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ABSTRACT

While home services is a fast growing industry, little attention has been given

to the management of its workforce. To maintain growth, a key challenge for home-

service companies is managing their expensive and limited labor resources. In par-

ticular, the time an employee needs to provide high quality service often depends on

his/her experience. Importantly, experience increases over time, thus gradually de-

creasing the time required to provide service. By accounting for employee experience

and the accompanying learning, managers can take advantage of capacity increases

that result from experience, improving efficiency and enabling further growth.

We address the technician routing and scheduling problem from three perspec-

tives, which in turn constitute the three parts of my dissertation. First, we introduce

a model of technician routing that explicitly models individualized, experience-based

learning. We convert the multi-day problem into a series of daily problems and ap-

proach the daily decision making in a myopic fashion. The results demonstrate that

explicit modeling and the resulting ability to capture changes in productivity over

time due to learning lead to significantly better and different solutions than those

found when learning and workforce heterogeneity is ignored. We show that these

differences result from the levels of specialization that occur in the workforce.

In the second part, we design solution methods that account for the fact that

serving today’s demand has implications, in terms of learning, for serving tomorrow’s

demand. We integrate the future information in the decision process to overcome the
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drawback of the myopic algorithm. We introduce the multi-period technician schedul-

ing problem with experience-based service times and stochastic customers. Then, we

model the problem as a Markov decision process and introduce an approximate dy-

namic programming-based solution approach. The model can be adapted to handle

cases of worker attrition and new task types. Using an extensive computational study,

we demonstrate the value of our approach versus a myopic solution approach that

views the problem as a single-period problem.

In the final part, we continue exploring the value of integrating future infor-

mation into the current period decision-making process for the Multi-period Dynamic

Technician Scheduling Problems with Experience-based Service Times and Stochastic

Customers discussed in Chapter 3. We propose an alternate approximate dynamic

programming solution approach with basis function to approximate the value func-

tion by taking the advantage of the future information for the whole planning horizon.

We turn to an offline simulation procedure to recursively update the coefficient vector

of the basis function, which allows fast decision making within the execution phase.

Our computational results demonstrate the value of the ADP solution approach with

the basis function.
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PUBLIC ABSTRACT

While home service is a fast growing industry, little attention has been given

to the management of its workforce. To maintain growth, a key challenge for home-

service companies is managing their expensive and limited labor resources. In par-

ticular, the time an employee needs to provide high quality service often depends on

his/her experience. Importantly, experience increases over time, thus gradually de-

creasing the time required to provide service. By accounting for employee experience

and the accompanying learning, managers can take advantage of capacity increases

that result from experience, improving efficiency and enabling further growth.

We address the technician routing and scheduling problem from three perspec-

tives, which in turn constitute the three parts of my dissertation. First, we introduce

a model of technician routing that explicitly models individualized, experience-based

learning. We demonstrate that explicit modeling and the resulting ability to capture

changes in productivity over time due to learning lead to significantly better and dif-

ferent solutions. In the second part, we design solution methods that integrates the

future information in the decision process to overcome the drawback of the myopic

algorithm. The model can be adapted to handle cases of worker attrition and new

task types. In the final part, we propose an alternate approximate dynamic pro-

gramming solution approach with basis function to approximate the value function

by taking the advantage of the future information for the whole planning horizon.

Our computational results further demonstrate the value of future information in the
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current period decision making.

viii



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

CHAPTER

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Technician Routing and Scheduling . . . . . . . . . . . . 6
1.2.2 Models of Learning . . . . . . . . . . . . . . . . . . . . . 9

2 THE TECHNICIAN ROUTING PROBLEM WITH EXPERIENCE-
BASED SERVICE TIME . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Problem Description, Model, and Solution Approach . . . . . . . 14

2.2.1 Problem Description . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Markov Decision Process Model . . . . . . . . . . . . . . 15
2.2.3 Myopic Solution Approach . . . . . . . . . . . . . . . . . 19

2.3 The Daily Routing Problem . . . . . . . . . . . . . . . . . . . . . 20
2.4 Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5 Computational Analysis . . . . . . . . . . . . . . . . . . . . . . . 28

2.5.1 Value of Heterogeneity and Learning . . . . . . . . . . . . 28
2.5.1.1 Comparison versus Not Modeling Heterogeneity

and Learning . . . . . . . . . . . . . . . . . . . . 29
2.5.1.2 Comparison versus Modeling of Heterogeneity but

not Learning . . . . . . . . . . . . . . . . . . . . 36
2.5.2 Workforce Specialization . . . . . . . . . . . . . . . . . . 39

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3 MULTI-PERIOD TECHNICIAN SCHEDULING WITH EXPERIENCE-
BASED SERVICE TIMES AND STOCHASTIC CUSTOMERS . . . 48

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.1 Problem Variants . . . . . . . . . . . . . . . . . . . . . . 53
3.3 Solution Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 54

ix



3.3.1 Cost-to-Go Approximation and Solving the Approximate
Bellman Equation . . . . . . . . . . . . . . . . . . . . . . 55

3.3.2 Forward Approximate Dynamic Programming Algorithm 58
3.4 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.5 Computational Analysis . . . . . . . . . . . . . . . . . . . . . . . 62

3.5.1 The Value of Incorporating Information about Future Re-
quests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5.2 Responding to a Disruption in the Workforce . . . . . . . 66
3.5.3 Responding to a New Task Type . . . . . . . . . . . . . . 69

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4 APPROXIMATE DYNAMIC PROGRAMMING APPROACH WITH
BASIS FUNCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.3 Solution Methodology . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3.1 Counter Examples . . . . . . . . . . . . . . . . . . . . . . 78
4.3.2 Value Function Approximation . . . . . . . . . . . . . . . 83

4.3.2.1 Approximating the Value Function . . . . . . . . 85
4.3.2.2 Offline Simulation Procedure . . . . . . . . . . . 86
4.3.2.3 Recursive Least Squares Regression . . . . . . . 87

4.4 Preliminary Results . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5 CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . . . . 97
5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

x



LIST OF TABLES

Table

2.1 Learning rates used in experiments . . . . . . . . . . . . . . . . . . . . . 26

2.2 Workforce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Fixed experience levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1 Mean and covariance of workforce parameters . . . . . . . . . . . . . . . 60

3.2 Distribution of the average daily gaps . . . . . . . . . . . . . . . . . . . . 66

4.1 Initial setting of the learning parameters . . . . . . . . . . . . . . . . . . 79

4.2 Current state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3 State with experience increase . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4 Current state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.5 State with experience increase . . . . . . . . . . . . . . . . . . . . . . . . 81

4.6 Current state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.7 State with experience increase . . . . . . . . . . . . . . . . . . . . . . . . 83

xi



LIST OF FIGURES

Figure

2.1 Learning curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Impact of planning without recognizing individual traits or learning . . . 31

2.3 Workload imbalance by diversity . . . . . . . . . . . . . . . . . . . . . . 33

2.4 Total number of tasks performed by technician type . . . . . . . . . . . . 34

2.5 Distribution of experience levels at end of 29 days (|R| = 5) . . . . . . . 35

2.6 Impact of planning without recognizing learning but recognizing individual
traits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.7 Workload analysis when recognizing individual traits but not learning
(|R| = 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.8 Differences in distribution of experience levels at end of 29 days when
recognizing learning and not(|R| = 5) . . . . . . . . . . . . . . . . . . . . 40

2.9 Specialization by customer diversity and technician type . . . . . . . . . 43

2.10 Determining assignment rules (|R| = 5) . . . . . . . . . . . . . . . . . . . 44

2.11 Assignment rules by customer diversity and technician type . . . . . . . 46

3.1 Average daily gaps by task diversity (%) . . . . . . . . . . . . . . . . . . 63

3.2 Average daily gaps by capacity (%) . . . . . . . . . . . . . . . . . . . . 65

3.3 Average daily gaps by task diversity (%) with workforce fluctuation . . . 67

3.4 Workload of new technician . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.5 Average daily gaps by task diversity (%) with a new task type . . . . . . 70

3.6 How often most frequent technician performs tasks of new type . . . . . 71

xii



4.1 Average daily gaps for Diversity=5 (%) . . . . . . . . . . . . . . . . . . 92

4.2 Average daily gaps for Diversity=7 (%) . . . . . . . . . . . . . . . . . . 92

4.3 Average daily gaps for Diversity=10 (%) . . . . . . . . . . . . . . . . . . 92

4.4 Average daily gaps for Diversity=13 (%) . . . . . . . . . . . . . . . . . . 93

xiii



1

CHAPTER 1
INTRODUCTION

1.1 Motivation

As the global economy recovers, there is growing pressure in the skilled labour

markets. According to the Hays Global Skills Index 2014, a statistics-based study

designed to assess the dynamics of skilled labour markets across 31 countries, this

pressure continues to rise, particularly in economies that are returning to pre-crisis

levels such as United States, Germany, and the United Kingdom (Hays plc, 2014).

Particularly, home services is one of the fastest growing industries in the US. For

example, revenue from heating, ventilation and air conditioning service is expected to

rise at an average annual rate of 5.9% between 2012 and 2017, reaching $2.5 billion

by 2017 (Panteva, 2012). Home services companies are facing the same skilled labour

shortage. To maintain growth, a key challenge for companies is managing their expen-

sive and limited labor resources. In particular, the time an employee needs to provide

high quality service often depends on his/her experience. Importantly, experience

increases over time, thus gradually decreasing the time required to provide service.

By accounting for employee experience and the accompanying learning, managers can

take advantage of capacity increases that result from experience, improving efficiency

and enabling further growth. Matching the right employee with the right job can

not only help a company meet its current needs, but also build capacity for meeting

future demand and potentially demand growth.
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In this work, we explore the issue of how companies can use immediate em-

ployee job assignments to meet current demand and build capacity for the future. We

focus on service workers, particularly service technicians. The problems discussed in

this paper are variants of the technician and task scheduling problem (TTSP). In the

TTSP, a set of technicians serves a set of customer requests. Customers are associ-

ated with certain tasks and different tasks have different skills associated with them.

In our version of the problem, technicians have different service times depending on

their experience in performing a task as well as each technician’s ability to transform

that experience into improved productivity. We measure experience in the number of

times that the technician has performed the task.

The fact that technician productivity is linked to experience suggests that

what could be modeled as a single-period problem (i.e. focusing solely on making

assignments to serve the current day’s tasks) should instead be modeled as a multi-

period problem. As such, we consider the multi-period technician scheduling (and

routing) problems that account for the fact that productivity increases (or service

time decreases) as technicians gain experience. These increases in productivity are

often referred to as “learning.” We assume that the time that it takes a technician to

complete a task depends on the technician’s experience in the skill associated with the

task and how quickly the technician learns. How quickly a technician learns is known

as the technician’s learning rate. We assume that we have a set of heterogeneous

technicians whose learning rates and initial experience are known. The service time

depends on the amount of experience the worker has with the skill required by the
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task.

Chapter 2 introduces a model of technician routing that explicitly models

individualized, experience-based learning. In this problem, each day, the technicians

serve the day’s known demand, starting and ending each day at the depot. We model

the problem as a Markov decision process and introduce a daily myopic solution

approach that decomposes a multi-period problem into a series daily problems and

then solves the daily problems using the record-to-record (RTR) heuristics. We seek

to minimize the sum of each day’s makespan over a finite horizon, accounting for both

travel and service times on each individual day. The objective accounts for the desire

to increase the capacity available to grow the business. The results demonstrate that

explicitly modeling and the resulting ability to capture changes in productivity over

time due to learning lead to significantly better and different solutions than those

found when learning and workforce heterogeneity is ignored. We show that these

differences result from the levels of specialization that occur in the workforce.

As the first to explicitly model the impact of experience-based learning on tech-

nician productivity, this work makes several contributions to the literature. First, we

introduce to the literature a Markov decision process model of the problem and intro-

duce a myopic solution approach. In addition, this work presents several important

insights. These are:

1. Explicitly modeling workforce heterogeneity and learning offers better solutions

in comparison to assuming homogeneous learning curves and/or static produc-

tivity.
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2. Importantly, modeling workforce heterogeneity and learning captures that fast

learners have more capacity that can be used to improve solution quality.

3. Regardless of the learning rate, inexperienced technicians specialize more than

more experienced technicians.

Further, we show that, in the presence of workforce heterogeneity and human learning,

technician routing solutions trade-off routing and scheduling. We introduce “rules of

thumb” that demonstrate which aspect is more important based on the individual

characteristics of a technician.

Chapter 3 introduces the multi-period technician scheduling problem with

experience-based service times and stochastic customers. In this problem, a man-

ager must assign tasks of different types that are revealed at the start of each day to

technicians who must complete the tasks that same day. As a technician gains expe-

rience with a type of task, the time that it takes to serve future tasks of that type

is reduced (often referred to as experiential learning). We model the problem as a

Markov decision process and introduce an approximate dynamic programming-based

solution approach. The model can be adapted to handle cases of worker attrition and

new task types. The solution approach relies on an approximation of the cost-to-go

that uses forecasts of the next day’s assignments for each technician and the resulting

estimated time it will take to service those assignments given current period decisions.

Using an extensive computational study, we demonstrate the value of our approach

versus a myopic solution approach that views the problem as a single-period problem.

In this study, we make the following research contributions. First, we present
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a Markov decision process (MDP) model for the MTSP-ESTSC. We note that this

model can be adapted to handle cases of worker attrition and new task types. Sec-

ond, we introduce a method for approximating the future value of today’s workforce

assignments, and third, demonstrate how to incorporate this approximation into a

tractable model for making daily decisions.

In Chapter 4, we continue exploring the value of integrating future informa-

tion into the current period decision-making process for the Multi-period Dynamic

Technician Scheduling Problems with Experience-based Service Times and Stochastic

Customers discussed in Chapter 3. We propose an alternate approximate dynamic

programming solution approach with basis function to approximate the value func-

tion by taking the advantage of the future information for the whole planning horizon.

At each decision epoch, we choose each technician’s aggregate experience levels on

all task types as the features in the basis function. Then, we turn to an offline sim-

ulation procedure to recursively update the coefficient vector of the basis function,

which allows fast decision making within the execution phase.

Our computational results demonstrate the value of the ADP solution ap-

proach with the basis function. We benchmark the performance of the ADP solution

approach with the basis function against a myopic approach that converts the multi-

period problem into a series of single-period problems, ignoring the impact of future

information on the decision making in the current period.

The remainder of this work is organized as follows. The remaining part of

this chapter reviews the literature on problems related to the technician routing and
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scheduling and learning. Chapter 2 studies the technician routing problem with

experience-based service time, and Chapter 3 discusses the multi-period technician

scheduling problem with experience-based service times and stochastic customers.

Chapter 4 proposes an alternate approximate dynamic programming solution ap-

proach with basis function. Finally, Chapter 5 concludes this work and suggests

areas of future research.

1.2 Literature Review

Two major fields of literature are related to the problems studied in this paper:

the technician routing and scheduling problem (TRSP) and learning.

1.2.1 Technician Routing and Scheduling

The existing literature contains a variety of technician routing and scheduling

problems. The TRSP was first introduced by Dutot et al. (2006) and is based on

a problem faced by the telecommunications industry. In the problem as introduced

in Dutot et al. (2006), technicians are grouped into teams, and tasks are assigned to

teams so that skill requirements and the skill level can be matched. However, neither

learning nor the extended horizon over which learning occurs is considered.

