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ABSTRACT

This dissertation explores workforce planning in manufacturing and healthcare

systems. In manufacturing systems, the existing workforce planning models often lack

fidelity with respect to the mechanism of learning. Learning refers to that employ-

ees’ productivity increases as they gain more experience. Workforce scheduling in

the short term has a longer term impact on organizations’ capacity. The mathemat-

ical representations of learning are usually nonlinear. This nonlinearity complicates

the planning models and provides opportunities to develop solution methodologies for

realistically-sized instances. This research formulates the workforce planning problem

as a mixed integer nonlinear program (MINLP) and overcomes the limitations of cur-

rent solution methods. Specifically, this research develops a reformulation technique

that converts the MINLP to a mixed integer linear program (MILP) and proposes

several techniques to speed up the solution time of solving the MILP.

In organizations that use group work, workers learn not only by individual

learning but also from knowledge transferred from team members. Managers face

the decision of how to pair or team workers such that organizations benefit from this

transfer of learning. Using a mathematical representation that incorporates both in-

dividual learning and knowledge transfer between workers, this research considers the

problem of grouping workers to teams and assigning teams to sets of jobs based on

workers’ learning and knowledge transfer characteristics. This study builds a Mixed-

integer nonlinear programs (MINP) for parallel systems with the objective of maxi-
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mizing the system throughput and propose exact and heuristic solution approaches

for solving the MINLP.

In healthcare systems, we focus on managing medical technicians in medical

laboratories, in particular, the phlebotomists. Phlebotomists draw specimens from

patients based on doctors’ orders, which arrive randomly in a day. According to the

literature, optimizing scheduling and routing in hospital laboratories has not been

regarded as a necessity for laboratory management. This study is motivated by a real

case at University of Iowa Hospital and Clinics, where there is a team of phlebotomists

that cannot fulfill doctors requests in the morning shift. The goal of this research is

routing these phlebotomists to patient units such that as many orders as possible are

fulfilled during the shift. The problem is a team orienteering problem with stochastic

rewards and service times. This research develops an a priori approach which applies a

variable neighborhood search heuristic algorithm that improves the daily performance

compared to the hospital practice.
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PUBLIC ABSTRACT

This dissertation explores workforce planning in manufacturing and health-

care systems. The existing workforce planning models often lack fidelity of human

learning. Learning refers to that employees’ productivity increases as they gain more

experience. The nonlinearity of learning function complicates the planning models

and provides opportunities to develop methodologies for realistically-sized instances.

This dissertation formulates the problem as a nonlinear model and overcomes the

limitations of current solution methods.

In organizations that use group work, workers learn not only by individual

learning but also from knowledge transferred from teammates. Managers face the

decision of how to team workers such that organizations benefit from this transfer

of learning. Using a mathematical representation that incorporates both individ-

ual learning and knowledge transfer between workers, this dissertation considers the

problem of grouping workers to teams and assigning teams to jobs based on work-

ers’ learning characteristics. This dissertation builds a nonlinear model for parallel

systems that maximizes the system throughput and propose an exact approach for

solving the model.

In healthcare systems, phlebotomists draw specimens from patients based on

doctors’ orders, which arrive randomly in a day. Efficient management of phle-

botomists has not been regarded as a necessity in laboratory management. This

dissertation analyzes a real case at University of Iowa Hospital and Clinics, where

vi



there is a team of phlebotomists that cannot fulfill doctors requests in the morning

shift. This dissertation builds a mathematical model that routes phlebotomists to

patient units such that as many orders as possible are fulfilled during the shift.
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1

CHAPTER 1
INTRODUCTION AND RELATED WORK

1.1 Introduction and Motivation

Human workers are viewed as important resources in organizations. Workers’

skills and aptitudes provide the necessary level of flexibility. Workforce planning is

the process by which companies deploy their workforce to complete the tasks of the

organization. Workforce planning involves designing workers assignment, scheduling,

and routing that meet the organizations’ strategic goals. In making these planning,

it is important to recognize that the schedules or assignments made in the short term

have a longer term impact on the organization’s capacity. In particular, workers learn

and become more productive the more experience they gain. The failure to consider

workers’ learning leads to underestimation of the workforce capacity. Thus, workforce

planning should account for both the current and future needs of the organization.

It is also critical to model learning so that the company can more effectively match

its human resource capacity to the demand. The mathematical representations of

learning are called learning curves, which are usually nonlinear. This nonlinearity

of the learning curve complicates the planning models and provides opportunities to

develop solution methodologies for realistically-sized instances.

The current research on workforce planning often uses aggregate planning

models. Wirojanagud et al. (2007) consider workforce decisions, such as hiring, cross-

training, and assigning, in terms of several levels of workers. Fowler et al. (2008)
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develop a mixed integer programming model that determines staffing decisions in the

aggregate level. From a strategic planning perspective, treating individuals in the

aggregate can lead to underestimation of the workforce capacity. For example, Shafer

et al. (2001) mention that “modeling only central tendency and not also variation

among workers can result in substantially underestimating overall system productiv-

ity.” From an operational perspective, aggregate models are insufficient to accurately

represent workers learning and are hard to effectively implement. Different workers

have different productivities and learn at different paces. Accounting for the hetero-

geneity of the workforce adds complexity to workforce planning.

Similarly, most existing research on workforce planning prescribes the skill

mix of a workforce to perform a set of jobs without considering how to develop the

workforce (Agnihothri et al. (2003), Hopp et al. (2004), Iravani et al. (2007), Colen

and Lambrecht (2010)). Chapter 2 focuses on determining workforce plans in an

operational level given the tasks that need to be done over the planning horizon.

The problem requires task assignment decisions of matching workers to jobs. We

build mathematical models in a discrete planning horizon that answer the question

of “How to create daily workforce plans that incorporate human learning and meet

some strategic goals.” The model makes decisions of assigning a set of heterogeneous

workers to jobs accounting for their learning abilities. We assume that each individual

worker has a known learning curve that determines that workers’ productivity with

respect to the accumulated experience. The objective is to minimize the time required

to complete all of the jobs (known as minimizing the makespan). The key challenge
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in solving these problems is that the learning curves are usually nonlinear. Chapter

2 studies the optimization techniques for makespan minimizing workforce assignment

problems wherein human learning is explicitly modeled. We present a set of techniques

that enable the solution of much larger instances of the workforce assignment problems

than seen in the literature to date. The first technique is an exact linear reformulation

for the general makespan minimizing workforce assignment models with learning. We

then introduce a computationally efficient means for generating an initial feasible

solution. Finally, we present methods for strengthening the formulation with cover

inequalities and a lower bound on the objective function value of the optimal solution.

With an extensive computational study, we demonstrate the value of these techniques

and that large instances can be solved much faster than have previously been solved

in the literature.

In a subsequent study, we consider not only individual learning-by-doing but

also learning by knowledge transfer between team workers in organizations. For an

individual, knowledge transfer occurs when working closely with team workers who

are doing the same or related jobs. In manufacturing systems, short product life

cycles and intense competition require workers to collaborate in groups. Workers are

often grouped together and perform related jobs. For example, workers on the same

production line are a team with a shared sense of each individual’s expertise. This

is critical for defining roles and responsibilities inside the team and for assigning the

most competent person to each role. Additionally, this shared sense of others’ exper-

tise enhances the interaction and exchange of knowledge between people performing
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distinct roles (Nembhard and Bentefouet; 2015). For example, in Audi’s production

system, thousands of small jobs need to be done before a car rolls off the assembly

line, including fitting dashboards, screwing on the underfloor, and installing the steer-

ing wheel. In the Audi production system, this is done by means of group work. In

almost all areas, employees are divided into small teams. Members in a team make

suggestions about how processes can be improved and work can be organized more

ergonomically.

A new hire that works in a collaborative environment with other experienced

workers is another example of knowledge transfer. In health care systems, a new

technician in a medical laboratory is usually paired with an experienced technician

for training and learning purposes. The learning process can vary from a couple of

weeks to several months. The new technician will eventually obtain all the skills

necessary for independent performance.

For both situations, managers face the decisions of how to team or pair workers

considering individual learning and knowledge transfer within groups, and how these

decisions affect the productivity of the organizations.

Chapter 3 considers the workforce allocation problem in which workers learn

by experience and through knowledge transferred from co-located employees. This

chapter models the allocation of workers to tasks, including grouping workers to

teams based on individual characteristics and assigning teams to different sets of

jobs. The study in Chapter 3 is essential to workforce management in organizations

that group workers into teams and match workers to the right set of jobs. Chapter 3
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makes the following contributions: First, we build a mixed integer nonlinear program

(MINLP) for parallel production systems. Second, by exploiting the structure and

characteristics of the optimal solutions, we develop an exact approach that linearizes

the MINLP to a mixed integer linear program (MILP). This reduction in complexity

allows us to solve workforce allocation problems with different problem settings. We

show the computational efficiency of the proposed exact approach by comparing to the

heuristic policies in the literature. Third, with the extensive computational results,

we provide a solution structure analysis and give managerial insights for managers

when making grouping and assignment decisions.

Chapter 4 studies workforce planning in health care systems. We focus on tech-

nicians in medical laboratories. Laboratories are health care facilities where pathol-

ogists provide testing of patient samples. Laboratory services account for more than

10% of hospital billing. The laboratory workforce includes phlebotomy technicians

(referred to as phlebotomists in the rest of the dissertation) who draw samples from

patients and other technicians (medical laboratory technicians and medical technol-

ogists) who perform tests on these samples. Phlebotomists primarily draw blood,

urine, and other samples from patients and are often the patients’ only contact with

medical laboratories. Medical laboratory technicians perform general tests in all lab-

oratory areas, such as hematology and immunology. Medical technologists perform

complex laboratory tests using high-level troubleshooting skill sets. Laboratory ser-

vices in health care play an important role in inpatient care. Studies have shown that

laboratory performance affects approximately 65% of the most critical decisions on
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admission, discharge, and medication of the inpatients (Leaven and Qu; 2014).

The shortage of hospital laboratory personnel, especially phlebotomists, con-

tinues to be of concern for many laboratories. This shortage often causes tardiness

of fulfilling some sample draws, which affects decisions on admission, discharge, and

medication of inpatients. With the projected need for more hospital laboratory per-

sonnel in the coming years coupled with an aging workforce, effective management of

the clinical laboratory workforce is essential to meet the demand for staffing in the

near future and beyond (Hamilton and Sm; 2014). The study in Chapter 4 focuses

on phlebotomist routing that aims to improving the laboratory performance in terms

of fulfilling more sample draws in a shift. The phlebotomist routing in Chapter 4

focuses on designing routes of visiting the patient rooms for a team of phlebotomists.

The goal of these routes is to facilitate in a timely manner as many sample draws

in as many patient units as possible. We call this the phlebotomist intra-hospital

routing problem.

The study in Chapter 4 is motivated by the Department of Pathology at

the University of Iowa Hospitals and Clinics (UIHC). At UIHC, there is a team of

phlebotomists that works in the morning and another team works later in the day.

We focus on the morning shift as workload often cannot be completed on time in

the morning shift.Typically, they work from 05:30 to 09:30 and serve 27 patient units

located in different buildings during their shift. This team of phlebotomists performs

approximately 40% of the daily draws at UIHC. These draws are requested by doctors

randomly during the day. We assume each order corresponds to a sample draw from
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a patient. The arrival orders at each unit can be thought of as similar to arrivals to

a queueing process. This random process makes the quantity of orders and service

time of a unit uncertain.

The question is how to schedule these phlebotomists to a subset of the units

and in what order these units should be served, with the objective of serving as many

orders as possible during the shift. The random quantity of orders in the units and

the uncertain service time make the routing of phlebotomists difficult. The problem

can be considered a variant of the team orienteering problem on a network of queues,

where the phlebotomist visits locations to serve orders and collect rewards. After

arrival at a location, the phlebotomist start serving a queue of orders until all orders

including pre-orders and add-ons are cleared.

Chapter 4 makes the following contributions to the literature. First, this paper

is the first that formulate and solve the team orienteering problem with stochastic re-

wards and service times. Second, we develop a priori approach that gives a fixed route

for each phlebotomist and derives an analytical procedure to evaluate the expected

reward of a priori tour. Finally, our computational results demonstrate the value

of our a priori tour in terms of serving more pre-orders than the hospital practice.

Future work of this problem is suggested in Chapter 5.

1.2 Literature Review

In this section, we present a review of literature that is related to each chapter.
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1.2.1 Literature on Human Learning

The impact of experience on service or production times is often called “learn-

ing” in the literature. The study of how humans learn has a long history. There

exists an extensive body of literature that develops mathematical representations for

the improvement in service and production times as experience increases. These rep-

resentations are often called learning curves. With the introduction of his power

model, Wright (1936) is often credited with introducing the first mathematical de-

scription of the relationship between experience and productivity. Since that time,

many authors have made additions to the literature. Dar-El (2000), Jaber and Sik-

ström (2004), Jaber (2006), and Anzanello and Fogliatto (2011) provide broad and

thorough surveys of the subject. Dar-El (2000) provides a comprehensive review of

both learning and forgetting models as well as parameter estimation for learning mod-

els developed before 2000. Hewitt et al. (2014) provide a review of learning curves

in optimization models. Among the various learning curves, the best knowns are

log-linear model, exponential model, and hyperbolic model, which are discussed in

the following sections.

1.2.1.1 Log-linear Models

Wright (1936)’s model is the first learning model and is referred to as the

“Log-linear Model” with the following form:

y = C1x
b (1.1)
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where y is the average time per unit demanded to produce x units, and C1 is the time

to produce the first unit. Parameter b (−1 < b < 0) is the slope of the LC, which

describes the workers learning rate. Values of b close to −1 indicate high learning

rate and fast adaptation to task performance (Dar-El; 2000).

Modifications in the log linear model were initially proposed to adapt the

equation to specific applications, and then recognized as alternative models. One

such model is the Stanford-B presented in Equation (1.2), which incorporates workers

prior experience.

y = C1(x+B)b (1.2)

where B is an ‘experience factor’ which corresponds to the units of prior experi-

ence available at the start of a manufacturing program. It shifts the learning curve

downwards with respect to the time/unit axis (Dar-El; 2000).

DeJong’s model in Equation (1.3) incorporates both manual and machine con-

trol elements in the learning process. The manual parts are compressible with respect

to experience, the machine part is not (Yelle; 1979). DeJong defines M(0 ≤ M ≤ 1)

represents the incompressible factor that demonstrates the fraction of the task exe-

cuted by machines, so his model is:

y = C1

[
M + (1−M)xb

]
. (1.3)
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1.2.1.2 Exponential Models

There are three exponential learning curve models in the literature. They are:

the 3-parameter exponential, the 2-parameter exponential, and the constant time

model. The 3-parameter exponential model is:

y = K
[
1− e−(x+p)/r

]
, (1.4)

where y is worker’s performance in terms of number of units produced after x units of

time. Parameter K defines the asymptote production rate and delineates a prediction

of a worker’s performance after an infinite amount of practicing time. Parameter p

corresponds to a worker’s prior experience evaluated in units of time, while r is the

time needed to reach 63% of the asymptote’s production rate. The parameter r is

called the learning rate. The larger the value of r, the slower the rate of improvement

in performance (see Figure 1.1).

In the 2-parameter exponential model, parameter p is not present, offering

poorer fit to performance data compared to the 3-parameter exponential model (Mazur

and Hastie; 1978).

The constant time model is similar to the 3-parameter exponential model. It

was proposed by F.W. Bevis (1970).

y = yc + yf (1− e−t/τ ) (1.5)

where yc is the starting production rate, yf is the steady state production rate during

the transient part of the curve. τ is the time constant, which is the time needed to

reach 63% of the steady state production rate.
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Figure 1.1: Three-parameter exponential learning curve by learning rate

1.2.1.3 Hyperbolic Models

Mazur and Hastie (1978) proposed a 3-parameter hyperbolic learning model

that relates the number of conforming units to the total number of units produced.

y = k

(
x+ p

x+ p+ r

)
(1.6)

Parameters in Equation (1.6) are defined as those in the 3-parameter expo-

nential model in Equation (1.4).

In the 2-parameter hyperbolic model, parameter p is not include and has the

form of:

y = k

(
x

x+ r

)
(1.7)

In production processes, there is often some interruptions due to modifications
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in product or some unexpected events. One of the consequences of frequent interrup-

tion is forgetting when they resume activities (Jaber; 2006). The forgetting can lead

to reduction in production rate after an inactive period.

Some of the learning curves enable assessing both workers’ learning and for-

getting process. Table 1.1 summarizes the discussed learning models in terms of their

mathematical representations, the number of parameters, and if the model enable to

assess workers’ forgetting. As shown in Table 1.1 , all of the commonly employed

learning curves (Log linear, exponential, hyperbolic) are nonlinear. Dar-El (2000),

Jaber and Sikström (2004), Jaber (2006), and Anzanello and Fogliatto (2011) provide

broad and thorough surveys of the subject. Hewitt et al. (2014) provide a review of

learning curves in optimization models.

