
University of Iowa
Iowa Research Online

Theses and Dissertations

Summer 2016

Modeling influence diffusion in networks for
community detection, resilience analysis and viral
marketing
Wenjun Wang
University of Iowa

Copyright 2016 Wenjun Wang

This dissertation is available at Iowa Research Online: http://ir.uiowa.edu/etd/2165

Follow this and additional works at: http://ir.uiowa.edu/etd

Part of the Business Administration, Management, and Operations Commons

Recommended Citation
Wang, Wenjun. "Modeling influence diffusion in networks for community detection, resilience analysis and viral marketing." PhD
(Doctor of Philosophy) thesis, University of Iowa, 2016.
http://ir.uiowa.edu/etd/2165.

http://ir.uiowa.edu?utm_source=ir.uiowa.edu%2Fetd%2F2165&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F2165&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F2165&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/623?utm_source=ir.uiowa.edu%2Fetd%2F2165&utm_medium=PDF&utm_campaign=PDFCoverPages

MODELING INFLUENCE DIFFUSION IN NETWORKS FOR COMMUNITY

DETECTION, RESILIENCE ANALYSIS AND VIRAL MARKETING

by

Wenjun Wang

A thesis submitted in partial fulfillment of the
requirements for the Doctor of Philosophy degree

in Business Administration (Management Sciences)
in the Graduate College of

The University of Iowa

August 2016

Thesis Supervisor: Professor Nick Street

Copyright by

WENJUN WANG

2016

All Rights Reserved

Graduate College
The University of Iowa

Iowa City, Iowa

CERTIFICATE OF APPROVAL

PH.D. THESIS

This is to certify that the Ph.D. thesis of

Wenjun Wang

has been approved by the Examining Committee for the thesis requirement for the
Doctor of Philosophy degree in Business Administration (Management Sciences) at
the August 2016 graduation.

Thesis Committee:
Nick Street, Thesis Supervisor

Jeffrey Ohlmann

Gautam Pant

Kang Zhao

Xun Zhou

ACKNOWLEDGEMENTS

Completing my PhD degree is one of the most exciting and challenging tasks

in my life. I could not have made it without the help of many people. First and

foremost, I would like to express my sincere gratitude to my advisor, Professor Nick

Street, for his continued support and great help. He has given me so much guidance,

encouragement, and patience during the five-year journey of my PhD study. I deeply

appreciate the opportunity and training he kindly offered to me.

I would like to give my sincere thanks to my thesis committee: Professors Jeffrey

Ohlmann, Gautam Pant, Kang Zhao, and Xun Zhou for their time, great help and

insightful comments.

I am grateful to Professor Renato de Matta for his co-authorship, recommen-

dation, and encouragement. I would also like to thank Professors Ann Campbell,

Samuel Burer, Barrett Thomas, Padmini Srinivasan, Hantao Zhang, Teodor Rus, Jia

Lu, Ray Han, and Zhaochang Zheng for their help and support.

Besides, I want to thank Scott Hansen, Barb Murphy, Renea Jay, and my friends

in the PhD program: Lian Duan, Michael Rechenthin, Huan Jin, Senay Yasar Saglam,

Fahrettin Cakir, Xi Chen, Shu Zhang, Qiong Zhang, Stacy Voccia, Guanglin Xu, and

Amin Vahedian Khezerlou, for their kind help whenever I asked.

I would like to give special thanks to my colleagues in the Department of Oto-

laryngology at the University of Iowa: Professors Camille Dunn-Johnson, Richard

Tyler and Bruce Gantz, and Grant Worthington as well as many clinicians for their

help, support and patience.

Last but not the least, I am deeply thankful for my beloved parents (Shibin Wang

and Huizhen Hu), dear wife (Xiaofang Wang), lovely daughters (Jenna Wang and

Cindy Wang), and younger brother (Wenyi Wang).

ii

ABSTRACT

The past decades have seen a fast-growing and dynamic trend of network science

and its applications. From the Internet to Facebook, from telecommunications to

power grids, from protein interactions to paper citations, networks are everywhere

and the network paradigm is pervasive. Network analysis and mining has become an

important tool for scientific research and industrial applications to diverse domains.

For example, finding communities within social networks enables us to identify groups

of densely connected customers who may share similar interests and behaviors and

thus generate more effective recommender systems; investigating the supply-network

topological structure and growth model improves the resilience of supply networks

against disruptions; and modeling influence diffusion in social networks provides in-

sights into viral marketing strategies. However, none of these tasks is trivial. In

fact, community detection, resilience analysis, and influence-diffusion modeling are

all important challenges in complex networks. My PhD research contributes to these

endeavors by exploring the implicit knowledge of connectivity and proximity encoded

in the network graph topology.

Our research originated from an attempt to find communities in networks. After

carefully examining real-life communities and the features and limitations of a set

of widely-used centrality measures, we develop a simple but powerful reachability-

based influence-diffusion model. Based upon this model, we propose a new influence

centrality and a novel shared-influence-neighbor (SIN) similarity. The former differ-

entiates the comprehensive influence significance more precisely, and the latter gives

rise to a refined vertex-pair closeness metric. Then we develop an influence-guided

spherical K-means (IGSK) algorithm for community detection. Further, we propose

two novel influence-guided label propagation (IGLP) algorithms for finding hierarchi-

cal communities in complex networks. Experiments on both real-life networks and

synthetic benchmarks demonstrate superior performance of our algorithms in both

iii

undirected/directed and unweighted/weighted networks.

Another research topic we investigated is resilience analysis of supply networks.

Supply networks play an important role in product distribution, and survivability is

a critical concern in supply-network design and analysis. We exploit the resilience

embedded in supply-network topology by exploring the multiple-path reachability of

each demand node to other nodes, and propose a novel resilience metric. We also

develop new supply-network growth mechanisms that reflect the heterogeneous roles

of different types of units in supply networks. We incorporate them into two fun-

damental network topologies (random-graph topology and scale-free topology), and

evaluate the resilience under random disruptions and targeted attacks using the new

resilience metric. The experimental results verify the validity of our resilience metric

and the effectiveness of our growth model. This research provides a generic framework

and important insights into the construction of robust supply networks.

Finally, we investigate activation-based influence-diffusion modeling for viral mar-

keting. One of the fundamental problems in viral marketing is to find a small set

of initial adopters who can trigger the largest further adoptions through word-of-

mouth-based influence propagation in the network. We propose a novel multiple-path

asynchronous threshold (MAT) model, in which we quantitatively measure influence

and keep track of its diffusion and aggregation during the diffusion process. Our MAT

model captures both direct and indirect influence, influence attenuation along diffu-

sion paths, temporal influence decay, and individual diffusion dynamics. Our work

is an important step toward a more realistic diffusion model. Further, we develop

two effective and efficient heuristics (IV-Greedy and IV-Community) to tackle the

influence-maximization problem. Our experiments on four real-life networks demon-

strate their excellent performance in terms of both influence spread and efficiency.

Our work provides preliminary but significant insights and implications for diffusion

research and marketing practice.

iv

PUBLIC ABSTRACT

People live in various social networks, in which they build up relationships with

their family members, friends, work colleagues, casual acquaintances, and so on. You

may find that there are many different groups of people who have higher internal

connectivity than external connectivity. Each of such densely connected groups is

called a community. Community is one of the most significant structural properties of

networks. Community detection is of great importance and a variety of applications.

For example, if we are able to identify such communities of customers in a consumer

network, we can investigate their similar interests and purchase behaviors and then

generate more effective recommender systems to increase sales.

We like to share information and ideas with friends. In particular, new technolo-

gies and various social media rapidly penetrate into every aspect of our daily life, and

provide us new channels and great convenience to exchange messages and express

opinions. During these processes, we not only pass information on to each other,

but also spread influence to each other. An interesting topic is to find a small set of

most influential individuals as initial adopters of a new product, hoping that they can

spread their influence through the network and trigger the largest further adoptions

of the product. This is so-called influence-maximization problem of viral marketing

in business.

In this dissertation, we develop a novel reachability-based diffusion model and

three algorithms for community detection in networks. We then adapt this model to

resilience analysis of supply networks under random disruptions and targeted attacks.

We present a novel resilience metric and new supply-network growth mechanisms

to build resiliency into the construction of supply networks. Finally, we propose a

new, more realistic activation-based diffusion model and two effective algorithms for

addressing the influence-maximization problem of viral marketing.

v

TABLE OF CONTENTS

LIST OF TABLES . viii

LIST OF FIGURES . ix

CHAPTER

1 INTRODUCTION . 1

2 COMMUNITY DETECTION . 9

2.1 Introduction . 9
2.2 Related Work . 17

2.2.1 Centralities . 17
2.2.2 Connectivity Metrics . 19
2.2.3 Similarity Measures . 23
2.2.4 Label Propagation . 27
2.2.5 Hierarchical Methods . 30

2.3 Influence-Diffusion Model . 34
2.3.1 Influence Matrix . 39
2.3.2 Influence Centrality . 43
2.3.3 Shared-Influence-Neighbor Similarity 44

2.4 Community-Detection Algorithms 45
2.4.1 Influence-Guided Spherical K-means 45
2.4.2 IGLP-Weighted-Ensemble 47
2.4.3 IGLP-Direct-Passing . 48
2.4.4 Hierarchical Clustering 51
2.4.5 Overlapping Communities and Role Detection 53

2.5 Experiments . 54
2.5.1 Network Description . 55
2.5.2 Centrality Analysis . 57
2.5.3 Community-Detection Performance 62

2.6 Conclusion . 77

3 RESILIENCE ANALYSIS . 78

3.1 Background and Related Work 78
3.2 Methodology . 83

3.2.1 Resilience Metric . 84
3.2.2 Attachment Strategies . 88

3.3 Simulation and Analysis . 89
3.3.1 Degree Distribution . 90
3.3.2 Resilience Analysis . 91

3.4 Conclusion . 97

vi

4 VIRAL MARKETING . 99

4.1 Introduction . 99
4.2 Related Work . 111

4.2.1 Diffusion Models . 111
4.2.2 Influence Maximization 117

4.3 Multiple-path Asynchronous Threshold (MAT) Model 122
4.3.1 Model Description . 122
4.3.2 Discussions . 128

4.4 Influence Maximization under MAT Model 129
4.4.1 Complexity and Properties 130
4.4.2 Algorithms . 132

4.4.2.1 Baseline Heuristics 133
4.4.2.2 IV-Greedy . 134
4.4.2.3 IV-Community 138

4.4.3 Experiments . 141
4.4.3.1 Network Description 141
4.4.3.2 Performance Comparison 142
4.4.3.3 Adoption Rate 147
4.4.3.4 Parameter Analysis 147

4.5 Conclusion . 150

5 CONCLUSION AND FUTURE WORK 151

REFERENCES . 153

vii

LIST OF TABLES

Table

2.1 Some representative connectivity/performance metrics 20

2.2 Real-life networks . 56

2.3 Comparison of different centralities on sawmill communication network.
CFC stands for current-flow-closeness, and CFB for current-flow-betweenness 61

2.4 Centralities of the HEP-TH network . 62

2.5 Performance comparison on real-life networks 64

2.6 A set of LFR benchmarks . 72

2.7 Influence rankings and belonging factors of Zachary’s karate club. Int-
Rank denotes internal-influence ranking, Ext-Rank denotes external-influence
ranking, BF denotes belonging factor, C1 and C2 denote community as-
signments by IGSK . 75

3.1 Some generic network resilience metrics 81

3.2 Resilience metrics proposed by Zhao et al. [143] 82

3.3 Basic setting and parameters . 89

3.4 Three attachment strategies . 90

3.5 Four growth models . 91

4.1 Statistics of network datasets . 142

viii

LIST OF FIGURES

Figure

2.1 Communities in network systems. (a) a simple graph with three communi-
ties; (b) Lusseau’s dolphin social network [6,89]; (c) a network graph of web
pages with directed links [101]; (d) an example of overlapping communi-
ties. Red nodes are overlapping nodes closely related to two communities;
(e) a schematic network with hierarchical community structure [78] . . . 11

2.2 A schematic dendrogram of a small network 30

2.3 Example of a directed weighted network with (a) raw weights, (b) normal-
ized susceptibility weights . 37

2.4 Diffusion tree of node 1 . 39

2.5 Zachary’s karate club . 57

2.6 Influence ranking of Zachary’s karate club 59

2.7 Sawmill communication network . 60

2.8 Dendrograms generated by: (a) IGLP-WE; (b) IGLP-DP 63

2.9 Performance comparison on undirected unweighted LFR benchmarks. Plots
(b) and (c) are from [78], Copyright by The American Physics Society . . 66

2.10 Performance comparison on directed unweighted LFR benchmarks. Plot
(b) is from [78], Copyright by The American Physics Society 67

2.11 Performance comparison on undirected weighted LFR benchmarks. Plot
(b) is from [78], Copyright by The American Physics Society 69

2.12 Time complexity: (a) IGLP-WE; (b) IGLP-DP 73

3.1 A hierarchical military supply chain (given in [143], Copyright by IEEE).
FSBs are forward support battalions, and MSB stands for main support
battalions . 80

3.2 Two simple examples: (a) Example 1; (b) Example 2 82

3.3 Example of a simple military logistic network 86

3.4 Search tree of node 1 . 86

3.5 Log-Log of the degree distribution of the four models 91

ix

3.6 Responses of the four growth models to random disruptions, plotted as (a)
supply availability rate, (b) size of LFSN, (c) average supply path length
in LFSN, and (d) maximum supply path length in LFSN 92

3.7 Responses of the four growth models to targeted attacks, plotted as (a)
supply availability rate, (b) size of LFSN, (c) average supply path length
in LFSN, and (d) maximum supply path length in LFSN 94

3.8 Resilience scores of the four growth models to random disruptions 95

3.9 Resilience scores of the four growth models to targeted attacks, plotted as
(a) 0-80 percent of nodes removed, and (b) 5-30 percent of nodes removed 96

3.10 Aggregated resilience scores of the four growth models under random dis-
ruptions and targeted attacks, plotted as (a) 0-80 percent of nodes re-
moved, and (b) 5-30 percent of nodes removed 97

4.1 The evolution of WOM models (given in [74], Copyright by The American
Marketing Association) . 103

4.2 Frequency of common actions vs. the time difference between two users
performing actions. (a) during the first hour at a granularity of 10 minutes;
(b) during the first week at hourly granularity (without considering the
cases in which the time difference is less than one hour, i.e., the cases
in (a)); (c) the rest of the dataset with weekly granularity (given in [49],
Copyright by ACM) . 108

4.3 3A process of influence . 110

4.4 LT-C model with colored end states: adopt-green, promote-blue, inhibit-
red (given in [8], Copyright by ACM) . 115

4.5 Several types of direct and indirect influence 124

4.6 Performance comparison on influence spread 144

4.7 Performance comparison on running time (CPU seconds) 145

4.8 Adoption rate achieved by IV-Greedy . 148

4.9 Influence spread achieved by DEGREE under the classic LT model and
the MAT model with different temporal influence decay rates 149

x

1

CHAPTER 1
INTRODUCTION

The past decades have seen an unprecedented growth of network science and

its applications. From the Internet to Facebook, from mobile phones to power grids,

from protein interactions to paper citations, networks are everywhere and the network

paradigm is pervasive. Network analysis and mining has become an important tool

for scientific research and industrial applications to diverse domains.

A rich body of such studies focuses on the analysis of information and influence

diffusion in complex networks. Influence is defined as the capacity or power of persons

or things to be a compelling force on or produce effects on the actions, behavior,

opinions, etc., of others1. Influence itself is usually imperceptible. In most cases, it is

implicitly embedded in various types of information propagated from one to another.

The information can be a message, an idea, an opinion, an advertisement, a behavior,

a rumor, or a virus, and so on. For example, in word-of-mouth marketing, when Sam

told his friends that he bought an iPhone and he liked it, he more or less influenced

his friends on their purchase decision-making. When Jenna posts a tweet on Twitter

and some of her followers retweet it, this is actually two steps of influence propagation

originated from Jenna. In a citation network, a citing paper receives influence from

the cited paper. In general cases of network analysis, influence and information are

interchangeable. For convenience and simplicity, we use the term influence diffusion

to indicate the diffusion of information and influence in networks.

Influence diffusion is a significant research topic in network analysis, which finds

a wide range of applications to viral marketing, epidemic spread, outbreak detection,

immunization strategies, etc. One well-known example is the commercial success of

MSN Hotmail. It simply appended the text “Join the world’s largest e-mail service

1dictionary.reference.com

2

with MSN Hotmail. http://www.hotmail.com” to the end of each email message. It

quickly attracted 12 million users in only 18 months [65]. Another famous example is

Christakis and Fowler’s study on the spread of obesity in a large social network over

32 years [24]. They examined social contagion from various domains, such as obesity,

happiness, wealth, and political beliefs [25,26], and proposed an important 3-degrees-

of-influence phenomenon that “everything we do or say tends to ripple through our

network, having an impact on our friends (one degree), our friends’ friends (two de-

grees), and even our friends’ friends’ friends (three degrees). Our influence gradually

dissipates and ceases to have a noticeable effect on people beyond the social frontier

that lies at three degrees of separation”. Online social networks have proved to be even

more powerful in influence diffusion, such as Twitter during the 2008 US presidential

elections [60] and Facebook during the 2010 Arab spring [58].

However, modeling influence diffusion is of great challenges. Although influence

analysis has attracted a great deal of attention and extensive studies from many

fields, the majority of the studies are still primarily rooted in a few classic influence-

diffusion models, such as the voter model [28], the two epidemic models (SIR and

SIS), the Markov random field (MRF) model [32,110], and the well-known independent

cascade (IC) and linear threshold (LT) models proposed by Kempe et al. [69], etc. In

spite of their popularity, those models have some singificant limitations on resembling

real-world situations. For example, the SIR and SIS models completely ignore the

underlying contact network, and assume every individual has the same probability

to have direct contact with every other individual. In other words, they regard the

contact network as a complete graph. The IC and LT models rely on the network

connectivity, but they only consider the direct influence from the activated neighbors

(influencers). In reality, a node in the network could be influenced and activated

by its inactive neighbors who pass the influence from influencers on to the node of

interest. In other words, the IC and LT models fail to capture the indirect influence

3

passed along by messengers. In addition, none of these models takes into account

influence attenuation along diffusion paths or temporal influence decay.

There is another subtle issue. The influence spread in these models is measured by

the total number of nodes that are activated in the end of the influence-diffusion pro-

cess. The activation can be any type of status change, such as opinion change in the

voter model, infection in the epidemic models, or new product adoption in the MRF

and IC/LT models, etc. We call the influence in these models activation-based influ-

ence, and these models are thus called activation-based diffusion models. However,

influence does not have to be confined to activation-based scenarios. For example,

various centralities, such as closeness centrality [114] and betweenness centrality [42],

have been widely used to identify the most important/influential vertices within a

network graph, but none of them is activation-based. In general cases, a node’s influ-

ence can be measured by the total amount of information it is able to spread through

the network, i.e., in terms of the information’s visibility or reachability regardless of

the information’s effect. We call it reachability-based influence. When one receives

enough such information, he or she could be activated. In other words, reachability-

based influence can be converted into activation-based influence. Reachability-based

influence diffusion and how to incorporate it in the activation-based diffusion model

are rarely studied in the literature.

Therefore, it is desirable to develop a more realistic and comprehensive influence-

diffusion model that enables us to capture the dynamics of influence diffusion in more

detailed manner. In this thesis, we use the concepts and techniques from the fields

of network modeling, artificial intelligence, data mining, and social science to exploit

the implicit knowledge of influence-based connectivity, centrality, and vertex-pair

similarity encoded in network graph topology. We arrive at a set of powerful influence-

diffusion models for community detection, resilience analysis, and viral marketing in

complex networks.

4

This research originates from an attempt to find communities in social networks.

Community is one of the most significant structural properties in networks. Without

a quantitatively precise definition, a community is generally described as a group of

nodes that have higher internal than external connectivity. Community detection is

of great importance and a wide variety of applications. However, finding meaningful

communities is a difficult task. Despite the active attention from many disciplines,

there are still many open issues. Our work [127,129] is motivated by the observation

of the important roles of influence in real-world communities. Not only does influence

differentiate individual roles in a community, but also acts as the force holding the

individuals together to form and maintain the community. Influence is a natural fit for

community detection. After carefully examining the features and limitations of a set

of widely used centrality measures, we arrive at a novel reachability-based influence-

diffusion model, which builds egocentric diffusion trees and generates an influence

vector for each node. The influence vector captures not only the total influence

but also the distribution of influence that each node spreads over its neighborhood.

Based upon this model, we propose a new influence centrality in terms of the total

amount of influence a node spreads out, and a novel shared-influence-neighbor (SIN)

similarity that measures the closeness of a pair of nodes by their mutual influence and

the common set of nodes they both influence. The former differentiates the nodes’

comprehensive influence significance in a more detailed manner, and the latter gives

rise to a refined vertex-pair closeness metric.

Moreover, we first develop an influence-guided spherical K-means (IGSK) algo-

rithm for community detection, and then propose two novel influence-guided label

propagation (IGLP) algorithms [128] for uncovering the community hierarchy in com-

plex network systems, where small communities successively group together to form

larger ones. One is called IGLP-Weighted-Ensemble (IGLP-WE), in which each node

adopts the community label, carried by the majority of its neighbors and weighted

5

by the corresponding SIN similarity to the node of interest. This simple weighting

scheme not only effectively resolves the significant stability issue in conventional label

propagation algorithms, but also greatly improves the accuracy. The other is called

IGLP-Direct-Passing (IGLP-DP), in which the community label is propagated di-

rectly from one node to its closest neighbor iteratively. This new label propagation

method produces a deterministic partition and requires no convergent iterations. For

IGLP-WE and IGLP-DP, the resultant partitioning is regarded as the initial config-

uration of the community structure. We define a new cluster-proximity measure and

perform agglomerative hierarchical clustering to find communities at different scales.

Further, we adapt our algorithms to identification of overlapping communities and

individual roles in each community. Our approach naturally incorporates influence

ranking, community detection and role identification into one unified framework, and

is applicable to both undirected/directed and unweighted/weighted networks. We

conduct extensive tests on on both real-life networks and synthetic benchmarks, and

demonstrate superior performance of our algorithms among a set of state-of-the-art

algorithms. IGLP-WE and IGLP-DP also manifest promising scalability for large-

scale networks.

Another research topic we investigate is the resilience analysis of supply networks.

Along with the globalization and rapid advancement of information technology, the

traditional hierarchical supply chain has been quickly evolving into a variety of supply

networks. Supply networks play an important role in product distribution, but they

are often subject to various disruptions. Resiliency or survivability is a critical concern

in supply-network design and analysis. As indicated in previous research [119, 138],

supply network shares many characteristics that most real-life networks commonly

have, and its graph topology has great impact on its resilience against disruptions. A

challenging problem is how to measure the resilience from a topological perspective.

Previous literature [95,121,143] mainly focus on some macro-level or generic metrics,

6

such as the size of the largest connected component, the average/maximum shortest

path length, the supply availability rate, etc. While these metrics capture the intuitive

concepts of network resilience from some specific angles, it is hard to piece them

together to provide a comprehensive and reliable judgement on the network resilience.

There are many other issues on these metrics, which we detail in Chapter 3.

The strategy we take is a novel bottom-up approach [126], in which we adapt our

reachability-based influence-diffusion model for community detection to topological

resilience analysis of supply networks. More precisely, we exploit the resilience embed-

ded in the network topology by investigating in depth the multiple-path reachability

of each demand node to other nodes, and quantify the network resilience by the ag-

gregated resilience of all demand nodes in the supply network. Our approach gives

rise to a new, more comprehensive network resilience metric. It differentiates the het-

erogeneous roles of different types of nodes, aggregates the resilience of all demand

nodes, and incorporates the reachability to both supply nodes and demand nodes.

Moreover, it considers not only the shortest paths but also other paths, and takes

into account depth-associated penalty. Further, we adopt the multiagent modeling

framework, and develop new supply-network growth mechanisms that enable us to

leverage the network robustness against random disruptions and targeted attacks and

improve the overall resilience. We incorporate them into two fundamental network

topologies (random-graph network and scale-free network), and perform simulations

to evaluate their resilience using our resilience metric. Experimental results verify

the validity of our resilience metric and the effectiveness of our growth model. This

research provides a generic framework and important insights into the construction

and resilience analysis of supply networks.

Finally, we investigate activation-based influence-diffusion modeling for viral mar-

keting, which is an important marketing technique that induces users in a social

network to pass on a marketing message to other users so as to achieve a poten-

7

tially exponential growth in brand awareness or product sales. Marketing researchers

study viral marketing using various descriptive/statistical models and field experi-

ments [15, 56, 57, 62, 74]. It was first posed as an algorithmic influence-maximization

problem by Domingos and Richardson [32, 110], in which they model the influence

on each other as a Markov random field [72]. The objective of this problem is to

find a seed set of most influential individuals in a social network such that activating

them initially would trigger the largest influence spread in the network. In other

words, it is to maximize the expected number of activated nodes at the end of the

influence-diffusion process. In their seminal paper [69], Kempe et al. formulate the

influence-maximization problem as a discrete optimization problem in three widely-

studied stochastic diffusion models. As discussed above and detailed in Chapter 4,

there are many important features missing in these models, such as indirect influence,

influence attenuation, etc.

We propose a novel, more realistic influence-diffusion model, the multiple-path

asynchronous threshold (MAT) model, in which we adapt our reachability-based in-

fluence diffusion to the activation-based scenario of viral marketing. Our MAT model

takes into account both direct and indirect influence, influence attenuation along dif-

fusion paths, influence decay with time, and individual diffusion dynamics. Further,

we tackle the influence-maximization problem under the MAT model. We carry out

theoretical analysis on its complexity and properties, and develop two effective and

efficient approximation algorithms (IV-Greedy and IV-Community) along with a set

of baseline heuristics. We run experiments on four real-life networks to evaluate

our MAT model and algorithms against the baseline heuristics in terms of influence

spread and time complexity. Our work provides preliminary but significant insights

and implications for diffusion research and marketing practice.

The remainder of this thesis is organized as follows. In Chapter 2, we study com-

munity detection in complex networks. We start with an introduction and discussions

8

about related work, and describe in detail our reachability-based influence-diffusion

model. We then propose three community-detection algorithms, and adapt them for

overlapping-community identification and role detection. Last, we show our experi-

mental results and performance comparison, followed by the conclusion. In Chapter

3, we present our work on topological resilience analysis of supply networks. After

reviewing the background and related work, we elaborate our methodology as well as

the new resilience metric and attachment strategies. We then perform simulation to

evaluate our resilience metric and network growth model. In Chapter 4, we investi-

gate activation-based influence-diffusion modeling for viral marketing. Similarly, we

begin with an introduction and literature review, and then elaborate our MAT model.

We then propose two approximation algorithms to tackle the influence-maximization

problem under the MAT model, and run experiments on four real-life networks.

9

CHAPTER 2
COMMUNITY DETECTION

2.1 Introduction

Network analysis and mining has emerged in diverse disciplines as a means of

analyzing complex systems. Most complex systems from various domains can be

naturally mapped to different types of graph structures, such as the Internet and

power grids in technological networks, protein-protein interactions and food webs

in biological networks, and various information networks and social networks, etc.

In the study of networks, a number of common characteristics have been discov-

ered, including power-law degree distribution, small-world phenomenon, homophily

and self-organization, among others. Another significant topological characteristic is

community structure, which implies that nodes on the network are naturally grouped

into different communities with dense connections internally and sparser connections

between communities. From a karate club of tens of members [141] to large-scale

online social networks with millions of participants, from functional protein modules

in biology to arXiv citation networks of scientific papers, community structures occur

in various network systems.

We illustrate in Figure 2.1 some real-life networks and schematic examples. Fig-

ure 2.1(a) is a simple network of three communities. Nodes in each community are

more densely connected to each other than to the rest of the network. Figure 2.1(b)

displays a well-known real-life social network of 62 bottlenose dolphins analyzed by

Lusseau et al. [89]. Each node represents a dolphin, and the edge between a pair of

nodes indicates they stay together more often than expected by chance. This network

consists of two evident communities as indicated by the colors, and has been widely

used as a benchmark to test community-detection algorithms. The edges in these two

examples are undirected, which means the relationships between vertex pairs of the

10

networks are reciprocal or symmetric, such as the friendship between two users on

Facebook and the co-authorship between authors on collaboration networks. How-

ever, in many network systems, the relationships or interactions among individuals

are not reciprocal. The edge directionality leads to numerous directed networks in di-

verse domains by nature, such as hyperlinks in the World Wide Web, follower-followee

relationships on Twitter networks, citation relationships among scientific papers on

citation networks, etc. Figure 2.1(c) is a sample graph of web pages with directed

hyperlinks pointing from one page to another. The colors denote the communities de-

tected by Newman and Girvan [101], in which they ignore the edge direction and treat

the network as undirected. Moreover, many complex networks exhibit overlapping

community structures in the sense that some nodes are characterized with multiple

community memberships. Figure 2.1(d) shows an exemplar network of overlapping

communities. The red nodes are overlapping nodes that usually play an important

role of inter-community liaisons in real-life network systems. Further, most com-

plex networks often show a hierarchical organization, with small communities nested

within large communities at different scales. Figure 2.1(e) illustrates a schematic

network with hierarchical community structure. For instance, it can be depicted as

a university of four colleges at the macroscopic level. When zooming into each col-

lege, one could find different departments as sub-communities at the mesoscopic level.

Within each department, one may make a subdivision of faculty members into various

research groups.

Community detection is of great importance in a wide variety of applications. For

example, finding communities within social networks enables us to identify groups of

densely connected individuals as well as their similar interests and behaviors so as

to build more effective recommender systems. Identifying communities in metabolic

networks provides insight into how functional modules form and work. Community

detection in co-authorship networks helps reveal the collaboration patterns among

11

Figure 2.1: Communities in network systems. (a) a simple graph with three commu-
nities; (b) Lusseau’s dolphin social network [6,89]; (c) a network graph of web pages
with directed links [101]; (d) an example of overlapping communities. Red nodes are
overlapping nodes closely related to two communities; (e) a schematic network with
hierarchical community structure [78]

12

scientists. One can also do community detection to find the most influential indi-

viduals and take advantage of the community structure to facilitate influence spread

through a social network for viral marketing or to improve data forwarding in P2P

networks. However, finding communities in complex networks is a difficult task.

Research on community detection has a long history in sociology, biology, physics,

computer science, economics, etc. It has attracted huge efforts and extensive stud-

ies from many disciplines, and a strikingly large number of algorithms have been

presented [39,91,135]. Nevertheless, this problem is not yet satisfactorily solved.

A critical obstacle is the lack of a quantitatively precise definition of commu-

nity. Some researchers refer to a community as a densely connected subgraph in

the network graph topology [100, 131]. It is also depicted as a functional module,

a set of members who share similar properties, a chain of adjacent cliques, or a k

clan/club [104]. The widely-used definition follows the basic intuition that describes

a community as a group of nodes with higher internal than external connectivity.

However, this notion of connectivity is ambiguous, and results in many different ob-

jective functions and performance metrics. From hierarchical clustering [47], graph

partitioning [116], and spectral methods [33] to density-based clustering [118], modu-

larity maximization [9, 100], statistical mechanics [106], and label propagation [108],

most existing algorithms are rooted in degree or betweenness centrality, edge density,

or random-walk-based closeness. While these notions capture the intuition of network

connectivity to some extent, the existing literature [39,82,139] suggests there are still

significant areas for improvement. Further, as mentioned above, numerous networks

in diverse domains are directed and/or have weights on edges to differentiate the

strength of the connections. Nevertheless, most existing algorithms ignore the link

direction and/or the weights, which may cause considerable loss of information and

lead to unreliable or even misleading results. Moreover, complex network systems

often exhibit hierarchical community structure in which small communities succes-

13

sively group together to form larger ones. However, the number of algorithms that

can identify hierarchical communities in complex networks is limited, and those that

do are usually not scalable to large-scale networks. To this end, we propose the follow-

ing general but essential design principles for developing new community-detection

algorithms, and suggest using them as evaluation criteria for a more comprehensive

performance comparison across various algorithms.

• Applicability: Many algorithms have been proposed for undirected binary

networks. However, directionality and weights are usually essential features

of diverse networks. Ignoring the edge direction and weights fails to capture

the asymmetric relationship or the strength of the relationship between vertex

pairs. An applicable algorithm should be able to incorporate the directionality

and weights such that it can be applied to not only undirected binary networks

but also directed/weighted networks.

• Quality: An algorithm should be evaluated using a set of well-known network

benchmarks with or without known communities, i.e., ground truth. For a net-

work with known communities, the widely-used normalized mutual information

(NMI) [30] is suitable for measuring the accuracy of a community partition

against the ground truth. For network benchmarks without ground truth, mod-

ularity [97] is a well-defined measure for the quality of a community partition.

A reliable algorithm should demonstrate high accuracy in terms of NMI scores

on benchmarks with ground truth, and also find community partitions with

high modularity scores on benchmarks without ground truth.

• Hierarchy: Real-life network systems often exhibit some form of hierarchical

organization; large communities are generally found to be made up of smaller,

tighter ones. We argue that even the “ground truth” of the network benchmark

is actually not unique but is subject to the desired granularity level in the hi-

14

erarchy of the community structure. Moreover, the ground-truth community

partition does not have to be the one that maximizes the modularity score.