In 2007, the French Operations Research Society introduced a challenge (http:

//challenge.roadef.org/2007/en/) based on Dutot’s work and offered a real-world

data set for technician scheduling. The challenge resulted in a stream of papers. The

papers are largely algorithmic, and none of the papers resulting from the challenge

consider routing. Hurkens (2009) uses mixed integer programming to construct a day
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schedule and demonstrates the effectiveness of the linear programming techniques in

solving scheduling problems. Fırat and Hurkens (2012) propose a solution method-

ology that uses a flexible match model for a special multi-skill workforce scheduling

problem, in which a set of combined technicians stays together for the duration of a

work day. Cordeau et al. (2010) propose a construction heuristic and an adaptive large

neighborhood search heuristic for the technician and task scheduling problem arising

in a large telecommunications company. The objective is to minimize a weighted

combination of makespans of each priority class. Hashimoto et al. (2011) present a

variant of the Greedy Randomized Adaptive Search Procedure (GRASP) for solving

the technician and interventions scheduling problem for telecommunications. The

authors also introduce a lower bound procedure for the problem.

Other literature has considered both the travel and service time aspects of the

problem, but again, does not consider learning and a multi-period horizon. Kovacs

et al. (2012) define the service technician routing and scheduling problem with and

without team building. The objective is to minimize the sum of total routing and

outsourcing costs. Tsang and Voudouris (1997) and Pillac et al. (2012a) propose

heuristics for related problems. Alsheddy and Tsang (2011) consider a bi-objective

optimization problem in which both the technician routing costs and the employees’

interests are considered.

Additional papers incorporate dynamic and stochastic service requests. Sim-

ilar to the work in this paper, Bostel et al. (2008) consider a multi-period planning

and routing problem of technicians in the field. However, Bostel et al. (2008) do not
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consider learning that takes place over time. Also similar to this work, the problem is

solved without incorporating information about future information. Other work con-

siders single-day problems. Inspired by British Telecommunications plc, Lesaint et al.

(2000) describe a dynamic scheduler based on a combination of heuristic search and

constraint-based reasoning for dynamic workforce scheduling problem. Weintraub

et al. (2012) address the routing and scheduling of service technicians for energy

providers in Chile. Customers service requests are considered to be stochastic and

priorities of different tasks are taken into consideration. The objective is to mini-

mize the response time to these requests. Pillac et al. (2012b) study the Dynamic

TRSP in which new requests appear over time by proposing a fast reoptimization

approach based on a parallel Adaptive Large Neighborhood Search and a Multiple

Plan Approach.

Home healthcare scheduling and routing is a special case of the technician

routing problem. A key feature of the home healthcare literature is the need to re-

spect patient preferences for particular healthcare workers. These preferences usually

result from a patient’s prior experience with a particular worker. In a sense, these

preferences capture the fact that the home healthcare problems are multi-period, even

if they are not explicitly modeled as such. Examples include Bertels and Fahle (2006),

Bard et al. (2014), Rasmussen et al. (2012).

The author is aware of only limited work that incorporates learning in a routing

context. Zhong et al. (2007) explicitly models driver learning, but in the context of

familiarity with a particular geographic area and the customers found in that area.
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Unlike this work, the heterogeneity of tasks at the individual customers is ignored.

While learning is not explicitly modeled, work on consistency in multi-day vehicle

routing often cites advantages of repeat visits to the same region or same customers.

For example, Smilowitz et al. (2012) suggests that repeated visits may allow a delivery

driver to “more efficiently serve her customer base.”

1.2.2 Models of Learning

That humans learn as they gain experience, “learning-by-doing,” is a well

known phenomenon. The learning effect was first examined on a scientific basis by

Wright (1936), who quantified learning curves with the observation that in the aircraft

industry the working costs per unit declined with an increasing production output.

Subsequent empirical studies confirmed the existence and importance of learning ef-

fects (see for example Conway and Schultz (1958), Venezia (1985), Cochran (1960),

Moulton et al. (2006)). In 2016, the concept has become mainstream enough that

it is now included in textbooks on operations management (Cachon and Terweisch

(2016), Meredith and Shafer (2016)).

The mathematical descriptions of learning are often called learning curves.

Reviews of the literature on learning curves can be found in Dar-El (2000), Jaber and

Sikström (2004), Jaber (2006), and Anzanello and Fogliatto (2011). Because of the

availability of distributions from which to generate workforces, in this research, we use

the hyperbolic learning model described in Nembhard and Osothsilp (2005). We note

that, while we employ the hyperbolic learning model, most learning curves have simi-
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lar shapes and would support conclusions similar to those discussed in Section 4.4. We

note that there also exists an extensive literature focusing on organizational learning.

Argote (1999) provides an excellent reference.

Work that explicitly models individual learning and the associated hetero-

geneity of the workforce demonstrates the value of capturing learning. Buzacott

(2002) shows that simply modeling worker heterogeneity without considering learn-

ing improves system performance versus assuming uniform workforce productivity in

flow-line production. Shafer et al. (2001) extend the analysis of Buzacott (2002) to

demonstrate the impact of heterogeneous learning and forgetting curves on system

productivity in a assembly-line setting. Chen et al. (to appear) confirms the results

of Shafer et al. (2001) for technician routing. In addition to flow lines, assembly lines,

and technician routing, the value of modeling learning has also been found in call cen-

ters (Gans and Zhou (2002)), departmental assignment (Sayin and Karabati (2007)),

machine scheduling (see Biskup (2008) for a review), project selection (Gutjahr et al.

(2008), Gutjahr (2009)), and vehicle routing (Zhong et al. (2007)).

One of the challenges of much of the workforce planning literature that models

individual learning is that the nonlinearity of the learning curves creates challenges.

For this reason, work such as Gans and Zhou (2002) and Fowler et al. (2008), simplify

the model of individual learning to avoid the nonlineariaties. Work such as Nemb-

hard and Bentefouet (2012) exploits structural properties of the optimal solution to

increase the size of the problem that can be solved. However, such approaches do not

generalize. Work such as Corominas et al. (2010), Nembhard and Norman (2007),



11

and Heimerl and Kolisch (2010) are limited to solving small problems. Hewitt et al.

(2015) introduce a linear and integer reformulation of the learning curve that takes

advantage of the fact that most work is assigned in time intervals. The reformuala-

tion allows much larger problems to be solved than had been previously. We take

advantage of the reformulation in this work as well. Additional review of workforce

planning models that incorporate learning can be found in De Bruecker et al. (2015)

and Hewitt et al. (2015).
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CHAPTER 2
THE TECHNICIAN ROUTING PROBLEM WITH

EXPERIENCE-BASED SERVICE TIME

2.1 Introduction

In this chapter, we consider the Technician Routing and Scheduling Problem

(TRSP) over multiple periods or days and account for the fact that productivity

increases (or service time decreases) as technicians gain experience. These increases

in productivity are often referred to as “learning.” We assume that the time that it

takes a technician to complete a task depends on the technician’s experience in the

skill associated with the task and how quickly the technician learns. How quickly

a technician learns is known as the technician’s learning rate. We assume that we

have a set of heterogeneous technicians whose learning rates and initial experience

are known. For this problem, the experience of a technician with a skill depends on

the number of times the technician has performed the task.

We assume that daily demand is not revealed until the day of service. Each

day, the technicians serve the day’s known demand, starting and ending each day at

the depot. In this work, we seek to minimize the sum of each day’s makespan over

a finite horizon, accounting for both travel and service times on each individual day.

The objective accounts for the desire to increase the capacity available to grow the

business. We call our problem variant the technician routing problem with experience-

based service times (TRP-EST).

To solve the problem, we implement a rolling-horizon procedure, creating
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routes for each day’s known demand without regard for future demand. In the rolling-

horizon framework, the objective becomes simply the minimization of the makespan

for a given day. To solve the daily routing problem, we use a variant of the record-

to-record travel algorithm (RTR), a heuristic first introduced by Li et al. (2005). At

the end of each day, we update each technician’s accumulated experience.

As the first to explicitly model the impact of experience-based learning on tech-

nician productivity, this work makes several contributions to the literature. First, we

introduce to the literature a Markov decision process model of the problem and intro-

duce a myopic solution approach. In addition, this work presents several important

insights. These are:

1. Explicitly modeling workforce heterogeneity and learning offers better solutions

in comparison to assuming homogeneous learning curves and/or static produc-

tivity.

2. Importantly, modeling workforce heterogeneity and learning captures that fast

learners have more capacity that can be used to improve solution quality.

3. Regardless of the learning rate, inexperienced technicians specialize more than

more experienced technicians.

Further, we show that, in the presence of workforce heterogeneity and human learning,

technician routing solutions trade-off routing and scheduling. We introduce “rules of

thumb” that demonstrate which aspect is more important based on the individual

characteristics of a technician.



14

2.2 Problem Description, Model, and Solution Approach

In this section, we first present a formal description of the TRSP discussed

in this work. We then present a model of the problem and describe our solution

approach.

2.2.1 Problem Description

In the TRSP, we assume a horizon of T days, and let the set T = {1, 2, . . . , T}

index the days of the planning horizon. We let K = {1, 2, . . . , K} be a set of techni-

cians and assume K is invariant in t. Let R = {1, 2, . . . , R} be the set of all possible

skill types.

Associated with each customer is a task requiring skill r in R, and associated

with each technician k in K is a set of parameters related to the technician’s ability

to learn that skill. Let dr0 be the service time for skill r for any technician with a

minimum level of training. Let Dk
r be the steady state service time for technician k

performing task requiring skill r. The parameter Lkr is the individual learning factor

for technician k on skill r. These parameters are typically estimated from empirical

data.

For each day t in the planning horizon, we capture the experience of technician

k at the start of day in the R–dimensional vector Qk
t = (qk1t, q

k
2t, . . . , q

k
Rt), where the

rth entry qkrt indicates the technician k’s experience with the rth skill at the start of

day t. Let Qk
0 represent technician k’s experience at the beginning of the horizon.

Each skill r is associated with a service time dkrt for day t and technician k, which is
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negatively related to the technician’s skill experience. Assuming the De Jong Model

of learning, we compute dkrt as

dkrt = Dk
r + dr0(qkrt)

−Lkr .

As suggested previously, this learning function accounts for both learning and the fact

that service or production times do not go to zero. Thus, the service time is divided

into two parts. The first term represents the “incompressible” part of the task. As

noted by De Jong (1957), the incompressible time is not related to the technician’s

experience level. The second term describes the learning process.

On a given day t, we seek to serve a set of customers Ct = {1, 2, . . . , Ct}. We

assume that this set of customers becomes known only at the beginning of day t.

Each customer requires the completion of a single task requiring skill r in R. Every

technician departs from and returns to the depot, denoted by 0 at the beginning of

the day and by Ct + 1 at the end of the day. An arc (i, j) is associated with each pair

of elements in Ct ∪ {0, Ct + 1}, and each arc (i, j) is associated with a travel time τij.

We assume that no driver incurs service time at the depot. Our problem objective is

to minimize the expected sum of latest task completions time for each day.

2.2.2 Markov Decision Process Model

The TRSP described above is a sequential and stochastic decision making

problem. A natural modeling framework for such a problem is a Markov decision

process (MDP). In this section, we present a formal MDP model for the problem.

• States



16

In this problem, decisions are made at the beginning of each day during the

planning horizon. Let t = 1, 2, . . . , T be the decision epochs, where day T is the

last day in the problem horizon. The state of the system at the beginning of day

t captures all the information that is needed to make a routing and scheduling

decision. For this problem, the state needs to capture the experience of the

technicians at the start of day t as well as the service requests on day t. Let Qt

be the matrix of the technicians’ experience on day t with elements qkrt for all

k ∈ K and r ∈ R. To capture the customer requests, we consider a vector of

tuples. We represent each tuple in the vector as (latct, longct, rct), where latct is

the latitude of the cth customer requesting service on day t, longct the longitude

of the cth customer requesting service on day t, and rct is the skill required to

perform the task at the cth customer requesting service on day t. We denote

the vector of tuples representing the requests on day t as Wt. Then, the state

of the system on day t is given by st = (Qt,Wt).

• Actions

Given state st, an action is a set of routes that serves the day t requests. For

convenience we convert the vector of tuples Wt into the set of customers Ct.

We formally represent the action for day t as at(st) = {xkijt : i ∈ Ct ∪ {0}, j ∈

Ct∪{Ct+1}, k ∈ K} where binary variables xkijt equal to 1 if arc (i, j) is traversed
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by technician k in day t. A feasible action satisfies the following constraints:

∑
i∈Ct∪{0}

∑
k∈K x

k
ijt = 1 ∀j ∈ Ct, (2.1)

∑
j∈Ct∪{Ct+1} x

k
0jt = 1 ∀k ∈ K, (2.2)

∑
i∈Ct∪{0} x

k
i(Ct+1)t = 1 ∀k ∈ K, (2.3)

∑
j∈Ct∪{0} x

k
jit −

∑
j∈Ct∪{Ct+1} x

k
ijt = 0 ∀i ∈ Ct,∀k ∈ K, (2.4)

dkrt = Dk
r + dr0(qkrt)

−Lkr ∀r ∈ R,∀t ∈ T ,∀k ∈ K, (2.5)

Bj ≥
∑

k∈K(Bi +
∑

r∈R zird
k
rt + τij)x

k
ijt ∀i ∈ Ct ∪ {0},∀j ∈ Ct, (2.6)

xkijt ∈ {0, 1} ∀i ∈ Ct ∪ {0},∀j ∈ Ct ∪ {Ct + 1},

∀k ∈ K, (2.7)

Bi ≥ 0 ∀i ∈ C ∪ {0, Ct + 1}. (2.8)

Constraints (2.1) ensure that a customer is assigned to exactly one technician

and that it is assigned only once. Constraints (2.2) and (2.3) guarantee that

every technician starts and ends a day’s working at the depot. Flow constraints

(2.4) require the technician to enter and leave a customer if the customer has

been assigned to that technician. Constraints (2.5) state the negative rela-

tionship between service time and experience level. Constraints (2.6) state

precedence relationship between two consecutive customers for every techni-

cian. Constraints (2.7) through (2.8) ensure integrality and non-negativity. Let

At(st) be the set of actions available on day t, the set of actions is the set of

sets of routes that serve the day t requests.

• Transition Function
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We consider the transition in two parts. The first is a deterministic transition

governed by the action selected on day t. We call this new state the post-

decision state. Given that the state is currently st and that action at in At(st)

is selected, a deterministic transition is made to post-decision state sat = Qa
t by

updating technicians’ experience as follows:

qkr(t+1)(st, at) = qkrt +
∑

i∈Ct
∑

j∈Ct∪{Ct+1} x
k
ijtzir ∀k ∈ K, ∀r ∈ R, (2.9)

where zir = 1 if customer i requires task r and set zir = 0 otherwise.

On day t + 1, a transition is made from post-decision state sat to pre-decision

state st+1 = (Qt+1.Wt+1) by observing new service requests Wt+1 arriving at

the beginning of day t + 1. In this transition, technicians’ experience remain

unchanged from the post-decision state, and thus Qt+1 = Qa
t .

• Contribution function

At decision epoch t, given state st and action at(st), a transition from pre-

decision state sk to post-decision state sak results in a contribution

c(st, at) = etmax ∀at ∈ At(st), (2.10)

which is the time required to complete the last task on day t.

