifting

Very Fast Decision Trees, and then majority class.
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6.4 Model choices

6.4.1 Overview

Ensemble diversity has received much attention in the machine learning litera-

ture, where a diverse set of classifiers within the ensemble is considered an important

property. Breiman [28] for example, found that including a diverse set of decision

trees increased the performance of the Random Forest algorithm (“...better random

forests have lower correlation between classifiers and higher strength”). Dietterich

[59] also found that stronger performing ensembles have a large degree of dispersion

among the base classifiers (this was also evident from our demonstration in Subsec-

tion 3.3.7 and in Figure 3.4). We increase diversity in our framework in four ways:

using different classifier types (Subsection 6.4.2), different stocks (Subsection 6.4.3),

different feature selection methods (Subsection 6.4.4), and different subsets of data

for training base classifiers (Subsection 6.4.5). A description of these and rationale

behind our decisions follow.

6.4.2 Classifiers types

For our ensemble we chose three different base classifiers, specifically the arti-

ficial neural networks (ANN), support-vector machine (SVM), and the C4.5 decision

tree (DT). Different base classifiers created a variety of outcomes from which to choose

for the ensemble. Because we are choosing the best classifiers (according to AUC per-

formance) from the last time interval, we let the model decide which base classifiers

are important. We therefore may have an ensemble with only one type of base clas-
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sifier, since our pool includes 1020 classifiers with 340 of each type, yet we choose 50

base classifiers to include in the ensemble.

For the ANN, we experimented with a number of parameters using a process

similar to the one we used in Subsection 3.3.5, which was to examine when changes

to parameters either increased or decreased the classification error. Specifically this

included a learning rate of 0.30, momentum of 0.20, 1 hidden layer with 100 nodes,

and 300 epochs7. The SVM used was nonlinear with a polynomial kernel (exponent

of 2.0). The DT was of the C4.5 variant and was pruned.

To demonstrate the predictability of an individual classifier type in an ensemble

compared to an ensemble composed of all three, we implemented an experiment. We

chose the top 50 models8 from among 1020 base classifiers (34 stocks × 30 base

classifiers) based on the performance of the most recent interval of 60 minutes. The

ensemble composed of all three base classifiers included an equal proportion of each

base classifier (34 stocks × 10 DT, 10 SVM, 10 ANN = 1020 base classifiers) in a pool.

Additionally the ensemble composed of the best individual performing classifiers, the

SVM and the ANN, were of equal proportion to reach 1020 base classifiers in the pool

(34 stocks × 15 SVM, 15 ANN). The results can be found in Table 6.5.

As can be seen from the table, the diverse base classifier ensembles outper-

formed all three of the ensembles comprised of just one type of classifier for all stocks,

7To determine these parameters, we examined different parameters on a small holdout
set similar to the method discussed in Subsection 3.3.5.

8Fifty base classifiers in the ensemble were found to be ideal; beyond 50 lessened over
AUC performance.
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Table 6.5: Comparison of ensembles composed of pools comprised only of decision
trees (DT), nonlinear support vector machines (SVM), artificial neural networks
(ANN), equal combination of all three (DT, SVM, ANN) and a combination of the
two individual best classifiers (SVM, ANN)

Stock DT SVM ANN [DT, SVM, ANN] [SVM, ANN]

ANR 0.527 [0.032] 0.569 [0.037] 0.557 [0.037] 0.573 [0.037] 0.575 [0.037]
APA 0.519 [0.036] 0.522 [0.044] 0.544 [0.041] 0.549 [0.044] 0.551 [0.044]
APC 0.521 [0.036] 0.525 [0.041] 0.532 [0.043] 0.544 [0.043] 0.546 [0.044]
BHI 0.529 [0.039] 0.531 [0.042] 0.557 [0.042] 0.557 [0.045] 0.558 [0.043]
CHK 0.516 [0.033] 0.551 [0.034] 0.538 [0.034] 0.553 [0.033] 0.554 [0.034]
CNX 0.518 [0.035] 0.525 [0.038] 0.545 [0.036] 0.545 [0.040] 0.546 [0.038]
COG 0.514 [0.030] 0.521 [0.037] 0.530 [0.040] 0.534 [0.039] 0.533 [0.040]
COP 0.524 [0.042] 0.526 [0.035] 0.547 [0.045] 0.546 [0.048] 0.548 [0.044]
CVX 0.525 [0.052] 0.519 [0.051] 0.554 [0.060] 0.555 [0.065] 0.557 [0.060]
DNR 0.518 [0.028] 0.550 [0.038] 0.542 [0.035] 0.553 [0.041] 0.556 [0.040]
DO 0.518 [0.042] 0.522 [0.038] 0.542 [0.042] 0.546 [0.046] 0.547 [0.043]
DVN 0.525 [0.037] 0.526 [0.042] 0.545 [0.038] 0.555 [0.041] 0.552 [0.040]
EOG 0.517 [0.032] 0.524 [0.041] 0.534 [0.040] 0.538 [0.041] 0.537 [0.043]
FTI 0.521 [0.035] 0.524 [0.037] 0.544 [0.040] 0.544 [0.043] 0.545 [0.044]
HAL 0.519 [0.040] 0.523 [0.038] 0.538 [0.038] 0.540 [0.040] 0.541 [0.04]
HES 0.521 [0.036] 0.525 [0.042] 0.550 [0.046] 0.548 [0.045] 0.552 [0.046]
HP 0.517 [0.032] 0.524 [0.039] 0.533 [0.038] 0.538 [0.039] 0.540 [0.040]
KMI 0.533 [0.048] 0.544 [0.051] 0.556 [0.053] 0.562 [0.050] 0.564 [0.050]
MPC 0.528 [0.031] 0.521 [0.042] 0.533 [0.034] 0.540 [0.039] 0.538 [0.042]
MRO 0.517 [0.037] 0.538 [0.039] 0.545 [0.039] 0.549 [0.042] 0.552 [0.041]
NBL 0.517 [0.035] 0.515 [0.039] 0.540 [0.040] 0.544 [0.038] 0.545 [0.040]
NBR 0.515 [0.029] 0.550 [0.033] 0.548 [0.030] 0.557 [0.032] 0.558 [0.031]
NE 0.515 [0.033] 0.518 [0.041] 0.535 [0.036] 0.536 [0.038] 0.535 [0.040]
NFX 0.516 [0.032] 0.520 [0.036] 0.521 [0.036] 0.529 [0.036] 0.53 [0.038]
NOV 0.524 [0.037] 0.524 [0.031] 0.540 [0.039] 0.547 [0.037] 0.547 [0.036]
OXY 0.526 [0.043] 0.520 [0.038] 0.544 [0.041] 0.546 [0.042] 0.545 [0.039]
RDC 0.520 [0.032] 0.524 [0.037] 0.535 [0.040] 0.534 [0.039] 0.537 [0.043]
RRC 0.518 [0.038] 0.527 [0.036] 0.539 [0.039] 0.544 [0.040] 0.546 [0.037]
SE 0.521 [0.048] 0.532 [0.051] 0.537 [0.055] 0.542 [0.058] 0.543 [0.054]
SLB 0.519 [0.037] 0.519 [0.033] 0.542 [0.041] 0.544 [0.041] 0.546 [0.039]
SUN 0.530 [0.071] 0.532 [0.071] 0.550 [0.070] 0.555 [0.072] 0.558 [0.070]
SWN 0.512 [0.032] 0.520 [0.038] 0.537 [0.034] 0.536 [0.036] 0.537 [0.036]
WMB 0.511 [0.040] 0.531 [0.039] 0.536 [0.042] 0.540 [0.044] 0.543 [0.040]
XOM 0.527 [0.063] 0.531 [0.064] 0.574 [0.069] 0.579 [0.067] 0.579 [0.067]

Average 0.521 0.529 0.542 0.547 0.548
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Figure 6.6: Comparison of ensembles composed of pools comprised only of deci-
sion trees (DT), nonlinear support vector machines (SVM), artificial neural networks
(ANN), an equal combination of all three (Combined 3) and an equal combination of
the two best performing base classifiers (Combined 2)

even when accounting for the same number of base classifiers. The ensemble com-

prised of the two best individual classifiers, the SVM and the ANN, slightly out-

performed the ensemble comprised of the DT, SVM, and ANN base classifiers. The

combined DT, SVM, and ANN ensemble outperformed the ensemble comprised of a

single base classifier type (but containing the same number of base classifiers in the

pool as the combined) in 28 stocks and performed the same in 2 stocks. Therefore,

for a total of 30 out of 34 stocks the combined diverse model performed at least as

well. These results are also shown in Figure 6.6. Using a combination of the SVM

and ANN worked the best the majority of the time.

We also questioned the proportion of classifier types included within the 50

classifiers chosen at each interval (among the 1020 base classifiers in the pool evaluated
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on the previous interval) and how, if at all, the proportion of classifier type included

in the ensemble affected performance. Using results from testing 34 stocks over 89

intervals (each interval is 60 instances in length) we fit a model using least squares.

Holding everything else constant, an increase in the proportion of the ANN or SVM

in the ensemble (which decrease the proportion of DT), increases the AUC slightly.

Both are found to be significant at the 0.05 level and the overall model is found to

be significant with an F-statistic of 5.84 and a p-value of < 0.0001 (albeit with a low

R2 model fit of 0.06).

Next we analyzed the proportion of base classifier types chosen in the ensemble

based on the base classifier’s performance on the previous interval. The objective

was to determine how and if the proportion of base classifiers changed over stocks,

especially since our results previously found that a higher proportion of ANN and

SVM led to slightly greater AUC performance. We ran an experiment using our

framework with a total of 1020 base classifiers and an even split between DT, SVM

and ANN base classifiers (340 each). We also used an even split between the SVM

and ANN base classifiers (510 each). The proportion of base classifier types in the

ensemble aggregated over the experiment (88 intervals of 60 minutes) can be seen in

Table 6.6. Overall the proportion, when choosing between DT, SVM and ANN in

the pool, is relatively stable across stocks with an average proportion of 0.24, 0.31

and 0.45 respectively (Table 6.6a). The proportion, when choosing between SVM and

ANN in the pool, is also relatively stable across stocks with an average proportion of

0.34 and 0.66 respectively (Table 6.6b).
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Table 6.6: Aggregate base classifier proportion in the ensemble when base classifier
was chosen by evaluating on the sliding window t−1 over the length of the experiment
(largest proportion in bold)

(a) Ensemble pool contains
equal proportions of three base
classifiers: DT, SVM, and
ANN

Stock DT SVM ANN

ANR 0.12 0.58 0.30
APA 0.24 0.26 0.50
APC 0.25 0.29 0.45
BHI 0.22 0.28 0.50
CHK 0.17 0.49 0.35
CNX 0.24 0.28 0.48
COG 0.27 0.31 0.43
COP 0.26 0.26 0.48
CVX 0.26 0.23 0.51
DNR 0.17 0.47 0.36
DO 0.25 0.27 0.48
DVN 0.24 0.26 0.49
EOG 0.25 0.30 0.45
FTI 0.24 0.29 0.46
HAL 0.24 0.30 0.46
HES 0.24 0.28 0.48
HP 0.25 0.32 0.44
KMI 0.23 0.28 0.49
MPC 0.26 0.27 0.46
MRO 0.23 0.32 0.45
NBL 0.26 0.27 0.46
NBR 0.16 0.50 0.34
NE 0.26 0.29 0.45
NFX 0.26 0.33 0.40
NOV 0.26 0.27 0.47
OXY 0.25 0.27 0.48
RDC 0.27 0.29 0.44
RRC 0.23 0.31 0.46
SE 0.26 0.31 0.44
SLB 0.25 0.27 0.48
SUN 0.26 0.30 0.44
SWN 0.24 0.32 0.44
WMB 0.25 0.31 0.44
XOM 0.26 0.21 0.53

Average 0.24 0.31 0.45

(b) Ensemble pool contains
equal proportions of two
base classifiers: SVM and
ANN

Stock SVM ANN

ANR 0.63 0.37
APA 0.28 0.72
APC 0.34 0.66
BHI 0.27 0.73
CHK 0.51 0.49
CNX 0.29 0.71
COG 0.33 0.67
COP 0.28 0.72
CVX 0.24 0.76
DNR 0.49 0.51
DO 0.29 0.71
DVN 0.27 0.73
EOG 0.34 0.66
FTI 0.33 0.67
HAL 0.33 0.67
HES 0.29 0.71
HP 0.37 0.63
KMI 0.29 0.71
MPC 0.30 0.70
MRO 0.34 0.66
NBL 0.31 0.69
NBR 0.53 0.47
NE 0.32 0.68
NFX 0.39 0.61
NOV 0.30 0.70
OXY 0.30 0.70
RDC 0.33 0.67
RRC 0.32 0.68
SE 0.35 0.65
SLB 0.30 0.70
SUN 0.35 0.65
SWN 0.35 0.65
WMB 0.35 0.65
XOM 0.21 0.79

Average 0.34 0.66
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6.4.3 Additional stocks in the classifier pool

6.4.3.1 Inclusion versus exclusion

In Section 6.2.2 we theorized that the inclusion of base classifiers trained on a

diverse set of stocks may help increase performance, so in this subsection we ran an

experiment to test for this. Training on multiple stocks has the potential to not only

increase performance, but to also reduce the total number of base classifiers needed

to test all the stocks in the sector. For example, if we set the pool of classifiers in the

framework to include a total of 1020 classifiers from multiple stocks, then for each of

our 34 sector stocks, 30 base classifiers would be trained. These 1020 base classifiers

could then be used to test and predict all the stocks in the sector. However, if we

excluded multiple stocks in our framework to predict individual stocks, we would

need 34,680 base classifiers (or 1020 for each stock’s pool) to test the same number

of 34 sector stocks. Therefore, the inclusion of base classifiers from multiple stocks in

the pool has the potential to decreases training times (and therefore computational

times) for predicting all the stocks in the sector, but also to decreases the amount of

physical space needed on the hard drive to save trained models.

Next, we ran an experiment to test if the inclusion of additional sector stocks

in the framework pool (34 stocks × 30 classifiers = 1020 base classifiers) increased

stock direction predictability. This experiment tested 88 intervals, each covering 60

instances (minutes), with the best 50 base classifiers from the previous interval being

used in the ensemble9. The results from including additional stocks in the pool are

9Fifty base classifiers in the ensemble were found to be ideal; beyond 50 lessened over



177

compared with results from excluding additional sector stocks in the framework pool;

for a fair comparison we kept the number of base classifiers the same (1 stock ×

1020 classifiers = 1020 base classifiers).

The results from the experiment can be found in Table 6.7. From this table it

can be observed that the addition of sector stocks increased predictability even when

keeping the number of classifiers in the framework pool stable (1020 base classifiers)

in 33 out of the 34 stocks tested. The average AUC across stocks with the inclusion

of sector stocks is 0.548 and without the additional stocks is 0.531. In 27 out of the

34 stocks the results are statistically significantly different when examining using a

t-test at the critical value for α = 0.05. This experiment demonstrates that including

additional stocks increases ensemble diversity and increases the average AUC.