Mathematical Number of Enable
Model Representation Parameters Forgetting?

Wright’s Log Linear y = C1x
b 2 N

Stanford-B y = C1(x+B)b 3 N
DeJong’s y = C1

(
M + (1−M)xb

)
3 Y

3-parameter exponential y = K
(
1− e−(x+p)/r

)
3 Y

Constant time y = yc + yf (1− e−t/τ ) 3 N
2-parameter hyperbolic y = kx/(x+ r) 2 Y
3-parameter hyperbolic y = k(x+ p)/(x+ p+ r) 3 Y

Table 1.1: Comparative analysis of learning curves
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1.2.2 Literature on Makespan Minimizing Problem with Human Learning

Chapter 2 focuses on scheduling jobs to workers with the goal of minimizing

the makespan. Our models account for the fact that workers learn and thus increase

productivity as they gain experience.

The most closely related work to Chapter 2 is Corominas et al. (2010), who in-

troduce a piecewise linearization of a learning function for a task assignment model.

The largest problem solved has five tasks and four workers and they do so with

a two-segment piecewise linear approximation to linearize a concave learning fun-

tion. Olivella et al. (2013) extend Corominas et al. (2010) to consider due dates and

cross-training goals and use a similar solution approach to Corominas et al. (2010).

The chapter solves problems with up to four workers and eight tasks. Heimerl and

Kolisch (2010) addresses a problem similar to Olivella et al. (2013) while also includ-

ing forgetting and company skill levels. Using a nonlinear programming solver that

cannot guarantee optimal solutions, Heimerl and Kolisch (2010) solve problems with

six workers and 20 tasks. In contrast, in the work presented in this chapter, we solve

exactly problems with up to 20 workers and 30 tasks. A comprehensive review of

other work that incorporates learning into workforce planning models can be found

in Hewitt et al. (2014).

Using a model for assembly-line production first presented in Nembhard and

Norman (2007), Hewitt et al. (2014) introduces a technique for deriving exact linear

reformulations of nonlinear learning functions. The reformulation technique presented

in Hewitt et al. (2014) models nonlinear functions with discrete domains and ranges
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as sets of binary and linear variables and constraints. Hewitt et al. (2014) can solve

problems up to 20 workers and 40 tasks in less than an hour. However, Hewitt et al.

(2014) considers a different non-linear model of human learning and a different setting

than we consider in this chapter. Thus, while this chapter adapts the reformulation

technique presented in Hewitt et al. (2014), it differs in three important ways: (1) We

consider a different class of scheduling problems (makespan minimizing workforce as-

signment problems), (2) We consider a different quantitative model of how experience

translates to proficiency, and, (3) We provide techniques that significantly reduce the

solve time of the reformulated model.

Table 1.2 summarizes the literature most closely related to that in Chapter 2.

The first column cites the paper being summarized and the second notes from what

paper the summarized paper’s model is derived. The third and fourth columns identify

whether or not the model includes cross-training goals and whether or not the model

is nonlinear, respectively. The fifth and sixth columns (found in the second layer of

the table) highlight the solution method and whether or not the method is a heuristic

method, respectively. The final three columns indicated the largest problem solved in

each paper by indicating the number of workers, tasks and time periods, respectively,

of the largest problem solved.

1.2.3 Literature on Workforce Grouping and Knowledge Transfer

Compared to individual learning studies, studies of learning in a team are very

rare in the literature. When working in a team, individuals benefit from not only their
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Publication Related Models Cross-Training Nonlinear
Goals Model

Nembhard and Norman (2007)
Corominas et al. (2010) - X

Heimerl and Kolisch (2010) - X X
Olivella et al. (2013) Corominas et al. (2010) X X
Hewitt et al. (2014) Nembhard and Norman (2007)

Chapter 2 Corominas et al. (2010)

Publication Solution Approach Heuristic Workers Tasks Periods

Nembhard and Norman (2007) Nonlinear Programming 2 4 10
Corominas et al. (2010) Piecewise Linearization X 4 5 20

Heimerl and Kolisch (2010) Primal-Dual Interior Point X 6 4 5
Olivella et al. (2013) Approximate Convex Piecewise Linearization X 4 8 40
Hewitt et al. (2014) Reformulated Mixed Integer Program 20 40 40

Chapter 2 Reformulated Mixed Integer Program 20 30 NA

Table 1.2: Summary of related literature to Chapter 2

own learning but also knowledge transferred from their colleagues. There have been

investigations into how and why working in a team environment can improve individ-

ual performance. Faraj (2000) and Lewis (2003) suggest that teams composed of indi-

viduals who have experience working together are more accurate and have a collective

sense of each individual’s expertise. Uzzi and Lancaster (2003) discuss how trust can

promote the exchange of “private” knowledge and information. Norman et al. (2002)

develop a team based model for worker scheduling in manufacturing cells that consid-

ers both technical and human skills. With this model, they show that when skills are

considered in both worker training plans and assignment strategies, the performance

of the cell will improve significantly. However, there has been little research on how

to quantify the transfer of knowledge to a worker from his/her colleagues. Recently,

Nembhard and Bentefouet (2015) propose a mathematical description of knowledge

transfer by extending a well-known 3-parameter hyperbolic learning curve. Nembhard

and Bentefouet (2015) develop several heuristic approaches for selecting a workforce,

grouping the workforce into teams, and assigning teams to jobs. They identify the top
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policies that yield the maximum throughput for each decision based on their compu-

tational studies. Motivated by Nembhard and Bentefouet (2015)’s work, Chapter 3

consider the workforce allocation problem, including grouping workers into teams

based on individual learning characteristics, and assigning teams to different sets of

jobs. Unlike Nembhard and Bentefouet (2015), we develop an exact approach that

reformulate the nonlinear mixed integer program to a linear mixed integer program

and solve large-sized problems in reasonable time limit.

Publication Team Knowledge Nonlinear Solution Problem Size
Decision Transfer Model Approach Workers Tasks

Faraj (2000) X X Regression - -
Norman et al. (2002) X MIP 6 6

Jin et al. (2016) X Reformulated MIP 20 30
Nembhard and Bentefouet (2015) X X Heuristic 9 9

Chapter 3 X X X Reformulated MIP 60 60

Table 1.3: Summary of related literature to Chapter 3

Besides the literature of human learning in Section 1.2.1 and Section 1.2.2,

we summarize the literature related to learning by knowledge transfer and workforce

grouping decision in Table 1.3. The first column cites the paper being summarized.

The second and third columns identify whether or not the model includes team de-

cisions and knowledge transfer in the team. The fourth and fifth columns indicate

whether or not the model is nonlinear and what solution approach is used to solve the

model, respectively. The sixth and seven columns indicate the largest problem solved

in each paper by indicating the number of workers and tasks of the largest problem
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solved.

1.2.4 Literature on Phlebotomist Routing

The proposed study of phlebotomist intra-hospital routing in Chapter 4 is in

the scope of workforce planning in healthcare systems. The problem is considered

the team orienteering problem in a polling system with a network of queuing. This

section gives a literature review of workforce planning in health care systems, team

orienteering problem, routing on a network of queues, and polling systems.

1.2.4.1 Literature on Workforce Planning in Health Care Systems

The majority of research on workforce planning in health care systems focuses

on nurse and physician scheduling and rostering. Azaiez and Al Sharif (2005), Beliën

and Demeulemeester (2008), Maenhout and Vanhoucke (2009) typically include de-

cisions of determining the number of nurses to be hired, assigning nurses to a set of

shifts so that feasibility requirements are met, and assigning patients to nurses at

the beginning of shifts. The extensive reviews of related research can be referred to

Cheang et al. (2003), Landeghem (2004), Denton (2013).

However, phlebotomist optimization is different from nurse and physician opti-

mization. For example, patients are assigned to the same nurse during the shift, while

there is no such restriction for phlebotomist assignments. This makes phlebotomist

scheduling more flexible and more complicated. Research on phlebotomist optimiza-

tion is very limited in literature. Leaven and Qu (2014) state the importance of

phlebotomist scheduling in laboratory accounting for the uncertainty associated with
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the number of blood draws ordered in each shift. They propose a scenario reduction

model and return the scenarios with the largest likelihood of occurrence in each shift.

However, they do not address the issue of how to schedule the phlebotomists in each

shift and how to assign the blood draws to each phlebotomist.

Other work that addresses intra-hospital routing focuses on intra-hospital rout-

ing focuses on patient routing between different units in the hospital. Schmid et al.

(2014) consider the operating room scheduling and intra-hospital routing of patients.

Patients typically undergo several examinations before their actual surgery. This pa-

per considers the problem of scheduling patients to examination rooms, such that no

more than one patient is scheduled to be in a room at any point in time, and the

precedence requirements of appointments associated with the same patients are met.

1.2.4.2 Literature on Orienteering Problem

The phlebotomist intra-hospital routing problem is modeled as a team ori-

enteering problem considering stochastic demand and service time. The stochastic

variant of the orienteering problem is limited. Tang and Miller-Hooks (2005) propose

an orienteering problem with stochastic service time, travel time and travel costs,

which is formulated as a chance-constrained stochastic integer program with a ob-

jective of maximizing the total profits collected from a priori tour while restricting

the probability that the tour length exceeds a certain threshold to a given value.

Campbell et al. (2011) address an orienteering problem with stochastic travel and

service times where a reward is collected from a visited customer, and a penalty is
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incurred for a customer that is not reached before a known deadline. They give

heuristics for general problem instances and computational results for a variety of

parameter settings. Papapanagiotou et al. (2013) investigate an orienteering prob-

lem with stochastic travel and service times and a given deadline. They focus on

developing a Monte Carlo sampling procedure to approximate the objective function.

They demonstrate the effectiveness of the objective approximation comparing to a

exact objective evaluation. Evers et al. (2014) study an orienteering problem with

a stochastic weight on each arc and a hard constraint on the total weight of a tour.

They apply a sample average approximation to solve a two-stage stochastic model.

A heuristic approach is developed to improve the computational efficiency. These

papers consider stochastic travel time and service time that are independent among

customers. However, our problem considers stochastic demand at each customer that

affects the arrival time and service time in the other customers due to the queueing

process at each customer.

1.2.4.3 Literature on Routing on a Network of Queues

The arrival of orders at a patient unit is a queueing process. We use Pois-

sion process to model the queueing at each patient unit. The phlebotomist routing

problem is on a network of queuing. Literature of routing an individual through

the queues focuses on the decision rules when the individual is in the queue. Yechiali

(1969),Yechiali (1972), and Burnetas (2013) investigate the balking and reneging deci-

sion rules. Honnappa (2014) studies the arrival process in a network of queues, where
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travelers choose when to arrive at a parallel queueing network and which queue to

join upon arrival. Zhang et al. (2014, 2015) consider the team orienteering problem

on a queue network on customers and consider the uncertain arrival time induced by

the waiting time in the queues at previous customers. Our problem considers a net-

work of queues but does not involve decisions of balking or joining rules. Instead, the

orders arrive to a patient unit and are simply added to the queue. Furthermore, our

problem routes the server to visit a sequence of queues, the queue length is changing

while the server is serving the queue.

1.2.4.4 Literature on Polling Systems

The problem is considered in a polling system with a network of queues, where

each phlebotomist is a server that visits a sequence of units and serves the queue of

orders at the unit in a “first come first served” policy until the queue is empty. A

polling model system consists of a number of queues, attended by a single server

who visits the queues in some order to render service to the customers waiting at the

queues. Customers arrive at the queues according to mutually independent homoge-

neous single Poisson arrival process. Levy et al. (1990), Vishnevskii and Semenova

(2006), and Boon et al. (2011) conduct a survey of applications, modeling, and opti-

mization methods of polling systems. Our problem routes the server to queues in the

network and follow the exhaustive discipline. A phlebotomist is a server that fulfills

the orders at a patient unit until the queue becomes completely empty. The quantity

of orders at a patient unit depends on the evolution of the queue length during the
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server visit. Literature regarding server routing considers the order the server visits

the queues focuses on either static routing mechanisms or dynamic mechanisms.

1.2.4.5 Other Applications

While the focus of Chapter 4 is on the routing of phlebotomists at UIHC,

this problem is applicable to several operations, such as scheduling/routing security

staff in airport or railway systems. Yan and Gao (2010) consider the problem of

routing of additional backup screening teams who help check in passengers besides

stationing a regular security team at each departure gate, where each gate has a

queue of passengers with random loads and arrival rates. The similarity is that

the problem in Yan and Gao (2010) is on a network of queuing-based customers

with stochastic demands and service times, and the difference is that Yan and Gao

(2010) focuses on the problem of deploying the back up teams to the gates within

a certain stretch of time to meet the potential demand with the smallest number of

back up teams. In our problem, there is no regular servers at the patient units, and

we consider the routing of serves/phlebotomists with the objective of maximize the

number of customers served in a shift. Thorlacius et al. (2010) enable the construction

of schedules for tickets inspectors in local urban trains in Copenhagen, Denmark, so

that the income from penalty fares claimed from passengers without a valid ticket is

maximized. The decision in Thorlacius et al. (2010) is to find out at which time and

where to perform spot check ticket inspections in order to maximize the net revenue

gained from the penalty fares. This problem can be also considered as a network
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of queuing-based customers, however, it is a problem that schedules the inspectors

regarding temporal, the spatial with the objective of maximizing the revenue, while

our problem is a routing problem that routes technicians in a shift that maximizes

the rewards of served customers.
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CHAPTER 2
MAKESPAN MINIMIZING WORKFORCE ASSIGNMENT MODELS

THAT RECOGNIZE HUMAN LEARNING

2.1 Introduction

This chapter focuses on workforce assignment problem that consider human

learning. We assume a set of heterogeneous workers and a set of jobs that must be

completed over the course of a given horizon. As workers work on particular type

of job, they become more experienced and thus more productive. We assume that

each individual worker has a known learning function that determines the worker’s

productivity for each unit of experience. Importantly, We allow the work on jobs to

be split among workers and over time. The objective is to minimize the makespan to

complete all of the jobs. We call this problem the makespan problem with learning.

The key challenge in solving the makespan problem with learning is that the

learning functions are usually nonlinear. As a result, most work in the literature is

limited to solving small-sized problems. This chapter presents a set of techniques

that enable the solution of much larger instances of such problems.

In particular, this chapter presents three techniques that are contributions to

the literature on solving makespan problems that explicitly model learning. First, we

present an exact linear reformulation for the general makespan model with learning.

While the reformulation technique is adapted from the literature, this chapter is the

first to apply it to the learning function considered in this chapter and in the context

of a makespan problem. Then, we introduce a computationally efficient means for
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generating an initial feasible solution (which our computational experiments indicate

is often near-optimal). We also present methods for strengthening the formulation

with cover inequalities and a lower bound on the objective function value of the op-

timal solution. With an extensive computational study, we demonstrate the value of

these techniques. To focus the chapter on the techniques, we solve a makespan prob-

lem that has few complicating constraints. However, the techniques can be adapted

to speed up the solution of most any makespan problem. Further, the presented

techniques do not depend on the particular learning and forgetting function.

This chapter is organized as follows. Section 2.2 first presents a nonlinear for-

mulation of the makespan minimizing workforce assignment problem with learning.

The section then introduces the linear reformulation of the problem, a way to gen-

erate initial feasible solutions, as well as the inequalities and bound that strengthen

the formulation. Section 2.3 presents our datasets and computational experiments

demonstrating the value of the reformulation, the initial solution, cover inequalities,

and lower bound. Section 2.4 offers the conclusions and discusses future avenues of

research.

2.2 Problem Formulation

In this section, we introduce a model for the makespan minimizing workforce

assignment problem with learning. We first present the straightforward nonlinear

formulation and then present the exact linear reformulations. We also introduce the

procedure for generating initial feasible solution, the cover inequality, and the lower
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bound to strengthen the reformulation.

We first introduce the notation that is used throughout the chapter, followed

by a formal problem description and mathematical formulation.

Data

W Set of workers, i = 1, . . . , |W|.

J Set of jobs, j = 1, . . . , |J |.

T Set of periods in the horizon, t = 1, . . . , |T |.

vj Volume of work required by job j, measured in units of standard work time,

typically hours (standard work time units) of work when the work is carried

out by an experienced worker, j ∈ J

pij Initial experience of worker i on task j, in the same measurement of the job

volume, i ∈ W , j ∈ J .

rij Individual learning rate of worker i on task j, i ∈ W , j ∈ J .

Kij The maximum worker i’s performance on task j when the learning process is

concluded, given in the number of units produced per time period, i ∈ W , j ∈

J .
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Variables

Tmax Completion time of the last task to be finished.

xijt Binary variable that indicates whether task j is done by worker i in a period

of time t, i ∈ W , j ∈ J , t ∈ T .

cijt The accumulated experience done by worker i for task j at the end of period

t, measured in units of time periods performed by i on j by time t, i ∈

W , j ∈ J , t ∈ T .