• Objective function

The problem objective is then minπ∈Π E
[∑T

t=1 c(st, a
π
t (st))

]
, where π is a policy

that determines actions for all days t over the problem horizon T and Π is the

set of all policies.
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2.2.3 Myopic Solution Approach

To solve MDPs, authors often turn to the well known Bellman equation:

V (st) = min
at∈At(st)

{c(st, at) + E [V (st+1) | st, at]}. (2.11)

Because of the size of the state space and the challenges associated with even comput-

ing the expectation in the Bellman equation, however, we propose a myopic solution

approach. In the language of MDPs, we are seeking the optimal myopic policy (Pow-

ell, 2011). A myopic policy is constructed by, at each decision epoch or in our case

on each day, choosing an action that minimizes the current state costs while ignoring

information about the future. This approach is equivalent to using the decision rule

argminat∈At(st){c(st, at)}. Thus, the problem becomes one of solving a series of daily

routing problems.

For our problem, this approach offers several important computational advan-

tages. First, by not considering the cost-to-go in the Bellman equation, we solve a

daily routing problem that is a deterministic problem. Second, in the fashion of rolling

horizon or rollout methods (for discussion, see (Goodson et al., 2015)), rather than

solving for every state as is necessary in traditional backward dynamic programming,

we can step forward in time and solve for only the observed demand realizations. A

sketch of our solution approach can be found in Algorithm 2.1. In the next section, we

describe how we solve the daily routing problem and update technician productivity

based on accumulated experience.
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Algorithm 2.1 Myopic Solution Approach

1: for day t = 1 TO T do

2: Observe demand for day t

3: Solve daily routing problem, minimizing the completion time of last task

4: Update technician productivity based on experience gained on day t

5: end for

2.3 The Daily Routing Problem

In this section, we present a model and solution approach for the daily routing

problem. Throughout, to make explicit the dependence of service times on accumu-

lated experience, where appropriate, we subscript our parameters and variables with

the day t.

In addition to the notation introduced in the previous section, we let r(i) ∈

R indicate the skill needed to perform the task required by customer i ∈ Ct. For

customers i and j in Ct, our model uses binary variables xkijt equal to 1 if arc (i, j)

is traversed by technician k. Continuous variable Bi ≥ 0 is the start time of service

at customer i, and emaxt is the completion time of the last task on day t. With this

notation, the daily technician routing problem with experience-based service times

can be modeled as follows:
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min emaxt

s.t.
∑

i∈Ct∪{0}
∑

k∈K x
k
ijt = 1, ∀j ∈ Ct, (2.12)

∑
j∈Ct∪{Ct+1} x

k
0jt = 1, ∀k ∈ K, (2.13)

∑
i∈Ct∪{0} x

k
i(Ct+1)t = 1, ∀k ∈ K, (2.14)

∑
j∈Ct∪{0} x

k
jit −

∑
j∈Ct∪{Ct+1} x

k
ijt = 0, ∀i ∈ Ct,∀k ∈ K, (2.15)

Bj ≥
∑

k∈K(Bi + dkr(i)t + τij)x
k
ijt, ∀i ∈ Ct ∪ {0},∀j ∈ Ct, (2.16)

emaxt ≥ Bi +
∑

j∈Ct∪{Ct+1}
∑

k∈K
∑

r∈R x
k
ijt(d

k
r(i)t + τij), ∀i ∈ Ct, (2.17)

xkijt ∈ {0, 1}, ∀i ∈ Ct ∪ {0},∀j ∈ Ct ∪ {Ct + 1},∀k ∈ K, (2.18)

Bi ≥ 0, ∀i ∈ C ∪ {0, Ct + 1}. (2.19)

The objective of the model is to minimize the completion time of the last

task. Constraints (2.12) ensure that a customer is assigned to exactly one technician

and that it is assigned only once. Constraints (2.13) and (2.14) guarantee that every

technician starts and ends a day’s working at the depot. Flow constraints (2.15)

require the technician to enter and leave a customer if the customer has been assigned

to that technician. Constraints (2.16) state precedence relationship between two

consecutive customers for every technician. Constraints (2.17) impose that emaxt is no

less than the completion time of any task. Constraints (2.18) through (2.19) ensure

integrality and non-negativity.

To solve the daily routing problem, we modify the record-to-record travel

(RTR) algorithm presented in Li et al. (2005). We chose the RTR algorithm for our
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problem for two reasons. First, the algorithm is known to return high-quality solutions

for vehicle routing problems and does so in relatively short run times. Second, code

for the algorithm is open source and available in the COIN-OR repository (https://

projects.coin-or.org/VRPH). This open-source code shortens development times.

In the algorithm, the record represents the best solution found so far. The

RTR is a multi-phase local search algorithm. The algorithm alternates between two

phases. The first phase is a diversification phase in which an uphill criterion is

applied. That is, non-improving neighboring solutions are accepted if they are within

a particular threshold of the record. The diversification phase ends after a fixed

number of iterations. In the second phase, the improvement phase, only improving

moves are accepted. The improvement phase continues until a local minimum is

found.

To overcome convergence to local minima, a perturbation step follows the im-

provement phase (see Li et al. (2005)). The sequence of the diversification, improve-

ment, and perturbation phases is run for a minimum number of iterations before the

algorithm terminates. The algorithm terminates when no solution can be found that,

after a fixed number of attempts, improves the best known solution by more than ε.

In our implementation, the threshold is (1 + 0.01) times the value of the record or

best known solution, the number of iterations in the diversification phase is 30, ε is

0.00001, and the number of attempts is 5. These values are suggested by Li et al.

(2005). A detailed algorithmic description can also be found in Li et al. (2005).

Because the daily routing problem must be solved multiple times over the
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horizon T , we update each technician’s experience and service times based on the

assignments of the previous day. For each t ∈ T , t 6= T , for each k ∈ K, we have:

qkrt = qkr(t−1) +
∑

i∈Ct:r(i)=r
∑

j∈Ct∪{Ct+1} x
k
ij(t−1)∀k ∈ K,∀r ∈ R (2.20)

and

dkrt = Dk
r + dr0(qkrt)

−Lkr ∀r ∈ R,∀k ∈ K. (2.21)

Equation (2.20) updates a technician’s experience for a particular skill. Equation

(2.21) computes the service times based on previous experience.

Our implementation of the RTR is a modification of existing RTR code, called

VRPH, available in the COIN-OR repository (https://projects.coin-or.org/

VRPH) and described in Groër et al. (2010). The code was originally developed to

solve the capacitated vehicle routing problem. To solve the daily routing problem,

we modify the code to account for service times. We can solve for each day in our

horizon by updating the service times using the solution from the previous day (see

equations (2.20) and (2.21)) and calling RTR with data for each new day.

2.4 Instances

This section describes the instances that were used to examine the impact of

including learning in technician routing models. There are three sets of attributes

that define an instance of the TRP-EST: (1) the number and geographic diversity of

the customers requiring service, (2) the number of different skills required to perform

tasks requested by customers, and, for each skill, the length of time a novice technician
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needs to perform a task requiring that skill, and, (3) the number of technicians and

each technician’s individual traits.

The TRP-EST is a multi-period/day problem, with the number of customers

and their geographic distribution not known until the beginning of each day. For our

experiments, we limit our analysis to a 29 day period and generate an instance by

creating a series of 29 daily customers sets, where the set for day t is Ct. The number

of customers and their geographical distributions in these customer sets is based on

instances taken from the Symmetric CVRP instances found in VRPLIB: A Vehicle

Routing Problem LIBrary. This library of instances is provided by the Operations Re-

search Group at the University of Bologna, Italy and can be found at: http://www.

or.deis.unibo.it/research_pages/ORinstances/VRPLIB/VRPLIB.html. Specifi-

cally, the 29 instances “E072-04f” to “E151D14r” are used, with the number of cus-

tomers in these instances ranging from 71 to 150. To generate a 29-day instance, we

randomly order these 29 daily instances. We generate 10 such instances by consid-

ering 10 different orderings of the 29 daily instances. In all instances, travel times

correspond to Euclidean distances.

Regarding the second set of attributes, in each instance, each customer i ∈ Ct

on day t requires a task to be performed and performing that task requires a skill

r ∈ R. We refer to the customer diversity of an instance as the number of different

skills required to serve all the customers, or |R|. In our experiments, each instance

can have one of four diversity levels: 5, 10, 25, and 50. For each of the 29 instances

“E072-04f” to “E151D14r” and each diversity level |R|, we randomly assign each
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customer a skill from the set {1, . . . , |R|}.

As discussed in Section 3.2, we model the relationship between experience and

productivity using the function dkrt = Dk
r + dr0(qkrt)

−Lkr . Thus, each instance requires

values for the parameters dr0, ∀r ∈ R, which represents the time it would take a

novice technician to perform a task requiring skill r. We assign the parameter dr0 one

of five initial service time values: 100, 200, 300, 400, and 500 (time units). These

values were chosen to represent values that were on the order of travel times (100

units) versus those that were significantly greater (500 units).

These values are assigned to skills in a round-robin manner. For example, with

a customer diversity of ten, skills one and six (r = 1, 6) will be assigned an initial

service time of 100 (d10 = d60 = 100), skills two and seven (r = 2, 7) will be assigned

an initial service time of 200 (d20 = d70 = 200) and so forth. As noted earlier, the skill

associated with any particular customerR is assigned randomly among the customers

in the geography.

Regarding the third set of attributes, in each instance we consider a workforce

that consists of 18 technicians. Again recalling the equation dkrt = Dk
r +dr0(qkrt)

−Lkr , we

see that an instance requires values for the parametersDk
r , q

k
r0, and Lkr , ∀r ∈ R, k ∈ K.

In all experiments, we set Dk
r = 5 ∀r ∈ R, k ∈ K. As noted previously, this value

is unrelated to the technician’s experience and ability to learn and reflects that fact

that task times do not tend to zero. As such, while the value is chosen arbitrarily, a

different parameter value would change the values of our solutions, but not the trends

discussed subsequently.
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We assume that an individual technician k has the same learning rate on all

skills, or, Lkr = Lkr′ ,∀r, r′ ∈ R. This choice reflects the literature on human learning

that suggests that individuals tend to learn different skills at the same rate (?). As

a result, we refer to Lkr as Lk, and the parameter values used are given in Table 2.1.

According to Dar-El (2000), the learning rates 0.515, 0.321, and 0.152 are associated

with “fast,” “medium,” and “slow” learners, respectively. To contextualize these

parameter values, Table 2.1 also notes the reduction in service times resulting from

doubling a technician’s experience level on a skill.

Label
Fast Medium Slow

Lk .515 .321 .152
Reduction in dkrt when experience doubled 30% 20% 10%

Table 2.1: Learning rates used in experiments

Finally, similar to parameter Lkr , we have constructed our experiments so

that technician k has the same initial experience, qkr0 in all skills. That is, qkr0 =

qkr′0, ∀r, r′ ∈ R. Thus, we can refer to this parameter as qk0 . We consider three values

for this parameter, qk0 = 1, which we call Low, qk0 = 25, which we call Medium, and

qk0 = 50, which we call High. We illustrate in Figure 2.1 each of the three learning

curves, as well as where each initial experience level puts a technician on his/her

curve.

With three possible learning rates and initial experience levels, there are nine
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Figure 2.1: Learning curves

Technician
Learning rate

Fast Medium Slow
Initial Low 1,10 4,13 7,16

experience Medium 2,11 5,14 8,17
High 3,12 6,15 9,18

Table 2.2: Workforce

possible combinations of these traits, and the workforce of 18 technicians that we

use in our experiments consists of two technicians for each combination. We present

the workforce in detail in Table 2.2. Throughout the rest of the work ,“X-Y” refers

to technicians with learning rate “X” and initial experience level “Y.” For example,

“Slow-Low” refers to technicians 7,16 (see Table 2.2), who are slow learners (Lk =

.152) and have low initial experience (qk0 = 1).

In summary, we consider 10 different orderings of the 29 daily customer sets,

and for each ordering, we consider four diversity levels. For each ordering and diversity

level, we consider one random assignment of skills to customers. For all experiments,

we consider the same workforce. As such, our experimental setup consists of 40
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different instances.

2.5 Computational Analysis

In this section, we perform a computational study to analyze whether, and at

what fidelity, learning should be considered when making daily planning decisions.

Specifically, we begin our analysis by running a series of experiments to quantify the

magnitude of the benefits associated with recognizing both that learning occurs and

that each technician’s individual traits impact how much they learn when making

daily assignments of technicians to tasks. We then seek to understand which is the

source of these benefits: recognizing that learning occurs or that each technician has

individual traits that impact how they learn.

We then turn our analysis to specialization. Specifically, we study whether

when making daily assignments a planner should focus on giving a technician a high

level of experience in a limited set of skills (making them “experts”) or some expe-

rience in many skills (making them “jacks-of-all-trades”). We also study whether a

technician’s traits (learning rate, initial experience levels) should determine whether

they become “experts” or “jacks-of-all-trades.” Finally, we study whether the number

of different skills on which technicians can gain experience impacts whether techni-

cians should specialize and/or which technicians should specialize.

2.5.1 Value of Heterogeneity and Learning

In this section, we first consider the value of our model versus models that

do not incorporate workforce heterogeneity and individual learning. We then demon-



29

strate the value of our model versus models that consider workforce heterogeneity but

not individual learning

2.5.1.1 Comparison versus Not Modeling Heterogeneity and Learning

Our analysis begins by studying whether a service organization should track

their technicians’ experience levels on different skills and then recognize both expe-

rience level and each technician’s learning rate when performing daily assignments

of technicians to tasks. To explore this question, we first run Algorithm 2.1 on each

of the 40 instances described above and record the makespan emaxt for each day. As

learning is explicitly recognized when Algorithm 2.1 is executed, we label these values

emax−Lt .

Next, we compare the values emax−Lt with the daily makespan values seen

when both learning and a technician’s individual traits (learning rate, experience

levels) are ignored when making daily planning decisions. To do so, we run a variant

of Algorithm 2.1 that ignores individual learning rates and individually accumulated

experience when determining daily assignments. Specifically, recalling that technician

k′s time to complete a task requiring skill r in period t is modeled by the equation

dkrt = Dk
r + dr0(qkrt)

−Lkr , in this variant of Algorithm 2.1, daily routes are created

with the assumption that dkrt = d̄ ∀r ∈ R, t = 1, . . . , T , k ∈ K. To calculate the

value d̄, we first assume that all 18 technicians described in Table 2.2 have Medium

initial experience (qk0 = q̄0 = 25, ∀k ∈ K) and learn at the Medium rate (Lk = L̄ =

0.321,∀k ∈ K). Next, to calculate d̄, we model that, while an organization may
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not track each technician’s actual accumulated experience level, a planner may still

use a forecast of accumulated experience when making daily decisions. We presume

that this forecast of accumulated experience in each skill depends on the number of

different skills required by the customers, or |R|, and report in Table 2.3 the values

q̄|R|. As such, we have that technician k′s time to complete a task requiring skill r in

period t is dictated by the equation dkrt = Dk
r + dr0(q̄|R|)

−L̄.

|R|
5 10 25 50

Fixed experience levels 43 33 28 27

Table 2.3: Fixed experience levels

While this variant of Algorithm 2.1 determines daily routes without acknowl-

edging that technicians accumulate experience or differ in their individual traits, to

make a fair comparison to emax−Lt , we calculate daily makespans for those routes us-

ing the appropriately updated values for qkrt, d
k
rt as specified by Equations (2.20) and

(2.21). That is, when calculating the daily makespan for the solutions returned by

the variant of Algorithm 2.1, we recognize that experience accumulates and that the

time a technician needs to perform a task requiring a specific skill decreases at a rate

that depends on his/her individual traits. Because in these experiments we do not

consider learning and essentially assume the workforce is homogeneous when making

daily planning decisions, we refer to these daily makespan values as emax−NL−Ht .
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As an example, consider an instance of the TRP-EST for which |R| = 5. Per

Table 2.3, on all days, all technicians are assumed to have the experience level 43

on all skills. Suppose that the variant of Algorithm 2.1 described above prescribed

that Technician 3 performs three tasks that required skill 2 on day 0 and is currently

determining the task assignments for day 1. When executing the RTR code to solve

the routing problem for day 1, d1
23, or the time Technician 3 needs to perform a task

requiring skill 2, is set to the value D3
2 +d20(43)−.321 (i.e. the experience accumulated

on day 0 is ignored and the Medium learning rate is assumed). However, after the

routes have been created, the makespan value, emax−NL−H1 is calculated with the value

d1
23 set to the value D3

2 + d20(50 + 3)−.515 (recall that Technician 3 is a fast learner

with high initial experience).