Instead, it could be the one that most closely matches the hierarchical commu-

nity structure at some specific scale, which partially explains why exhaustive

modularity maximization algorithms often fail to arrive at the ground truth

of real-life network benchmarks. Therefore, a robust algorithm should be able

to find hierarchical communities and enable us to zoom into the community

hierarchy at different scales.

• Scalability: In the era of big data, a network may grow unprecedentedly large

in size. However, most existing algorithms are too computationally expensive

to be scalable for large-scale networks. A feasible algorithm should be not only

effective but also efficient enough to be of promising scalability, especially if we

require the discovery of hierarchical community structure.

We attempt to find a more precise measure to decode the connectivity and prox-

imity embedded in the network graph topology, and use this measure to extract

community structure. Our work is motivated by observations from real-world com-

munities. Community members have individual social roles: leaders, core members,

liaisons between communities, etc. Some may be even simultaneously associated with

multiple communities. Some are more influential than others, and some are more sus-

ceptible to influence. We argue that individual roles, influence, and susceptibility are

implicitly embedded in the network topology. In fact, it is influence that not only dif-

ferentiates individual roles but also acts as the force holding the individuals together

to form and maintain the community. On the other hand, we notice a simple but

meaningful shared-nearest-neighbor (SNN) similarity [63] used in traditional cluster-

ing, which indicates that two nodes both being close to a set of neighboring nodes

suggests they are close to each other. This is naturally extended to our influence-

based scenario, and can be rephrased as: that two nodes both influencing a set of

15

(direct and indirect) neighbors suggests they are close to each other. We refer to it as

shared-influence-neighbor (SIN) similarity, which measures the closeness of any pair

of nodes in terms of their mutual influence and the common set of nodes they both

influence. Our SIN similarity captures the intuitive notion of community: that two

nodes influencing each other and a common set of neighbors confirms their closeness

and implies that they are more likely in the same community.

All of this makes influence a natural context for community detection, but the

question is how to define a quantitatively precise measure of influence. This leads

to another widely-studied topic, namely, influence analysis. One fundamental step

in influence analysis is to differentiate the relative influence significance among the

nodes, where influence is often characterized using various centralities. The four most

widely-used measures of centrality in network analysis are degree centrality, closeness

centrality, betweenness centrality, and eigenvector centrality. Each indicates some

specific strength of a node’s structural role in the network. However, these measures

are not fine enough to quantify a node’s comprehensive strength in terms of the total

amount of information or influence it can spread through the network as a seed node.

Further, none of them is able to measure the influence-based proximity between vertex

pairs, which as indicated could be a desirable metric for community detection.

We use concepts and techniques from the fields of network modeling, artificial

intelligence, data mining, and social science to exploit the influence-based network

connectivity and vertex-pair similarity embedded in the network graph topology. We

arrive at a novel reachability-based influence-diffusion model [127, 129], which builds

egocentric diffusion trees and generates an influence vector for each node. Using

this model, we define a new influence centrality that differentiates the nodes’ rela-

tive significance in terms of the total amount of influence a node spreads out or the

multiple-path reachability of a node to other nodes. More importantly, we naturally

quantify the SIN similarity of a pair of nodes using their respective influence vectors,

16

which gives rise to a new, refined vertex-pair closeness metric. We apply the SIN sim-

ilarity to spherical K-means clustering [31], and develop an influence-guided spherical

K-means (IGSK) algorithm for community detection. Extensive tests demonstrate

the effectiveness of IGSK and verify the validity of our SIN similarity and influence-

diffusion model. Moreover, our approach can be easily adapted to identification of

overlapping communities and individual roles in each community.

To find hierarchical communities and improve the efficiency, we develop two

novel influence-guided label propagation (IGLP) algorithms, IGLP-weighted-ensemble

(IGLP-WE) and IGLP-direct-passing (IGLP-DP) [128]. Our work on IGLP-WE is

motivated by the well-known label propagation algorithm (LPA) [108] and our SIN

similarity. LPA is basically an ensemble-based label association method, in which

each node adopts the label that the majority of its neighbors have in an iterative pro-

cess until a global consensus is reached. Thanks to its nearly linear time complexity,

this algorithm has received much attention. Unfortunately, it comes with a signifi-

cant stability issue due to random tie breaking. The problem exists in its majority

voting rule, which simply counts the number of neighbors that carry the same label.

This is a coarse technique that implicitly assumes the votes of all neighbors have the

same weight, resulting in many ties. An intuitive solution is to weight the vote of

each neighbor by its closeness to the node of interest. We effectively resolve this issue

using our SIN similarity. Furthermore, we develop IGLP-DP inspired by the following

intuition: given only the network graph topology, any node should belong to the same

community as its closest (most structurally-similar) neighbor. We apply this idea to

a new label-propagation framework: once a node identifies its closest neighbor using

SIN similarity, it passes its community label to that neighbor, which in turn passes the

label to its closest neighbor and so on. In the end of the label propagation, the nodes

of the same labels are grouped into respective sub-communities. Each sub-community

is composed of a group of closest neighbors chained together. These sub-communities

17

constitute the initial, most compact configuration of the community structure.

For both IGLP-WE and IGLP-DP, we regard the resultant community parti-

tions directly derived from the label-propagation process as the building blocks, and

perform agglomerative hierarchical clustering using a novel boundary-node-based

cluster-proximity measure to reveal a complete community hierarchy. We conduct

extensive tests on a set of real-life networks and synthetic benchmarks, and demon-

strate their superior performance in terms of high quality and efficiency in both

undirected/directed and unweighted/weighted networks.

2.2 Related Work

Community detection and influence analysis are essential tasks in network analy-

sis. They have received extensive attention and great efforts from many disciplines.

Especially, a plethora of algorithms have been presented for community detection

over the years. An in-depth survey can be found in [39, 91, 135]. We focus here on

papers that are most relevant to our concerns and considerations.

2.2.1 Centralities

Centrality concepts were originally developed and well studied in social network

analysis. Centrality refers to the identification of the most important or the most

influential nodes in a social network. A set of noteworthy centrality measures were

presented and discussed in details in [131]. There are four widely-used centralities

that measure the significance of a node from different perspectives. They are degree

centrality, closeness centrality, betweenness centrality, and eigenvector centrality.

Degree centrality is simply quantified by the number of links/neighbors of indi-

vidual nodes. Obviously it is a very coarse measure. There are many ties and it

fails to take into account the structural information or the significance of neighbors.

Closeness centrality [114] is defined as the inverse of the sum of lengths of the shortest

paths of a node to all other nodes. It measures how fast a node can spread infor-

18

mation in the network. Betweenness centrality [42] quantifies the number of times a

node appears in the shortest path of two other nodes. It can be regarded as a measure

of how often a node acts as a broker or gatekeeper of information flow. The close-

ness and betweenness centralities are both based on the shortest paths. However, the

spread of information does not always go along the shortest paths in reality. To ad-

dress this issue, researchers present a number of variants. Brandes and Fleischer [14]

assume information spreads like an electrical current, and propose current-flow close-

ness/betweenness centralities. However, information spread is significantly different

from current flow. There exist two inherent defects in this approach. First, infor-

mation spread in networks does not split like current in electrical networks. More

precisely, information spreads through replication rather than transfer in the sense

that one does not lose the information after she passes it on to others. But the cur-

rent in an electrical network follows the Kirchhoff’s current law, which ensures there

should be as much current entering each node as leaving it. Second, current can only

flow from a high-potential node to low-potential nodes (Kirchhoff’s potential law).

However, the information spread does not have this directionality. There are some

other variants, such as information centrality [117], random-walk closeness [102],

random-walk betweenness [99], maximum-flow betweenness [43], etc.

Eigenvector centrality [11] is the component of the principal eigenvector of the

adjacency matrix, which captures an intuitive but important concept: connecting to

a more influential node contributes more influence weight to the node of interest than

connecting to a less influential node. Unfortunately, it fails to capture the fact that

influence is attenuated when passing through the network. The well-known PageR-

ank [103] is a variant of eigenvector centrality. For undirected graphs, PageRank

degenerates into degree centrality. Katz centrality [68] can be regarded as a gener-

alization of degree centrality and eigenvector centrality. It measures the influence

significance of a node by counting the number of walks of length one to infinity, while

19

the contribution of long walks are penalized. Let A denote the adjacency matrix of a

network of N nodes, k denote the length of a walk from nodes i to j, and α denote

an attenuation factor in (0,1). Then Katz centrality of node i is written as

C(i) =
∞∑
k=0

N∑
j=1

αk(Ak)ij.

Note that the (i, j)-entry of the kth power of the adjacency matrix, (Ak)ij, gives the

total number of walks of length k from nodes i to j. Unlike the closeness centrality

that considers only the shortest paths, Katz centrality takes into account all the walks.

However, there is one significant defect from the perspective of information/influence

diffusion. For any undirected graphs/links or directed graphs with cycles, it allows the

same information to be transmitted around in a loop many times up to infinity. This

is not meaningful or realistic. In addition, its attenuation factor α is a user-specified

parameter, which makes its influence ranking nondeterministic and unreliable.

2.2.2 Connectivity Metrics

As discussed above, there is no unanimous agreement on the formal definition

of community, and the notion of internal/external connectivity is too general and

ambiguous, which leads to many different objective functions, performance metrics,

and algorithmic recipes. We list in Table 2.1 a set of commonly-used connectivity

and performance metrics in the literature, where G(V,E) denotes an undirected graph

with a total of n nodes and m edges, S is a subgraph with a set of nodes, nS is the

number of nodes in S, mS is the number of internal edges in S, cS is the number of

boundary edges of S (also called the cut size of S), d(u) is the degree of node u, mG\S

is the total number of edges of the rest of the graph G \ S, uinti (S) and uexti (S) are

the number of internal and external edges for node ui in S, respectively.

From the simplest node degree [107] to the most popular modularity [100, 101],

many connectivity metrics are commonly used in the literature, such as internal den-

20

Table 2.1: Some representative connectivity/performance metrics

Metrics Formulas Comments

Node Degree
uinti (S) > uexti (S),∀ui ∈ S

Strong community : each node has more
internal connections than external con-
nections

∑
uinti (S) >

∑
uexti (S),∀ui ∈ S

Weak community : the sum of all de-
grees within S is greater than the sum
of all degrees toward the rest of G

Internal Density
2mS

nS(nS − 1)

The ratio of the number of internal
edges to the number of all possible in-
ternal edges

Conductance
cS

min(mS ,mG\S) The fraction of edge volume of the cut

Ratio Cut
cS

nS(n− nS)
The ratio of the boundary edges to all
possible edges across the boundary

Normalized Cut
cS

2mS + cS
+

cS
2(m−mS) + cS

The cut cost as a fraction of the total
edge connections to all the nodes in the
graph

Average ODF
1

nS

∑ uexti (S)

d(ui)
, ui ∈ S

ODF: Out-Degree-Fraction. The aver-
age fraction of edges pointing outside of
S over the node degree

Modularity
1

4m
[mS − E(mS)]

E(mS) is the expected number of edges
in S in a random graph with the same
node-degree distribution

sity [82], conductance [66], ratio cut [133], normalized cut [116], average out-degree

fraction [38] and so on. Leskovec et al. [82] present an empirical comparison of a range

of community-detection algorithms that are based on the above and some other simi-

lar metrics. They test a total of eight different classes of algorithms with 12 common

objective functions on a set of more than 40 networks. They point out that these intu-

itive notions of cluster quality tend to fail as one aggressively optimizes the community

score, and conclude that approximate optimization of the community score introduces

a systematic bias into the extracted clusters. Another evaluation of various objective

functions based on those connectivity metrics is proposed by Yang et al. [139]. Their

experimental results also cast doubt on the quality of those commonly-used connec-

21

tivity metrics and corresponding objective functions. For instance, RankClus [120],

on one hand, achieves the best performance on the Cities-Services dataset [139] in

terms of internal density, and however, its scores of conductance, ratio cut, and mod-

ularity suggest the worst quality of the detected communities. On the other hand, it

correctly clusters all nodes of Zachary’s karate-club dataset [141], but its internal den-

sity gives much lower score than some other algorithms. WalkTrap [106] totally fails

to cluster the Mexican Political-Power dataset [46] and the Cities-Services dataset

despite perfect conductance and ratio-cut scores. Overall, none of those connectivity

or performance metrics is consistently reliable.

Among all the connectivity/performance metrics discussed above, modularity is

the most widely used one. It was originally proposed by Newman and Girvan [100,101]

to measure the quality of a given partition of the network in terms of how much

the resultant community structure deviates from random graphs that have the same

expected degree distribution as the network under consideration. More precisely, let

Aij denote the (i, j)-entry of the adjacency matrix of the network with ki =
∑

j Aij,

kj =
∑

iAij, and m = 1
2

∑
ij Aij. The modularity is given by

Q =
1

2m

∑
ij

[
Aij −

kikj
2m

]
δ(ci, cj),

where ci and cj are the community labels of nodes i and j respectively, and the

Kronecker delta function δ(ci, cj) = 1 if ci = cj (i.e., nodes i and j reside in the same

community) or 0 otherwise. It is worth pointing out that the modularity defined

above was initially introduced for undirected binary networks, but the same formula

is actually applicable to directed and weighted networks as well [5,97], provided that

the adjacency matrix A is interpreted accordingly. For an undirected binary network,

Aij = 1 if there is an edge connecting nodes i and j or 0 otherwise; A is symmetric, ki

and kj are degrees of nodes i and j respectively, and m is the total number of edges

in the network. For a directed binary network, Aij = 1 if there is a link pointing

22

from node i to node j or 0 otherwise; A is not symmetric, ki is the out-degree of

node i, kj is the in-degree of node j, and 2m is the total number of links in the

network. For a directed weighted network, A is the weighted adjacency matrix of the

network, and Aij = wij if there is a link pointing from node i to node j with a weight

of wij on the link (0 if no link exists); A is not symmetric, ki is the total output

weight/strength of node i, kj is the total input weight/strength of node j, and 2m is

the total weight/strength of the whole network.

Modularity is the best-known objective function and quality metric for community

detection. It makes intuitive sense that higher modularity scores indicate better par-

titions and clearer community structure. Motivated by this assumption, researchers

present many algorithms that use various optimization techniques to maximize the

modularity [9,27,52,98,100,101]. However, modularity-based methods also have cru-

cial limits in spite of their popularity. Guimera et al. [54] demonstrate random graphs

may have partitions with large modularity values due to fluctuations in the edge dis-

tribution. Fortunato and Barthelemy [40] suggest a more fundamental issue, showing

that modularity optimization has a resolution limit that may prevent it from identi-

fying well-defined communities below a certain size. There is another serious issue.

Good et al. [48] reveal that there typically exist an exponential number of distinct

partitions with suboptimal high modularity scores and there typically lacks of a clear

global maximum. We argue that the ground-truth community partition does not

have to be exactly the one that maximizes the modularity. These two factors explain

why exhaustive modularity-maximization algorithms often fail to find the ground-

truth communities. In fact, self-organization is a common feature of most networks.

The formation of community structure in networks, especially in large-scale complex

networks, is not necessarily the result of a top-down centralized/global optimization

procedure. Instead, it is the outcome of a bottom-up decentralized/local aggregation

process. Hence, we suggest using the modularity as a quality metric instead of a

23

single objective function to maximize aggressively in the first place.

2.2.3 Similarity Measures

Another important class of community-detection algorithms address the problem

using various similarity measures. With the success of the application of similar-

ity/distance measures in conventional data-mining clustering analysis, it is natural

to bring in those notions and techniques for community detection in networks. Espe-

cially, it makes perfect sense that members in the same community are more similar

or closer to each other than to the rest of the network. However, defining a meaningful

and quantitatively precise similarity measure in connectivity-based graph topology is

not straightforward.

Superficially, the shortest path between a pair of nodes seems like a direct measure

of their distance. Unfortunately, it is not fine enough to differentiate the closeness of

nodes within the context of community-structural characteristics in networks since a

single edge can easily link a node deeply located in one community to a node densely

connected in another community. Alternatively, one could take into account all paths

running between two nodes. To capture that information can in fact spread along

paths other than the shortest path, Estrada and Hatano [35] define the communica-

bility of the vertex pair (i, j) as the weighted-sum of all the walks connecting them,

that is,

Gij =
∞∑
k=0

(Ak)ij
k!

.

Recall that the (i, j)-entry of the kth power of the adjacency matrix, (Ak)ij, is the

total number of walks of length k from nodes i to j. Since the nodes/edges can be

revisited many times along the way, the total number of walks between any vertex pair

is infinite, and the walk length could be infinitely large. Consequently, they use the

inverse factorial of the walk length as the weight to reflect shorter walks make larger

24

contribution to the communicability than longer ones. They end up developing a

community-detection algorithm using the concept of the communicability graph [36].

However, this communicability has inherent defects like Katz centrality. It does not

make sense to allow the same information to be repeatedly transmitted around in a

loop. In addition, although it seems straightforward to extend it to directed networks,

it is not applicable to weighted networks.

Many sophisticated measures of vertex-pair similarity are proposed based on var-

ious stochastic models. Zhou and Lipowsky [145] introduce the proximity index be-

tween neighboring vertices using a biased Brownian motion. More precisely, for each

nearest-neighboring pair of vertices i and j, the proximity index is defined as

Λ(i, j) =

√∑
k 6=i,j(dik − djk)2

N − 2
,

where N is the total number of vertices in the network, and dik and djk are the mean-

first-passage-time, i.e., the average number of steps the Brownian particle takes before

it reaches vertex k for the first time starting from vertices i and j, respectively. An

important feature of the proximity index is that it measures the closeness of vertex

pair (i, j) in terms of the difference of the mean-first-passage-times of vertices i and j

to any other vertex k instead of directly using the mean-first-passage-time between i

and j. This technique captures more information on the community structure. They

further define the proximity index between two communities and propose an agglom-

erative hierarchical algorithm (called Netwalk) for community detection. However,

this algorithm suffers from a high time complexity of O(N3) since it needs to do ma-

trix inversion to find the proximity indices for all nearest-neighboring vertex pairs.

It also needs to tune a bias coefficient to get the best performance, and it does not

work for directed networks.

Random walk is another commonly-used stochastic model used for defining sim-

25

ilarity measures for community detection. The underlying intuition is that random

walks on a community-structured graph have a much higher chance to get trapped in a

community than to travel between communities. Fouss et al. [41] exploit the average-

commute-time distance, n(i, j), which is quantified by the average number of steps for

a random walker to take to go from node i to node j for the first time and then get

back to node i. They find out that the square root of n(i, j) is also a vertex-pair dis-

tance measure (called Euclidean-commute-time distance), which is closely related to

the pseudo-inverse of the Laplacian matrix of the graph (L+). By applying a sigmoid

transformation on L+, Yen et al. [140] propose a sigmoid commute-time kernel and

perform the kernel clustering for community detection. Like the Netwalk algorithm

discussed above, this kernel-based method does not scale well on large networks due

to high computational cost. It is not applicable to directed networks either, and some

parameters need to be tuned as well.

Pons and Latapy [106] propose another random-walk-based distance measure that

quantify the structural similarity of vertex pairs. Let A be the adjacency matrix of

an undirected network of n vertices and m edges, and d(i) =
∑

j Aij be the degree

of vertex i. Then Pij =
Aij
d(i)

is the transition probability from vertex i to vertex j,

which defines the transition matrix P of the random walk processes. (P t)ij gives the

probability of going from i to j through a random walk of length t. They define the

distance between vertices i and j as the degree-weighted Euclidean distance between

their respective probability distribution, i.e.

rij =

√√√√ n∑
k=1

(P t
ik − P t

jk)
2

d(k)
.

They generalize this vertex-pair distance to a distance between two communities and

propose an agglomerative hierarchical clustering algorithm (called Walktrap) for com-

munity detection, which achieves a time-complexity of O(n2 log n) in most cases and

26

O(mn2) in the worst case. Unfortunately, it is still intractable for large-scale net-

works. Especially, it requires a large amount of memory due to a space complexity

of O(n2). While they claim it is directly usable for weighted networks, this algorithm

does not work for directed networks. Moreover, the random-walk length t is a nonde-

terministic parameter that needs to be tuned for each network individually. It must

be long enough to capture the community structure, but can not be too long to avoid

reaching the stationary distribution, in which the transition probabilities degenerates

into the degree of the vertices.

Another approach is to directly project the graph topology into a Euclidean space

so that we can use well-defined spatial measures (like Euclidean distance or cosine sim-

ilarity) and a variety of well-studied clustering methods. The spectral-based method

proposed by Donetti and Muñoz [33] is such an example. Each node in the network is

mapped to a point in a D-dimensional space in which the coordinates are given by its

projections on the first D nontrivial eigenvectors of the Laplacian matrix. They ap-

ply the Euclidean or angular distance defined in this eigenvector space to a standard

hierarchical clustering for community detection. They find that the angular distance

always generates better results than the Euclidean one. The time complexity is de-

termined by the computation of all eigenvectors, leading to O(n3) for most cases.

Furthermore, the optimal value of D is not known a priori. They suggest repeating

the hierarchical clustering using all possible values of D to find the one that gives the

largest modularity score. Obviously, this algorithm is too computationally expensive

to be feasible for large-scale networks. In addition, it is not applicable to directed

and/or weighted networks.

Our shared-influence-neighbor (SIN) similarity [127, 129] also is a method that

projects the graph topology into a Euclidean space. We map each node to a point in

an n-dimensional influence space, in which the coordinates are given by its influence

vector derived from our influence-diffusion model. The SIN similarity between any

27

pair of nodes is quantified using their respective influence vectors, which captures

much structural information in terms of their mutual influence and the common set

of nodes they both influence. We will elaborate our methodology in Section 2.3.

2.2.4 Label Propagation

The label propagation algorithm (LPA) for community detection is originally pro-

posed by Raghavan et al. [108]. The main idea is to iteratively run a label-updating

process until each node adopts the community label that the majority of its neighbors

carry. We remark here that this idea implicitly uses the strong-community definition

(see Table 2.1) as its objective function and stop criterion. Consequently, this LPA

always delivers strong communities. When the community structure is relatively weak

or fuzzy, LPA tends to arrive at one or several monster communities. Suppose that

a node x has j neighbors and let Cx(t) denote the community label of node x at the

tth iteration. The main steps of LPA can be described as follows:

1. Initialize the label of each node with its node index at t = 0, i.e., Cx(0) = x.

Then set t = 1;

2. Randomly choose an order in which the nodes update their labels;

3. For each node x selected in the specified order, update its label using the ma-

jority voting rule, i.e., Cx(t) = f(Cx1(t), ..., Cxi(t), Cxi+1
(t − 1), ..., Cxj(t − 1)),

where x1, ..., xi are the neighbors of x that have already updated their labels in

the tth iteration, xi+1, ..., xj are the neighbors of x that have not updated their

labels yet, and f returns the label that the maximum number of neighbors carry

(ties are broken randomly);

4. If every node has the same label as the maximum number of its neighbors have,

group the nodes sharing the same labels into respective communities and stop

the algorithm. Otherwise, set t = t+ 1 and go back to Step 2.

28

The label-updating process in Step 3 is asynchronous. In synchronous updating, node

x at the tth iteration updates its label based on the labels of its neighbors at (t− 1)th

iteration, i.e., Cx(t) = f(Cx1(t−1), ..., Cxj(t−1)). Raghavan et al. propose the use of

asynchronous updating to avoid oscillations of labels that may occur in synchronous

updating. This algorithm achieves a time complexity of O(km), where k is the number

of iterations and m is the total number of edges in the network. Although k varies

from one network to another, the authors claim that k is independent of the network

size and that 95% or more of the nodes acquire the labels that the maximum number

of their neighbors have by the end of five iterations. It has gained much attention

due to its simplicity and nearly-linear time complexity. However, it has a significant

stability issue. It produces different community partitions in different runs due to the

random tie breaking and the random ordering of nodes in its label-updating process,

making the algorithm nondeterministic and unreliable.

Leung et al. [84] contrast asynchronous with synchronous updating, and show that

synchronous updating is more stable on average but converges much more slowly

than asynchronous updating. They also introduce a hop-attenuation parameter δ

(0 < δ < 1) that governs how far a particular label can spread as a function of

the geodesic distance from its origin. Although this technique may help avoid the

formation of monster communities and thus improve the overall performance, this

additional parameter adds extra uncertainties to the algorithm.

To improve the stability, Xing et al. [137] propose a node influence based label

propagation algorithm (NIBLPA), in which they attempt to avoid the complete ran-

domness using node influence. They define node influence based on the k-shell values

of a node and its neighbors. A k-shell is a maximal connected subgraph in which

every node’s degree is at least k. The k-shell value of a node is k, which indicates

that node belongs to a k-shell but not to any (k + 1)-shell. For a node i, let Ks(i)

denote its k-shell value and N(i) denote the set of neighbors of node i. Then the

29

node influence of i is defined as

NI(i) = Ks(i) + α×
∑
j∈N(i)

Ks(j)

d(j)
,

where d(j) is the degree of node j and α is a parameter in range (0,1). They fix

the node ordering of label updating in the descending order of the node influence.

They also define a label influence based on the node influence to break the tie when

multiple labels are carried by the same maximum number of neighbors of the node

under consideration. They improve the stability to some extent, but the quality

of the resultant community partition is not consistently satisfactory. In fact, the

node influence is not fine enough to rank all the nodes in the network, which implies

there still exist random selections in the node ordering of the label-updating process.

Moreover, they have to tune the parameter α for each individual network to get the

best result.

Based on the idea of simulating the propagation of labels in the network, Xie and

Szymanski [136] propose a stabilized label propagation algorithm called LabelRank.

They introduce four operators to control the label propagation: propagation, inflation

Γin (in is a parameter taking on real values), cutoff Φr (r is a threshold in [0,1]), and

conditional update Θq (q is a parameter chosen from [0,1]). The label propagation

stops when the number of nodes that potentially change their communities exceeds a

predefined frequency numChange. LabelRank resolves the randomness issue of LPA

and improves the performance. However, it requires adjusting the four parameters,

which is cumbersome and impractical. In fact, it partially shifts the randomness

issue from tie breaking and node ordering to the selection of those parameters. In

this regard, the stability issue of LPA still remains unsolved. In addition, most

LPA algorithms, including all the aforementioned ones, mainly focus on undirected

and unweighted networks. Few LPA algorithms in the literature indicate justified

30

Figure 2.2: A schematic dendrogram of a small network

applicability for directed and/or weighted networks.

2.2.5 Hierarchical Methods

Many network systems are characterized with a hierarchical organization, in which

small communities are nested within larger ones successively at different scales. Find-

ing hierarchical communities in complex networks is highly desirable but even more

challenging. It is tempting to use the well-studied hierarchical-clustering techniques

in data mining, which build a hierarchy of clusters. Those techniques can be gener-

ally classified into two categories. One is a top-down divisive approach, which starts

with all the nodes in one cluster and iteratively splits clusters into smaller ones; the

other is a bottom-up agglomerative approach, which starts with each node in its own

singleton cluster and iteratively merges the closest clusters to form larger ones. For

both approaches, the resultant community hierarchy can be illustrated as a dendro-

gram, a hierarchical tree structure. Figure 2.2 is a schematic example. The top level

represents a single community of the network as a whole, the leaves at the bottom

represent individual nodes with each of them in a singleton community of its own. A

horizontal cut through the tree at any level gives a set of subgraphs or communities

at a particular scale.

The divisive approach focuses on identifying and removing the inter-community

edges that connect vertices of different communities. The most representative algo-

31

rithm is the one proposed by Girvan and Newman [47]. They generalize Freeman’s

betweenness centrality [42] of vertices to edges, and define the edge betweenness of an

edge as the number of shortest paths between all vertex pairs that run along it. It is

intuitive that inter-community edges have high edge betweenness. At each iteration

step of their algorithm, they recalculate the edge betweenness for all edges and remove

the edge with the highest betweenness. The algorithm iterates until no edges remain.

The main drawback of this method is its high computational cost. For a network of

n nodes and m edges, calculating the betweenness of all edges runs in time O(mn).

Since it needs to iterate m times to remove the edges one at a time, the complete

algorithm runs in time O(m2n), which is intractable in large-scale networks. There

are some variants [39] that use different betweenness centralities or attempt to reduce

the time complexity. Unfortunately, the improvement is either limited or a tradeoff

between accuracy and efficiency to some extent.

The agglomerative approach draws more attention than the divisive one. In gen-

eral, once a vertex-pair similarity (or closeness) measure is defined, it can be general-

ized to define the cluster proximity, and thus the agglomerative hierarchical clustering

can be applied. However, defining a meaningful and quantitatively precise similar-

ity measure is nontrivial. Moreover, the agglomerative approach often starts with

assigning each node to a singleton community, and merges a pair of closest commu-

nities at each iteration step. It has to take (n − 1) iterations to build a complete

hierarchy of communities. Consequently, the conventional agglomerative approach

has a time complexity of O(n3) in the general case, which is too costly to scale well.

The Netwalk [145] and Walktrap [106] algorithms discussed in Section 2.2.3 are two

of such examples. The well-known modularity-maximization algorithm proposed by

Newman [98] falls in the category of the agglomerative approach as well. Instead of

using a vertex-pair similarity measure or any cluster proximity metric, they repeat-

edly merge communities in pairs such that the merger at each iteration step results

32

in the greatest increase in the modularity. This algorithm starts with each node in a

separate community, and ends at some level of the dendrogram when no mergers of

any pairs of communities can further increase the modularity. It achieves a worst-case

time complexity of O((m+ n)n), or O(n2) on a sparse graph.

Blondel et al. [9] propose a heuristic algorithm (known as the Louvain method),

which consists of two phases. The first phase is a local-modularity-optimization pro-

cess, in which they initially assign each node to a singleton community, and then for

each node i, they calculate the gain of modularity in case i is removed from its com-

munity and reassigned to the community of its neighbor j. Node i is finally placed

in the community for which this gain is maximum. If there is no positive gain, i

stays in its original community. This is a sequential sweep over all nodes, and it is

repeated until no further gain of modularity can be achieved. The second phase is

to rebuild a new weighted network, in which each node is a community found in the

first phase and each edge connecting a pair of nodes has a weight that is the sum of

the weights of all the inter-community edges of the two communities corresponding to

the two nodes. These two phases alternate repeatedly until the maximum modularity

is attained. This algorithm is well known for its high efficiency (roughly O(n log n))

and high modularity. This method has an issue that the order of visiting each node

may affect not only the the computation time but also the final community parti-

tion. In addition, the resultant hierarchy of communities is not complete, as many

intermediate levels are skipped.

Huang et al. [59] propose another two-phase hierarchical clustering algorithm

(called SHRINK). They define a structural similarity between two adjacent nodes

in terms of the cosine similarity of their respective adjacent-node sets, and use it in

a similarity-based modularity Qs. In the first phase, they sequentially sweep over

all nodes to find local micro-communities based on the structural similarity. In the

second phase, they evaluate each local micro-community and shrink it into a super-

33

node if the gain of Qs is positive. These two phases are executed in turns until the

maximum Qs is obtained. This algorithm achieves a time complexity of O(m log n).

Like the Louvain method, SHRINK needs to rebuild a new weighted network in the

second phase of each iteration. A subtle issue is that it is not clear whether the in-

termediate partitions in the dendrogram correctly reflect the community hierarchy of

the original network. In addition, neither of them is applicable to directed networks.

Lancichinetti et al. [79] present an alternative approach, which is based on the

local optimization of a simple fitness function

fC =
kCin

(kCin + kCout)
α
,

where kCin and kCout are the total internal and external degrees of the nodes in commu-

nity C, and α is a positive real-valued parameter, controlling the size of the commu-

nities. The community structure is revealed by peaks in the fitness histogram, and

different hierarchical levels can be investigated by tuning α. Large α yields small

communities, and small α delivers large communities. However, it is unknown a

priori how large the communities are. Even at a fixed scale, the communities may

vary in size significantly. There are infinite values of α for selection, but there is no

indication which values produce the most reliable community partitions. Moreover,

for different values of α, the respective community partitions are usually mixed with

each other. It is hard to map a specific partition onto a corresponding level in the

dendrogram to clearly show how small communities are nested and merged into larger

ones. In addition, this algorithm has a stability issue due to the random selection of

seed nodes. The fitness histogram resulting from a specific choice of the seeds is not

reliable, thus requiring multiple runs with different seeds to find the most relevant

commmunity structures.

34

2.3 Influence-Diffusion Model

We draw inspiration from the PageRank algorithm in the sense that we cannot

solely rely on the node degree. We have to find an intelligent way to embed influence

into a node and pass it around in the network. This leads to a novel influence-

diffusion model. It is noted that the influence defined in our diffusion model is different

from the influence defined in many activation-based diffusion models such as the

epidemic model and the linear threshold model [69], in which the influence of a node

is quantified by the number of inactive nodes it can activate. Our diffusion model is

reachability-based. We measure a node’s significance by the total amount of influence

it diffuses in its neighborhood in terms of multiple-path reachability.

Our approach differs from prior work in many ways. From the point of view of cen-

tralities, our model extends degree centrality from immediate neighbors to multi-step

neighborhood, includes not only the shortest paths (that the closeness and between-

ness centralities rely on) but also other paths, and takes into account neighbors’

influence significance (like eigenvector centrality) and depth-associated influence at-

tenuation (like Katz centrality but without cycling). Our influence centrality gives

rise to a new, more precise measure of a node’s comprehensive strength on diffusing

influence in the network as a seed node. Further, we not only find the total influ-

ence a node spreads out, but also keep track of where and how much its influence is

distributed in its neighborhood so as to construct its influence vector for community

detection.