ϕijt Productivity of job j that worker i is expected to do in period t, i ∈ W , j ∈

J , t ∈ T .

We assume that a set W of workers works the jobs in J in a finite planning

horizon T . The completion of each job j in J requires a volume of work vj. As in

Corominas et al. (2010), we assume that the volume of work is measured in units

of standard work time, typically hours (standard work time units) of work when the

work is carried out by an experienced worker.

Each worker i in W has a learning function on each job j in J . We let cijt be

the accumulated experience of worker i on job j before period t. It is defined as the

sum of the work time units done by worker i for job j by time t (see Equation (2.6)).

The initial accumulated experience cij1 is 0. Then, the amount of work completed in

a unit of time by worker i on job j during time t will be a function of cijt:

ϕijt = Kij

[
1− e−(cijt+pij)/rij

]
, (2.1)

where Kij is an asymptotic parameter specifying the maximum productivity that can
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Figure 2.1: Three-parameter exponential learning curve by learning rate

be achieved by worker i on job j, learning rate rij is the time needed to reach 63%

of the asymptote’s production rate. The larger the value of r is, the slower is the

rate of improvement in performance. (see Figure 2.1). Parameter pij corresponds to

a worker’s prior experience evaluated in units of standard work time units-typically

hours of standard work time. The objective is to minimize the “makespan”, or the

completion of the last job, denoted as Tmax.

2.2.1 Nonlinear Formulation

Given the above assumptions and definitions, we present the following Makespan

Minimizing Workforce Assignment with Learning (MwL) model. A solution to this

model prescribes an assignment for each worker i in W to a job j in J in period t in

T . We denote these assignments by the binary variables xijt. The MwL is:
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Min Tmax (2.2)

S.t txijt ≤ Tmax i ∈ W, j ∈ J, t ∈ T (2.3)∑
j∈J

xijt ≤ 1, i ∈ W, t ∈ T (2.4)∑
i∈W

xijt ≤ 1, j ∈ J, t ∈ T (2.5)

MwL cijt =
t−1∑
k=1

xijk, i ∈ W, j ∈ J, t = 2, . . . T (2.6)

ϕijt = Kij

(
1− e−(cijt+pij)/rij

)
, i ∈ W, j ∈ J, t ∈ T (2.7)∑

i∈W

∑
t∈T

xijtϕijt ≥ vj, j ∈ J (2.8)

xijt ∈ {0, 1} i ∈ W, j ∈ J, t ∈ T (2.9)

Equation (2.2) is the objective minimizing the makespan Tmax. Constraints (2.3)

define the makespan Tmax to be the completion time of the last job. Constraints (2.4)

enforce that a worker cannot work more than one job in a period. Constraints (2.5)

limit only one worker can work on a job in any period. Constraints (2.6) define

cijt as the accumulated experience of worker i for job j before t. Then, Constraints

(2.7) uses this accumulated experience value to compute productivity during period

t. Constraints (2.8) enforce that the volume of work associated with job j, vj, be

performed by the end of the horizon. Constraints (2.9) define the domain of the

variables xijt.

We focus on a makespan minimizing workforce assignment model with few

complicating constraints in this chapter to highlight the general applicability of the

solution techniques we present next. The MwL can be modified to handle many



29

constraints such as adding ready times, due dates, and precedence constraints to

jobs. However, the solution techniques we discuss next can still be used for each of

these modified models.

2.2.2 Exact Linear Reformulation of MwL

In a preliminary work, we ran experiments in which we sought of to solve the

nonlinear model MwL using the nonlinear solver Couenne. Couenne reached its node

limit and could not return an integer solution even for a problem with two workers

and two jobs with a time limit of 1800 seconds. As a result, we turn to other means

of solving the instances of the proposed problem.

This section presents a reformulation that linearizes MwL, leaving a model

that is easier to solve. We call this reformulation the Makespan Minimizing Work-

force Assignment with Reformulated Learning (MwRL) model. Hewitt et al. (2014)

introduce an analogous technique for a serial production line problem with human

learning and prove that the reformulation is exact for the problem studied in their

chapter. We introduce a proof for the reformulation in the context of makespan min-

imizing workforce assignment. The reformulation of MwL relies on the fact that job

assignments, and thus the accumulated experience, are measured in discrete units. As

a result, the nonlinear learning function can be linearized by enumerating its possible

range values and associating a binary variable with each one. The result is that an

optimal solution to the MwRL model is also an optimal solution to the MwL model.

We let ϕ̂lijt be the productivity when worker i has l accumulated experience
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doing job j up to time t. Note that, given i, j, t, and l, we can compute ϕ̂lijt a priori as

ϕ̂lijt = Kij

(
1− e−(l+pij)/rij

)
(see Equation (2.7)) and thus treat it as a parameter to

an optimization model. Recalling the definition of cijt in Constraints (2.6), a worker

can gain at most t − 1 units of accumulated experience on a job by t. Thus, there

are at most t− 1 possible values for each worker and each job for period t. We define

binary variables zlijt associated with each parameter ϕ̂lijt, where l is the accumulated

experience of worker i up to time t on job j. With these new parameters and variables,

the nonlinear Constraints (2.7) can be replaced by(2.10)-(2.12). Constraints (2.10)

assign the productivity ϕijt the appropriate pre-defined parameter value ϕ̂lijt when

zlijt = 1, while Constraints (2.11) ensure that the l in the assigned pre-defined ϕ̂lijt

is equal to the accumulated experience cijt. Constraints (2.12) ensure that each

individual is assigned only one productivity in each period. Given the redefinition

of ϕijt in Constraints (2.10), nonlinear Constraints (2.8) can be replaced by linear

Constraints (2.13)-(2.14), where Mijt is a big number. Specifically, we use Mijt =

ϕ̂t−1ijt = max{ϕ̂lijt, l = 0, 1, . . . , t − 1}; the maximum production rate worker i can

achieve on job j in period t. We choose this value for Mijt as it does not render any

feasible solutions infeasible.
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Min Tmax

S.t (2.3)− (2.6), (2.9)

MwRL ϕijt =
t−1∑
l=0

ϕ̂lijtz
l
ijt, ∀i ∈ W, j ∈ J, t ∈ T ; (2.10)

t−1∑
l=0

lzlijt ≤ cijt, ∀i ∈ W, j ∈ J, t ∈ T , (2.11)

t∑
l=0

zlijt ≤ 1, ∀i ∈ W, j ∈ J, t ∈ T , (2.12)

ϕijt ≤Mijtxijt, ∀i ∈ W, j ∈ J, t ∈ T (2.13)

W∑
i=1

T∑
t=1

ϕijt ≥ vj, ∀j ∈ J, (2.14)

zlijt ∈ {0, 1} i ∈ W, j ∈ J, t ∈ T , l = 0, . . . , t− 1. (2.15)

Theorem 2.1. MwRL is an exact linear reformulation of MwL.

Proof. First, note that the MwRL and MwL share the same objective function and

Constraints (2.3)-(2.6) and (2.9). Further, Constraints (2.8) are equivalent to Con-

straints (2.13)-(2.14) that guarantee the volume of all jobs are finished. Second,

Constraints (2.7) in MwL are equivalent to Constraints (2.10)-(2.12) in MwRL. To

see this, note that the variable ϕijt is a function of cijt. The variable cijt has at most

t − 1 possible values given the definition of cijt in Constraints (2.6). Thus, we can

precompute ϕ̂lijt, l = 0, . . . , t − 1 for accumulated experience values of 0, . . . , t − 1.

For each i and j, Constraints (2.10) associate the appropriate ϕ̂lijt with the accumu-

lated experience cijt (by Constraints (2.11)). Constraints (2.12) enforce that only one

productivity is assigned to a worker in one period.
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Thus, because the MwRL has the same objective function as the MwL and

either shares the same constraints or replaces constraints in the MwL with equivalent

linearized constraints, the MwRL is an exact linear reformulation of MwL.

By Theorem (2.1), the MwRL is an exact reformulation of the MwL, but

lacks the nonlinearities. While this linearization does make it possible to solve larger

instances than are possible with the nonlinear formulation, the reformulation does

require additional variables and constraints. When reforming MwL to MwRL, we

add |W||J |
T∑
t=1

t extra binary variables zlijt, and |W||J |
T∑
t=1

t extra parameters ϕ̂tijt.

We have also added 3|W||J ||T | extra linear constraints. These extra variables and

constraints mean that large instances of the MwRL are still challenging for commercial

branch and bound solvers. In the remainder of this section, we discuss ways in which

the computational burden of the MwRL can be reduced. Section 2.2.3 demonstrates

how we generate initial feasible solutions to MwRL, while Section 2.2.4 introduces

valid inequalities and a lower bound on the objective function value of MwRL.

2.2.3 Initial Feasible Solution

We note that MwRL requires definition of the set T , and the instantiation of

T requires knowing an upper bound on Tmax. We generate this bound through a high

quality initial feasible solution (IFS). We also use this IFS to improve our branch-

and-bound approach. Knowledge of the objective function value of a high quality IFS

to an integer program at the start of the solution process can reduce solution time

in multiple ways. First, this upper bound on the optimal value of the optimization
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problem can be used during prepossessing routines to further reduce the domains of

variables. Second, during branch and bound, this upper bound can be used to fathom

nodes for which the lower bound is too great. Finally, with an IFS, the solver does

not need to spend time finding its own initial feasible solution.

To generate the IFS, we solve a makespan minimizing workforce assignment

problem that recognizes human learning (like the MwRL) but does not allow jobs to

be split. Specifically, a job can only be assigned to one worker, and once a worker

starts working a job, he or she will complete it. We call the resulting problem the

Makespan Minimizing Workforce Assignment Problem with Learning and No Splitting

(MwLNS). Note that the MwLNS is a restriction of the MwRL; all the assignments

that are feasible for the MwLNS are feasible for the MwRL, but the converse is not

true. As such, solutions to the MwLNS can be mapped to solutions to the MwRL.

The MwLNS includes the binary decision variables x
′
ij that indicate whether

job j is assigned to worker i. Given the restriction that an individual complete a

job once they begin it, we can calculate a priori the minimum number of time units

the worker would need to complete the job, which we denote by ptij. Specifically, we

calculate ptij by solving the optimization problem given in equation (2.16). We can

solve this optimization problem by iterations, increasing the accumulated experience

cij (starting at 0) until the productivity reaches or exceeds the volume of job j. Note

that the fact that an individual learns is embedded in this optimization problem.

ptij = min
l
{

l∑
cij=0

Kij

(
1− e−(cij+pij)/rij

)
≥ vj, l ∈ Z+} (2.16)
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Using these ptij values, we formulate and solve the MwLNS to find an initial

solution to the MwRL and a value for Tmax.:

Min TMwLNS
max

S.t
∑
i∈W

x
′

ij = 1, j ∈ J (2.17)

(MwLNS)
∑
j∈J

x
′

ijptij ≤ Tmax, i ∈ W (2.18)

x
′

ij ∈ {0, 1} i ∈ W, j ∈ J, (2.19)

Commercial solvers can often solve instances of the MwLNS model almost

instantaneously. This solution can then be transformed into a solution to the MwRL

with a procedure we next describe with an example. Consider a case in which there are

two workers and four jobs. Table 2.1 presents the processing time ptij for each worker

i on each job i, accounting for the learning that takes place as worker i performs job

j. Table 2.1 also present the assignments from an optimal solution of this instance of

the MwLNS.

The solution shows that worker 1 is assigned to job 2 with a processing time

of 2 periods and job 3 with a processing time of 3 periods. Worker 2 performs job 1,

which takes 1 period and job 4, which takes 4 periods. The objective value (makespan)

of this example is 5 periods.

We create a solution to the MwRL by ordering the jobs performed by worker

i in ascending order of processing time ptij(see Table 2.2). This solution also yields

an objective value of 5 periods and does not violate any constraints of the MwRL.
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ptij Job 1 Job 2 Job 3 Job 4
Worker 1 2 2 3 5
Worker 2 1 3 4 4

x
′
ij Job 1 Job 2 Job 3 Job 4

Worker 1 0 1 1 0
Worker 2 1 0 0 1

Table 2.1: Parameters and solutions of MwLNS for an example of two workers and
four jobs

xijt Period 1 Period 2 Period 3 Period 4 Period 5

Worker 1
Job 2 1 1 0 0 0
Job 3 0 0 1 1 1

Worker 2
Job 1 1 0 0 0 0
Job 4 0 1 1 1 1

Table 2.2: Transform into solutions xijt of MwRL

We can then feed this transformed solution to an optimization solver as the starting

point for its search for an optimal solution to the MwRL.

2.2.4 Strengthening the Formulation

While overcoming the nonlinearities of the learning curve improves the tractabil-

ity of the model, we can also strengthen the formulation using valid inequalities and

a lower bound on the objective function value of the optimal solution. By strength-

ening the formulation, a mixed integer programming solver is likely to require much

less time to solve instances of the problem.
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2.2.4.1 Valid Inequality

First, we present a cover inequality that is added to MwRL to strengthen

the bound produced by its linear relaxation. Consider Constraint (2.8) and derive

valid inequality for MwRL. We can weaken the constraint
∑

i∈W
∑

t∈T xijtϕijt ≥

vj by replacing the variable ϕijt with the value ϕ̄j = maxi ϕ̂
T−1
ijT , where ϕ̂T−1ijT =

max{ϕ̂lijT , l = 0, 1, . . . , T − 1} is the maximum production rate of a worker i on a job

j over the entire time horizon. The resulting constraint is:

∑
i∈W

∑
t∈T

ϕ̄jxijt ≥ vj. (2.20)

Dividing both sides by ϕ̄j and round the right hand side to the ceiling integer

since the sum of the binary variables is integral. As such, we have the cover inequality:

∑
i∈W

∑
t∈T

xijt ≥
⌈
vj
ϕ̄j

⌉
, ∀j ∈ J. (2.21)

2.2.4.2 Lower Bound

One can also strengthen a formulation by adding a lower bound on the op-

timal objective value. To derive such a bound, we solve an integer program that is

similar in form to MwL, but much simpler to solve. Assume all the workers have the

maximum possible productivity on all jobs at all time periods ϕ̂t−1ijt . We remove all

the nonlinearities in MwL and call the following program the Makespan Minimizing

Workforce Assignment with Maximum Learning (MwML) model.
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Min TMwML
max

S.t (2.3)− (2.5), (2.9)

(MwML)
∑
i∈W

∑
t∈T

xijtϕ̂
t−1
ijt ≥ vj, ∀j ∈ J (2.22)

The MwML is a relaxation of MwL (some constraints are removed, some are

weakened by replacing variables with their maximum values). We can solve the

MwML prior to solving the MwRL to provide a global bound on the optimal objective

function value. We add the constraint:

TMwML
max ≤ Tmax (2.23)

to the MwRL. We can generate additional bounds during the execution of the branch

and bound by solving the MwML at different nodes in the branch-and-bound tree

with some variables in the MwML fixed to values determined by branching decisions.

2.3 Computational Experiments and Results

In this section, we present the results of computational experiments that we

performed to test the effectiveness of our formulations and techniques.

2.3.1 Experimental Setting

We generate 11 classes of instances, each class differentiated by the number of

workers and tasks. Our goal in generating the sets is to test to limits of the proposed

solution methodology rather than to recreate instances reflecting any particular envi-

ronment. The classes range from 5 workers, 10 tasks up to 20 workers, 30 tasks. To
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give perspective on the sizes of these instances, recall that Corominas et al. (2010)

solve a close variant of the MwRL in which instances of only five tasks and four work-

ers were solved via an approximation (a piecewise linearization) scheme. We detail

the instance sizes, with respect to the number of workers, |W|, and the number of

jobs, |J | in Table 2.3.

|W| |J |
5 10, 15
10 10, 15, 20
15 15, 20, 25
20 20, 25, 30

Table 2.3: Instance sizes

For each class, we generate nine cases for a total of 99 instances. Each case is

defined by the learning traits of the workers (asymptote parameter K, prior experi-

ence p, and learning rate r) and the job volumes. We sample the learning traits data

based on the empirical data found in Mazur and Hastie (1978). Mazur and Hastie

(1978) collect performance-related results from various experimental settings, includ-

ing students writing letters and factory workers making cigars. In our dataset, the

asymptote parameter is generated from the interval [8, 10], and the prior experience

is assumed to be 0.5, which is the minimum experience for a worker to start on a

job. The learning rate is classified as “fast”, “medium”, or “slow,” with the sampling

intervals for each classification given in Table 2.4. Figure 2.2 illustrates these curves

at the midpoint of their respective range. The job volumes also define the problem
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Notation Settings
Asymptote K [8, 10]
Prior experience p 0.5

Fast Medium Slow
Learning rate r [0.5, 1] [2, 4] [5, 8]

Short Medium Long

Volume of work v
[
|W|
|J | , 5

|W|
|J |

] [
6 |W||J | , 10 |W||J |

] [
11 |W||J | , 15 |W||J |

]
Table 2.4: Instance design

and a job volume is classified as “short”, “medium”, or “long” job with the integer

values in intervals in Table 2.4.