Furthermore, when comparing our framework results from Table 6.7 to the

baseline results in Table 6.2, it is clear that with the additional stocks added to the

pool, our framework outperforms all of the baseline methods for every stock. This

is statistically significant at the critical value for α = 0.05 for all the stocks except

Chevron Corporation (CVX) and Exxon Mobile Corporation (XOM).

6.4.3.2 Change in ensemble stock proportions

In Subsection 6.4.3.1 we concluded that the inclusion of multiple stocks in the

pool increases ensemble performance. In our framework each classifier in the pool is

trained on one stock; these classifiers are examined and the best (as judged on the

AUC performance.
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Table 6.7: Including within our ensemble pool, classifiers from the stock we are
predicting only (exclusion) or also adding classifiers from stocks within the same
sector also (inclusion)

Stock [SVM, ANN] [SVM, ANN] Stat. Sig.
Exclusion of additional stocks Inclusion of additional stocks Different

ANR 0.571 [0.037] 0.575 [0.037] no
APA 0.519 [0.041] 0.551 [0.044] yes
APC 0.526 [0.043] 0.546 [0.044] yes
BHI 0.527 [0.036] 0.558 [0.043] yes
CHK 0.558 [0.038] 0.554 [0.034] no
CNX 0.529 [0.042] 0.546 [0.038] yes
COG 0.521 [0.037] 0.533 [0.040] yes
COP 0.532 [0.045] 0.548 [0.044] yes
CVX 0.526 [0.059] 0.557 [0.060] yes
DNR 0.551 [0.037] 0.556 [0.040] no
DO 0.521 [0.038] 0.547 [0.043] yes
DVN 0.528 [0.039] 0.552 [0.040] yes
EOG 0.526 [0.038] 0.537 [0.043] no
FTI 0.522 [0.034] 0.545 [0.044] yes
HAL 0.525 [0.033] 0.541 [0.040] yes
HES 0.525 [0.041] 0.552 [0.046] yes
HP 0.521 [0.037] 0.540 [0.040] yes
KMI 0.549 [0.047] 0.564 [0.050] yes
MPC 0.524 [0.042] 0.538 [0.042] yes
MRO 0.539 [0.037] 0.552 [0.041] yes
NBL 0.522 [0.041] 0.545 [0.040] yes
NBR 0.556 [0.034] 0.558 [0.031] no
NE 0.519 [0.042] 0.535 [0.040] yes
NFX 0.518 [0.034] 0.530 [0.038] yes
NOV 0.530 [0.033] 0.547 [0.036] yes
OXY 0.519 [0.042] 0.545 [0.039] yes
RDC 0.518 [0.040] 0.537 [0.043] yes
RRC 0.527 [0.033] 0.546 [0.037] yes
SE 0.531 [0.052] 0.543 [0.054] no
SLB 0.530 [0.032] 0.546 [0.039] yes
SUN 0.535 [0.071] 0.558 [0.070] yes
SWN 0.526 [0.029] 0.537 [0.036] yes
WMB 0.532 [0.039] 0.543 [0.040] no
XOM 0.553 [0.064] 0.579 [0.067] yes

Average 0.531 0.548 –
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previous interval) are selected for inclusion in the pool. With a maximum of 1020

classifiers in the pool at any given time, or 30 classifiers for each of the 34 stocks,

a specific stock will comprise roughly 30
1020

≈ 3% of the pool at any given time (on

average)10. In this subsection we examine the composition of this classifier pool to

determine if any particular stocks appear more frequently in the ensembles.

In Table 6.8 the average of the stock (over 88 intervals of each 60 instances) is

shown as a proportion of the pool and also as a proportion of the classifier selected

ensemble. On average, in 24 stocks, the stock makes up a larger proportion of the

ensemble than of the entire pool; in 2 stocks it is the same; and in 8 stock the classifier

make up a smaller proportion of the ensemble than it does of the pool. Running a

one-tailed statistical test at the 0.05 significance level, such that:

H0 : ppool = pensemble

Ha : ppool ≤ pensemble

we find that in 18 stocks the stock makes up a statistically larger proportion of its

ensemble than it does of the pool (i.e. we reject H0).

We also checked the performance of the ensemble (as measured by AUC) when

the stock we are trying to predict made up a statistically larger proportion of the

ensemble; this is compared against the AUC when the stock makes up a statistically

smaller proportion of the ensemble. When the stock is a larger proportion of the

10This number does vary slightly over the intervals because we use a sliding window
covering only the last 30,000 instances. For more information on this technique, please see
Subsection 6.4.5 and in particular Figure 6.12.
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ensemble than it is of the pool, the AUC of the ensemble is 0.5624, and when the

stock is a smaller proportion, the AUC of the ensemble is 0.5506. Increasing the

size of the proportion of the stock we are trying to predict in the ensemble would

however have a limit, since in the previous Subsection 6.4.3.1 we concluded that more

diversity in the pool (and therefore in the ensemble) increased ensemble performance.

This needs further study to determine the proportion at which the AUC dropped and

which (if any) of these stocks share commonalities.

Also examined is the number of times (over 88 intervals) an individual stock

appears as the largest proportion of the ensemble; this amounts to an average of

roughly 5 times as the largest proportion of the 88 intervals, or roughly 5.7% of the

intervals. The number of times a particular stock appears as the largest proportion

can be found in Table 6.9. From this table, it can also be seen that the stock BHI

represents the largest proportion of the ensemble the most number of times across

the intervals for all but 11 of the stocks. The total number of times BHI is the largest

proportion of the ensemble is 276 out of 2992 total intervals, or 9.2%; the remaining

stocks are the largest proportion of the ensemble on average 82 out of 2992 intervals,

or 2.4% of the total. By simply looking at the chart of BHI from the Appendix B it is

difficult to determine exactly why this stock is so prevalent as the largest proportion

of the ensemble. This remains an open area for further study.
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Table 6.8: Stock n and its average proportion (over all interval) for both the pool
and its selection in the ensemble

Stock Stock as proportion Stock as proportion Ensemble proportion Average of
of pool of ensemble is statistically larger AUC

ANR 0.028 0.070 reject Ho 0.578
APA 0.026 0.033 reject Ho 0.556
APC 0.030 0.038 reject Ho 0.550
BHI 0.026 0.048 reject Ho 0.559
CHK 0.030 0.054 reject Ho 0.557
CNX 0.032 0.040 reject Ho 0.549
COG 0.029 0.031 can’t reject Ho 0.537
COP 0.031 0.033 can’t rejectHo 0.550
CVX 0.028 0.039 reject Ho 0.566
DNR 0.029 0.045 reject Ho 0.560
DO 0.028 0.030 can’t rejectHo 0.551
DVN 0.033 0.038 reject Ho 0.555
EOG 0.031 0.038 reject Ho 0.548
FTI 0.029 0.028 can’t rejectHo 0.546
HAL 0.029 0.038 reject Ho 0.544
HES 0.031 0.027 can’t reject Ho 0.558
HP 0.029 0.031 can’t reject Ho 0.547
KMI 0.029 0.054 reject Ho 0.559
MPC 0.026 0.023 can’t rejectHo 0.538
MRO 0.033 0.031 can’t rejectHo 0.555
NBL 0.025 0.028 can’t rejectHo 0.545
NBR 0.030 0.047 reject Ho 0.559
NE 0.032 0.032 can’t rejectHo 0.541
NFX 0.029 0.027 can’t rejectHo 0.533
NOV 0.029 0.040 reject Ho 0.555
OXY 0.026 0.026 can’t rejectHo 0.553
RDC 0.031 0.028 can’t rejectHo 0.542
RRC 0.029 0.039 reject Ho 0.551
SE 0.029 0.027 can’t rejectHo 0.555
SLB 0.033 0.046 reject Ho 0.548
SUN 0.031 0.037 reject Ho 0.555
SWN 0.028 0.023 can’t rejectHo 0.546
WMB 0.027 0.023 can’t rejectHo 0.543
XOM 0.030 0.054 reject Ho 0.582

Average 0.029 0.037 – 0.552
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6.4.4 Feature reduction analysis

From Appendix C, the total number of attributes used in this thesis is 276.

However as explained in that section, these 276 attributes are actually 20 technical

analysis indicators (groups) with different parameters. These twenty groups are: lines,

rates of changes, moving averages, moving variance ratios, moving average ratios,

Aroon indicators, Bollinger bands, commodity channel index, Chaikin volatility, close

location value, Chaikin money flow, Chande momentum oscillators, MACD, trend

detection index, triple smoothed exponential oscillator, volatility, Williams %, relative

strength index, stochastic, and lag correlations. For information on the calculation

of each along with the parameter settings, please see the Appendix C.

With such a large number of attributes, Section 5.2.6 discussed the three types

of methods for reducing the number of attributes. First were filter-based attribute

selection methods (Subsection 5.2.6.2) which do feature-selection as a pre-processing

step and is independent of the machine learning algorithm chosen. Second were wrap-

per feature selection methods (Subsection 5.2.6.3) that apply the machine learning

classifier on subsets of data chosen with a heuristic and compare the performance

among the total space of possible feature selections. Third were embedded feature

selection methods (Subsection 5.2.6.4) that are part of the induction algorithm. An

example of an embedded feature selection method is a pruned decision tree.

For our problem we chose two filter-based methods: Information Gain and

the Correlation-based filter feature selection methods, for two reasons. The first

benefit is speed; in an experiment run previously (Table 5.3) we showed that the
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computational speeds are fast. Although we did not include wrapper-based feature

selection methods in our experiment, our framework does not exclude the use of

these slower computation methods. Using wrapper-based feature selection methods,

the base classifier may not be available to use immediately (because of slow feature

selection times due to repeated trainings to fit the given dataset ), but the classifier

may still include important concepts that may obtain significant results in a future

period. This will remain an area of further future research. The second reason for

choosing filters is their popularity in literature. For example Enke and Thawornwong

[68] achieved ideal results using Information Gain feature selection in predicting stock

prices. Furthermore, Hall and Holmes [98] found correlation-based selection methods

outperformed alternative filter selection methods. In our framework we decided to

use both Information Gain and Correlation-based filter feature selection methods;

the goal is to use both feature selection methods alternatively on training data before

building base classifiers in attempt to create a diverse set of classifiers for the pool.

Preliminary research found reducing the 276 attributes to the top 30 with

a filter-based feature subset selection provided ideal results. The process used in

our experiments is demonstrated in Figure 6.7. This method shows training data

retrieved (with random starting and ending times), reduced with a filter, and this

reduced subset is then passed to the next step where a classifier is built with the data.

The finished classifier is then placed in the framework pool. Specifically we found

that Information Gain and Correlation-based filter methods provided a diverse set of

features (as we demonstrate later in this section) and a nice trade-off between AUC
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Data
Feature

selection

Training  subset Filter methods
Information Gain
Correlation-based

Build classifier
with top n 
attributes

Place classifier in
framework pool

Figure 6.7: Process of implementing a filter-based feature subset selection procedure
in our framework

and speed of performance. As mentioned in Section 5.2.6 the goal of any classifier

should be the simplest explanation of facts using the fewest variables. This helps

minimize model over fitting.

An experiment was conducted to understand the attributes being chosen by

the two different feature selection methods and how/if the attributes were similar

across the 34 stocks. We first divided our dataset of 47,000 instances into intervals of

1,000 instances each and then ran the two filters (Information gain and correlation-

based methods) on each interval while choosing the top 30 attributes11. The results

for the stock Exxon Corp. can be seen in a raster plot in Figure 6.8; selected attributes

are in black. To reduce the figure to one page, we reduced the number of viewable

attributes to 100 down from 276 attributes. A dark band existing in either the

Correlation-based feature selection filter from Figure 6.8a and the Information Gain

feature selection filter from Figure 6.8b signals attributes chosen for the particular

11Our preliminary research found 30 attributes provided favorable results. Additional
numbers of features tended to overfit and increase training times.
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interval. The attributes (marked 111 to 119) are the Chaikin Money Flow and the

Chande momentum oscillator with different parameters. More information about the

dataset can be found in Appendix B and the attributes can be found in the Appendix

C.

We next examined the technical analysis indicators that were most commonly

chosen by each filter. To do so, we followed the same procedure as above by dividing

our dataset into intervals of 1,000 instances and running both filters on the dataset.

We then counted the number of features from each of the twenty groups of techni-

cal analysis indicators chosen over the intervals. Figure 6.9 shows the results of our

experiment using both filters. The five most common technical analysis indicator

attribute groups chosen by the Correlation-based filter and their average proportion

of overall attributes are (in order from highest to lowest): correlation attribute12

(14.0%), trend detection index (9.3%), moving average rate of change (8.3%), MACD

(6.7%), and the Aroon indicator (6.6%). The five least common attributes chosen

by the Correlation-based filter and their average proportion of overall attributes cho-

sen are (in order from low to lowest): Bollinger bands (2.7%), commodity channel

index (2.6%), close location value (1.6%), volatility (1.0%), and moving average vari-

ance (1.0%). The attribute groups chosen by the Correlation-based feature selection

method remains relatively stable across stocks can also be seen in Figure 6.9a.

The results are quite different when examining the attributes chosen by the

Information Gain feature selection method. From Figure 6.9b the five most pop-

12The selection of the correlation attribute by the correlation-based filter is not surprising.
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(a) Correlation feature selection filter

(b) Information Gain feature selection filter

Figure 6.8: Comparison of two different feature selection filters on the stock Exxon
(symbol: XOM) using a sliding window of 1000 instances (showing only attributes 30
through 129 to save space)
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(a) Correlation-based feature selection
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(b) Information Gain feature selection

Figure 6.9: Visualizing the different groups of attributes as a proportion of total
attributes chosen by the different filter feature selection methods 46 intervals of 1000
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ular attribute groups chosen by the Information Gain filter and their average pro-

portion of overall attributes are (in order from highest to lowest): Bollinger bands

(23.2%), Chaikin volatility (20.2%), close location value (9.6%), commodity channel

index (9.5%), Chaikin money flow (7.7%). The five least common attributes cho-

sen by the Information Gain filter and their average proportion of over attributes

chosen are (in order from low to lowest): Aroon (0.5%), Money flow index (0.5%),

Chande momentum oscillator (0.3%), volatility (0.2%), and moving average variance

(0.1%). Additionally, three of the top five most common groups across the stocks

chosen by the Information Gain filter are in the bottom five (least chosen attribute)

of the Correlation-based filter. These are Bollinger bands, commodity channel index

and close location value. However, both volatility and moving average variance are

within the bottom, or the least chosen, attribute group for both Information Gain

and Correlation-based filters.

It is important to note that although groups of attributes may remain relatively

stable across stocks, individual attributes chosen by the filter models may vary greatly.

These individual attributes are composed of alternative technical analysis indicator

parameters and/or lagged indicators (see Appendix C). As can be seen from the

example for Exxon (Figure 6.8a), the attributes chosen during individual intervals

can vary from one interval to the next.