The influence in our diffusion model can be interpreted in terms of a message,

an idea, an advertisement, or a rumor. Similar to the word-of-mouth communication

or storytelling, the message spreads in the network through parallel replication (like

a radio broadcast) rather than transfer since one does not lose the message after he

forwards it to another person. Those replicas might not be exactly the same as the

original message. They may slightly vary from each other, and thus each of them

35

can be regarded as a new message. One important and distinguishing feature in

our diffusion model is that no loops or cycles are allowed. The best way of thinking

about this mechanism may be to suppose that anyone who spreads a message needs to

endorse it and his endorsement is kept on all replicas of this message along its diffusion

paths. Then in case the message circulates back to him, he knows he previously

endorsed that message and will not spread it repeatedly. For example, if person A

spreads a rumor to person B, B passes it to person C, and if C passes it back to

B and A, both B and A will ignore it after they find they have already endorsed it.

Cycles are thus avoided. On the other hand, suppose that A spreads a rumor to both

B and D. Later when D passes the rumor to B, B will take and keep broadcasting

it since B did not endorse that piece of rumor before. From a graph-theoretic point

of view, the rumor traverses the network via walks, i.e., both nodes and links can

be revisited multiple times. It captures the multiple-path reachability from one node

to another but without cycling. Another distinctive feature of our diffusion model is

that we take into consideration that the message may lose its effectiveness and fidelity

while it is transmitted in the network, and its influence gradually fades away along

the diffusion path. We summarize these features in three important rules as follows:

1. Cycling is prohibited. No one should repeatedly exert influence in cycles in the

same round of an influence diffusion process. This distinguishes our model from

Katz centrality and most random-walk-based algorithms.

2. Revisits along different routes are allowed and independent. This is a realistic

imitation in the sense that the influence originating from an influencer may be

delivered to a person via many different routes independently. This distinguishes

our centrality from closeness and betweenness centralities which only focus on

the shortest path.

3. Influence gradually dissipates along diffusion paths. This is a reasonable as-

36

sumption that captures the influence locality such as the well-known 3-degree-

of-influence phenomenon [24]. Specifically, we set a depth limit to 3 by default

for all nodes in the network.

Our influence-diffusion model is built upon directed weighted networks, and thus

naturally integrate undirected/directed and unweighted/weighted networks into one

unified framework. For any undirected edge connecting two nodes, we simply replace

it with a pair of directed links pointing to each other of the two nodes. Influence

diffusion follows link directions. Each node spreads out influence through out-links,

and acquires influence via in-links. Consequently, for a specific real-life network, we

need to know for what the link direction represents in its application. For example, in

a citation network, if paper i cites paper j, then the network contains a directed link

from node i to node j. However, this directed link does not reflect the direction of the

influence propagation since it is actually the cited paper j that influences the citing

paper i. Thus we need to reverse the citation network to fit into our influence diffusion

model. For weighted networks, the weight on a link describes the strength of the

relationship between a pair of nodes of interest. Generally, the stronger relationship

implies the stronger influence. However, the influence that a node i exerts on its

neighboring node j is not solely measured by the absolute strength of the relationship

from node i to j. Instead, it is determined by the relative strength when compared to

the strength of influence that node j receives from other neighbors. In other words,

it depends on node j’s relative susceptibility to the influence of node i. Therefore,

we should consider all in-link neighbors of node j since nodes acquire influence via

in-links. We propose a simple normalization scheme as follows to fit the weight on

links in our reachability-based influence scenario. Given a directed link pointing from

node i to node j with a raw weight wij, and Lj denoting the set of node j’s in-link

neighbors, we define the normalized susceptibility weight ŵij as the ratio of wij to the

maximum raw weight of j’s in-links, i.e.,

37

Figure 2.3: Example of a directed weighted network with (a) raw weights, (b) nor-
malized susceptibility weights

ŵij =
wij

maxk∈Lj wkj
.

As an example, we illustrate in Figure 2.3 (a) a simple directed weighted network.

It is noted that the original undirected edge between nodes 4 and 5 is replaced with a

pair of directed links with the same raw weight in each direction. The corresponding

normalized susceptibility weights are shown in Figure 2.3 (b). We use the normalized

susceptibility weight on each link to estimate the weight-associated attenuation of

influence when it is transmitted from one node to another following the link direction.

When all weights are set to one, this normalization scheme reduces to the case of an

unweighted network.

Our influence-diffusion model can be regarded as a constraint branching process

on a network graph, in which influence originating from a root node propagates to

its offsprings following out-links with two constraints: 1) no node can be an offspring

38

of its own; and 2) the process dies out within a pre-specified number of generations.

We refer to the resultant generation-branching tree as the diffusion tree of the root

node. While the influence propagates along a path, it is attenuated in two inde-

pendent ways. One is the weight-associated attenuation in terms of the normalized

susceptibility weight on each link. The weight-associated attenuation of influence

from a source node to a destination node is the product of the normalized suscepti-

bility weights of the corresponding links that constitute the path. The other is the

depth-associated attenuation. We draw inspiration from the small-world phenomenon

and the concentric scales of resolution around a particular node depicted in [34]. It

is claimed that the probability of a center node linking to a node at a fixed distance

d of the ring is proportional to d−2, which fits well in our influence scenario. We

therefore define the depth-associated attenuation as the inverse square of the depth

from the root node, which can be interpreted as the probability of the root node’s

influence reaching a node at that depth (number of hops). From a probabilistic per-

spective, letting a random variable Xi denote the total amount of influence a root

node i spreads, and letting a random variable Y denote any diffusion path from i,

then we can quantify node i’s total influence as the conditional expectation

E[Xi] =
∑
y

E[Xi|Y = y]P{Y = y},

where y is a specific path from node i to a destination node j. E[Xi|Y = y] is

the expected influence j acquires along the path y, which is estimated by the weight-

associated attenuation from i to j. P{Y = y} is the probability that the influence dif-

fusion reaches j along the path y, which is exactly the corresponding depth-associated

attenuation at the depth from i to j along the path y, as defined above.

We take the simple network shown in Figure 2.3 (b) as an example, and illustrate

the diffusion tree of node 1 in Figure 2.4. The first two rules described above are

implemented in the construction of the diffusion tree. For example, when the influence

39

Figure 2.4: Diffusion tree of node 1

goes along the node path 1→ 4 and gets back to node 1, this branch flow stops there

since no cycling is allowed. In fact, the loop is not even closed, as indicated by

the dashed lines in the figure. Similarly, when the influence goes along the node

path 1 → 2 → 4, the branch flow going back to node 1 stops propagating before

getting back to node 1. On the other hand, node 5 is visited four times along paths

1→ 3→ 5, 1→ 2→ 4→ 5, and so on. Following the diffusion path 1→ 2→ 4→ 5,

the influence that nodes 2, 4, and 5 acquire from node 1 is 0.4× 1
12

, 0.4× 0.75× 1
22

,

and 0.4× 0.75× 0.8× 1
32

, respectively.

2.3.1 Influence Matrix

We employ a modified depth-limited search algorithm to explore the diffusion tree

of each node and generate an influence vector for each node, which records where and

how much influence each node spreads out in its neighborhood within a fixed depth

limit. Let NSW denote the normalized susceptibility weight, and IV denote the

influence vector. The pseudocode in Algorithm 1 shows how we sweep over all the

nodes to build the influence matrix that consists of the influence vectors of all the

nodes in the network.

Without loss of generality, our algorithm takes a directed weighted network and a

depth limit as input. It maintains an open list of to-be-explored nodes and a close list

of already-explored nodes, both implemented as a stack (Last-In-First-Out). Each

40

Algorithm 1 InfluenceMatrix-Builder

1: procedure IM-Builder(G(V,E), n = |V |, depthLimit)
2: Calculate the NSW of each edge
3: Set the influenceWeight of each node to 1
4: for node i = 1 to n do
5: Empty open/close list
6: Set all nodes to be unexplored
7: OpenList-PushStack (Node(i))
8: Node(i).depth← 0
9: while OpenList is not empty do

10: cNode← OpenList-PopStack ()
11: Node(i).IV (cNode.nIndex) += (cNode.depth)−2 × cNode.weight
12: Pop all nodes in CloseList with depth ≥ cNode.depth
13: Set those nodes to be unexplored
14: if cNode.depth < depthLimit then
15: for each out-link neighbor j of Node(cNode.nIndex) do
16: if Node(j) is unexplored then
17: Create a new OpenList node nNode
18: nNode.nIndex← j
19: nNode.weight← cNode.weight×Node(cNode.nIndex).NSW (j)
20: nNode.depth← cNode.depth+ 1
21: OpenList-PushStack(nNode)
22: end if
23: end for
24: Set Node(cNode.nIndex) is explored
25: CloseList-PushStack (Node(cNode.nIndex))
26: end if
27: end while
28: IM(i)← Node(i).IV
29: end for
30: Return IM
31: end procedure

41

node in the open/close lists contains an integer variable nIndex that denotes its node

index in the network, and another integer variable depth that indicates its depth in

the diffusion tree of the root node. The node in the open list also contains a variable

weight that stores the product of the normalized susceptibility weights along the

diffusion path. Each node of the network contains a Boolean variable that indicates

whether it has been explored so as to avoid cycling.

The algorithm starts with the calculation of the normalized susceptibility weight

of each link using the normalization scheme described above, and assigns an initial

influence weight of 1 to each node (Lines 2-3). For each iteration, after emptying

the open/close lists and setting all nodes to be unexplored, a (root) node is pushed

into the open list (Lines 5-8), and then the depth-limited search is explored until the

open list is empty. Whenever a node (cNode) is popped from the open list (Line 10),

we calculate the attenuated influence and accumulate it in the root node’s influence

vector accordingly (Line 11). Then we pop from the close list all the nodes whose

depths are greater than or equal to the depth of node cNode, and set all of those

nodes to be unexplored (Lines 12-13). This is the mechanism that allows revisits

from different routes. Then we check whether the depth of node cNode is less than

the depth limit. If it is, we continue the exploration by pushing to the open list all

of the unexplored out-link neighbors of Node(cNode.nIndex). For each of them, we

create a new open-list node nNode that records the node index, current depth, and

the chain product of the normalized susceptibility weights (Lines 15-23). Finally, we

mark Node(cNode.nIndex) as explored, and push it into the close list (Lines 24-25).

Each iteration of the For loop generates an influence vector for a specific node, which

contains all the nodes it influences associated with the corresponding influence value.

After sweeping over all the nodes, the algorithm creates an influence matrix for the

network as a whole.

We also develop a closed form of the influence matrix for unweighted networks.

42

Let A denote the adjacency matrix of an unweighted network (without self-loops).

The (i, j)-entry of the nth power of the adjacency matrix, (An)ij, gives the number of

paths of length n from node i to node j. Let Dn denote the diagonal matrix of An;

its entry dii is the number of paths of length n for node i to walk to itself. Then the

influence matrix M up to a depth limit of 3 is given as

M0 = I

M1 = M0 + A

M2 = M1 +
1

4
(A2 −D2)

M3 = M2 +
1

9
[(A2 −D2)A−D3 − AD2 + A⊗ AT].

M0 is the initial assignment of influence weight of 1 to each node at depth 0, where

I is the identity matrix. M1 is simply the first-step influence propagation. In M2, we

avoid two-step cycling by subtracting D2 from A2 and then multiply it by 2−2, which

is the two-step influence attenuation coefficient. In M3, we first let all the nodes on

the second depth propagate to depth 3, which is represented by (A2 − D2)A, then

subtract the three-step cycling D3 of the root node and the two-step cycling of all the

first-step nodes AD2. For all those first-step nodes that link to the root node with an

undirected link, we remove them twice, one in D2A and one in AD2. And so we get

one back by adding A ⊗ AT , which is the component-wise multiplication of matrix

A and its transpose matrix AT . Finally, we multiply by 3−2 to reflect the three-step

influence attenuation. In practice, we do not need to create an n×n influence matrix.

Instead, Each influence vector is represented by a compact dynamic array, in which

we only store the node index and the corresponding influence value of those nodes

reachable from the respective root node. This implementation not only significantly

reduces the space complexity, but also improves the time complexity.

43

2.3.2 Influence Centrality

As described above, the influence significance of a node is quantified by the total

influence it spreads out in the network. Once the influence matrix is built, it is

straightforward to compute the influence significance of each node as the sum of all

elements in the corresponding influence vector (a row vector in the influence matrix).

Let R(i) denote the influence significance of node i and N denote the total number

of nodes in the network. We can write it as

R(i) =
N∑

j=1 (j 6=i)

Mij.

Since the root node never distributes its own influence to itself, each diagonal element

of the influence matrix has a value of 1. Thus Mii is not included in the calculation

of the influence significance even though it does not change the influence ranking.

We refer to this influence significance as influence centrality. The pre-specified depth

limit is a nice gauge to measure the influence at different scales. When the depth

limit is set to 1, our influence centrality reduces to degree centrality.

Further, an important characteristic is hidden in the influence matrix. Let Row(i)

and Column(i) denote the influence matrix’s ith row vector and ith column vector,

respectively. Then Row(i) is the influence vector of node i that describes where

and how much influence node i distributes in the network. Interestingly, the column

vector Column(i) is exactly a representation of where and how much influence node

i acquires from the network. In other words, Row(i) consists of the set of nodes that

are influenced by node i, and Column(i) represents the set of nodes that influence

node i. The summation of all the elements in Column(i) is the total influence node i

receives from other nodes, which could be a good indicator of susceptibility ranking

among all the nodes in the network.

44

2.3.3 Shared-Influence-Neighbor Similarity

From a geometric perspective, for a network of N nodes, our influence-diffusion

model projects the graph into an N -dimensional influence space, in which each node

defines one dimension. The position of each node in this space is determined by

its influence vector. These influence vectors incorporate rich structural connectivity

information and enable us to differentiate the vertex-pair similarity in a more detailed

and precise manner. For a pair of nodes i and j with their respective influence vectors

denoted by Vi and Vj, we can measure their similarity Sij with the cosine similarity of

Vi and Vj. It can be done in two steps. First, we normalize Vi and Vj into respective

unit vectors V̂i and V̂j using L2-norm, i.e.,

V̂i(k) =
Vi(k)√∑N
n=1 V

2
i (n)

, and V̂j(k) =
Vj(k)√∑N
n=1 V

2
j (n)

.

Then we calculate Sij using the dot product of V̂i and V̂j, i.e.,

Sij =
N∑
k=1

V̂i(k)× V̂j(k).

This is a loose definition of our shared-influence-neighbor (SIN) similarity. As dis-

cussed in previous subsection, all diagonal elements of the influence matrix have a

value of 1 since no node is supposed to influence itself. We should exclude Vi(i) and

Vj(j) in the computation of SIN similarity. Consequently, we do the normalization

as follows

V̂i(k) =
Vi(k)√∑N

n=1 (n6=i) V
2
i (n)

, k 6= i,

V̂j(k) =
Vj(k)√∑N

n=1 (n6=j) V
2
j (n)

, k 6= j.

45

Then our strict definition of SIN similarity is defined as

Sij = V̂i(j)× V̂j(i) +
N∑

k=1 (k 6=i, k 6=j)

V̂i(k)× V̂j(k).

This definition has a clear interpretation: for a pair of nodes i and j, their SIN

similarity is measured by their mutual influence (first term) and the similarity in

terms of the set of neighbors they both influence, which is computed as the cosine

similarity of their influence vectors (second term). This strict definition is more

accurate than the soft one even though the discrepancy might be negligible in most

cases.

2.4 Community-Detection Algorithms

Now that we have the closeness measure for any pair of nodes in the network,

a variety of well-studied clustering algorithms can be applied to find communities.

To get preliminary insights, we first apply our (loose) SIN similarity to spherical

K-means clustering [31], and develop an influence-guided spherical K-means (IGSK)

algorithm [129]. Then we take full advantage of (strict) SIN similarity in label-

propagation framework and arrive at two novel influence-guided label-propagation

(IGLP) algorithms, IGLP-Weighted-Ensemble (IGLP-WE) and IGLP-Direct-Passing

(IGLP-DP) [128].

2.4.1 Influence-Guided Spherical K-means

K-means clustering is a simple but popular unsupervised learning algorithm in

data mining. Given a set of n points (x1, x2, ..., xn) in a d-dimensional space and

a number K (K ≤ n), it aims to partition the n points into K clusters (C =

{C1, C2, ..., CK}) so as to minimize the sum of distance of all points to the centroids

of their respective clusters. In other words, it is to find C∗ such that

46

C∗ = arg min
C

K∑
i=1

∑
x∈Ci

‖x− µi‖2,

where µi is the centroid of cluster i, and (squared) Euclidean distance is used. It

is noted that the distance can be measured by any distance metrics and/or distance

functions besides the commonly-used Euclidean distance.

As discussed in Section 2.2.3, our influence-diffusion model maps each node in a

network to a point in an influence space, whose position is determined by the node’s

influence vector. The closeness of a pair of nodes can be measured by their SIN

similarity. Thus it is natural to apply our SIN similarity to K-means clustering, which

leads to our influence-guided spherical K-means (IGSK) algorithm. The objective of

IGSK is to find the optimal community partition C∗ that maximizes the sum of SIN

similarity of all nodes to the centroids of their respective communities, i.e.,

C∗ = arg max
C

K∑
i=1

∑
x∈Ci

SIN-Similarity(x, µi).

IGSK algorithm starts with the generation of the influence vector of each node,

do an initial assignment of K community centroids, and proceeds by alternating

between two steps. One is assignment step, in which each node is assigned to its

closest community according to its SIN similarity to each community centroid. The

other is update step, in which the centroid of each community is recalculated with

µi = 1
|Ci|

∑
x∈Ci x. The algorithm stops when the assignments no longer change. Since

the centroid is generally a virtual point in each community, the strict SIN similarity

is not applicable in this case. We thus use the loose SIN similarity in IGSK. It is

known that K-means clustering is sensitive to the initial selection of K centroids.

Poor initialization may lead to slow convergence and/or poor results. In IGSK, we

take advantage of our influence centrality in a heuristic way for better initialization.

Intuitively, the most influential member of a community may have a higher probability

47

to be located in the center area of its community. Consequently, we first choose the

node of the highest influence ranking as the centroid of community 1. Then for the

next (K−1) centroids, we choose the remaining node of the highest influence ranking,

and assign it as a centroid of a community if and only if its SIN similarity with each of

the already-selected centroids is less than a pre-specified closeness threshold φ. This

mechanism significantly improves both the accuracy and efficiency. In addition, as a

spherical K-means algorithm, we normalize the influence vector of each node and the

vector of each community centroid into unit vectors in IGSK.

It is worth pointing out that in our influence-diffusion model we set the depth

limit to 3 (by default) to capture the three-degrees-of-influence phenomenon. For

small networks/communities or when the community structure is fuzzy, a depth limit

of 2 may lead to better performance than a depth limit of 3. In practice, we run IGSK

twice by setting the depth limit to 2 and 3, respectively, and finalize the community

partition with the one that achieves higher modularity [97].

2.4.2 IGLP-Weighted-Ensemble

As discussed above, the traditional LPA has a significant stability issue due to

random tie breaking and random ordering of nodes in the label-updating process.

The key problem exists in its majority voting rule, which simply counts the number

of neighbors of the same labels. It implicitly assumes that all neighbors have the

same weight of 1 applied to their votes, i.e.,

ci = arg max
l

∑
j∈N l

i

1,

where ci is the new label of node i and N l
i is the set of neighbors of node i with label

l. However, the similarity of a node to its different neighbors is not exactly the same.

Our SIN similarity enables us to differentiate the structural proximity of a node to its

neighbors in detailed manner. Therefore, we propose a straightforward extension to

48

the traditional LPA by weighting the vote of each neighbor using its SIN similarity to

the node of interest. This algorithm is termed as influence-guided label-propagation

weighted ensemble (IGLP-WE). With Sij denoting the SIN similarity of nodes i to j,

our weighted majority voting rule can be written as

ci = arg max
l

∑
j∈N l

i

Sij.

This simple weighting scheme not only directly resolves the random tie-breaking

issue but also implicitly addresses the random node-ordering issue. Our experiments

demonstrate that IGLP-WE always produces the same community partition regard-

less of the order of nodes in the label-updating process. Hence, we ignore the step of

randomly choosing a node-updating order. Our IGLP-WE algorithm can be described

in the following steps:

1. Generate the influence vector of each node (call IM-Builder());

2. For each node, calculate its SIN similarity to each of its neighbors;

3. Initialize the label of each node with its node index;

4. For each node, implement the asynchronous label updating using the weighted

majority voting rule;

5. If no node changes its label, group the nodes into respective communities indi-

cated by their labels and stop. Otherwise, go to Step 4.

2.4.3 IGLP-Direct-Passing

Given only the network graph topology, it is sensible to assume that any node

belongs to the same community as its closest (most similar) neighbor. Inspired by

this intuition, we leverage SIN similarity further to arrive at a new label-propagation

framework, in which the community label is directly passed from a node to its most

49

similar neighbor iteratively. We refer to this algorithm as influence-guided label-

propagation direct passing (IGLP-DP). At the end of this process, we are left with a

set of most compact sub-communities. Each sub-community is composed of a group

of most similar neighbors chained up from one to another.

The pseudocode of IGLP-DP is shown in Algorithm 2. Each node contains three

integer variables: 1) msn denotes the node index of its most similar neighbor; 2)

label denotes its community index; 3) parent denotes the node index of the node that

passes the community label to the node of interest. The algorithm starts with the

generation of the influence vector for each node based on the influence diffusion model

(Line 2). Then it finds the most similar neighbor of each node using SIN similarity,

and sets the community label of all nodes to 0 to indicate they are all unlabeled

(Lines 3-6). In the following For loop, we perform label propagation (direct passing)

for each node individually. For any node i (root node), we first check if it is unlabeled

(Line 8). If yes, we assign its node index as its community label, and set its parent

to be 0 to indicate its parent node is null (Line 9-10). We then assign its node index

to pIndex and the node index of its most similar neighbor to cIndex (Lines 11-12).

In the following while loop (Lines 13-18), we propagate forward the community label

from Node(pIndex) to its most similar node Node(cIndex), and denote pIndex as the

node index of Node(cIndex)’s parent node. This forward propagation iterates until

reaching a node that already has a community label, which is denoted as newLabel

(Line 19). If newLabel is the same as the root node’s label i (i.e., the label we are

propagating forward), the label propagation of node i stops, and then we move on

to the next node in the For loop. Otherwise, we propagate backward newLabel to

Node(pIndex) and its parent node iteratively in a while loop until reaching the root

node (Lines 20-25). After sweeping over all the nodes, IGLP-DP generates a set of

sub-communities, in which each node acquires the same community label as its most

similar neighbor.

50

Algorithm 2 IGLP-Direct-Passing

1: procedure IGLP-DP(G(V,E), n = |V |, depthLimit)
2: Generate the influence vector for each node (call IM-Builder(G,n, depthLimit))
3: for node i← 1, n do
4: Find Node(i).msn using the SIN similarity
5: Node(i).label← 0
6: end for
7: for node i← 1, n do
8: if Node(i).label = 0 then
9: Node(i).label← i

10: Node(i).parent← 0
11: pIndex← i
12: cIndex← Node(i).msn
13: while Node(cIndex).label = 0 do
14: Node(cIndex).label← i
15: Node(cIndex).parent← pIndex
16: pIndex← cIndex
17: cIndex← Node(pIndex).msn
18: end while
19: newLabel← Node(cIndex).label
20: if newLabel 6= i then
21: while pIndex > 0 do
22: Node(pIndex).label← newLabel
23: pIndex← Node(pIndex).parent
24: end while
25: end if
26: end if
27: end for
28: end procedure

51

The backward propagation is essential to maintain the crucial property in which

IGLP-DP is rooted, that is, each node should be in the same community as its most

similar neighbor; meanwhile, it addresses the stability issue caused by node ordering

in the label-updating process. IGLP-DP is easy to implement and highly efficient.

It resolves the stability issue and always produces a deterministic partition. Another

distinguishing feature is that it requires no convergent iteration.

2.4.4 Hierarchical Clustering

The resultant community partitioning from IGLP-WE and IGLP-DP provides an

initial configuration of the community structure. Especially for IGLP-DP, the initial

configuration contains many small, tight sub-communities. We use those communities

in the initial configuration as building blocks for agglomerative hierarchical clustering

to explore the community hierarchy at different scales.

The key issue here is how to define a cluster-proximity measure that is quan-

titatively accurate and computationally cheap. Since neighboring communities are

connected by boundary nodes, it makes sense to measure cluster proximity using SIN

similarity of the boundary nodes. More precisely, we focus on the out-link-based

boundary nodes of each community. We refer to a node as an out-link-based boundary

node if it has at least one out-link neighbor that resides in a different community.

We measure the cluster proximity between a pair of neighboring communities using

their repective out-link-based boundary nodes’ SIN similarity. Considering that large

communities tend to have more boundary nodes and more neighboring communities,

we penalize the similarity by the number of community members and the number of

neighboring communities to eliminate the bias on community size.

Let Pij denote the cluster proximity between community i and community j,

Bij denote the set of boundary nodes in community i with out-link neighbors in

community j, Dkj denote the set of node k ’s out-link neighbors in community j,

Skl denote the SIN similarity of nodes k to l, Ni denote the number of nodes in

52

community i, and Ci denote the number of neighboring communities that community

i has. Similarly, let Fji denote the set of boundary nodes in community j with out-

link neighbors in community i, Hmi denote the set of node m’s out-link neighbors in

community i, Smn denote the SIN similarity of nodes m to n, Nj denote the number

of nodes in community j, and Cj denote the number of neighboring communities that

community j has. We compute the cluster proximity Pij as

Pij =
1

Ni × Ci

∑
k∈Bij

∑
l∈Dkj

Skl +
1

Nj × Cj

∑
m∈Fji

∑
n∈Hmi

Smn.

A major weakness of traditional hierarchical clustering is its high computational

cost. A straightforward implementation has time complexity O(n3), which makes it

too slow to be scalable for large-scale datasets. We take advantage of our boundary-

node-based cluster-proximity measure, and arrive at a novel and highly efficient

hierarchical-clustering algorithm. A high-level description of this algorithm reads

as follows:

1. For each cluster, sweep over each cluster member’s out-link neighbors to find

the boundary nodes and construct a neighboring-cluster list associated with the

corresponding cluster proximity;

2. Sweep over each cluster’s neighboring-cluster list to find the closest pair of

clusters;

3. Merge the two closest clusters and relabel them;

4. For each cluster, sweep over each boundary node’s out-link neighbors to recon-

struct its neighboring-cluster list associated with the updated cluster proximity;

5. Repeat Steps 2 to 4 until only one cluster remains.

Our hierarchical clustering takes the initial community partition produced by the

label propagation as input. This is a significant improvement in efficiency compared

53

to conventional agglomerative clustering that starts by assigning each node to a sep-

arate cluster, since the number of clusters in our initial community partition is much

smaller than the number of nodes in the network. The efficiency is further improved

by constructing a neighboring-cluster list for each cluster which greatly reduces the

time complexity when searching for the closest pair of cluster in Step 2. Moreover,

each node contains a Boolean variable that indicates whether it is a boundary node,

which helps efficiently reconstruct the neighboring-cluster list and update the cluster

proximity in Step 4. This is another considerable improvement in time complexity. It

is noted that we incorporate our hierarchical-clustering algorithm as an integral part

of the IGLP-WE and IGLP-DP algorithms. Hereafter whenever we refer to IGLP-

WE or IGLP-DP, it means we perform the respective label propagation followed by

the hierarchical clustering, and deliver a hierarchy of communities.

2.4.5 Overlapping Communities and Role Detection

Most complex networks exhibit overlapping community structures in which some

nodes are characterized with multiple community memberships. In fact, the over-

lap is a significant feature of various social networks. However, finding overlapping

communities or identifying overlapping nodes is another prominent challenge in com-

munity detection. Interestingly, our approach can be easily adapted to detection of

overlapping communities/nodes. Using the influence vectors, we can naturally con-

vert the non-overlapping community assignment produced by our IGSK, IGLP-WE

or IGLP-DP, into a fuzzy overlapping assignment, in which each node is assigned to

each community associated with a belonging factor that indicates the strength of the

association of a node to a community.

Let N denote the total number of nodes in the network, K denote the total number

of communities, Vi denote the influence vector of node i (without normalization), and

Cj denote the set of nodes in community j (based on the non-overlapping assignment).

The belonging factor of node i associated to community j is defined as

54

aij =

∑
n∈Cj Vi(n)∑N

m=1 (m 6=i) Vi(m)
, ∀i ∈ N, ∀j ∈ K.

This definition has a clear and natural interpretation: the belonging factor aij rep-

resents the ratio of the total influence node i spreads to community j to the total

influence it spreads out in the network. Further, using a tunable belonging threshold,

we can turn the fuzzy assignment into a crisp overlapping assignment (in which each

node is associated to each community with a binary belonging factor) to identify

overlapping nodes at different scales.

In addition, for each community (in the non-overlapping assignment), we can

rank all of its community members by their internal influence, external influence,

and comprehensive influence. For any node i ∈ Cj, the internal influence of node i is

the total influence it spreads within its own community, i.e.,
∑

n∈Cj Vi(n). In contrast,

the external influence of node i is the total influence it spreads to other communities,

i.e.,
∑

n/∈Cj Vi(n). The comprehensive influence of node i is the sum of the internal

and external influence. These three influence rankings enable us to identify the roles

of individual members in each community.

2.5 Experiments

To get preliminary insights and verify the validity of our approach, we perform cen-

trality analysis using two small real-life social networks and a large citation network,

and then evaluate the performance of IGSK, IGLP-WE and IGLP-DP on community

detection. We extensively test them on a large set of networks, which include six

widely-used real-life networks and more than 500 LFR benchmarks [78]. For net-

works without ground truth, we adopt modularity [97] to evaluate the quality of a

community partition. For networks with ground truth, we use normalized mutual

information (NMI) [30] to evaluate the accuracy of a community partition. The def-

inition of NMI is based on a confusion matrix N, in which the rows correspond to

55

one partition A, the columns correspond to another partition B, and the (i, j)-entry

Ni,j is the number of nodes that appear in both community i of partition A and

community j of partition B. NMI measures the similarity between the two partitions

as follows

NMI(A,B) =
−2

∑CA
i=1

∑CB
j=1Nij log(

NijN

Ni.N.j
)∑CA

i=1Ni. log(Ni.
N

) +
∑CB

j=1N.j log(
N.j
N

)
,

where CA and CB denote the number of communities in partitions A and B respec-

tively, Ni. denotes the sum over row i of matrix N (i.e., the number of nodes in

community i of partition A), N.j denotes the sum over column j of matrix N (i.e.,

the number of nodes in community j of partition B), and N is the total number of

nodes in the network. NMI is a well-defined and widely-used evaluation criterion for

community detection. NMI gets its maximum value of 1 if two partitions are iden-

tical, whereas it equals 0 if the partitions are independent. For example, when one

partition fails to find any communities but simply clusters the entire network into

one community, we get an NMI score of 0.

2.5.1 Network Description

The three real-life networks used for centrality analysis are Zachary’s Karate Club

[141], Sawmill communication [92], and an arXiv HEP-TH citation network [45].

The six real-life networks used for community detection are Zachary’s Karate Club,

Dolphin Social Network [89], Political Books [101], American College Football [47],

Email [53], and PGP Network [10]. All of them are widely-used benchmark networks.

We list in Table 2.2 their basic information, including the number of ground-truth

communities for networks with ground truth.

Since large real-life networks with reliable ground truth are rarely available (espe-

cially for directed and/or weighted networks), we further test our algorithms on LFR

benchmarks. To compare with the algorithms examined in [78], we generate a set of

56

Table 2.2: Real-life networks

Networks Nodes Edges Communities

Karate 34 78 2

Sawmill 36 62 3

Dolphins 62 159 2

PolBooks 105 441 3

Football 115 613 12

Email 1133 5451 —

PGP 10,680 24,316 —

HEP-TH 27,771 352,807 —

LFR benchmark graphs using the same parameter settings: average degree = 20, max-

imum degree = 50, degree-distribution exponent = −2, community-size-distribution

exponent = −1. There are two different network sizes (1000 and 5000 nodes), and two

different ranges for community size (S and B). “S” stands for “small”, which means

min/max community size = 10/50. In contrast, “B” stands for “big”, which means

min/max community size = 20/100. Another important parameter is the topological

mixing parameter µt (0 < µt < 1) [80]. Let ki denote the degree of node i. Then

node i’s expected internal degree and external degree are k
(int)
i = (1 − µt)ki and

k
(ext)
i = µtki, respectively. The smaller µt, the clearer community structure. Specifi-

cally, when µt is less than 0.5, each node has more internal connections than external

connection, which implies all communities are strong communities. We generate eight

sets of unweighted benchmark networks (four undirected and four directed), in which

we vary µt from 0.1 to 0.8 at an increase of 0.1.

For weighted networks, there are two other parameters, weight-strength-distribution

exponent β, and weight mixing parameter µw. The parameter β specifies the weight

strength si with si = kβi , which is the sum of weights of all links of node i. The pa-

rameter µw is used to specify the expected internal weight strength s
(int)
i and external

weight strength s
(ext)
i , with s

(int)
i = (1− µw)si and s

(ext)
i = µwsi. Generally speaking,

57

Figure 2.5: Zachary’s karate club

the smaller µw, the more reinforcement of the weight distribution on the community

structure. We generate four sets of LFR weighted networks with β = 1.5. As done

in [78], we fix µt to 0.5 and 0.8 respectively, and vary µw from 0.1 to 0.8 at an increase

of 0.1. We generate five realizations for each value of the topological/weight mixing

parameters and average the results in each experiment.