For each combination of |W|, |J |, nine cases are generated, with the cases

varying according to worker learning rates and job volumes in Table 2.5. For ex-

ample, all workers in case 1 are fast learners whose learning rates are randomly

sampled from [0.5, 1], while the job volumes are randomly drawn from the integers in

[|W|/|J |, 5|W|/|J |]. Other cases are generated similarly. Overall, these datasets are

chosen to test the computational effectiveness of the reformulations and other model

enhancements and not to necessarily reflect the settings found in any particular prac-

tical setting. The datasets are available from http://ir.uiowa.edu/tippiepubs/66/.
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Figure 2.2: Learning curves with
different learning rates

Learning Job
Case rate volume

1 Fast Short
2 Fast Medium
3 Fast Long
4 Medium Short
5 Medium Medium
6 Medium Long
7 Slow Short
8 Slow Medium
9 Slow Long

Table 2.5: Instance cases

In the experiments, we seek to understand the computational performance

of the integer programs and the proposed speed-up techniques. First, we seek to

understand to what degree the solvability of MwRL scales with respect to the number

of workers and jobs. Next, we seek to understand whether the solution time for an

instance of the MwRL is related to the case used to create it. Then, we seek to

understand whether the speed-up techniques have an impact.

All the experiments presented in the next section were performed on a com-

puter cluster where each node has 32-64 cores with AMD Opteron 2.2 GHz or AMD

Interlagos 2.6 bulldozer processors and 128-256 GB of memory. All instances were

solved using Gurobi version 5.2, and all Gurobi parameters were left at their default

values, other than the time limit, which was set to 600 seconds.
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Case
|W| − |J | 1 2 3 4 5 6 7 8 9

5-10 0.00 0.00 1.00 0.00 2.00 2.00 0.00 2.00 5.00
5-15 0.00 0.00 0.00 0.00 4.00 3.00 1.00 5.00 0.00
10-10 0.00 0.00 0.00 0.00 1.00 1.00 0.00 1.00 2.00
10-15 0.00 0.00 0.00 0.00 1.00 3.00 0.00 2.00 0.00
10-20 0.00 0.00 1.00 0.00 3.00 5.00 1.00 7.00 0.00
15-15 0.00 0.00 0.00 0.00 1.00 5.00 0.00 4.00 0.00
15-20 0.00 0.00 0.00 0.00 1.00 3.00 1.00 4.00 0.00
15-25 0.00 0.00 2.00 1.00 5.00 7.00 1.00 5.00 0.00
20-20 0.00 0.00 0.00 0.00 2.00 0.00 1.00 7.00 0.00
20-25 0.00 1.00 1.00 0.00 1.00 6.00 1.00 5.00 0.00
20-30 0.00 0.00 1.00 0.00 2.00 6.00 1.00 0.00 0.00

Average 0.00 0.09 0.55 0.09 2.09 3.73 0.64 3.82 0.64

Table 2.6: Abs. gaps when solving MwRL

2.3.2 Computational Results

We first focus on the computational tractability of the MwRL. All times re-

ported are in seconds. Because the makespan values for these instances are often

relatively small ( less than 20), we report absolute gaps as opposed to relative gaps.

As such, we report in Table 2.6 the average gap at termination for each instance of the

MwRL that Gurobi tries to solve. An entry of “0.00” indicates that Gurobi was able

to solve the instance. Similarly, we report in Table 2.7 the time Gurobi requires to

reach termination, either because it solved the instance or it reached the 600 seconds

time limit.

First, we observe that Gurobi solves 41.41% of the instances (41 out of 99).

We next observe that it is not the size of the instance that impacts Gurobi’s ability

to solve it, but the case used to generate it. This can also be seen in the following
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Case
|W| − |J | 1 2 3 4 5 6 7 8 9

5-10 0.29 8.11 600.00 4.12 600.00 600.00 8.45 600.00 600.00
5-15 6.30 6.76 7.72 0.97 600.00 600.00 600.00 600.00 600.00
10-10 0.38 16.35 28.61 18.70 600.00 600.00 274.72 600.00 600.00
10-15 9.01 23.06 111.25 15.62 600.00 600.00 463.55 600.00 600.00
10-20 14.01 18.67 600.00 17.38 600.00 600.00 600.00 600.00 600.00
15-15 1.97 20.60 80.16 11.00 600.00 600.00 331.51 600.00 600.00
15-20 6.73 14.23 56.78 9.81 600.00 600.00 600.00 600.00 600.00
15-25 11.75 29.55 600.00 600.00 600.00 600.00 600.00 600.00 600.00
20-20 4.65 40.01 129.53 39.26 600.00 600.00 600.00 600.00 600.00
20-25 7.14 600.00 600.00 21.97 600.00 600.00 600.00 600.00 600.00
20-30 11.91 63.32 600.00 27.17 600.00 600.00 600.00 600.00 600.00

Average 6.74 76.42 310.37 69.64 600.00 600.00 479.84 600.00 600.00

Table 2.7: Times when solving MwRL

figures. Figure 2.3 presents the average time Gurobi requires for all instances of a

given size and Figure 2.4 the average time for all instances of a given case. We see

that runtimes are fairly constant across instance sizes, but differ greatly by case.

Gurobi can (relatively) easily solve instances from Cases 1, 2, 3, 4, and 7. Examining

the results further, we see that Gurobi can quickly solve instances that either have

workers that possess a fast learning rate or jobs that have a short volumes.
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We next turn our attention to the impact of strengthening the formulation

(cover inequalities and lower bound) and the IFS proposed earlier. Table 2.8 indicates

for each method name which techniques were used. We first display in Figure 2.5 the

average runtimes when the cover inequalities are and are not used, by case. We see

that using the cover inequalities is quite effective as they decrease the runtime in every

case. On average, the runtime with the cover inequalities is 74.90% of the runtime

than without. Similarly, while 41.41% of the instances were solved within the 600

second time limit when the cover inequalities are not used, 56.57% of instances are

solved when it is. On the other hand, Figure 2.6 indicates that using the lower bound

as well as the cover inequalities does not reduce run-times.

We next consider whether there is an improvement when an IFS is used along

with the cover inequalities. Figure 2.7 compares solve times when an IFS is and

is not used along with the cover inequalities. We see that by providing an IFS to

Gurobi, runtime is reduced significantly. To be precise, averaged over all instances,
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Cover Lower IFS
Method ineq. bound

MwRL-Cover Y N N
MwRL-Bound Y Y N

MwRL-IFS Y N Y
MwRL-Bound-IFS Y Y Y

Table 2.8: Method configuration

the run time when an IFS and the cover inequalities is used is 42.09% of the run time

when only the cover inequalities are used. Similarly, while using the cover inequalities

increases the percentage of instances solved to 56.57%, using an IFS in addition to

the cover inequalities increases that percentage to 80.81%. We also note that the

pattern in the average runtime by case is the same when an IFS is used as when it

is not. Both approaches still struggle the most with instances from Cases 6, 8, and

9. Not surprisingly those are the cases where the fewest instances are solved for both

MwRL-Cover and MwRL-IFS.

We next return to considering the use of a lower bound, and report by method

and case the average of the absolute gap reported at termination. We note that using

the lower bound in conjunction with the IFS has little to no impact on runtime.

However, comparing the lines MwRL-IFS and MwRL-Bound-IFS we see that using

both the lower bound and the IFS leads to the (provably) highest-quality solution at

termination.
We next seek to understand why using an IFS is so effective. To that effect,

Table 2.10 reports, averaged over all instances for a given case, the proportion of

the number of binary variables that are in the MwRL-Bound-IFS formulation after
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Case
Method 1 2 3 4 5 6 7 8 9 Avg.

MwRL 0.00 0.09 0.55 0.09 2.09 4.10 0.64 4.20 3.50 1.45
MwRL-Cover 0.00 0.00 0.00 0.00 1.18 2.73 0.27 2.57 2.75 0.85

MwRL-Bound 0.00 0.00 0.00 0.00 0.91 2.27 0.27 2.70 3.25 0.86
MwRL-IFS 0.00 0.00 0.00 0.00 0.18 0.73 0.18 0.55 1.45 0.34

MwRL-Bound-IFS 0.00 0.00 0.00 0.00 0.18 0.64 0.18 0.45 0.82 0.25

Table 2.9: Average absolute gap by method and case

Gurobi performs preprocessing to the number of binary variables that are in the

MwRL formulation after preprocessing. With the IFS, Gurobi is able to preprocess

(fix to 0 or 1) many of the binary variables that are in the original MwRL formulation.

Not surprisingly, the cases (6, 8, and 9) that we have observed to be the hardest are

the ones where Gurobi is able to preprocess the fewest numbers of variables.

Case
1 2 3 4 5 6 7 8 9

% binary var 15.04 34.38 57.95 31.84 58.47 75.74 55.94 76.70 87.96

Table 2.10: Fraction of MwRL variables in MwRL-Bound-IFS formulation after pre-
processing

Similarly, Table 2.11 presents the absolute gap between the objective function

value of the IFS and the lower bound reported by Gurobi at termination. We then

average these gaps over all instances created with the same case. Not surprisingly,

we see a fairly clear relationship between the quality of the IFS and Gurobi’s ability

to preprocess variables; the better the quality of the IFS, the more variables Gurobi
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is able to preprocess.

Case
1 2 3 4 5 6 7 8 9

Abs. gap 0.00 0.00 0.36 0.00 0.18 0.64 0.64 0.45 0.82

Table 2.11: Average absolute gap between value of initial solution and final lower
bound

The quality of the IFS is also related to the case used to generate the instance.

In particular, for instances where the learning rate is Fast and the job volume is Short

or Medium, the IFS is optimal. Similarly, when the learning rate is Medium and the

job volume is Short, the IFS is optimal. In a sense, this is not surprising. The IFS is

generated by solving a restriction of the MwL in which each job is assigned to exactly

one worker. This may be less of a restriction when workers learn very quickly or the

job has a Short volume. In both cases, the job can be completed quickly enough that

there is no reason for a worker not to finish it.

Finally, recalling that the largest instances of models of this sort that have

been solved in the literature (and that was with a piecewise-linear approximation

scheme) consisted of four workers and five jobs, we repeat Tables 2.6 and 2.7 only

for when MwRL-Bound-IFS is solved (Tables 2.12 and 2.13). Table 2.13 shows that

all instances up to 10 workers and 10 jobs are solved instantaneously, and it is not

until instances with 15 workers that the time limit of 600 seconds is consistently hit.

However, again it depends on the case. For the cases in which workers learn at a fast

rate, instances of all sizes are solved in seconds. Yet, from Table 2.12, we see that,
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Case
|W| − |J | 1 2 3 4 5 6 7 8 9

5-10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5-15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10-10 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
10-15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 2.00
10-20 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
15-15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
15-20 0.00 0.00 0.00 0.00 1.00 3.00 1.00 1.00 2.00
15-25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00
20-20 0.00 0.00 0.00 0.00 1.00 2.00 0.00 0.00 0.00
20-25 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 2.00
20-30 0.00 0.00 0.00 0.00 1.00 3.00 1.00 1.00 2.00

Average 0.00 0.00 0.00 0.00 0.27 1.00 0.27 0.45 0.82

Table 2.12: Abs. gaps when solving MwRL-Bound-IFS

even when the time limit is hit, the solutions found at that point are typically of high

quality as they are only two units away from the best known bound.

2.4 Conclusions and future work

In this paper, we study optimization techniques for makespan minimizing

workforce assignment problems wherein human learning is explicitly modeled. In

contrast to the commonly-studied problem in which a job is only performed by one

individual and hence learning can be encoded in the parameters of the problem, we

instead study problems wherein learning must be explicitly represented within the

optimization model. To date, the challenge with such models has come from the

fact that quantitative models of how humans learn are nonlinear, leaving optimiza-

tion problems that are computationally intensive to solve for all but the smallest

instances.
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Case
|W| − |J | 1 2 3 4 5 6 7 8 9

5-10 0.06 1.15 0.13 0.51 0.10 0.13 1.87 0.28 0.31
5-15 0.56 0.52 1.21 2.05 0.34 0.45 0.18 0.23 0.29
10-10 1.27 0.11 0.19 1.12 0.18 0.18 0.20 0.19 0.22
10-15 0.23 0.17 6.10 0.29 0.40 600.00 5.96 600.00 600.00
10-20 1.00 1.01 0.25 0.92 0.41 0.69 4.71 1.23 0.61
15-15 0.26 0.55 0.68 0.24 0.26 0.32 0.37 0.52 0.29
15-20 0.12 0.27 6.15 0.85 600.00 600.00 5.20 600.00 600.00
15-25 0.34 0.35 1.47 0.45 0.86 600.00 600.00 600.00 600.00
20-20 0.26 0.34 0.46 0.60 0.69 0.84 1.15 0.36 0.52
20-25 0.25 0.55 6.71 0.63 1.76 600.00 600.00 600.00 600.00
20-30 0.74 0.78 31.61 0.70 600.00 600.00 88.25 600.00 600.00

Average 0.46 0.53 5.00 0.76 109.55 272.96 118.90 272.98 272.93

Table 2.13: Times when solving MwRL-Bound-IFS

To overcome the nonlinearity, we use an exact reformulation technique which

replaces the nonlinear function used to model learning with binary variables and linear

constraints. As such we transform the nonlinear optimization problem to a mixed

integer program (MIP), a type of optimization problem that commercial solvers are

capable of solving for many instance sizes. We then develop speed-up techniques for

this MIP. Namely, we derive a procedure for creating an initial feasible solution for

the MIP, a valid inequality for the formulation, and a procedure for producing a lower

bound on the optimal value of the MIP.

With an extensive computational study, we show that our techniques can solve

larger instances in a much faster speed than has been seen in the literature. We also

illustrate the effectiveness of the proposed speed-up techniques as well as analyze why

they are effective. Finally, we present computational results that show that our new
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formulation can often be solved in mere seconds. Ultimately, we believe this paper

sets the standard, computationally-speaking, for how one solves makespan minimizing

workforce assignment problems that explicitly recognize human learning.

There are many human learning activities that are not captured in the prob-

lems we study. For example, psychologists have claimed that, by training, workers not

only gain experience but can also fundamentally change their learning rates. Also,

our problem assumes that jobs are distinct from a learning perspective. In other

words, performing one job does not improve the productivity of a worker on another.

However, oftentimes there is similarity between jobs (they may share common sub-

jobs). We intend to explore both of these factors in future work. Finally, we intend

to incorporate an explicit representation of human learning into more complicated

scheduling problems, such as those that have releasing time, due dates, precedence

relationship, or have a more complicated structure, such as flow shops.
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CHAPTER 3
WORKER GROUPING AND ASSIGNMENT WITH

LEARNING-BY-DOING AND KNOWLEDGE TRANSFER

3.1 Introduction

Recall that Chapter 2 considers individual learning. When working in a team

environment, not only does an individual learn from direct first hand experience, but

also, potentially, from knowledge transferred from others in the team. We now con-

sider the case in which workers working in proximity can transfer knowledge. Knowl-

edge transfer occurs when individuals work in close proximity with team members

who are doing the same or related jobs.

This work is motivated by Nembhard and Bentefouet (2015), who first propose

the concept of knowledge transfer among workers in the same team and is also the

first to propose a mathematical representation of it. The mathematical representation

in Nembhard and Bentefouet (2015) is an extension of the 3-parameter hyperbolic

learning curve by letting the cumulative experience be a function of both direct and

indirect experience. Direct experience, D, is measured as the number of repeated

time a person performs a job. Indirect experience, S, is measured as the output of

others working on jobs that are in close enough proximity for an individual to learn

from their work. However, not all indirect experience is transferred. Instead, S is

scaled by a parameter θ that represents an individual’s ability to learn via transfer.

Thus parameter, θ, (a percentage) represents what fraction of indirect experience is

transferred from workers to the individual. We use Nembhard and Bentefouet (2015)’s
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learning model that incorporates knowledge transfer as in Equation (3.1):

ϕ = K(
θ × S +D + p

θ × S +D + p+ r
). (3.1)

Equation (3.1) describes the production output ϕ as a function of cumulative

experience θ× S +D in units of time or trials. The three parameters of the function

are: (1) K, which defines the asymptote limit of the production output ϕ, (2) p,

corresponds to a worker’s prior experience evaluated in the same units as x, and, (3)

r, the learning rate.

Nembhard and Bentefouet (2015) propose several heuristic approaches for se-

lecting a workforce from a pool, grouping the workforce into teams, and assigning

teams to jobs. Based on their computational study, they identify the top policies

that yield the maximum throughput for each decision.

