
University of Iowa
Iowa Research Online

Theses and Dissertations

2007

Heuristic subset clustering for consideration set
analysis
Ding Yuan
University of Iowa

Copyright 2007 Ding Yuan

This dissertation is available at Iowa Research Online: http://ir.uiowa.edu/etd/137

Follow this and additional works at: http://ir.uiowa.edu/etd

Part of the Business Administration, Management, and Operations Commons

Recommended Citation
Yuan, Ding. "Heuristic subset clustering for consideration set analysis." PhD (Doctor of Philosophy) thesis, University of Iowa, 2007.
http://ir.uiowa.edu/etd/137.

http://ir.uiowa.edu?utm_source=ir.uiowa.edu%2Fetd%2F137&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F137&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F137&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/623?utm_source=ir.uiowa.edu%2Fetd%2F137&utm_medium=PDF&utm_campaign=PDFCoverPages

HEURISTIC SUBSET CLUSTERING FOR CONSIDERATION SET ANALYSIS

by

Ding Yuan

An Abstract

Of a thesis submitted in partial fulfillment of the
requirements for the Doctor of Philosophy
degree in Business Administration in the

Graduate College of The
University of Iowa

December 2007

Thesis Supervisor: Associate Professor Nick Street

1

ABSTRACT

The term consideration set is used in marketing to refer to the set of items

a customer thought about purchasing before making a choice. While consideration

sets are not directly observable, finding common ones is useful for market seg-

mentation and choice prediction. We approach the problem of inducing common

consideration sets as a clustering problem. Our algorithm combines ideas from bi-

nary clustering and itemset mining, and differs from other clustering methods by

reflecting the inherent structure of subset clusters. Further, we introduce two speed-

up methods to make the algorithm more efficient and scalable for large datasets.

Experiments on both real and simulated datasets show that our algorithm clusters

effectively and efficiently even for sparse datasets. A novel evaluation method is

also developed to compare clusters found by our algorithm with known ones.

Based on the clusters found by our algorithm, different classification models

are built for each particular consideration set. The advantages of the two-stage

model are it builds specific model for different clusters, and it helps us to capture

the characteristics of each group of the data by analyzing each model.

Abstract Approved:
Thesis Supervisor

Title and Department

Date

HEURISTIC SUBSET CLUSTERING FOR CONSIDERATION SET ANALYSIS

by

Ding Yuan

A thesis submitted in partial fulfillment of the
requirements for the Doctor of Philosophy
degree in Business Administration in the

Graduate College of The
University of Iowa

December 2007

Thesis Supervisor: Associate Professor Nick Street

Copyright by

DING YUAN

2007
All Rights Reserved

Graduate College
The University of Iowa

Iowa City, Iowa

CERTIFICATE OF APPROVAL

PH.D. THESIS

This is to certify that the Ph.D. thesis of

Ding Yuan

has been approved by the Examining Committee
for the thesis requirement for the Doctor of
Philosophy degree in Business Administration at
the December 2007 graduation.

Thesis Committee:
Nick Street, Thesis Supervisor

Gary Russell

Warren Boe

Padmini Srinivasan

Hwanjo Yu

To my husband, Di, our children, Jerry and Jack for their love
and support.

ii

ACKNOWLEDGMENTS

I wish to express sincere appreciation to Dr. Nick Street who not only served

as my supervisor but also encouraged and challenged me throughout my academic

program. In addition, special thanks are due to Dr. Gary Russell, whose enlightened

mentoring were instrumental and inspiring. I could not say enough thanks to them

for this work to be done. I learn so much from them.

iii

ABSTRACT

The term consideration set is used in marketing to refer to the set of items

a customer thought about purchasing before making a choice. While consideration

sets are not directly observable, finding common ones is useful for market seg-

mentation and choice prediction. We approach the problem of inducing common

consideration sets as a clustering problem. Our algorithm combines ideas from bi-

nary clustering and itemset mining, and differs from other clustering methods by

reflecting the inherent structure of subset clusters. Further, we introduce two speed-

up methods to make the algorithm more efficient and scalable for large datasets.

Experiments on both real and simulated datasets show that our algorithm clusters

effectively and efficiently even for sparse datasets. A novel evaluation method is

also developed to compare clusters found by our algorithm with known ones.

Based on the clusters found by our algorithm, different classification models

are built for each particular consideration set. The advantages of the two-stage

model are it builds specific model for different clusters, and it helps us to capture

the characteristics of each group of the data by analyzing each model.

iv

TABLE OF CONTENTS

LIST OF TABLES . vii

LIST OF FIGURES . viii

CHAPTER

1 INTRODUCTION . 1

1.1 Classification . 1
1.2 Clustering Analysis . 3

1.2.1 Categorical/Binary Clustering 4
1.3 Itemset/Frequent-pattern Mining 5
1.4 Consideration Set Analysis . 6
1.5 The Need for a New Method 7

2 LITERATURE REVIEW . 9

2.1 Clustering Algorithms . 9
2.1.1 Categorical Clustering Methods 15
2.1.2 Binary Clustering Methods 17

2.2 Itemset/Frequent-pattern Mining 18
2.3 Consideration Sets . 22
2.4 Divide and Conquer . 25

2.4.1 Data Mining Algorithms 26
2.4.2 Marketing Methods . 30

3 HACS . 32

3.1 Order Candidate Cluster Centers 32
3.2 Cluster Construction . 38
3.3 Efficiency Improvements . 40
3.4 Algorithm Discussion . 42
3.5 Evaluation and Experiments 43
3.6 The Data Simulator . 44

3.6.1 Generate Consideration Sets 45
3.6.2 Generate Priors for Consideration Sets 47
3.6.3 Simulate Each Customer’s Choices 48

3.7 Evaluation . 50
3.8 Simulation . 56
3.9 Real Datasets . 66

4 BUILDING CLASSIFICATION MODELS BASED ON CLUSTER-
ING RESULTS . 72

v

4.1 Different Prediction Weighting Methods 73
4.1.1 Hard Weighting Scheme 74
4.1.2 Soft Weighting Scheme (A) 74
4.1.3 Soft Weighting Scheme (B) 76