2.5.2 Centrality Analysis

Figure 2.5 is a graphical illustration of the well-known Zachary’s karate club net-

work. The 34 club members split into two groups due to the disagreement between

the club instructor (node 1) and the club president (node 34). The orange squares

represent members associated with the instructor, and the white circles represent

members in the president’s group.

We show in Figure 2.6 its global influence ranking in terms of our influence cen-

trality scores (depthLimit = 2). We use a rating scale of 0 to 10, with 10 meaning

“most influential”. As we can see, our influence centrality gives the two leaders (nodes

1 and 34) the highest scores, and finds a set of core members of the club (nodes 2, 3,

4, 9, 14, 32 and 33). One may argue it is expected that they get higher scores simply

because of their higher degrees. In fact, it is not that straightforward. For example,

although node 4 has a higher degree than node 14, its score is actually lower than

58

that of node 14. One may also notice that nodes 10 and 17 both have a degree of

2, but node 10 has a much higher score than node 17. It makes sense since node 10

connects to nodes 3 and 34, which are much more influential than nodes 6 and 7 to

which node 17 connects. Moreover, even though node 12 only has a degree of 1, it

also gets a score greater than node 17 because node 12 has a direct connection to

the group leader (node 1). It follows our intuition that connecting to a more influen-

tial person contributes more influence to the person of interest than connecting to a

less influential one. Our influence centrality unveils the connectivity-based influence

significance in a more detailed manner.

We also perform centrality analysis on the sawmill communication network. Fig-

ure 2.7 illustrates its network graph and ground-truth communities indicated with dif-

ferent node colors/shapes. We list in Table 2.3 our influence centrality (depthLimit =

3; referred to as “Influence” in the table) and compare it against a set of conventional

centralities, where “CFC” and “CFB” stand for current-flow-closeness and current-

flow-betweenness centralities [14], respectively.

As we can see, PageRank simply degenerates into degree centrality as expected

since this network is undirected. Closeness and betweenness centralities are not quan-

titatively fine or comprehensive enough to differentiate the overall influence ranking.

The closeness centrality scores of 10 versus 4.12 do not show the expected large dif-

ference in influence significance of HM-1 versus HP-1 as compared to our influence

centrality scores of 10 versus 0.62. Betweenness centrality fails to measure the in-

fluence significance of nine employees by giving them a score of zero. These include

nodes 15 and 22, who are actually the immediate neighbors of the most influential

employee, node 12. The drawbacks of closeness/betweenness centralities are inherent

in their definitions since they only focus on the shortest paths and fail to incorporate

the neighboring nodes’ influence significance or the attenuation of influence along

diffusion paths. Current-flow closeness/betweenness centralities do not show much

59

Figure 2.6: Influence ranking of Zachary’s karate club

60

Figure 2.7: Sawmill communication network

improvement from the conventional ones. Only eigenvector centrality exhibits a simi-

lar ranking pattern to our influence centrality. We remark that this comparison is not

to prove the failure of other centralities. As discussed in Section 2.2.1, each centrality

provides a different perspective on some specific strength of a node’s structural role

in the network. What we want to show is that our influence centrality gives rise to a

novel centrality measure that differentiates more precisely the nodes’ comprehensive

significance on reachability-based influence diffusion.

We examine the validity of our influence centrality in directed networks using

the arXiv HEP-TH citation network, which consists of 27,771 papers and 352,807

citations among them. Those papers are in the field of high energy physics, and were

added to the e-print arXiv between 1992-2003. The first four digits of each paper ID

represent the year and the month when the paper was published online. For instance,

paper 9510017 indicates it was published in October of 1995. Table 2.4 lists the top

10 papers identified by our influence centrality (depthLimit = 3), in-degree centrality,

and PageRank, respectively. For each paper, we indicate in parenthesis the number of

citations it receives, i.e., its in-degree. As discussed in Section 2.3, when computing

61

Table 2.3: Comparison of different centralities on sawmill communication network.
CFC stands for current-flow-closeness, and CFB for current-flow-betweenness

Employee Node Influence Eigenvector Degree PageRank Closeness CFC Betweenness CFB

HP-1 1 0.62 0.09 0.77 0.79 4.12 3.25 0.00 0.00

HP-2 2 1.69 0.47 2.31 2.37 5.19 5.27 1.05 1.80

HP-3 3 0.87 0.34 0.77 0.79 4.93 3.74 0.00 0.00

HP-4 4 3.35 1.68 3.08 3.13 6.54 6.70 2.47 2.72

HP-5 5 5.36 3.63 3.85 3.90 8.19 8.01 3.37 3.73

HP-6 6 4.95 3.52 2.31 2.33 7.56 7.32 0.01 1.65

HP-7 7 5.76 3.90 3.85 3.89 8.29 8.28 2.77 3.57

HP-8 8 3.92 2.05 3.08 3.13 6.67 7.47 1.22 2.71

HP-9 9 1.90 0.56 2.31 2.36 5.35 5.83 0.45 2.07

HP-10 10 1.14 0.27 1.54 1.58 5.00 4.74 0.06 0.89

HP-11 11 1.73 0.78 1.54 1.57 5.96 5.12 0.68 1.01

HM-1 12 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0

HM-2 13 5.41 4.32 3.08 3.06 7.31 7.53 0.37 1.48

HM-3 14 3.73 2.45 3.08 3.06 6.13 7.33 0.53 2.54

HM-4 15 3.38 2.60 1.54 1.53 6.80 5.93 0.00 0.49

HM-5 16 5.29 4.14 3.08 3.06 7.23 7.47 0.34 1.41

HM-6 17 4.78 3.82 2.31 2.30 7.01 7.00 0.02 0.96

HM-7 18 3.93 2.95 2.31 2.30 6.94 6.69 0.34 1.18

HM-8 19 3.01 2.07 2.31 2.29 5.91 6.71 0.18 1.45

HM-9 20 5.99 4.86 4.62 4.60 7.23 7.90 1.38 2.73

HM-10 21 1.36 0.98 0.77 0.76 5.31 4.09 0.00 0.00

HM-11 22 3.78 2.99 1.54 1.53 6.87 6.16 0.00 0.59

EM-1 23 5.77 4.02 3.85 3.84 8.10 7.96 3.59 4.11

EM-2 24 2.63 1.27 2.31 2.30 6.13 5.88 0.74 1.44

EM-3 25 1.76 0.62 2.31 2.30 4.93 4.99 0.96 1.30

EM-4 26 0.62 0.12 0.77 0.77 3.95 3.14 0.00 0.00

EM-5 27 3.19 1.68 3.08 3.07 6.36 6.68 1.29 2.71

Y-1 28 3.18 1.91 2.31 2.30 6.24 6.13 0.96 1.80

Y-2 29 0.79 0.39 0.77 0.77 4.76 3.56 0.00 0.00

Forester 30 2.74 1.80 1.54 1.54 5.86 5.80 0.00 0.38

Manager 31 6.68 5.11 5.38 5.39 8.19 8.60 2.84 4.79

Owner 32 5.16 3.85 3.08 3.08 7.39 7.47 0.51 1.81

Operator 33 3.61 2.23 2.31 2.32 6.60 6.94 0.22 1.62

EP-1 34 1.70 0.75 1.54 1.55 5.48 5.37 0.00 0.57

EP-2 35 2.95 1.61 2.31 2.32 6.60 6.47 0.57 1.64

EP-3 36 3.91 2.12 3.85 3.88 6.80 7.68 1.15 3.51

our influence centrality, we reverse the link direction of the citation network to reflect

the real influence diffusion from cited papers to citing papers. It is noted that the

in-degree mentioned above refers to the original citation network.

Like most centrality measures, our influence centrality is correlated with degree

centrality. All the top-10 influence-centrality papers have high in-degrees. It includes

7 of the top-10 in-degree centrality papers but ranks them in different order. It is

hard to rigorously prove our influence centrality gives the exact significance ranking

62

Table 2.4: Centralities of the HEP-TH network

Rank Influence In-degree PageRank

1 9510017 (1155) 9711200 (2414) 9402044 (257)

2 9503124 (1144) 9802150 (1775) 9205068 (167)

3 9711200 (2414) 9802109 (1641) 9205027 (191)

4 9410167 (748) 9407087 (1299) 9207053 (102)

5 9510135 (775) 9610043 (1199) 208020 (205)

6 9802150 (1775) 9510017 (1155) 9204102 (71)

7 9802109 (1641) 9908142 (1144) 9301042 (344)

8 9610043 (1199) 9503124 (1114) 9201019 (16)

9 9407087 (1299) 9906064 (1032) 9205081 (77)

10 9601029 (651) 9408099 (1006) 9209016 (76)

of those papers. We believe it differentiates the influence ranking more precisely

than in-degree centrality. Degree centrality is actually a special case of our influence

centrality, i.e., setting depthLimit to 1. Specifically, for this citation network, it simply

counts the number of in-link neighbors of each node. When we set depthLimit to 3

as we do by default, we explore the whole 3-step neighborhood of each node, and

incorporate the influence significance of its neighbors and its neighbors’ neighbors. It

is observed that PageRank fails to rank the influence significance in this case. All the

top-10 PageRank papers have very low in-degrees (citations) compared to the top-10

influence centrality and in-degree centrality papers. They receive such high rankings

simply because they are old papers that do not have any out-links (the papers they

cited are too old to be included in the dataset).

2.5.3 Community-Detection Performance

We evaluate the performance of our IGSK, IGLP-WE and IGLP-DP algorithms on

both real-life networks and synthetic benchmarks using modularity and NMI scores.

In particular, for IGLP-WE and IGLP-DP, the modularity score we present is the

maximum modularity we find in the resultant community hierarchy; for networks with

63

Figure 2.8: Dendrograms generated by: (a) IGLP-WE; (b) IGLP-DP

ground truth, we split the hierarchy dendrogram at the level at which the number of

separated communities is the same number of communities in the ground truth, and

then compute the NMI score.

Real-life networks. For the most commonly-used Zachary’s karate club network

as shown in Figure 2.5, our IGSK, IGLP-WE and IGLP-DP all exactly find the two

ground-truth communities. We illustrate in Figure 2.8 its community dendrograms

IGLP-WE and IGLP-DP generate. As we can see, IGLP-WE produces an initial

configuration of six sub-communities of different sizes, and IGLP-DP delivers eight

sub-communities by splitting two sub-communities detected by IGLP-WE into four

smaller ones. IGLP-DP always produces more smaller and tighter sub-communities in

the initial community-structure configuration than IGLP-WE. Both IGLP-WE and

IGLP-DP find communities that match the ground truth perfectly when we split their

respective hierarchy dendrogram at the level of two separate communities.

We compare the performance of IGSK, IGLP-WE and IGLP-DP against eight

representative algorithms examined in the literature [79, 88, 137]. Their NMI and

modularity scores are listed in Table 2.5. As we can see, IGSK, IGLP-WE and IGLP-

64

DP all demonstrate excellent performance. They clearly outperform Fitness, CPM,

Fastgreedy, and LPA in terms of higher NMI scores on all networks with ground

truth. All of them achieve perfect NMI score on KarateClub and top NMI scores

on Dolphins. Moreover, when using modularity as the metric, IGLP-WE and IGLP-

DP achieve superior performance. The only exception is the score of IGLP-WE

on Email. It groups all the nodes in one community in its initial configuration.

This is a common issue of most LPAs. As discussed before, what the traditional

LPA finds is strong communities, in which each node has higher internal connections

than external connections. When the community structure is weak, LPA arrives

at one or several monster communities. IGLP-WE can find both strong and weak

communities since it weights the votes with SIN similarity instead of simply counting

them. But when the community structure is sufficiently fuzzy, IGLP-WE encounters

the same problem. IGLP-DP exhibits great advantages in this regard. It enables us

to zoom into smaller, tighter sub-communities and build a community hierarchy with

finer granularity. IGLP-DP achieves higher modularity scores on both Email and

PGP networks than Fastgreedy, which is a representative algorithm that aggressively

maximizes modularity. IGLP-DP shows the best performance overall.

Table 2.5: Performance comparison on real-life networks

NMI Modularity

Algorithm Karate Dolphins PolBooks Football Karate Dolphins PolBooks Football Email PGP

Fitness [79] 0.690 0.781 — 0.754 — — — — — —

CPM [104] 0.170 0.254 — 0.697 — — — — — —

DCBNT [88] 1.000 0.762 0.578 0.949 — — — — 0.537 0.819

Infomap [113] 0.700 0.537 0.494 0.972 — — — — 0.526 0.801

Fastgreedy [27] 0.693 0.557 0.531 0.753 — — — — 0.507 0.853

Walktrap [106] 0.504 0.582 0.543 0.937 — — — — 0.531 0.789

LPA [108] 0.583 0.516 0.572 0.863 0.296 0.465 0.489 0.582 0.38 0.806

NIBLPA [137] 1.000 0.622 0.656 0.872 0.423 0.521 0.497 0.582 0.427 0.783

IGSK 1.000 0.814 0.541 0.924 0.421 0.406 0.513 0.609 — —

IGLP-WE 1.000 0.889 0.482 0.927 0.450 0.546 0.463 0.613 0.002 0.868

IGLP-DP 1.000 0.889 0.576 0.918 0.450 0.528 0.521 0.612 0.547 0.863

65

It is worth pointing out that: for some algorithms (like Fitness and NIBLPA),

one has to tune a user-specified parameter to find the best result for each network

individually. The depth limit is the only tunable parameter in our algorithms. For

IGSK, we run it twice by setting the depth limit to 2 and 3, respectively. For IGLP-

WE and IGLP-DP, the depth limit is set to 3 for all networks. In fact, it can be

regarded as a fixed, built-in parameter in IGLP-WE and IGLP-DP, which matches

the well-known three-degrees-of-influence phenomenon [24].

Undirected unweighted LFR benchmarks. We compare the performance of

our algorithms against eight state-of-the-art algorithms examined in [78]. They are

referred to as: Blondel et al. [9], MCL [124], Infomod [112], Infomap [113], Cfinder

[104], Clauset et al. [27], Radicchi et al. [107], and Sim. ann. [52]. Note that Blondel

et al. is exactly the Louvain method discussed in Section 2.2.5.

We illustrate in Figure 2.9 the results on the four sets of undirected unweighted

LFR benchmarks, in which each curve shows the variation of the averaged NMI score

with respect to the topological mixing parameter µt. It is shown that IGSK, IGLP-

WE and IGLP-DP consistently exhibit excellent performance. Even when µt is set to

0.5 (the threshold of defining strong communities), IGSK gets NMI scores of 0.999,

0.992, 0.968 and 0.99 for 1000-S, 1000-B, 5000-S and 5000-B datasets, respectively.

IGLP-WE and IGLP-DP achieve almost perfect NMI scores on all datasets when µt

is less than or equal to 0.5. IGLP-WE maintains its superior performance on 5000-S

datasets with µt up to 0.7. IGLP-DP shows even better performance than IGLP-WE

overall. It is observed that they all perform better on larger networks and smaller

communities. Compared against the eight algorithms, IGSK, IGLP-WE and IGLP-

DP clearly outperform seven of them except Infomap, which achieves higher NMI

scores when µt equals 0.6 or 0.7. In fact, Infomap is one of the best algorithms in the

literature. As shown in Table 2.5, our algorithms demonstrate better performance

than Infomap on real-life networks overall.

66

Figure 2.9: Performance comparison on undirected unweighted LFR benchmarks.
Plots (b) and (c) are from [78], Copyright by The American Physics Society

Directed unweighted LFR benchmarks. Community detection in directed net-

works is more challenging. Most existing algorithms are not able to find communities

in directed networks, and extension of an algorithm to directed networks is usually

nontrivial. For performance evaluation, we generate four sets of directed unweighted

LFR benchmark graphs using the parameters we discussed in Section 2.5.1. It is noted

that both the degree-distribution exponent and the topological mixing parameter µt

refer to the in-degree while the out-degree is kept constant for all nodes. This setting

makes the resultant networks similar to citation networks in terms of their in-degree

and out-degree distributions. Therefore, as we did with the arXiv HEP-TH citation

network, we reverse the link direction of these directed LFR benchmark graphs to

reflect the influence flow that fits in our influence-diffusion model.

We illustrate the results of IGSK, IGLP-WE and IGLP-DP in Figure 2.10 and

67

Figure 2.10: Performance comparison on directed unweighted LFR benchmarks. Plot
(b) is from [78], Copyright by The American Physics Society

compare them against Infomap and Sim. ann. Once again, IGSK, IGLP-WE and

IGLP-DP demonstrate outstanding performance in directed networks, which is even

better than their performance in undirected networks. IGSK achieves very high NMI

scores with µt up to 0.6, which are 0.978, 0.941, 0.954 and 0.958 for 1000-S, 1000-B,

5000-S and 5000-B datasets, respectively. IGLP-WE and IGLP-DP exhibit superior

performance. IGLP-WE gets perfect NMI scores on 1000-S and 5000-S/B datasets

with µt up to 0.7. Both IGLP-WE and IGLP-DP outperform Infomap on 1000-S/B

datasets, and clearly beat Sim. ann. on 1000-S and 5000-S/B datasets. It is noted

that IGLP-WE and IGLP-DP exhibit better performance on larger networks and

smaller communities in directed networks as they do in undirected networks.

Undirected weighted LFR benchmarks. We fix the network size to 5000 nodes

and set the topological mixing parameter µt to 0.5 and 0.8, respectively. Combining

68

with the two different ranges for community size (S and B), we generate four sets

of undirected weighted LFR benchmark graphs, denoted as 5000-S-0.5, 5000-S-0.8,

5000-B-0.5 and 5000-B-0.8, respectively. For each dataset, we vary the weight mixing

parameter µw from 0.1 to 0.8 at an increase of 0.1. Let us first take a look at the

distribution of the weights as described in [77]. For a node of degree ki, its expected

internal weight and external weight can be expressed as

w
(int)
i =

1− µw
1− µt

kβ−1
i , and w

(ext)
i =

µw
µt
kβ−1
i .

Then the ratio of internal weight to external weight (referred to as int/ext ratio) is

related to the two mixing parameters µt and µw in a simple way:

int/ext ratio =
w

(int)
i

w
(ext)
i

=
µt(1− µw)

µw(1− µt)
.

To verify our weight normalization scheme and better understand how the weight

plays its role in shaping the community structure with respect to the network topol-

ogy, we run IGSK on each weighted network twice. One ignores the weights, denoted

as IGSK-ignore; the other considers the weights, denotes as IGSK-consider. The re-

sults are illustrated in the first two plots in Figure 2.11. As we can see, for 5000-S-0.8

and 5000-B-0.8 datasets, µt is set to 0.8, which indicates their community structure is

fuzzy. While µw varies from 0.1 to 0.7, the int/ext ratio decreases from 36 to 1.7 but

is always greater than 1. It implies that the weight distribution always reinforces the

community structure in these cases, even though the reinforcement decays while µt

increases. IGSK-ignore gives low NMI scores as expected since it completely ignores

the useful weight information. In contrast, IGSK-consider takes advantage of the

weight information and greatly improve the performance. Further, it reflects a sensi-

ble pattern: the higher int/ext ratio of the weight, the stronger reinforcement of the

community structure, the greater performance improvement IGSK-consider achieves.

69

Figure 2.11: Performance comparison on undirected weighted LFR benchmarks. Plot
(b) is from [78], Copyright by The American Physics Society

For 5000-S-0.5 and 5000-B-0.5 datasets, µt is 0.5, which indicates the community

structure is relatively clear topologically. In this case, when µw falls in the range

from 0.1 to 0.4, the weight distribution confirms the community structure since the

corresponding int/ext ratio is greater than 1. However, when µw is greater than 0.5,

the int/ext ratio becomes smaller than 1, which implies the weight distribution under-

mines the community structure. Our experimental results provide strong evidence of

the above argument. On one hand, IGSK-ignore shows excellent performance consis-

tently from µw = 0.1 to 0.8, which is expected as IGSK does on unweighted networks

when µt = 0.5. On the other hand, IGSK-consider gives perfect NMI scores when

µw < 0.5, which outperforms IGSK-ignore by taking into account the weight infor-

mation that reinforces the community structure. However, its performance worsens

dramatically due to the misleading weight information when µw > 0.5.

The tests on the four sets of weighted networks demonstrates that our IGSK

algorithm effectively captures both network connectivity and weight information.

However, for networks without ground truth, it is hard to tell whether the weight

70

information strengthens or undermines the community structure. In practice, we can

run both IGSK-consider and IGSK-ignore and take the one with higher modularity.

In addition, our experiment brings forth an important point that: community struc-

ture is primarily determined by the network topology, and the weight information is

a secondary factor that may reinforce or undermine the community structure.

For IGLP-WE and IGLP-DP, the weights on edges are always considered. We

illustrate their results in Figure 2.11 and perform comparison against IGSK and

the three algorithms examined in [78]. Interestingly, while IGLP-WE and IGLP-

DP consistently show excellent performance and maintain their preference on smaller

community size, they show different performance on the topological mixing parameter.

While IGLP-WE works better on 5000-S/B-0.5 datasets, IGLP-DP performs better

on 5000-S/B-0.8 datasets. As discussed above, when µt is 0.8 (weak community),

the weight distribution reinforces the community structure while µw is less than 0.8.

However, if µt is set to 0.5 (threshold of strong community), the weight distribution

undermines the community structure when µw > 0.5. Therefore, we can infer that

IGLP-DP is able to exploit more weight information than IGLP-WE, and so is more

sensitive to the weight distribution. Except for IGLP-WE on 5000-B-0.8 dataset,

IGLP-DP and IGLP-WE clearly outperform all other algorithms in the comparison,

including IGSK and infomap.

Our extensive tests on both real-life networks and LFR benchmarks verify the

validity of our approach. IGSK, IGLP-WE and IGLP-DP show superior performance

consistently on undirected/directed and unweighted/weighted networks. They out-

perform a large set of state-of-the-art algorithms in the comparison, and IGLP-DP

is the best performing algorithms overall. Moreover, unlike most existing algorithms

in the literature that deliver a single community partition, IGLP-WE and IGLP-DP

reveal a complete community hierarchy, which enables us to examine the communities

at different levels of granularity.

71

Space complexity. As indicated in Section 2.3.1, each influence vector is stored in

a compact dynamic array. The space complexity is O(Ln) for IGSK, IGLP-WE and

IGLP-DP, where n is the number of nodes in the network, and L is the average length

of influence vectors. L is determined by the average node out-degree b, depth limit

dmax and and the community structure. Generally, the more cohesive community

structure, the shorter influence vectors. IGSK needs to keep all influence vectors

until the end of the algorithm, and thus it is hard to improve its space complexity.

For IGLP-WE and IGLP-DP, however, the space complexity can be greatly improved.

Instead of simply following the node-index order to generate the influence vector for

each node, we can implement a breath-first search algorithm, in which we generate the

influence vector of a node followed by generating the influence vectors of its neighbors.

Then we can calculate its SIN similarity to each of its neighbors. Once this is done,

it is no need to keep the influence vector of that node. We can delete it and reclaim

the space immediately.

Time complexity. It is hard to rigorously estimate the time complexity since it is

closely related to the community structure and the average length of influence vectors.

For IGLP-WE and IGLP-DP, it is also related to the number of sub-communities in

the initial community configuration delivered by the label-propagation process.

Let n denote the total number of nodes in the network, K denote the number of

communities to be found, L denote the average length of influence vectors, and I de-

note the number of iterations to converge. IGSK has a time complexity of O(KILn).

IGSK converges fast when the community structure is clear. For example, for al-

most all LFR benchmarks in our experiments, IGSK converges after two iterations

when µt is 0.3 or less. When the community structure is fuzzy, however, it may take

10 iterations or more. We force it to stop if it does not converge after eight itera-

tions. Although IGSK is fairly efficient, it does not scale well on large-scale networks,

especially when the community structure is not clear.

72

IGLP-WE and IGLP-DP are much faster than IGSK. To examine their time

complexity, we experiment on a set of undirected and unweighted LFR benchmarks

with µt = 0.5 and min/max community size = 20/100 (all other parameters are the

same as described before). We vary the number of nodes n from 2,500 to 25,000

in an increment of 2,500, and generate five realizations for each value of n. All the

experiments are carried out on a regular desktop PC with Intel(R) Core(TM) i5-

4670 CPU @ 3.40 GHz and 8.0 GB memory under Windows 7 64-bit OS. Let m

denote the number of edges in the network, Kgt denote the number of communities of

ground truth, and Kwe and Kdp denote the number of sub-communities in the initial

community configuration given by IGLP-WE and IGLP-DP, respectively. We also

include their respective NMI scores denoted by NMIwe and NMIdp. The experimental

results are shown in Table 2.6 and Figure 2.12, in which we present not only the total

time but also the time spent on generating the influence vectors, label propagation

and hierarchical clustering, respectively.

Table 2.6: A set of LFR benchmarks

n m Kgt Kwe Kdp NMIwe NMIdp

2,500 24,630 50 50 161 1 1

5,000 48,959 100 101 267 1 1

7,500 73,535 150 151 372 1 1

10,000 97,985 201 203 494 1 1

12,500 121,891 249 252 565 1 1

15,000 146,859 303 305 665 1 1

17,500 171,520 355 357 761 1 1

20,000 195,839 401 407 842 1 1

22,500 219,820 455 461 931 1 1

25,000 244,688 502 510 1,031 1 1

As we can see, both IGLP-WE and IGLP-DP not only consistently achieve per-

fect NMI scores for all datasets, but also run fast. For the 25,000-node (∼245,000

73

Figure 2.12: Time complexity: (a) IGLP-WE; (b) IGLP-DP

edges) dataset, IGLP-WE produces a community hierarchy of 510 levels in less than

250 seconds, and IGLP-DP delivers a more detailed hierarchical community struc-

ture of 1,031 levels within 300 seconds. They are actually faster than many exist-

ing algorithms (including IGSK), which provide only a single community partition.

IGLP-WE and IGLP-DP incorporate the same depth-limited search algorithm as

IGSK, which generates the influence vectors efficiently. Its time complexity is O(m)

as shown in Figure 2.12. For both IGLP-WE and IGLP-DP, the time complexity

is dominated by label propagation. IGLP-DP runs slightly faster than IGLP-WE

w.r.t label propagation since IGLP-DP requires no convergent iteration. Actually,

the label-propagation process itself is fast with both weighted ensemble and direct

passing. Most of the time is spent on calculating the SIN similarity of each node to

each of its neighbors, which has a time complexity of O(Lm). Recall L is the average

length of influence vectors, which is determined by the average node out-degree b,

depth limit dmax and and the community structure. It is independent of n and m in

general, which explains why the time complexity of label propagation is linear in m

as shown in Figure 2.12.

74

The time complexity of hierarchical clustering, however, is slightly superlinear.

For each iteration, we need to visit those boundary nodes and their neighbors to

calculate the cluster proximity, which leads to a time complexity of O(m). This is

done (K − 1) times to build the hierarchy of communities agglomeratively, where

K is the number of communities in the initial configuration given by label propa-

gation. Hence, our hierarchical clustering has a time complexity of O(Kwem) and

O(Kdpm) for IGLP-WE and IGLP-DP, respectively. Note that: Kwe and Kdp are

much smaller than m, and the number of boundary nodes is a monotonically decreas-

ing fraction of n. Kwe and Kdp are closely related to Kgt. As shown in Table 2.6, Kgt

increases monotonically as the network size increases when we fix both the topological

mixing parameter and the min/max community size. While IGLP-WE consistently

arrives at an initial community configuration that matches the ground truth closely,

IGLP-DP zooms into deeper scales of the community structure and renders an ini-

tial configuration that includes many small sub-communities (roughly 2∼3 times of

the number of communities of the ground truth). Therefore, IGLP-DP takes more

time on hierarchical clustering than IGLP-WE. It is worth pointing out that both

IGLP-WE and IGLP-DP deliver a complete hierarchy of communities in the sense

that no intermediate scale is missing above the initial configuration, as opposed to

the well-known Louvain method [9]. From this point of view, O(Km) is the best time

complexity one can achieve to generate a community hierarchy of K levels.

Overlapping community and role detection. IGSK, IGLP-WE and IGLP-DP

can be easily adapted to the detection of overlapping community and individual roles

in each community using the approach described in Section 2.4.5. The influence-based

belonging factor is a good fit for quantifying the strength of association of a node to

a community, and the three community-level influence rankings provide us a new

sensible perspective and tool to deal with the role detection. We take IGSK and the

Zachary’s karate-club network as an example, and list in Table 2.7 its comprehensive-

75

influence ranking, internal-influence ranking, external-influence ranking, belonging

factors, and the community assignment of each node by IGSK with dephLimit = 2.

It is noted that the partition by IGSK matches the ground truth perfectly. We group

the nodes by their community assignments, and sort the nodes in each community by

their comprehensive-influence ranking.

Table 2.7: Influence rankings and belonging factors of Zachary’s karate club. Int-Rank
denotes internal-influence ranking, Ext-Rank denotes external-influence ranking, BF
denotes belonging factor, C1 and C2 denote community assignments by IGSK

Node Comprehensive Rank Int-Rank Ext-Rank BF to C1 BF to C2 C1/C2 by IGSK

1 1 1 3 0.795 0.205 1

3 2 4 1 0.542 0.458 1

2 3 2 5 0.797 0.203 1

14 4 5 2 0.630 0.370 1

4 5 3 6 0.859 0.141 1

8 6 6 7 0.849 0.151 1

20 7 11 4 0.569 0.431 1

6 8 7 10 0.946 0.054 1

7 8 7 10 0.946 0.054 1

5 10 9 10 0.938 0.063 1

11 10 9 10 0.938 0.063 1

18 12 12 8 0.903 0.097 1

22 12 12 8 0.903 0.097 1

13 14 14 10 0.929 0.071 1

12 15 15 10 0.895 0.105 1

17 16 16 16 1.000 0.000 1

34 1 1 2 0.190 0.810 2

33 2 2 5 0.155 0.845 2

9 3 6 1 0.419 0.581 2

32 4 4 2 0.306 0.694 2

24 5 3 9 0.073 0.927 2

31 5 7 4 0.309 0.691 2

30 7 5 10 0.063 0.938 2

28 8 8 7 0.234 0.766 2

29 9 14 6 0.286 0.714 2

15 10 9 10 0.086 0.914 2

16 10 9 10 0.086 0.914 2

19 10 9 10 0.086 0.914 2

21 10 9 10 0.086 0.914 2

23 10 9 10 0.086 0.914 2

10 15 16 7 0.333 0.667 2

27 16 15 16 0.074 0.926 2

26 17 16 18 0.043 0.957 2

25 18 18 16 0.091 0.909 2

76

BF to C1 and BF to C2 list the belonging factors of each node associated with

communities 1 and 2, respectively, which converts the original non-overlapping assign-

ment into a fuzzy overlapping assignment. It is interesting to observe that each node

has a higher belonging factor to its own community than to the other community,

which follows our intuition. Moreover, we refer to a node with multiple membership

as an overlapping node. The belonging factors enable us to identify overlapping nodes

with respect to a belonging threshold. If a node’s belonging factor to a community

is great than the belonging threshold, the node is considered as a member of that

community. In this case, if we set the belonging threshold to 0.3, we find the set of

overlapping nodes are nodes 3, 9, 10, 14, 20, 31 and 32. If the belonging threshold is

set to 0.4, then only nodes 3, 9 and 20 are regarded as overlapping nodes. In practice,

we can use the belonging threshold as a tunable, application-dependent parameter to

examine the association of a node to different communities at different scales.

Further, it is straightforward to use the three influence rankings to uncover the

roles of individual members in each community. As shown in Table 2.7, nodes 1

(the instructor) and 34 (the president) are of the top ranking on both comprehensive

influence and internal influence in communities 1 and 2, respectively. It is reasonable

to identify them as leaders of their respective communities, which matches the ground

truth. Moreover, if we refer to a node as a core member if its ranking on both

comprehensive influence and internal influence is among top 5 (this number can be

adjusted according to the size of the community in practice), nodes 3, 2, 14, and 4

can be regarded as the core members in community 1, and nodes 33, 32, and 24 are

core members in community 2. Similarly, if we refer to a node as an inter-community

liaison if its external-influence ranking is among top 3 (not including the leaders), we

find that: node 3, 14, and 20 are liaisons of community 1, and nodes 9, 32, and 31

are liaisons of community 2. As we can see, our approach digs out rich connectivity

information for us to probe the structural importance of a node in the network.

77

2.6 Conclusion

In this chapter, we provide a new, influence-based perspective on network graph

topology, and propose a novel reachability-based influence-diffusion model. Using this

model, we define a new influence centrality and a novel shared-influence-neighbor

(SIN) similarity. Our influence centrality differentiates the node’s comprehensive

influence significance in a more detailed and precise manner, and SIN similarity is

well-suited as a refined vertex-pair closeness metric.

For community detection, we first present an influence-guided spherical K-means

(IGSK) algorithm, which achieves excellent performance in terms of high accuracy.

More importantly, we develop two novel influence-guided label-propagation algorithms,

IGLP-WE and IGLP-DP, for finding hierarchical communities. Both of them consis-

tently uncover the community hierarchy with superior quality and high efficiency. All

three algorithms are applicable to both undirected/directed and unweighted/weighted

networks. Further, they can be easily adapted to identification of overlapping com-

munities and individual roles in each community. All of these essential tasks are nat-

urally integrated in one framework. Another advantage of IGLP-WE and IGLP-DP

is that they can be easily parallelized. It is desirable to parallelize them for large-scale

networks of millions of nodes or for online community detection. In addition, it is

interesting to combine this approach with content analysis, namely, considering both

network graph topology and node profiles for community detection.