This chapter considers the workforce allocation problem, including grouping

workers into teams based on individual learning characteristics, and assigning teams

to different sets of jobs. Unlike Nembhard and Bentefouet (2015), we do not include

the selection decision because workforces are fixed in general. We assume a set of

workers and a set of jobs in a given time horizon for parallel systems. Each individual

worker has a known learning function that determines the worker’s productivity for

each unit of experience. We also account for workers knowledge gain transferred from

their team members. The objective is to maximize the system throughput over the

horizon.

The challenges of this problem lie in the nonlinearity of the learning curve that
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incorporates knowledge transfer, and the large number of variables and constraints.

There are three contributions in this chapter: First, we build a mixed integer non-

linear program (MINLP) for parallel production systems. Second, by exploiting the

structure and characteristics of the optimal solutions, we develop an exact approach

that linearizes the MINLP to a mixed integer linear program (MILP). This reduction

in complexity allows us to solve workforce allocation problems with different prob-

lem settings. Third, with the extensive computational results, we provide a solution

structure analysis and give managerial insights for managers when making grouping

and assignment decisions.

The remainder of this chapter is organized as follows. Section 3.2 presents

the MINLP for parallel systems. Section 3.3 reformulates this MINLP to a MILP.

Section 3.4 presents the experiment design and summarizes the results of the experi-

ments as well as insights gained from solutions. Section 3.5 offers the conclusions of

this chapter.

3.2 Problem Description and Mathematical Model

We first present a description of the problem followed by a mathematical model

of the problem.

In this chapter, we consider an organization that seeks to develop a workforce

plan for a parallel system over a finite planning horizon. In this parallel system,

jobs have already been partitioned into different types, and jobs of the same type

are in close enough proximity in the production facility to facilitate the transfer
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Figure 3.1: An example of parallel system

of knowledge. We illustrate a parallel system in Figure 3.1, wherein nine jobs are

grouped into three types. The goal of the organization is to team workers to groups,

and then groups to jobs, in order to maximize overall productivity. We consider a

setting wherein each job can be performed by at most one worker, and each worker

can perform at most one job.

To model this problem, we assume a horizon of T periods, and let the set

T = {1, 2, . . . , T} index the set of periods in the horizon. We define I = {1, 2, . . . , I}

to be a set of workers that perform jobs in set J = {1, 2, . . . , J}. With this discrete
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planning horizon, we model the assignment of individuals to jobs with the binary

variable xtij, which indicates whether worker i performs job j in period t. Associated

with each pair of a worker and a job is the learning parameters that determine the

worker’s ability to learn the job. Referring to equation (3.1), we let Kij, pij, and

rij denote the asymptote parameter, prior experience, and learning rate of worker i

on job j. We note that with these parameters we are explicitly modeling that the

workforce is heterogeneous with respect to productivity and learning.

Jobs are partitioned into G different types, and G = {1, 2, . . . , G} is the set

of these job types. Jobs in type g ∈ G are a subset of jobs in J . Jobs of the same

type are grouped together so that workers working them are close enough to transfer

knowledge. We assume that the ability of a worker to absorb knowledge from her/his

colleagues’ accumulated experience does not depend on the jobs that colleagues are

performing. As such, associated with each worker is the transfer parameter θi ∈

[0, 1], which represents the fraction of knowledge transferred to worker i from her/his

coworkers that are working on jobs in the same job type.

For each period t in the horizon, we let ctij denote the accumulated work expe-

rience of worker i for task j up to t. As discussed previously, the accumulated work

experience ctij is a function of direct and indirect experience. The direct experience

is the number of periods in which worker i perform j by time t, i.e. Dt′
ij =

∑
t′<t x

t′
ij.

Regarding indirect experience, for worker i in period t, we denote the experi-

ence of colleagues that impacts i’s productivity on job j as Stij. We calculate this as

the total production output of all colleagues on jobs that are in the same group as
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j. As such, we define the binary indicator fjk as taking on the value 1 when jobs j, k

are the same type and the value 0 otherwise. Thus, we have the following calculation

of Stij :

Stij =
∑

i′∈I:i′ 6=i

∑
k∈J :k 6=j

∑
t′<t

fjkϕi′k(c
t′

i′k), i ∈ I, j ∈ J , t ∈ T (3.2)

Thus, we calculate the accumulated experience of worker i on job j in period

t with the following equation:

ctij = θiS
t
ij +Dt

ij, i ∈ I, j ∈ J , g ∈ G, t ∈ T (3.3)

We calculate the productivity of worker i on job j in period t as:

ϕij(c
t
ij) = Kij

ctij + pij

ctij + pij + rij
, i ∈ I, j ∈ J , t ∈ T (3.4)

Recall that we presume that jobs have already been partitioned into types

such that knowledge can be transferred between individuals working on jobs of the

same type. As such, we model the choice of putting workers into groups (or teams),

with each group of workers assigned to a single job type. Note we also presume that

a worker can work only on jobs within his group’s assigned job type. Thus, there is

a one-to-one mapping between groups/teams of workers and job types.

To model these choices, we define the binary variable yig to indicate whether

worker i is assigned to group/job type g ∈ G. We use the following constraints to

enforce that a worker is assigned to only one group (Constraints 3.5), and only works
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on jobs within their assigned type during the planning horizon (Constraints 3.6):

∑
g∈G

yig = 1, i ∈ I (3.5)∑
j∈g

xtij ≤ yig, i ∈ I, g ∈ G. (3.6)

We presume a job can be performed by only one worker in a period, which we

enforce with the following constraint:

∑
i∈I

xtij ≤ 1, j ∈ J , t ∈ T (3.7)

Finally, the objective is to maximize the system production at the end of

the horizon (which we often refer to as system throughput). We let the continuous

variable otij represent worker i’s output on job j in period t. However, their output on

a job in a period is limited both by their productivity and whether they performed

that job in that period. Both restrictions are modeled in the following constraint:

otij ≤ xtijϕ
t
ij(c

t
ij), i ∈ I, j ∈ J , t ∈ T . (3.8)

Ultimately, with these variable and constraint definitions, we define the fol-

lowing non-linear program for assigning workers to groups and groups to job types in

a parallel system. We refer to this model as “PM” :
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Max
∑
i∈I

∑
j∈J

∑
t∈T

otij

S.t
∑
i∈I

xtij ≤ 1, j ∈ J , t ∈ T (3.9)∑
g∈G

yig = 1, i ∈ I (3.10)

(PM)
∑
j∈g

xtij ≤ yig, i ∈ I, g ∈ G (3.11)

otij ≤ xtijϕij(c
t
ij), i ∈ I, j ∈ J , t ∈ T (3.12)

ϕij(c
t
ij) = Kij

ctij + pij

ctij + pij + rij
, i ∈ I, j ∈ J , t ∈ T (3.13)

ctij = θiS
t
ij +Dt

ij, i ∈ I, j ∈ J , t ∈ T (3.14)

Stij =
∑

i′∈I:i′ 6=i

∑
k∈J :k 6=j

∑
t′<t

fjkϕi′k(c
t′

i′k), i ∈ I, j ∈ J , t ∈ T (3.15)

Dt
ij =

∑
t′<t

xt
′

ij, i ∈ I, j ∈ J, t ∈ T (3.16)

otij ≥ 0, i ∈ I, j ∈ J , t ∈ T . (3.17)

xtij, yig ∈ {0, 1}, i ∈ I, j ∈ J , t ∈ T , g ∈ G (3.18)

3.3 Reformulation of the MINLP

Given the state of today’s off-the-shelf optimization solvers, the nonlinear nature of

“PM” renders it computationally challenging to solve for instances of moderate-to-

large size. However, by analyzing the structure present in optimal solutions to “PM”

we can reformulate it to a mixed integer program. Specifically, we extend the analysis

of Nembhard and Bentefouet (2012), who show that in a parallel system and under

some conditions, the optimal schedule of a worker task assignment problem with

individual learning is a schedule with specialized workers. In other words, workers
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perform the same job during the planning horizon. However, their result does not ad-

dress a situation wherein knowledge transfer occurs. We show (Proof in Appendix A)

that the result also extends to situations wherein there is knowledge transfer, or,

precisely, that:

Theorem 3.1. In parallel systems, when the number of workers is equal to the num-

ber of jobs with a monotonically non-decreasing learning function, the optimal schedule

is a schedule with specialized workers. In other words, no workers switch jobs within

the horizon and workers are assigned to a single task.

Proof in Appendix A.

The conclusion of Theorem 3.1 enables us to simplify “PM” in two ways: (1)

we can ignore the time component, and, (2) we can remove the nonlinearity through an

enumeration of all possible assignments of workers to groups (and hence job types).

Regarding the time component, as a worker will perform the same job during the

planning horizon, we can remove the index t from the variables xtij, S
t
ij, D

t
ij, c

t
ij, and

ϕtij.

Regarding the enumeration, we enumerate the possible assignment of workers

to jobs in each job type. For a job-type g consisting of n jobs, we let Wg denote the

set of all possible permutations of n workers, e.g. w = {i1, i2, . . . , in}, w ∈ Wg. Note

that we derive from the ordering of the individuals in w the assignment of a worker

in w to a job in g. In other words, with w = {i1, i2, . . . , in} and g = {j1, j2, . . . , jn}

we assign i1 to perform j1, i2 to perform j2, etc. We then calculate the throughput

of this group of workers, w, when assigned to group g, which we denote as Og
w, as
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follows:

Og
w =

n∑
l=1

oiljl

=
n∑
l=1

∑
t∈T

Kiljl

ctiljl + piljl
ctiljl + piljl + riljl

=
n∑
l=1

∑
t∈T

Kiljl

t+ piljl +
n∑

q=1:q 6=l

n∑
r=1:r 6=l

∑
t′<t

ϕiqjr(c
t′
iqjr)

t+ piljl +
n∑

q=1:q 6=l

n∑
r=1:r 6=l

∑
t′<t

ϕiqjr(c
t′
iqjr

) + riljl

. (3.19)

Then, to reformulate “PM” to a mixed integer program we introduce the

binary variable zgw to indicate whether the group of workers w ∈ Wg is assigned

to the job type g. The resulting reformulation, which can be seen as a set packing

problem, is as follows:

Max
∑
g∈G

∑
w∈Wg

Og
wz

g
w (3.20)

∑
w∈Wg

zgw ≤ 1, g ∈ G (3.21)

(RPM)
∑
g∈G

∑
w∈Wg :i∈w

zgw ≤ 1, i ∈ I (3.22)

zgw ∈ {0, 1}, w ∈ Wg, g ∈ G. (3.23)

The objective (3.20) maximizes the throughput of the system. Constraints

(3.21) ensure that at most one group is assigned to each job type. Similarly, con-

straints (3.22) ensure that each worker is assigned to at most one group. Finally,

constraints (3.23) define the domain of the variables. Note that whereas Nembhard

and Bentefouet (2015) assume a homogeneous workforce with respect to learning pa-
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rameters (K, p, r), we are able to model a heterogeneous workforce without increasing

the complexity of RPM.

3.4 Experimental Design and Computational results

In this section, we describe the computational study we performed to address the

following issues/questions. First, we evalute the benefits an organization can see

from recognizing that knowledge transfer occurs when developing their workforce

plans. Second, we assess the capabilities of solving the reformulated MIP (RPM)

as a planning process. To do so, we first benchmark the quality of the solutions it

produces against those produced by the heuristic policies presented in Nembhard and

Bentefouet (2015). Then, we perform a computational study to determine how large

an instance of the RPM we can solve within a given time limit. Third, we study

how the (optimal) solutions to the RPM differ, structurally, from those prescribed by

the heuristics proposed in Nembhard and Bentefouet (2015). We next describe the

settings that goven how our computational experiments were performed.

3.4.1 Experimental Setting

All results presented in this section were derived from experiments that were per-

formed on a computer cluster wherein each node has 16 2.6 GHz cores and 4 GB of

memory. All instances were solved using Gurobi version 6.5, and all Gurobi parame-

ters were left at their default values, other than the time limit, which was set to 3600

seconds.

As the datasets used vary according to the issue we are studying, we defer
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log(K) log(p) log(r)

µ =

 1.448
1.963
2.0446

 log(K)
log(p)
log(r)

Σ=

0.0045 0.0167 0.0191
0.0167 0.4621 0.2443
0.0191 0.2443 0.1905

 log(K)
log(p)
log(r)

Table 3.1: Mean and variance-covariance matrix for K, p, and r

description of them until the description and analysis of each issue. However, each

instance includes a workforce, and a worker in our model is defined by his/her learning

traits (asymptote productivity rate K, learning rate r, prior experience p, and knowl-

edge transfer parameter θ). In all instances, the first three traits are determined for

each individual in a workforce by drawing from normal univariate distributions with

means and variance-covariances given in Table 3.1. These distribution parameters

have been used in Nembhard and Bentefouet (2015), and are originally from Shafer

et al. (2001). The transfer parameter θ is assumed to be normally distributed, with

mean 0.664 and variance 0.409. These are the same distribution and parameters as

used in Nembhard and Bentefouet (2015).

3.4.2 The Impact of Knowledge Transfer on Throughput

We first study the extent by which recognizing that knowledge transfer occurs when

determining workforce groups and plans impacts throughput. We study this on a

set of 100 instances, each with nine workers and nine jobs. For each instance we

generate two solutions (groups of workers, and assignments of groups to job types)
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and compare the throughput yielded by each solution. The first solution is derived by

solving RPM, thus this solution is derived when explicitly recognizing that knowledge

transfer occurs. We refer to the throughput associated with such a solution as objkt.

The second solution is derived in a manner that mimics when knowledge trans-

fer is not considered when deriving a workforce plan. To derive such a solution, we

again solve RPM but do so after setting each individual’s knowledge transfer param-

eter (θi) to zero. Setting θi = 0,∀i ∈ I essentially turns off recognition of knowledge

transfer when deriving the solution. However, knowledge transfer does occur and

can impact throughput even if it is not recognized when deriving the plan. Thus, to

evaluate the throughput, we evaluate this solution in RPM, albeit with the knowl-

edge parameter for each individual set to with the parameter value. We refer to this

throughput as objno−kt.

Figure (3.2) shows a clear difference in the objective values of models with

and without knowledge transfer on the 100 nine-worker datasets. We see that over

the 100 instances the average gap in througput (measured as (objkt− objno−kt)/objkt)

is 27.18%. We illustrate the distribution of these gaps in Figure 3.3. Both clearly

indicate that recognizing that knowledge transfer occurs when determining a grouping

of workers and assignment of groups to job types can have a significant impact on

throughput. In other words, managers should take into account the impact of the

knowledge transfer between team workers when making grouping and assignment

decisions. Failing to consider knowledge transfer leads to underestimation of the

workforce capacity.
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Figure 3.2: System Throughput on the 100 Datasets
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Figure 3.3: Distribution of throughput gaps when recognizing knowledge transfer
and not.
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Having validated the merit in recognizing knowledge transfer, we next turn

to assessing the capabilities of solving the RPM to develop workforce plans while

considering that knowledge transfer occurs.

3.4.3 Comparing RPM to Nembhard and Bentefouet (2015)

In this section, we assess the solutions of RPM by comparing the solution qual-

ity and solution structure to the solutions from Nembhard and Bentefouet (2015)’s

heuristic policies.

3.4.3.1 Solution Quality

Nembhard and Bentefouet (2015) propose a class of heuristics for three levels of

decision-making: selection (select workers from a pool), grouping workers, and assign-

ing groups of workers to job-types. These heuristics differ from each other in terms

of which instance/worker attributes are used by the heuristic to inform decisions re-

garding grouping and selection. Out of this class of heuristics they propose/identify

what they conclude to be the 10 best (for reference, we list these in Table B.1 in

Appendix B).

As our proposed reformulation only prescribes the grouping and assignment

decisions, we benchmark the throughput produced by the plans proposed by solving

RPM against these 10 heuristics, but we assume the workforce has already been se-

lected and thus “skip” the selection step in their heuristic. We then benchmark the

throughput yieled by solving the RPM against the best (largest) of the ten througputs

yielded by these 10 heuristics over the same 100 instances used for the previous com-
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Figure 3.4: Distribution of throughput gaps between solving RPM and Nembhard’s
best heuristic

parison. Formally, with objkN representing the througput produced by the kth heuristic

proposed by Nembhard and Bentefouet (2015) and objRPM the througput produced

by solving the RPM, we calculate gap = (objRPM −max10
k=1 obj

k
N)/objRPM . The aver-

age of these gaps is 12.85%. We also display the distribution of these gaps in Figure

3.4. We conclude that solving the RPM produces significantly higher througput than

the heuristics proposed by Nembhard and Bentefouet (2015).

Having observed that plans prescribed by the RPM produce significantly

higher throughput, we next seek to understand the robustness of a planning ap-

proach that includes solving the RPM. Specifically, we seek to understand how the

time needed to solve an instance of the RPM changes as the number of workers,

groups, and/or group sizes changes. We first focus on situations where workers are

to be paired (i.e. groups consist of two workers). In Figure 3.5, we illustrate the
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Figure 3.5: Time to solve RPM by number of workers when pairing workers

time required to solve the RPM for different number of workers. For each number of

workers, we consider 10 instances and illustrate the average solve time over those ten

instances. We see that the solve time grows in the number of workers, but even when

putting 60 workers into pairs, instances can be solved in less than 10 minutes.