We next analyzed if one particular filter was more common among the 50

base classifiers chosen for the ensemble, based on its performance on the previous

interval. An experiment was run using our framework with a total of 1020 base
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classifiers, with 510 using Information Gain and 510 using Correlation-based feature

selection to reduce features. The aggregate proportion of base classifier chosen for

the ensemble when trained using either the Correlation-based or Information Gain

feature selection filters can be seen in Table 6.10. In 30 out of 34 stocks Information

Gain filtered classifiers were most common in the ensemble, with on average 52% of

the base classifiers having been filtered using this method. No discernible difference

was found in the AUC when using entirely Correlation-based feature selection or

Information Gain feature selection.

6.4.5 Subsets for training

Determining the correct or ideal training set size is often accomplished by

trial-and-error and can be problematic when using a sliding-window approach to

learning with concept drift. A small training set may contain specific concepts but

may overfit and not generalize well, while a large dataset may contain too many

conflicting concepts which would decrease classifier performance. Our framework’s

solution to this problem is to train the base classifiers on subsets of data, ranging

from a minimum of 5,000 instances to a maximum of 20,000 instances. The objective

is to place all instances in the framework pool and evaluate each on the previous

interval and find the top performing n base classifiers for the ensemble. Figure 6.10

visualizes 100 base classifiers created with random start and end times within the

constraint training set size between 5,000 and 20,000 instances.

In this subsection we compare the classifiers in the pool to the classifiers chosen
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Table 6.10: Aggregate proportion of base classifiers chosen for the ensemble trained
using either the Correlation-based or Information Gain filters (base classifiers were
chosen by evaluating on the sliding window t− 1 over the length of the experiment)

Stock Correlation- Information
based filter gain filter

ANR 0.56 0.44
APA 0.47 0.53
APC 0.46 0.54
BHI 0.45 0.55
CHK 0.54 0.46
CNX 0.48 0.52
COG 0.49 0.51
COP 0.46 0.54
CVX 0.44 0.56
DNR 0.53 0.47
DO 0.46 0.54
DVN 0.46 0.54
EOG 0.48 0.52
FTI 0.47 0.53
HAL 0.48 0.52
HES 0.46 0.54
HP 0.48 0.52
KMI 0.48 0.52
MPC 0.48 0.52
MRO 0.49 0.51
NBL 0.47 0.53
NBR 0.54 0.46
NE 0.49 0.51
NFX 0.49 0.51
NOV 0.48 0.52
OXY 0.47 0.53
RDC 0.49 0.51
RRC 0.49 0.51
SE 0.48 0.52
SLB 0.46 0.54
SUN 0.48 0.52
SWN 0.49 0.51
WMB 0.49 0.51
XOM 0.42 0.58

Average 0.48 0.52
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Figure 6.10: Visualization of 100 base classifiers and their random start and end times
over 47,000 instances

from the pool for inclusion in the ensemble13. Recall from Step 2 in Figure 6.1, the

ensemble classifiers are chosen from the pool according to their performance on the

last 60 minutes. We also attempt to determine if (1) the size of the training set

selected and (2) the age of the training set selected for inclusion in the ensemble

differs from the distribution from which it is drawn (i.e. the classifier pool); both are

visualized in Figure 6.11.

To explain the question of training set size further, each classifier in the pool

is built with a training set of n instances (minimum of 5,000 to maximum of 20,000

instances) with the pool limited to a total of 1020 classifiers14. The mean value of

13The experiment used the top fifty base classifiers from the pool (across multiple stocks)
for inclusion in the ensemble. Beyond fifty base classifiers were found to lessen overall
ensemble performance. This is discussed in Subsection 6.4.3.1.

14The 1020 total base classifiers are comprised of 30 classifiers for each of the 34 stocks.
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Figure 6.11: Each classifier is build with a training subset of size n instances and a
distance (or age) of length k from the current time t

the training set size n is calculated for the 50 classifiers in the ensemble and the 1020

classifiers in the pool to determine if they differ; this value of n is visualized in Figure

6.11a.

The question of training set age examines the distance of the last instance in

the training set from the current evaluated time; this is visualized in Figure 6.11b as

value k. A value of 0 for k represents that the last instance in the classifier is nearest

the evaluated instance at time t.

For a fair comparison of classifiers distance (Figure 6.11b), we create an exper-

imental setup15 similar to Figure 6.12. By using a moving window of size n, where n

See Subsection 6.4.3.1 for more information on this decision.

15In this experiment we limit the experiment to using subsets from the past 30, 000
instances (which is roughly 60 trading days) to achieve a fair comparison of classifier distance
from time t as the series extends. This size of 30, 000 was due to constraints with the size of
our dataset. In practice however, there might not be a need to limit the distance a classifier
can come back. The only constraint would need to be on the number of classifiers built,
which would become quite large as classifiers are continuously built and included in the pool.
One potential method of doing this is to eliminate classifiers that have not been chosen for a
specific number of intervals. Another potential method is to eliminate classifiers that share
too much overlap (in the time subset)
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Time
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Classifiers are built with random length
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(this becomes the classifier pool)

The 'best' classifiers
(as evaluated on
the most recent 

interval) are chosen
for the ensemble

32

1

Figure 6.12: The moving window of size n (where n is 30, 000 in our approach) limits
the classifiers used in the ensemble

is 30, 000, we limit any bias the experiment may have. Without this sliding window,

at the beginning of the experiment we would have a greater number of models in the

classifier pool close to time t, and then as the series extends we would have a far

greater number of classifiers further away from time t in the pool. The creation of

the sliding window of size n therefore allows for an unbiased exploration of classifier

distance (from current time t) over time.

This distribution of the sizes of the classifier training sets for the stock WMB

(Williams Corporation) can be seen in Figure 6.13 for both the pool (Figure 6.13a) and

those chosen from the pool for inclusion in the ensemble (Figure 6.13b). We quantify

this difference in distributions using a non-parametric chi-square test of independence

to determine if the observed distribution of the classifiers in the ensemble differed

significantly from the distribution of the classifiers in the pool (i.e. the expected
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(a) Classifiers in pool (b) Classifiers in ensemble

Figure 6.13: Distribution of base classifier training sets for the stock WMB (over
entire experiment)

ensemble distribution) at the critical value for α = 0.05. This was done to test the

distributions of the classifiers in the pool versus the ensemble for both 1) the size

of the training sets and 2) the age or distance from time t of the chosen classifiers.

Additionally, both a paired t-test and a non-parametric Wilcoxon test16 at α = 0.05

was used to examine the mean size and age of the classifier over the 88 intervals (with

each containing 60 instances) to determine if they differ significantly.

The results from the training set size test can be seen in Table 6.11a and the

distance from time t test in Table 6.11b. Additional tables condensing the results can

be found in Tables 6.12a and 6.12b respectively.

The average size of the training set (see Figure 6.11a), where an instance

represents one minute of time, is slightly larger for the classifiers in the ensemble (i.e.

16A case could be made that the paired t-test is not appropriate, hence the addition of
its nonparametric equivalent, the Wilcoxon test.
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Table 6.11: In minutes, average size of the training set and the average distance of
the classifiers from time t for the classifiers in the pool versus the classifiers in the
ensemble (larger number in bold) – test statistic at α = 0.05

(a) Average size of the training set (across
all intervals) for the classifiers in the pool
versus those in ensemble (in minutes)

χ2 paired
Stock Pool Ensemble test t-test

ANR 11439 11792 yes yes
APA 11462 11863 yes yes
APC 11444 11850 yes yes
BHI 11436 11806 yes yes
CHK 11453 11638 yes yes
CNX 11458 11891 yes yes
COG 11445 11722 yes yes
COP 11448 11981 yes yes
CVX 11456 11933 yes yes
DNR 11456 11757 yes yes
DO 11452 11951 yes yes
DVN 11452 11849 yes yes
EOG 11442 11783 yes yes
FTI 11448 11764 yes yes
HAL 11459 11788 yes yes
HES 11445 11795 yes yes
HP 11454 11681 yes yes
KMI 11436 11710 yes yes
MPC 11450 11782 yes yes
MRO 11442 11645 yes yes
NBL 11559 11804 yes yes
NBR 11428 11599 yes yes
NE 11439 11707 yes yes
NFX 11460 11620 no yes
NOV 11443 11877 yes yes
OXY 11457 11933 yes yes
RDC 11444 11633 no no
RRC 11559 11931 yes yes
SE 11450 11781 yes yes
SLB 11452 11799 yes yes
SUN 11447 11749 yes yes
SWN 11452 11740 yes yes
WMB 11442 11823 yes yes
XOM 11444 11985 yes yes

Averageall 11454 11793 –

(b) Average distance from time t (across all
intervals) for the classifiers in the pool ver-
sus those in ensemble (in minutes)

χ2 paired
Stock Pool Ensemble test t-test

ANR 8731 8683 yes no
APA 8707 8678 yes no
APC 8727 8598 no no
BHI 8740 8721 no no
CHK 8728 8767 no no
CNX 8711 8681 no no
COG 8721 8742 no no
COP 8736 8566 no no
CVX 8718 8682 no no
DNR 8710 8865 no no
DO 8721 8699 no no
DVN 8727 8657 no no
EOG 8726 8947 no yes
FTI 8715 8803 no no
HAL 8705 8620 no no
HES 8729 8980 no yes
HP 8735 8826 no no
KMI 8726 8854 yes no
MPC 8727 8684 no no
MRO 8773 9000 no yes
NBL 8537 8694 no no
NBR 8736 9049 no yes
NE 8728 8786 yes no
NFX 8719 8840 yes no
NOV 8721 8773 no no
OXY 8714 8618 no no
RDC 8720 8711 yes no
RRC 8537 8586 no no
SE 8734 8709 no no
SLB 8712 8638 yes no
SUN 8710 8915 no yes
SWN 8747 8692 no no
WMB 8726 8683 no no
XOM 8723 8521 yes yes

Averageall 8714 8743 –
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the best performing classifiers chosen from the pool) than the classifiers in the pool for

all 34 stocks examined. From Table 6.11a, the average size of the ensemble classifiers

is 11, 793 instances and the average size of the pool classifiers is 11, 454 – a paired t-

test covering the 88 intervals (each containing 60 instances) finds statistical difference

between the sizes (of the ensemble versus pool) in 33 of the 34 stocks17. This is a

small difference in the average (roughly 3%), yet a non-parametric chi-square test

(testing at the 95% confidence interval) found that the distribution of the training set

was statistically different for the classifiers in the ensemble than from the classifiers

in the pool for 32 of the 34 stocks. The distributions of the training set sizes of only

two stocks, NFX and RDC, were the same.

In judging the distance (i.e. age) of the classifiers from time t (see Figure

6.11b), the distance of the classifier in the pool is slightly closer to the time being

evaluated (i.e. time t), than the classifiers in the ensemble. From Table 6.12b, the

average pool distance from time t is 8, 714 and the average ensemble distance from

time t is 8, 743 – less than one third of 1% difference. The non-parametric chi-square

test finds the ensemble comes from a statistically different distribution than the pool

in 8 of the 34 stocks. Additionally, the paired t-test finds the age of the classifiers

differ over the 88 intervals in 6 of the 34 stocks18.

Both of the experimental results are combined in Tables 6.12a and 6.12b re-

17The nonparametric t-test equivalent, the Wilcoxon test, came to the same conclusion
for the difference in training set sizes.

18The Wilcoxon test, also found a difference in 6 of the 34 stock’s training set ages over
the 88 intervals.
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Table 6.12: Comparison of classifiers from the pool versus the classifiers chosen for
the ensemble

(a) Comparison of classifiers in the pool and ensemble in judg-
ing the size of the average classifiers training set size

Pool Ensemble

Avg. training size 11,454 11,793
Count of stocks, where 0 34
training size is larger stocks stocks
(pool vs. ensemble) pool larger ensemble larger
Paired t-test (sig.) 33 stocks significant

Chi-square test (sig.) 32 stocks significant

(b) Comparison of classifiers in the pool and ensemble in
judging the average classifiers distance from time t

Pool Ensemble

Avg. dist. from t 8,714 8,743
Count of stocks, where 18 16
training size is older stocks stocks
(pool vs. ensemble) pool older ensemble older
Paired t-test (sig.) 6 stocks significant

Chi-square test (sig.) 8 stocks significant

spectively. These experiments suggest on average, larger training set sizes outperform

smaller ones and rarely is there much difference in the average distance of the classi-

fier from the current time t in the performance. This needs to be explored further in

future research.

6.4.6 Incorporating time into the predictive model

In Section 5.3, the release of pre-scheduled economic reports was found to

have an effect on the volatility of the stock price. The reaction of stocks to economic

reports makes sense since the data released often gives an indication of the overall

economic health. Through an experiment, we found that market participants often
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appeared to be “surprised” at the release of the petroleum weekly status update since

the 34 energy stocks examined changed direction immediately after the release of the

news. Since these economic reports are pre-scheduled, using time as an indicator

may increase the predictability of the market direction. To further discover how time

might affect the stock direction, we conduct an experiment to empirically examine

the change in the probability of large market moves throughout the day, where a

large move is determined to be a move greater than 0.05% in either direction, or

|pricet−pricet−1

pricet−1
| ≥ 0.0005.

Our experiment analyzed the same stocks (as the previous experiment) and

divide the days into 30 minute increments (e.g. 9:30-9:59, 10:00-10:29, 10:30-10:59,

etc.). The percentage of large price moves greater than 0.05% (in either direction) for

each increment is measured and from anecdotal examination, a sum of least squares

regression line is computed for 9:30 a.m. E.S.T. (the market opening) to 12:30 p.m.

Another is computed for 1 p.m. to 4 p.m. E.S.T. (the market close). The slopes

are computed and we observe in 98.333% of the days, the slope decreases from the

opening of the trading day to 12:30 p.m. and in 52.778% of the days, the slope

increases from 1 p.m. to the closing of the trading day. An example of the test for the

stock ConocoPhillips can be seen in Figure 6.14. The blue bars in this illustration

represent the percentage of time that the interval is comprised of moves greater than

0.05% and the red line represents the regression line from the market opening to 12:30

and from 1:00 p.m. to the market close.

The increased volatility at the beginning of the day is often attributed to
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Figure 6.14: Demonstrating a decrease in slope before 12:30 p.m. and an increase
in slope after 1:00 p.m. in the level of price moves over 0.05% (either up or down)
throughout the trading day (stock: ConocoPhillips)

normal market behavior. Normal market hours begin at 9:30 E.S.T. and it is at this

time that the specialist at the New York Stock Exchange reviews the queue of orders

that have arrived across the country from individuals wanting to buy and sell the

stock to try and determine where to open the stock price19. An imbalance of buyers

and sellers may cause volatility of the stock price.

In both experiments time affects the distribution of class; this could be consid-

ered a form of concept drift according to the first of the three definitions of concept

19For example, a stock closes (ends) Monday at $61.00. Overnight bad news occurs and
individuals across the world send in orders to sell the stock. On Tuesday morning the
specialists may decide, because of the imbalance of orders (more sellers than buyers), to
open the stock down $0.25 to $60.75. The specialist must take the other side of the order if
there is an imbalance and therefore wants to mitigate their risk. By opening the price at a
lower level, the specialist intends to entice buyers back in the marketplace and (hopefully)
sell the excess inventory at a higher price.
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drift provided by Kelly et al. [115] (see Subsection 4.2). In this definition, concept

drift is defined as a change in the probability of class priors over time (i.e. P(ci),

i = 1, 2, 3, . . . , k). The problem, as explained in that subsection, is that change in

the class priors may change over time but may not affect the overall predictability of

the market. However, Hoens et al. [104] reason that, while model predictability may

not suffer as a result of a change in the class priors, often the change creates a class

imbalance (see Section 5.1) which may require retraining.