Figure 2.2: Impact of planning without recognizing individual traits or learning

Figure 2.2 presents the daily relative gap in the makespans (calculated as

emax−NL−Ht −emax−Lt

emax−NL−Ht

), averaged over instances with the same customer diversity level.

We see in this figure that assuming a homogeneous workforce that does not learn
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leads to significantly worse routes across all diversity levels and that these routes

tend to get worse over time.

To try to understand the source of these large gaps, Figures 2.3(a)-2.3(d)

present the degree to which the daily assignment of tasks to technicians is imbalanced.

Specifically, for the case in which the workforce is assumed to be homogeneous and

learning is not recognized, the line “NL-H-Low” represents the number of tasks as-

signed to the technician that is assigned the smallest number of tasks, averaged over

the 10 instances associated with the respective diversity level. The line associated

with “L-Low” is the analogous result for the workforce when recognizing learning

and technician heterogeneity. For the case in which the workforce is assumed to be

homogeneous and learning is not recognized, the line “NL-H-High” represents the

number of tasks assigned to the technician that is assigned the largest number of

tasks, averaged over the 10 instances associated with the respective diversity level.

The line “L-High” is the analogous result for the workforce when recognizing learning

and technician heterogeneity. The results show that, across all diversity levels, there

is a larger imbalance in assigned work when learning is recognized.

This imbalance results from assignments in the case of recognizing learning

and heterogeneity that take advantage of the productivity associated with fast learn-

ers. Figure 2.4 shows, by technician type (combination of learning rate and initial

experience), the total number of tasks performed. The results show that the so-

lutions considering both learning and workforce heterogeneity assign more tasks to

technicians with the Fast learning rate and fewer to those that have a Slow learn-
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ing rate. Alternatively, the poorer quality solutions resulting from not considering

heterogeneity distribute tasks evenly across the workforce. In summary, when not

recognizing learning or individual traits, one ignores the extra capacity associated

with Fast learners.
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Figure 2.4: Total number of tasks performed by technician type

While our results are from a 29-day planning horizon, we believe the problems

associated with ignoring learning and assuming a homogeneous workforce will persist

over longer horizons. As evidence, Figures 2.5(a)-2.5(d) present the distribution of

technicians’ experience levels at the end of the planning horizon, averaging over all

10 instances with a task diversity of 5 and by technicians with the same learning rate

and initial experience. Specifically, to calculate the “Skill 1” point on the “Slow-
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Low” curve, we first calculate the quantities f 1
7 =

q291,7∑5
r=1 q

29
r,7

and f 1
16 =

q291,16∑5
r=1 q

29
r,16

,

with the first representing the fraction of technician 7’s assignments over the 29-

day period that were to a task that required Skill 1 and the second is the same only

for technician 16. Then, the “Skill 1” point for a “Slow-Low” technician is calculated

as f 1
SL = (f 1

7 + f 1
16)/2. Other points in the figures are calculated similarly.
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The figures show that the distribution of experience levels for technicians are

different when learning and individual traits are recognized from when they are not.

For example, when learning and individual traits are recognized, the experience levels

for technicians with Low initial experience (Figure 2.5(b)) are not evenly distributed

across all skills as they are when they are ignored. As these experience levels impact

the productivity of technicians in subsequent days, we conclude that ignoring learning

and individual traits will leave a workforce poorly prepared for the future. We note

that similar graphs for other diversity levels (|R| = 10, 25, 50) exhibit a similar pat-

tern. Recognizing learning and individual traits leads to a workforce with experience

unevenly distributed across all skills whereas not recognizing these factors does not.

We explore this issue further in the next subsection.

2.5.1.2 Comparison versus Modeling of Heterogeneity but not Learning

In the previous analysis, recognizing learning and each technician’s individual

traits leads to much better daily decisions and a different workforce at the end of

the 29-day planning horizon, in terms of skill proficiency, than not doing so. We

next discuss experiments that seek to understand whether recognizing workforce het-

erogeneity, but still not recognizing learning, will close the gaps seen in Figure 2.2.

Specifically, we again execute a variant of Algorithm 2.1 where daily routes are

created with the assumption that each technician has a static experience level on each

skill. In contrast to the previous experiments in which experience was fixed based
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Figure 2.6: Impact of planning without recognizing learning but recognizing individ-

ual traits

on the assumption that everyone began with a Medium experience level, in these

experiments, the fixed experience level for a technician is based on the appropriate

value qk0 according to Table 2.2. Similarly, in the previous experiments, the time a

technician needed to perform a task d̄ was calculated based on the assumption that

the technician learned at the Medium learning rate. In these experiments, the value

d̄k for technician k is calculated based on their individual value Lk from Table 2.1

and according to Table 2.2. As in the previous experiment, we also assume that each

technician reaches a level of forecasted experience. Finally, analogous to the previous

experiment, while we generate solutions that ignore learning, we evaluate the solutions

returned by the algorithm by including learning and accumulated experience. We

denote these solutions values by emax−NLt for each day t in the horizon.

We now perform an analysis similar to what was done for the previous exper-

iments. Figures 2.6(a) and 2.6(b) present results calculated in a manner similar to
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those presented in Figure 2.2. We see that, while recognizing individual traits reduces

the gaps seen in Figure 2.2, it does not close them. The gaps still range from 2% to

10% at the end of the 29-day planning horizon.

Evidence for why the gaps close can be seen in Figures 2.7(a) and 2.7(b),

which display results similar to those seen in Figures 2.3(a) and 2.4. The figures show

that recognizing workforce heterogeneity, yet still ignoring learning, leads to a much

better appreciation of the capacity associated with Fast learners and thus a similar

imbalance of work as when learning is recognized. While we only show figures for

|R| = 5, results for other diversity levels exhibit a similar pattern.
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Figure 2.7: Workload analysis when recognizing individual traits but not learning

(|R| = 5)

The reason that the gaps do not close completely can be seen by analyzing two

differences in the distributions of experience levels at the end of the 29-day period: (1)
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the differences between when learning is recognized and when both learning and indi-

vidual traits are ignored, and, (2) the differences between when learning is recognized

and when learning is ignored but individual traits are not. We calculate the quantities

f rXY (e.g. f 1
SL as discussed previously) for each of the three runs of Algorithm 2.1: (1)

when learning is recognized, which we label f r−LXY , (2) when learning and individual

traits are ignored, which we label f r−NL−HXY , and (3) when learning is ignored but

individual traits are not, which we label f r−NLXY . Figure 2.8(a) presents the quantities

|f r−LXY − f
r−NL−H
XY |, ∀r ∈ R and all technician types, “X-Y” (e.g. “Slow-Low”). Fig-

ure 2.8(b) presents the quantities |f r−LXY − f
r−NL
XY |, ∀r ∈ R and all technician types.

Similar to what was seen in Figures 2.5(a) to 2.5(d), we see that ignoring learning

and individual traits leaves a workforce with a very different set of skill levels than

recognizing learning does. Figure 2.8(b) suggests that recognizing individual traits

reduces the differences in skill levels but does not eliminate them. Again, while we

only display results for |R| = 5, the pattern is similar for other diversity levels. In

summary, while recognizing individual traits is better than not doing so, it is best

to recognize learning as it has benefits in the short term and the impact of doing so

persists through differences in the distribution of final experience levels.

2.5.2 Workforce Specialization

Having established that an organization should consider both an up-to-date

accounting of their technician’s experience levels at different skills as well as their

individual learning rates, we next turn our attention to what insights can be gained
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(a) Also ignore individual traits

(b) Recognize individual traits

Figure 2.8: Differences in distribution of experience levels at end of 29 days when

recognizing learning and not(|R| = 5)
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into how experience levels and learning rates should be mapped to daily scheduling

and routing decisions. Our analysis primarily focuses on the concept of specialization

and looks at whether a technician should become an expert in a small set of skills

and whether a technician’s traits impact this decision.

To measure specialization, we use the Coefficient of Variation of the number

of times a technician performs tasks requiring each skill. For example, suppose that

at the end of 29 days, a technician has performed tasks that require Skill 1 five

times, tasks that require Skill 2 one time, tasks that require Skill 3 two times, tasks

that require Skill 4 three times, and tasks that require Skill 5 four times. Then, the

expected number of times that technician performs a task requires a given skill is

µ = (5 + 1 + 2 + 3 + 4)/5 = 3. Similarly, the standard deviation of the number of

times that technician performs tasks requiring each skill can be calculated as σ =√
(5−3)2+(1−3)2+(2−3)2+(3−3)2+(4−3)2

5
= 1.414, leaving a CV = 1.414

3
= 0.471. In the

analysis that follows, we calculate CV values based on a technician’s experience at

the end of the 29-day planning horizon. Specifically, CVk = σk
µk

where µk =
∑
r∈R q

k
r29

|R|

and σk =
√∑

r∈R(qkr29−µk)2

|R| . When referring to a CV value for a technician type, such

as a “Slow-Low” technician, we refer to the average of the CVs of the technicians

that are of that type; e.g. CVSlow−Low = (CV7 +CV16)/2. Higher CV values represent

greater specialization as they indicate a wider disparity between the tasks done the

most times and those done the least.

Figures 2.9(a)-2.9(d) present CV values averaged over all 10 instances of each

customer diversity and by technician type. The figures show that, regardless of di-
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versity level, technicians with Low initial experience specialize the most, and their

degree of specialization increases as diversity increases (note the scale is different for

each figure). On the other hand, technicians with High initial experience specialize

the least.

To understand the result, consider that workers with low initial experience

are relatively inefficient in all tasks, and more importantly, see a very large marginal

benefit from additional experience on a task. As a result, the workers with Low

initial experience see significant gains in productivity on the tasks to which they are

assigned in the first few days of the horizon. These gains make Low initial experience

workers relatively more attractive on those tasks relative to workers with High initial

experience. Thus, the best solutions see Low initial experience workers frequently

assigned to the tasks on which they gain the most experience in the first few days.

We next look at specialization from a different perspective. If daily routes were

evaluated based only on travel times, one expects specialization to only occur due to

the geographic distribution of customers (e.g. a cluster of customers requesting tasks

that require the same skill). Conversely, if daily routes were evaluated based only

on service times, one would expect a high degree of specialization. We next seek to

understand whether, when making daily task assignment decisions, some technician

types can be treated as individuals for whom one should focus on routing (minimizing

travel time) or scheduling (minimize service time).

To do so, we run two different variants of Algorithm 2.1 for each instance; each

variant differs from Algorithm 2.1 only in how emaxt is calculated. The first variant
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only counts travel times when minimizing emaxt . We treat the CV values (which we

label CV TT
X−Y ) in solutions produced with this variant as lower bounds on the amount

of specialization one should see in a solution produced by Algorithm 2.1. Similarly, the

second variant only counts service times when minimizing emaxt , and we interpret the

CV values (which we label CV ST
X−Y ) in solutions produced with this variant as upper

bounds. We present an example of these three sets of CV values in Figure 2.10. With

these values, we hypothesize that a planner should focus on routing technician type

“X-Y” when

CVX−Y − CV TT
X−Y < CV ST

X−Y − CVX−Y , (2.22)
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Figure 2.10: Determining assignment rules (|R| = 5)

or, the CV value produced when running Algorithm 2.1 is closer to the one

produced when only counting travel times than the one produced when only counting

service times. We then say that a planner should focus on scheduling technician type
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“X-Y” when Inequality (2.22) does not hold. For example, referring to Figure 2.10,

we conclude that a planner should focus on routing “Medium-Medium” technicians

and scheduling “Slow-Low” technicians. Essentially, specializing matters more for

“Slow-Low” technicians than “Medium-Medium” technicians.

We then calculate average CV, CV TT
X−Y , and CV ST

X−Y values over all 10 instances

for each diversity level and apply this line of reasoning to derive heuristics or “rules

of thumb” for what a planner should focus on when making daily task assignments.

Tables 2.11(a)-2.11(d) present these rules for all technician types and by customer

diversity level. We see that the rules are fairly static across customer diversity levels,

with the only differences being the degree to which a planner should focus on schedul-

ing individuals with “Low” initial experience. For all cases of a “High” or “Medium”

initial experience and either “Fast” or “Medium” learning rate, routing is the domi-

nant factor in determining the assignment. Further, when initial experience is “Low”

and the learning rate is “Slow,” the scheduling dominates. Further, for diversity levels

of 25 and 50, the assignments of the technicians with “Low” initial experience are

dominated by the scheduling concerns. Differentiation comes at the lower diversity

levels and the case of “Low” initial experience. For the case of a diversity of 10, tech-

nicians with “Medium” initial experience and “Slow” or “Medium” learning rates are

dominated by routing. For the diversity of five, technicians with “Medium” initial

experience, and “Slow” or “Medium” learning rates, the assignments are dominated

by routing and scheduling, respectively. We believe that the difference in the “Low”

initial experience and “Medium” learning rate is the result of sampling error and that
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there is no significant difference to focusing assignments on the routing or scheduling

of “Slow” or “Medium” learners with “Low” initial experience.

Assignment Learning rate
rule Fast Medium Slow

Init. Low Route Schedule Schedule
exp. Medium Route Route Schedule

High Route Route Schedule

(a) |R| = 5

Assignment Learning rate
rule Fast Medium Slow

Init. Low Route Route Schedule
exp. Medium Route Route Schedule

High Route Route Schedule

(b) |R| = 10

Assignment Learning rate
rule Fast Medium Slow

Init. Low Schedule Schedule Schedule
exp. Medium Route Route Schedule

High Route Route Schedule

(c) |R| = 25

Assignment Learning rate
rule Fast Medium Slow

Init. Low Schedule Schedule Schedule
exp. Medium Route Route Schedule

High Route Route Schedule

(d) |R| = 50

Figure 2.11: Assignment rules by customer diversity and technician type

2.6 Conclusions

In this chapter, we present a model and approach for accounting for on-the-job

learning in the daily routing of technicians. Our objective minimizes the completion

time of the last task. We solve the daily routing problems using the record-to-record

travel (RTR) heuristic. Our results offer the following key insights:

1. Explicitly modeling both learning and technician heterogeneity leads to better

and different solutions in comparison to assuming homogeneous learning curves

and/or static productivity.