Finally, we point out that our influence centrality and SIN similarity provide

important implications for viral marketing and link prediction in social networks. A

lot of work can follow.

78

CHAPTER 3
RESILIENCE ANALYSIS

In Chapter 2, we provide a new, influence-based perspective on network connec-

tivity and propose a novel influence-diffusion model. In this chapter, we present our

work on resilience analysis of supply networks. Previous work takes a top-down ap-

proach, in which the resilience is measured by some global-level metrics, such as the

size of the largest connected component, the average/maximum shortest path length,

etc. There are many issues on these metrics. We propose a novel bottom-up approach,

in which we adapt our influence-diffusion model for topological resilience analysis of

supply networks. We exploit the resilience by investigating the multiple-path reach-

ability of each demand node to other nodes, and quantify the network resilience by

aggregating the resilience of all demand nodes in the supply network. Our approach

gives rise to a new, comprehensive resilience metric. Further, we adopt multiagent

modeling framework and develop new supply-network growth mechanisms to build

resiliency into the construction of supply networks.

3.1 Background and Related Work

The supply chain is the construction and management of the flow of goods among

suppliers, distributors, retailers, and customers. Traditional supply chains usually

maintain a hierarchical structure with a linear flow of goods from suppliers to cus-

tomers via distributors and retailers. Due to the globalization and fast development

of technology, the basic supply chain system has become much more sophisticated,

and has rapidly evolved into various supply networks in which links can occur not

only between units of different types, but also between units of the same type. For

example, some large retailers may distribute goods to small retailers.

Supply networks play an important role in product distribution systems. How-

ever, they are often subject to various disruptions, such as unexpected accidents,

79

natural disasters, terrorist attacks, etc. When the disruption occurs, a few units or

connections fail to operate at the onset, but the adverse impact on organizational

performance may propagate in the network and eventually lead to devastating mal-

function of a great component or even the entire supply system. The sustainability

(or say, survivability) of supply networks becomes an important concern. Specifically,

the resilience analysis of supply networks under random disruptions and targeted at-

tacks has received considerable managerial attention and extensive studies. There

are many challenging questions and open issues in this field. For example, what

are the principles that govern how supply networks arise and develop? How can we

improve the overall resilience of a supply network against random disruptions and

targeted attacks? How can we build resiliency in the supply-network design? A more

fundamental question is how to measure resilience.

While conventional disruption studies focus on risk mitigation and contingency

planning strategies [73,123], some researchers investigate the resilience of supply net-

works from a topological perspective. Previous research [119, 138] has revealed that

supply networks share many characteristics that most real-world networks commonly

have, and the graph topology of the supply network has great impact on its resilience

against disruptions. Criado et al. [29] define a quantitative measure of network vul-

nerability related to the graph topology. Using a multiagent-based simulation frame-

work, Thadakamalla et al. [121] examine how different network topologies affect the

supply-network resilience against random disruptions and targeted attacks in terms

of clustering coefficient, size of the largest connected component (LCC), characteris-

tic path length in LCC, and maximum distance in LCC. Nair and Vidal [95] adopt

the multiagent model and investigate topology-associated supply-network robustness

from the perspective of performance impacts in terms of inventory levels, backorders,

and total costs. Based on the complex network theory, Chen and Lin [18] study the

characteristics of the complex supply chain and present an invulnerability analysis

80

Figure 3.1: A hierarchical military supply chain (given in [143], Copyright by IEEE).
FSBs are forward support battalions, and MSB stands for main support battalions

method to evaluate its robustness against random failures and deliberate assaults.

Using a military logistic network as a case study (as shown in Figure 1 a hierarchical

illustration of it), Zhao et al. [143] propose another taxonomy of resilience metrics

that reflect the heterogeneous roles of different types of units in supply networks, and

present a hybrid and tunable network growth model. Kim et al. [71] present a com-

prehensive conceptualization of the supply-network disruption and resilience from a

network structural perspective.

Table 3.1 lists some generic resilience metrics used in previous literature [95,121],

which focus on three macro-level network characteristics, i.e., the size of the largest

connected component (LCC) and the average and maximum path lengths in LCC.

A significant issue of these metrics is that they fail to differentiate the hetergeneous

roles of different types of units in supply networks. When using these metrics to

evaluate the supply-network resilience, it is implicitly assumed that the roles of all

nodes in the supply network are homogeneous. Obviously, this assumption is not

realistic. For example, as illustrated in the military logistic network in Figure 3.1,

the MSB can be regarded as the supplier or manufacturer, FSBs act as distributors

or warehouses, and regular battalions as retailers or consumers. An LCC without

the MSB or FSBs should not be considered resilient since the supply flow in such a

81

sub-network is limited and unsustainable. On the other hand, for a demand node,

connecting (or being close) to a supply node is more important and more beneficial

than connecting to a regular demand node.

Table 3.1: Some generic network resilience metrics

Name Description

Size of LCC
Number of nodes in the largest con-
nected component (LCC)

Average path length in
LCC

Average shortest path length between
any pair of nodes

Maximum path length in
LCC

Maximum shortest path length between
any pair of nodes

The resilience metrics proposed by Zhao et al. in Table 3.2 make more sense. They

differentiate supply nodes from demand nodes by considering their heterogeneous

roles in supply networks. For example, instead of conventional LCC, they focus on

the largest functional sub-network (LFSN), which is the LCC with at least one supply

node in it. Clearly, these resilience metrics are more realistic than the generic ones

in Table 3.1. Unfortunately, they also have some significant limitations.

First, the average/maximum supply path lengths in LFSN are not defined in a

sufficiently rigorous manner. We illustrate two simple examples in Figures 3.2 in the

context of the military logistic network. Using the taxonomy defined in Table 3.2,

the average/maximum supply path lengths are 1.5/2 for both examples. However, it

is clear that Example 2 has better accessibility and is more resilient than Example 1.

This inaccuracy is introduced because these two accessibility metrics are both based

on all pairs of supply and demand nodes in the LFSN, which results in the inclusion of

some far-away supply nodes and adversely decreases the overall accessibility. This is

not reasonable. This issue can be addressed by simply defining the average/maximum

82

Table 3.2: Resilience metrics proposed by Zhao et al. [143]

Name Topology-level metric Description

Availability Supply availability rate
Percentage of demand nodes that have ac-
cess to supply nodes

Connectivity
Size of the largest functional
sub-network (LFSN)

Number of nodes in LFSN, in which there
is a path between any pair of nodes and
there exists at least one supply node

Accessibility

Average supply path length
in LFSN

Average of the shortest supply path length
between all pairs of supply and demand
nodes in LFSN

Maximum supply path length
in LFSN

Maximum shortest supply path length be-
tween all pairs of supply and demand
nodes in LFSN

supply path lengths as the average/maximum shortest supply path lengths of all

demand nodes to their nearest supply nodes. To some extent, this helps integrate

the effect of the number of supply nodes in the overall resilience analysis. Applying

the modified accessibility metrics to the two examples in Figures 3.2, we obtain the

average/maximum supply path lengths of 1.5/2 for Example 1 and 1/1 for Example

2, which practically reflects that Example 2 is more accessible and more resilient than

Example 1. Zhao et al. detect this issue and get it fixed in [144].

Figure 3.2: Two simple examples: (a) Example 1; (b) Example 2

There are some other issues. For example, how do we differentiate MSBs from

FSBs? Should we consider the path length in supply availability rate? Why should

83

we only consider the LFSN but totally ignore the second largest and all other sub-

networks? Should we also consider the number of supply nodes in LFSN? In addition,

if the number of supply nodes is fixed, larger LFSN is usually associated with larger

average/maximum supply path lengths in LFSN. In other words, better connectivity

is associated with worse accessibility. How do we evaluate the overall resilience with

such negatively correlated metrics? Further, now that we allow demand nodes to be

connected with each other in supply networks, should we give this type of connection

some resilience credit as well even though it is supposed to be much smaller than

directly connecting to a supply node? All of these imply considerable loss of informa-

tion in these metrics. While these metrics capture the intuitive concepts of netwrok

resilience from some specific angles, it is hard to piece them together to provide a

comprehensive and reliable judgement for resilience analysis.

In this chapter, we take a novel bottom-up approach, and propose a new re-

silience metric that captures the multiple-path reachability-based robustness encoded

in supply-network topology in a more realistic and comprehensive manner. Then

we present new supply-network growth models that incorporate the heterogeneous

roles of units of different types into two fundamental network topologies with var-

ious attachment strategies. Using a military logistic network as a case study, we

analyze the resilience of different growth models by simulating the network under

random disruptions and targeted attacks. Experimental results verify the validity of

our resilience metric, and demonstrate the effectiveness of our growth model. Our

approach sheds light on the construction of more robust supply networks and more

realistic supply-network modeling.

3.2 Methodology

We draw inspiration from the influence-diffusion model that we present in Chap-

ter 2, and adapt it for topological resilience analysis of supply networks. We propose

a new network resilience metric by exploiting the multiple-path reachability of each

84

demand node to other nodes. Then we examine various attachment strategies and

perform resilience analysis of supply networks that are characterized with random-

graph and scale-free topologies. Our growth models differ from previous work. The

key idea is that the supply-network growth model (that is always driven and inves-

tigated from the supplier’s perspective) should impose few constraints on demand

nodes but focus on developing effective attachment rules on supply nodes instead

since the supply-network designer has little direct control over demand nodes when

they enter the network. In fact, when a demand node enters the network, it usually

does not have a global scope of the whole network, such as the shortest paths between

all pairs of nodes. It makes more sense to allow them to enter or grow on their own

by simply following the basic attachment rule originally proposed in constructing the

respective network topology. It is not realistic to apply the same attachment rules to

both demand nodes and supply nodes.

3.2.1 Resilience Metric

Our resilience metric distinguishes from existing metrics in the literature. Instead

of only focusing on the LCC or LFSN, we consider all nodes in the supply network.

More precisely, we measure network resilience based on the resilience of each demand

node, which is measured by the multiple-path reachability of the node of interest to

other nodes. The higher multiple-path reachability a demand node has, the more

routes through which it acquires supplies, and thus the more robust it would be when

disruptions occur. We argue that the concept of multiple-path reachability captures

the essence of supply-network resilience. We quantify the supply-network resilience

by the aggregated resilience of all demand nodes in the network.

In Chapter 2, we propose a reachability-based influence-diffusion model. It con-

siders multiple-path reachability, but is not directly fit for supply-network resilience

analysis. For example, nodes in our influence-diffusion model are of the same type,

but nodes in supply networks are characterized with different types and heterogeneous

85

roles. We elaborate below how to adapt the model to supply-network scenario. First

of all, we develop a similar depth-limited search algorithm to exploit the multiple-

path reachability of a demand node to other nodes, but the three important rules are

interpreted differently to fit in supply-network resilience analysis.

1. Cycles are avoided. It makes sense since revisiting the same set of nodes in a

loop or cycle does not improve the resilience.

2. Revisits along different routes are explored independently. This mechanism al-

lows us to examine how many different ways the root node can reach other

nodes, which captures the essence of resilience in terms of multiple-path reach-

ability.

3. The path is penalized by its length. It is reasonable to penalize longer paths since

they are usually associated with longer delivery time and more transportation

cost in supply networks.

As an example, we illustrate in Figure 3.3 a simple military logistic network, in

which node 4 is a main support battalion, node 5 is a forward support battalion, and

all other nodes are regular battalions. We show in Figure 3.4 the search tree of node 1

(with a depth limit of 3). The first two rules described above are implemented in the

construction of the search tree. For example, when node 1 goes along nodes 2 → 4,

the search path does not get back to itself at depth 3 since cycles are avoided. On the

other hand, node 5 is visited 4 times along nodes 1→ 2→ 5, nodes 1→ 2→ 4→ 5,

and so on.

We consider the heterogeneous roles of nodes of different types by assigning them

different significance weights, and penalize the path length using a depth-associated

penalty factor α (0 < α < 1). More precisely, we define the depth-associated penalty

to be αd−1, where d is the depth from the root node to a node of interest following

a specific path. Whenever a node is reached from the root node, we multiply the

86

Figure 3.3: Example of a simple military logistic network

Figure 3.4: Search tree of node 1

significance weight of that node by the corresponding depth-associated penalty, and

add it to the resilience score of the root node. In other words, the resilience score

of the root node is quantified by the summation of the depth-associated penalized

significance weights of all the nodes that the root node visits in its search tree (given

a pre-specified depth limit). Using the military logistic network in Figure 3.3 as an

example, if we assign a weight of 2 to the MSB, 1 to the FSB, and 0.2 to the regular

battalion, then following the path from nodes 1 → 2 → 4 → 5 , the resilience score

of node 1 increases by (α0 × 0.2 + α1 × 2 + α2 × 1).

Further, it is straightforward to compute the network resilience score by summing

up the resilience scores of all demand nodes. Let D denote the set of demand nodes

in the network, Ti denote all the nodes in the search tree of node i (a node may occur

multiple times along different paths in the search tree), dj denote the depth from

node i to node j following a specific path in node i’s search tree, and Wj denote the

87

significance weight of node j. The network resilience score S is computed as

S =
∑
i∈D

∑
j∈Ti

αdj−1 ×Wj.

The pseudocode is presented in Algorithm 3. This network resilience score gives

rise to a new, more realistic and finer metric for supply-network resilience analysis.

It differentiates the heterogeneous roles of different types of nodes, considers the

resilience of all demand nodes, incorporates the reachability to both supply nodes and

other demand nodes, includes not only the shortest paths but also other paths, and

takes into account the depth-associated penalty. We leave the significance weights,

the depth-associated penalty factor α, and the depth limit dmax as user-specified

tunable parameters such that supply-network designers can adjust them to achieve

the desired fit for different applications or different components/paths of the supply

network. There is an interesting byproduct of our methodology. When we obtain the

network resilience score, we have actually completed the resilience analysis of each

individual demand node, which helps supply-network designers/managers identify

vulernable demand nodes and components in the network.

Algorithm 3 Calculate Network Resilience Score

1: procedure NRS(G,α, dmax)
2: nrs← 0
3: for node i← 1, n do
4: if i is a demand node then
5: i.score← 0
6: Do the modified depth-limited search
7: for any node j visited in the search tree do
8: i.score← i.score+ αj.depth−1 × j.weight
9: end for

10: nrs← nrs+ i.score
11: end if
12: end for
13: return nrs
14: end procedure

88

3.2.2 Attachment Strategies

Random-graph and scale-free networks [7] present two most fundamental and char-

acteristically distinct topologies. Many researchers use these two network topologies

to study network robustness against disruptions. It is observed that the scale-free

network is highly robust against random failures but very vulnerable to targeted at-

tacks while the random-graph network shows better performance against targeted

disruptions [2]. We develop new attachment strategies to construct various random-

graph-based and scale-free-based supply networks, and evaluate their performance

using the new resilience metric.

We adopt the multiagent modeling framework. Without loss of generality, we

also use the military logistic network as a case study. The military logistic network

consists of three types of units: regular battalions, forward support battalions (FSB),

and main support battalions (MSB). In a conventional logistic scenario, the MSBs can

be regarded as manufacturers, the FSBs as distributors, and the regular battalions as

retailers. Both MSBs and FSBs are supply nodes, and regular battalions are demand

nodes. As listed in Table 3.3, we build the military logistic network using the same

setting and parameters as those used in previous work [121,143].

As noted earlier, it makes more sense to concentrate on the development of new

attachment strategies for supply nodes only, and let demand nodes enter the network

following the pure-random and pure-preferential attachment rules in the random-

graph-based and scale-free-based supply network models, respectively. Moreover, we

need to consider and maintain the basic functionalities of different types of nodes when

developing attachment strategies. Specifically, we differentiate MSBs from FSBs. We

allow an entering MSB to directly connect to regular battalions, but it has to directly

connect to one or more FSBs. This is a sensible assumption to capture that the

manufacturer is supposed to directly connect to at least one distributor. When an

FSB enters the network, it connects directly to regular battalions but not to any other

89

Table 3.3: Basic setting and parameters

Description

Nodes

Start with 10 unconnected battalions, and a new node enters
the network at each step

A total of 990 steps, which generate a network of 1,000 nodes

The ratio for battalions/FSBs/MSBs is 25:4:1

Edges

An entering battalion initiates one edge to an existing node,
and the 2nd edge is initiated with a probability of 0.5

An entering FSB initiates three edges, and an entering MSB
initiates 5 edges

Neither multiple edges or loops are allowed when new edges
are initiated

The expected number of edges is 1,800 (average node degree
is 3.6)

FSBs since a distributor is expected to directly connect to retailers instead of other

distributors in general. In addition, we avoid attaching a new entering FSB/MSB to a

battalion that already directly connects to an FSB or MSB. Further, we include both

preferential-attachment and random-attachment rules for each entering FSB/MSB so

as to balance the robustness against random disruptions and targeted attacks.

We list in Table 3.4 three attachment strategies. The first two are conventional

random attachment and preferential attachment. The third is the new supply-specific

attachment that we develop for FSBs and MSBs solely. Finally, as shown in Ta-

ble 3.5, we create four growth models by applying/combining the three attachment

strategies in different ways to investigate how the new supply-specific attachment

strategy interplays with the two fundamental network topologies.

3.3 Simulation and Analysis

We develop a simulation program, in which we build military logistic networks

based on the four growth models and evaluate the resilience of those networks under

random disruptions and targeted attacks.

90

Table 3.4: Three attachment strategies

Attachment Strategies Description

Random Attach to a node selected uniformly at
random

Preferential
Attach to a node i of degree di with the
probability pi = di∑

j dj

New Supply-specific

FSB

The first edge attaches to a demand
node that has the highest degree

The second edge attaches to a demand
node preferentially to its degree

The third edge attaches to a demand
node randomly selected

MSB

Each of the first two edges attaches to
a different FSB randomly selected from
the four newly deployed FSBs

The third edge attaches to a demand
node preferentially to its degree

Each of the last two edges attaches to
a demand node randomly selected

3.3.1 Degree Distribution

We first study the degree distribution of nodes in each network to determine how

the new supply-specific attachment strategy affects the network topology. Figure 3.5

shows the log-log scatterplot of the number of nodes of degree k w.r.t degree k of

the four growth models. Comparing the New-Random with the Pure-Random in

Figure 3.5(a), we can tell the New-Random changes the random-graph topology with

quite a few high-degree hubs that are not commonly seen in random-graph networks.

For the New-ScaleFree versus the Pure-ScaleFree in Figure 3.5(b), the New-ScaleFree

also slightly changes the scale-free topology by decreasing the degree of high-degree

hubs. Although these changes may not be significant, they help balance the robustness

against random disruptions and targeted attacks and improve the overall resilience of

the network, as shown in the next subsection.

91

Table 3.5: Four growth models

Models Description

Pure-Random Apply the random-attachment strategy for all nodes

New-Random
Apply the random-attachment strategy for all demand nodes,
and apply the new supply-specific attachment strategy for all
supply nodes

Pure-ScaleFree Apply the preferential-attachment strategy for all nodes

New-ScaleFree
Apply the preferential-attachment strategy for all demand
nodes, and apply the new supply-specific attachment strategy
for all supply nodes

Figure 3.5: Log-Log of the degree distribution of the four models

3.3.2 Resilience Analysis

To evaluate the network robustness against disruptions, we simultaneously remove

a batch of 50 nodes (5% of the total nodes) from the network each time and do it

16 times successively, i.e., until 80% of the total nodes are removed. When a node is

removed, all of its edges are removed as well. For random disruptions, we remove the

nodes uniformly at random each time, and we run the simulation 20 times for each

network. For targeted attacks, we remove the nodes in descending order of the node

degree. Each time after the batch of 50 nodes are removed, we measure the resilience

92

Figure 3.6: Responses of the four growth models to random disruptions, plotted as
(a) supply availability rate, (b) size of LFSN, (c) average supply path length in LFSN,
and (d) maximum supply path length in LFSN

of the disrupted network using different resilience metrics. Each data point is the

average of 10 networks built from the respective growth model.

First, we evaluate the resilience using the four resilience metrics presented in

Table 3.2. The first two, i.e., the supply availability rate and the size of LFSN, are

used as they are originally defined. But as discussed earlier, for the average/maximum

supply path lengths in LFSN, we use the average/maximum shortest supply path

lengths of all demand nodes to their nearest supply nodes. As we can see in Figure 3.6,

all four models are fairly resilient against random disruptions. The New-Random

has almost the same supply availability rate as the Pure-Random, but is slightly

93

worse in terms of the size of LFSN. It outperforms the Pure-Random in terms of

the average/maximum supply path lengths. However, given that the size of LFSN of

the New-Random is smaller than that of the Pure-Random, it is expected that the

average/maximum supply path lengths of the New-Random are shorter than those of

the Pure-Random. Similarly, it seems that the New-ScaleFree dominates the Pure-

ScaleFree in terms of the supply availability rate and the average/maximum supply

path lengths, but it is inferior to the Pure-ScaleFree in terms of the size of LFSN.

It turns out that we are not able to arrive at a definite or comprehensive resilience

ranking of the four models. It even fails to demonstrate that the scale-free network

is more robust against random disruptions than the random-graph networks.

For targeted attacks, as shown in Figure 3.7(a) and 3.7(b), both the supply avail-

ability rate and the size of LFSN decrease sharply, which reflects that targeted at-

tacks are more damaging than random disruptions to all the four models and that the

scale-free networks are even more vulnerable than the random-graph networks. While

the New-Random shows similar performance to the Pure-Random, the New-ScaleFree

clearly outperforms the Pure-ScaleFree. It is noticed that the supply availability rate

and the size of LFSN both decrease monotonically as nodes are removed. However,

the average/maximum supply path lengths initially increase and then decrease con-

tinuously. That is because the LFSN increasingly gets sparser and leaner, which leads

to longer average/maximum supply path lengths. After the sparsity of LFSN reaches

some threshold, the LFSN becomes fragmented. Then the average/maximum sup-

ply path lengths decrease and keep getting shorter. In addition, from Figure 3.7(c)

and 3.7(d), one may arrive at a plausible argument that the two scale-free models

exhibit better accessibility than the two random-graph models in terms of shorter av-

erage/maximum supply path lengths. However, this argument is misleading. As we

can see from Figure 3.7(b), the scale-free models have much smaller LFSN (worse con-

nectivity) than the random-graph models, which results in shorter average/maximum

94

Figure 3.7: Responses of the four growth models to targeted attacks, plotted as (a)
supply availability rate, (b) size of LFSN, (c) average supply path length in LFSN,
and (d) maximum supply path length in LFSN

supply path lengths in both scale-free models. In fact, these four resilience metrics

are closely correlated. It is hard to piece them together to provide a comprehensive

and reliable judgement on the network resilience.

Next we evaluate the network resilience using our proposed metric, i.e., the net-

work resilience score defined in Section 3.2.1. We assign a significance weight of 2 to

each MSB, 1 to each FSB, and 0.2 to each regular battalion. We set the depth limit to

3 and the depth-associated penalty factor α to 0.5. Figures 3.8 and 3.9 illustrate the

changes of the network resilience score along with the percentage of nodes removed

in the event of random disruptions and targeted attacks, respectively.

95

Figure 3.8: Resilience scores of the four growth models to random disruptions

In general, networks with high-degree hubs are more resilient since the hubs make

the network diameter shorter. As we can see in Figure 3.8, the resilience scores of

the four models vary considerably at the onset. The ranking agrees with the degree-

distribution analysis on these models. The Pure-Random has the lowest resilience

score since hubs rarely occur in random-graph networks. The New-Random achieves

higher resilience score than the Pure-Random since it changes the random-graph

topology with quite a few hubs. The Pure-ScaleFree reaches the highest resilience

score due to its scale-free property. The resilience score of the New-ScaleFree is a

little bit lower than that of the Pure-ScaleFree. That is because the hubs of the

New-ScaleFree have relatively lower degrees than those of the Pure-ScaleFree.

As shown in Figure 3.8, the four models are all fairly resilient to random failures.

The resilience scores show alignments with our observation that scale-free networks

are much more robust than random-graph networks under random disruptions. The

New-Random consistently outperforms the Pure-Random. The resilience scores of the

New-Random are 32.6%, 32.5%, and 35.1% higher than those of the Pure-Random

when 10%, 20%, and 40% of nodes are removed, respectively. The New-ScaleFree has

almost the same performance as the Pure-ScaleFree. The New-ScaleFree is slightly

96

Figure 3.9: Resilience scores of the four growth models to targeted attacks, plotted
as (a) 0-80 percent of nodes removed, and (b) 5-30 percent of nodes removed

worse when less than 20% of nodes are removed, but gets a little better when more

than 35% of nodes are removed.

For targeted attacks, our network resilience scores support our observation that

the damage due to targeted attacks is devastating to all the four models. As shown

in Figure 3.9, when only 5% of nodes are removed, the resilience scores of the Pure-

Random, the New-Random, the Pure-ScaleFree, and the New-ScaleFree drop 62.5%,

72.9%, 88.3%, and 84.8%, respectively. The scale-free networks are more vulnerable

and become inferior to the random-graph networks immediately in spite of great

advantages at the onset. While the New-Random shows slightly better performance

than the Pure-Random, the New-ScaleFree obviously beats the Pure-ScaleFree. The

resilience scores of the New-ScaleFree are 18.9%, 36.7%, 32.2%, and 18.9% higher

than those of the Pure-ScaleFree when 5%, 10%, 15%, and 20% of nodes are removed,

respectively.

Further, we can aggregate the random-disruption resilience score with the targeted-

attack resilience score using different weights. Considering that targeted attacks are

much more damaging than random disruptions, it is reasonable to assign a higher

weight to the targeted-attack resilience score to favor stronger robustness against tar-

97

Figure 3.10: Aggregated resilience scores of the four growth models under random
disruptions and targeted attacks, plotted as (a) 0-80 percent of nodes removed, and
(b) 5-30 percent of nodes removed

geted attacks. We assign a weight of 0.2 to the random-disruption resilience score

and 0.8 to the targeted-attack resilience score, and illustrate the aggregated resilience

scores in Figure 3.10. As we can see, the New-Random obviously beats the Pure-

Random, the scale-free networks outperform the random-graph networks, and the

New-ScaleFree has the best performance overall.

3.4 Conclusion

In this chapter, we exploit the multiple-path reachability of each demand node

to other nodes in the supply network, and propose a novel network resilience met-

ric. We also develop new attachment strategies that differentiate the heterogeneous

roles of different types of nodes. We incorporate them into two fundamental net-

work topologies, and analyze the network resilience against random disruptions and

targeted attacks. The experimental results demonstrate the validity of our resilience

metric and the effectiveness of our growth model. Our work provides a novel, generic

framework and important insights into the construction and resilience analysis of

supply networks.

98

For the future work, it is desirable to take into account inventory levels, backo-

rders, total costs, and inventory reassignment to arrive at a more realistic and more

robust growth model. One promising direction is to convert those factors into the

weights on the edges of the supply network. Our approach can be easily extended to

weighted networks. Another interesting direction is to investigate the cascade-based

attack vulnerability on supply networks and/or adapt this approach to the resilience

analysis of other complex networks.

99

CHAPTER 4
VIRAL MARKETING

The influence-diffusion model we present in previous chapters is reachability-based.

It measures a node’s influence significance by the total amount information the node

is able to spread out within a pre-specified depth limit. Roughly speaking, it focuses

on information’s visibility (e.g., brand awareness) regardless of information’s effect

(e.g., product sale). In this chapter, we investigate activation-based influence-diffusion

modeling for viral marketing, in which a node’s influence is measured by the number

of nodes it can activate to adopt a new technology or purchase a new product. We

adapt our reachability-based influence-diffusion model to the viral-marketing scenario

and propose a novel activation-based diffusion model. We call it the multiple-path

asynchronous threshold (MAT) model. It takes into account not only direct and

indirect influence, but also influence attenuation along diffusion paths, influence decay

over time, and individual diffusion dynamics. Further, we develop a set of heuristics

to address the influence-maximization problem under our MAT model.

4.1 Introduction

All of us live in various social networks. We like to share information and ideas

with our friends in the form of word-of-mouth (WOM hereafter) communication.

Moreover, new technologies and various social media rapidly penetrate into every

aspect of our daily life, and provide us new channels and great convenience to exchange

information and express opinions. For instance, Twitter had more than 100 million

users who posted 340 million tweets a day in 2012. As of May 2015, it had more than

half a billion users worldwide. Facebook had over 1.59 billion monthly active users

as of August 2015 1. People disseminate massive volume of information over different

social media, and spread influence on others. As social media becomes prevalent, its

1https://www.wikipedia.org

100

influence on business, politics and society becomes evident and significant. How new

innovations, behaviors, and diseases spread through social networks has a long history

of study in social sciences. Research in this area has exploded and drawn considerable

attention from many disciplines over the last decade. Many models of information

and influence diffusion have been proposed for a wide variety of applications, such

as viral marketing [8, 69, 85, 110], cascading behavior and prediction [1, 23, 83, 142],

outbreak detection [81], etc. In this chapter, we focus on modeling influence diffusion

for viral marketing in business.

The term “viral marketing” was coined by a Harvard Business School professor,

Jeffrey Rayport, in 1996 in an article for Fast Company magazine called The Virus

of Marketing. He wrote: “Think of a virus as the ultimate marketing program. When

it comes to getting a message out with little time, minimal budgets, and maximum

effect, nothing on earth beats a virus. Every marketer aims to have a dramatic impact

on thinking and behavior in a target market; every successful virus does exactly that”.

Viral marketing is termed to describe such a marketing technique that induces the

users in a social network to pass on a marketing message (viral ad) to others so as

to achieve a potentially exponential growth in brand awareness and product sales. It

can be delivered by WOM communication and greatly enhanced by network effects.

The commercial success of MSN Hotmail is a classic example. It simply appended a

promotional pitch with a clickable URL, “Join the world’s largest e-mail service with

MSN Hotmail. http://www.hotmail.com”, to every message sent by a Hotmail user.

It rapidly attracted 12 million users in 18 months with an advertising budget of only

$50,000 [65]. Conversely, its competitors like Juno spent $20 million on traditional

marketing in the same period, but achieved less effect. Hotmail achieved historically

the fastest growth of any user-based media companies at the time.

Viral marketing is driven by WOM communication and hinges on the premise

that a consumer’s purchasing decisions are often strongly influenced by his family

101

and friends. This premise is quite reasonable and supported by studies in consumer

behavior and marketing strategies. It is widely accepted in consumer behavior that

WOM communication among friends plays an important role in shaping consumers’

attitudes and behaviors. In an early study, Katz and Lazarsfeld [67] found that

WOM was the most important source of influence in the purchase of household goods

and food products. It was seven times as effective as newspapers and magazines in

influencing consumers to switch brands. More recent studies also reveal that con-

sumers increasingly rely on advice from others in their personal or professional net-

works [56,62,115]. While there are more widespread and instant-messaging marketing

channels such as web pages and mobile phones, family and friends always have the

highest level of trust. According to the Nielsen Global Trust in Advertising Report

released in 2015, 83% of online respondents in 60 countries said they trusted the

recommendations of friends and family. The most credible form of advertising comes

straight from the people we know and trust, and the referral from a friend conveys a

direct and strong endorsement of the product. To this end, WOM promotion is re-

garded as the most powerful and cost-effective marketing tool. With the widespread

use of social media and mobile phones, WOM has become an even more powerful

resource for both marketers and consumers.

Research has investigated WOM effects on viral marketing from various perspec-

tives. Brown and Reinegen [15] presented a network analysis of WOM referral behav-

ior and examined different roles of strong and weak social ties for the flow of referral

information. Domingos and Richardson [32] mined the network value of customers

using collaborative filtering systems, in which they modeled the customers’ influence

on each other as a Markov random field. Thomas [122] illustrated a conceptual frame-

work to achieve the amplification of initial marketing efforts by third parties through

their passive or active influence. Kozinets et al. [74] proposed a network coproduction

model and presented a case study of a WOM marketing campaign, in which the prod-

102

uct (mobile phone) was seeded with prominent bloggers in online communities so that

they could communicate favorably about it to other bloggers. Figure 4.1 illustrates

three influence models presented in [74]. The earliest and simplest is the organic

interconsumer influence model, in which WOM occurs organically among consumers

without direct promoting and influence by marketers. The linear marketer influence

model, however, includes marketers as important actors in the WOM communication.

Marketers attempt to influence selected opinion leaders with advertisements and pro-

motions, hoping they would spread the influence to other consumers. The network

coproduction model is more sophisticated but more realistic. In this model, marketers

are directly involved in managing WOM activity, and consumers are regarded as active

coproducers of WOM messaging. There are two distinguishing characteristics built

in this model. First, marketers directly target and influence the consumer or opinion

leader through one-to-one seeding campaigns. Second, market messages do not flow

unidirectionally from seeded consumers to others, but rather are exchanged among

any connected consumers in the network. Based on this descriptive model, Kozinets

et al. [74] generate some insights and propositions about WOM using qualitative data

analysis and constant comparative method.

In essence, viral marketing is a process of influence diffusion over social networks.