Our framework deals with this change in the class distribution (and therefore

the potential of a decrease in model predictability) by modifying the base classifiers in

the ensemble (by evaluating individual base classifiers on the most recent interval of

data). However, can additional improvements be made by including a time attribute?

In an experiment we test this hypothesis to determine if the inclusion of a time-base

feature increases the predictability of the ensemble. The new attributes include:

month, day of week, hour of day, and minute of day. The base classifiers used in

the experiment were SVM and ANN and the inclusion of base classifiers trained on

additional sector stocks were included in the pool (as was determined from Subsection

6.4.2 and 6.4.3.1 respectively). Results of this experiment can be found in Table 6.13.

From the table, it can be seen that the inclusion of the four time attributes

slightly increases the AUC, although for none of the stocks is the results statistically

significant when testing using a t-test. However, in 28 out of the 34 stocks the

inclusion of time in model training slightly outperforms not including it. Including

the stocks where it does at least as well is 31 out of 34 stocks; only in 3 stocks does
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Table 6.13: Including base classifiers in the pool with and without four new time
attributes (best in bold) – test statistic at α = 0.05

Stock [SVM, ANN] [SVM, ANN] Stat. Sig.
Exclusion of time attributes Inclusion of time attributes Different

ANR 0.575 [0.037] 0.579 [0.038] no
APA 0.551 [0.044] 0.557 [0.054] no
APC 0.546 [0.044] 0.551 [0.050] no
BHI 0.558 [0.043] 0.558 [0.054] no
CHK 0.554 [0.034] 0.558 [0.037] no
CNX 0.546 [0.038] 0.548 [0.040] no
COG 0.533 [0.040] 0.536 [0.046] no
COP 0.548 [0.044] 0.550 [0.050] no
CVX 0.557 [0.060] 0.564 [0.065] no
DNR 0.556 [0.040] 0.557 [0.039] no
DO 0.547 [0.043] 0.550 [0.055] no
DVN 0.552 [0.040] 0.554 [0.047] no
EOG 0.537 [0.043] 0.546 [0.044] no
FTI 0.545 [0.044] 0.548 [0.041] no
HAL 0.541 [0.040] 0.545 [0.042] no
HES 0.552 [0.046] 0.557 [0.050] no
HP 0.540 [0.040] 0.546 [0.039] no
KMI 0.564 [0.050] 0.559 [0.047] no
MPC 0.538 [0.042] 0.539 [0.041] no
MRO 0.552 [0.041] 0.555 [0.040] no
NBL 0.545 [0.040] 0.545 [0.044] no
NBR 0.558 [0.031] 0.560 [0.035] no
NE 0.535 [0.040] 0.542 [0.045] no
NFX 0.530 [0.038] 0.535 [0.039] no
NOV 0.547 [0.036] 0.555 [0.036] no
OXY 0.545 [0.039] 0.551 [0.046] no
RDC 0.537 [0.043] 0.543 [0.041] no
RRC 0.546 [0.037] 0.551 [0.044] no
SE 0.543 [0.054] 0.552 [0.054] no
SLB 0.546 [0.039] 0.548 [0.049] no
SUN 0.558 [0.070] 0.556 [0.078] no
SWN 0.537 [0.036] 0.545 [0.039] no
WMB 0.543 [0.040] 0.542 [0.045] no
XOM 0.579 [0.067] 0.579 [0.079] no

Average 0.548 0.552 –
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the inclusion of time not increase model predictability.
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CHAPTER 7
CONCLUSION AND FUTURE RESEARCH

7.1 Summary of prediction of stock market direction

This thesis explored the difficult problem of attempting to predict stock market

direction in the near term – one minute or less in the future. While this is a pop-

ular problem in both the finance industry and in academia, there remains minimal

published methods in machine learning for doing this.

This thesis first tackles the argument that stock prices are purely efficient

and do not display trends. In Chapter 2 we examine 22 million transactions in the

Standard and Poor’s 500 over the course of a year and find reoccurring trends. While

many of these inefficiencies can be explained by traditional market dynamics, we

found that on average the market escapes the confines of the bid and ask after several

seconds, and that high probability events could be observed until several minutes.

This gave us confidence that our research area was not futile and allowed us to

examine predictability of the market further.

Chapter 3 provided an introduction to some of the machine learning classifiers

and performance evaluation methods used in this thesis. While we used AUC (Area

Under the ROC Curve) to examine classifier performance, a common question asked

is why we did not examine model profitability. While this would be the obvious end

goal of predicting stock price direction, this adds considerable complexity that is best

left to another dissertation. The goal, as we discuss in this chapter, is not to provide
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an “out of box” trading system, but to instead help the user make more informed

trading decision with the help of machine learning techniques.

Two main methods of learning from concept drift were discussed in Chapter

4. These two methods are: 1) detect concept drift and upon finding it, re-learn

using new data in the classifier and 2) assume that concept drift occurs and build

this assumption into a framework. The first method, which uses novelty detection

algorithms, detects either changes in the distribution of the underlying data (with

the assumption that distribution change signal a change in the underlying concept)

or a decrease in the performance in the model. Upon detecting a change, the model

eliminates or uses forgetting factors to give less weight to older data. This approach

may be problematic since it requires a fast implementation of a classifier, often called

an adaptive or online learning method, to work with streaming high-frequency data;

speed of classification often comes at the expense of optimized performance (such

as AUC or accuracy). Furthermore, it makes the assumption that older data will

not be useful again in the future. This is a difficult argument to make since the

stock market periodically displays reoccurring behavior such as economic cycles or

behavioral moods. Also, eliminating old data from the previous concept requires a

new model to be built; enough new data would need to arrive before building could

begin.

This thesis takes the second approach, which assumes that concept drift occurs

in high-frequency stock data. This theory is validated through an experiment in

Subsection 4.2.2 using the Drift Detection Method (DDM) algorithm [83]. Using the



206

DDM we demonstrate that decreases in model predictability did occur, thus signaling

occurrence of concept drift. Advantages of using the wrapper approach to predicting

data streams includes the ability to use traditional classifiers, the ability to work in

parallel on a multi-core machine, and the use of older data which may still provide

value. Maintaining a model with the most up-to-date data is not necessarily the most

ideal choice since markets may stabilize and old knowledge may become useful again.

In general, wrapper frameworks work by building classifiers on chunks of data and

heuristically combining those decisions into a prediction.

Before the discussion of our new wrapper framework, in Chapter 5 we cover

challenges in learning from high-frequency stock data. One problem identified in this

chapter is stock data stream class imbalance. This can cause problems with classifier

performance; the classifier may have high levels of accuracy while misclassifying most

of the minority class (often the most revealing part of the algorithm). This is an

advantage of our framework since over-, under- and synthetic-sampling of data can

be easily applied when the data is learned on chucks of data. Another difficulty with

stock data is the data streams often need preprocessing to eliminate bad trade data

and noise (we run an experiment in this chapter using a heuristic by Brownlees and

Gallo [30] to eliminate out-of-sequence trades with moderate success).

Chapter 5 also examines attribute creation for high-frequency stock prediction.

This includes the use of sentiment analysis and also technical analysis indicators.

More examples of technical analysis along with descriptions can be found in Appendix

C. Lastly this chapter explores different methods of dimensionality reduction along
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with its ability to not only increase classifier predictability, but also decrease the time

spent in training.

Chapter 6 describes our new wrapper framework for the prediction of high-

frequency stock direction. In addition to the regular advantages of wrappers, which

includes the ability to use traditional classifiers, work in parallel, and work with prior

concepts, our method also has the ability to transfer knowledge contained within

additional stocks. Our framework builds thousands of classifiers using random subsets

of past data (and from correlated sector stocks) and heuristically combines the best of

these classifiers as determined by evaluating on the most recent interval of data. The

knowledge transfer from the correlated sector stocks in the pool increases the overall

framework’s predictability even while maintaining the same number of classifiers in

the pool. For example, we achieve better performance when including a combined

1020 classifiers in the pool spread across all 34 stocks (i.e. 34 stocks× 8 classifiers =

1020 base classifiers in the pool) rather than including all classifiers from one stock

(i.e. 1 stock × 1020 classifiers = 1020 base classifiers in the pool). This diversity of

stocks increased the AUC for 33 of the 34 stocks, while reducing the total number of

classifiers needed to test the same number of 34 sector stocks, from 34, 680 (or 1020

for each stock’s pool) to 1020.

While our new wrapper framework is slower at training than many adaptive

methods, such as Very Fast Decision Trees, it is fast enough to work with higher-

frequency data, even though the classifiers used in the framework may take several

minutes to build (as demonstrated in Subsection 6.2.1. This is because the emphasis of
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our approach is on evaluating many previously built classifiers (often trained on older

concepts). This allows our approach to evaluate hundreds or thousands of classifiers,

covering many different concepts and stocks, quickly and in the time needed. Our

approach can compete with faster adaptive methods and achieve higher levels of

predictability.

7.2 Future research

Currently AUC is used as an evaluation metric, but this assumes that all

misidentification are the same. When trading, not all mistakes are the same and this

may change depending on the position of the trader (shares held). For example, an

opportunity cost can be associated with missing a large move in a stock. Additionally

an actual monetary loss could be incurred if a trader acts on the prediction of a

large price increase, but the stock actually decreased in price. Different cost could

be associated with both and these costs can change depending on the needs of the

trader.

In Figure 7.1 two examples are given explaining different costs associated with

different misclassifications. For example, in Figure 7.1a the trader wants to initiate

a long position1 in a stock with the intentions of selling at a higher price. Therefore,

the trader is hopes to buy the stock in anticipation of a large upward move. The

1A trader can take one of two positions in a stock: a long position or a short position.
A long position is when the trader buys the stock with the hopes of the stock going up in
price. A short position is when the traders sells the stock (without actually owning it), with
the intentions of buying it back at a lower price. When a trader is short a stock, a drop in
price is favorable.
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(a) Incorrect prediction with opportunity costs
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(b) Incorrect prediction with monetary costs

Figure 7.1: Incorrect predictions have different costs depending on the objective

classifier in this example predicts that the stock will move an “insignificant amount.”

The trader therefore does nothing since their is no advantage of taking a long position.

It turns out however that the classifier misidentifies the next move in stock price and

the stock goes up. In this example, the trader misses the opportunity, but experiences

no monetary costs.

In Figure 7.1b the trader once again wants to initiate a long position in the

stock with the intentions of selling at a higher price. The classifier in this example

predicts a “large up” (a large upward price in the stock), therefore the trader initiates

a position with the hope of selling at a higher price. However the classifier was

incorrect and the stock price actually decreases by a large amount. In this example the

classifier was also wrong, but in this situation the trader actually initiated a position

in the stock. This ties up capital (which may prevent future transactions/trades until

more money is available) and the trader experiences a paper loss (an actual loss is

not incurred until the trader actually sells the stock).
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Instead of using AUC to evaluate classifiers where the cost or error is uni-

form, a cost-sensitive approach could be used with explicitly defined cost-matrices.

Depending on the situation or objective of the trader, such as if precision or sensitive

(recall) is more important in the decision, different penalties could be implemented

for misclassifying instances. The classifier therefore minimizes the cost of misclassifi-

cation rather than the misclassification errors. In Subsection 5.1.2.2 three cost-based

solutions are described. In particular MetaCost [61] has achieved interesting results

in our preliminary research.

In Table 7.1a, the cost-matrix emphasis is on precision. For example, predict-

ing {Up | Down} when the price is actually {Down | Up} would result in a monetary

loss which we estimate at $1.25. When predicting {Up | Down} when the price is

actually {No Change} would result in a trade but may still have the possibility of a

correct movement in the future, otherwise transactions would have incurred (which

we estimate at $0.25). Lastly, correct decisions results in no costs.

In Table 7.1b, the cost-matrix emphasis is on sensitivity (recall) of “up” moves.

For example, misidentifying a downward moves as up results in a loss of $1.25; this

is better than misidentifying an upward move by predicting as down (loss of $2.50).

Adding cost-matrices or other elements to address cost implications would

boost the complexity of our framework and optimize performance.
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Table 7.1: Hypothetical cost matrix

(a) Cost-matrix 1

Predicted class
Down No change Up

Actual Down 0 0.25 1.25
class No change 0.50 0 0.50

Up 1.25 0.25 0

(b) Cost-matrix 2

Predicted class
Down No change Up

Actual Down 0 0 1.25
class No change 0.25 0 0.25

Up 2.50 2.50 0
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APPENDIX A
PROBABILITY TABLES

The following tables are the full prior conditional probabilities of market direc-

tion movements for trade-by-trade, 1, 3, 5, 10, 20, and 30 second interval timespans,

followed by 1 and 5 minute timespans. Thirty-minute timespans were not included

because of the lack of priors at extended depths. Also included is the number of

weeks out of the year that are statistically significant when compared against the

probability of an uptick ( Pr(+) ).
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Table A.1: Conditional probabilities of market directional movements for trade-by-
trade (tick) data

Depth Event Mean SD # weeks that are stat.
sig. from Pr(+)

0 Pr(+) 0.500 0.001 n/a
1 Pr(+—-) 0.790 0.014 52

Pr(+—+) 0.209 0.014 52
2 Pr(+—-,-) 0.846 0.018 52

Pr(+—-,+) 0.776 0.014 52
Pr(+—+,-) 0.224 0.014 52
Pr(+—+,+) 0.153 0.017 52

3 Pr(+—-,-,-) 0.848 0.025 52
Pr(+—-,-,+) 0.846 0.017 52
Pr(+—-,+,-) 0.790 0.016 52
Pr(+—-,+,+) 0.725 0.009 52
Pr(+—+,-,-) 0.274 0.009 52
Pr(+—+,-,+) 0.210 0.016 52
Pr(+—+,+,-) 0.153 0.017 52
Pr(+—+,+,+) 0.153 0.025 52

4 Pr(+—-,-,-,-) 0.843 0.035 52
Pr(+—-,-,-,+) 0.849 0.025 52
Pr(+—-,-,+,-) 0.845 0.019 52
Pr(+—-,-,+,+) 0.848 0.016 52
Pr(+—-,+,-,-) 0.770 0.019 52
Pr(+—-,+,-,+) 0.795 0.016 52
Pr(+—-,+,+,-) 0.722 0.010 52
Pr(+—-,+,+,+) 0.741 0.018 52
Pr(+—+,-,-,-) 0.256 0.018 52
Pr(+—+,-,-,+) 0.277 0.010 52
Pr(+—+,-,+,-) 0.204 0.016 52
Pr(+—+,-,+,+) 0.230 0.019 52
Pr(+—+,+,-,-) 0.151 0.015 52
Pr(+—+,+,-,+) 0.153 0.019 52
Pr(+—+,+,+,-) 0.151 0.025 52
Pr(+—+,+,+,+) 0.166 0.034 52