2. Relatedly, explicitly modeling both learning and technician heterogeneity leads

to different distributions of skills in comparison to assuming homogeneous learn-
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ing curves and/or static productivity.

3. Inexperienced technicians specialize the most and experienced technicians the

least.

The differences in the solutions to the model that incorporates workforce heterogene-

ity and human learning versus those that do not demonstrates the importance of

incorporating workforce characteristics into the model when applicable. While the

importance of such characteristics have been discussed in the manufacturing litera-

ture, this work is the first to show it for routing problems.

Ultimately, our results reveal the need to balance routing and scheduling when

making assignments for a heterogeneous workforce that learns. Our experiments

and “rules of thumb” identify that the scheduling aspect is particularly dominant

for workers who are “Slow” learners or who are of “Low” initial experience. Rout-

ing dominates the assignments for “Fast” or “Medium” learners coupled with either

“High” or “Medium” initial experience. This rule-based approach can help managers

develop effective daily plans with less computational efforts than what is required by

our optimization.
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CHAPTER 3
MULTI-PERIOD TECHNICIAN SCHEDULING WITH

EXPERIENCE-BASED SERVICE TIMES AND STOCHASTIC
CUSTOMERS

3.1 Introduction

In this chapter, we study the the multi-period technician scheduling problem

with experience-based service times and stochastic customers (MTSP-ESTSC). We

assume that daily demand is not revealed until the day of service. Each day, the

technicians serve the day’s known demand. In this work, we seek to minimize the

expected sum of each day’s total service times over a finite horizon. The objective

accounts for the desire to increase the capacity available to grow the business.

To solve the problem, we propose an approximate dynamic programming

(ADP) approach that, at each stage, solves a mixed integer program (MIP) to as-

sign technicians to tasks. In addition to recognizing the resulting service times in

the current period, the MIP approximates the impact of those assignments on fu-

ture technician service times (the “cost-to-go”) with a forecast of each technician’s

task assignments in the next period. Assignment decisions in the next period are

partially driven by each technician’s service times on each type of task, which are in

turn driven by their experience level on each type of task.To capture this fact, the

forecasting model embedded in the MIP is a function of the assignment decisions in

the current period.

One of the challenges associated with solving optimization models that recog-



49

nize that humans learn is that the quantitative models of human learning proposed

by the psychology community are non-linear. As a result, to solve a MIP at each

stage of the ADP, we adapt an exact reformulation method from the literature that

relies on the fact that the function we use to map experience to service time has a

finite domain.

In this study, we make the following research contributions. First, we present

a Markov decision process (MDP) model for the MTSP-ESTSC. We note that this

model can be adapted to handle cases of worker attrition and new task types. Sec-

ond, we introduce a method for approximating the future value of today’s workforce

assignments, and third, demonstrate how to incorporate this approximation into a

tractable model for making daily decisions.

We demonstrate the value of the proposed solution approach with three exper-

iments. In one experiment, the set of technicians and the set of task types remain the

same over the problem horizon. In the second, we introduce a workforce disruption

in the middle of the horizon in which one technician leaves the workforce and a new

technician is added. The third variant adds an additional task type in the middle of

the horizon. For each of the three problem variants, we compare the proposed solution

approach to a myopic solution approach that views the problem as a single-period

problem, ignoring the impact of current period decisions on future service times. Our

comparisons demonstrate that the proposed solution approach leads to higher-quality

solutions by better positioning technicians to meet future demands.

The remainder of this chapter is organized as follows. Section 3.2 presents



50

a model for the problem. Section 3.3 describes the solution approach. Section 3.4

discuss the design of the experiments, and Section 3.5 presents our computational

results. Finally, Section 3.6 concludes this work and suggests areas of future research.

3.2 Problem Formulation

In this section, we present a formal model for the multi-period technician

scheduling problem with experience-based service times and stochastic customers

(MTSP-ESTSC). We also discuss how the model can be adapted to a number of

problem variants.

Let the set T = {1, 2, . . . , T}, be the set of T days in the planning horizon.

Let K = {1, 2, . . . , K} be the set of technicians, and let R = {1, 2, . . . , R} be the

set of all possible task types. In this paper, we assume that the technicians learn

independently on each task. However, both our model and our solution approach can

easily be modified to account for the transfer of experience on one task to another

particularly as described by Olivella (2007).

Each technician k in K requires a particular time to complete each task r in R.

The service time for a particular task depends on the experience a technician has in

performing the task as well as the technician’s ability to learn from that experience.

We let dr0 be the maximum service time for a task r, and Dk
r be the maximum

productivity rate for technician k performing task r. The parameter Lkr describes

how quickly technician k can learn from experience on task r. The parameter Lkr is

often called a learning rate. In practice, these individual parameters can be estimated
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from data.

Given these parameters, we can determine technician k’s service times for each

task in R at the start of day t using a learning curve. The learning curve requires

a technician’s experience on a given task up to day t. We capture this experience

in the R–dimensional vector Qkt = (qk1t, q
k
2t, . . . , q

k
Rt), where the rth entry qkrt indicates

technician k’s experience with task rth at the start of day t. We let Qk0 represent

technician k’s experience at the beginning of the horizon. Assuming the hyperbolic

learning curve (Nembhard and Osothsilp, 2005), technician k’s service time for task

r on day t is:

dkrt = (Dk
r (

qkrt
qkrt + Lkr

))−1. (3.1)

On a given day t, we seek to serve a set of tasks Nt = {1, 2, . . . , Nt} by

assigning the tasks to individual technicians. We assume that there is a limit C to

the amount of time that a technician can work in a day. We also assume that this

set of tasks becomes known only at the beginning of day t. Our problem objective is

to minimize the expected sum of each day’s service times.

We model the optimization problem as a Markov decision process (MDP).

A decision is made at the beginning of each day during the planning horizon. Let

t = 1, 2, . . . , T be the decision epochs, where day T is the last day in the problem

horizon. The state of the system captures all the information that we need to make

a scheduling decision. In this case, to make task assignments for the day, we must

know the set of tasks that need to be served for the day and the experience of the

technicians at the start of day. Then, the state of the system at the beginning of day
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t is st = {Nt,Qt}.

Given state st, an action is a set of assignments that serves the day t requests.

Let action at(st) = {xkit : i ∈ Nt, k ∈ K}, where binary variables xkit equals 1 if

customer i is served by technician k in day t. For notational convenience, let r(i)

map a task i into the set of task types R. Then, given a day t, a feasible action

satisfies the following constraints:

∑
k∈K x

k
it = 1 ∀i ∈ Nt, (3.2)

∑
i∈Nt x

k
itd

k
r(i)t ≤ C ∀k ∈ K (3.3)

xkit ∈ {0, 1} ∀i ∈ Nt, ∀k ∈ K. (3.4)

Constraints (3.2) ensure that a task is assigned to exactly one technician and

that the task is assigned only once. Constraints (3.3) ensure that all technicians finish

working by the end of the day, and Constraints (3.4) ensure integrality. Let At(st)

be the set of all actions available on day t given state st.

Given that the state is currently st and that action at in At(st) is selected,

a deterministic transition is made to post-decision state sat = {Nt,Qat } by updating

technicians’ experience as follows:

qkr,t+1(st, at) = qkrt +
∑

i∈Nt:r(i)=r x
k
it ∀k ∈ K,∀r ∈ R (3.5)

Equation (3.5) adds each technician’s existing experience the experience gained from

the day t assignments.

Following day t, we observe exogenous information consisting of the new service

requests for day t + 1, denoted as Wt+1. The random vector Wt+1 is such that
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Wt+1 = (w1,t+1, . . . , wŇt+1,t+1) where wi,t+1 is a random variable representing the

customer type of the ith service request on day t + 1 and Ňt+1 is a random variable

representing the random number of requests on day t+ 1, neither of which is known

prior to day t + 1. Following day t, we observe the exogeneous information for day

t+ 1 and transition to decision epoch t+ 1. Decision epoch t+ 1 requires a transition

from post-decision state sat to pre-decision state st+1 = {Nt+1,Qt+1}, where Nt+1 is

the realization of the exogenous process for day t+ 1. In this transition, technicians’

experience remain unchanged, thus Qt+1 = Qat . The technicians’ productivity for

day t + 1 can be calculated according to the learning curve given the technicians’

experience levels.

At decision epoch t, given state st and action at(st), a transition from pre-

decision state sk to post-decision state sak results in a contribution

C(st, at) =
∑
k∈K

∑
i∈Nt

xkitd
k
r(i)t ∀at ∈ At(st), (3.6)

which is the total service time to complete all tasks on day t. The problem objective

is then minπ∈ΠE
[∑T

t=1C(st, δ
π
t (st))

]
, where π is a policy that determines actions

for all days t over the problem horizon T , Π is the set of all policies, and δπt (st) is a

decision rule specific to policy π that maps the state st to an action at.

3.2.1 Problem Variants

We next discuss how the model presented above can accommodate two problem

variants: (1) where there is attrition and hiring in the technician pool, and, (2) when

there is a new task type to be serviced. First, we can model that technician k leaves the
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workforce and is replaced by a new technician, k′, on day t by setting qkr,t(st, st) = Ik
′

r ,

where Ik
′

r is the initial experience level of technician k′ on tasks of type r. For the

second variant, wherein a new task type (labeled R+ 1) is to be serviced starting on

day t, we expand the state to include the experience levels qkR+1,t,∀k ∈ K starting on

day t. We can then initialize this experience level, qkR+1,t to whatever the appropriate

value should be for each technician and the algorithm can proceed as before.

3.3 Solution Approach

Given our assumptions, an optimal policy can be found by using the well

known Bellman equation and backward dynamic programming. The general form of

the Bellman equation and the form sufficient for our problem is given by setting

V (st) = min
a∈At(st)

{C(st, a) + E [V (st+1) | st, a]}. (3.7)

While we can easily state the Bellman equation for our problem, because of the

need to capture each day’s set of requests in the state space, the problem is far too

large for an exact solution approach. Instead, we introduce an approximate dynamic

programming (ADP) approach that approximates the cost-to-go, the second term

in Equation (3.7), using a forecaste of technician assignments for one day in the

future. Using this approximation, we then step forward in time. Analogous to rollout

algorithms (see Goodson et al. (2015)), by stepping forward in time, we need only

find actions for states that are realized. In the remainder of this section, we first

present our approximation of the cost-to-go. We then demonstrate how to use this

approximation to solve an approximate form of the Bellman Equation, Equation (3.7).
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Finally, we discuss our forward ADP algorithm.

3.3.1 Cost-to-Go Approximation and Solving the Approximate Bellman Equation

For each technician, this forecast is based on the technician’s previous assign-

ments and a forecast of the next day’s tasks. Specifically, for each technician and

each customer type, we first predict the demand requests for the next period with an

exponential smoothing forecasting: F k
rt = αF k

r,t−1 + (1 − α)Akr,t−1, where F k
r,t−1 and

Akr,t−1 are the numbers of predicted and actual type r demand requests assigned to

technician k for period t− 1, respectively, and F k
rt is the forecasted number of assign-

ments of task type r to technician k on day t. The parameter α is the smoothing

factor. Given an assignment of technician k for each task i on day t − 1, xki,t−1, we

can compute Akr,t−1 as
∑

i∈Nt−1:r(i)=r x
k
i,t−1.

With the forecasted number of assignments for day t, F k
rt, for each technician

k and task type r, we can write an approximate Bellman equation as:

V̂ (st−1) = min
a∈At(st−1)

{C(st−1, a) +
∑
k∈K

∑
r∈R

F k
rtd̂

k
rt}, (3.8)

where d̂krt is the forecasted service time on day t for task type r and technician k.

Similar to Akr,t−1, for technician k and task type r, d̂krt can be calculated using the

assignments for day t− 1 as:

d̂krt = (Dk
r (

qkr,t−1 +
∑

i∈Nt−1:r(i)=r x
k
i,t−1

qkr,t−1 +
∑

i∈Nt−1:r(i)=r x
k
i,t−1 + Lkr

))−1. (3.9)

We can rewrite Equation (3.8) as a math program as follows:
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(F) min
∑
k∈K

∑
i∈Nt−1

xki,t−1d
k
r(i),t−1 +

∑
k∈K

∑
r∈R

F k
rtd̂

k
rt

subject to (3.2), (3.3), (3.4) ,

F k
rt = αF k

r,t−1 + (1− α)
∑

i∈Nt:r(i)=r

xki,t−1 ,∀k ∈ K,∀r ∈ R, (3.10)

d̂krt = (Dk
r (

qkr,t−1 +
∑

i∈Nt−1:r(i)=r x
k
i,t−1

qkr,t−1 +
∑

i∈Nt−1:r(i)=r x
k
i,t−1 + Lkr

))−1,∀r ∈ R, ,∀k ∈ K, (3.11)

xki,t−1 binary ,∀k ∈ K,∀i ∈ Nt−1.

(3.12)

The objective is to minimize the sum of total service time and the forecasted

service time for the next period. As presented earlier, Constraints (3.2) to (3.4)

define feasible actions. Constraints (3.10) are replaced with F k
rt =

∑
i∈Nt:r(i)=r x

k
i,t−1

when t − 1 = 1. Constraints (3.11) determine the service time for the forecasted

assignments.

Model (F) is non-linear. We use the reformulation presented by Hewitt et al.

(2015) to overcome this challenge. The reformulation takes advantage of the fact that

the task assignments and thus experience are discrete and that the maximum number

of tasks of each type is known for a given day t − 1. Thus, we can enumerate the

set of potential forecasted service times for each technician on each customer type for

day t. We describe the steps of the enumeration in Algorithm 3.1.

To present the reformulation, we first present some additional notation. We

let zkjr,t−1 be a binary variable indicating whether technician k did j tasks of type r

on day t − 1. Let d̄kjrt represent technician k’s estimated service times for serving
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tasks of type r on day t having done j jobs of task r on day t − 1. Then, having

completed j tasks of type r on day t− 1 and given d̄kjrt for technician k on task type

r for day t, the total time required for k to complete the forecasted number of tasks

of type r on day t is ST
kj

rt = d̄kjrtF
k
rt. We introduce ST krt as a decision variable that

gives the total service time of technician k on tasks of type r for day t. Finally, let

Mt−1 = (m1,t−1,m2,t−1, . . . ,mR,t−1) be a vector of the number of each task type r for

day t− 1. Then, the reformulation model is as follows:

(R) min
∑
k∈K

∑
i∈Nt−1

xki,t−1d
k
r(i),t−1 +

∑
k∈K

∑
r∈R

ST krt

subject to (3.2), (3.3), (3.4), (3.10) ,

ST krt =

mr,t−1∑
j=1

ST
kj

rt z
kj
r,t−1 ,∀r ∈ R,∀k ∈ K, (3.13)

mr,t−1∑
j=1

jzkjr,t−1 =
∑

i∈Nt−1:r(i)=r

xki,t−1 ,∀r ∈ R,∀k ∈ K, (3.14)

mr,t−1∑
j=1

zkjr,t−1 = 1 ,∀r ∈ R,∀k ∈ K, (3.15)

zkjrt binary ,∀r ∈ R,∀k ∈ K, j = 1, . . . ,mrt.