An effective viral marketing campaign requires that marketers identify individuals

with high social networking potential. A general setting can be depicted as follows: A

company would like to market a new product, in the hopes that it would be adopted

by as many people as possible in a target social network. The company needs to

choose a small number of influential individuals as the initial adopters/seeds by giv-

ing them free/discounted samples of the product and encourage them to recommend

the product to their friends, hoping that their friends would be influenced to purchase

the product and continue to influence their friends to buy the product. As a result,

the influence would propagate through the network and trigger the widespread adop-

103

Figure 4.1: The evolution of WOM models (given in [74], Copyright by The American
Marketing Association)

104

tion in the end of the diffusion process. Survey-based statistical research has shown

very strong support for the hypothesis that network linkage can directly affect prod-

uct/service adoption [56, 62]. The crucial factor to the success of viral marketing is

for the marketers to identify the most influential set of initial adopters. Researchers

investigated different approaches to seeding campaigns for marketing practice. Hinz

et al. [57] compared four seeding strategies in two small-scale field experiments and

one real-life viral marketing campaign of a mobile phone service provider. Their em-

pirical results showed that seeding to well-connected individuals (social hubs) is most

successful, which can be up to eight times more successful than other seeding strate-

gies. Iyengar et al. [62] studied how opinion leadership and social contagion within

social networks affect the adoption of a new prescription drug by physicians. They

used hazard modeling as the main statistical approach to analyze the data and test

the hypotheses. They found strong evidence of contagion operating over network ties

and that the amount of contagion is moderated by both the recipients’ perception of

their opinion leadership and the sources’ volume of product usage. Libai et al. [86]

further explored the value of WOM seeding programs in terms of market expansion

and purchase acceleration. They investigate how expansion and acceleration inte-

grate to create programs’ social value using an agent-based simulation model [109]

and 12 social networks in various markets as input. They also ran a pooled regression

across the 12 networks to examine the factors that affect the acceleration ratio, which

include network size, average degree and clustering coefficient, etc. Using the same

approach, Peres [105] present more findings on the impact of network characteristics

on new product diffusion.

These studies mentioned above significantly enhance our understanding of WOM

behavior and effects on promoting viral marketing, and provide substantial insights

and implications for the design and evaluation of seeding strategies for both marketing

practice and diffusion research. However, the approach these researchers commonly

105

use or rely on is explanatory modeling. They apply various field experiments and/or

statistical models to data for testing some causal hypotheses or correlations between

variables. For example, researchers find support for the hypothesis that referrals from

strong ties are more influential in receivers’ decision-making than those from weak

ties [15], and that high-degree seeding remains the most successful strategy [57].

Nevertheless, how can we create a robust seeding strategy that outperforms the high-

degree seeding? Is it possible to find the optimal or suboptimal seeding strategy? Can

we estimate the cascade of adoption given any set of initial adopters? Most of these

qualitative approaches and empirical studies fail to give answers to these important

questions in an operational manner. One significant limitation is that an explicit

information/influence diffusion model is missing.

Just as most marketing researchers focus on investigating WOM diffusion pro-

cesses using various explanatory models and/or qualitative methods, researchers from

computer science and other related fields aim to explicitly build influence-diffusion

models so as to maximize and/or predict the influence spread. Influence maximiza-

tion as an important algorithmic technique for viral marketing was first posed by

Domingos and Richardson [32, 110], in which they applied Markov random fields to

model the influence among customers and then choose the best marketing plan to

maximize the profit. In their seminal paper [69], Kempe et al. formulate it as a

discrete optimization problem: given a social network, a stochastic diffusion model,

and a number K (also called budget), the objective is to find the seed set of K initial

adopters (of a new product) who can trigger the largest cascade of further adoptions,

in which the influence diffusion process unfolds in discrete time steps as described by

the diffusion model.

This influence-maximization problem has attracted a great deal of attention and

extensive studies. To address this problem, two key components are indispensable.

First, we need to build a realistic influence-diffusion model that captures in detail the

106

diffusion process and the activation mechanism of WOM marketing. Second, we need

to develop an effective and efficient algorithm that enables us to find the optimal or

suboptimal seed set under the diffusion model. Kempe et al. [69] approach the prob-

lem under two widely-studied stochastic diffusion models: independent cascade (IC)

model and linear threshold (LT) model. They show that this optimization problem

is NP-hard for both the IC and LT models, and provide the first provable approxi-

mation guarantees for efficient algorithms. Their work laid theoretical and algorith-

mic foundations for understanding influence diffusion and addressing the influence-

maximization problem. Since then, there has been a large amount of follow-up work

in two main directions: (1) extensive research has been done to study various exten-

sions to the IC and LT models [8, 13, 19, 44, 49, 55]; (2) a large number of algorithms

have been proposed to improve efficiency in finding the K-seed set [22,51,64,81,125].

We will elaborate in the next section several representative models and algorithms

most related to our work.

The IC and LT models in [69] are fundamental algorithmic models for influence

diffusion and lie at the core of most generalizations. In the IC model, each node u that

is newly activated in step ti is given a single chance to independently activate each of

its currently inactive neighbors v in step ti+1. It succeeds with a pre-specified uniform

propagation probability p. Whether or not it succeeds, u cannot make any further

attempts to activate v in any subsequent steps. The diffusion process is repeated until

no more activation is possible. The LT model is based on the use of node-specific

thresholds. Each node v is assigned an activation threshold θv uniformly at random

from [0, 1]. In any step of the diffusion process, an inactive node becomes active

once the total weighted fraction of its active neighbors is greater than or equal to its

threshold. Goyal et al. [49] develop data-driven models and algorithms for learning

influence probabilities using an action log. Chen et al. [19] propose an extension to

the IC model to incorporate the emergence and propagation of negative opinions.

107

Bhagat [8] extend the LT model by defining an objective function that distinguishes

product adoption from influence. The LT model has also been extended to account

for competition of influence diffusion in social networks [13,55]. Moreover, Gayraud et

al. [44] extend both IC and LT models to evolving social networks. These extensions

are the substantial complement of the classic IC and LT models. However, there exist

some significant limitations in these models.

First, they approach a social entity’s adoption likelihood from a rather confined

scope, considering only the direct influence from the activated neighbors of the en-

tity, which is in spirit similar to the linear marketer influence model in Figure 4.1.

However, a social entity’s adoption decision could be influenced by other adopters

who are not social neighbors [37], e.g. through structural equivalence [16] and three-

degree-of-influence [24–26]. In reality, as described in the network coproduction model

in Figure 4.1, WOM messages do not flow unidirectionally from seeded consumers to

others, but rather may be exchanged among any connected consumers in the net-

work. This is an important feature of WOM communication. In other words, a node

in the network could be influenced and activated by its inactive neighbors who pass

on the influence from other influencers to the node of interest. For example, Jenna

watched the movie “Zootopia” and told her friend Cindy that the movie is awesome.

Cindy did not get a chance to watch the movie, but she passed the words to their

friend Anna that Jenna watched the movie and liked it. Anna got influenced and

watched the movie soon. The IC and LT models fail to capture such indirect influ-

ence passed along by messengers who may or may not be activated. Fang et al. [37]

take a data-driven approach to study adoption behavior in social networks. Their

findings suggest that the diffusion models relying exclusively on direct influence are

limited in predictive power. We argue that messengers play an important role in

influence diffusion for viral marketing, which should be taken into account to build a

more realistic influence-diffusion model.

108

Figure 4.2: Frequency of common actions vs. the time difference between two users
performing actions. (a) during the first hour at a granularity of 10 minutes; (b) during
the first week at hourly granularity (without considering the cases in which the time
difference is less than one hour, i.e., the cases in (a)); (c) the rest of the dataset with
weekly granularity (given in [49], Copyright by ACM)

Second, the IC and LT models (and most generalizations) overlook the fact that in-

fluence does not remain static or constant, but rather attenuates along diffusion paths

and decays with time. As indicated in the three-degrees-of-influence phenomenon,

while it keeps propagating up to a social horizon of three hops, peer influence gradu-

ally dissipates along the diffusion path. Supportive experimental studies have contin-

ued to appear [12,75,87,94]. On the other hand, Goyal et al. [49] measure the number

of actions that propagate between pairs of neighbors in Flickr at different time inter-

vals. As shown in Figure 4.2, there is clearly an exponential decay in the number of

actions propagated as the time elapses, confirming our intuition that influence decays

with time.

Third, these models fail to capture the individual temporal diffusion dynamics.

In the IC model, each newly activated node gets a single chance to simultaneously

execute an activation attempt to each of its inactive out-neighbors in one time step.

In the LT model, an inactive node simultaneously checks each of its in-neighbors to

compute the total influence weight in any time step. Both of them are synchronous

diffusion models. It turns out that delaying the activation attempts of any node in the

IC model and delaying adding the weights of some out-links of a newly activated node

109

in the LT model would not change the distribution of the final active set [20]. This

time-invariant property is not realistic or desired. In practice, the time constraint and

spreading speed are always critical concerns of marketers since they are closely related

to profit and competition. In fact, information diffusions generally take place in an

asynchronous way in reality. People communicate much more frequently with their

close friends than regular friends. Even if a person sends out a message simultaneously

to all her friends on Twitter, they may log in and check out the message at different

times. As shown by Iribarren and Moro in their viral email experiment [61], there

exists large heterogeneity in human response time at the individual level, which has

great impact on the dynamics of information diffusion at the collective level.

There is another subtle but more fundamental issue in existing models. WOM’s

effectiveness as an information source for consumers can be broken down into WOM’s

reach and WOM’s impact. Unlike epidemic spreading in which each exposure acts

independently, WOM’s impact is usually derived from social reinforcement, where

repeated exposures continue to have large marginal effects on adoption [17,111]. We

thus consider product adoption as an accumulation process of influence. More pre-

cisely, we describe influence as a three-stage process as shown in Figure 4.3. The first

stage is awareness, where an inactive entity gets exposed to the WOM about the new

product. The second stage is aggregation, in which the entity gets reinforced with

more and more WOM exposures. The last stage is activation, where the entity adopts

the new product when the accumulated influence is greater than a certain threshold

of the entity. We refer to this procedure as the “3A process”. To the best of our

knowledge, no models in the literature explicitly reveal this process in an incremen-

tally aggregate manner since they are not able to quantify the influence or measure

the amount of influence accumulated and passed from one on to another.

We aim at developing a more realistic influence-diffusion model to address these

issues. We adapt our reachability-based influence-diffusion model (developed for

110

Figure 4.3: 3A process of influence

community detection in Chapter 2) to the viral-marketing scenario, and arrive at

a multiple-path asynchronous threshold (MAT) model. In this model, we naturally

integrate the three stages of the 3A process, and quantify in an incremental manner

the aggregate consequences from informational influence to activation on the basis

of complex WOM communication. Our MAT model is the first model to this re-

gard in the framework of the general threshold model. We consider both direct and

indirect influence, take into account influence attenuation along diffusion paths and

influence decay with time, and model the individual temporal diffusion dynamics

using a contact-frequency-based Poisson process. Further, we develop two effective

approximation algorithms to address the influence-maximization problem under our

MAT model, and conduct experiments on four real-life networks. Our work provides

preliminary but important insights and implications for viral marketing and diffusion

research in other fields.

We note that homophily may also explain product adoption behaviors. In our

viral-marketing setting, the influence is embedded in the WOM messages, and ho-

mophily may facilitate the spread of WOM-based influence. While some researchers

work on distinguishing influence-based contagion from homophily-driven diffusion

[4,76], we focus on the comprehensive WOM effects on production adoption, without

necessarily distinguishing the causes. Especially, like most existing influence-diffusion

models, our model is built upon network connectivity and structure without using

any node attributes or profiles.

111

4.2 Related Work

Viral marketing is an important and cost-effective marketing technique in busi-

ness. One of the fundamental problems in viral marketing is to find a small set of

initial adopters who will trigger the largest further adoptions through WOM-based

influence propagation. To address this problem, we need a realistic influence-diffusion

model and an effective influence-maximization algorithm. There are a large number

of studies in the literature. Detailed surveys can be found in [3, 20, 70]. Here we

focus on several representative models and algorithms most relevant to our work and

considerations.

4.2.1 Diffusion Models

In 2003, Kempe et al. published a seminal paper on maximizing influence spread

in social networks [69]. They formulate influence maximization as a discrete opti-

mization problem, and investigate the step-by-step dynamics of adoption under two

basic diffusion models. One is the independent cascade (IC) model, and the other is

the linear threshold (LT) model. These two classic models lie at the core of a large

number of generalizations in the subsequent work.

The IC model takes the social network G = (V,E), the influence probability p(·)

on each link, and the initial seed set S0 as input, and the influence-diffusion process

unfolds in discrete time steps according to the following randomized propagation rule.

At every time step ti (i ≥ 0), each newly-activated node u is given a single chance to

activate each currently inactive out-neighbor v independently. It succeeds with the

pre-specified influence probability puv. If successful, then v becomes active in step

ti+1. But whether or not u succeeds, it cannot make any further attempts to activate

v in subsequent steps. The diffusion process runs until no new nodes are activated.

Such diffusion behavior is referred to as simple contagion in social science, in the

sense that activation could be triggered by a single influencer independently. This

model is well-suited for epidemic spread since an individual may get infected once

112

he gets exposed to the virus. For viral marketing, it does not fit very well. With

respect to the 3A process as described in the previous section, the IC model reflects

the brand-awareness stage, but fails to explicitly capture the aggregation or activation

stages since most people cannot be convinced to adopt a new product right after one

single WOM interaction. Kempe et al. also propose a general cascade model in [69].

They define an incremental function pv(u, S) ∈ [0, 1], where u is a newly activated

in-neighbor of v and S is the set of active in-neighbors of v that have already tried

(but failed) to activate v in previous steps. When u attempts to activate v, it succeeds

with probability pv(u, S). They give the active in-neighbors of v multiple chances to

activate v as long as v has a newly activated in-neighbor at any time step.

In the LT model, every link (u→ v) of the social network G is associated with an

influence weight buv ∈ [0, 1], indicating the influence significance of u on v. Before the

diffusion process starts, each node v is assigned a threshold θv uniformly at random

in the range [0, 1]. The threshold can be interpreted as the personal latent tendency

of a node to adopt a new product. Once the initial seed set S0 is given, the diffusion

process then unfolds deterministically in discrete time steps. In any step, an inactive

node v becomes active if and only if the total influence weight of its active in-neighbors

N in
v is greater than or equal to its threshold θv, i.e.,

∑
u∈N in

v

buv ≥ θv.

The diffusion process continues until no further activation is possible. As opposed

to the IC model, the LT model captures complex contagion, in which an individual

is usually not activated until she receives positive reinforcement from multiple in-

fluencers. The LT model is more suitable for viral marketing than the IC model in

this regard. Similarly, Kempe et al. also propose a general threshold model in [69]

by lifting the assumption that the influence from individual in-neighbors can only be

aggregated linearly. In the general threshold model, each node v is associated with

113

an arbitrary monotone threshold function fv(S) ∈ [0, 1], where S is the set of v’s

active in-neighbors and fv(φ) = 0. Now v becomes active if and only if fv(S) ≥ θv.

Clearly, the LT model is a special case of the general threshold model, in which each

threshold function has the form

fv(S) = min(1,
∑
u∈S

buv).

Surprisingly, while the IC model and the LT model are two specific models for

influence diffusion from different perspectives, the general cascade model and the

general threshold model are proved to be equivalent and can be converted to each

other [69]. Both the influence probability in the IC model and the influence weight in

the LT model are assumed to be given as input. However, neither of them is directly

available in reality. In fact, how to accurately estimate them is an important challenge.

Kempe et al. did not address the issue of inferring actual influence parameters. In the

IC model, they simply assigned a uniform probability of p to each edge, choosing p to

be 0.01 and 0.1 in separate trials. In the LT model, they treat the ratio of multiplicity

of parallel edges between a pair of nodes to the degree of the node of interest as its

influence weight.

Goyal et al. [49] devise three probabilistic influence models to estimate the influ-

ence probabilities on edges, using the action log of every user. They first propose a

static model with three variations. For instance, they define the maximum likelihood

estimator (MLE) of success probability as the ratio of number of successful attempts

over the total number of trials that an active user performs to influence its inactive

neighbor. More interestingly, they measure the number of actions that propagate

between pairs of neighbors at different time intervals, and demonstrate that influ-

ence decays with time exponentially as shown in Figure 4.2. Thus, they present a

continuous-time (CT) model and a discrete-time (DT) model to capture the tempo-

ral dynamics of influence probability. They also propose an instance of the general

114

threshold model, in which the threshold function is defined as

pu(S) = 1−
∏
v∈S

(1− pvu)

where pvu is the learned influence probability of v on u. They validate their method-

ology in a case study of a Flickr dataset consisting of 1.3M nodes, 40M edges, and

an action log of 35M tuples referring to 300K distinct actions. Obviously, this data-

driven model requires an action log that is accurately collected and large enough

(from tens to hundreds of millions of tuples) to learn the model parameters, which is

not readily available or may be difficult to obtain in most social networks.

Bhagat et al. [8] bring up an interesting point. They argue that it is important

to distinguish product adoption from influence. They show that there exist tattlers

who are influenced but without adopting the product themselves. These tattlers serve

as information bridges in influence propagation and make a significant difference to

product adoption. They adapt the LT model to what they called linear threshold with

color (LT-C) model, as shown in Figure 4.4 in the form of a state diagram. Let A be

the set of active in-neighbors of an inactive node v. They instantiate the threshold

function fv(A) as

fv(A) =

∑
u∈Awu,v(ru,i − rmin)

rmax − rmin

where wu,v is the influence weight of u on v, ru,i is u’s rating on product i, and rmax

and rmin represent the maximum and minimum ratings in the system, respectively.

Node v becomes active if fv(A) ≥ θv. Then v may adopt the product with some

probability λv or simply tattle about the product. A tattler can either enter the

promote state with a probability µv or enter the inhibit state.

The LT-C model requires that the social network under consideration is associated

with a large number of user ratings on different products, such as Netflix, Amazon

115

Figure 4.4: LT-C model with colored end states: adopt-green, promote-blue, inhibit-
red (given in [8], Copyright by ACM)

and Flixster. Not only is the threshold function fv computed based on the user rating

log, detailed user log information is needed to determine whether an activated user

becomes an adopter or a tattler so as to learn λv and µv. They rely on these user

rating logs to compute the ratings matrix. However, the ratings matrix is commonly

very sparse with a large number of missing values corresponding to users who have not

rated a product, especially for a new product just or to be launched in the market.

Therefore, they have to assume that the new product has been adopted by some

small number of early adopters who have assigned ratings to the product, and then

use matrix factorization to predict these missing ratings. All of these confine the

applicability of this model, and may affect its accuracy. More importantly, there is a

subtle but significant issue in this model. We agree that it is a step towards a more

realistic model by distinguishing tattlers from adopters. However, a tattler does not

have to be activated to be able to spread influence in reality. Many tattlers are simply

messengers passing WOM messages on to their friends. They do not have to form

opinions of their own. This is an important feature of WOM communication. For

example, Tom bought an iPhone, and told his friend Jeff that it is cool and he likes

it. When Jeff chats with their friend Nick at lunch, he simply tells Nick the fact that

Tom just bought an iPhone and he really likes it. Jeff does not have to be activated

to buy an iPhone of his own or form his opinion about iPhone at all, but he does

116

pass indirect/passive/informational influence on to Nick. In fact, messengers play

an important role in WOM marketing, and should be distinguished and included in

influence-diffusion modeling.

To incorporate the temporal aspects observed in diffusion dynamics, Chen et

al. [21] investigate time-critical influence maximization. The goal is to maximize

influence spread within a given deadline. They propose an IC model with meeting

events (IC-M), in which each edge (u, v) is associated with a meeting probability

m(u, v) to reflect the time-delayed diffusion dynamics. They present two methods

to determine the meeting probabilities. One is the weighted method with m(u, v) =

c
doutu +c

, where c is a user-defined smoothing constant and doutu is the out-degree of u;

the other is a random method in which m(u, v) is selected from {0.2, 0.3, . . . , 0.7, 0.8}

uniformly at random. It is no doubt a realistic step to incorporate temporal diffusion

dynamics of individual nodes. However, this model has limitations on the following

two respects. First, the meeting probability would be meaningless if there is no

deadline constraint or the deadline constraint is set to a relatively large number. As

noted in previous section, the IC model has a time-invariant property, i.e., delaying

the activation attempts of any nodes would not change the distribution of the final

active set. In other words, the meeting probability has an effect in IC-M model only

because of the deadline constraint, which apparently underestimate the impact of

individual temporal dynamics on influence diffusion. We argue that it would make

more sense to examine it by associating the temporal diffusion dynamics with the

temporal influence decay. Second, they fail to capture the contact frequency in their

meeting probability. For most weighted social networks, the weight on a link is

a natural and important indicator that describes the strength of the relationship

and/or the contact frequency. A realistic diffusion model should incorporate the

weight information to better capture the individual temporal diffusion dynamics.

There are many other extensions of the classic IC and LT models to different

117

scenarios. Chen et al. [19] extend the IC model to incorporate the emergence and

propagation of negative opinions. The LT model has been extended to address influ-

ence maximization under competition [13, 55]. Gayraud et al. [44] extend both the

IC and LT models to study the influence diffusion in dynamic networks.

However, all the aforementioned models are probabilistic models. None of them

explicitly quantify the influence or directly compute the aggregation of influence to

reveal the 3A process from awareness → aggregation → activation. The model pro-

posed by Ma et al. [90] can be regarded as an attempt in this direction. They model

the diffusion of innovations as heat-diffusion processes. The seed nodes are regarded as

heat sources of a very high temperature, and their heat flows throughout the network

following the heat diffusion theory from physics. This heat-diffusion model incorpo-

rates influence diffusion and aggregation in terms of heat flow. Unfortunately, there

are several crucial issues associated with this model. First, influence is not like heat.

When a node transmits its heat to its neighbors, its temperature drops. The more

heat it spreads out, the faster the temperature drops. This is not true for influence. A

node does not lose its influence after it diffuses its influence to its neighbors. Second,

heat always flows from a high-temperature node to a low-temperature node. How-

ever, influence does not have this directionality, especially in WOM communication.

Any node can pass WOM messages and influence on to its neighbor. Third, it fails

to capture an important feature that should be included in the influence-diffusion

model, that is, a newly activated node should have a jump of its temperature and

increase its capability to influence others. Finally, the initial heat of seed nodes and

the activation threshold are not set at the same or reasonable scale.

4.2.2 Influence Maximization

The influence-maximization problem is formally described as follows: Given a

social network G = (V,E) with a total of n nodes (i.e., |V | = n), a stochastic diffusion

model on G, and a number K(K � n) that specifies the number of seed nodes (e.g.,

118

the first batch of people who have been convinced to adopt a new product), find the

seed set of K nodes to be activated first so that they can trigger the largest cascade

of further adoptions in the social network. More precisely, let S0 denote a seed set,

φ(S0) denote the final active set generated by the stochastic diffusion model, and

σ(S0) = E(|φ(S0)|) denote the influence spread of seed set S0, which is the expected

size of the final active sets of all random runs of influence diffusion under the given

diffusion model. Then the influence-maximization problem is to find the optimal seed

set S∗ such that

S∗ = arg max
S0⊆V, |S0|=K

σ(S0).

The influence-maximization (hereafter referred to as IM) problem is NP-hard for

both the IC and LT models. Kempe et al. [69] prove the hardness by considering

an instance of the NP-complete Set Cover problem and the NP-complete Vertex

Cover problem as a special case of the IM problem under the IC model and the

LT model, respectively. Moreover, they show that the influence spread function σ(·)

in both the IC and LT models has two important properties: monotonicity and

submodularity. A set function f : 2V → R is monotone if for any subsets S ⊆ T ⊆ V ,

f(S) ≤ f(T), which in this context means that adding more nodes to a seed set

cannot reduce the size of the final activated set. The set function f is submodular

if for any subsets S ⊆ T ⊆ V and any element u ∈ V \ T , f(S ∪ {u}) − f(S) ≥

f(T ∪{u})−f(T). Submodularity can be understood as diminishing marginal return,

which in this context means the marginal contribution of node u when added to a

seed set T cannot exceed the marginal contribution when adding it to a subset S ⊆ T .

They prove these properties by formulating an equivalent view of the diffusion process

in terms of live-edge graph models. Further, it is shown that the influence spread

function σ(·) for any general cascade model or general threshold model is always

monotone, but the general models may not satisfy the submodularity property [20].

119

Fortunately, as conjectured by Kempe et al. [69] and later proved by Mossel and Roch

[93], the following theorem holds: in the general threshold model, if the threshold

function fv(·) is submodular for all v ∈ V , then the influence spread σ(·) of the

model is also submodular. This theorem not only reveals that local submodularity is

preserved globally under the general threshold model, but also provides an alternative

approach to examining the submodularity property of a broad class of the general

threshold models.

After exploiting these properties, Kempe et al. present a simple greedy hill-

climbing algorithm to find the “optimal” K-node seed set. As it relies on Monte

Carlo (MC) simulation to compute the influence spread, we refer to it as MC-Greedy

hereafter. It is easy to implement. As shown in Algorithm 4, MC-Greedy starts with

an empty seed set (Line 2), and runs K rounds to generate a seed set of K seed nodes.

In each round, it sweeps over each node u ∈ V \ S to compute the influence spread

σ(S ∪ {u}). Since the exact computation of influence spread under the IC and LT

models is]P -hard [22], they run MC simulation R times to estimate the influence

spread (Line 6-10) . Finally, the node that together with current seed set S generates

the maximum influence spread is added to S (Line 12).

For any model (such as the IC and LT models) in which the influence spread

function σ(·) is monotone and submodular, MC-Greedy approximates the optimal

within a factor of (1− 1/e− ε) for any ε > 0 [96]. This is a performance guarantee at

least 63% of optimal. However, this algorithm suffers from a very high computational

cost. It requires O(nK) evaluations of influence spread, and each evaluation needs

to run R simulations of the diffusion process. Not only is each simulation generally

time-consuming, but R also has to be large enough to maintain the effectiveness

of this greedy algorithm. This performance inefficiency makes it infeasible even for

medium-sized networks of tens of thousands of nodes and edges.

To improve its efficiency, one strategy is to reduce the number of influence-

120

Algorithm 4 MC-Greedy

1: procedure MC-Greedy(G = (V,E),K,R)
2: Initialize S ← φ
3: for i = 1 to K do
4: for each node u ∈ V \ S do
5: gu ← 0
6: for j = 1 to R do
7: σu ← MC-simulation(S ∪ {u})
8: gu+ = σu
9: end for

10: gu ← gu/R
11: end for
12: S ← S ∪ {arg maxu∈V \S gu}
13: end for
14: Return S
15: end procedure

spread evaluations. Leskovec et al. [81] exploit the submodularity and present a

Cost-Effective Lazy Forward (CELF) scheme that significantly reduces the number

of evaluations. The key idea is that a node u’s marginal gain σ(u|S) in the current

iteration cannot be more than its marginal gain σ(u|S ′) in any previous iteration

since σ(·) is submodular and S ′ ⊂ S. Thus, if we have evaluated a node w’s marginal

gain σ(w|S) in current iteration, there is no need to evaluate in this iteration any

node u that was evaluated in previous iteration with σ(u|S ′) ≤ σ(w|S). It is shown

empirically that CELF improves the time-complexity of MC-Greedy by up to 700

times. Goyal et al. [50] propose CELF++ to further reduce the number of evalua-

tions, which is approximately 35-55% faster than CELF as reported by the authors.

Unfortunately, CELF and CELF++ are still quite slow and not scalable due to the

overheads of Monte Carlo simulation.

Another way to improve the efficiency is to develop new heuristic algorithms that

avoid Monte Carlo simulation. This strategy requires exploiting specific aspects of the

diffusion model and the network structure. Wang et al. [125] propose a maximum in-

fluence arborescence (MIA) algorithm for the IC model. The main idea is to use local

121

arborescence structures of each node to approximate the influence propagation. They

first compute the maximum influence path (MIP) between each pair of nodes (u, v),

which is the path with the maximum influence probability among all paths from u

to v. A user-specified threshold is used to ignore MIPs with too small probabilities.

Then they union the MIPs starting or ending at each node into the arborescence

structures, which represent the local influence region of each node. They only con-

sider the influence propagation within these local regions. Their experiments show

that MIA is several orders of magnitude faster than greedy algorithms with compet-

itive influence spread. Chen et al. [22] use the same approach and propose a local

directed acyclic graph (LDAG) algorithm for the LT model, in which they construct

a LDAG for each node and restrict influence diffusion to a node only through its

LDAG. They show that LDAG improves running time by three orders of magnitude

while closely matching the influence spread of the greedy algorithm. Goyal et al. [51]

present a more efficient heuristic called SIMPATH for influence maximization under

the LT model. This algorithm is built upon the CELF optimization that iteratively

selects seeds in a lazy forward manner. However, they avoid the expensive MC sim-

ulation by enumerating the simple paths starting from the seed nodes within a small

neighborhood. They show that SIMPATH outperforms LDAG in terms of running

time, memory consumption and influence spread.

There are some other interesting algorithms. An appealing idea is to take ad-

vantage of the community structures in social networks. Wang et al. [130] propose

a community-based greedy algorithm (CGA) for finding the top-K influential nodes

in mobile social networks under the IC model. They first detect communities, and

then implement a dynamic programming algorithm for selecting communities to mine

influential nodes. Their experimental results show that CGA is more than an order of

magnitude faster than MC-Greedy with small loss in influence spread. Jiang et al. [64]

propose a new simulated annealing (SA) heuristic to maximize influence spread un-

122

der the IC model. They estimate the influence spread using expected diffusion values

instead of running MC simulation, which significantly improve the efficiency. They

show in their experiments that SA outperforms the state-of-the-art greedy algorithms

in terms of both efficiency and influence spread.

4.3 Multiple-path Asynchronous Threshold
(MAT) Model

In this section, we elaborate our MAT model for viral marketing. In this model,

we quantitatively measure the aggregated influence on each node, rather than just

differentiating the nodes with a binary status on whether they are activated. Our

model integrates direct and indirect influence, and instantiates the 3A process to

model complex WOM communication and its effects. Moreover, we explicitly model

influence attenuation along diffusion paths, influence decay with time, and individual

temporal diffusion dynamics related to the relationship strength or contact frequency

between a node of interest and its neighbors.

4.3.1 Model Description

Our model is applicable to both undirected/directed and unweighted/weighted

networks. Without loss of generality, let G = (V,E,W) be a directed and weighted

network with |V | = n and |E| = m. The weight wuv ∈ W associated with a directed

edge (u → v) represents the relationship strength of node u over node v, e.g., the

frequency that u calls or emails v. The relationship strength is usually asymmetric in

directed networks. For any unweighted network, we regard it as a weighted network

with a weight of 1 on each link. The influence is transmitted through out-links. For

any undirected edge between two nodes, we replace it with a pair of directed links

pointing to each other, associated with the same weight as the original weight on the

undirected edge.

We categorize all the nodes in the network into two types: influencers and mes-

123

sengers. An influencer is an active node that originates and spreads its influence in

the network. A messenger is an inactive node that acquires influence and passes the

influence it receives from influencers or other messengers. Once a messenger acquires

enough influence (greater than or equal to its threshold), it is activated and turns

into an influencer who starts to spread out its own influence to others. It is noted

that an influencer not only actively diffuses its influence to others but also acts as

a messenger passing along the influence from other influencers or messengers. Our

model captures an important characteristic of WOM communication in that: anyone

(either active or inactive) can pass along WOM messages and potentially influence

the recipient. In other words, a node can be activated by not only direct influence

from its active neighbors (influencers) but also indirect influence passed along by its

inactive neighbors (messengers). This is a distinguishing feature built in our MAT

model. In addition, there are two important mechanisms implemented in the MAT

model. First, cycles are prohibited. It makes sense since no one would repeatedly

send out the same message to her friends. Second, an influencer may influence the

same person multiple times since her message may be delivered to that person along

different diffusion paths. This is a more realistic imitation of WOM messaging and

social reinforcement in social networks.

For example, in Figure 4.5, A is an influencer. She bought an iPhone at t = 0 and

told her friends that it was awesome at t = 1. In Figure 4.5(a), B got the message

and direct influence from A. Suppose that B sent the message back to A at t = 2.

A would simply ignore it. Even if A is inactive, the message would have no influence

on A since it was exactly the message she sent out. It is sensible to avoid such cycles.

In Figure 4.5(b), when A passed her message on to B and C at t = 1, B and C

acquire the direct influence from A. Further, when B told C that “I have a friend

who bought an iPhone and she thought it is so cool” at t = 2, C receives A’s indirect

influence via B (triadic transitivity). Similarly, in Figure 4.5(c) and (d), both D and

124

Figure 4.5: Several types of direct and indirect influence

E received A’s indirect influence from multiple paths. Especially, in Figure 4.5(d), D

is structurally equivalent to A. Our MAT model captures the well-known structural-

equivalence property, which may be crucial to social contagions [37]. This model fits

well in a variety of scenarios, such as Twitter/consume/citation networks.

The relationship strength of a person, as indicated by the weight on edges, may

vary significantly among family members, close friends, work colleagues, casual ac-

quaintances, and so on. Stronger relationship implies stronger influence in general.

To quantify the relationship strength on influence, we introduce a weight normaliza-

tion scheme that measures the fraction of influence a node receives from a specific

in-neighbor relative to the total influence it may receive from all of its in-neighbors.

Given a directed edge u→ v with a raw weight wuv , and letting N in
v denote the set

of node v’s in-neighbors, the normalized weight ŵuv is defined as

ŵuv =
wuv∑

k∈N in
v
wkv

.