5 Pr(+—-,-,-,-,-) 0.838 0.073 50
Pr(+—-,-,-,-,+) 0.843 0.040 52
Pr(+—-,-,-,+,-) 0.845 0.026 52
Pr(+—-,-,-,+,+) 0.857 0.031 52
Pr(+—-,-,+,-,-) 0.829 0.024 52
Pr(+—-,-,+,-,+) 0.849 0.018 52
Pr(+—-,-,+,+,-) 0.847 0.018 52
Pr(+—-,-,+,+,+) 0.853 0.023 52
Pr(+—-,+,-,-,-) 0.754 0.030 52
Pr(+—-,+,-,-,+) 0.773 0.017 52
Pr(+—-,+,-,+,-) 0.797 0.017 52
Pr(+—-,+,-,+,+) 0.787 0.013 52
Pr(+—-,+,+,-,-) 0.704 0.013 52
Pr(+—-,+,+,-,+) 0.729 0.011 52
Pr(+—-,+,+,+,-) 0.739 0.019 52
Pr(+—-,+,+,+,+) 0.750 0.044 52
Pr(+—+,-,-,-,-) 0.249 0.043 52
Pr(+—+,-,-,-,+) 0.257 0.019 52
Pr(+—+,-,-,+,-) 0.269 0.011 52
Pr(+—+,-,-,+,+) 0.297 0.014 52
Pr(+—+,-,+,-,-) 0.213 0.013 52
Pr(+—+,-,+,-,+) 0.202 0.017 52
Pr(+—+,-,+,+,-) 0.227 0.017 52
Pr(+—+,-,+,+,+) 0.245 0.032 52
Pr(+—+,+,-,-,-) 0.147 0.031 52
Pr(+—+,+,-,-,+) 0.152 0.017 52
Pr(+—+,+,-,+,-) 0.149 0.018 52
Pr(+—+,+,-,+,+) 0.166 0.022 52
Pr(+—+,+,+,-,-) 0.146 0.035 52
Pr(+—+,+,+,-,+) 0.153 0.026 52
Pr(+—+,+,+,+,-) 0.162 0.033 52
Pr(+—+,+,+,+,+) 0.184 0.077 48
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Table A.2: Conditional probabilities of market directional movements for 1 second
timespan

Depth Event Mean SD # weeks that are stat.
sig. from Pr(+)

0 Pr(+) 0.500 0.002 n/a
1 Pr(+—-) 0.644 0.012 52

Pr(+—+) 0.356 0.011 52
2 Pr(+—-,-) 0.653 0.016 52

Pr(+—-,+) 0.639 0.012 52
Pr(+—+,-) 0.359 0.010 52
Pr(+—+,+) 0.351 0.016 52

3 Pr(+—-,-,-) 0.634 0.018 52
Pr(+—-,-,+) 0.663 0.016 52
Pr(+—-,+,-) 0.640 0.015 52
Pr(+—-,+,+) 0.636 0.010 52
Pr(+—+,-,-) 0.360 0.010 52
Pr(+—+,-,+) 0.358 0.012 52
Pr(+—+,+,-) 0.338 0.016 52
Pr(+—+,+,+) 0.374 0.019 52

4 Pr(+—-,-,-,-) 0.621 0.025 52
Pr(+—-,-,-,+) 0.642 0.019 52
Pr(+—-,-,+,-) 0.654 0.019 52
Pr(+—-,-,+,+) 0.679 0.015 52
Pr(+—-,+,-,-) 0.622 0.017 52
Pr(+—-,+,-,+) 0.651 0.015 52
Pr(+—-,+,+,-) 0.630 0.010 52
Pr(+—-,+,+,+) 0.649 0.016 52
Pr(+—+,-,-,-) 0.344 0.016 52
Pr(+—+,-,-,+) 0.368 0.010 52
Pr(+—+,-,+,-) 0.347 0.013 52
Pr(+—+,-,+,+) 0.378 0.014 52
Pr(+—+,+,-,-) 0.320 0.016 52
Pr(+—+,+,-,+) 0.348 0.018 52
Pr(+—+,+,+,-) 0.366 0.020 52
Pr(+—+,+,+,+) 0.388 0.027 52

5 Pr(+—-,-,-,-,-) 0.609 0.039 51
Pr(+—-,-,-,-,+) 0.629 0.026 52
Pr(+—-,-,-,+,-) 0.635 0.022 52
Pr(+—-,-,-,+,+) 0.655 0.027 52
Pr(+—-,-,+,-,-) 0.640 0.021 52
Pr(+—-,-,+,-,+) 0.662 0.021 52
Pr(+—-,-,+,+,-) 0.674 0.016 52
Pr(+—-,-,+,+,+) 0.690 0.022 52
Pr(+—-,+,-,-,-) 0.600 0.021 52
Pr(+—-,+,-,-,+) 0.633 0.019 52
Pr(+—-,+,-,+,-) 0.647 0.016 52
Pr(+—-,+,-,+,+) 0.657 0.018 52
Pr(+—-,+,+,-,-) 0.613 0.016 52
Pr(+—-,+,+,-,+) 0.640 0.011 52
Pr(+—-,+,+,+,-) 0.640 0.019 52
Pr(+—-,+,+,+,+) 0.664 0.022 52
Pr(+—+,-,-,-,-) 0.335 0.023 52
Pr(+—+,-,-,-,+) 0.350 0.018 52
Pr(+—+,-,-,+,-) 0.358 0.013 52
Pr(+—+,-,-,+,+) 0.385 0.015 52
Pr(+—+,-,+,-,-) 0.340 0.015 52
Pr(+—+,-,+,-,+) 0.350 0.014 52
Pr(+—+,-,+,+,-) 0.364 0.015 52
Pr(+—+,-,+,+,+) 0.405 0.018 52
Pr(+—+,+,-,-,-) 0.310 0.026 52
Pr(+—+,+,-,-,+) 0.325 0.021 52
Pr(+—+,+,-,+,-) 0.339 0.022 52
Pr(+—+,+,-,+,+) 0.363 0.018 52
Pr(+—+,+,+,-,-) 0.353 0.025 52
Pr(+—+,+,+,-,+) 0.372 0.023 52
Pr(+—+,+,+,+,-) 0.384 0.030 52
Pr(+—+,+,+,+,+) 0.395 0.033 50
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Table A.3: Conditional probabilities of market directional movements for 3 second
timespan

Depth Event Mean SD # weeks that are stat.
sig. from Pr(+)

0 Pr(+) 0.499 0.003 n/a
1 Pr(+—-) 0.593 0.016 52

Pr(+—+) 0.405 0.015 52
2 Pr(+—-,-) 0.580 0.022 52

Pr(+—-,+) 0.603 0.013 52
Pr(+—+,-) 0.395 0.014 52
Pr(+—+,+) 0.419 0.019 52

3 Pr(+—-,-,-) 0.555 0.019 51
Pr(+—-,-,+) 0.599 0.024 52
Pr(+—-,+,-) 0.595 0.017 52
Pr(+—-,+,+) 0.615 0.014 52
Pr(+—+,-,-) 0.383 0.014 52
Pr(+—+,-,+) 0.403 0.017 52
Pr(+—+,+,-) 0.399 0.019 52
Pr(+—+,+,+) 0.447 0.021 50

4 Pr(+—-,-,-,-) 0.540 0.020 31
Pr(+—-,-,-,+) 0.567 0.024 50
Pr(+—-,-,+,-) 0.590 0.025 52
Pr(+—-,-,+,+) 0.612 0.028 52
Pr(+—-,+,-,-) 0.578 0.020 52
Pr(+—-,+,-,+) 0.606 0.017 52
Pr(+—-,+,+,-) 0.609 0.015 52
Pr(+—-,+,+,+) 0.623 0.022 52
Pr(+—+,-,-,-) 0.373 0.021 52
Pr(+—+,-,-,+) 0.390 0.015 52
Pr(+—+,-,+,-) 0.391 0.017 52
Pr(+—+,-,+,+) 0.419 0.020 52
Pr(+—+,+,-,-) 0.389 0.020 52
Pr(+—+,+,-,+) 0.406 0.022 52
Pr(+—+,+,+,-) 0.436 0.023 50
Pr(+—+,+,+,+) 0.462 0.024 31

5 Pr(+—-,-,-,-,-) 0.533 0.027 12
Pr(+—-,-,-,-,+) 0.546 0.025 27
Pr(+—-,-,-,+,-) 0.562 0.025 43
Pr(+—-,-,-,+,+) 0.575 0.033 43
Pr(+—-,-,+,-,-) 0.584 0.029 52
Pr(+—-,-,+,-,+) 0.596 0.027 52
Pr(+—-,-,+,+,-) 0.613 0.029 52
Pr(+—-,-,+,+,+) 0.610 0.034 51
Pr(+—-,+,-,-,-) 0.569 0.021 49
Pr(+—-,+,-,-,+) 0.583 0.026 52
Pr(+—-,+,-,+,-) 0.605 0.018 52
Pr(+—-,+,-,+,+) 0.609 0.021 52
Pr(+—-,+,+,-,-) 0.601 0.021 52
Pr(+—-,+,+,-,+) 0.615 0.019 52
Pr(+—-,+,+,+,-) 0.623 0.024 52
Pr(+—-,+,+,+,+) 0.623 0.028 52
Pr(+—+,-,-,-,-) 0.374 0.028 52
Pr(+—+,-,-,-,+) 0.373 0.023 52
Pr(+—+,-,-,+,-) 0.387 0.018 52
Pr(+—+,-,-,+,+) 0.395 0.018 52
Pr(+—+,-,+,-,-) 0.389 0.020 52
Pr(+—+,-,+,-,+) 0.393 0.018 52
Pr(+—+,-,+,+,-) 0.408 0.022 52
Pr(+—+,-,+,+,+) 0.435 0.024 47
Pr(+—+,+,-,-,-) 0.389 0.029 52
Pr(+—+,+,-,-,+) 0.388 0.023 52
Pr(+—+,+,-,+,-) 0.401 0.027 52
Pr(+—+,+,-,+,+) 0.414 0.024 52
Pr(+—+,+,+,-,-) 0.431 0.030 42
Pr(+—+,+,+,-,+) 0.439 0.027 43
Pr(+—+,+,+,+,-) 0.460 0.028 26
Pr(+—+,+,+,+,+) 0.464 0.027 20
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Table A.4: Conditional probabilities of market directional movements for 5 second
timespan

Depth Event Mean SD # weeks that are stat.
sig. from Pr(+)

0 Pr(+) 0.498 0.003 n/a
1 Pr(+—-) 0.524 0.024 40

Pr(+—+) 0.472 0.023 45
2 Pr(+—-,-) 0.494 0.028 36

Pr(+—-,+) 0.551 0.021 48
Pr(+—+,-) 0.444 0.020 51
Pr(+—+,+) 0.502 0.025 33

3 Pr(+—-,-,-) 0.475 0.025 34
Pr(+—-,-,+) 0.513 0.032 30
Pr(+—-,+,-) 0.551 0.022 48
Pr(+—-,+,+) 0.551 0.024 45
Pr(+—+,-,-) 0.445 0.021 49
Pr(+—+,-,+) 0.444 0.023 47
Pr(+—+,+,-) 0.481 0.028 29
Pr(+—+,+,+) 0.523 0.024 29

4 Pr(+—-,-,-,-) 0.466 0.026 30
Pr(+—-,-,-,+) 0.486 0.029 17
Pr(+—-,-,+,-) 0.514 0.033 26
Pr(+—-,-,+,+) 0.511 0.037 20
Pr(+—-,+,-,-) 0.541 0.024 35
Pr(+—-,+,-,+) 0.560 0.025 46
Pr(+—-,+,+,-) 0.558 0.024 41
Pr(+—-,+,+,+) 0.544 0.028 36
Pr(+—+,-,-,-) 0.451 0.025 39
Pr(+—+,-,-,+) 0.439 0.022 48
Pr(+—+,-,+,-) 0.439 0.024 47
Pr(+—+,-,+,+) 0.450 0.026 41
Pr(+—+,+,-,-) 0.482 0.030 23
Pr(+—+,+,-,+) 0.481 0.030 23
Pr(+—+,+,+,-) 0.516 0.026 15
Pr(+—+,+,+,+) 0.529 0.025 29

5 Pr(+—-,-,-,-,-) 0.459 0.027 29
Pr(+—-,-,-,-,+) 0.473 0.033 19
Pr(+—-,-,-,+,-) 0.483 0.033 16
Pr(+—-,-,-,+,+) 0.489 0.034 12
Pr(+—-,-,+,-,-) 0.503 0.036 13
Pr(+—-,-,+,-,+) 0.523 0.037 22
Pr(+—-,-,+,+,-) 0.517 0.043 17
Pr(+—-,-,+,+,+) 0.505 0.037 10
Pr(+—-,+,-,-,-) 0.530 0.026 16
Pr(+—-,+,-,-,+) 0.550 0.031 30
Pr(+—-,+,-,+,-) 0.564 0.029 46
Pr(+—-,+,-,+,+) 0.554 0.026 39
Pr(+—-,+,+,-,-) 0.556 0.031 37
Pr(+—-,+,+,-,+) 0.560 0.030 38
Pr(+—-,+,+,+,-) 0.550 0.028 31
Pr(+—-,+,+,+,+) 0.539 0.034 21
Pr(+—+,-,-,-,-) 0.454 0.031 29
Pr(+—+,-,-,-,+) 0.448 0.029 30
Pr(+—+,-,-,+,-) 0.431 0.026 46
Pr(+—+,-,-,+,+) 0.448 0.030 31
Pr(+—+,-,+,-,-) 0.439 0.031 42
Pr(+—+,-,+,-,+) 0.438 0.023 47
Pr(+—+,-,+,+,-) 0.441 0.033 37
Pr(+—+,-,+,+,+) 0.461 0.025 26
Pr(+—+,+,-,-,-) 0.487 0.036 12
Pr(+—+,+,-,-,+) 0.477 0.031 18
Pr(+—+,+,-,+,-) 0.475 0.034 18
Pr(+—+,+,-,+,+) 0.489 0.033 12
Pr(+—+,+,+,-,-) 0.516 0.029 11
Pr(+—+,+,+,-,+) 0.517 0.029 12
Pr(+—+,+,+,+,-) 0.526 0.023 16
Pr(+—+,+,+,+,+) 0.532 0.031 26
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Table A.5: Conditional probabilities of market directional movements for 10 second
timespan

Depth Event Mean SD # weeks that are stat.
sig. from Pr(+)