4.2 Dataset Description . 78
4.3 Experiments . 81

4.3.1 Baseline . 81
4.3.2 Experiments with Our Methods 82
4.3.3 Ketchup . 82
4.3.4 Detergent . 89

4.4 Conclusion . 104

5 CONCLUSIONS AND FUTURE WORK 107

REFERENCE . 109

vi

LIST OF TABLES

Table

3.1 Parameters of simulated data . 43

3.2 Sample of simulated consideration sets 48

3.3 Confusion matrix for a binary classification 52

3.4 Comparison of HACS with frequent itemsets 59

3.5 Statistics of the simulated dense dataset with noise 60

3.6 Performance of K-means . 62

3.7 Statistics of the simulated sparse dataset with noise 62

3.8 Found consideration sets example: Dense data 67

3.9 Found consideration sets example: sparse data 71

4.1 Probability of each product using different classifiers 77

4.2 Sample dataset for prediction problems 79

4.3 Baseline for predictive models . 81

4.4 Details of clusters and classifiers for ketchup 84

4.5 Accuracy for different sizes of clusters: ketchup dataset 85

4.6 Quantity threshold comparison: ketchup dataset with soft (A) . . . 90

4.7 Best accuracy comparison for ketchup dataset 91

4.8 Accuracy for different sizes of clusters: detergent dataset 93

4.9 Model details for detergent using hard weighting scheme 94

4.10 Best accuracy comparison for detergent dataset 95

4.11 Price coefficients comparison . 101

4.12 Display coefficients comparison . 102

4.13 Loyalty coefficients comparison . 103

4.14 Coefficients comparison . 105

vii

LIST OF FIGURES

Figure

2.1 Partitioning clustering example . 10

2.2 Hierarchical clustering example . 12

2.3 Density-based clustering example 14

2.4 Model-based clustering example . 15

2.5 Maximal Frequent Itemsets [90] . 20

2.6 Maximal Frequent Itemsets vs. Closed Frequent Itemsets [90] 21

2.7 Consumer decision making process 23

3.1 Statistics for sample subset lattice 35

3.2 tsx and psx illustration . 35

3.3 HACS algorithm outline . 41

3.4 Choice set distribution comparison for ketchup 45

3.5 Choice set distribution comparison for detergent 46

3.6 Real customer purchase history distribution for ketchup dataset . . 50

3.7 Real customer purchase history distribution for detergent dataset . 51

3.8 Matching algorithm outline . 54

3.9 Matching example . 55

3.10 Comparison with frequent itemsets for dense dataset with 1% noise 58

3.11 Robustness test for dense data . 60

3.12 Match score comparison with K-means for dense datasets 61

3.13 Match score comparison with frequent itemsets for sparse datasets . 63

3.14 Match score comparison with K-means for sparse datasets 64

3.15 Robustness test for sparse data . 65

3.16 Relationship between quality threshold and number of clusters . . . 68

viii

4.1 Hard weighting scheme example . 74

4.2 Soft weighting scheme example . 75

4.3 Hard weighting scheme accuracy . 83

4.4 Accuracy comparison with baseline for ketchup dataset 86

4.5 Soft (A) weighting scheme for ketchup dataset 87

4.6 Soft (B) weighting scheme for ketchup dataset 88

4.7 Hard weighting scheme for detergent dataset 91

4.8 Accuracy comparison with baseline for detergent dataset 92

4.9 Soft (A) weighting scheme for detergent dataset 95

4.10 Soft (B) weighting scheme for detergent dataset 96

4.11 Cluster cardinality comparison with different quality threshold . . . 98

ix

1

CHAPTER 1

INTRODUCTION

With the data explosion in recent decades, more and more data are available

in various fields and need to be analyzed. However, discovering the useful knowl-

edge has been very challenging, because traditional methods can’t handle the large

amounts of data. Data mining, which is an integral part in Knowledge Discovery

in Databases (KDD), is the process of searching for hidden patterns in a group of

data [98, 31, 46]. Data mining is a technology that builds novel algorithm based

on traditional methods in fields such as computer science, statistics, and pattern

recognition.

The process of knowledge discovery to automatically converting raw data into

useful information includes a series of steps [90] that consist of: data preprocessing,

data mining and post-processing. In data preprocessing, data will be transformed

into appropriate forms by performing one or combinations of following tasks: data

cleaning, feature selection, dimension reduction, normalization. Data post process-

ing part includes pattern visualization, pattern evaluation and knowledge presen-

tation and interpretation. The most widely used data mining algorithms include

classification, cluster analysis and association rule mining.

1.1 Classification

Classification is the process of building a predictive model with data that have

known class labels, and then that model can be used to predict the label of new

examples whose class is unknown. Classification methods are used for supervised

learning, when the class label for the data points are provided. Classification finds

a model that maps each attribute set to one of the predefined class labels. Thus,

2

the main objective of a classifier is to fit the training data well and to correctly

predict the unknown class labels of the testing data. Some well-known classifiers in-

clude logistic regression [45], naive Bayes [56], support vector machines (SVMs) [91],

decision trees [18, 81], and artificial neural networks [84].

The choice of classification methods depends on both the performance of the

classifiers and the objective of the analysis. Classification methods can be compared

and evaluated according to several criteria.

1. Predictive accuracy, which is defined as the number of correct predictions

divided by the total number of predictions. It reflects the ability of the model

to correctly predict the unknown class labels.

2. Lift chart, where lift is a measure of the effectiveness of a predictive model

calculated as the ratio between the results obtained with and without the

predictive model. It graphically represents the detection rate of the target

variable value proportional to the number of processed cases based on the

order defined by the predictive model.

3. ROC (Receiver Operating Characteristics) curve analysis, which has similar

shape as lift chart, provides a way to select optimal models and discard sub-

optimal ones without regard to class distribution or error cost.

4. Speed, which reflects the computation costs of building and using the model.

5. Robustness, which is the ability of the model to make correct predictions given

noisy data or missing data values.

6. Scalability, which refers the ability of the model to handle large datasets.

3

7. Interpretability, which reflects the level of understanding and insight of the

data can be provided by the model.

1.2 Clustering Analysis

Compared to classification, cluster analysis is focused on unsupervised learn-

ing, with both class label and the number of classes unknown. The objective of

clustering is to partition unlabeled data into groups, such that the similarity of data

points within groups is maximized, while the similarity among different groups is

minimized. A cluster is a group of data objects that are similar to each other within

the same cluster and are dissimilar to the objects in other clusters. Cluster analysis

can be used alone to gain insight into the structure of the data, and to capture the

characteristics of individual clusters. On the other hand, it can be used as a prepro-

cessing method for other algorithms, such as classification. It is a widely-used data

mining technique that can be applied to many disciplines and fields. In health care,

cluster analysis can capture the spatial pattern of a certain disease by identifying

dense and sparse disease occurrence regions. In text mining [88, 100], it can help us

to group unlabeled documents into different categories automatically. For example,

articles from science new groups can be grouped into categories such as electronics,

medical, space, geography, and history. In business [78], clustering analysis has been

applied in credit card portfolio management to identify the patterns of credit card

defaulters.

Clustering methods [60, 31] have been studied extensively in recent decades.

Classic clustering algorithms include: partitioning clustering algorithms such as

K-Means [70], and CLARANS [72]; hierarchical clustering such as AGNES (AG-

glomerative NESting) [60], CURE [43], and ROCK [42]; density-based clustering

4

such as DBSCAN [33], and OPTICS [10]; model-based clustering such as Auto-

Class [22], COBWEB [34], SOM [62], and Expectation Maximization (EM) [63],

which is a general purpose optimization algorithm that is often used to find the

optimal mixture of Gaussian models that represents the dataset.

Normally, traditional clustering algorithms use distance measures to repre-

sent the dissimilarities between objects. Such algorithms tend to find clusters that

are either a mixture of Gaussian distribution or well-shaped dense areas that are

separated by sparse areas. Although this measurement works fine with numeri-

cal attributes, it may not be appropriate for datasets with categorical or binary

features. For example, in a medicine dataset that uses categorical attributes to

represent different vendors, traditional distance is not a good measurement for how

different the vendors are.

1.2.1 Categorical/Binary Clustering

Recently, more researchers have developed clustering algorithms [42, 79] specif-

ically for categorical datasets. Categorical clustering algorithm construct clusters

for categorical datasets. Binary clustering, which builds clusters on binary data

is a subset of categorical clustering. It has caught researchers’ attention recently,

because it has a wide range of applications.