As discussed in the introduction, influence does not remain static or constant, but

rather dissipates rapidly along diffusion paths [24, 87] and decays with time [49]. To

quantify the influence attenuation along a diffusion path, we use a depth-associated

attenuation coefficient α = d−2, where d is the depth (number of hops) from an influ-

125

encer to the node of interest along the diffusion path. It is the same as what we define

in Chapter 2, and can be interpreted as a compounding factor that incorporates the

trustworthiness decay, information corruption, and decreasing reaching probability.

Specifically, we set the depth limit dmax to 3 (for each influencer) to capture the

three-degrees-of-influence phenomenon. On the other hand, we model the temporal

influence decay as an exponential function of time

I(t) = e−λt

where λ is a user-specified tunable parameter of decay rate. It can be used to account

for different products/topics or various types of social media, such as blogs, news-

paper, TV, etc. When a node is newly activated, an independent timer is attached

to this new influencer and the time is set to 0 at that moment. These mechanisms

are proposed to reflect WOM communication in reality. Right after we purchase a

new product, we feel the excitement and urge to tell our friends (potentially with

stronger attempt to influence them), but our enthusiasm and influence potential fade

away monotonically over time. It is noted that the timing for that node acting as a

messenger of other influencers has no change.

In general, people communicate much more frequently with their family members

and close friends than casual acquaintances. The contact frequency among friends is

strongly correlated with the relationship strength. As a result, WOM communications

generally take place in an asynchronous manner at the individual level. To capture

the individual temporal diffusion dynamics, we model the heterogeneity of WOM

messaging from one to her friends as a Poisson process. For a directed edge (u→ v),

let Xuv denote the number of times node u makes contact with node v during a unit

interval of time. We assume Xuv follows a Poisson distribution with a rate of µuv. Its

probability mass function can be written as

126

puv(x) =


µxuve

−µuv

x!
, x = 0, 1, 2...

0, elsewhere.

µuv is computed as

µuv = 1 + w̃uv + µu,

where w̃uv and µu can be interpreted as the local activeness of u → v and global

activeness of node u. Let wu:max and wu:min denote the maximum and minimum

weight among node u’s out-links, respectively. Let wu denote the sum of all out-link

weights of node u, and define wmax = maxi∈V wi and wmin = mini∈V wi. Then, we

measure w̃uv and µu as follows

w̃uv =
wuv − wu:min

wu:max − wu:min

,

µu =
wu − wmin
wmax − wmin

.

These normalization schemes enable us to differentiate a node’s activeness at both

the local and global levels. If wu:max = wu:min (e.g., unweighted networks), we set w̃uv

to 0.5. In case wmax = wmin (which rarely occurs), we set µu to 0.5 for all u ∈ V .

Thus, µuv falls in the range [1, 3] for any (u→ v) ∈ E. At each time step, the WOM

message is propagated one hop from node u to its out-neighbor v with a probability

puv = 1− P (X ≤ 0).

If the propagation is not realized at time step ti, then the probability for the message

to be transmitted at time step ti+1 is unchanged due to the memoryless property of

Poisson distribution. If u has delayed passing the message on to v for delaymax time

127

steps (maximum delay), it is assumed that u has no intention to pass the message

on to v at all. This is a sensible mechanism reflecting the fact that not everyone is

actively engaged in WOM messaging with each of its neighbors at any time steps. In

addition, we set delaymax to 3 time steps in alignment with the depth limit dmax of 3,

which implies that the message would have no noticeable influence even if it is finally

propagated after it has been held for 3 or more time steps.

Now we can quantify the influence along a diffusion path at a specific time step.

Let σt,di:x→y denote the amount of influence (originated from an influencer i) that node

x passes on to node y at time step t and depth d. Then following a diffusion path

from an influencer i → j → k → l, the influence that nodes j, k and l acquire from

node i is respectively calculated as

σt1,1i:i→j = e−λt1 × 1

12
× ŵij

σt2,2i:j→k = e−λt2 × 1

22
× ŵij × ŵjk

σt3,3i:k→l = e−λt3 × 1

32
× ŵij × ŵjk × ŵkl.

In each equation above, the first term on the right hand side is the temporal influence

decay, the second term is the depth-associated influence attenuation, and the rest is

the chain product of the normalized weights on the corresponding links that constitute

the diffusion path from the influencer to the node of interest. It is noted that since

we allow a delay of propagation for up to 3 time steps for each node, t1 can take any

element in {1, 2, 3}, t2 in {2, 3, 4, 5, 6}, t3 in {3, 4, 5, 6, 7, 8, 9}, and t1 < t2 < t3.

The diffusion process starts with an initial set of influencers (seed nodes) S0 with

|S0| = K, and unfolds in discrete time steps. At each time step, the influence is

propagated one hop from a node u (parent node) to each out-neighbor v (child node)

with a probability puv. Like the IC and LT models, we focus on the progressive

case in which an inactive node can turn into an active node but not the other way

128

around. Each seed node is assigned an influence value of 1. Each inactive node

v is initialized with an influence value of 0, and selects an activation threshold θv

uniformly at random in the range [0, 1]. Let A denote the set of v’s in-neighbors who

pass influence on to v, and let fv(A) denote the threshold function of v, that is, the

total influence that v receives from nodes in A. Formally, we define fv(A) as

fv(A) = min(1,
∑
u∈A

buv), A ⊆ N in
v ,

where buv represents the amount of influence that v receives from u, and N in
v denotes

the set of in-neighbors of v. Whenever fv(A) ≥ θv, v is activated and turns into

an influencer with an influence value of 1. Then it not only continues passing other

influencers’ influence as a messenger, but also starts to spread out its own influence

as an influencer. The diffusion process stops when the number of hops of influence

diffusion of each influencer (including the seed nodes and all activated nodes) reaches

the depth limit (dmax = 3 by default) and no new activation is possible.

4.3.2 Discussions

It is interesting to observe how the MAT model relates to the general threshold

model and the classic LT model. The definition of the general threshold model can

be described as follows: For a social network G = (V,E), each node v ∈ V has

an arbitrary threshold function fv(A) : A ⊆ N in
v → [0, 1], subject to the condition

that fv(φ) = 0 and fv(·) is monotone. Initially, each node independently selects a

threshold θv uniformly at random in the range [0, 1]. Starting from a given seed set

S0, at every time step t ≥ 1, first set St to be St−1, then for any inactive node v ∈ V ,

if fv(St−1 ∩ N in
v) ≥ θv, v becomes activated at time step t, and add it into St. This

diffusion process stops when no new activation is possible. The LT model is a special

129

case of the general threshold model, in which each threshold function is defined as

fv(S ∩N in
v) = min(1,

∑
u∈S∩N in

v

buv),

where buv is the pre-specified influence weight on link u → v. Especially, for the LT

model, the notation St−1 ∩N in
v can be extended to N in

v only by a simple transforma-

tion: for each link (u→ v), define b′uv = buv if u is an active node and b′uv = 0 if u is

an inactive node.

As we can see, our MAT model can be regarded as a general LT model and a

more general threshold model. The main generalization comes from the following two

directions. First, the general threshold model considers only the active in-neighbors

who exert direct influence on the node of interest. The MAT model considers not only

the active in-neighbors but also those inactive in-neighbors who serve as messengers

passing on to the node of interest the indirect influence originated from influencers two

or three hops away. In other words, we have b′uv > 0 even if u is an inactive messenger.

Second, buv in the LT model is a pre-specified constant. However, buv in the MAT

model is a variable that depends on the diffusion path, temporal decay of influence,

and individual diffusion dynamics. One way to think of it is that when u passes

either direct or indirect influence on to v, the amount of influence is incrementally

accumulated in influence weight buv and stored on the link u → v. When checking

whether v can be activated, its threshold function fv linearly sums up the influence

weights on all v’s in-links. In particular, if we set the temporal decay rate λ = 0, the

depth limit dmax = 1, and the diffusion probability puv = 1 if u is active and puv = 0

if u is inactive, our MAT model reduces to the classic LT model.

4.4 Influence Maximization under MAT Model

We formally define the influence-maximization (IM) problem under our MAT

model in a general framework as follows: Given a social network G = (V,E,W),

130

a budget K denoting the seed-set size, and the MAT model on G associated with

parameters λ (temporal decay rate), dmax (depth limit), puv for each (u → v) ∈ E

(individual diffusion probability) and delaymax (maximum delay), find a seed set

S0 ⊆ V with |S0| ≤ K such that the expected influence spread σ(S0) is maximized

under the MAT model. For viral marketing, the seed nodes are the initial adopters of

a new product, and the influence spread is measured by the total number of people

in the network who adopt/purchase the product in the end of the diffusion process.

4.4.1 Complexity and Properties

We have thus far proposed the MAT model and defined the IM problem under the

MAT model. Now we show below the problem is NP-hard and the influence spread

function σ(·) is monotone. It is desirable to show that σ(·) is also submodular such

that the greedy hill-climbing algorithm provides a (1− 1/e− ε)-approximation to the

optimum for any ε > 0. However, it turns out that it is hard to rigorously prove it.

We present it as a conjecture.

Theorem 4.4.1. The IM problem is NP-hard under the MAT model.

Proof. Consider the class of instances of the problem with restrictions that λ = 0,

dmax = 1, delaymax = 0, and puv = 1 if u is active and puv = 0 if u is inactive for any

u ∈ V . As discussed in previous section, the MAT model then reduces to the classic

LT model. Therefore, the IM problem over this class of instances is equivalent to the

classic IM problem under the LT model, which is known to be NP-hard [69]. This

concludes the proof.

Theorem 4.4.2. The influence spread function σ(·) for the MAT model is monotone.

Proof. Recall that the threshold function fv(S) = min(1,
∑

u∈S∩N in
v
buv), where buv is

the amount of influence that v receives from u. It is straightforward to verify that

fv(S) is monotone. For each run of the diffusion process, the threshold θv is randomly

131

selected and fixed for each v ∈ V . Then it is easy to show that when the seed set

S0 grows, the final active set φ(S0) also grows under these fixed thresholds, due to

the monotonicity of fv(S). Finally, σ(S0) is simply the average of the size of all final

active sets among all possible threshold values selected in different runs, and thus is

monotone.

Conjecture 4.1. The influence spread function σ(·) for the MAT model is submod-

ular.

Submodularity is a desirable property in the influence-maximization problem.

With this property, the greedy hill-climbing algorithm produces a solution that has

approximation factor (1 − 1/e) of the optimal. However, it does not hold for all

diffusion models. Even if it does for some model (such as the IC and LT models), the

proof is nontrivial.

The most important and widely-used approach is to construct an equivalent live-

edge graph model [20, 69] to the diffusion model of interest. A live-edge graph is

generated as follows: Given a graph G = (V,E), each edge e ∈ E is marked as either

live or blocked based on certain randomized rule, and the subgraph consisting of all

nodes in V and all live edges is called a live-edge graph. Two stochastic diffusion

models for a social network G = (V,E) are equivalent if for any given seed set

S0 ⊆ V , for any time step t ≥ 1 and any subset A1, . . . , At−1 ⊆ V , the event S1 =

A1, . . . , St−1 = At−1 has either zero probability or non-zero probability in both models,

and in the latter case, the conditional distributions of active set St under seed set S0

conditioned on the event S1 = A1, . . . , St−1 = At−1 are the same for the two models.

In other words, when two models are equivalent, the joint probability distributions of

all active sets S1, S2, . . . under any given seed set S0 for the two models must be the

same [20]. It is usually a challenging task to find a live-edge graph model equivalent

to the diffusion model under consideration (and hard to prove the equivalence). An

important feature embedded in the live-edge graphs is that any active node should

132

be reachable from at least one seed node along at least one live-edge path consisting

entirely of live edges. It implies that any active node (except seed nodes) should

have at least one active neighbor, which makes it infeasible to apply this approach to

our MAT model since a node without any active neighbors may still be activated by

indirect influence in the MAT model.

The theorem conjectured by Kempe et al. [69] and later proved by Mossel and

Roch [93] provides an alternative approach to examining the submodularity property

of the general threshold models. The theorem states that if the threshold function

fv(·) is submodular for all v ∈ V , then the influence spread function σ(·) of a general

threshold model is also submodular. As it manifests, it is only applicable to the

general threshold model, in which fv(·) depends only on active neighbors. In our

MAT model, fv(·) considers both active neighbors (influencers) and inactive neighbors

(messengers) as long as they pass influence on to v. It is possible to circumvent the

obstacle by including those messengers in the active set as dummy influencers. It is

needed to aggregate and store their influence on the corresponding links, and keep

track of the influence each messenger receives. At some time step, a messenger might

be activated if the influence it receives is greater than or equal to its threshold. In

the end of the diffusion process, we remove those dummy influencers who are not

activated. This might be a promising direction, but it requires rigorous proof. For

now, we conjecture that the influence spread function σ(·) for our MAT model is

submodular, and leave the proof as future work.

4.4.2 Algorithms

The final step to address the IM problem is developing effective and efficient al-

gorithms to find the “optimal” seed set. Intuitively, the ideal selection of the K seed

nodes would be the K most influential nodes such that: each of them achieves individ-

ual influence spread as large as possible, and they should be far away from each other

to minimize the potential overlaps, but close enough to result in aggregation effects.

133

We develop a set of six approximation algorithms with different seeding strategies for

influence maximization under our MAT model, which include four generic baseline

heuristics and two novel algorithms designed specifically for the MAT model.

4.4.2.1 Baseline Heuristics

The simplest and naive baseline is to select nodes uniformly at random (hereafter

referred to as RANDOM). Not surprisingly, this algorithm is very unstable and does

not perform well in terms of influence spread. The most frequently used is the degree-

centrality heuristic (hereafter referred to as DEGREE), in which the seed nodes v

are chosen in descending order of out-degrees doutv . This seeding strategy is simple

but effective. Empirical studies [57,69] show that DEGREE results in larger influence

spread than other centrality-based heuristics, such as distance centrality and between-

ness centrality. A common feature of these centrality-based algorithms is that they

rely solely on one specific structural property of the network without considering the

diffusion dynamics. For example, many of the highest-degree nodes may be clustered

and have potentially large overlaps of influence spread, which leads to deterioration

in performance.

The next baseline is the Top-K algorithm. We present its pseudocode in Algo-

rithm 5. It sweeps over each node u ∈ V to compute the influence spread of each node

individually (Lines 2-9), using Monte Carlo simulation (Lines 4-7). Then, it selects

the top K nodes with the largest individual influence spread (Lines 10-13). It is worth

noting that the top-K nodes that produce the largest influence spread individually is

not the same as the K seed nodes that produce the largest influence spread together.

For example, if two top influencers are so close to each other that their influence

spreads have a large overlap, it is not a good idea to select both of them as seed

nodes. While the DEGREE algorithm relies solely on the structural properties of

the network without considering the diffusion dynamics, the Top-K algorithm relies

solely on the diffusion dynamics without considering the network structure.

134

Algorithm 5 Top-K

1: procedure Top-K(G = (V,E),K,R)
2: for each node u ∈ V do
3: gu ← 0
4: for j = 1 to R do
5: σu ← MC-simulation(S ∪ {u})
6: gu ← gu + σu
7: end for
8: gu ← gu/R
9: end for

10: S ← φ
11: for i = 1 to K do
12: S ← S ∪ {arg maxu∈V \S gu}
13: end for
14: Return S
15: end procedure

MC-Greedy (as shown in Algorithm 4) is the last baseline heuristic. It considers

both the diffusion dynamics and the network structure (implicitly). One may notice

that the Top-K algorithm is actually the first round of the K rounds in MC-Greedy

except that MC-Greedy selects only one top influencer instead of K top influencers.

It continues exhaustively running MC simulation to find the next seed node that pro-

duces the maximum marginal gain in influence spread. MC-Greedy usually achieves

the largest influence spread of the K seed nodes at the collective level. However,

as discussed in Section 4.2.2, It suffers from a very high computational cost, which

makes it infeasible even for medium-sized networks.

4.4.2.2 IV-Greedy

MC-Greedy demonstrates the best performance in terms of influence spread under

the IC and LT models among all state-of-the-art algorithms. Regardless of its low

efficiency due to the overhead of MC simulation, the greedy strategy used in MC-

Greedy makes sense and is highly effective. We develop IV-Greedy borrowing the

greedy strategy of MC-greedy but replacing MC simulation by using the influence

vector of each node, which greatly improve efficiency.

135

In our MAT model, we set dmax = 3 and delaymax = 3 by default and treat

them as built-in parameters. The individual diffusion probability puv is determined

by the weight on edges. The only user-specified parameter is the temporal decay rate

λ, which is tunable and can be used to account for different products, topics and

events on different types of social media. However, we do not want to include it in

our influence-maximization algorithm so that our algorithm is robust and fairly com-

parable with other algorithms. Therefore, we directly call InfluenceMatrix-Builder

(see Algorithm 1; IM-Builder for short hereafter), i.e., the algorithm we developed

to generate the influence matrix for community detection in the reachability-based

diffusion model. The only difference exists in the weight normalization schemes. In

the reachability-based diffusion model, we normalize each in-weight of a node by the

maximum in-weight of that node, which captures the relative susceptibility of the

node to its in-neighbors. In our MAT model (activation-based diffusion model), we

normalize each in-weight of a node by the total in-weight of that node, which quanti-

fies the fraction of influence diffused from each in-neighbor. In fact, IM-Builder can

be regarded as a static version of the influence-diffusion process, in which it explores

various diffusion paths of each node individually, but ignores the temporal diffusion

decay, individual diffusion dynamics, and the aggregate effect of multiple influencers

and the newly activated nodes. We use it as a proxy for the real diffusion process so

as to avoid the expensive MC simulation.

The influence vector of a node captures where and how much influence it spreads

over its neighborhood. We define the influence score of a node as the sum of all

elements in its influence vector, which represents an estimate of its total influence

spread. Similar to the influence centrality we defined for community detection in

Chapter 2, this influence score can be used to differentiate the influence significance

of the nodes in the network. An intuitive solution is to select the top-K nodes of the

highest influence scores as the seeds. Unfortunately, this solution does not work well.

136

Like those high-degree nodes, the nodes of high influence scores may be clustered

or too close to each other, leading to large overlaps of influence spread. We need

to somehow separate them from each other to minimize overlaps. The strategy that

we use in IV-Greedy is the greedy strategy used in MC-Greedy, in which we sweep

over the influence vector of each node to repeatedly pick the node with the maximum

marginal gain and add it to the seed set until all K seeds are found. The pseudocode

is shown in Algorithm 6.

Algorithm 6 IV-Greedy

1: procedure IV-Greedy(G = (V,E,W), n = |V |, dmax,K)
2: S ← φ
3: Call IM-Builder(G,n, dmax) to generate IVu of each node u
4: for each node u ∈ V do
5: Ru ←

∑
j IVu(j)

6: end for
7: v ← arg maxu∈V Ru
8: S ← S ∪ {v}
9: AR← IVv

10: for k = 2 to K do
11: for node i = 1 to n and i ∈ V \ S do
12: gi ← 0
13: c← 1−AR(i)
14: for j = 1 to n do
15: p← c× IVi(j)
16: q ← p+AR(j)
17: if q > 1 then
18: p← 1−AR(j)
19: end if
20: gi ← gi + p
21: end for
22: end for
23: v ← arg maxi∈V \S gi
24: S ← S ∪ {v}
25: c← 1−AR(v)
26: for j = 1 to n do
27: AR(j)← max(1, AR(j) + c× IVv(j))
28: end for
29: end for
30: Return S
31: end procedure

137

In IV-Greedy, each node is indicated by its node index from 1 to n. IV-Greedy

starts with an empty seed set (Line 2), and then calls IM-Builder to generate the

influence vector IVu for each node u ∈ V . IVu is an n-element array, in which

element IVu(j) represents the amount of influence node u exerts on node j. For each

node u, we get its influence score Ru by summing up all elements in its influence

vector IVu (Lines 4-6). We find the node v that has the highest influence score (Line

7), and add it to the seed set S as the first seed (Line 8). Then we make a copy

of IVv to an array AR, which is used as a representation of the collective influence

distribution of currently selected seeds. To find the next seed, we sweep over each

node i ∈ V \ S and compute the marginal gain gi of adding i to S individually. We

compute its benefit factor c = 1−AR(i) (Line 13). Recall that AR(i) represents the

amount of influence i receives so far, which can be also regarded as the probability

activating i. For example, if AR(i) = 1, it means that i has been activated, then

selecting i as a seed has no benefit to the overall influence spread. Then for each

element IVi(j), we get p = c × IVi(j) (Line 15), which represents the marginal gain

that node j gets. However, remember that the threshold function fv(S) is defined

within the range [0, 1]. If the amount of influence that node v receives is greater than

1, it is set to 1 since v has been activated and more influence on v is of no more effect

or benefit. Therefore, we add p to AR(j) to get q (Line 16), which represents the

accumulated influence that node j receives. If q is greater than 1, we set the actual

marginal gain p = 1 − AR(j) (Lines 17-19). Then we add p to gi, which represents

the total marginal gain of adding node i to S. Once we get the marginal gain of each

node i ∈ V \S (Lines 11-22), we select the node that produces the maximum marginal

gain as a seed and add it to S (Lines 23-24). Then we update AR by calculating the

benefit factor c and adding the marginal gain to each element in AR (Lines 25-28).

We repeat the process described above (K−1) times to find the (K−1) seeds, which

along with the first seed node constitute a full seed set S.

138

4.4.2.3 IV-Community

The network structure is a crucial factor in influence diffusion. It is well stud-

ied and shown that the hubs have higher influential power. Moreover, community

structure is a prominent property of social networks, and strong communities facili-

tate internal influence diffusion. It makes sense since people within a community are

more densely connected, and thus have higher rate of WOM messaging and influence

spread on each other. On the other hand, community structure may hinder WOM

communication and influence diffusion between communities [34]. Therefore, an ef-

fective seeding strategy should consider the underlying community structure of the

network, including the size and cohesiveness of individual communities.

We propose a community-based algorithm for influence maximization under our

MAT model. The basic idea is to first identify the communities and then select the

most influential nodes in different communities as the seed nodes. It seems straight-

forward at first glance, but turns out to be much more complicated than our initial

thought. Intuitively, we can directly use our IGLP algorithms to find the community

hierarchy and split the dendrogram at the level of K separated communities, and then

select the most influence node in each community to form the K-node seed set S.

Unfortunately, it does not work well since the K communities may vary significantly

in size and cohesiveness. In addition, it does not work for those networks whose

number of communities is less than K. Therefore, we have to define an appropriate

community-level measure such that we can use it to allocate the “right” number of

seeds to different communities. Ideally, this measure should incorporate both the size

and the cohesiveness of the communities. In fact, if we have that measure, there is no

need to agglomeratively merge the communities. We can directly allocate the seeds to

the communities in the initial community configuration produced by the IGLP algo-

rithm since the initial configuration captures the most compact community structure.

Another benefit is that we do not have to do hierarchical clustering and thus reduce

139

the time complexity. There is another issue that needs to be addressed. When we

need to select a seed node in a community, what is the measure we can use to identify

the most influential node in that community?

Our strategy is to use the influence score as described in IV-Greedy subsection.

Recall that the influence vector IVu for each node u ∈ V , captures where and how

much influence node u spreads in its neighborhood. Its influence score Ru is the sum

of all elements in IVu. It is straightforward to use the influence score as a measure to

find the most influential node in each community. Further, we compute the influence

score of a community C by summing up the influence scores of all of its community

members, i.e.,

RC =
∑
u∈C

Ru.

RC is not only directly defined in the context of influence but also naturally integrates

both the size and the cohesiveness of the community. Then we define an allocation

protocol as follows: Allocate a quota of seed nodes to each community by the ratio of

that community’s influence score to the total influence score of all communities. If

none of the communities is assigned to have even one seed (it is possible when the

network consists of many small communities or the network is very large), allocate

one seed to the community that has the largest influence score, and disregard it from

future allocation. When a community is assigned to have only one seed node, it

is straightforward to select the node of highest influence score as the seed in that

community. However, when we have to find two or more seed nodes in one community,

we have to deal with the problem that is the same or as hard as the original one, just

switching from the network level to a community level. Our solution is to use the

same strategy as IV-Greedy to find the seed nodes using the influence vectors. We

refer to this algorithm as IV-Community hereafter. A description of IV-Community

is presented in Algorithm 7.

140

Algorithm 7 IV-Community

1: procedure IV-Community(G = (V,E,W), n = |V |, dmax,K)
2: S ← φ
3: Call IM-Builder(G,n, dmax) to generate IVu of each node u
4: for each node u ∈ V do
5: Ru ←

∑
i IVu(i)

6: end for
7: Call IGLP-WE(G, dmax) to find communities { = {C1, . . . , Cl}
8: for each community C ∈ { do
9: RC ←

∑
u∈C Ru

10: end for
11: Allocate seeds to the communities in { according to the allocation protocol
12: for each community C that gets i (i > 0) seed(s) do
13: if i = 1 then
14: v ← arg maxu∈C Ru
15: S ← S ∪ {v}
16: else
17: Use IV-Greedy strategy to find s = {s1, . . . , si}
18: S ← S ∪ s
19: end if
20: end for
21: Return S
22: end procedure

Similarly, IV-Community starts with an empty seed set (Line 2), and calls IM-

Builder to generate the influence vector for each node (Line 3). The influence score

of each node is calculated as the sum of all elements in its influence vector (Lines

4-6). Then we call IGLP-WE to find the communities in the initial configuration

(Line 7). It is noted that we use IGLP-WE instead of IGLP-DP since we focus on

finding strong communities in the initial configuration of the community structure of

the network. For each community, we compute its influence score by summing up the

influence scores of all members in that community (Lines 8-10). Then we allocate

seeds to the communities using the allocation protocol (Line 11). If a community

is assigned with a single seed, we select the node of highest influence score in that

community, and add it to the seed set (Lines 14-15); if it has more than one seed, we

use IV-Greedy strategy to find the seed nodes (Lines 17-18).

141

4.4.3 Experiments

We conduct experiments on four widely-used real-life network datasets to evaluate

our MAT model and the performance of IV-Greedy and IV-Community, and compare

them against the baseline algorithms on both influence spread and time efficiency.

The code is written in Visual Basic and all experiments are carried out on a regular

desktop PC with Intel(R) Core(TM) i5-4670 CPU @ 3.40 GHz and 8.0 GB memory

under Windows 7 64-bit OS.

4.4.3.1 Network Description

To evaluate the applicability of our model and algorithms, we employ four real-life

networks with different combinations of link directionality and weights. We list their

statistics in Table 4.1. PGP [10] is an undirected/unweighted network of users of the

Pretty-Good-Privacy algorithm for secure information interchange. Each node repre-

sents a user, and each edge connects a pair of users of interest who have assigned public

keys of another based on trust between them. It is a single connected component with

relative clear community structure. NetHEPT2 is an undirected/weighted collabo-

ration network from the paper lists extracted from “High Energy Physics (Theory)”

section of the e-print arXiv from 1991 to 2003. Each node represents a unique author,

and each edge represents co-authorship of the two authors of interest, weighted by the

number of papers they have co-authored. This network has been frequently used in

previous work [18, 22, 51]. WikiVote3 [82] is a directed/unweighted who-vote-whom

network from Wikipedia. Nodes in the network represent Wikipedia users and a di-

rected edge from nodes i to j represents that user i voted on user j. This link direction

does not reflect the direction of influence flow. User i voting on user j is actually

because j has influence on i, as analogous to that of citing paper i and cited paper

j. Therefore, we reverse the link direction to reflect the actual influence flow. This

2http://research.microsoft.com/en-us/people/weic/graphdata.zip
3https://snap.stanford.edu/data/wiki-Vote.html

142

network has a giant component and a set of 23 small ones. The last network dataset

is C.elegans [132, 134]. It is a directed/weighted neural network of the nematode

worm C.elegans.

Table 4.1: Statistics of network datasets

Dataset PGP NetHEPT WikiVote C.elegans

Directed No No Yes Yes

Weighted No Yes No Yes

Num. of nodes 10,680 15,233 7,115 453

Num. of directed links 0 0 97,835 2,025

Num. of undirected edges 24,316 31,376 2,927 0

Avg. out-degree 4.6 4.1 14.6 4.5

Max. out-degree 205 64 457 145

Avg. weight 1 1.9 1 2.3

Max. weight 1 119 1 114

Num. of connected components 1 1,781 24 1

Avg. component size 10,680 8.6 296.5 453

Largest component size 10,680 6,794 7,066 453

4.4.3.2 Performance Comparison

We run experiments on the four network datasets to compare the performance

of IV-Greedy and IV-Community against the four baseline algorithms in terms of

influence spread and time efficiency. As discussed before, we set dmax = 3 and

delaymax = 3, and treat them as built-in parameters of the MAT model. The only

user-specified parameter is the temporal decay rate λ, which can be tuned to account

for different products, topics or events on different types of social media. Its sensible

range is (0, 0.5]. The larger λ, the faster temporal decay of influence. We will eval-

uate its effect on influence spread in next subsection. For now, we set it to 0.2 for

143

all algorithms. In addition, both MC-Greedy and Top-K needs to run Monte Carlo

(MC) simulation R1 times in each round of influence-spread estimation. Once an

algorithm produces the seed set it finds, we also rely on MC simulation (R2 times) to

estimate the influence spread of that algorithm for comparison. In our experiments,

we set both R1 and R2 to 1000. In particular, due to the extremely low efficiency of

MC-Greedy, we only report its results for C.elegans dataset.

Influence spread. We illustrate in Figure 4.6 the experimental results on the four

network datasets. Each curve shows the variation of the influence spread with respect

to the seed-set size. It is not surprising that RANDOM has the worst performance on

all datasets, which indicates selecting seed nodes at random is not a good idea. The

degree-centrality heuristic, DEGREE, greatly improves the influence spread, which is

4-8 times better than RANDOM. It makes sense that the well-connected nodes (social

hubs) facilitate influence diffusion with their high reach to others. Top-K is analogous

to DEGREE in the sense of targeting the group of most influential nodes who achieve

largest influence spread individually. It achieves an improvement of 26.7%, 4.6%,

6.5%, and 7.2% over DEGREE on PGP, NetHEPT, WikiVote, and C.elegans, respec-

tively. However, its improvement on influence spread comes with a huge sacrifice on

efficiency since it relies on expensive MC simulation. Both DEGREE and Top-K fail

to capture the fact that many of the highest-degree or most influential nodes may

be clustered, which results in large overlaps of influence spread. Our IV-Community

takes advantage of the community structure to naturally separate the seed nodes from

each other to minimize the potential overlaps. It consistently outperforms DEGREE

on all datasets with the largest improvement of 27.9% on PGP. It is about 4.6% better

than Top-K on NetHEPT, and exhibits some advantages over Top-K on WikiVote

and PGP when the seed-set size is relatively large. But it cannot beat Top-K on

C.elegans. IV-Greedy achieves the best performance overall in the comparison with

IV-Community, Top-K, DEGREE and RANDOM. It outperforms IV-Community,

144

Figure 4.6: Performance comparison on influence spread

DEGREE and RANDOM consistently, except that it shows exactly the same perfor-

mance as IV-Community on WikiVote. That is because IV-Community clusters all

the nodes in the giant component into one single community and allocates all seeds

to it. IV-Greedy achieves larger influence spread than Top-K when the seed set gets

larger. It outperforms Top-K by 5.7%, 10.1%, 1.6%, and 3.1% on PGP, NetHEPT,

WikiVote, and C.elegans, respectively. As expected, it is inferior to MC-Greedy, but

only by 4% on C.elegans. However, as shown in the comparison of time efficiency,

IV-Greedy and IV-Community significantly outperform MC-Greedy and Top-K.

145

Figure 4.7: Performance comparison on running time (CPU seconds)

Running time. We start with a brief analysis of the time complexity of each algo-

rithm. Let n and m denote the number of nodes and edges in the network, respec-

tively. Each run of Monte Carlo (MC) simulation is O(m), and thus Top-K has a

time complexity of O(nRm), where R is the number of repetitions of MC simulation.

As we can see, Top-K already has a very high computational cost. Unfortunately,

MC-Greedy is even much worse than Top-K. Top-K is just the first round in MC-

Greedy finding the first seed. This process has to repeat K times to find the K-node

seed set. Moreover, in the kth repetition, the seed-set size increases to k. The time

that each run of MC simulation in the kth repetition takes is more than k times of

that in the first round. Therefore, the time complexity of MC-Greedy is O(K2nRM),

which makes it infeasible even for medium-sized networks of thousands of nodes.

IV-Greedy needs to generate an influence vector for each node, which takes O(m)

time as discussed in Chapter 2. We do not have to maintain each influence vector in

an n-element array, but only keep the non-zero influence values in a compact dynamic

array. Let L denote the average length of influence vectors. L is determined by the

average node out-degree b, depth limit dmax and and the community structure. Then

146

in Line 11 of IV-Greedy (see Algorithm 6), the number of iterations can be reduced

to L from n. Therefore, the time complexity of IV-Greedy is [O(m) + O(KLn)].

The worst case is [O(m) + O(Kn2)] when L is comparable to n or if we simply use

an n-element array to store the influence vector. As for IV-Community, it has to

generate the influence vectors and calculate the influence score of each node, which

takes O(Ln) time. Then it calls IGLP-WE to find the communities in the initial

configuration of community structures, which takes O(Lm) time. Finally, it applies

IV-Greedy strategy to find seed nodes in communities with seed assignments. The

best case is that each seed is assigned to a different community, which leads to a

time complexity of [O(Lm) +O(Ln) +O(KC)], where C is the average size of those

communities with seed assignments. The worse case is that IGLP-WE clusters all

nodes in the network into one single community, which leads to a time complexity

of [O(Lm) + O(KLn)] or [O(Lm) + O(Kn2)]. In general cases, it is expected that

IV-Community is more efficient than IV-Greedy.