We next study how easily the RPM can be solved when there are larger groups

(e.g. group sizes ranging from three to six). For each combination of number of

workers and group size, we consider 10 instances. In Figure 3.6, we report the average

time required to solve instances of the RPM when workers are put into groups of size

three and size four as the number of workers changes. We again see that for a fixed

group size, the solve time increases as the number of workers increases. However, the

solve time remains relatively short (under four minutes) for all settings. However,

when considering groups of five workers, we note that we were only able to solve

instances with 15 workers in 3,600 seconds. When considering groups of six workers,
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Figure 3.6: Time to solve RPM by number of workers for larger groups

we were unable to solve any instances in the time limit.

3.4.3.2 Structure of Solutions

We next turn our attention to how the solutions prescribed by solving the RPM

differ from those prescribed by the heuristics of Nembhard and Bentefouet (2015).

Specifically, we first focus on how the groupings of workers are different. To group

workers, the heuristics proposed by Nembhard and Bentefouet (2015) seek to group

workers that have similar values for one of the learning attributes (K, p, 1/r, θ). Thus,

we next study whether or not the groupings chosen by solving the RPM have such

a structure. We let σαw denote the standard deviation associated with the different

values of the learning attributes α in the group of workers w. We then calculate

σαmax = maxw∈W σ
α
w and σαmin = mingw∈W σ

α
w. In other words, for an attribute α, σαmax
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represents the largest standard deviation over all possible groupings of workers and

σαmin the smallest.

We use these values to determine the degree to which the individuals in group

w are dissimilar with respect to learning attribute α. Specifically, for group w and

attribute α we calculate dissimα
w = (σαmax − σαw)/(σαmax − σαmin). dissimw takes on a

value between 0 and 1, with a value of 1 implying that w is a grouping of very similar

individuals with respect to learning attribute α (or at least as similar as possible

given the workforce) and 0 implying that w is a grouping of very dissimilar individuals.

Then, given a set of groups,WRPM prescribed by a solution to the RPM, we calculate

a dissimilarity index with respect to α, dissimα
RPM , as

∑
w∈WRPM

dissimw/|WRPM |.

We report averages of dissimα
RPM over the 100 instances tested and the four learning

attributes considered in Table 3.2. What we see in this table is that, in fact, it is

better to group individuals who are dissimilar (as the indices are greater than 50%)

than similar, which is in stark contrast to how the heuristics proposed by Nembhard

and Bentefouet (2015) operate.

K p 1/r θ
Avg. dissimα

RPM 70.12% 74.80% 79.17% 68.83%

Table 3.2: Average dissimilarlity index

We next turn our attention to the assignment phase. Recall that in this

phase two decisions must be made: (1) which group of workers should be assigned
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to each job type, and, (2) given the workers w = (w1, w2, . . . , wn) in the group as-

signed to the job type with jobs (j1, j2, . . . , jn), which worker should perform each

job. We focus on analyzing the first decision. Specifically, consider workers w =

(w1, w2, . . . , wn) and job-type g = (j1, j2, . . . , jn). Let α
ji′
wi represent worker wi’s value

for attribute α on job ji′ . We let αwgmax = maxni=1 maxni′=1 α
ji′
wi . Then, with WRPM

representing the groups selected in the solution to RPM and G the job-types in

the instance we calculate αmax = maxw∈WRPM
maxg∈G α

wg
max. Similarly, we calculate

αmin = minw∈WRPM
ming∈G α

wg
max. Finally, with wg representing the group of workers

assigned to job-type g in a solution to the RPM, we calculate αRPM = maxg∈G α
wgg
max.

A greedy assignment policy would first assign the group of workers w to the job-

type g that maximized αwg (or the group wg such that α
wgg
max = αmax). To measure

whether solutions to the RPM exhibit the same property, we calculate a greedy index,

greedyαRPM = (αRPM −αmin)/(αmax−αmin). greedyαRPM will take on a value between

0 and 1, with the closer the value is to 1, the more greedily the assignment stage was

performed. We report averages of greedyαRPM over the 100 instances tested and three

learning attributes in Table 3.3.

K p 1/r
Avg. greedyαRPM 85.87% 52.63% 31.18%

Table 3.3: Average greedy index

We conclude from these results that whether the assignment of groups to job-
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types should be done in a greedy fashion depends on the attribute that is being

considered. When focusing on steady-state productivity (K), groups should be as-

signed to job-types in a greedy fashion. However, when focusing on learning rate

(1/r), a greedy approach is less effective.

The structure analysis of the grouping stage gives a sense of the common

learning and knowledge transfer characteristics shared by workers who are grouped

in the same team. The structure analysis of the assignment stage provides a greedy

approach of assigning groups to job types. The grouping sense and the greedy assign-

ment approach can help managers to make good grouping and assignment decisions

without the expensive computational time of solving the model optimally.

3.5 Conclusions and Future Work

This chapter studies the operational decision making process of grouping and

assignment of workers to jobs, while accounting for individual learning and knowledge

transfer within groups. We build a mixed-integer nonlinear program (MINLP) for

parallel systems. Nembhard and Bentefouet (2015) develop some heuristic policies,

while this chapter provides several solution methods for the MINLP. First, we provide

an exact solution method that solves the models optimally. Specifically, we present a

reformulated model that is exact to the original MINLP and solve the reformulated

model optimally. Second, we propose some heuristic policies that perform better than

Nembhard and Bentefouet (2015) based on the computational results.

Our computational experiments explore the impact of knowledge transfer on
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the system throughput. The results demonstrate that the system benefits greatly

from knowledge transfer between team workers. This indicates that managers should

take into account the impact of the knowledge transfer between team workers when

making grouping and assignment decisions and failing to consider knowledge transfer

leads to underestimation of the workforce capacity. We also test the solvability of the

reformulation on both pairing problems and larger problems. Pairing problems can

be solved optimally within 110 seconds for problems up to 52 workers and 600 seconds

for problems with 60 workers. Larger problem settings up to 18 workers when there

are five or fewer workers in a team can be solved within 2000 seconds.

Next, we compare the solution quality and solving speed between our reformu-

lation and Nembhard’s heuristic policy. Our computational experiments have shown

that the reformulated model achieve 12.85% higher system throughput than the top

policies of Nembhard and Bentefouet (2015). Additionally, we compare the solution

structure between the solutions from reformulation and the solutions by the heuris-

tics of Nembhard and Bentefouet (2015) with respect to the learning and knowledge

transfer parameters. In the grouping stage, the comparison shows that workers should

be grouped with workers that are the most different from them which maximizes the

within-team standard deviation of the parameters. The result conflicts the grouping

policies in Nembhard and Bentefouet (2015). In the assignment stage, the results

show that a set of jobs should be performed by a team of workers that has the high-

est parameter values on this set of jobs. The result is consistent with Nembhard and

Bentefouet (2015)’s assignment policies. These greedy heuristics can be used when
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the exact approach takes too long to solve a problem.

In future work, we plan to build mathematical models for serial systems and

design exact approaches to solve the problem, since serial system is the base for

many systems. Another direction of future work is exploring the solution structure

statistically with respect to the common characteristics shared by workers who are

grouped in the same team. We hope that the statistical results can help managers

make better grouping and assignment decisions without the expensive computational

time of solving the model optimally. Lastly, the current reformulation can only solve

relatively large problems. Integer techniques for larger size problems need to be

studied.
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CHAPTER 4
INPATIENT PHLEBOTOMIST ROUTING PROBLEM

4.1 Introduction

Laboratories are health care facilities where pathologists provide testing of

patient samples. Laboratory services account for more than 10% of hospital billing.

The laboratory workforce includes phlebotomy technicians (phlebotomists) who draw

samples from patients, and technicians who perform tests on these samples.

The shortage of hospital laboratory personnel continues to be of concern for

many laboratories. This shortage often causes tardiness of fulfilling some sample

draws, which affects decisions on admission, discharge, and medication of inpatients.

With the projected need for more hospital laboratory personnel in the coming years

coupled with an aging workforce, effective management of the clinical laboratory

workforce is essential to meet the demand for staffing in the near future and beyond

(Hamilton and Sm; 2014). This study focuses on phlebotomist routing that aims to

improve the laboratory performance in terms of fulfilling more sample draws in a

shift. The phlebotomist routing in this chapter focuses on designing routes of visiting

the patient rooms for a team of phlebotomists. The goal of these routes is to facilitate

in a timely manner as many sample draws as possible. We call this the phlebotomist

intra-hospital routing problem.

This study is motivated by the Department of Pathology at the University of

Iowa Hospitals and Clinics (UIHC). At UIHC, there is a team of phlebotomists that
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works in the morning and another team works later in the day. We focus on the

morning shift as workload often cannot be completed on time in the morning shift.

Typically, they work from 05:30 to 09:30 and serve 27 patient units located in different

buildings during their shift. This team of phlebotomists performs approximately 40%

of the daily draws at UIHC. We assume an order corresponds to a sample draw from

a patient. These draws are ordered by doctors randomly during the day.

When phlebotomists arrive at work at 05:30, they see the current outstanding

orders. These orders are certain and called “pre-orders.” Orders that arrive randomly

between 05:30 and 09:30 are “add-ons.” There are approximately 180 to 250 orders

requested from the 27 units in a morning shift. Less than 5% of the orders are add-

ons in a typical morning. An example of orders on Oct 10th, 2015 is illustrated in

Figure 4.1.

Phlebotomists typically perform two types of draws at UIHC: simple venipunc-

ture and blood culture. The service time of a draw is uncertain, though a rough

estimate of an order’s service time can be determined based on the service type. For

example, a simple venipuncture typically takes six to eight minutes, while a blood

culture can take 17 to 25 minutes. Only 5% of these 180 to 250 orders are blood cul-

tures. These 180 to 250 orders approximately correspond to 50 to 70 hours of work

per day. There are 8 to 16 phlebotomists available for a morning shift. The orders

are usually not entirely fulfilled by the end of the shift at 09:30. This research uses

the average as the service time of an order type. In other words, it takes 7 minutes

to serve a simple venipuncture and 21 minutes to fulfill a blood culture.
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Figure 4.1: One day example of orders

Figure 4.2: The map of UIHC
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Given the time required to travel between units, the units are divided based

on the three “arms” of UIHC: Roy Carver Pavilion, John Colloton Pavilion, and

John Pappajohn Pavilion. Figure 4.2 shows a map of UIHC with these three arms 1.

Table 4.1 lists the 27 patient units. In general, it takes about three and a half minutes

to walk between any two nearby arms, while traveling up or down floors generally

takes about one minute per floor using the elevator. Travel time between units that

are on the same floor of the same building are less than half a minute. These travel

times are essential when routing each phlebotomist to a sequence of patient units.

NO. Unit NO. Unit
0 laboratory 14 IPCU-5 Carver
1 1 Pappajohn East 15 4 Pappajohn East
2 1 Pappajohn West 16 4 Pappajohn West
3 2 Boyd Tower 17 4 Carver East
4 2 Colloton P 18 4 Carver West
5 2 Pappajohn East 19 6 Colloton East
6 2 Pappajohn West 20 6 Colloton West
7 2 Carver 21 6 Pappajohn
8 3 Boyd Tower 22 6 Carver East
9 3 Colloton East 23 6 Carver West
10 3 Colloton West 24 7 Colloton East
11 3 Pappajohn West 25 7 Carver West
12 3 Carver East 26 8 Colloton
13 3 Carver West 27 4 Colloton

Table 4.1: 27 patient units at UIHC

At 05:30 on a given day, the available phlebotomists are known and the pre-

1https://www.uihealthcare.org/a-z-directory/
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orders of each unit are observed. The add-ons of each unit arrive randomly between

05:30 and 09:30. The arrival of add-ons can be thought of as the arrivals to a queueing

process. Note that add ons are occurring even when a phlebotomist is in a unit serving

patients. The later the phlebotomist arrives and the longer that it takes to serve the

orders of a unit, the more add ons that occur. When a phlebotomist arrives at a

unit, s/he first serves pre-orders followed by add-ons. The service time of a unit is

uncertain and depends on the arrival time of the phlebotomist and the quantity of

orders in the unit.

Multiple phlebotomists are allowed to serve a unit, and these phlebotomists

can enter or leave the unit at different times. When a group of phlebotomists is

scheduled to serve a unit in the shift, this unit is said to be “swarmed.” The advantage

of swarming is that it allows the phlebotomists to serve orders at a unit as fast as

possible, avoiding receiving and serving too many add-ons when phlebotomists are

present. Without swarming, some units would receive so many add-ons that it would

be impossible to serve the orders of other units. For example, Unit 22 has the highest

number of patients and pre-orders, and it is also the most likely to get add-ons

while the phlebotomists are present. Therefore, in current practice, this unit is often

swarmed.

It is possible that the phlebotomists do not have time to visit or finish some

units and postpone them to the next shift. The objective is to fulfill as many orders

as possible in the morning shift. The question is how to schedule these phlebotomists

and in what order the units should be served. The random demand and uncertain
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service time of each unit make the routing of phlebotomists difficult. The problem

is considered a variant of the team orienteering problem with stochastic rewards and

service times (TOPSRS).

4.2 Problem Description

This section mathematically describes the phlebotomist routing problem that

explicitly accounts for the stochastic rewards and service times resulting from the

queuing process at the patient units. To simplify the problem, this research only

consider simple venipuncture.

The problem is defined on a complete graph G = (N , E). The set N =

{0, 1, . . . , N} is a set of N + 1 nodes, and the set E = {(n, n′) : n, n′ ∈ N} is

the set of edges connecting the nodes. Node 0 represents the laboratory from where

phlebotomists depart at the start of the day and nodes 1, . . . , N represent the locations

of the patient units. The travel time of d(n, n′) associated with each edge (n, n′) is

known. LetM = {1, . . . ,M} be a set of M phlebotomists initially located at the lab.

The rewards of each unit n contains the pre-orders that are known and the

random add-ons. Let pn be the number of pre-orders of unit n. Phlebotomists serve

orders in the unit until there are no orders in the unit. We assume that the distribu-

tions of the add-ons received in each unit before phlebotomists leave are independent,

but follow identical distributions differing in their parameters. We let Zn be a random

variable representing the number of add-ons in unit n and zn be the realization of Zn.

The distribution of Zn is a function of the pre-orders pn, denoted by f(zn|pn). The
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reward can be collected at unit n, denoted by Rn, is a random variable that is the

sum of pre-orders and random add-ons. The expected reward at unit n is:

E[Rn] = pn + E[Zn]. (4.1)

The reward is collected by visiting and serving the unit n before the deadline,

which is the end of the shift 09:30. When arriving at a unit, the orders are served

to the maximum subject to the available time left before the deadline. Let Sn be a

random variable representing the service time of fulfilling all orders in unit n. Assume

each order takes a constant time µ to fulfill, the distribution of Sn is a function of

pn and zn. Therefore, the expected service time of serving all orders at a unit is

Sn = µE[Rn].

4.3 A Priori Approach

A common approach to handle uncertainty in an orienteering problem is to

restrict attention to a priori policies. A priori policies are characterized by a priori

routes, or predetermined sequences of locations. A review of challenges and advances

of using a priori routing is given in Campbell and Thomas (2008).

In this chapter, an a priori policy requires phlebotomists to visit patient units

in the order specified by a set of pre-defined routes. As an example, consider a case

in which there are two phlebotomists and 5 patient units. Let the a priori route of

phlebotomist m1 be (2, 3) and phlebotomist m2 be (4, 1, 5). This route requires that

phlebotomist m1 visits unit 2 and fulfills all orders before s/he visits unit 3, while
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phlebotomist m2 visits unit 4 followed by units 1 and 5.

We denote an a priori route for phlebotomist m by a sequence of units vm =

(vm0 , . . . v
m
i , . . . v

m
Im). We denote by (vm)m∈M a set containing an a priori route for each

phlebotimist m in M . In this approach, each unit appears exactly once on exactly

one route. We assume that phlebotomists visit the patient units in the order they

appear in the a priori routes.

Our goal is to find an a priori route that maximizes the expected rewards by

the end of the shift. For a priori route v, let Rvmi
be the random variable representing

the reward collected from location vmi , and E[Rm] the expected rewards of all locations

in route vm. Then the expected rewards for a priori route v is Ω(v) =
∑
m∈M

E[Rm].

The objective of this problem is to find an a priori route v∗ such that Ω(v∗) ≥ Ω(v)

for every v.