For example, binary clustering can be used to analyze market scanner datasets,

which use binary variables to indicate whether the products have been purchased

by the customers. Products that are frequently purchased together by customers

forms clusters that can be used to define the marketing structure of the products.

On the other hand, according to similarity in the pattern of purchase behavior,

customers can be clustered together to define the market segmentation. Empirical

5

binary survey data sets are also frequently used in the field of market segmentation,

because yes-no questions are simpler and faster to answer for respondents. Binary

question format also allows questionnaire designers to pose more questions, because

each single question is less tiring.

Binary clustering can be applied to other fields as well, such as binary survey

data analysis , document clustering [97], and bioinformatics [32, 37]. For exam-

ple, by analyzing microarray data, genes that share similar gene expression can be

clustered together. It helps to better understand the structure of the relationship

between genes and different experimental conditions. Also, the characteristics of

poorly-known or novel genes can be inferred from the well-known genes that are

clustered together with them.

1.3 Itemset/Frequent-pattern Mining

Association rule mining is another commonly used data mining algorithm.

Instead of building models to predict or grouping data points to understand data

structure, association rule mining [4, 85, 40] aims at finding interesting associa-

tion or correlation relationships among items in a given dataset. Itemset mining,

sometimes called frequent-pattern mining, is the very first step in mining associ-

ations. Itemset mining is often used to analyze binary datasets to find frequent

itemsets. We are given a set of items I = {i1, i2, ..., im} and a database of transac-

tions T = {t1, t2, ...tn}, where each ti is a transaction that contains a set of items

from I. A set x ⊆ I is called an itemset. The support of an itemset x is the

number of transactions in which that itemset occurs as a subset. An itemset is

frequent if and only if its support is greater than or equal to some predefined

threshold. According to this definition, all the subsets of a frequent itemset are also

6

frequent. The number of subsets is exponential in the number of items, the major

challenge of itemset mining is efficiency. Many itemset mining algorithms [85, 40]

are variants of Apriori [4], which needs to generate a huge number of candidate

sets. FP-tree [47] avoids the problem by using an extended prefix-tree structure for

storing compressed, crucial information about frequent patterns.

1.4 Consideration Set Analysis

To our knowledge, no existing data mining methods can handle the special

hierarchical relationships between itemsets that is needed to analyze consideration

sets. A consideration set [83, 19, 6] is the set of brands (a subset of all the brands

in the product category) for which a consumer makes an explicit utility comparison

before he makes his brand choice decision. For example, among all the brands

of ketchup, only a few brands may be considered by a particular customer for a

certain purchase. Knowledge of common consideration sets could provide valuable

insight into the market structure among different brands in a category, and may

help predict choice by narrowing the number of possible outcomes. The analysis

of consideration sets is attracting increasing academic and managerial attention.

However, the identification and analysis of consideration sets is challenging because

they are not directly observable. In the past, deterministic [82] and probabilistic [8,

58] marketing models have been constructed in order to investigate the properties

of consideration sets and how they affect the consumers’ purchasing behavior. So

far, no method has been proposed to identify the actual consideration sets for a

certain group of customers. Since the number of possible consideration sets goes

up exponentially with the number of elements, making the problem unrealistic to

analyze with conventional methods for even moderate numbers of products. Data

7

mining methods could be potentially applicable to this problem.

1.5 The Need for a New Method

Given that we can only observe customers’ choices, we want to infer their

consideration sets, and find the group of customers that share the same consideration

set. We define such a process as a clustering method to find the clusters customers’

consideration sets.

If traditional clustering methods are used to build clusters by grouping those

customers who share the same consideration sets, some customers may be grouped

to a cluster that contains fewer products than they have actually purchased. So,

such clusters poorly represent consumers’ actual consideration sets. For consid-

eration set analysis, one of the restrictions of the cluster construction is that an

itemset can only be clustered to one or more of its supersets. Further, the intu-

ition behind what makes a consideration set “interesting” can be specialized beyond

the typical clustering objectives of “dense” and “well-separated”. Therefore, tradi-

tional clustering methods are not appropriate to handle datasets for consideration

set analysis.

Similarly, the interesting itemsets needed for consideration set analysis may

not themselves be frequent, according to the standard definition from frequent item-

set mining. For example, a relatively small group of customers who buy exclusively

within a set of three products might still be considered a relevant market segment.

Therefore, in this dissertation we describe our approach of combining ideas

from both binary clustering and itemset mining to build clusters in order to find

the special structure of consideration sets. Based on that, we also build different

8

predictive models for each found clusters. This enables us to analyze the character-

istics of the individual cluster. Better understanding and interpretation of the data

can be achieved at the same time.

The development of the novel clustering algorithm and the empirical analysis

are the first contribution of this dissertation. The second contribution is the design

of a novel method to evaluate the clusters found by our algorithm compared with

known ones, as generated with a data simulator. The third contribution is to use

different predictive models to analyze the dataset, instead of using only one model

to fit the whole dataset.

9

CHAPTER 2

LITERATURE REVIEW

Our clustering algorithm uses ideas from binary clustering and itemset mining

to form groups of subsets in a manner appropriate for consideration set analysis.

We also implement the idea of “divide and conquer” to build different predictive

models for each found cluster. This section describes prior work in each of these

areas.

2.1 Clustering Algorithms

Clustering algorithms [7, 49, 53, 60, 31] have been studied extensively in recent

decades. Good clustering reviews can be found in [54, 16]. Current algorithms

can be broadly categorized into four groups: partitioning methods, hierarchical

methods, density-based methods, and model-based methods.

Partitioning clustering [60, 63] constructs k partitions of the data, given a

database of n objects, where k ≤ n. The partition should follow two requirements.

(1) each group should at least contain one object, and (2) each object must belong

to only one cluster. The goal of the algorithm is to minimize some measure of dis-

similarity among data points within each cluster, and to maximize the dissimilarity

of different clusters. K-means [70] is a typical partitioning clustering algorithm,

which iteratively relocates data points to different clusters to minimize the sum of

squared distance of the data points from their nearest cluster centroids as shown in

Figure 2.1 (The mean of each cluster is marked by a “+”).

Given n objects, k clusters that are represented by cluster centers ci, we have:

Total Distance =
k∑
i=1

∑
x∈ci

dist(ci, x)2,

10

Figure 2.1: Partitioning clustering example

where dist is the standard Euclidean distance between two objects in Euclidean

space. The centroid ci of the ith cluster is defined by:

ci =
1

mi

∑
x∈ci

x.

K-means uses local search, so it always find a locally optimal solution. One

drawback of K-means is that the number of clusters, K, must be defined by the

user. The clustering result is also very sensitive to the initialization of cluster cen-

ters. There have been many improvements to K-means, such as ISODATA [55] and

CLARANS [72]. When a threshold on the number of samples in each cluster is

11

provided, ISODATA automatically determines the number of clusters using a set

of rules for splitting and combining existing clusters to obtain a final clustering.

CLARANS handles the initialization problem by starting with new randomly se-

lected data points as cluster centers to find a new local optimum. Partitioning

clustering builds clusters that satisfy the optimization function. It works well to

find find spherical clusters, and it need to be extended to find clusters with complex

shapes.