(3.16)

Constraints (3.13) assign one forecasted total service time for each technician on each

task type for day t. Constraints (3.14) ensure that the next day’s forecasted total

service time of a technician on each task type corresponds to the number of this type

of customers he/she performed today. Constraints (3.15) ensure that each technician

is assigned exactly one forecasted total service time for each task type on each day.
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3.3.2 Forward Approximate Dynamic Programming Algorithm

Algorithm 3.1 presents our forward ADP algorithm for solving instances of the

MTSP-ESTSC. Unlike the traditional backward dynamic programming algorithm,

Algorithm 3.1 steps forward in time. Stepping forward in means offers the advantage

that we need only solve the Bellman equation for those states that are actually visited.

However, stepping forward in time also means that we have not computed values

for the cost-to-go in the Bellman equation. We instead approximate the cost-to-

go in the manner described in the previous section. Using that approximation and

the previously described reformulation, the approximate Bellman equation given in

Equation (3.8) can be solved using the math program given in R.

Algorithm 3.1 outputs a series of actions, or technician assignments, one for

each state visited over the planning horizon. The algorithm takes as input the set of

technicians, their learning parameters, and the set of task types. Line (3) initializes

the state by setting each technicians experience on each task type to that technician’s

given initial experience.

Then, the algorithm seeks to determine the set of assignments for each techni-

cian for each day. At the beginning of each day, the day’s service requests are observed

(Line (5)). Then, Lines (6) to (13) enumerate the possible total forecasted service

times for day t + 1. With these enumerated values, Line (14) solves the resulting

instance of math program R.
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Algorithm 3.1 Forward Approximate Dynamic Programming Algorithm

1: Output: Assignments of technicians over the planning horizon

2: Input: Technician K, customer type R, parameters of learning functions Lkr , D
k
r ,

Ikr for each technician k and each task type r

3: qkr1 = Ikr ,∀r ∈ R,∀k ∈ K

4: for t = 1 to T do

5: Observe Nt

6: for r = 1 to R do

7: for j = 1 to mrt do

8: qkjr,t+1 ← qkrt + j

9: d
kfj

r,t+1 ← (Dk
r (

qkjr,t+1

qkjr,t+1+Lkr
))−1

10: F
kj

r,t+1 = αF k
r,t + (1− α)j

11: ST
kj

r,t+1 = F
kj

r,t+1d
kfj

r,t+1

12: end for

13: end for

14: Solve Model (R) resulting in the action at

15: Update technician productivity based on experience gained on day t according

to Equations (3.1) and (3.5)

16: end for
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3.4 Experimental Design

In this section, we describe the instances that we create to computationally

test the value of our solution approach. Our instances all involve one of 30 workforces

of five technicians with heterogeneous learning parameters. In particular, the learn-

ing rate and steady state productivity rate are sampled from a multivariate normal

distribution with the mean and covariance matrix derived from empirical data by

Nembhard and Osothsilp (2005), given in Table 3.1.

µT =

( logD log I logL F

1.448 1.963 2.0446 2.269

)

Σ =



logD log I logL F

logD 0.0045 0.0167 0.0191 −0.0214

log I 0.0167 0.4621 0.2443 0.2380

logL 0.0191 0.2443 0.1905 0.2326

F −0.0214 −0.2380 −0.2326 0.3638


Table 3.1: Mean and covariance of workforce parameters

For each workforce, we consider four levels of capacity (C). These levels are

seven, eight, nine and 10, where seven is the tightest capacity that ensures feasibility.

These levels represent the maximum amount of time that a technician can work in a
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day. We also assume four different cardinalities for the set of task types R. We refer

to these levels as task diversity. We consider four levels of task diversity (R): five,

10, 15, and 20. With 30 workforces, four levels of workforce capacity, and four levels

of task diversity we have 480 instances in total.

We test the 480 instances on 120-day horizons. To limit the number of factors

in our experimental design, we assume 50 customer requests per day. For each of the

480 instances, we generate 100 trials of the 120-day horizon. To generate a trial, for

each day, each of the 50 requests is randomly assigned a task type using a discrete

uniform distribution.

We also conduct experiments regarding the two problem variants discussed

above. For the first, we model a disruption in the workforce wherein one technician

leaves the workforce and a new technician is hired as a replacement in the middle

of the planning horizon. Specifically, Technician 1 is replaced with a new technician

with initial experience level on all types of tasks on day 61. Specifically, on day 61,

the transition function for Technician 1 is q1
r,61(s60, a60) = I1

r for every r in R.

For the second variant, we consider the situation in which a new task type is

introduced in the middle of the planning horizon. We assume that all technicians are

inexperienced on this new task type, and we set their experience levels on the new

task type to be one on the day of the introduction (day 61). Specifically, on day 61,

the transition function for the new task type is qkR+1,61(s60, a60) = 1 ∀k ∈ K. In both

the case of workforce disruption and the new task type, we use capacity levels of nine,

10, 11, and 12 to ensure the feasibility.
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With these instances, we consider three separate experiments. In all three

experiments, we seek to demonstrate the value of our method for approximating the

future value of current decisions. In the first set of experiments, we consider the 480

instances described above and solve each with both the proposed ADP approach as

well as an approach that approximates the Bellman equation by setting the second

term of Equation (3.7) to 0. The resulting daily optimization problem can then be

solved by solving a simplified version of the math program R. The second and third

experiments are analogous to those just described except that we solve the workforce

disruption and new product variants, respectively.

All computations are performed by Gurobi 5.6 with Python 2.7 interface on

Intel Xeon processor running at CentOS 6.3. In addition, for all experiments, we

set the smoothing factor (α) to α = 0.9. This value was chosen after examining the

results of various choices of α over many different instances.

3.5 Computational Analysis

In this section, we present the results of our computational experiments. We

do not report runtimes as the math program R solves nearly instantaneously and is

thus capable of providing daily technician assignments in a timely fashion.

3.5.1 The Value of Incorporating Information about Future Requests

In this first experiment, we solve the 120-day MTSP-ESTSC with the ADP

algorithm and the previously described myopic approach. Figures 3.1 and 3.2 present

the results of the experiment. The figures present the average daily differences be-
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(a) Diversity=5 (b) Diversity=10

(c) Diversity=15 (d) Diversity=20

Figure 3.1: Average daily gaps by task diversity (%)

tween the two solution approaches, averaged over all capacity and diversity levels,

respectively. Specifically, for both ADP and myopic approaches, we record the total

service time for each day of the 120-day horizon for each trial (using common trials

between the two approaches). We record these values as Objtm and Objtp for the my-

opic and ADP approaches, respectively. We then compute the objective gap on day

t as gaptm p =
objtm−objtp

objtp
× 100% for each trial. For Figure 3.1, for each diversity level,

the results are presented for each diversity level averaged over all capacity levels.

Analogously, for Figure 3.2, the results are presented for each capacity level averaged

over all diversity levels

For all task diversities and all capacity levels, the average daily gap follows a
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similar trend. From Figures 3.1 and 3.2, we see a sharp increase from negative to

positive gaps for the first three to eight days depending on the diversity levels. The

myopic approach focuses on optimizing only current period service times while the

ADP algorithm balances current and next periods so as to achieve the best assignment

over both current and next periods. Then, the objective values on day one is not

optimal with the ADP algorithm. In addition, there is no history information on day

one, so the ADP approach has no advantage over the myopic approach. The above

two reasons explain the negative gap on day one. As it accumulates more information

over time, the ADP approach shows an increasing advantage, which is reflected by the

sharp increase of the positive gaps between two approaches. According to learning

curves, most learning effects occur during the early periods, which corresponds to

the larger gaps between the myopic and ADP earlier in the horizon. Then, as the

technicians accumulate more experience and approach the plateau of the learning

curves, the average daily gaps decrease slowly to a relatively stable level.

Comparing the performance across the task diversities (Figure 3.1), we see

sharper changes with lower task diversity and milder changes with higher task di-

versity. With lower task diversity, there are more tasks of each type, and experience

accumulates much more quickly. Thus, learning occurs intensely over a short period.

On the contrary, with higher task diversity, experience increases more slowly due to

fewer tasks of each type.

We also study the distribution of the average daily gap among instances. Table

3.2 shows the numbers of instances with positive, negative and zero average daily gap
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(a) Capacity=7 (b) Capacity=8

(c) Capacity=9 (d) Capacity=10

Figure 3.2: Average daily gaps by capacity (%)
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for all diversities and capacities, respectively. Results indicate that there are more

instances with positive gap than those with negative gap and two approaches are

more likely to perform the same with loose capacity. This result is not surprising as,

when technicians are allowed to serve more customers per day, the faster learners and

more experienced technicians are assigned to more customers. Thus, both approaches

make similar assignments.

Positive gap Negative gap Zero gap

R=5 R=10R=15R=20R=5 R=10R=15R=20R=5 R=10R=15R=20

C=7 1074 1055 926 1237 455 518 599 365 1471 1427 1475 1398
C=8 1104 907 793 1112 306 517 586 385 1590 1576 1621 1503
C=9 977 836 761 1065 348 511 572 352 1675 1653 1667 1583
C=10773 792 760 1064 401 501 573 361 1826 1707 1703 1575

Table 3.2: Distribution of the average daily gaps

3.5.2 Responding to a Disruption in the Workforce

In this subsection, we present the results of the experiments designed to iden-

tify the impact of a disruption in the workforce. Figure 3.3 illustrates the changes

of average daily gap by diversity level. The gaps are computed analogously to those

presented in Figures 3.1 and 3.2. The general trends of the average daily gap changes

are similar to those in the previous experiments, except for the temporary fluctu-

ations on and after the day in which one technician departs and a new technician

joins the workforce (day 61-70). The performance of the ADP approach after the



67

disruption mimics its performance at the beginning of the planning horizon, where

we see a transition from a negative to a positive daily gap as it positions this new

technician for future demands by accepting longer service times in the near-term.

(a) Diversity=5 (b) Diversity=10

(c) Diversity=15 (d) Diversity=20

Figure 3.3: Average daily gaps by task diversity (%) with workforce fluctuation

Next, we study the new technician’s workload (i.e. Technician 1 in our exper-

iment). Figures 3.4(a) and 3.4(b) present the average workload of the new technician

(as a percentage of the 50 tasks served) over the horizon (days 61-120) and on the

day of disruption (day 61). We see that in both cases the ADP algorithm assigns

more work to the new technician than the myopic approach does. Just as at the
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beginning of the planning horizon, the ADP algorithm is positioning the new tech-

nician to have sufficient experience for customer requests on future days, something

the myopic approach ignores. In fact, in some cases the new technician does more

than the average (20%) of the work. We hypothesize that in these cases the ADP

approach is aggressively building up the experience level of the new technician.
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(b) On day of disruption

Figure 3.4: Workload of new technician

We also note that the lower the task diversity the larger the negative gaps

when introducing the new technician (see the deep plunge on day 61). With a lower

task diversity there are more customers for each task type, which in turn leads to

technicians rapidly accumulating enough experience to operate at their maximum

productivity. As such, there is a greater difference in the service times between the

new technician and the existing workforce on the day the new technician begins.
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Yet, as discussed above, the ADP approach assigns more work to the new technician

than the myopic approach to better prepare the new technician for future customer

requests. This impact of diversity is most apparent at the lowest level (R=5). Here

we see the greatest difference in the workload assigned to the new technician as

the myopic approach is focused solely on leveraging the productivity of the existing,

highly-experienced technicians.

3.5.3 Responding to a New Task Type

We next present results for the experiments that examine the impact of in-

troducing a new task. Figure 3.5 illustrates average daily gaps by day and diversity.

The gaps are computed analogously to those in Section 3.5.1. We notice that the

general trends of the average daily gap remain the same as seen in Section 3.5.2. As

with attrition, after a new task type is introduced the ADP algorithm accepts longer

service times to better position the workforce to handle customer requests for the new

task type in the future.



70

(a) Diversity=5 (b) Diversity=10

(c) Diversity=15 (d) Diversity=20

Figure 3.5: Average daily gaps by task diversity (%) with a new task type

We next examine the distribution of experience in tasks of the new type for

each approach (the myopic and the ADP). Specifically, for each workforce and each

instance, we calculate the percentage of times tasks of the new type are performed by

the technician who performs them the most often (who we will call the most frequent

technician). Similarly, we calculate the percentage of times tasks of the new type are

performed by the technician who performs them the second most often (and third

most, fourth most, fifth most). We report in Figure 3.6 the percentage of times for

each approach and diversity level tasks of the new type are performed by the most

frequent technician. As these new type tasks are very rarely (e.g. < .65% of the time)
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performed by the technician who performs it the third (or fourth or fifth) most often,

one can reasonably conclude that when the most frequent technician does not perform

a task of the new type it is performed by the second most frequent technician.
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Figure 3.6: How often most frequent technician performs tasks of new type

What we observe in Figure 3.6 is that both approaches favor having one indi-

vidual specialize on tasks of the new type and that specialization is directly correlated

to the diversity of the instance (i.e. the number of different task types). However,

the ADP approach also builds proficiency in the new task type in a second technician

and does so more often when diversity is low. Similar to the discussion above, we

hypothesize this is because at lower diversity levels technicians can quickly develop

proficiency in the original task types and thus it is less impactful to divert two of

them towards building proficiency in the new task type.
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3.6 Conclusions

In this chapter, we study the scheduling problem of assigning tasks to tech-

nicians wherein the tasks to perform each day are not known until the day they

are to be done. Such a problem can be modeled as a daily, task assignment prob-

lem. However, we also model that technicians learn; i.e. service times decrease as

technicians gain experience performing tasks. As such, we model the problem as a

multi-period problem wherein each day’s decisions are made with an eye to building

capacity (via experience accumulation) for the future. This problem, which we call

the multi-period technician scheduling problem with experience-based service times

and stochastic customers is new to the literature. We present a Markov decision pro-

cess model for the problem and discuss how it can be adapted to disruptions in the

workforce and the introduction of new task types to service.

We present an approximate dynamic programming-based solution approach for

this model that repeatedly solves optimization problems to make daily assignments

that recognize the impact of technicians gaining experience on future service times.

The optimization problem approximates the cost-to-go with forecasts of the next

day’s assignments for each technician and the resulting estimated time it will take to

service those assignments given the current day’s decisions. As quantitative models of

human learning are non-linear we use a technique from the literature to reformulate

these optimization problems to mixed integer programs which can then be solved

(nearly) instantaneously.

We demonstrate the value of both the model and the solution approach with
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an extensive computational study. We benchmark the performance of the model and

ADP-based solution approach against a myopic approach that models the problem

as a single-period problem, ignoring the impact of experience gained today on service

times on later days. We see that across all variants (the baseline problem, disruption

in workforce, and introduction of new task types) the ADP-based approach outper-

forms the myopic approach by sacrificing solution quality in a few near-term periods

in order to better position the workforce for future customer service requests.
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CHAPTER 4
APPROXIMATE DYNAMIC PROGRAMMING APPROACH WITH

BASIS FUNCTION

4.1 Introduction

The proposed cost-to-go approximation in Chapter 3 estimates the value of

experience accumulation only one day into the future. Motivated by the promis-

ing results, we propose a different approximate dynamic programming method for

the Multi-Period Technician Scheduling with Experience-based Service Times and

Stochastic Customers. Instead of the lookahead one-day, we use a parameterized lin-

ear model to approximate the value function of accumulated experience. The linear

model uses a basis function that maps the state into a small number of features. Im-

portantly, the basis function reduces the large number of state variables into a smaller

number. Our basis function value function approximation reflects essential informa-

tion in the state variable, such as each technician’s aggregate experience levels over

all task types. To achieve a good approximation of the cost-to-go, we are facing two

challenges. The first important step is to construct a set of basis functions that reflect

important elements of the state variable and capture essential information about the

cost-to-go. The second step is the recursive update mechanism of the parameter of

the basis function. The parameters of the basis function are determined using an

offline simulation proposed by Powell (2011) and it is analogous to estimating the pa-

rameters in a linear regression. With the new method, we are able to take advantage

of future information over the whole planning horizon.
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In this study, we make the following research contributions. First, we develop

a tractable ADP approach that uses a parameterized linear model to approximate

the value function for the Multi-Period Technician Scheduling with Experience-based

Service Times and Stochastic Customers. Our approach is integrating future infor-

mation over the whole planning horizon into current period decision-making. Second,

we provide computational experiments illustrating the value of integrating more fu-

ture information. We compare the proposed ADP solution approach to the myopic

solution approach. Our comparisons demonstrate that the ADP approach with linear

basis function outperforms the myopic solution approach for most of the instances.