In Figure 4.7, we illustrate the running time of the algorithms on the four network

datasets (the Y -axis is in logarithmic scale). A seed-set size of K=100 is set for the

PGP, NetHEPT, and WikiVote datasets. K is set to 15 for the C.elegans dataset.

Clearly, DEGREE is the fastest algorithm. It finishes almost instantly on all datasets.

IV-Community is the second fastest overall. It is 36 and 58 times faster than IV-

Greedy on PGP and NetHEPT, respectively. It takes a little bit more time than

IV-Greedy on WikiVote since all the seeds are assigned to the giant component as

a single community. Both IV-Community and IV-Greedy are up to three orders of

magnitude faster than Top-K. Not surprisingly, MC-Greedy is the slowest one. As we

can see on the C.elegans dataset of only 453 nodes and 2025 edges, while IV-Greedy

and IV-Community take only 0.2 seconds to find a set of 15 seed nodes, Top-K takes

2 minutes 4 seconds, but MC-Greedy takes more than 25 hours. Due to such a high

computational cost, we are not able to run it on the other three datasets.

147

4.4.3.3 Adoption Rate

Marketers are concerned about not only the influence spread but also the adoption

rate, which is usually measured by the number of adopters in a given time period.

How fast the influence spreads is a critical factor for a viral marketing campaign,

especially when there exist competing products in the same social network. It is

interesting to observe the rate of adoption under our MAT model. We show in

Figure 4.8 the influence spread over time on the four network datasets with IV-Greedy

as the seeding strategy. The seed-set size is 100 for PGP, NetHEPT and WikiVote,

and 15 for C.elegans. As we can see, the adoption rate shows similar pattern on all

datasets. The influence diffuses at a high-speed rate at early stage, and the speed

decreases monotonically. The influence spread reaches the saturation level in about

10 to 15 time steps. At t = 5, the influence spread arrives at 87%, 84%, 93.4%, and

98.3% of the maximum on PGP, NetHEPT, WikiVote, and C.elegans, respectively.

At t = 10, this percentage increases to 97.4%, 97.3%, 99.5%, and 100% on PGP,

NetHEPT, WikiVote, and C.elegans, respectively. It is observed that WikiVote and

C.elegans achieve higher adoption rates than PGP and NetHEPT, which can be

roughly explained by the high cohesiveness of WikiVote and the small network size

of C.elegans. This follows our intuition. In practice, marketers need to carefully

determine the period of a time step. It could be a day, a week, or a month, etc. The

influence decay rate and individual contact frequency will vary accordingly.

4.4.3.4 Parameter Analysis

The temporal decay rate λ is the only user-specified parameter in our MAT model.

The value of λ can be varied to account for different products, topics or events on

different types of social media. For a particular application, it may be possible to

use a data-driven approach to estimate the appropriate value of λ. We evaluate the

impact of λ on influence spread using different decay rates under the MAT model.

We also include the classic LT model as a baseline in the comparison. DEGREE is

148

Figure 4.8: Adoption rate achieved by IV-Greedy

a fairly effective and generic heuristic that is applicable to both the MAT model and

the LT model. Moreover, it always produces the same seed set, which enables us to

perform a fair comparison on different models. Therefore, we use DEGREE in this

experiment. The result is illustrated in Figure 4.9.

As expected, λ in our MAT model has significant impact on influence spread.

A larger λ indicates faster temporal decay of influence, and thus results in smaller

influence spread. It is good to see that λ in the MAT model enables us to gauge the

influence spread in a reasonably large range on all datasets. When λ increase from 0.1

to 0.3, influence spread drops 45.4%, 48.1%, 36.7% and 25.4% on PGP, NetHEPT,

WikiVote and C.elegans, respectively. Bhagat et al. [8] evaluate the influence-spread

prediction of several models. Their findings suggest that the classic LT model over-

estimates the influence spread by large amounts. As we can see, when λ = 0.2, the

influence spread under the MAT model is already 15%, 24%, 21.3% and 19.9% smaller

than the LT model on PGP, NetHEPT, WikiVote and C.elegans, respectively. When

λ = 0.3, the influence spread under the MAT model drops to 35.4%, 43.2%, 36.4%

149

Figure 4.9: Influence spread achieved by DEGREE under the classic LT model and
the MAT model with different temporal influence decay rates

150

and 31% smaller than the LT model on PGP, NetHEPT, WikiVote and C.elegans,

respectively. We believe that our MAT model is more powerful than the LT model

on prediction of influence spread. It is our future work to develop an effective data-

driven approach to learn λ from training data and then use it in the MAT model to

predict the diffusion.

4.5 Conclusion

In this chapter, we propose a novel multiple-path asynchronous threshold (MAT)

model for viral marketing. It differs from existing diffusion models (such as the IC and

LT models) in several aspects. We quantitatively measure influence and keep track of

its diffusion and aggregation during the diffusion process. Our MAT model captures

both direct and indirect influence, depth-associated influence attenuation, temporal

influence decay, and individual diffusion dynamics. Our work is an important step

toward a more realistic diffusion model. We prove that the influence-maximization

problem under the MAT model is NP-hard, and show that the influence-spread func-

tion under the MAT model is monotone. Its submodularity property is left as a

conjecture. Further, we develop two effective and efficient heuristics (IV-Greedy and

IV-Community) to tackle the influence-maximization problem. Our experiments on

four real-life networks demonstrate their excellent performance in terms of influence

spread and efficiency. Our work provides preliminary but significant insights and

implications for diffusion research and marketing practice.

This research opens up several directions for future work. First, the conjecture on

submodularity of the influence-spread function under the MAT model needs rigorous

proof. Second, scalable heuristics need to be developed for large-scale networks.

Third, it is important to validate the MAT model with more real datasets from

diverse domain. Last but not the least, it is desirable to develop an effective method

to learn the temporal influence decay rate and use it in the MAT model for prediction

of influence diffusion.

151

CHAPTER 5
CONCLUSION AND FUTURE WORK

In this dissertation, we investigate influence-diffusion modeling in networks for

community detection, resilience analysis and viral marketing. First, we propose a

novel reachability-based influence-diffusion model to decode the implicit knowledge of

connectivity and proximity embedded in the network graph topology. Based upon

this model, we define a new influence centrality and a novel shared-influence-neighbor

(SIN) similarity as vertex-pair closeness metric. We then develop three influence-

guided algorithms for community detection: IGSK, IGLP-WE and IGLP-DP. In par-

ticular, IGLP-WE and IGLP-DP render a complete community hierarchy and enable

us to examine the community structure at different scales. They manifest high qual-

ity and promising scalability on both undirected/directed and unweighted/weighted

networks. Second, we adapt the reachability-based diffusion model to topological re-

silience analysis of supply networks under random disruptions and targeted attacks.

We propose a novel resilience metric by exploring the multiple-path reachability of

each demand node. Further, we examine different attachment strategies and de-

velop new supply-network growth mechanisms that enable us to build resiliency into

the construction of supply networks. Finally, we propose a novel activation-based

influence-diffusion model, MAT model, for viral marketing. It captures both direct

and indirect influence, and incorporates influence attenuation along diffusion paths,

influence decay with time, and individual diffusion dynamics. Moreover, we develop

two effective and efficient approximation algorithms, IV-Greedy and IV-Community,

to address the influence-maximization problem.

Besides the future work discussed in Chapters 2-4, there are some other exciting

extensions in our research plan. First, most existing work on community detection

and influence diffusion only focuses on network structure without using node profiles.

152

This may imply considerable loss of information since the node profile is not only

an essential ingredient of a network but also an important complement to network

structure. It is desirable to develop algorithms that integrate network structure with

node profiles. For community detection, one straightforward solution is to define

a unified vertex-pair closeness metric combining SIN similarity and attribute-based

similarity with different weights, which will lead to more precise community detection

and better interpretation of detected communities. For viral marketing, we can use

node profiles to study homophily-driven diffusion and distinguish it from influence-

based contagion, which will enable us to develop a deeper understanding of adoption

behaviors and arrive at more effective seeding strategies. Second, social networks

are dynamic with social interactions changing constantly, and so are the underlying

communities. Communities may grow, shrink, merge, and split. It is interesting

to develop an adaptive algorithm that tracks community evolution over time and

enables us to predict future trends of communities in dynamic networks. A promising

direction is to do community detection at different snapshots so as to find community

evolutionary patterns, and then use classification techniques to build an effective

learning model for community-evolution prediction. Third, there are many signed

networks with both positive (friend) and negative (foe) relationships, and it is common

that competing items concurrently diffuse in the same social network. It is interesting

to extend the MAT model and influence-maximization algorithms to signed networks

and/or in a competitive setting. Finally, many complex systems are modeled by

multiplex networks, in which the same set of nodes are connected via different types

of links in multiple interacting network layers. For instance, some people who are

so inactive in offline social networks, are very active and influential in online social

networks. Ignoring such information may yield misleading results. It is desirable to

generalize our influence-diffusion models and algorithms for community detection and

influence maximization to multiplex networks.

153

REFERENCES

[1] E. Adar and L. Adamic. Tracking information epidemics in blogspace. In ACM
International Conference on Web Intelligence, 2005.

[2] R. Albert, H. Jeong, and A. Barabasi. Error and attack tolerance of complex
networks. Nature, 406(27):378–382, 2000.

[3] L. AlSumaidan and M. Ykhlef. Toward information diffusion model for viral
marketing in business. International Journal of Advanced Computer Science
and Applications, 7(2):637–646, 2016.

[4] S. Aral, L. Muchnik, and A. Sundararajan. Distinguishing influence-based
contagion from homophily-driven diffusion in dynamic networks. PNAS,
106(51):21544–21549, 2009.

[5] A. Arenas, J. Duch, A. Fernandez, and S. Gomez. Size reduction of complex
networks preserving modularity. New J of Physics, 9, 2007. 176.

[6] A. Arenas, A. Fernandez, and S. Gomez. Analysis of the structure of complex
networks at different resolution levels. New J of Physics, 10, 2008. 053039.

[7] A. L. Barabasi and R. Albert. Emergence of scaling in random networks. Sci-
ence, 286(5439):509–512, 1999.

[8] S. Bhagat, A. Goyal, and L. Lakshmanan. Maximizing product adoption in
social networks. In 5th ACM International Conference on Web Search and
Data Mining, pages 603–612, 2012.

[9] V. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding of
communities in large networks. J of Statistical Mechanics: Theory and Experi-
ment, 10:P10008, 2008.

[10] M. Boguna, R. Pastor-Satorras, A. Diaz-Guilera, and A. Arenas. Models of
social networks based on social distance attachment. Phys. Rev. E, 70:056122,
2004.

[11] P. Bonacich. Factoring and weighting approaches to status scores and clique
identification. J of Mathematical Sociology, 2:113–120, 1972.

[12] R. M. Bond, C. J. Fariss, J. J. Jones, A. D. I. Kramer, C. Marlow, J. E.
Settle, and J. H. Fowler. A 61-million-person experiment in social influence and
political mobilization. Nature, 489:295–298, 2012.

154

[13] A. Borodin, Y. Eilmus, and O. J. Threshold models for competitive influence in
social networks. In 6nd Workshop on Internet and Network Economics, pages
539–550, 2010.

[14] U. Brandes and D. Fleischer. Centrality measures based on current flow. In 22nd

Annual Conference on Theoretical Aspects of Computer Science, pages 533–544,
2005.

[15] J. Brown and P. Reinegen. Social ties and word-of-mouth referral behavior.
Journal of Consumer Research, 14(3):350–362, 1987.

[16] R. S. Burt. Social contagion and innovation: Cohesion versus structural equiv-
alence. American J. of Sociology, 92(6):1287–1335, 1987.

[17] D. Centola. The spread of behavior in an online social network experiment.
Science, 329(5996):1194–1197, 2010.

[18] H. Chen and L. A. Complex network characteristics and invulnerability simu-
lating analysis of supply chain. J. of Networks, 7(3):591–597, 2012.

[19] W. Chen, A. Collins, R. Cummings, T. Ke, Z. Liu, D. Rincon, X. Sun, Y. Wang,
W. Wei, and Y. Yuan. Influence maximization in social networks when negative
opinions may emerge and propagate. In SDM, 2011.

[20] W. Chen, L. Lakshmanan, and C. Castillo. Information and Influence Propa-
gation in Social Networks. Morgan & Claypool Publishers, 2013.

[21] W. Chen, W. Lu, and N. Zhang. Time-critical influence maximization in social
networks with time-delayed diffusion process. In AAAI, 2012.

[22] W. Chen, Y. Yuan, and L. Zhang. Scalable influence maximization in social
networks under the linear threshold model. In 10th International Conference
on Data Mining, 2010.

[23] J. Cheng, L. Adamic, P. Dow, J. Kleinberg, and J. Leskovec. Can cascades be
predicted?. In WWW, 2014.

[24] N. A. Christakis and J. H. Fowler. The spread of obesity in a large social
network over 32 years. New England J of Medicine, 357:370–379, 2007.

[25] N. A. Christakis and J. H. Fowler. Connected: The Surprising Power of Our
Social Networks and How They Shape Our Lives - How Your Friends’ Friends’
Friends Affect Everything You Feel, Think, and Do. Little, Brown & Company,
2011.

[26] N. A. Christakis and J. H. Fowler. Social contagion theory: Examining dynamic
social networks and human behavior. Statistics in Medicine, 32:556–577, 2013.

155

[27] A. Clauset, M. Newman, and C. Moore. Finding community structure in very
large networks. Phys. Rev. E, 70:066111, 2004.

[28] P. Clifford and A. Sudbury. A model for spatial conflict. Biometrika, 60(3),
1973.

[29] R. Criado, J. Flores, B. Hernandez-Bermejo, J. Pello, and M. Romance. Vulner-
ability of complex networks under random and intentional attacks. In CMMSE,
pages 1–8, 2004.

[30] L. Danon, A. Diaz-Guilera, J. Duch, and A. Arenas. Comparing community
structure identification. J of Stat. Mech., page P09008, 2005.

[31] I. Dhillon and D. Modha. Concept decompositions for large sparse text data
using clustering. Machine Learning, 42(1):143–175, 2001.

[32] P. Domingos and M. Richardson. Mining the network value of customers. In 7th

ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2001.

[33] L. Donetti and M. Muñoz. Detecting network communities: A new systematic
and efficient algorithm. J of Stat. Mech., page P10012, 2004.

[34] D. Easley and J. Kleinberg. Networks, Crowds, and Markets: Reasoning about
a Highly Connected World. Cambride University Press, 2010.

[35] E. Estrada and N. Hatano. Communicability in complex networks. Phys. Rev.
E, 77:036111, 2008.

[36] E. Estrada and N. Hatano. Communicability graph and community structures
in complex networks. J of Applied Mathematics and Computation, 214:500–511,
2009.

[37] X. Fang, P. J. Hu, L. Li, and W. Tsai. Predicting adoption probabilities in
social networks. Information Systems Research, 24(1):128–145, 2013.

[38] G. Flake, S. Lawrence, and C. Giles. Efficient identification of web communities.
In 6th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
pages 150–160, 2000.

[39] S. Fortunato. Community detection in graphs. Physics Reports, 486(3–5):75–
174, 2010.

[40] S. Fortunato and M. Barthelemy. Resolution limit in community detection.
Proceedings of the National Academy of Sciences of USA, 104(1):36–41, 2007.

156

[41] F. Fouss, P. A., J.-M. Renders, and M. Saerens. Random-walk computation
of similarities between nodes of a graph, with application to collaborative
recommendation. IEEE Transactions on Knowledge and Data Engineering,
19(3):355–369, 2007.

[42] L. C. Freeman. A set of measures of centrality based on betweenness. Sociom-
etry, 40:35–41, 1977.

[43] L. C. Freeman, S. P. Borgatti, and D. R. White. Centrality in valued graphs:
A measure of betweenness based on network flow. Social Networks, 13:141–154,
1991.

[44] N. Gayraud, E. Pitoura, and P. Tsaparas. Diffusion maximization in evolving
social networks. In ACM Conference on Online Social Networks, 2015.

[45] J. Gehrke, P. Ginsparg, and J. M. Kleinberg. Overview of the 2003 KDD cup.
SIGKDD Explorations, 5:149–151, 2003.

[46] J. Gil-Mendieta and S. Schmidt. The political network in Mexico. Social Net-
works, 18(4):355–381, 1996.

[47] M. Girvan and M. Newman. Community structure in social and biological net-
works. Proceedings of the National Academy of Sciences of USA, 99(12):7821–
7826, 2002.

[48] B. H. Good, Y. de Montjoye, and A. Clauset. The performance of modularity
maximization in practical contexts. Phys. Rev. E, 81:046106, 2010.

[49] A. Goyal, F. Bonchi, and L. Lakshmanan. Learning influence probabilities in
social networks. In 3rd ACM International Conference on Web Search and Data
Mining, 2010.

[50] A. Goyal, W. Lu, and L. Lakshmanan. CELF++: Optimizing the greedy
algorithm for influence maximization in social networks. In WWW, 2009.

[51] A. Goyal, W. Lu, and L. Lakshmanan. Simpath: An efficient algorithm for
influence maximization under linear threshold model. In IEEE International
Conference on Data Mining, 2011.

[52] R. Guimera and L. Amaral. Functional cartography of complex metabolic net-
works. Nature, 433:895–900, 2005.

[53] R. Guimera, L. Danon, D.-G. A., F. Giralt, and A. Arenas. Self-similar com-
munity structure in a network of human interactions. Phys. Rev. E, 68:065103,
2003.

[54] R. Guimera, M. Sales-Pardo, and L. Amaral. Modularity from fluctuations in
random graphs and complex networks. Phys. Rev. E, 70:025101, 2004.

157

[55] X. He, G. Song, W. Chen, and Q. Jiang. Influence blocking maximization
in social networks under the competitive linear threshold model. In SIAM
Conference on Data Mining, pages 463–474, 2012.

[56] S. Hill, F. Provost, and C. Volinsky. Network-based marketing: Identifying
likely adopters via consumer networks. Statistical Science, 21(2):256–276, 2006.

[57] O. Hinz, B. Skiera, C. Barrot, and J. Becker. Seeding strategies for viral mar-
keting: An empirical comparison. Journal of Marketing, 75(6):55–71, 2011.

[58] P. N. Howard and A. Duffy. Opening closed regimes, what was the role of social
media during the arab spring?. Project on Information Technology and Political
Islam, pages 1–30, 2011.

[59] J. Huang, H. Sun, J. Han, H. Deng, Y. Sun, and Y.Liu. Shrink: A structural
clustering algorithm for detecting hierarchical communities in networks. In 19th

ACM International Conference on Information and Knowledge Management,
pages 219–228, 2010.

[60] A. Hughes and P. L. Twitter adoption and use in mass convergence and emer-
gency events. International Journal of Emergency Management, 6(3):248–260,
2009.

[61] J. Iribarren and E. Moro. Impact of human activity patterns on the dynamics
of information diffusion. Phys. Rev. Letters, page 103:038702, 2009.

[62] R. Iyengar, C. Van den Bulte, and T. Valente. Opinion leadership and social
contagion in new product diffusion. Marketing Science, 30(2):195–212, 2011.

[63] R. A. Jarvis and E. A. Patrick. Clustering using a similarity measure based on
shared nearest neighbors. IEEE Transactions on Computers, C-22(11):1025–
1034, 1973.

[64] Q. Jiang, G. Song, G. Cong, Y. Wang, W. Si, and K. Xie. Simulated annealing
based influence maximization in social networks. In 25th AAAI Conference on
Artificial Intelligence, 2011.

[65] S. Jurvetson. What exactly is viral marketing?. Red Herring, pages 110–111,
2000.

[66] R. Kannan, S. Vempala, and A. Vetta. On clusterings: Good, bad and spectral.
Journal of the ACM, 51(3):497–515, 2004.

[67] E. Katz and L. P.F. Personal Influence. Glencoe, IL: Free Press, 1955.

[68] L. Katz. A new status index derived from sociometric index. Psychometrika,
pages 39–43, 1953.

158

[69] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence
through a social network. In 9th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pages 137–146, 2003.

[70] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence
through a social network. Theory of Computing, 11(4):105–147, 2015.

[71] Y. Kim, Y. Chen, and K. Linderman. Supply network disruption and resilience:
A network structural perspective. J. of Oper. Manag., 33(34):43–59, 2015.

[72] R. Kindermann and J. L. Snell. Markov random fields and their applications.
American Mathematical Society, 1980.

[73] P. R. Kleindorfer and G. H. Saad. Managing disruption risks in supply chains.
Production and Operations Management, 14(1):53–68, 2005.

[74] R. Kozinets, K. de Valck, A. Wojnicki, and S. Wilner. Networked narratives:
Understanding word-of-mouth in online communities. Journal of Marketing,
74(2):71–89, 2010.

[75] A. D. I. Kramer, J. E. Guillory, and J. T. Hancock. Experimental evidence of
massive-scale emotional contagion through social networks. Proceedings of the
National Academy of Sciences, 111:8788–8790, 2014.

[76] T. La Fond and N. J. Randomization tests for distinguishing social influence
and homophily effects. In WWW, 2010.

[77] A. Lancichinetti and S. Fortunato. Benchmarks for testing community detec-
tion algorithms on directed and weighted graphs with overlapping communities.
Phys. Rev. E, 80:016118, 2009.

[78] A. Lancichinetti and S. Fortunato. Community detection algorithms: A com-
parative analysis. Phys. Rev. E, 80:056117(1–11), 2009.

[79] A. Lancichinetti, S. Fortunato, and J. Kertesz. Detecting the overlapping and
hierarchical community structure in complex networks. New J of Physics, 11,
2009. 033015.

[80] A. Lancichinetti, S. Fortunato, and F. Radicchi. Benchmark graphs for testing
community detection algorithm. Phys. Rev. E, 78:046110, 2008.

[81] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and N. S.
Glance. Cost-effective outbreak detection in networks. In 13th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, 2007.

[82] J. Leskovec, K. J. Lang, and M. W. Mahoney. Empirical comparison of algo-
rithms for network community detection. In WWW, 2010.

159

[83] J. Leskovec, M. McGlohon, Faloutsos, G. N., and H. M. Cascading behavior in
large blog graphs. In SIAM International Conference on Data Mining, 2007.

[84] I. Leung, P. Hui, P. Liò, and J. Crowcroft. Towards real-time community de-
tection in large networks. Phys. Rev. E, 79:066107, 2009.

[85] Y. Li, W. Chen, Y. Wang, and Z. Zhang. Influence diffusion dynamics and
influence maximization in social networks with friends and foe relationships.
In 6th ACM International Conference on Web Search and Data Mining, pages
657–666, 2013.

[86] B. Libai, E. Muller, and R. Peres. Decomposing the value of word-of-mouth
seeding programs: Acceleration vs. expansion. Journal of Marketing Research,
50:161–176, 2013.

[87] L. Liu, J. Tang, J. Han, and S. Yang. Learning influence from heterogeneous
social networks. Data Mining and Knowledge Discovery., 25:511–544, 2012.

[88] W. Liu, M. Pellegrini, and W. X. Detecting communities based on network
topology. Scientific Report, 4:5739, 2014.

[89] D. Lusseau, K. Schneider, O. J. Boisseau, P. Haase, E. Slooten, and S. M.
Dawson. The bottlenose dolphin community of doubtful sound features a large
proportion of long-lasting associations. Behavioral Ecology and Sociobiology,
54:396–405, 2003.

[90] H. Ma, H. Yang, M. Lyu, and I. King. Mining social networks using heat dif-
fusion processes for marketing candidates selection. In 17th ACM International
Conference on Information and Knowledge Management, 2008.

[91] F. Malliaros and M. Vazirgiannis. Clustering and community detection in di-
rected networks: A survey. Phys. Reports, 533:95–142, 2013.

[92] J. Michael and J. Massey. Modeling the communication network in sawmill.
Forest Products Journal, 47:25–30, 1997.

[93] E. Mossel and S. Roch. Submodularity of influence in social networks: From
local to global. SIAM Journal on Computing, 39(6):2176–2188, 2010.

[94] M. Moussaid, H. Brighton, and W. Gaissmaier. The amplification of risk in
experimental diffusion chains. Proceedings of the National Academy of Sciences,
112:5631–5636, 2015.

[95] A. Nair and J. M. Vidal. Supply network topolgy and robustness against disrup-
tions - An investigation using multiagent model. Int. J. Production Research,
49(5):1391–1404, 2011.

160

[96] G. Nemhauser, L. Wolsey, and M. Fisher. An analysis of the approximations for
maximizing submodular set functions. Mathematical Programming, 14:265–294,
1978.

[97] M. Newman. Analysis of weighted networks. Phys. Rev. E, 70:056131, 2004.

[98] M. Newman. Fast algorithm for detecting community structure in networks.
Phys. Rev. E, 69:066133, 2004.

[99] M. Newman. A measure of betweenness centrality based on random walks.
Social Networks, 27:39–54, 2005.

[100] M. Newman. Modularity and community structure in networks. Proceedings of
the National Academy of Sciences, 103(23):8577–8582, 2006.

[101] M. Newman and M. Girvan. Finding and evaluating community structure in
networks. Phys. Rev. E, 69:026113, 2004.

[102] J. D. Noh and H. Rieger. Random walks on complex networks. Phys. Rev.
Letters, page 92:11870, 2004.

[103] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank citation rank-
ing: Bringing order to the web. Technical report, Stanford InfoLab, Stanford
University, 1999.

[104] G. Palla, I. Derenyi, I. Farkas, and T. Vicsek. Uncovering the overlapping com-
munity structure of complex networks in nature and society. Nature, 435:814–
818, 2005.

[105] R. Peres. The impact of network characteristics on the diffusion of innovations.
Physica A, 402:330–343, 2014.

[106] P. Pons and M. Latapy. Computing communities in large networks using random
walks. J of Graph Algorithms Applications, 10(2):191–218, 2006.

[107] R. Radicchi, C. Castellano, F. Cecconi, and D. Parisi. Defining and identifying
communities in networks. Proceedings of National Academy of Sciences of USA,
101:2658–2663, 2004.

[108] U. N. Raghavan, R. Albert, and S. Kumara. Near linear time algorithm to
detect community structures in large-scale networks. Phys. Rev. E, 76:03106,
2007.

[109] W. Rand and R. Rust. Agent-based modeling in marketing: Guidelines for
rigor. International Journal of Research in Marketing, 28(3):181–193, 2011.

161

[110] M. Richardson and P. Domingos. Mining knowledge-sharing sites for viral mar-
keting. In 8th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, 2002.

[111] D. Romero, B. Meeder, and J. Kleinberg. Differences in the mechanics of infor-
mation diffusion across topics: Idioms, political hashtags, and complex conta-
gion on twitter. In 20th International Conference on World Wide Web, pages
695–704, 2011.

[112] M. Rosvall and C. Bergstrom. An information-theoretic framework for resolving
community structure in complex networks. Proceedings of National Academy of
Sciences, 104:7327–7331, 2007.

[113] M. Rosvall and C. Bergstrom. Maps of random walks on complex networks
reveal community structure. Proceedings of the National Academy of Sciences
of USA, 105:1118–1123, 2008.

[114] G. Sabidussi. The centrality index of a graph. Psychometrika, 31:581–603, 1966.

[115] P. Schmitt, B. Skiera, and C. Van den Bulte. Referral programs and customer
value. Journal of Marketing, 75(1):46–59, 2011.

[116] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transac-
tions of Pattern Analysis and Machine Intelligence, 22(8):888–905, 2000.

[117] K. A. Stephenson and M. Zelen. Rethinking centrality: Methods and examples.
Social Networks, 11:1–37, 1989.

[118] H. Sun, J. Huang, J. Han, H. Deng, P. Zhao, and B. Feng. gSkeletonClu:
Density-based network clustering via structure-connected tree division or ag-
glomeration. In 10th International Conference on Data Mining, pages 481–490,
2010.

[119] H. Sun and J. Wu. Scale-free characteristics of supply chain distribution net-
works. Modern Physics Letter B, 19(17):841–848, 2005.

[120] Y. Sun, J. Han, P. Zhao, Z. Yin, H. Cheng, and T. Wu. RankClus: Integrating
clustering with ranking for heterogeneous information network analysis. In 12th

International Conference on Extending Database Technology, pages 565–576,
Saint Petersburg, Russia, 2009.

[121] H. P. Thadakamalla, U. N. Raghavan, S. Kumara, and R. Albert. Survivability
of multiagent-based supply networks: A topological perspective. IEEE Intelli-
gent Systems, 19(5):24–31, 2004.

[122] G. Thomas. Building the buzz in the hive mind. Journal of Consumer Behavior,
4(1):64–72, 2006.

162

[123] B. Tomlin. On the value of mitigation and contingency strategies for managing
supply chain disruption risks. Management Science, 52:639–657, 2006.

[124] S. van Dongen. Graph Clustering by Flow Simulation. PhD thesis, University
of Utrecht, 2000.

[125] C. Wang, W. Chen, and Y. Wang. Scalable influence maximization for indepen-
dent cascade model in large-scale social networks. Data Mining and Knowledge
Discovery, 25(3):545–576, 2012.

[126] W. Wang, R. E. deMatta, and W. N. Street. Topological resilience analysis of
supply networks under random disruptions and targeted attacks. In IEEE/ACM
International Conference on Advances in Social Networks Analysis and Mining,
pages 250–257, 2015.

[127] W. Wang and W. N. Street. A novel algorithm for community detection and
influence ranking in social networks. In IEEE/ACM International Conference
on Advances in Social Networks Analysis and Mining, pages 555–560, 2014.

[128] W. Wang and W. N. Street. Finding hierarchical communities in complex
networks using influence-guided label propagation. In 15th International Con-
ference on Data Mining Workshops, pages 547–556, 2015.

[129] W. Wang and W. N. Street. Modeling influence diffusion to uncover influence
centrality and community structure in social networks. Social Network Analysis
and Mining, 5(1), 2015.

[130] Y. Wang, G. Cong, G. Song, and K. Xie. Community-based greedy algorithm
for mining top-k influential modes in mobile social networks. In 16th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, 2010.

[131] S. Wasserman and K. Faust. Social Network Analysis: Methods and Applica-
tions. Cambridge University Press, 18 edition, 1994.

[132] D. Watts and S. Strogatz. Collective dynamics of small-world networks. Nature,
393:440–442, 1998.

[133] Y. Wei and C. Cheng. Towards efficient hierarchical designs by ratio cut parti-
tioning. In IEEE International Conference on CAD, pages 298–301, 1989.

[134] J. White, E. Southgate, J. Thomson, and S. Brenner. The structure of the
nervous system of the nematode Caenorhabditis elegans. Philosophical Trans-
actions of the Royal Society of London Series B, 314(1165):1–340, 1986.

[135] J. Xie, S. Kelley, and B. K. Szymanski. Overlapping community detection
in networks: The state-of-the-art and comparative study. ACM Computing
Surveys, 45(4):1–35, 2013.

163

[136] J. Xie and B. K. Szymanski. LabelRank: A stablized label propagation algo-
rithm for community detection in networks. In IEEE Network Science Work-
shop, pages 138–143, 2013.

[137] Y. Xing, F. Meng, Y. Zhou, M. Zhu, M. Shi, and G. Sun. A node influence
based label propagation algorithm for community detection in networks. The
Scientific World Journal, 2014. 627581.

[138] Q. Xuan, F. Du, Y. Li, and T. Wu. A framework to model the topological
structure of supply networks. IEEE Transactions on Automation Science and
Engineering, 8(2):442–446, 2011.

[139] Y. Yang, Y. Sun, S. Pandit, N. Chawla, and J. Han. Is objective function the
silver bullet? A case study of community detection algorithms on social net-
works. In IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining, pages 394–397, 2011.

[140] L. Yen, F. Fouss, C. Decaestecker, P. Francq, and M. Saerens. Graph nodes
clustering with the sigmoid commute-time kernel: A comparative study. J of
Data and Knowledge Engineering, 68:338–361, 2009.

[141] W. Zachary. An information flow model for conflict and fission in small groups.
J of Anthropological Research, 33:452–473, 1977.

[142] J. Zhang, B. Liu, J. Tang, T. Chen, and J. Li. Social influence locality for mod-
eling retweeting behaviors. In 23rd International Joint Conference on Artificial
Intelligence, pages 2761–2767, 2013.

[143] K. Zhao, A. Kumar, T. P. Harrison, and J. Yen. Analyzing the resilience of
complex supply network topologies against random and targeted disruptions.
IEEE Systems Journal, 5(1):28–39, 2011.

[144] K. Zhao, A. Kumar, and J. Yen. Achieving high robustness in supply distri-
bution networks by rewiring. IEEE Transactions on Engineering Management,
58:347–362, 2011.

[145] H. Zhou and R. Lipowsky. Network brownian motion: A new method to measure
vertex-vertex proximity and to identify communities and subcommunities. In
International Conference on Computational Science, pages 1062–1069, 2004.

	University of Iowa
	Iowa Research Online
	Summer 2016

	Modeling influence diffusion in networks for community detection, resilience analysis and viral marketing
	Wenjun Wang
	Recommended Citation

	tmp.1482169687.pdf.JAGhU