Partitioning clustering algorithms yield satisfactory results for numeric at-

tributes, but they are not appropriate for categorical datasets. For example, con-

sider a market basket dataset that contains 10 products. A transaction of products

{1,3,4,5} and {2,7,8,9} could be grouped into the same cluster, represented by the

cluster center {3,4,5,7,8,9}, because both of the transactions have substantial items

in common with the cluster center. Clusters built this way poorly represent the real

structure of the dataset, because these two transactions themselves have nothing in

common.

Hierarchical clustering [104, 43, 42, 59] can be implemented by either merging

smaller clusters into larger ones, or by splitting larger clusters into smaller ones. The

first approach is called agglomerative or bottom-up hierarchical clustering, such as

in AGNES [60], CURE [43] and ROCK [42]. It successively merges the objects or

groups close to each other, until all of the groups are merged into one, or until a

termination condition holds. The second group is the divisive or top-down approach,

such as in PDDP [17] and DIANA [60]. It starts with all objects in the same cluster,

and then in each successive iteration, a cluster is split up into smaller clusters, until

each object is in one cluster, or until a termination condition holds.

The clusters constructed by hierarchical clustering can be visualized by a

12

tree of clusters called a dendrogram as shown in Figure 2.2, which is appealing

because of its ease of interpretation. One disadvantage of most such algorithms is

that once a data point is assigned to a cluster, it can’t be reassigned to another

cluster to improve the cluster quality as in partitioning clustering. Hierarchical

clustering methods can be integrated with other clustering techniques for multiple-

phase clustering to improve cluster quality, such as in BIRCH [104], CURE [43],

and Chameleon [59].

Figure 2.2: Hierarchical clustering example

Another major disadvantage is that it doesn’t handle categorical datasets

well. For example, consider a market basket dataset that contains four products,

and four transactions: {3,4}, {2,3,4}, {1} and {4}. These four transactions can be

represented using binary data to indicate if a product is included in a transaction

or not. Thus, we have: {0,0,1,1}, {0,1,1,1}, {1,0,0,0}, and {0,1,0,0}. The first two

transactions have the smallest Euclidean distance, and then they are merged to

13

generate centroid {0,0.5, 1,1}. The next smallest distance is between the third and

fourth transactions. Thus, those two transactions with nothing in common will be

merged together and assigned to the same cluster. The clusters generated are not

appropriate.

Density-based clustering [2, 51] defines the density for each point as the num-

ber of neighbor points in a radius, then the clusters are defined as dense regions

that are separated from one another by low density regions. DBSCAN [33] defines

clusters as maximal sets of density-connected points. The algorithm grows regions

with sufficiently high density into clusters and discovers clusters of arbitrary shape

in spatial databases with noise. The problem with DBSCAN is that it is very

sensitive to user input parameters: slightly different settings may lead to very dif-

ferent clusterings of the data. OPTICS [10] can be considered as an extension of

DBSCAN, and it orders data points so that higher density will be identified first,

followed by lower density regions. Therefore, it can identify the hidden structure of

clusters. DENCLUE [50] is a clustering method based on a set of density distribu-

tion functions. The basic idea of the algorithm is to model the overall point density

analytically as the sum of influence functions of the data points. Clusters can then

be identified by determining density-attractors and clusters of arbitrary shape can

be easily described by a simple equation based on the overall density function.

Density-based clustering algorithms can discover clusters of arbitrary shapes

as shown in Figure 2.3, compared to distance-based methods that find only spherical-

shaped clusters. These algorithms work well for low-dimensional data of numerical

attributes and they are less sensitive to outliers. Density-based clustering algo-

rithms have trouble finding appropriate clusters when clusters have widely varying

densities. Also, they don’t work well for high-dimensional datasets because density

14

is hard to define for such datasets.

Figure 2.3: Density-based clustering example

Model-based clustering [34, 61] builds clusters by constructing a density func-

tion that reflects the spatial distribution of the data points, thus providing the full

description of each cluster in terms of the probability distribution of each attribute.

Expectation Maximization (EM) [63] is a general purpose optimization algorithm

that is often used to find the optimal mixture of Gaussian models that represents

the dataset. The first step, calculation of the cluster probabilities is “expectation”;

the second, calculation of the distribution parameters, is “maximization” of the

likelihood of the distributions given the data. An example of a two-dimensional

point set with two clusters of different mean and variance is shown in Figure 2.4.

AutoClass [22] uses a Bayesian approach to find the optimal clustering. It covers a

broad variety of distributions, such as Bernoulli, Poisson, Gaussian, and log-normal

15

distributions. SOM (Self-Organizing Map) [62] finds a set of centroids and assigns

each object in the data set to the centroid that provides the best approximation of

that object. Clustering is performed by having several units compete for the current

object. The unit whose weight vector is closest to the current object becomes the

winning unit. SOMs assume that there is some topology or ordering among the

input objects. One advantage of model-based algorithms is that they can handle

data sets with different types of attributes by plugging in different distributions.

Figure 2.4: Model-based clustering example

2.1.1 Categorical Clustering Methods

Many of the clustering algorithms described above are designed to handle

numerical data. Some research [42] shows that traditional clustering algorithms

16

that use distances between points for clustering are not appropriate for categor-

ical datasets, because the similarity between categorical data is not sufficient for

clustering such data. Recently, more researchers developed clustering algorithms

[35, 38, 25, 105, 52, 43] specifically for categorical data sets using different meth-

ods. ROCK [42] is an agglomerative hierarchical clustering algorithm that uses

the number of links (shared common neighbors) between two records as the sim-

ilarity. For a dataset with n data points, the time complexity of the algorithm

is O(|n|3), which makes it unsuitable for large datasets. COOLCAT [11] is an

entropy-based algorithm, which explores the connection between clustering and en-

tropy: clusters of similar points have lower entropy than those of dissimilar ones.

LIMBO [9] is a scalable hierarchical categorical clustering algorithm that builds on

the Information Bottleneck (IB) framework for quantifying the relevant infor-

mation preserved when clustering. They use the IB framework to define distance

measures of both categorical tuples and categorical attribute values. STIRR [38] is

a non-linear dynamical system that transforms the dataset into a weighted graph

and uses an iterative method for assigning and propagating weights to get optimal

clusters. The central idea in CACTUS [35] is that a summary of the entire dataset

is sufficient to compute a set of candidate clusters that can then be validated to

determine the actual set of clusters. They generalize the density-based rectangular

regions in the numeric domain to categorical domain as the cross product of sets

of attribute values. They define clusters to be interval regions that consist of a sig-

nificantly larger number of tuples than the number expected if all attributes were

independent. In addition, they extend a cluster to as large a region as possible.

CLICK [79] finds clusters based on a search method for K-partite maximal cliques.

17

CLICK models a categorical dataset as a K-partite graph where the vertex set (at-

tribute values) is partitioned into K disjoint sets (one per attribute) and edges exist

only between vertexes in different partitions.

2.1.2 Binary Clustering Methods

There are some algorithms developed specifically for binary clustering, which is

a special case of categorical clustering. For example, K-means was used in [30] as the

base cluster method to analyze market segmentation. Based on that, an ensemble

clustering method was employed to combine the results, because K-means is an

unstable method that may construct different clusters depending on initializations

and small changes in the training set. Ordonez et al. [74] introduce a fast clustering

algorithm for sparse high-dimensional binary data based on the well-known EM

clustering algorithm. They use it to fit a mixture of normal distributions to a sparse

binary data set. In other work, Ordonez [73] introduces several improvements to

K-means to cluster binary data streams. Both of these methods use distance as the

measurement of similarity. Li [64] developed a general model for clustering binary

data based on a matrix approximation that reduces the clustering problem to the

trace matrix maximization problem which is solved by eigenvalue decomposition.