0 Pr(+) 0.496 0.005 n/a
1 Pr(+—-) 0.463 0.022 43

Pr(+—+) 0.529 0.020 41
2 Pr(+—-,-) 0.451 0.021 47

Pr(+—-,+) 0.477 0.028 33
Pr(+—+,-) 0.515 0.023 21
Pr(+—+,+) 0.542 0.020 46

3 Pr(+—-,-,-) 0.445 0.020 49
Pr(+—-,-,+) 0.457 0.027 38
Pr(+—-,+,-) 0.485 0.028 17
Pr(+—-,+,+) 0.469 0.030 32
Pr(+—+,-,-) 0.524 0.025 22
Pr(+—+,-,+) 0.506 0.024 14
Pr(+—+,+,-) 0.535 0.024 30
Pr(+—+,+,+) 0.548 0.020 44

4 Pr(+—-,-,-,-) 0.445 0.021 44
Pr(+—-,-,-,+) 0.446 0.027 39
Pr(+—-,-,+,-) 0.460 0.032 29
Pr(+—-,-,+,+) 0.454 0.030 32
Pr(+—-,+,-,-) 0.482 0.027 12
Pr(+—-,+,-,+) 0.488 0.035 14
Pr(+—-,+,+,-) 0.485 0.035 13
Pr(+—-,+,+,+) 0.455 0.032 32
Pr(+—+,-,-,-) 0.530 0.027 21
Pr(+—+,-,-,+) 0.517 0.033 11
Pr(+—+,-,+,-) 0.499 0.030 10
Pr(+—+,-,+,+) 0.512 0.029 8
Pr(+—+,+,-,-) 0.536 0.027 22
Pr(+—+,+,-,+) 0.535 0.026 19
Pr(+—+,+,+,-) 0.544 0.028 30
Pr(+—+,+,+,+) 0.552 0.020 41

5 Pr(+—-,-,-,-,-) 0.443 0.027 37
Pr(+—-,-,-,-,+) 0.447 0.030 30
Pr(+—-,-,-,+,-) 0.444 0.034 29
Pr(+—-,-,-,+,+) 0.447 0.034 30
Pr(+—-,-,+,-,-) 0.457 0.038 22
Pr(+—-,-,+,-,+) 0.463 0.042 15
Pr(+—-,-,+,+,-) 0.460 0.040 18
Pr(+—-,-,+,+,+) 0.449 0.031 26
Pr(+—-,+,-,-,-) 0.483 0.034 8
Pr(+—-,+,-,-,+) 0.481 0.031 8
Pr(+—-,+,-,+,-) 0.492 0.049 12
Pr(+—-,+,-,+,+) 0.484 0.033 3
Pr(+—-,+,+,-,-) 0.482 0.044 14
Pr(+—-,+,+,-,+) 0.489 0.042 9
Pr(+—-,+,+,+,-) 0.463 0.043 17
Pr(+—-,+,+,+,+) 0.447 0.033 31
Pr(+—+,-,-,-,-) 0.537 0.030 17
Pr(+—+,-,-,-,+) 0.522 0.038 10
Pr(+—+,-,-,+,-) 0.509 0.039 3
Pr(+—+,-,-,+,+) 0.523 0.036 9
Pr(+—+,-,+,-,-) 0.504 0.035 5
Pr(+—+,-,+,-,+) 0.494 0.043 10
Pr(+—+,-,+,+,-) 0.511 0.039 6
Pr(+—+,-,+,+,+) 0.513 0.032 4
Pr(+—+,+,-,-,-) 0.538 0.032 17
Pr(+—+,+,-,-,+) 0.533 0.037 15
Pr(+—+,+,-,+,-) 0.532 0.033 11
Pr(+—+,+,-,+,+) 0.537 0.031 16
Pr(+—+,+,+,-,-) 0.539 0.030 17
Pr(+—+,+,+,-,+) 0.549 0.036 22
Pr(+—+,+,+,+,-) 0.550 0.028 25
Pr(+—+,+,+,+,+) 0.553 0.027 32
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Table A.6: Conditional probabilities of market directional movements for 20 second
timespan

Depth Event Mean SD # weeks that are stat.
sig. from Pr(+)

0 Pr(+) 0.495 0.007 n/a
1 Pr(+—-) 0.431 0.015 52

Pr(+—+) 0.561 0.013 52
2 Pr(+—-,-) 0.435 0.013 52

Pr(+—-,+) 0.425 0.024 50
Pr(+—+,-) 0.569 0.021 49
Pr(+—+,+) 0.554 0.014 51

3 Pr(+—-,-,-) 0.436 0.019 50
Pr(+—-,-,+) 0.434 0.019 48
Pr(+—-,+,-) 0.437 0.032 37
Pr(+—-,+,+) 0.417 0.026 49
Pr(+—+,-,-) 0.572 0.023 48
Pr(+—+,-,+) 0.565 0.028 39
Pr(+—+,+,-) 0.552 0.024 33
Pr(+—+,+,+) 0.556 0.018 46

4 Pr(+—-,-,-,-) 0.437 0.024 39
Pr(+—-,-,-,+) 0.435 0.029 38
Pr(+—-,-,+,-) 0.434 0.027 36
Pr(+—-,-,+,+) 0.432 0.025 42
Pr(+—-,+,-,-) 0.439 0.037 28
Pr(+—-,+,-,+) 0.433 0.042 24
Pr(+—-,+,+,-) 0.429 0.035 35
Pr(+—-,+,+,+) 0.407 0.03 48
Pr(+—+,-,-,-) 0.578 0.029 44
Pr(+—+,-,-,+) 0.563 0.035 30
Pr(+—+,-,+,-) 0.572 0.038 34
Pr(+—+,-,+,+) 0.56 0.033 28
Pr(+—+,+,-,-) 0.551 0.028 28
Pr(+—+,+,-,+) 0.552 0.031 19
Pr(+—+,+,+,-) 0.558 0.024 30
Pr(+—+,+,+,+) 0.555 0.023 33

5 Pr(+—-,-,-,-,-) 0.439 0.033 29
Pr(+—-,-,-,-,+) 0.434 0.031 26
Pr(+—-,-,-,+,-) 0.431 0.039 22
Pr(+—-,-,-,+,+) 0.439 0.038 25
Pr(+—-,-,+,-,-) 0.431 0.037 22
Pr(+—-,-,+,-,+) 0.438 0.043 17
Pr(+—-,-,+,+,-) 0.434 0.042 23
Pr(+—-,-,+,+,+) 0.431 0.03 27
Pr(+—-,+,-,-,-) 0.442 0.042 15
Pr(+—-,+,-,-,+) 0.435 0.054 21
Pr(+—-,+,-,+,-) 0.436 0.053 12
Pr(+—-,+,-,+,+) 0.431 0.049 19
Pr(+—-,+,+,-,-) 0.434 0.043 20
Pr(+—-,+,+,-,+) 0.422 0.044 24
Pr(+—-,+,+,+,-) 0.416 0.042 34
Pr(+—-,+,+,+,+) 0.4 0.038 41
Pr(+—+,-,-,-,-) 0.577 0.034 32
Pr(+—+,-,-,-,+) 0.58 0.035 29
Pr(+—+,-,-,+,-) 0.567 0.049 19
Pr(+—+,-,-,+,+) 0.56 0.042 19
Pr(+—+,-,+,-,-) 0.576 0.046 21
Pr(+—+,-,+,-,+) 0.566 0.062 17
Pr(+—+,-,+,+,-) 0.566 0.048 20
Pr(+—+,-,+,+,+) 0.554 0.041 16
Pr(+—+,+,-,-,-) 0.552 0.035 22
Pr(+—+,+,-,-,+) 0.551 0.039 12
Pr(+—+,+,-,+,-) 0.552 0.052 12
Pr(+—+,+,-,+,+) 0.552 0.047 11
Pr(+—+,+,+,-,-) 0.562 0.033 23
Pr(+—+,+,+,-,+) 0.553 0.031 9
Pr(+—+,+,+,+,-) 0.56 0.037 23
Pr(+—+,+,+,+,+) 0.552 0.026 20
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Table A.7: Conditional probabilities of market directional movements for 30 second
timespan

Depth Event Mean SD # weeks that are stat.
sig. from Pr(+)

0 Pr(+) 0.495 0.009 n/a
1 Pr(+—-) 0.422 0.013 52

Pr(+—+) 0.570 0.013 52
2 Pr(+—-,-) 0.434 0.017 51

Pr(+—-,+) 0.407 0.023 52
Pr(+—+,-) 0.587 0.019 52
Pr(+—+,+) 0.557 0.015 48

3 Pr(+—-,-,-) 0.437 0.021 45
Pr(+—-,-,+) 0.429 0.024 42
Pr(+—-,+,-) 0.414 0.031 43
Pr(+—-,+,+) 0.402 0.026 50
Pr(+—+,-,-) 0.587 0.024 49
Pr(+—+,-,+) 0.586 0.029 45
Pr(+—+,+,-) 0.558 0.023 40
Pr(+—+,+,+) 0.556 0.021 42

4 Pr(+—-,-,-,-) 0.440 0.029 30
Pr(+—-,-,-,+) 0.434 0.031 33
Pr(+—-,-,+,-) 0.433 0.036 24
Pr(+—-,-,+,+) 0.426 0.031 34
Pr(+—-,+,-,-) 0.414 0.036 36
Pr(+—-,+,-,+) 0.413 0.045 28
Pr(+—-,+,+,-) 0.409 0.041 38
Pr(+—-,+,+,+) 0.395 0.029 49
Pr(+—+,-,-,-) 0.593 0.034 42
Pr(+—+,-,-,+) 0.580 0.029 34
Pr(+—+,-,+,-) 0.594 0.045 32
Pr(+—+,-,+,+) 0.581 0.035 34
Pr(+—+,+,-,-) 0.561 0.026 27
Pr(+—+,+,-,+) 0.554 0.035 16
Pr(+—+,+,+,-) 0.560 0.031 28
Pr(+—+,+,+,+) 0.553 0.028 26

5 Pr(+—-,-,-,-,-) 0.441 0.034 19
Pr(+—-,-,-,-,+) 0.438 0.043 18
Pr(+—-,-,-,+,-) 0.437 0.047 13
Pr(+—-,-,-,+,+) 0.431 0.041 24
Pr(+—-,-,+,-,-) 0.438 0.052 18
Pr(+—-,-,+,-,+) 0.429 0.054 10
Pr(+—-,-,+,+,-) 0.426 0.039 21
Pr(+—-,-,+,+,+) 0.426 0.049 24
Pr(+—-,+,-,-,-) 0.427 0.050 17
Pr(+—-,+,-,-,+) 0.397 0.050 21
Pr(+—-,+,-,+,-) 0.414 0.067 14
Pr(+—-,+,-,+,+) 0.414 0.060 13
Pr(+—-,+,+,-,-) 0.423 0.054 21
Pr(+—-,+,+,-,+) 0.389 0.062 31
Pr(+—-,+,+,+,-) 0.406 0.047 27
Pr(+—-,+,+,+,+) 0.387 0.040 41
Pr(+—+,-,-,-,-) 0.599 0.039 34
Pr(+—+,-,-,-,+) 0.585 0.052 24
Pr(+—+,-,-,+,-) 0.589 0.044 20
Pr(+—+,-,-,+,+) 0.574 0.041 23
Pr(+—+,-,+,-,-) 0.607 0.060 29
Pr(+—+,-,+,-,+) 0.575 0.059 12
Pr(+—+,-,+,+,-) 0.583 0.058 21
Pr(+—+,-,+,+,+) 0.579 0.045 20
Pr(+—+,+,-,-,-) 0.557 0.035 13
Pr(+—+,+,-,-,+) 0.565 0.045 12
Pr(+—+,+,-,+,-) 0.558 0.055 12
Pr(+—+,+,-,+,+) 0.551 0.049 11
Pr(+—+,+,+,-,-) 0.555 0.037 11
Pr(+—+,+,+,-,+) 0.567 0.043 13
Pr(+—+,+,+,+,-) 0.562 0.046 17
Pr(+—+,+,+,+,+) 0.546 0.040 15
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Table A.8: Conditional probabilities of market directional movements for 1 minute
timespan

Depth Event Mean SD # weeks that are stat.
sig. from Pr(+)

0 Pr(+) 0.494 0.015 n/a
1 Pr(+—-) 0.422 0.019 51

Pr(+—+) 0.568 0.017 50
2 Pr(+—-,-) 0.444 0.022 38

Pr(+—-,+) 0.391 0.030 51
Pr(+—+,-) 0.599 0.027 52
Pr(+—+,+) 0.544 0.022 30

3 Pr(+—-,-,-) 0.449 0.028 21
Pr(+—-,-,+) 0.438 0.030 28
Pr(+—-,+,-) 0.398 0.042 36
Pr(+—-,+,+) 0.386 0.037 46
Pr(+—+,-,-) 0.608 0.031 48
Pr(+—+,-,+) 0.584 0.039 27
Pr(+—+,+,-) 0.547 0.037 18
Pr(+—+,+,+) 0.542 0.027 16

4 Pr(+—-,-,-,-) 0.459 0.037 15
Pr(+—-,-,-,+) 0.435 0.043 16
Pr(+—-,-,+,-) 0.435 0.054 13
Pr(+—-,-,+,+) 0.440 0.039 17
Pr(+—-,+,-,-) 0.407 0.050 28
Pr(+—-,+,-,+) 0.387 0.069 24
Pr(+—-,+,+,-) 0.404 0.049 31
Pr(+—-,+,+,+) 0.371 0.041 44
Pr(+—+,-,-,-) 0.614 0.038 41
Pr(+—+,-,-,+) 0.600 0.047 26
Pr(+—+,-,+,-) 0.604 0.071 20
Pr(+—+,-,+,+) 0.570 0.049 14
Pr(+—+,+,-,-) 0.544 0.044 13
Pr(+—+,+,-,+) 0.550 0.057 11
Pr(+—+,+,+,-) 0.563 0.041 13
Pr(+—+,+,+,+) 0.524 0.039 6

5 Pr(+—-,-,-,-,-) 0.465 0.050 6
Pr(+—-,-,-,-,+) 0.452 0.063 11
Pr(+—-,-,-,+,-) 0.443 0.062 6
Pr(+—-,-,-,+,+) 0.430 0.057 17
Pr(+—-,-,+,-,-) 0.449 0.064 6
Pr(+—-,-,+,-,+) 0.418 0.094 0
Pr(+—-,-,+,+,-) 0.450 0.064 9
Pr(+—-,-,+,+,+) 0.433 0.057 11
Pr(+—-,+,-,-,-) 0.415 0.067 14
Pr(+—-,+,-,-,+) 0.397 0.067 11
Pr(+—-,+,-,+,-) 0.392 0.109 10
Pr(+—-,+,-,+,+) 0.383 0.084 21
Pr(+—-,+,+,-,-) 0.415 0.070 19
Pr(+—-,+,+,-,+) 0.387 0.073 17
Pr(+—-,+,+,+,-) 0.387 0.070 23
Pr(+—-,+,+,+,+) 0.359 0.052 39
Pr(+—+,-,-,-,-) 0.629 0.054 31
Pr(+—+,-,-,-,+) 0.596 0.050 14
Pr(+—+,-,-,+,-) 0.612 0.085 17
Pr(+—+,-,-,+,+) 0.591 0.055 16
Pr(+—+,-,+,-,-) 0.618 0.090 20
Pr(+—+,-,+,-,+) 0.585 0.115 9
Pr(+—+,-,+,+,-) 0.585 0.076 11
Pr(+—+,-,+,+,+) 0.558 0.071 8
Pr(+—+,+,-,-,-) 0.544 0.059 10
Pr(+—+,+,-,-,+) 0.546 0.062 5
Pr(+—+,+,-,+,-) 0.575 0.098 13
Pr(+—+,+,-,+,+) 0.533 0.068 4
Pr(+—+,+,+,-,-) 0.566 0.051 12
Pr(+—+,+,+,-,+) 0.560 0.073 9
Pr(+—+,+,+,+,-) 0.538 0.067 8
Pr(+—+,+,+,+,+) 0.513 0.055 2
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Table A.9: Conditional probabilities of market directional movements for 5 minute
timespan