The remainder of this chapter is organized as follows. Section 4.2 reviews

related literature in the field of approximate dynamic programming. Section 4.3

describes the solution approach. Section 4.4 discusses the design of the experiments

and presents our computational results. Finally, Section 4.5 concludes this work.

4.2 Literature Review

In the past decade, there has been an increasing interest in approximate dy-

namic programming. Sutton and Barto (1998) and Powell (2011) provide an intro-

duction of this field and a review of the literature.

The most popular strategy adopted for value function approximation is via

linear basis functions. There are two major challenges in this method. First, we need

to construct a set of basis functions that capture important quantities from the state

variable. Because the basis functions are highly problem-specific, choosing the right
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set of basis functions is more of an art than science. For example, Maxwell et al.

(2010) study an ambulance redeployment problem in an emergency medical service

system. They approximate the value function as a set of basis functions including

unreachable calls, uncovered call rate, missed call rate, future uncovered call rate, and

future missed call rate. Once a set of basis functions is chosen, a number of analytical

methods can be used to tune the parameter. Recursive least squares is a valuable

tool often used in iteratively updating functional approximation. Lagoudakis et al.

(2002) and Bradtke and Barto (1996) present least squares methods in the context

of reinforcement learning. Nedić and Bertsekas (2003) describes the use of least

squares equation with a linear value function approximation using policy iteration.

We also use this method in our work to update our value function approximations.

Other researchers including Schweitzer and Seidmann (1985), de Farias and Van Roy

(2003), Adelman and Mersereau (2008) use linear programming approach to get the

good estimate of parameters.

Approximate dynamic programming has been widely applied in the fields of

inventory management (Godfrey and Powell, 2001), option pricing (Tsitsiklis and

Van Roy, 2001), network revenue management (Adelman, 2007, Zhang and Adelman,

2009), game playing (Yan et al., 2004), and vehicle routing (Novoa and Storer, 2009,

Kleywegt et al., 2004). We are the first to solve the multi-period dynamic technician

scheduling problem with learning using the value function approximation. The most

closely related literature is the ADP’s applications in assignment problem and vehicle

routing problem, because both of them involve the scheduling component.
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Godfrey and Powell (2002) introduce an adaptive dynamic programming al-

gorithm that depends on estimating separable nonlinear approximations of value

functions for stochastic dynamic resource allocation problems. Spivey and Powell

(2004) propose an adaptive, nonmyopic algorithm that involves linear value function

approximations and iteratively solving sequences of assignment problems to solve dy-

namic assignment problems. Topaloglu and Powell (2006) consider a stochastic and

time-dependent version of the min-cost integer multicommodity-flow problem that

arises in the dynamic resource allocation context. They propose an iterative, adap-

tive dynamic-programming-based methodology that makes use of linear or nonlinear

approximations of the value function. He et al. (2012) also use the piecewise linear

approximation ADP algorithm in their dosage control problem in the COH treatment

to overcome the curses of dimensionality in Markov decision processes. Their numeri-

cal experiments indicate that the piecewise linear approximation ADP algorithms can

obtain policies that are very close to the one obtained by the MDP benchmark with

significantly less solution time. Papageorgiou et al. (2014) develop an ADP frame-

work for generating good solutions quickly to a class of maritime inventory routing

problem with a long planning horizon. Their algorithm solves MIP subproblems and

uses separable piecewise linear continuous value function approximations and requires

no off-line training.

One major difference between our work and the aforementioned literature is

that the general shape of their value functions is usually known. Thus, the specific

linear or nonlinear value function approximation methods are quite effective. How-
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ever, the assumption of the special structure does not apply to our value function. In

addition, our previous testing results demonstrate that the piecewise linear approx-

imation does not work for our problem. This is also the challenge of our problem,

because it is difficult to accurately choose an appropriate form of value function to

approximate.

4.3 Solution Methodology

As mentioned in the previous section, most literature on value function ap-

proximation is based on the special structure (convexity or concavity) of the value

function. Special structure is beneficial because it is easy to find an appropriate form

of the value function approximation. However, this assumption does not apply to our

value function, we can only assume the general form of our value function. In this

section, we first use three counter examples to show that the value function of our

problem is not convex in general either on an individual level or on aggregate level.

Then, we discuss the detail of the basis function.

4.3.1 Counter Examples

Because a technician’s service time per task decreases as the technician gains

experience, it is intuitive to think that a technician’s total service time will decrease

as a technician’s experience increases. However, with the following examples, we will

show that the value function is not necessarily monotonically decreasing either on an

individual level or on aggregate level. That is, the total service times is not decreasing

as the experience level increases.
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It is helpful if we can minimize the number of parameters that we need to

tune during the value function approximation. Thus, we would prefer to aggregate

experience levels over all types of tasks and over all technicians. Example 4.3.1

shows that the total service time of all technicians on all task types is not necessarily

decreasing on total experience of all technicians on all task types.

Example 4.3.1. Suppose we have two technicians and two tasks. The initial setting

of the learning parameters are described as follows:

L D
Task 1 Task 2 Task 1 Task 2

Technician 1 1 1 1 0.5
Technician 2 1 1 1 0.5

Table 4.1: Initial setting of the learning parameters

where L is the learning rate and D is the steady state productivity.

We view the total service times of all technicians on all task types as a function

of the total experience of all technicians on all task types. Consider the current state

of the technicians’ experience level on each task type summarized in Table 4.2:

Task 1 Task 2 Total ST
Technician 1 10 3 1.1
Technician 2 5 9 2.22

Table 4.2: Current state
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where column 2 and 3 demonstrate each technician’s experience level on every task

type and the last column (Total ST) represents each technician’s total service times

on all task types.

Then, the total experience level for all technicians on all task types is 27

(=10+3+5+9). The optimal solution is to assign task 1 to technician 1 and assign

task 2 to technician 2 with the total service times of 3.32 (=1.1+2.22).

Then, consider a different state summarized in Table 4.3:

Task 1 Task 2 Total ST
Technician 1 9 7 1.11
Technician 2 7 8 2.25

Table 4.3: State with experience increase

Now, the total experience level for all technicians on all task types is 31. The

optimal solution is to assign task 1 to technician 1 and assign task 2 to technician

2 with the total service times of 3.36 . We can conclude that the total service time

for all technicians on all task types is not necessarily decreasing on total experience

levels.

Then we consider the case that, for each technician, the total service time on

all task types is a function of each technician’s total experience on all task types.

Example 4.3.2 shows that for individual technician, the total service time on all task

types is not necessarily decreasing on his/her total experience over all task types.
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Example 4.3.2. Assume the same setting in Example (4.3.1). Consider the current

state summarized in Table 4.4:

Task 1 Task 2 Total exp Total ST
Technician 1 10 3 13 1.1
Technician 2 5 4 9 2.5

Table 4.4: Current state

where column 2 and 3 demonstrate each technician’s experience level on every task

type, and column 4 (Total exp) and 5 (Total ST) represent each technician’s total

experience levels and total service times on all task types, respectively.

Then, the optimal solution is to assign task 1 to technician 1 and assign task

2 to technician 2 with the total service times of 1.1 and 2.5 for technician 1 and 2,

respectively.

If we increase technician 1’s experience on task 2 by 2 units, then the new

state is summarized in Table 4.5:

Task 1 Task 2 Total exp Total ST
Technician 1 10 5 15 3.5
Technician 2 5 4 9 0

Table 4.5: State with experience increase
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Now, the optimal solution is to assign tasks 1 and 2 to technician 1 with the

total service times of 3.5 and 0 for technician 1 and 2, respectively. Thus, we show

that the total service time of an individual technician is not necessarily decreasing on

his/her experience level.

Finally, example 4.3.3 shows that, for each task type, the total service time for

all technicians is not necessarily decreasing on total experience levels of all technicians.

Example 4.3.3. Assume the same setting as in Example (4.3.1). For each task type,

we view the total service times of all technicians as a function of the total experience

of technicians on this task type. Consider the current state summarized in Table 4.6:

Technician1 Technician 2 Total Exp Total ST
Task 1 10 5 15 1.1
Task 2 3 9 12 2.22

Table 4.6: Current state

Then, the optimal solution is to assign task 1 to technician 1 and assign task

2 to technician 2 with the total service times of 1.1 and 2.22 for task 1 and 2, respec-

tively.

Then, we change both technicians’ experience with the new state summarized

in Table 4.7:
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Technician 1 Technician 2 Total Exp Total ST
Task 1 9 7 16 1.11
Task 2 7 8 15 2.25

Table 4.7: State with experience increase

Now, the optimal solution is to assign task 1 to technician 1 and assign task 2 to

technician 2 with the total service times of 1.11 and 2.25 for tasks 1 and 2, respectively.

In this example, although both technicians gain experience, it is the distribution of the

experience among different types of task that causes the total service time to increase.

We can conclude that, for each task type, the total service time for all techni-

cians is not necessarily decreasing on total experience levels of all technicians.

The above counter examples show that the value function is not convex in general on

technicians’ experience either on an individual level or on aggregate level. Therefore,

we assume the value function as a general form.

4.3.2 Value Function Approximation

From previous discussion, we notice that the value function in our problem is

not convex. However, assuming certain form of the value function will take advantage

of the information from state variables and help us better approximate the value

function. More importantly, in our problem, for any time period and any technician,

we do not need to approximate the cost-to-go for every experience level because each

technician’s experience level will be only in a range of values and a huge portion of
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the state space will not be visited (Ulmer et al., 2014). Our choices should lead us

to be in a specific and continuous range of experience levels. Over that range, a

linear approximation would be valid. Our way of constructing the basis function, as

illustrated in detail in Section 4.3.2.1, takes advantage of this special character of our

problem. Thus, we choose a basic adaptation of approximate value iteration using

a linear basis function to approximate our value function. The strategy is popular

because it is easy to implement and the basis function will reduce potentially large

number state variables into a small number of features.

We propose a dynamic programming methodology that uses a linear model

with basis function V̂t to approximate the value function Vt. We consider the value

function approximation of the following form:

V̂t(st) =
J∑
j=1

θjtφjt(st), ∀t ∈ T , (4.1)

where each φjt(st) is a basis function that maps a state st ∈ S to a real number and

each θjt is a real-valued weight, or parameter, associated with a basis function. Then

equation (3.7) can be written as

V (st) = min
at∈At(st)

{C(st, at) +
J∑
j=1

θjtφjt(st, at)}. (4.2)

To achieve a good approximation of the cost-to-go, the second term in Equa-

tion (3.7), we are facing two challenges. The first important step is to construct a set

of basis functions that reflect important elements of the state variable and capture

essential information about the cost-to-go. We discuss our choice of basis functions
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in section 4.3.2.1. The second step is the recursive update mechanism of the param-

eter θ. In section 4.3.2.2, we describe an offline simulation procedure to determine

parameters θ1t, . . . , θJt.

4.3.2.1 Approximating the Value Function

In our problem, each technician’s experience level is the most important com-

ponent because it depends on the assignment from previous periods and it also im-

pacts the assignment in the future periods. It is the connection between current

period and future. Thus, connecting the cost-to-go with the information of techni-

cians’ experience level is fundamental in our value function approximation. Therefore,

at each decision epoch t, we define the basis functions φ1t(·), . . . , φJt(·), each of which

maps a state st = {Nt,Qt} to a real number, based on each technician’s total ex-

perience levels on all types of tasks by the end of the day. For any state st ∈ S,

let φ1t(st) = 1. Then, θ1t serves as a location parameter. At each decision epoch t,

for each technician k, we construct a basis function that reflects the total experience

levels of this technician on all types of tasks:

φ1+k,t =
∑
r∈R

qkr,t+1,∀k ∈ K,∀t ∈ T , (4.3)
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where qkr,t+1 is the experience level of technician k on type r task by the end of day t.

Then (3.7) can be written as

(P) Ṽ n
t (Qnt ,N n

t ) = min
at∈δπt (st)

∑
k∈K

∑
i∈Nt

xkitd
k
r(i)t +

∑
k∈K

θn−1
k+1,t

∑
r∈R

qkr,t+1 + θn−1
1t

s.t. (3.2), (3.3), (3.4),∑
r∈R

qkr,t+1 =
∑
r∈R

qkrt +
∑
i∈Nt

xkit,∀k ∈ K. (4.4)

where constraints (4.4) state the transition from the pre-decision state to the post-

decision state.

4.3.2.2 Offline Simulation Procedure

Once we have a set of basis functions, our next challenge is to devise a method

to determine the parameters of the basis functions. We turn to an offline simulation

discussed in Powell (2011). The simulation is a double pass version of approximate

value iteration. Algorithm 4.1 summarizes the proposed solution approach, which

consists of a forward pass, a backward pass, and a recursive updating procedure. In

Step 1, we initialize the parameters of the basis function θ0. Then, Step 2 describes

the forward pass. Given a request realization, starting from the initial state (Step

2(a)), the forward pass creates a trajectory of states, actions, and outcomes using

the current parameter (θn) and the MDP model (Step 2(b) and 2(c)). The forward

pass steps through the whole planning horizon. Then, in Step 3, we step backward

through time, updating the cost-to-go of being in a state using information from the

same trajectory in the future. Finally, in Step 4, a recursive updating procedure (U)

follows the forward and backward pass. In this procedure, we recursively update the
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parameters of the basis functions using the information of the current parameters, the

post-decision states visited in the current iteration, and the calculated cost-to-go. We

perform a total of N iterations. We will discuss the detail of the updating procedure

in section 4.3.2.3.

We tested two methods to initialize θ0. The first method is to set each element

of θ0 to be zero, which is the common practice in the literature (Powell, 2011). The

second method samples the features-value pairs by solving the problem with the

myopic algorithm and uses regression to get the initial values of θ0. Testing results

show that the second method provide better solutions. Thus, we use the regression

on the myopic algorithm solutions to initialize θ0.

We choose the basis function based on the post-decision state variables be-

cause it provides tremendous computational advantages. Using the post-decision

state variable avoids the need to approximate the expectation explicitly within the

optimization problem (Powell, 2011).

4.3.2.3 Recursive Least Squares Regression

During the forward and backward pass, the simulation uses the Monte Carlo

samples of the service requests to update the value function approximation. Suppose

we are at iteration n of Algorithm 4.1. {N̂ n
t , t ∈ T } is the sequence of request realiza-

tions and {V̂ n
t , t ∈ T } is the sequence of value-function approximations. {Qnt , t ∈ T }

is the sequence of system states generated by solving the following problems with the
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Algorithm 4.1 The Approximate Dynamic Programming Algorithm

1. Initialization: Initialize θ0 . Set iteration counter n = 1.

2. Forward Pass:

(a) Initialize the formal pass: initialize Qn1 to the initial state of the expe-

rience of the technicians at the beginning of day 1. Obtain a sample

realization of {Nt : t ∈ T }, say {N̂ n
t : t ∈ T }.