In the same paper, it is proved that in terms of handling binary data, K-means,

information-theoretic clustering framework [28], and the block diagonal clustering

model [66] can all be represented as different variations of this general model. A

unified view of binary data clustering based on the examination of the connections

among various clustering criteria is provided in [65]. In particular, they show the

relationships among the entropy criterion, dissimilarity coefficients, mixture models,

matrix decomposition, and minimum description length.

18

In general, the key component of these algorithms is a specialized distance

measure with which to compare points to each other, and to a cluster center. How-

ever, these algorithms build clusters without regard to any special structure of the

data being clustered. Specifically in binary clustering, a data point could be assigned

to a cluster that is represented by one of its subsets, which would be inappropriate

for our application. In terms of consideration sets, a customer might be grouped to

a cluster that contains fewer items he has purchased. In cases like this, the above

algorithms are insufficient to build and represent the desired clusters. Further, the

intuition behind what makes a consideration set “interesting” can be specialized be-

yond the typical clustering objectives of “dense” and “well-separated”. For example,

in a dataset that contains some middle-size number of products, say 30, there will

be 230 possible combinations of products that could be purchased by a customer.

Even if we have thousands of customers, the real choices made by customers will be

very sparse in such big data space. Therefore, traditional clustering methods that

use “density” is not suitable in this case.

2.2 Itemset/Frequent-pattern Mining

Association rule mining is another commonly used data mining algorithm.

First proposed by Agrawal et al. [3], it searches for interesting associations or corre-

lations among a large set of data items. Itemset mining, sometimes called frequent-

pattern mining, is the very first step in mining associations.

Itemset mining is often used to analyze binary datasets to find frequent item-

sets, and the rules that can be generated from them. We are given a set of items

I = {i1, i2, ..., im} and a database of transactions T = {t1, t2, ...tn}, where each ti is a

transaction that contains a set of items from I. A set x ⊆ I is called an itemset. The

19

support of an itemset x is the number of transactions in which that itemset occurs

as a subset. An itemset is frequent (FI) if and only if its support is greater than

or equal to some predefined threshold. According to this definition, all the subsets

of a frequent itemset are also frequent. Since the number of subsets is exponential

in the number of items, the first challenge of itemset mining is efficiency.

Many of the existing itemset mining algorithms [86, 75, 85, 40] are variants

of Apriori [4], which employs a bottom-up, breadth-first search that iteratively

generates the candidate set of length (k + 1) from the set of frequent sets of length

k. It is costly to generate a huge number of candidate sets. FP-tree [47] avoids the

problem by using an extended prefix-tree structure for storing compressed, crucial

information about frequent patterns.

Given the explosive number of frequent itemsets, the second challenge of

frequent-pattern mining is how to summarize and interpret the mining results.

The introduction of maximal frequent itemsets (MFI) [13, 39, 20] and closed fre-

quent itemsets (CFI) [76, 103] partially handles the problem. A frequent pattern is

maximal if and only if it does not have a frequent superset. In other words, if an

itemset x is frequent and no superset of x is frequent, we say that x is a maximally

frequent itemset, and we denote the set of all maximally frequent itemsets by MFI.

For example, in Figure 2.5 the itemsets in the lattice are divided into two groups:

those that are frequent are located above the border, and those that are infrequent

are located below the border. Among the frequent itemsets, {AD}, {ACE}, and

{BCEDE} are maximal frequent itemsets, because their immediate supersets are

infrequent.

MFI forms the smallest set of itemsets from which all frequent itemsets can

be derived. The problem with MFI is while we know the support s for the MFI

20

Figure 2.5: Maximal Frequent Itemsets [90]

itself, we know that the support of all its subsets is at least s, but we don’t know the

exact value. An additional pass over the data set is needed to determine the support

counts of the non-maximal frequent itemsets. Therefore, a closed frequent itemset

(CFI) is proposed to preserve the support information. An itemset x is closed if

none of its immediate supersets has the same support as the itemset. Put another

way, an itemset x is not closed if at least one of its immediate supersets has the

same support count as x. An itemset is a closed frequent itemset if it is closed and

its support is greater than or equal to minimum threshold. It is defined to be a

frequent itemset without a frequent superset with the same support. For example,

in Figure 2.6, each itemset is marked with a list of its corresponding transaction IDs.

21

Itemsets in gray are CFIs. {C} is a CFI, because none of its immediate supersets

has a support of four, which is its support. However, {C} is not a MFI, because its

supersets, {AC}, {BC}, and {CE} are all FIs. We note that all maximal frequent

itemsets are closed because none of the maximal frequent itemsets can have the

same support count as their immediate supersets. It is straightforward to see that

the following relationship holds: MFI ⊆ CFI ⊆ FI.

Figure 2.6: Maximal Frequent Itemsets vs. Closed Frequent Itemsets [90]

Other methods to summarize frequent itemsets include: maximal patterns [44],

top-k patterns [48], condensed pattern bases [77], approximation-k sets [1], and δ-

cluster [99].

22

Our proposed work is to construct clusters out of the itemsets. The interest-

ing itemsets needed for consideration set analysis may not themselves be frequent,

according to the standard definition from frequent itemset mining. For example, a

relatively small group of customers who buy exclusively within a set of three prod-

ucts might still be considered a relevant market segment that is worthy of a specific

marketing strategy, even if their number is relatively small. Also, we note that all

the frequent itemsets contain few items, and are pretty much located at the upper

levels of the lattice structure, especially when the total number of items increases.

For the datasets we analyze, interesting itemsets are spread across all levels. We are

interested in finding consideration sets of different sizes that are located in evenly

distributed levels, not only the small-sized frequent ones.

2.3 Consideration Sets

In marketing, ample evidence [83, 19, 6, 82, 8] has shown that a consumer may

be aware of a large number of brands, but only a few will be considered for purchase

on a given occasion. Consumer decision making can be described as a sequence

of stages during which the number of brands decreases as shown in Figure 2.7.

Among the universal set, which refers to all alternatives that could be obtained or

purchased by any consumer, the subset that a given consumer is aware of is called

the awareness set. The awareness set is divided further into brands the consumer

would consider purchasing, the subset that is called the consideration set, and those

that are not considered. Finally, the choice set is the subset of products that the

customer is known to have actually purchased. For example, one of our datasets

records ketchup purchases. A particular customer might consider Heinz, Hunts,

and a less expensive regional brand as possible choices (their consideration set),

23

but in observing the customer over a specific period of time, we might only observe

purchases of Heinz and Hunts (the choice set).

Figure 2.7: Consumer decision making process

The goal of learning and analyzing consideration sets is to better understand

and predict consumers’ behaviors. Different groups of consumers typically exhibit

significantly different purchase behaviors, while people within each group could

share similar characteristics. If we are able to correctly identify and recognize the

heterogeneity and homogeneity among the consumers, we should be able to better

predict their purchasing behaviors, better define market segmentation by grouping

customers, and better understand market structure by analyzing the products that

are often bought together by similar customers.