Depth Event Mean SD # weeks that are stat.
sig. from Pr(+)

0 Pr(+) 0.493 0.030 n/a
1 Pr(+—-) 0.443 0.039 21

Pr(+—+) 0.546 0.030 9
2 Pr(+—-,-) 0.471 0.054 6

Pr(+—-,+) 0.408 0.054 19
Pr(+—+,-) 0.591 0.051 19
Pr(+—+,+) 0.508 0.044 2

3 Pr(+—-,-,-) 0.493 0.072 3
Pr(+—-,-,+) 0.446 0.085 12
Pr(+—-,+,-) 0.429 0.086 10
Pr(+—-,+,+) 0.392 0.073 16
Pr(+—+,-,-) 0.581 0.069 10
Pr(+—+,-,+) 0.609 0.092 12
Pr(+—+,+,-) 0.523 0.077 4
Pr(+—+,+,+) 0.496 0.056 1

4 Pr(+—-,-,-,-) 0.515 0.091 2
Pr(+—-,-,-,+) 0.468 0.102 4
Pr(+—-,-,+,-) 0.479 0.125 4
Pr(+—-,-,+,+) 0.425 0.104 10
Pr(+—-,+,-,-) 0.450 0.119 6
Pr(+—-,+,-,+) 0.392 0.142 11
Pr(+—-,+,+,-) 0.395 0.123 10
Pr(+—-,+,+,+) 0.384 0.096 15
Pr(+—+,-,-,-) 0.582 0.103 9
Pr(+—+,-,-,+) 0.577 0.100 7
Pr(+—+,-,+,-) 0.637 0.139 13
Pr(+—+,-,+,+) 0.583 0.126 8
Pr(+—+,+,-,-) 0.547 0.105 4
Pr(+—+,+,-,+) 0.490 0.104 2
Pr(+—+,+,+,-) 0.538 0.085 2
Pr(+—+,+,+,+) 0.455 0.081 1

5 Pr(+—-,-,-,-,-) 0.535 0.134 2
Pr(+—-,-,-,-,+) 0.498 0.118 3
Pr(+—-,-,-,+,-) 0.474 0.211 13
Pr(+—-,-,-,+,+) 0.466 0.130 5
Pr(+—-,-,+,-,-) 0.506 0.150 5
Pr(+—-,-,+,-,+) 0.427 0.204 9
Pr(+—-,-,+,+,-) 0.414 0.136 5
Pr(+—-,-,+,+,+) 0.432 0.139 10
Pr(+—-,+,-,-,-) 0.459 0.154 7
Pr(+—-,+,-,-,+) 0.453 0.220 11
Pr(+—-,+,-,+,-) 0.429 0.258 12
Pr(+—-,+,-,+,+) 0.370 0.172 9
Pr(+—-,+,+,-,-) 0.406 0.148 10
Pr(+—-,+,+,-,+) 0.380 0.166 11
Pr(+—-,+,+,+,-) 0.393 0.147 9
Pr(+—-,+,+,+,+) 0.371 0.143 13
Pr(+—+,-,-,-,-) 0.586 0.142 7
Pr(+—+,-,-,-,+) 0.575 0.149 7
Pr(+—+,-,-,+,-) 0.616 0.166 11
Pr(+—+,-,-,+,+) 0.545 0.142 4
Pr(+—+,-,+,-,-) 0.621 0.179 13
Pr(+—+,-,+,-,+) 0.636 0.288 22
Pr(+—+,-,+,+,-) 0.596 0.210 14
Pr(+—+,-,+,+,+) 0.580 0.149 5
Pr(+—+,+,-,-,-) 0.545 0.146 5
Pr(+—+,+,-,-,+) 0.547 0.159 8
Pr(+—+,+,-,+,-) 0.502 0.141 1
Pr(+—+,+,-,+,+) 0.483 0.159 6
Pr(+—+,+,+,-,-) 0.536 0.122 2
Pr(+—+,+,+,-,+) 0.538 0.160 4
Pr(+—+,+,+,+,-) 0.498 0.105 0
Pr(+—+,+,+,+,+) 0.396 0.150 7



222

APPENDIX B
DESCRIPTION OF DATASET

The dataset is comprised of 34 stocks from the energy sector listed on the

New York Stock Exchange (Table B.1). The available data is from January 3, 2013

to July 31, 2013 excluding the New York Stock Exchange holidays1. Overall these 34

stocks display a strong level of intraday correlation which can be seen in Figure B.1a

– most positively correlated with several stocks displaying negative correlation. For

a comparison, this is compared against 34 random stocks in Figure B.1b – most not

displaying much correlation at all.

The stock intraday price data (1-minute intervals) is displayed in Figures B.2,

B.3, and B.4.

The experiment’s objective (unless otherwise stated in the text) is to predict

the stock price direction 1 minute into the future (t+ 1, where t is time). We divide

this into a three class problem: move up, down, or no change (insignificant change).

A move up is defined as the stock moving up 0.05% from the last price, a move down

is defined as a move down of 0.05% from the last price, and a no change in price is

defined as an insignificant move between a move up of 0.05% and a move down of

0.05%. The proportion of each class for each stock over the first seven months of 2012

can be seen in Figures B.5, B.6, and B.7.

1During our seven month period these holidays included: New Year’s Day (January 2),
Martin Luther King Day (January 16), Presidents Day (February 20), Good Friday (April
6), Memorial Day (May 28), and Independence Day (July 4).
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(a) Correlation among our 34 sector stocks
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(b) Correlation among 34 random stocks

Figure B.1: Intraday Spearman Rank correlation over 7 months for our sector and
(as a comparison) random stocks
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(a) Alpha Natural Resources Inc. (b) Apache Corp. (c) Anadarko Petroleum Corp.

(d) Baker Hughes Inc. (e) Chesapeake Energy (f) CONSOL Energy Inc.

(g) Cabot Oil & Gas (h) ConocoPhillips (i) Chevron Corp.

(j) Denbury Resources Inc. (k) Diamond Offshore Drilling (l) Devon Energy Corp.

Figure B.2: January through July stock data (symbols: ANR – DVN)
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(a) EOG Resources (b) FMC Technologies Inc. (c) Halliburton Co.

(d) Hess Corp. (e) Helmerich & Payne (f) Kinder Morgan

(g) Marathon Petroleum (h) Marathon Oil Corp. (i) Noble Energy Inc.

(j) Nabors Industries Ltd (k) Noble Corp. (l) Newfield Exploration Co.

Figure B.3: January through July stock data (symbols: EOG – NFX)
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(a) National Oilwell Varco Inc. (b) Occidental Petroleum (c) Rowan Cos

(d) Range Resources Corp. (e) Spectra Energy Corp. (f) Schlumberger Ltd

(g) Sunoco Inc. (h) Southwestern Energy (i) Williams Corp.

(j) Exxon Mobil Corp.

Figure B.4: January through July stock data (symbols: NOV – XOM)
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(a) Alpha Natural Resources Inc. (b) Apache Corp. (c) Anadarko Petroleum Corp.

(d) Baker Hughes Inc. (e) Chesapeake Energy (f) CONSOL Energy Inc.

(g) Cabot Oil & Gas (h) ConocoPhillips (i) Chevron Corp.

(j) Denbury Resources Inc. (k) Diamond Offshore Drilling (l) Devon Energy Corp.

Figure B.5: Proportion of time defined as “move down” (red), “no change” (blue), or
“move up” (green) over the course of 7 months (symbols: ANR – DVN)
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(a) EOG Resources (b) FMC Technologies Inc. (c) Halliburton Co.

(d) Hess Corp. (e) Helmerich & Payne (f) Kinder Morgan

(g) Marathon Petroleum (h) Marathon Oil Corp. (i) Noble Energy Inc.

(j) Nabors Industries Ltd (k) Noble Corp. (l) Newfield Exploration Co.

Figure B.6: Proportion of time defined as “move down” (red), “no change” (blue), or
“move up” (green) over the course of 7 months (symbols: EOG – NFX)
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(a) National Oilwell Varco Inc. (b) Occidental Petroleum (c) Rowan Cos

(d) Range Resources Corp. (e) Spectra Energy Corp. (f) Schlumberger Ltd

(g) Sunoco Inc. (h) Southwestern Energy (i) Williams Corp.

(j) Exxon Mobil Corp.

Figure B.7: Proportion of time defined as “move down” (red), “no change” (blue), or
“move up” (green) over the course of 7 months (symbols: NOV – XOM)
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Table B.1: List of stocks used in the experiments

Symbol Company Name Symbol Company Name

ANR Alpha Natural Resources Inc. KMI Kinder Morgan
APA Apache Corp. MPC Marathon Petroleum
APC Anadarko Petroleum Corp. MRO Marathon Oil Corp.
BHI Baker Hughes Inc. NBL Noble Energy Inc.
CHK Chesapeake Energy NBR Nabors Industries Ltd
CNX CONSOL Energy Inc. NE Noble Corp.
COG Cabot Oil & Gas NFX Newfield Exploration Co.
COP ConocoPhillips NOV National Oilwell Varco Inc.
CVX Chevron Corp. OXY Occidental Petroleum
DNR Denbury Resources Inc. RDC Rowan Cos
DO Diamond Offshore Drilling RRC Range Resources Corp.
DVN Devon Energy Corp. SE Spectra Energy Corp.
EOG EOG Resources SLB Schlumberger Ltd
FTI FMC Technologies Inc. SUN Sunoco Inc.
HAL Halliburton Co. SWN Southwestern Energy
HES Hess Corp. WMB Williams Corp.
HP Helmerich & Payne XOM Exxon Mobil Corp.
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APPENDIX C
CREATION OF ATTRIBUTES WITH TECHNICAL ANALYSIS

INDICATORS

This appendix explains the twenty groups of technical analysis indicators used

in this thesis which, with parameters amounts to a total of 276 attributes. These

twenty groups are: lines, rates of changes, moving averages, moving variance ra-

tios, moving average ratios, Aroon indicators, Bollinger bands, commodity channel

index, Chaiken volatility, close location value, Chaikin money flow, Chande momen-

tum oscillators, MACD, trend detection index, triple smoothed exponential oscillator,

volatility, Williams %, relative strength index, stochastic, and lag correlations. This

appendix will explain each. In addition to the citations included in this appendix,

the author would like to thank the authors and hosts behind the following websites

[76, 146, 208] and R packages [196, 220] – all of which facilitated the understanding

of the technical analysis indicators.

The stock data used to create the indicators/attributes contains an open, high,

low, close and share volume during each one minute time interval. A description of

the data is below and also visualized in Figure C.1. The calculations for the indicators

follows, along with the parameter settings used to create the attributes used in this



232

thesis:

opent = the opening/beginning price

closet = the closing/ending price

hight = the highest price reached during the interval

lowt = the lowest price reached during the interval

volumet = the total number of shares traded during the interval
9
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Figure C.1: Demonstrating open, high, low, close and share volumes during an interval
of 1 minute

C.1 Rate of change

The rate of change is computed as the percentage change of the current closing

price at time t to the closing price from t−n, where n = 1, 2, 3, 4, 5, 10, 20 in the paper.
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The formula follows:

ROC(n) =
closet − closet−n

closet−n

× 100

C.2 Moving averages

C.2.1 Simple moving average % change

The simple moving average uses a moving window of n past prices in its calcu-

lation, where n = 3, 4, 5, 10, 20 in the paper (see Figure C.2). Some technical analysts

view increases of the closing price above the moving average as bullish (positive)

and closing prices below the moving average as bearish (negative). As an output,

we calculate the percentage change of the closing price from the SMA. The formula

follows:

SMA(n) =
1

n

n�

i=1

closet−i

SMA % change(n) =
closet − SMA(n)t

SMA(n)t
× 100

Analysis of moving averages is popular among technical analysts. As the

number of n instances increase, the moving average becomes less responsive to short-

term fluctuations. Many practitioners use multiple moving averages in their analysis.

C.2.2 Exponential moving average % change

The exponential moving average percentage change is the change of the current

price t compared against the exponential moving average covering the past n prices,

where n = 3, 4, 5, 10, 20 in the paper. The difference between the exponential and the

simple is that recent observations receive more weight.
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Figure C.2: Demonstrating price with SMA % change(20)

C.2.3 Exponential moving average volume weighted % change

The exponential moving average volume weighted change is the percentage

change of the current price t compared against the exponential moving average of the

past n prices, where n = 3, 4, 5, 10, 20. The dampening factor is weighted though by

the volume traded instead of recency of trade price.

C.3 Regression

A simple sum of least squares calculation is used as an indicator, with the clos-

ing price used to fit a straight line through the set of n points, where n = 2, 5, 10, 20.

The output is the percentage difference between the estimator and the actual price.

Additionally, the coefficient of determination R2 is output to describe how well the

regression line fits the set of past n prices. See Figure C.3.
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Figure C.3: Price with regression(10). Red line on last price at time t represents the
distance (percentage change) between the current price and the predicted.

C.4 Moving average of variance ratio

The moving average of variance is the variance of the close over the past n

periods. A ratio is then computed by dividing the moving average of variance of size

n1 by n2. In our paper we use n1 and n2 as 5 and 10 respectively; we also use 5 and

20 respectively. The formula follows (see also Figure C.4):

SMA(n1) =
1

n1

n1�

i=1

closet−i

SMA(n2) =
1

n2

n2�

i=1

closet−i

Moving Average of Variance(n1) =
1

n1

n1�

i=1

(closet−i − SMA(n1))
2

Moving Average of Variance(n2) =
1

n2

n2�

i=1

(closet−i − SMA(n2))
2

MovAvgVar(n1, n2) =
Moving Average of Variance(n1)

Moving Average of Variance(n2)
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Figure C.4: Demonstrating price with MovAvgVar(5,20)

C.5 Relative strength index

The Relative Strength Index is credited to J. Welles Wilder, Jr. [235] and is

intended to formalize the strength or weakness of a stock. To calculate the RSI the

Relative Strength (RS) calculation is required; this is a ratio of the average gain over

the past n periods, divided by the average loss over the past n periods. For example,

the average gain over the past 5 periods is the total price gained during the up days

divided by 5. The average loss over the past 5 days is the total price lost during the

down days divided by 5. The RS is then inserted into the formula for the RSI seen
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below:

RS(n) =
average gain over t− n periods

average loss over t− n periods

RSI(n) = 100− 100

1 + RS(n)

The RSI is on a scale from 0 to 100, with values of 70 generally considered

overbought (sell) and values below 30 considered oversold (buy) [167]; in the paper

we use n = 5, 10, 20.