4.3.1 Evaluation of a Fixed Route

To compute the expected rewards of an a priori route, we must compute the

expected reward of each unit in the route. We start with analyzing the potential

reward of a unit. The poential reward is the reward that a unit can get assuming

there is enough time to fulfill all orders in the unit, including the existing number of

orders when the phlebotomist arrives and add-ons that arrive while the phlebotomist

is in the unit. The potential reward of a unit n consists of the realized pre-orders pn

and the realized add-ons zn. For a unit, the realized add-ons include two parts: the

realized add-ons between 05:30 and phlebotomist’s arrival time (denoted by yn), and
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the realized add-ons between the arrival time and the leaving time (denoted by y+n ).

The potential reward of a unit rmaxn is computed as in (4.2):

rmaxn = pn + zn

= pn + yn + y+n . (4.2)

Time Range Type Notation Arrival Rate Fixed?
(00:00, 05:30) Pre-order pn λ1n Yes
(05:30, Arrival time] Add-on yn λ2n Yes
(Arrival time, Leave time] Add-on y+n λ2n No

Table 4.2: Order categories of each patient unit

We assume that the arrival of orders to a patient room is a Poisson process.

A Poisson process with arrival rate λ implies that the probability that the number

of orders received by time t, denoted by N(t), is equal to k is given by: P (N(t) =

k) = e−λt (λt)
k

k!
. In TOPSRS, the arrival rate of a patient unit is λ1n for pre-orders and

λ2n for add-ons. Table 4.2 shows the detailed information for the three categories of

orders, including the arrival time range of each category, the type of orders based on

the arrival time range, notation, arrival rate, and whether the quantity of orders is

fixed and known when a phlebotomist arrives at a unit according to his/her route.

We assume a phlebotomist m arrives at a patient room n with l = pn + yn

orders. The phlebotomist first serves these existing orders followed by additional add-



83

ons y+n that arrive until the order quantity in the unit hits zero. We call this a renewal

process with one jump time, where the jump time is the time that the quantity of

orders hits zero and is also the time when the phlebotomist leaves the unit. The

time between the arrival time and the jump time is considered the renewal interval.

The core analysis of this process is to find the distribution of the renewal interval,

which requires determining the distribution on the number of add-ons received during

the renewal interval, y+n , conditioning on the number of existing l orders when the

phlebotomist arrives, denoted by P (y+n |l).

4.3.1.1 Assessing P (y+n |l)

We assume that there are k add-ons arrive in the renewal interval, y+n = k,

where k is a non-negative integer. Because of the memory-less property of Poisson

process, without loss of generality, we consider the arrival time of the phlebotomist

as time 0, and the jump time as (l+ k)µ. Figure 4.3 shows a time axis of the renewal

interval with an increment of µ.

Let X0 be the random variable representing the number of orders received

when serving the l existing orders, X1 be the random variable representing orders

received when serving the first additional add-on in the interval of (lµ, (l + 1)µ], X2

is the random variable for interval of ((l + 1)µ, (l + 2)µ], and so forth.

The probability P (y+n = k|l) indicates that k add-ons arrive in the renewal in-

terval (recall that the renewal interval refers to the interval between the phlebotomist’s

arrival time and his/her leaving time) and the quantity of orders does not hit zero in
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Figure 4.3: Renewal process at a unit

this interval, requiring the following three events:

1. At least one add-on arrives when serving the l existing orders, X0 ≥ 1;

2. k add-ons in total arrive in the renewal interval and the quantity of orders does

not hit zero in any of the time intervals in [µ, (k−1)µ]. X0 +X1 + · · ·+Xk = k;

3. No order arrives when serving the kth add-on, Xk = 0.

Let Fi = X0 + X1 + · · · + Xi be the random variable of accumulated orders

received before time iµ, events 1 and 2 can be referred to as P (F0 ≥ 1) and P (Fk = k)

respectively.

Lemma 4.1. The necessary condition that the quantity of orders does not hit 0 in

the k periods is that: ∀i ∈ {0, 1, . . . , k}, Fi ≥ i+ 1.

Proof. (Proof by Contradiction.) Assume to the contrary that Fi < i+ 1 for some i,

there must exist a period j, j ≤ i, that there is no order to serve in period j and the

quantity of orders in the unit hits 0. This contradicts the precondition of the lemma.

We then return to the analysis of the three events. Events 1 and 2 can be
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analyzed by a backward induction. In Equation (4.3), we consider a base condition

of F0 = j where j ≥ 1:

P (F0 = j) = P (X0 = j). (4.3)

This base condition ensures that event 1 is satisfied. The joint probability of

event 2 and 3 P (Fk = k) × P (Xk = 0) is equivalent to P (Fk−1 = k). Lemma 4.1

indicates Fk−2 ≥ k − 1, so we have :

Xk−1 = Fk−1 − Fk−2 ≤ k − (k − 1) = 1. (4.4)

Equation (4.4) demonstrates that there are no more than one order in the

(k− 1)th period. Another explanation is that if two or more orders arrive in (k− 1)th

period, these two orders cannot be finished by the kth period. This contradicts the

prerequisite.

P (Fk−1 = k) can be conducted in the recursive Equation (4.5):

P (Fk−1 = k) =

(
P (Fk−2 = k)
P (Fk−2 = k − 1)

)T (
P (Xk−1 = 0)
P (Xk−1 = 1)

)
, (4.5)

Equation (4.5) specifies the only possible two cases in which k orders arrive in the

k − 1 periods:

1. All k orders arrive during the first k− 2 periods while no orders in the (k− 1)th

period,

2. k−1 orders arrive in the first k−2 periods while one order arrives in the (k−1)th

period.
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In Equation (4.5), P (Fk−2 = k − 1) is a recursive call when k decreases by 1,

while P (Fk−2 = k) can be computed in a different recursion in Equation (4.6) that

for any 1 < i < j < k,

P (Fi = j) =


P (Fi−1 = j)
P (Fi−1 = j − 1)
P (Fi−1 = j − 2)
. . .
P (Fi−1 = i)


T 

p(Xi = 0)
p(Xi = 1)
p(Xi = 2)
. . .
p(Xi = i− j)

 . (4.6)

Then, the distribution of y+n conditioning on the number of existing orders is

a joint probability of events 1, 2, and 3, which is:

P (y+n = k|l) = P (Fk−1 = k)× P (Xk = 0) (4.7)

The probability matrix for P (y+n = k|l) is listed in Appendix C.

4.3.1.2 Fixed Route Evaluation

Evaluating a fixed route v is accomplished by calculating the expected reward

at each unit on the route. We develop a method to calculate the expected reward at

a single unit. Applying this method to each unit in a fixed route and summing the

results allows for the evaluation of a fixed-route. We start with evaluating a fixed

route for a phlebotomist m, denoted by vm = (vm0 , . . . v
m
i , . . . v

m
Im). Denote that Rvmi

the random orders served at unit vmi and by E[Rvmi
] the expected orders served at

unit vmi . The quantity of Rvmi
depends on the arrival time at unit vmi (denoted by

Avmi ). The quantity of Avmi depends on the arrival time to unit vmi−1, the orders served

at unit vmi−1 (denoted by rvmi−1
), and the travel time between location i− 1 and i :
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Avmi = Avmi−1
+ µrvmi−1

+ d(vmi−1, v
m
i ). (4.8)

Then, Rvmi
can be calculated by three cases:

Rvmi
=



rmaxvmi
, if Avmi < D , Avmi + µrmaxvmi

≤ D,⌊
D−Avm

i

µ

⌋
, if Avmi < D , Avmi + µrmaxvmi

> D,

0, if Avmi > D.

In the first case, there is enough time to serve the potential rewards at unit

vmi . In the second case, the phlebotomist arrives at the unit before the deadline but

does not have enough time to serve all the orders. In this case, Rvmi
is the number of

orders that can be served by the deadline. In the third case, the arrival time of unit

vmi is later than the deadline, the reward is 0.

The expected reward at a unit vmi is:

E[Rvmi
] =

∑
t

∑
y

Rvmi
(t, rmaxvmi

)× P (Avmi = t, rmaxvmi
= lvmi + y+vmi )× P (y+vmi |lvmi ). (4.9)

The expected rewards of a solution tour v is the sum of the expected reward

at each unit:

E[v] =
M∑
m=1

Im∑
i=0

E[Rvmi
] (4.10)

Algorithm (4.1) explains the procedure of calculating the expected objective

value of a fixed tour v. Lines 5 and 6 set the arrival time and reward of the medical
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laboratory to 0. For a unit vmi in the tour of phelbotomist m, the arrival time can

be computed by the previous location’s arrival time and service time as in Line 8.

Line 9 uses Monte Carlo simulation based on the distribution of P (y+vmi |lvmi ), line 10

computes the expected rewards of the unit by Equation (4.9). Line 11 updates the

expected reward of a tour as the sum of the expected rewards in all units. For a

given tour, we repeat this procedure 200 times (TrialNum = 200) to estimate the

expected rewards of the tour.

4.4 Solution Approach

We apply a variable neighborhood search (VNS) heuristic to solve the problem.

Algorithm 4.2 outlines the VNS implementation. This is similar to the algorithm in

Zhang et al. (2014) and Campbell et al. (2011) where the algorithm was shown to be

successful for stochastic orienteering problems. In our problem, the feasible solution

contains M tours. Each tour is a permutation of the locations and starts at the

medical laboratory n = 0. We assume any tour is feasible but the locations whose

arrival time are later than the deadline D have a reward 0.

The solution is represented by a vector in which each phlebotomist’s tour

is separated by the medical laboratory “0”. The initialization in Line 4 gives a

random solution of TOPSRS. The initial solution v is generated in a way such that

no two laboratories are adjacent in the tour. In other words, each tour starts with

0 and followed by at least one patient unit represented by non zero numbers. Line

6 states the stopping criteria, which includes an iteration limit and a level limit.
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Algorithm 4.1 Calculation of the expected objective of a tour v

1: Initialization:

2: E[v] = 0

3: for Trial = 1, . . . , T rialNum do

4: for m = 1, . . . ,M do

5: Avm0 = 0,

6: rvm0 = 0

7: for i = 2, . . . , Im do

8: Avmi = Avmi−1
+ µrvmi−1

+ d(vmi−1, v
m
i−1)

9: Monte Carlo Simulation to sample y+vmi with the probability mass function

of P (y+vmi |lvmi )

10: Update E[Rvmi
] by Equation (4.9)

11: E[v]← E[v] + E[Rvmi
]

12: end for

13: end for

14: end for

15: E[v]← E[v]/TrialNum
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Algorithm 4.2 Variable neighborhood search(VNS)

1: Input: Data for TOPSRS instance, the number of different neighborhoods N

2: Output: A TOPSRS solution v

3: Initialization:

4: Randomly generate a TOPSRS solution v and evaluate it with Algorithm 4.1

5: i← 0, k ← 1, level ← 0

6: while i < iterationMax or level < levelMax do

7: v′ ← shake(v, k)

8: v
′′ ← V ND(v′)

9: Excute Algorithm 4.1 to evaluate tour v′′

10: if f(v
′′
) > f(v) then

11: v ← v
′′
, level ← 0

12: else if k ≤ N then

13: k ← 1, level ← level+1

14: else

15: k ← k + 1, level ← level+1

16: end if

17: i← i+ 1

18: end while
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With an improved solution, the level variable tracks the number of iterations that

has no improvement based on the current improved solution. It ensures that there

are at least levelMax iterations of no improvement. We set iterationMax = 40 and

levelMax = 1 to get robust solutions in our experiments. The shake(v, k) in Line

7 returns a solution v′, which is a random neighbor solution from the neighborhood

k ∈ {1, . . . , N} of v. Line 8 then applies a variable neighborhood descent (VND)

procedure to solution v′ to obtain a local optimal solution v
′′
. Line 9 and 10 evaluate

this local optimal tour v′′ by Algorithm 4.1 and compare it to the incumbent solution.

Lines 10-16 show the updates of the current solution, the active neighborhood, the

iteration counters, and the level counters.

In our implementation, the shake procedure considers the neighborhood of 1-

shift, which shifts one node to a position after another node in the solution including

within the same phlebotomist’s tour and among different phletomists’ tours.

Algorithm 4.3 describes the VND procedure in Line 8 of Algorithm 4.2. The

VND finds a local optimal solution with respect to the 1-shift neighborhoods N ′. The

BestNeighbor procedure in Line 6 returns the best solution in the neighborhood of the

incumbent solution. Line 7 uses Algorithm 4.1 to evaluate a tour. Line 8-14 manage

the updates of local optimal solution, active neighborhood, and the neighborhood

counters.
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Algorithm 4.3 Variable neighborhood descent (VND)

1: Input: A TOPSRS solution v, the number of different neighborhoods N ′

2: Output: A local optimal solution v

3: Initialization:

4: j ← 1, count← 1, improving ← true

5: while improving do

6: v′ ← BestNeighbor(v, j)

7: if g(v
′
) > g(v) then

8: v ← v
′
, count← 1

9: else if j = N ′ and count < n′ then

10: j ← 1, count← count+ 1

11: else if j < N ′ and count < n′ then

12: j ← j + 1, count← count+ 1

13: else

14: improving ← false

15: end if

16: end while
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4.5 Experimental Design

In this section, we discuss the design of experiments used to test the quality

and efficiency of the proposed a priori approach.

4.5.1 Data Collection and Parameter Fitting

We collect historical data from 9/1/2015 to 9/30/2015 at UIHC. The data

includes the number of available phlebotomists and infomation of each order, includ-

ing the arrival time, patient unit the order is in, and order type. Table (4.3) shows

the number of available phlebotomists each day. We note that orders’ arrival rates

before and after 05:30 are different. Therefore, we use the orders before 05:30 to fit

the pre-orders Poisson parameter λ1, and orders after 05:30 to fit the add-on Poisson

parameter λ2. Table (4.4) shows the arrival rates of each unit. Based on the empirical

data and estimation of an expert in the hospital, the average time to draw a simple

venipuncture is 7 minutes. Therefore, we set µ = 7/60 in all experiments.

Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# of PBTs 11 13 15 12 11 10 12 13 15 16 13 14 10 14 13

Day 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
# of PBTs 13 10 10 9 10 11 13 9 10 11 11 8 16 12 11

Table 4.3: Number of phlebotomists each day
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Unit 0 1 2 3 4 5 6
λ1 0 0.109 0.364 0.515 0.661 0.339 0.182
λ2 0 0.001 0.003 0.004 0.006 0.003 0.002

Unit 7 8 9 10 11 12 13
λ1 3.212 1.018 0.006 0.424 1.897 2.455 1.491
λ2 0.027 0.008 0.000 0.004 0.016 0.020 0.012

Unit 14 15 16 17 18 19 20
λ1 0.012 0.194 2.127 2.115 2.770 1.806 1.764
λ2 0.000 0.002 0.018 0.018 0.023 0.015 0.015

Unit 21 22 23 24 25 26 27
λ1 0.503 2.691 2.467 1.473 0.115 0.909 0.182
λ2 0.004 0.022 0.021 0.012 0.001 0.008 0.002

Table 4.4: Arrival rate per hour at each unit

4.5.2 Experimental Design

To test the quality of the solutions from our approach, we design the following

four experiments on the 30-day dataset:

• Experiment (1): Use the actual pre-orders and the available phlebotomists, and

simulate the add-ons at each patient unit based on the fixed pre-order and

arrival time of a unit.

• Experiment (2): Use the actual available phlebotomists of each day, and sim-

ulate both pre-orders and add-ons at a patient unit. The add-ons of a patient

unit is generated based on the simulated pre-order and the arrival time of the

location.

• Experiment (3): Based on Experiment (1), we consider swarming that multiple

phlebotomists share the same routes such that they enter and leave a unit at

the same time. The productivity of the team of phlebotomists is doubled for a
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team of two phlebotomists and tripled for a team of three. In the experiments,

we set the service time of an order in unit n as µ/|Mn|, where |Mn| is the

cardinality of the set of phlebotomists at unit n.

• Experiment (4): Swarming in the same fashion above is allowed based on Ex-

periment (2).

The four experiments are summarized in Table (4.5).

Experiment Pre-order Add-on Swarm?
1 Actual Simulate No
2 Simulate Simulate No
3 Actual Simulate Yes
4 Simulate Simulate Yes

Table 4.5: Experimental design

4.6 Computational Results

This section presents the computational results of the experiments. We first

focus on the the served orders from our experiments compared to the hospital practice.

In each experiment, on a given day i, we compute the percentage difference between

the results of the experiment and the hospital practice as in Equation (4.11):

% difference =
Served orders on day i in experiment− Served orders on day i at hospital

Served orders on day i at hospital
.

(4.11)

Figure 4.4 depicts the percentage difference of served pre-orders in Experiment
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(1) in blue bar and Experiment (2) in red bar over the 30 days. Both experiments

perform more pre-orders than the hospital practice in the majority of days except

for Day 10 and 28. That is because these two days have the highest quantity of

phlebotomists, which are more than enough to finish all the pre-orders. The real

practice allows multiple phlebotomists to serve a unit at the same or different time and

the productivity of the unit is increased. Our approach in Experiment (1) only allows

one phlebotomist in a route and pre-orders in some units, especially the ones in the

end of a route, are not fully served by the deadline. Figure 4.5 shows the percentage

difference of served add-ons in Experiment (1) and (2) over the 30 days. In most

days, there are more add-ons served in the hospital practice than the experiments.