24

The analysis of consideration sets is attracting increasing academic and man-

agerial attention. However, the identification and analysis of consideration sets is

challenging because they are not directly observable. Both consumer surveys [82, 15]

and the actual purchase history [24, 6] could be used to study customers considera-

tion sets. Consumer survey is relatively fast, up to date and direct. But sometimes

it may not be very reliable, because customers might behave differently depending

on whether they are filling out survey or doing the actual shopping. Scanner data

that shows customers purchase history could be used. They are relatively accurate

since the purchased products must have been seriously considered by the customers,

but they lack any information on products considered but not bought.

In marketing, there are two ways to model consideration effect in empirical

discrete choice models:

1. Deterministic methods [82], which allocate brands into considered and un-

considered sets on the basis of direct consumer reports or the values of key

consideration variable. For example, Roberts and Lattin [82] defined a con-

sideration set to consist of only those brands for which the expected utility is

greater than some threshold.

2. Probabilistic methods [8, 58, 6, 19, 15], which involve a more generalized

two-stage modeling process: a consideration set formation stage and a brand

selection stage. A customer’s final brand choice probability of product j, Pj,

is conditional on that brand j being a member of his/her consideration set

C. Thus, Pj =
∑

C P (C)P (j|C). For a total of n products, the enumeration

of 2n − 1 choice set utilities makes it inappropriate for even moderate-sized

problems.

25

In order to avoid this problem, individual-level consideration sets can be esti-

mated using a Bayesian updating procedure in conjunction with the multino-

mial logit model as shown in [87]. In their model, a brand j will be included in

one’s consideration set if the utility of considering j is greater than a threshold.

Another method is to use a latent class approach [58, 19] to catch the hetero-

geneity of consideration probability formation. Their choice model partitions

the market into consumer segments differing in both brand preference and

price sensitivity.

These marketing models have been constructed in order to investigate the

properties of consideration sets and how they affect the consumers’ purchasing be-

havior. So far, no method has been proposed to identify the actual consideration

sets for a certain group of customers. The number of possible consideration sets

goes up exponentially with the number of elements, making the problem unrealistic

to analyze with conventional methods for a large numbers of products. Data mining

methods could be potentially applicable to this problem. For example, Vroomen

et al. [92] developed a two-stage parametric econometric model. Their model is

actually an artificial neural network, and the consideration set corresponds with

the hidden layer. The disadvantage of models using neural networks is that it is

difficult to interpret the relationships between the consideration sets (hidden layer)

and the outputs.

2.4 Divide and Conquer

As described in Chapter 1, clustering can be used to partition unlabeled data

into groups to find the unknown structure of the dataset. On the other hand, for

a dataset with known labels, clustering can be used as a preprocessing method for

26

other algorithms, such as classification. In machine learning, the idea of build-

ing specific predictive models for different clusters is an example of a “divide and

conquer” algorithm. There are two advantages of having the two stages, namely,

clustering and then classification. First of all, the model built for each cluster is

more specific to each cluster than a uniform model built for the whole dataset. Sec-

ondly, better understanding of the different groups can be achieved. It’s natural

to analyze found clusters separately and compare how differently they respond to

predictive variables. This idea has extensive real world applications. For example,

marketing segmentation is used to identify groups or subpopulations of customers

within a data set that share unique properties relevant to their future choices. Bet-

ter understanding and interpretation of the data can be achieved by analyzing the

unique decision model of each particular subpopulation. This is the second step of

our work after we have successfully found the clusters in the datasets. I will intro-

duce related work in the fields of both data mining and marketing in the following

subsections.

2.4.1 Data Mining Algorithms

Decision tree induction [80] is the most well-known divide-and-conquer ma-

chine learning algorithm. It can be regarded as one approach for realizing feature

space localization in supervised learning. At each node, the data points are split

according to one (or more) selected feature(s). Then for each part, different fea-

tures might be selected to further divide the data set. Thus the subtrees can be

considered different predictive models for different groups of examples. Decision

trees attempt to find pure subtrees consisting of mostly or all one class.

Radial Basis Function (RBF) neural networks as proposed by Moody and

27

Darken [71], are another approach. The model consists of one hidden layer of un-

supervised or competitive learning and one supervised output layer. Each hidden

unit has its own receptive field in the input space defined by Gaussian functions.

The activations are determined by the distance from the data point to the Gaus-

sian centers. The prediction is then determined by a weighted combination of the

activations of the hidden units. The hidden units (clusters) found by the algorithm

are usually mostly positives or negatives, then the cluster membership contributes

a single weight for the class prediction. Only one model is built for the whole data

set, instead of particular model for each part of data set.

More complex models have also been proposed for recognizing localized re-

sponses. For example, Maclin [69] proposed RegionBoost, which realized feature

space localization by making use of an ensemble of classifiers. In standard boosting,

the predictions are combined by weighting the predictions by a term related to the

accuracy of the classifier on the training data. It ignores the fact that later classi-

fiers concentrate on correctly classifying examples that can’t be correctly classified

by previous classifiers and thus may only be good at classifying patterns similar to

only that small subset. Rather than using a single measure of the accuracy on the

training data, RegionBoost takes advantage of the idea that some classifiers perform

well only for certain regions of the feature space by estimating the likely accuracy

of the classifier for each new point. One limitation of using RegionBoost is that an

ensemble of predictive models instead of a simple predictive model is built, thus it

lacks interpretability.

ICC (Iterative Clustering with Classification) [101] is an integrated two-level

modeling process that uses the performance of different predictive models that are

built for each particular cluster to guide the cluster construction, while taking the

28

similarities between the data points in the original feature space into consideration.

ICC combines supervised and unsupervised learning to build accurate predictive

models while facilitating interpretability. The traditional EM clustering algorithm

was extended by considering both the similarity of the data points in the original

feature space and the predictive accuracy. The model is integrated because the

performance of the classifier directs the changes in the cluster centers and variances

so that the data points are more likely to belong to a cluster that correctly predicts

its class. Thus, the model considers both the probability that a data point belongs

to a cluster and the probability that a data point can be correctly classified in

that cluster. We are trying to not only segment the data into subgroups of similar

individuals, but also to segment them into more easily classified and more easily

explained subgroups.

Another novel feature of this work is that different sets of attributes can be

used to build the clusters and the classifiers. Let xAi and xBi represent the data

point xi projected onto two sets of features used to build clusters and classifiers

respectively. xAi and xBi can be identical, disjoint, or have some overlap. xAi is

used by the EM algorithm to build clusters, and xBi is used to build distribution

classifiers separately for each particular cluster.

Given the probability distribution, the likelihood function is the joint proba-

bility function of the sample. In EM, the likelihood to be maximized for data set

X = {xi}Ni=1 is

LEM =
N∏
i

K∑
k=1

pkf(xi|θk), (2.1)

where f(xi|θk) is the pdf (probability density function) for cluster k, and θk is the

set of Gaussian parameters (µk, σk) for cluster k, with mixing proportion of pk.