(b) Solve the subproblem: for time period t solve model (P) to get xkit,∀k ∈

K,∀i ∈ Nt.

(c) Apply the system dynamics: set

qkr,t+1(st, at) = qkrt +
∑

i∈Nnt :r(i)=r

xkit∀k ∈ K,∀r ∈ R.

(d) Advance time: set t = t+ 1. If t ∈ T , go to Step 2(b).

3. Backward Pass:

(a) Initialize the backward pass: initialize v̂nT+1 = 0.

(b) Value function update: for time period t set v̂nt = C(st, at) + v̂nt+1

4. Recursive least square update: θn = U(θn−1, v̂n, sa)

5. Advance iteration counter: set n = n+ 1. If n ≤ N , go to Step 2.
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current value-function approximations and request realizations

Ṽ n
t (Qnt , N̂ n

t ) = min
at∈δπt (st)

{C(st, at) + V̂ n−1
t+1 (Qt+1)}. (4.5)

Then, we can get a features-value pair. For each post-decision state, we can get

a set of features in the basis functions and a corresponding estimated objective value.

Consider those features as the independent variables and the estimated objective

value as the dependent variable, we can relate our offline simulation procedure to the

parameter estimation in a linear regression.

We design our recursive least squares regression according to Powell (2011).

The goal is to get a set of parameters that minimize the squared errors of the states

traversed through the current iteration. Powell (2011) offers a way to use the estimates

V̂ n to estimate a value function approximation. The following formulas can be used

recursively to update the coefficient vector θ. The updating equation for θ is

θn = θn−1 −Hnφnε̂n, (4.6)

where Hn is a matrix computed using

Hn =
1

γn
Bn−1. (4.7)

The error ε̂n is computed using

ε̂n = Ṽs(θ
n−1)− v̂n, (4.8)

and Bn−1 is updated recursively using

Bn = Bn−1 − 1

γn
(Bn−1φn(φn)TBn−1), (4.9)
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where γn is a scalar computed using

γn = 1 + (φn)TBn−1φn. (4.10)

One strategy to initialize Bn is to use B0 = λI, where I is the identity matrix

and λ is a “small constant” (Powell, 2011). In our computational experiments, we

tested various values of λ and finally choose λ = 0.9 because it gives the best results.

4.4 Preliminary Results

In this section, we describe the instances that we create to computationally

test the value of our solution approach. We follow a similar experimental design to

what we did in Chapter 3. The difference between the design in this chapter and

that in Chapter 3 is the choice of the task diversity and the capacity levels. Because

we generate a new set of 30 workforces with the heterogeneous learning parameters

described in Chapter 3, we change the task diversity and the capacity accordingly.

For each workforce, we consider four levels of task diversity (R): five, seven,

10, and 13. We consider four levels of capacity (C). These levels are five, six, seven,

and eight, where five is the tightest capacity that ensures feasibility. These levels

represent the maximum amount of time that a technician can work in a day. The

30 workforces, four levels of capacity, and four levels of task diversity result in 480

instances.

We test the 480 instances on 120-day horizons. To limit the number of factors

in our experimental design, we assume 50 customer requests per day. For each day,

each of the 50 requests is randomly assigned a task type, and we generate the number
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of each task type according to the discrete uniform distribution on each day.

In our experiments, we solve the 120-day MTSP-ESTSC with the approximate

dynamic programming algorithm and the myopic approach. In detail, testing our

ADP solution approach involves two stages. In the training stage, we implement

Algorithm 4.1 to tune the value-function approximation. By the end of this stage,

we get a set of parameters of the basis functions. Then, in the testing stage, we fix

the value-function approximation with the parameters provided by the training stage

and test the solution quality for the current set of value-function approximations for

different customer realizations. In our experiment, we use 1000 training iterations

(N = 1000) and 1000 testing iterations. For comparison, we also solve the problem

of the same group of customer realizations used in the testing stage for the ADP

approach with the myopic approach.

Figures 4.1 to 4.4 present the results of the experiment. Similar to what

we did in Chapter 3, the figures present the average daily differences between the

two solution approaches by diversity levels. Specifically, for both the approximate

dynamic programming and myopic approaches, we record the total service time for

each day of the 120-day horizon for each trial (using common trials between the

two approaches). We record these values as Objtm and Objtp for the myopic and

approximate dynamic programming approaches, respectively. We then compute the

objective gap on day t as gaptm p =
objtm−objtp

objtp
× 100% for each trial.

Figures 4.1 to 4.4 show that the changes of the daily objective gap follow the

similar trend across diversities and capacity levels. During the early periods of the
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Figure 4.1: Average daily gaps for Diversity=5 (%)

Figure 4.2: Average daily gaps for Diversity=7 (%)

Figure 4.3: Average daily gaps for Diversity=10 (%)
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Figure 4.4: Average daily gaps for Diversity=13 (%)

planning horizon, the ADP performs worse than the myopic approach. The daily gap

turns positive between day 20 to day 30, depending on the customer diversities, and

keeps increasing to the end of the planning horizon.

One major reason for the performance changes of the ADP solution approach

over the planning horizon is the trade-off between the current period cost and future

period benefit. Throughout the planning horizon, the myopic approach seeks to

assign each task to the technician that can perform it the quickest. However, the

ADP algorithm will build its workforce so as to get the best solution for the whole

planning horizon. The myopic approach focuses on optimizing only current period

service times while the ADP algorithm balances current and future periods so as

to achieve the best assignment over the whole planning horizon. Then, the objective

values on early periods is not optimal with the ADP algorithm. For the ADP solution

approach, we can consider the early periods as the preparation stage. In this stage,

the ADP algorithm is trading-off current periods cost for future benefit. In order
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to achieve the best assignment over the whole planning horizon, the ADP algorithm

needs to position its workforce for future demands by accepting longer service times in

the near-term. Therefore, we see the worse performance of the ADP algorithm during

the first 20 to 30 days. Then, once the workforce builds up sufficient experience level

for future demands, the ADP algorithm demonstrates its advantage over the myopic

algorithm and enjoys this benefit till the end of the planning horizon. The sacrifice

it made during the preparation stage now pays off. However, the myopic algorithm,

only focusing on current periods, cannot prepare its workforce for future demands.

With its insufficient workforce, the myopic algorithm cannot handle the uncertain

future demands well.

In addition, we have following observations similar to what we have seen in

Chapter 3. First, comparing the performance of the ADP algorithm and the myopic

approach across task diversity levels, we see that the benefits associated with looking

into the future when performing task assignments are declining with the higher di-

versity level, which indicates the worse performance of the ADP algorithm with the

higher diversity level. We hypothesize that there are two reasons for this behavior:

(1) with a lower task diversity level the ADP algorithm is more accurate as there is

more samples for each task type, and, (2) with a lower task diversity level, as there

are many tasks of each type, we are able to fully leverage the benefits of learning

more quickly by looking into the future.

Second, comparing the performance of the ADP algorithm and the myopic

approach across capacities, we see that the benefits associated with looking into the
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future when performing task assignments are declining with the larger capacity, which

indicates the worse performance of the ADP algorithm with the larger capacity. An

examination of the results suggests that the myopic approach seeks to assign each

task to the technician that can perform it the quickest. However, the ability of the

approach to do so is especially limited when capacity is tight. We hypothesize that,

by looking into the future, the ADP algorithm recognizes the value of developing the

proficiency level of multiple technicians so that many of them are able to perform each

task quickly. As a result, as it positions the workforce so that it can assign tasks to

different technicians that have the same proficiency, the ADP algorithm outperforms

the myopic approach the most at lower capacity levels.

4.5 Conclusions

In this chapter, we continue exploring the value of integrating future informa-

tion into the current period decision-making process for the Multi-period Dynamic

Technician Scheduling Problems with Experience-based Service Times and Stochastic

Customers discussed in Chapter 3. We propose an alternate approximate dynamic

programming solution approach with basis function to approximate the value func-

tion by taking the advantage of the future information for the whole planning horizon.

At each decision epoch, we choose each technician’s aggregate experience levels on

all task types as the features in the basis function. Then, we turn to an offline sim-

ulation procedure to recursively update the coefficient vector of the basis function,

which allows fast decision making within the execution phase.
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Our computational results demonstrate the value of the ADP solution ap-

proach with the basis function. We benchmark the performance of the ADP solution

approach with the basis function against a myopic approach that converts the multi-

period problem into a series of single-period problems, ignoring the impact of future

information on the decision making in the current period.
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CHAPTER 5
CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

In this work, we study the technician routing and scheduling problems in which

technicians learn and explore the issue of how companies can use immediate employee

job assignments to meet current demand and build capacity for the future. We ex-

plicitly model the impact of individualized, experience-based learning on technician

routing and scheduling problems. Facing with the increases in product and service

diversity and accelerating product and service innovation, businesses need greater

agility and flexibility in their workforce management decisions (Pine, 1993). In this

changing environment, how an individual is expected to respond to change becomes

as important as how efficiently they are performing a current assignment (Nembhard,

2001). Due to individuals’ different learning traits, workforce management based on

individualized, experience-based learning has significant potential to improve produc-

tivity in organizations. Thus, our models will facilitate organizational productivity

improvement by allowing for a more efficient workforce management.

In Chapter 2, we present a model and approach for accounting for on-the-job

learning in the daily routing of technicians. Our objective minimizes the completion

time of the last task. We solve the daily routing problems using a modified version

of the record-to-record travel (RTR) heuristic. Our results offer the following key

insights:
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1. Explicitly modeling both learning and technician heterogeneity leads to better

and different solutions in comparison to assuming homogeneous learning curves

and/or static productivity.

2. Relatedly, the explicitly modeling both learning and technician heterogeneity

leads to different distributions of skills in comparison to assuming homogeneous

learning curves and/or static productivity.

3. Inexperienced technicians specialize the most and experienced technicians the

least.

In Chapter 3, we study the scheduling problem of assigning tasks to techni-

cians wherein the tasks to perform each day are not known until the day they are to

be done. Such a problem can be modeled as a daily, task assignment problem. How-

ever, we also model that technicians learn; i.e. service times decrease as technicians

gain experience performing tasks. As such, we model the problem as a multi-period

problem wherein each day’s decisions are made with an eye to building capacity (via

experience accumulation) for the future. This problem, which we call the multi-period

technician scheduling problem with experience-based service times and stochastic cus-

tomers is new to the literature. We present a Markov decision process model for the

problem and discuss how it can be adapted to disruptions in the workforce and the

introduction of new task types to service.

We present an approximate dynamic programming-based solution approach for

this model that repeatedly solves optimization problems to make daily assignments

that recognize the impact of technicians gaining experience on future service times.
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The optimization problem approximates the cost-to-go with forecasts of the next

day’s assignments for each technician and the resulting estimated time it will take to

service those assignments given the current day’s decisions. As quantitative models of

human learning are non-linear we use a technique from the literature to reformulate

these optimization problems to mixed integer programs which can then be solved

(nearly) instantaneously.

We demonstrate the value of both the model and the solution approach with

an extensive computational study. We benchmark the performance of the model and

ADP-based solution approach against a myopic approach that models the problem

as a single-period problem, ignoring the impact of experience gained today on service

times on later days. We see that across all variants (the baseline problem, disruption

in workforce, and introduction of new task types) the ADP-based approach outper-

forms the myopic approach by sacrificing solution quality in a few near-term periods

in order to better position the workforce for future customer service requests.

In Chapter 4, we continue exploring the value of integrating future informa-

tion into the current period decision-making process for the Multi-period Dynamic

Technician Scheduling Problems with Experience-based Service Times and Stochastic

Customers discussed in Chapter 3. We propose an alternate approximate dynamic

programming solution approach with basis function to approximate the value function

by taking the advantage of the future information for the whole planning horizon. At

each decision epoch, we choose each technician’s aggregate experience levels on all

task types as the basis function. Then, we turn to an offline simulation procedure
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to recursively update the coefficient vector of the basis function, which allows fast

decision making within the execution phase.

Our computational results demonstrate the value of the ADP solution ap-

proach with the basis function. We benchmark the performance of the ADP solution

approach with the basis function against a myopic approach that converts the multi-

period problem into a series of single-period problems, ignoring the impact of future

information on the decision making in the current period.

5.2 Future Work

Because on-the-job learning is a new addition to the technician routing and

scheduling literature, there are many directions for future research. Next, we discuss

some possible avenues of future work.

First, we would like to compare the performance of the ADP with basis func-

tion with that of the ADP only look one day ahead in Chapter 3. We want to see the

value of integrating the future information over the whole planning horizon instead of

looking only one day ahead. Recall that the average daily gap between the one-day

lookahead ADP and the daily myopic is in the scale of 0.1% and the largest gap is

0.68%. With the future information for the whole planning horizon, the average daily

gap between the ADP with the basis function and the daily myopic is in the scale of

1%. Although the results are based on different instances, we expect that, with more

future information, our ADP with basis function solution approach will outperform

the ADP one-day lookahead because it is better to balance current period costs with
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those of the future.

Further, the multi-period nature of our problems results in a combinatorial

state space and action space. One effective method to address this kind of “curse of

dimensionality” is aggregation. Powell (2011) states the idea as to aggregate the orig-

inal problem, solve it exactly, and then disaggregate it back to obtain an approximate

solution to the original problem. Aggregation allows us to define the value function

over the smaller state space, and we do not have to simplify the state of the system.

As for our problems, learning is a crucial factor that impacts the action/solution

structure of our problems. Most of the learning effects occur at the early periods of

the planning horizon, which corresponds to the instability of the workforce and unpre-

dictable assignments during this periods. Therefore, we see very different assignments

from day to day at the early periods of the planning horizon. As technicians accu-

mulate experience levels by serving customers over time, most of them will reach the

plateau of the learning curve, where the marginal effect is small. Thus, workforces

become relatively stable and assignments do not change much from day to day in

this later period of the planning horizon. Based on the above observation, future

work could explore integrating the temporal aggregation in our approximate dynamic

programing approach. In particular, we are able to spot the time when the workforce

becomes stable and then consider all the periods after that time as one aggregated

period.

There are also other avenues for future work. First, as noted in previous

chapters, there are a number of factors other than experience that can affect an



102

individual’s ability to perform a task. Such considerations include learning from

similar tasks (Olivella, 2007), learning by transfer from other technicians (Nembhard

and Bentefouet, 2015), the effect of training (Hendrickson and Schroeder, 1941, Bianco

et al., 2010), and even the technician’s workload (Batt and Terwiesch, 2012, Brown

et al., 2005). Including elements such as these in the formulation could offer additional

insights into the problem.

Also, many technician-related scheduling problems include a routing compo-

nent. It would be interesting to test the value of the proposed (or a similar) approach

on the technician routing problem discussed in Chapter 2. However, the inclusion of

the routing component will complicate both the state space and action space. The

decision-making process not only involves the balance between current period cost

and those of the future, but also has to make a trade-off between routing costs and

scheduling costs. Thus, both the value function approximation and the updating

process need to be elaborated so as to accommodate the additional complexity of the

problem.
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