To demonstrate the RSI as a technical analyst may use it, in Figure C.5 the

closing price along with RSI(n = 5) is shown. When the RSI crosses below 30, a

green triangle is drawn on the price data, representing a “buy”, and when the RSI

crosses above the 70, a red triangle is drawn representing a “sell.”
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Figure C.5: Demonstrating price with RSI(5)
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C.6 Chande momentum oscillator

Developed by Tushar S. Chande [39], the Chande Momentum Oscillator (CMO)

is an attempt to identify overbought and oversold conditions in the market. Gener-

ally, technical traders view conditions over 50 as overbought conditions, while values

under -50 indicate oversold conditions. Additionally, extreme values of CMO values

indicate strong trends according to Chande. The formula folows (e.g. in the paper

we use n = 5, 10, 20):

up(n) =
n�

i=1

(closet − closet−i) , on “up” intervals

down(n) =
n�

i=1

(closet−i − closet) , on “down” intervals

CMO(n) =
up(n)− down(n)

up(n) + down(n)
× 100

To demonstrate the CMO as technical analyst may use it, in Figure C.6 the

closing price along with CMO(n = 5) is shown. When the CMO crosses below -

50, a green triangle is drawn on the price data, representing an oversold (buy), and

when the CMO crosses above the 50 threshold, a red triangle is drawn representing

a overbought (sell) indicator.

C.7 Aroon indicator

The Aroon indicator was developed by Tushar S. Chande and consists of two

indicators, both an Up and a Down indicator, that work jointly to form a trading
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Figure C.6: Demonstrating price with CMO(5)

decision. The following shows the calculations for the indicators:

SinceHighest(n) = periods since highest high covering t− n instances

SinceLowest(n) = periods since lowest low covering t− n instances

UpIndicator(n) = 100×
�
n− SinceHighest(n)

n

�

DownIndicator(n) = 100×
�
n− SinceLowest(n)

n

�

The indicator measures the number of periods back the peaks and valleys are

during a time of n instances (in the paper we use n = 5, 10, 20). The UpIndicator(n)

is intended to measure the strength of the up trend, while the DownIndicator(n)

measures the strength of the down trend. Because they are reported as percentages

of total time, the indicators fluctuate between zero and 100; values close to 0 and

100, represent weak and strong trends respectively. For example, if the highest high

over a 10 instance period occurred 2 instances ago, then SinceHighest(10) = 2, and

the UpIndicator(n) = 80. The thought is that since this movement recently occurred,
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the upward trend is strong. A visual demonstration of this indicator can be found in

Figure C.7.
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Figure C.7: Demonstrating Aroon UpIndicator(20) and DownIndicator(20)

C.8 Bollinger Bands

The Bollinger Band was developed and popularized in trading by John Bollinger

[24, 143]. The indicator is comprised of a middle, upper, and lower band. The middle

band is a moving average of size n of the average of the high, low, and closing prices.

The upper band is d standard deviations (generally two) above the middle band, and
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the lower is d standard deviations below. The formalization follows:

SMA(n) =
1

n

n�

i=1

hight−i + lowt−i + closet−i

3

σ =

���� 1

n

n�

i=1

�
hight−i + lowt−i + closet−i

3
− SMA(n)

�

MiddleBand(n) =
1

n

n�

i=1

hight−i + lowt−i + closet−i

3

UpperBand(d, n) = MiddleBand(n) + (d× σ)

LowerBand(d, n) = MiddleBand(n)− (d× σ)

BBand(d, n) =





closet > UpperBand(d, n) : “overbought”

closet < LowerBand(d, n) : “oversold”

else : “do nothing”

The upper and lower bands widen and narrow when the volatility of the price is

higher or lower, respectively. They are used as an indicator of overbought or oversold

conditions. When the price is near the upper or lower band, it indicates that a reversal

is imminent [167]. In our paper we used parameters d = 2, n = 5 and d = 2, n = 10

and use as features whether the closing price of the stock is within the lower and

upper bounds, above the upper band, or below the lower band.

Traders often visualize Bollinger Bands, similar to Figure C.8. In this example,

the closing price of stock ANR is displayed with Bollinger Bands added with param-

eters MiddleBand(n = 5), UpperBand(d = 2, n = 5), and LowerBand(d = 2, n = 5).

Additionally, green triangles represent oversold areas (buy) below the lower bound,

and red triangles represent areas that are overbought (sell).
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Figure C.8: Demonstrating price with Bollinger Bands

C.9 Commodity channel index

The Commodity channel index (CCI) [137] represents the mean of the current

high, low, and closing price relative to the average of price over a recent period. It is

designed to detect beginning and ending trends. It is comprised of a typical price, TP,

which is a mean of the current high, low and closing prices. A moving average of the

typical price (MATP) is computed over an interval of size n. Next, a mean deviation

of typical price (MDTP) is computed and from here the Commodity channel index.

The full calculation follows:

TP =
hight + lowt + closet

3

MATP(n) =
1

n

n�

i=1

TPt−i

MDTP(n) =
1

n

n�

i=1

|TPt −MATP(n)t−i|

CCI(n) =
TP(n)t −MATP(n)t
MDTP(n)t × 0.015
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According to Donald Lambert [137], the developer of CCI, a range of 100 to

-100 is considered a normal trading range with values outside of this range indicating

an overbought or oversold condition. In the paper we use n = 5, 10, 20.

A demonstration of CCI as technical analyst may use it, with a parameter

n = 20, can be seen in Figure C.9. In this example, the closing price of stock ANR is

displayed with the CCI pinpointing trading decisions. When the CCI crosses below

-100, a green triangle is drawn on the price data, representing a “buy”, and when the

CCI crosses above 100, a red triangle is drawn representing a “sell.”
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Figure C.9: Price with CCI(20)

C.10 Chaikin volatility

Chaikin volatility [64] is obtained by first finding the exponential moving aver-

age of the difference between the high and low prices over s instances. The exponential
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moving average (EMA) at time t is then compared against the EMA at time t − n

and a percentage change is calculated.

EMA(s) = ((hight − lowt)− EMA(s)t−1)×
2

1 + s
+ EMA(s)t−1

ChaikinVolatility(s, n) =
EMA(s)t − EMA(s)t−n

EMA(s)t−n

× 100

According to Marc Chaikin, who this indicator is named for, an increase in

the Chaikin volatility indicator over a short period of time indicates that traders are

getting nervous (and thus the spread between the high and low price is widening) and

therefore a market decrease is expected.

In the paper, we use the parameters ChaikinVolatility(s, n) = {5, 5}, {10, 10}, {20, 20}.

C.11 Chaikin money flow

The Chaikin money flow indicator (CMF) takes the high, low, close and volume

into account. It was developed by Marc Chaikin and is intended to measure the buying

and selling pressures over a period of size n [113]. The formula follows:

CLV =
(closet − lowt)− (hight − closet)

hight − lowt

CMF(n) =

n�
i=1

(CLVt−i × volumet−i)

n�
i=1

volumet−i

The Chaikin money flow is used to confirm a market direction. For example,

when the indicator is positive above a level y1 it is suppose to confirm positive market

direction. When the indicator is negative below a level y2 it is suppose to confirm a

negative market direction. In the paper we use n = 5, 10, 20.
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C.12 Chaikin Accumulation/Distribution

The Chaikin accumulation/distribution (ChaikinAD) is a simplified version

of the Chaikin money flow indicator (CMF). It can be seen below (the paper uses

n = 5, 10, 20):

ChaikinAD =

�
(closet − lowt)− (hight − closet)

hight − lowt

�
× volumet

C.13 Close location value

The close location value (CLV) relates the closing price to its trading range,

which is the period’s high minus low price. The formula follows:

CLV =
(closet − lowt)− (hight − closet)

hight − lowt

A visual representation of the CLV can be seen in Figure C.10.
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Figure C.10: Demonstrating the CLV
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C.14 Moving average convergence divergence oscillator

The moving average convergence divergence oscillator (MACD) is the differ-

ence between two exponential moving averages, a short-term and a longer-term mov-

ing average and was developed by Gerald Appel [9]. A signal line, which is an expo-

nential moving average of the MACD determines instances at which to buy and sell

when used in conjunction with the MACD. The calculation follows:

ShortEMA(n1) = exponential moving average of size n1

LongEMA(n2) = exponential moving average of size n2

MACD(n1, n2) = ShortEMA(n1)t − LongEMA(n2)t

SignalLine(n1, n2, n3) = exponential moving average of MACD(n1, n2) of size n3

DiffMACDSignal(n1, n2, n3) = MACD(n1, n2)t − SignalLine(n1, n2, n3)t

For example, in the literature, high-values of the MACD indicate an over-

bought condition and low values indicate an oversold condition. When the MACD

crosses below the signal line a buy signal is generated and likewise, a sell signal is

generated when the MACD crosses above the signal line. This can also be interpreted

by examining the DiffMACDSignal(n1, n2, n3). Positive values would be considered

bullish (oversold) and negative values would be considered bearish (overbought). In

Figure C.11 the stock ANR is plotted along with the accompanying DiffMACDSignal

indicator using the common parameters of 12, 26, and 9. Green triangles represent

buy levels, and red triangles represent sell levels.

In our paper, we use two sets of parameters for the ShortEMA, LongEMA,
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and SignalLine. First are parameters of 12, 26, and 9 and second are parameters of

6, 13, 4.

�� ��� ��� ��� ���
����

����

����

����

����

����

����

����

�
��
�
��
�
��
��
�
�

���

����

� �� ��� ��� ��� ��� ���

����

����

����

����

����

����

����

����

����

�
��
��

�
�
�
�
��
�
�
�

�����������������������

Figure C.11: Price with DiffMACDSignal(12, 26, 9)

C.15 Money flow index

The Money Flow index (MFI) uses price and volume to determine buying and

selling pressure [64]. First, moving averages of prices and volumes are calculated and

multiplied together to determine a dollar value of the amount of stock traded; this is

called “money flow.” A money ratio is then created by dividing positive money flows

over negative money flows. From this an index is created to create a value of 0 to

100. For example, a value of 80 is generally considered overbought and a value of 20
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is considered oversold. The formula follows:

TypicalAvgPrice(n) =
1

n

n�

i=1

hight−i + lowt−i + closet−i

3

TypicalAvgVolume(n) =
1

n

n�

i=1

volumet−i

MoneyFlow(n) = TypicalAvgPrice(n)t × TypicalAvgVolume(n)t

PositiveMoneyFlow(n) =
n�

i=1

(when MoneyFlow(n)t−i ≥ MoneyFlow(n)t−i−1)

NegativeMoneyFlow(n) =
n�

i=1

(when MoneyFlow(n)t−i < MoneyFlow(n)t−i−1)

MoneyRatio(n) =
PositiveMoneyFlow(n)t
NegativeMoneyFlow(n)t

MoneyFlowIndex(n) = 100− 100

1 +MoneyRatio(n)t

In the paper, we use n = 5, 10, 15. A demonstration of the money flow index

indicator as a technical analyst may use it can be seen in Figure C.12.
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Figure C.12: Demonstrating price with MoneyFlowIndex(15)
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C.16 Trend detection index

The Trend Detection Index (TDI) was developed by Pee [179] and it attempts

to identify the beginning and ending of trends. The formalization follows [147]:

Momentum(n) = closet − closet−n

MomentumAbs(n) = |Momentum(n)|

MomentumSum(n) =
n�

i=1

Momentum(n)t−i

MomentumSumAbs(n) = |MomentumSum(n)t|

MomentumAbsSumDiff(n, k) =

�
n×k�

i=1

MomentumAbs(n)t−i

�
−
�

n�

i=1

MomentumAbs(n)t−i

�

TDI(n, k) = MomentumSumAbs(n)t −MomentumAbsSumDif(n, k)t

According to the developer, upward trends are signaled by a positive TDI

value. Additionally, to obtain a better indication, the TDI and the MomentumSum

are to be observed at time t. A buy signal is generated when both the TDI and the

MomentumSum are positive, and a downtrend is observed when the TDI and the

MomentumSum are negative. We demonstrate TDI on a stock in Figure C.13 with

buy and sell signals added to the plot based on the indicators. Values of n = 5, 10, 20

and k = 1, 2, 3.

C.17 Williams %R Relative strength index

The Williams %R Relative strength index was developed by Larry Williams

and attempts to indicate overbought (sell) and oversold (buy) conditions. In the

original formula the Williams %R indicator is from 0 to 100 and is plotted on an

inverted index. However, for ease of plotting, it is now common to multiply the
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Figure C.13: Demonstrating price with TDI(20, 20)

Williams %R by -100 instead of by 100. Therefore readings of 0 to -20 are considered

overbought and readings of -80 to -100 are considered oversold [209]. The calculation

follows:

HighestHigh(n) = highest high covering t− n instances

LowestLow(n) = lowest low covering t− n instances

WilliamsRSI(n) = −100× HighestHigh(n)− closet
HighestHigh(n)− LowestLow(n)

A visual demonstration of the Williams %R relative strength index can be

found in Figure C.14. In our paper we use n = 5, 10, 20 and use the value of

WilliamsRSI(n).

C.18 Stochastic Momentum Oscillator

The Stochastic Momentum Oscillator (Stoch) displays the location of each

day’s close relative to the high/low range over the past n instances [209]. Extreme
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Figure C.14: Demonstrating price with WilliamsRSI(10)

values of high and low typically represent overbought and oversold conditions respec-

tively. The formalization follows:

LowestLow(n) = the lowest low over t− n periods

HighestHigh(n) = the highest high over t− n periods

K(n) = 100× closet − LowestLow(n)t
HighestHigh(n)t − LowestLow(n)t

Stoch(n) =
1

n

n�

i=1

K(n)t−i

C.19 Correlation analysis

Another indicator used in the paper was correlation analysis of the current

price at time t to the price at time t − k covering n instances. Additionally the

relationship between the high and low prices were computed. See Figure C.15 for

a visualization of the closing price along with the correlation. In our paper we use

n = 5, 10, 20 for corrHighLow(n) and k = 1, 2, 3; n = 5, 10, 20 for corrClose(k, n). See
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Figure C.15: Demonstrating price with corrClose(3,20)

the following calculation:

corrHighLow(n) =

n

�
n�

i=1

lowt−ihight−i

�
−
�

n�
i=1

lowt−i

��
n�

i=1

hight−i

�

�
n

n�
i=1

low2
t−i −

�
n�

i=1

lowt−i

�2
��

n
n�

i=1

high2t−i −
�

n�
i=1

hight−i

�2
�

corrClose(k, n) =

n

�
n�

i=1

closet−icloset−i−k

�
−

�
n�

i=1

closet−i

��
n�

i=1

closet−i−k

�

�
n

n�
i=1

close2t−i −
�

n�
i=1

closet−i

�2
��

n
n�

i=1

close2t−i−k −
�

n�
i=1

closet−i−k

�2
�
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