In logistic regression, for the instance xi with J attributes, the predicted

29

probability that yi = 1 is Pi = 1

1+exp(−β0−
∑J

j=1 βjxij)
. The contribution of the ith case

to the likelihood function equals Pi if yi = 1, and it equals 1 − Pi if Yi = 0. Thus

the contribution of the ith case being correctly classified by regression model h is

P (h(xi) = yi) = P yi

i (1 − Pi)1−yi . Assuming that the data points are independent,

the likelihood function can be expressed as:

Llogistic =
N∏
i=1

P (h(xi) = yi) =
N∏
i=1

P yi

i (1− Pi)1−yi . (2.2)

The objective of ICC is to maximize both the likelihood that the data points

are formed from the mixture models that can be described by the parameters of pk

and θk, and the likelihood that the data points can be correctly classified in their

corresponding cluster. Combining the likelihood function of both the mixture model

and logistic regression, the new likelihood function to be

LICC =
N∏
i

K∑
k=1

pkf(xAi |θk)P (h(xBi |βk) = yi)

=
N∏
i

K∑
k=1

pkf(xAi |θk)P
yi

i (1− Pi)1−yi .

(2.3)

In this way, the data points are clustered not only by their similarity, but also

by the probability that they can be correctly classified by the classifier built for

their assigned cluster. The predictive model can be expressed as

ŷi ∼
K∑
k=1

pkf(xAi |µk, σk)P (h(xBi |βk) = 1)

=
K∑
k=1

pk
1√

2πσk
exp

[
−(xAi − µk)2

2σ2
k

]
1

1 + exp(−βkxBi)
.

(2.4)

30

2.4.2 Marketing Methods

In the marketing segmentation literature, recent work has focused on “clus-

tering” individuals based on how well they fit one of several predictive models. This

approach is known as clusterwise regression, and was first proposed by Spath [89].

Given N J-dimensional data points xi (i = 1, ..., N) with class label yi for each data

point, the method minimizes the sum of squared error computed over all points and

all clusters:

min
K∑
k=1

∑
i∈Ck

(yi −
J∑
j=1

βkjxij)
2, (2.5)

where Ck is the set of data points for cluster k, and βkj is the jth regression coeffi-

cient for cluster k. The method is similar to K-means in the sense that it sequentially

exchanges data points to disjoint clusters to minimize the objective function (2.5).

In this model, each data point belongs to only one cluster.

Desarbo and Cron [26] extend the method by allowing each data point to

belong to several clusters with different probabilities. They used a mixture model

to represent clusters. Given K clusters, let σ2
k be the variance term for the k-th

cluster with proportion pk. They assume yi is distributed as a finite sum or mixture

of conditional univariate normal densities:

ŷi ∼
K∑
k=1

pkf(yi|xij, σ2
k, βjk)

=
K∑
k=1

pk
1√

2πσk
exp[
−(yi −

∑J
j=1 βkjxij)

2

2σ2
k

].

(2.6)

Given a sample of N independent data points, the likelihood can be expressed

as

Lclusterwise =
N∏
i=1

K∑
k=1

pkf(yi|xij, σ2
k, βjk). (2.7)

Maximum likelihood is used to find the estimates of separate regression functions

31

for different clusters and the probability that each data point belongs to different

clusters. It’s worth noting that the variance (σk) here measures how well the data

points fit the regression line. Thus the model builds clusters depending on how well

the data points are along the regression line instead of how similar they are in the

original feature space.

Lwin and Martin [68], De Soete and Desarbo [36] and Wedel and Desarbo [93]

developed conditional mixture binomial probit and logit regression models. Ka-

makura and Russell [58] developed conditional mixture multinomial logit regression

models in marketing context.

Wedel and Desarbo [94] developed GLIMMIX (Generalized LInear Model

MIXture) to handle different types of exponential distributions of the cluster struc-

ture for different linear regression models. Wedel and Kamakura [95] contains a

review of developments in mixture regression models.

Basically, the mixture regression models build clusters based on coefficient

similarities. The objective is to cluster data points in a way that fits the regression

function well, without considering the geometric similarities of the data points in

their original feature space. In marketing, that means the marketing segmentation

is determined based solely on the parameters of the response model.

32

CHAPTER 3

HACS

Data mining algorithms such as clustering and itemset mining have been de-

veloped extensively. The selection of an algorithm to solve a particular problem

depends on both the purposes of the analysis and the types of the data. In order

to analyze the special structure of consideration sets, we find that none of the ex-

isting methods are directly applicable. We also find that the problem of finding

an interesting collection of consideration sets is difficult to express formally, say,

as a constrained optimization problem. This, together with the complexity of the

problem (there are 22n
possible combinations of subsets of n items), leads us to

approach consideration set detection as a heuristic search problem. We now intro-

duce a Heuristic Algorithm for Clustering Subsets (HACS) [102] for binary data to

identify and characterize cluster structures for consideration sets.

The proposed work will be carried out in two steps, shown in detail in the

subsequent subsections. The first step is to order the candidate cluster centers

based on a quality measurement. The second step is to build clusters that satisfy a

quantity criterion. The resulting clusters represent the induced consideration sets.

In order to increase efficiency, we also propose top-n and quality threshold methods

to reduce the number of candidate clusters to be examined.

3.1 Order Candidate Cluster Centers

The challenge of identifying consideration sets is that they are not directly

observable. We know only the choice set, those products purchased by a customer

over a finite time window, which may be only a subset of the products considered.

To induce consideration sets using customers’ purchase history, we proceed from

33

the following assumptions:

1. The purchased products should be included in one’s consideration set. This

follows directly from the definition of consideration and choice sets.

2. One’s consideration set might also include some products that have not been

purchased yet. This could be due to several reasons, say, consumer waiting for

a promotion, purchase history not long enough, etc. Any finite data collection

is inevitably an incomplete picture of the purchasing habits of at least some

customers, since new customers are constantly arriving and old ones disappear.

3. The unpurchased products in one’s consideration set can be inferred from

the purchase records of other consumers who share similar purchase histories.

This is a rewording of the basic assumption of similarity-based learning. If

a substantial group of customers bought products A, B and C (and rarely

anything else), we consider it likely that a new customer who has purchased

only items A and B has probably also considered C.

With these, we define a candidate consideration set as a set with the following

desirable property: most people who bought items from the set, bought only items

from the set. In order to find such sets, we count the number of customers who

purchase exclusively within a particular itemset x, and the number who purchase

a strict superset of x. These two counts are compared to an estimate of their

expectations.

We begin with a set of m items I = {i1, i2, ..., im} and a database of transac-

tions T = {t1, t2, ...tl}, with each transaction containing one or more chosen items,

as in itemset mining. We note that in consideration set analysis, the items are

34

assumed to be alternatives, e.g., different brands of ketchup, although this assump-

tion does not affect the algorithm. The transactions for each customer are gathered

together to create a database D = {c1, c2, ...cn}, in which each record cj is a choice

set, containing exactly the set of items in I purchased by customer j during the

sampling time. An initial scan of this dataset constructs a partial subset lattice

(Figure 3.1) by creating a node for each unique itemset x that appears as the choice

set for some customer.