The reason is that our solutions spend most of time serving more pre-orders and leave

a patient unit before it receives too many add-ons.

The blue and red horizontal lines in these figures are the average percentage

difference from Experiment (1) and (2) with respect to pre-orders and add-ons re-

spectively. It is shown that solutions from Experiment (1) fulfill more pre-orders

and fewer add-ons on average than Experiment (2). Since the pre-orders are more

important and the solution approach is designed to solve more pre-orders, we claim

that the solutions in Experiment (1) are better than Experiment (2). With the exact

known pre-orders, the a priori approach is able to offer better solution.

Next, we present the results of Experiments (3) and (4). We show the percent

difference of served pre-orders in Figure (4.6) and served add-ons in Figure (4.7).

There are more pre-orders and fewer add-ons served in both experiments compared to
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hospital practice. Specifically, solutions from Experiment (3) fulfill more pre-orders

and fewer add-ons on average than Experiment (4) as shown in the blue and red

horizontal lines. Therefore, we claim that solutions from Experiment (3) are better

than Experiment (4).

Experiment Avg served pre-order Avg served add-on
1 5.4% -12.7%
2 4.3% -26.3%
3 5.6% -19.7%
4 4.8% -28.0%

Table 4.6: Percentage difference compared to the hospital served orders

Table (4.6) shows the average percentage difference of the served pre-orders

and add-ons over 30 days in the four experiments. When comparing Experiment (1)

and (3), we see that Experiment (3) serves slightly more pre-orders and fewer add-ons

than Experiment (1). This is because our solution without swarm serve most of the

pre-orders and there is not much space to improve when considering swarming.

Experiment Avg Solution time (sec)
1 769.6
2 2582.2
3 783.0
4 7923.9

Table 4.7: Solution time of the experiments
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Table (4.7) shows average solution time over the 30 instances in the four ex-

periments. Instances in Experiment (1) and (3) can be solved in less then 15 minutes.

Experiment (2) uses simulated pre-orders and it takes around 45 minutes on aver-

age. Experiment (4) takes more than two hours when using swarm and simulated

pre-orders. Considering both the solution quality and solution time, experiment (1)

and (3) are good enough for practice in real hospital. Solutions with good quality

can be achieved within 15 minutes.

Experiment Avg unserved pre-order Avg unserved add-on
1 0.6% 28.2%
2 1.6% 39.6%
3 0.6% 28.2%
4 1.2% 40.9%

Hospital Practice 5.6% 17.0%

Table 4.8: Percentage of unserved orders

Furthermore, we would like to see the quantity of unserved orders in the four

experiments. For each day, the percentage of unserved orders is given by Equa-

tion 4.12:

Unserved % =
Ordered order on day i at hospital− Served order on day i in experiment

Ordered order on day i at hospital
.

(4.12)

Table (4.8) shows the average percentage of the unserved pre-orders and add-

ons over the 30 days. It is shown that around 99% of pre-orders are served in the
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four experiments, while around 27%-40% add-ons are not served. This suggests that

there is still room for improvement.

4.7 Conclusions

Motivated by the phlebotomist intra-hospital routing problem at UIHC, we

introduce a team orienteering problem with stochastic rewards and queueing-based

service times. Phlebotomists serve orders in patient units based on doctors’ orders.

Doctors request orders randomly throughout the day. The arrival of orders in a unit

is a Poisson process. A phlebotomist arrives at a unit fulfill existing orders as well

as additional orders received while s/he is in the unit. The rewards of a unit are

stochastic depending on the served orders given the arrival time and the existing

orders when s/he arrives. The service time of a unit is also stochastic depending on

the quantity of orders in the unit. This chapter develops a priori approach that gives a

fixed route for each phlebotomist and derives an analytical procedure to evaluate the

expected rewards of a priori tour. We apply the a priori approach to a 30-day dataset

collected from UIHC. The computational results demonstrate that the proposed a

priori approach gives solutions that serve more pre-orders but fewer add-ons than the

hospital practice.
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CHAPTER 5
FUTURE WORK

Future work of this dissertation focuses on the phlebotomist routing problem.

In this chapter, we formulate the problem as a Markov decision process (MDP) which

dynamically assigns a phlebotomist to patient units according to orders’ status in

each patient unit.

5.1 Markov Decision Process

We formulate the phletomist intra-hosptial routing problem as a Markov de-

cision process. The state of the system represents the sufficient information for the

phlebotomist to execute a decision of going to another unit. The state consists of

information on phlebotomists’ status as well as the status of all the patient units. We

define the status of the phlebotomists m ∈M in a pair (lm, tm), where lm is the last

node visited of phlebotomist m (or the current location if the phlebotomist has not

left), and tm represent the arrival time of the last node visited.

Let (l, t)m∈M denote the vector of the phlebotomist attributes. We then char-

acterize the state at a unit n by (dn, V, n̂), where dn is the known pending reward

at unit n in N\{0} in {{?} ∪ [0,∞)}. The initial pending reward at unit n is

the number of pre-orders pn. The set V represents the nodes visited prior to and

including lm for all m ∈ M. Among the last node visited for all phlebotomists

{∪m∈Mlm}, node n̂ is the node whose pending reward has just become zero. A

decision epoch k is triggered when this happens. At each decision epoch k, the
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complete state of the system is a tuple ((l, t)m∈M, (dn∈N , V, n̂)), which is in the

state space S = NM × [0, D]M × {{?} ∪ [0,∞)}N × N × 1. The initial state is

s0 = ((0, 0)M , ((pn)N , {0}, 0)).

LetMn̂ be the set of phlebotomists that are in unit n̂ at decision epoch k. An

action at decision epoch k is an assignment of the phlebotomists inM to the units in

N . The action a is a M dimensional vector where the mth element, am, is the action

directing phlebotomist m to a unit in N . The set of actions at decision epoch k is:

A(sk) = {a ∈ NM :

am ∈ N\V, ∀m ∈Mn̂ (5.1)

am = lm, ∀m ∈M\Mn̂}. (5.2)

Condition (5.1) enforces that phlebotomists at unit n̂ can be directed to an

unvisited unit in N\V , while Condition (5.2) requires that phlebotomists en route

continue to their destination or stay at their current unit if the pending reward has

not finished at epoch k.

The transition from state sk to a pre-decision state sk+1 with action a is:

sk+1 = SM(sk, a, ωk+1), (5.3)

where SM(·) is the state transition function and ωk+1 is the exogenous information

observed during k + 1. The exogenous information includes that a unit’s pending

reward reaches zero and n̂ is updated. We assume that the reward of a unit is
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collected when the phlebotomists leave this unit. A transition from state sk to state

sk+1 with action a results in a reward at unit n̂:

Rk(sk, a) = rn̂. (5.4)

Assume Π is the set of the all Markovian deterministic policies for the problem.

A policy π is a sequence of decision rules: π = (δπ0 , δ
π
1 , . . . , δ

π
K), where each decision

rule δπk : sk → A(sk) is a function that specifies the selected action at state sk

when following policy π. We seek a policy π in Π that maximizes the total expected

reward, conditional on initial state s0: E[
K∑
k=0

Rk(sk, δ
π(sk))|s0]. Let V (sk) denote

the expected reward-to-go from state sk in epoch k through finish decision epoch

K. An optimal policy can be obtained by solving the optimality equation Vsk =

maxa∈A(sk){Rk(sk, a) +E[V (sk+1)|sk, a]} for each epoch k and state sk in state space

S.

In the MDP, we allow multiple phlebotomists to serve a unit at the same/different

time. In other words, swarming is allowed in the above MDP.

5.2 Future Work

In the future work of this dissertation, we will develop rollout policies to the

MDP in Section 5.1 that make dynamic routing decisions to the phlebotomist intra-

hospital routing problem.

Furthermore, there are a number of directions to model this problem consid-

ering more realistic and intricate settings. First, the current model in Section 5.1
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allow each unit to be visited only once. However, since the add-ons arrive randomly

between 05:30 and 09:30, a unit might receive additional add-ons after phlebotomists

leave. In the practice at UIHC, the phlebotomists can return to a unit to do more

add-ons after other units are finished. In the future work, we will consider a model

that dynamically assign phlebotomist to serve the additional add-ons based on the

order status in all patient units. Second, the current model considers only simple

venipunctures while blood cultures are excluded. Future study should include both

orders to offer better routing plans for phlebotomists. Third, the MDP model in

Section 5.1 considers routing decisions only in the morning shift. The real practice

at UIHC shows that unfulfilled orders in the morning shift will be postponed to the

next shift. Therefore, expanding the decision time horizon from one shift to multiple

shifts and considering the impacts of the postponed orders would be an interesting

extension.

Another direction of the future work is to incorporate human learning and

knowledge transfer in the phlebotomist routing problem. Phlebotomy requires the

same set of skills, however, phlebotomists have heterogeneous levels of experience.

New phlebotomists are always paired with experienced phlebotomists for practice and

training purposes. In the long term, new phlebotomists gain experience as they prac-

tice. Their improved performance affects the decision of scheduling and intra-hospital

routing. When pairing/teaming new phlebotomists with experienced phlebotomists

for learning and training purposes, it is essential to consider learning by experience as

well as learning by knowledge transferred from team workers. In these cases, models
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of Chapter 2 and 3 are applicable to this problem.
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APPENDIX A
PROOF OF THEOREM 3.1

Proof. By contradiction.

We first consider the case of two workers and two tasks with T periods. We

assume a specialized scheduling s is the best scheduling from all specialized that

yields the maximum system output over the horizon. We prove that this specialized

scheduling is the optimal solution for the system.

In a parallel system with two workers and two jobs, we assume the best spe-

cialized scheduling is worker 1 is assigned to job 1 while worker 2 is assigned to job

2. The output of the specialized scheduling s∗ is:

Os =
∑
k∈T

ϕ11(c
k
11) +

∑
k∈T

ϕ22(c
k
22) (A.1)

Since s∗ is the best specialized scheduling, the other specialized scheduling,

such as worker 1 perform job 2 while worker 2 work on job 1, yields smaller system

output. we have:

∑
k∈T

ϕ11(c
k
11) +

∑
k∈T

ϕ22(c
k
22) ≥

∑
k∈T

ϕ12(c
k
12) +

∑
k∈T

ϕ21(c
k
21). (A.2)

If there exists a non-specialized scheduling ns yields a higher system output

than s. We have:

Os < Ons (A.3)
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There is at least one switch time point in the scheduling, and we say the switch

point is t, t > 1. We have the units of time periods of assigning each worker to each

job in Table A.1.

Job 1 Job 2
Worker 1 t T − t
Worker 2 T − t t

Table A.1: Assignment of a two-job flow line

Therefore, the total system throughput for the non-specialized scheduling ns

is:

Ons =
∑
k≤t

ϕ11(c
k
11) +

∑
k>t

ϕ12(c
k
12) +

∑
k>t

ϕ21(c
k
21) +

∑
k≤t

ϕ22(c
k
22). (A.4)

To analyze the knowledge transferred from coworkers in the same team, we

assume that the knowledge/experience gained from coworkers in a given period can

never exceed the experience gained if the worker was assigned to the task j itself

during the same period. We add the constraints that:

Stij − St−1ij =

p6=i∑
p∈I

∑
q∈g

ϕpq(c
t
pq) < 1 (A.5)

Constraints (A.5) enforce that knowledge transferred from team member’s

experience on other jobs could not result in a learning for job j superior to the
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learning the worker would have reached if the worker is assigned to j during the same

time period.

Ons =
∑
k≤t

ϕ11(c
k
11) +

∑
k>t

ϕ12(c
k
12) +

∑
k>t

ϕ21(c
k
21) +

∑
k≤t

ϕ22(c
k
22)

=
∑
k≤t

ϕ11(k − 1 + θ1ϕ22(c
k
22)) +

∑
k>t

ϕ12(k − t− 1 + θ1ϕ21(c
k
21))

+
∑
k≤t

ϕ22(k − 1 + θ2ϕ11(c
k
11)) +

∑
k>t

ϕ21(k − t− 1 + θ2ϕ12(c
k
12)) (A.6)

We expand Equation A.4,

Os =
∑
k≤t

ϕ11(c
k
11) +

∑
k>t

ϕ11(c
k
11) +

∑
k>t

ϕ22(c
k
22) +

∑
k≤t

ϕ22(c
k
22)

=
∑
k≤t

ϕ11(k − 1 + θ1ϕ22(c
k
22)) +

∑
k>t

ϕ11(k − 1 + θ1ϕ22(c
k
22))

+
∑
k>t

ϕ22(k − 1 + ϕ11(c
k
11)) +

∑
k≤t

ϕ22(k − 1 + ϕ11(c
k
11))

By (A.2):

>
∑
k≤t

ϕ11(k − 1 + θ1ϕ22(c
k
22)) +

∑
k>t

ϕ12(k − 1 + θ1ϕ22(c
k
22))

+
∑
k>t

ϕ22(k − 1 + ϕ11(c
k
11)) +

∑
k≤t

ϕ21(k − 1 + ϕ11(c
k
11))

By (A.5) and t > 1 :

>
∑
k≤t

ϕ11(k − 1 + θ1ϕ22(c
k
22)) +

∑
k>t

ϕ12(k − t− 1 + θ1ϕ21(c
k
21))

+
∑
k≤t

ϕ22(k − 1 + θ2ϕ11(c
k
11)) +

∑
k>t

ϕ21(k − t− 1 + θ2ϕ12(c
k
12))

= Ons (A.7)

This contradicts to the assumption: (A.3). Therefore, we prove that the best

specialized scheduling s∗ yields the highest system throughput in the system, and

therefore is the optimal scheduling.
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We can extending the above proof to the general case of |I| workers and |J |

tasks. The results follow in the same fashion.
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APPENDIX B
TOP TEN POLICIES IN NEMBHARD AND BENTEFOUET (2015)

The top 10 policies for parallel and serial systems considering grouping and

assignment stages are listed in Table B.1

Parallel System Serial System
Rank Grouping Assignment Grouping Assignment

1 Min variance K Maximax K Min variance 1/r Maximax O
2 Min variance p Maximax θ Min variance K Maximax θ
3 Min variance K Maximax θ Min variance K Maximax K
4 Min variance 1/r Maximax K Min variance O Maximax O
5 Min variance 1/r Maximax θ Max variance p Maximax K
6 Min variance p Maximax K Min variance K Maximax θ
7 Min variance θ Maximax θ Max variance p Maximax θ
8 Min variance θ Maximax K Min variance p Maximax θ
9 Min variance O Maximax p Min variance K Maximax K
10 Min variance O Maximax p Min variance O Maximax 1/r

Table B.1: Top 10 policies in Nembhard and Bentefouet (2015)

Nembhard and Bentefouet (2015) did not explain how each policy is calculated.

We contacted the author and got the explicit form for the policies. For example, Min

variance K follows the procedure below. Nembhard and Bentefouet (2015) considered

parallel and serial systems with three types of job machines each with three identical

jobs. Workers have common learning and transfer parameters for each machine type.

Assume the three machine types are a, b, and c. Each worker i has three values for

the parameters, let’s say K has values of Kia, Kib, Kic. The average K value of worker
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i is Ki = (Kia +Kib +Kic) /3, i = 1, . . . 9. The grouping policy of Min variance K

is a way of grouping the nine workers to three groups such that the total variance

of the three groups is the smallest. The variance of a group with workers i1, i2, i3 is:

((ki1 − µ)2 + (ki2 − µ)2 + (ki3 − µ)2) /3, where µ is the average of the three workers k

values. The assignment policy assigns each team to a job type. An policy of Maximax

K assigns the job type to the team whose maximal K value on this job is the highest

over the three teams. The other grouping and assignment policies follow the same

fashion.
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APPENDIX C
PROBABILITY MATRIX OF P (Y +

N = K|L)

The matrix is listed in Table C.1. The columns are the number of existing

orders when a phlebotomist arrives to a unit, while the rows represent the phle-

botomist’s leave time.

n
Leave time 0 1 2 3 . . . l . . .

0 0 0 0 0 . . . 0 . . .
µ 0 e−λµ 0 0 . . . 0
2µ 0 e−2λµ(λµ) e−2λµ 0 . . . 0 . . .
3µ 0 3

2
e−3λµ(λµ)2 e−3λµ(2λµ) e−3λµ . . . 0 . . .

4µ 0 8
3
e−4λµ(λµ)3 4e−4λµ(λµ)2 e−4λµ(3λµ) . . . 0 . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

(k + l)µ 0 . . . .
.

P (Fk−1 = k)
×P (Xk = 0)

. . . . . . . .

Table C.1: Probability matrix
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