We define individual support for an itemset x, isx, as the number of customers

who purchased exactly the set of items x, and our later cluster construction is based

on this first scan of data which computes isx. We further define partial support,

psx, as the number of times each itemset x appears as a strict subset of a customer’s

choice set. In other words, partial support is the number of times that itemset x

appears partially in a customer’s choice set. We note that psx + isx is equivalent

to supportx in itemset mining. The number of times each itemset x appears as

a superset of a customer’s choice set is called total support, tsx. It can also be

explained as the number of times that itemset x appears as the total choices of some

customers, meaning that they only choose from itemset x. Thus, psx =
∑

y⊃x isy,

and tsx =
∑

y⊆x isy. As shown in Figure 3.1, each node can be viewed in the shape

of an hourglass, with subsets above and supersets below.

As an example, Figure 3.2 shows isx in parentheses for each itemset x. For

a dataset that contains four products {A, B, C, D} and 250 customers, we have

psAB = isABC + isABD + isABCD = 7 + 10 + 4 = 21, and tsAB = isA + isB + isAB =

35 + 16 + 39 = 90.

The candidate consideration sets should be those with a total support that is

larger than expected, i.e., there are more than the expected number of customers

35

Figure 3.1: Statistics for sample subset lattice

Figure 3.2: tsx and psx illustration

buying only from this set of products. These customers buy either all or some of the

products in this set and none from outside the set. Further, the candidates should

36

have partial support that is smaller than expected, i.e., there are fewer than the

expected number of customers buying the set of products plus others from outside

the set.

Now, the question is how to calculate the expected values. In our algorithm,

the expected psx E(psx) and expected tsx E(tsx) are estimated using the isy, for

all singleton sets y ⊆ x. Given N customers, the probability that any single item

i appears in any customer’s purchase history is estimated as pi = (isi + psi)/N .

Assuming that the products are independent, the support expectations can be com-

puted as follows:

E(isx) = N
∏
i∈x

pi
∏
j 6∈x

(1− pj),

E(psx) = N
∏
i∈x

pi − E(isx),

E(tsx) = N
∏
j 6∈x

(1− pj).

In our example, the expected values are calculated by individual pi, i ∈ {A,B,C,D}

as follows:

E(isAB) = N(pA)(pB)(1− pC)(1− pD),

E(psAB) = N(pA)(pB)− E(isAB),

E(tsAB) = N(1− pC)(1− pD).

Each node in the lattice is considered to be a candidate cluster center. A good

candidate cluster center should follow these two criteria:

37

1. The set itself, plus all of its subsets, appears more often than statistical ex-

pectation. Here, we define:

total support ratio =
tsx

E(tsx)
.

We want total support ratio to be large.

2. The set’s strict supersets appear less often than statistical expectation. Here,

we define:

partial support ratio =
psx

E(psx)
.

We want the partial support ratio to be small.

These criteria ensure that candidate sets are shared by a large number of

customers, and also represent common purchasing behavior. We introduce an overall

measure of quality, qualityx for a subset node,

qualityx = total support ratio− partial support ratio.

The nodes that have higher quality values are those with a larger than ex-

pected collection of subsets (the top of the hourglass), and a smaller than expected

collection of supersets (the bottom of the hourglass). For example, if {A,B} ranked

highest among those itemsets in the second level of the lattice, we would expect

there are more than the expected number of customers who bought exclusively

within product set {A,B}, and less than the expected number of customers who

bought other products together with {A,B}. Therefore we would conclude that

{A,B} fits the pattern of a consideration set.

The advantage of using the ratio of real over expected number of points for

each node is that it is independent of where in the lattice the node appears. If the

38

real numbers of ts and ps were used to determine quality, the nodes at the bottom

would almost always be preferred, since there are typically very few customers with

large choice sets.

We note that the quality measure is not defined as

qualityx =
total support ratio

partial support ratio
=
tsxE(psx)

E(tsx)psx
,

because as the number of items increases, customers’ choice sets could be very di-

versified with 2n possibilities. As an advantage of our method, we only calculate the

statistics of the choice sets that appear in the real scanner dataset, which is only a

subset of all the possibilities. Therefore, some itemsets may not have a strict super-

set appearing in our lattice structure, and the partial support of such an itemset

will be 0. In cases like this, if we use total support ratio / partial support ratio, we

will get an infinitely large quality measure. Thus we can’t distinguish the quality

of such itemsets. Our current quality calculation is design to solved this problem.

3.2 Cluster Construction

Once the quality measures are computed, we start from the top level of the

subset lattice, and order nodes within each level based on their quality values. After

ordering the candidate centers, clusters are built to identify consideration sets. A

quantity threshold, QT , is used to make sure the clusters are constructed only if

they contain a sufficiently large percentage of data points. For each candidate x,

if tsx ≥ QT , x will be marked as a confirmed consideration set, and (some of) the

support of the subsets of x will be allocated to x. Otherwise, the support of x is

available for allocation to one or more of its supersets.

For the itemsets on the first level of the subset lattice, if tsx ≥ QT , x will be

39

marked as a confirmed consideration set, and its support won’t contribute to any

of its supersets. For itemsets on other levels, the candidate with the highest quality

value will be checked first to see if its tsx is bigger than QT or not. We note that

the tsx is calculated as the sum of the support of all its subsets that have not been

previously allocated. The process continues to the very bottom level of the subset

lattice.

Proper selection of the quantity threshold is important because it controls

the size of the constructed clusters. The threshold is selected experimentally by

choosing the range that gives good cluster evaluation values on simulated data.

Details are described in Section 3.8.

There are two methods of allocating an itemset to its superset(s), hard as-

signment and soft assignment. In hard assignment, when an itemset is allocated to

a confirmed cluster, it can no longer contribute its support to the total support of

other potential clusters. Conversely in soft assignment, an itemset can contribute

to the support of multiple clusters with different weights. After an itemset x is

allocated to cluster y, the support remaining for x to contribute to other clusters is

(1 − p(y|x))(isx), where the conditional probability of a customer who bought set

x having considered set y is estimated as p(y|x) = isy/psx.

Using the example in Figure 3.1, in hard assignment, if {A,B} is declared to

be a consideration set, itemsets {A}, {B}, and {A,B} contribute all their support

{A,B} and none to the total support of other supersets such as {A,B,C}. In soft

assignment, itemsets {A} and {B} can contribute some proportion of their support

to other candidate clusters, while itemset {A,B} will not contribute its support to

any other candidate clusters. For example, if {A,B} is the first constructed cluster

at level 2, some proportion of itemset {A}’s support can be added to the total

40

support of itemsets such as {A,D}, {A,C}, {A,C,D}, and {A,B,D}. The proportion

is 1−p(AB|A) = 1− isAB/psA. Again, we use isAB/psA to estimate the percentage

of all A buyers who considered exactly the set {A,B}. One minus this proportion

is how much A can contribute to other candidates. As an itemset x is allocated

to more than one cluster, the proportion that it has available contribute to others

continues to decrease: (1−
∑

y p(y|x))(isx), where x ⊂ y and y has been confirmed

as a consideration set. A confirmed consideration set does not contribute any of

its individual support to the total support of any superset in either hard or soft

assignment.

3.3 Efficiency Improvements

For a dataset with a large number of items, the described algorithm is ineffi-

cient because there are too many candidate cluster centers. To increase efficiency,

we choose only the candidates with high quality values compared to their peers on

the same level of the lattice structure. All nodes on the first level are set to be can-

didates. Only the top 50% of the nodes on the second level are set to be candidates,

and then top 10% of the nodes on lower levels are considered. This top-n candidate

selection method improves efficiency significantly, especially for sparse datasets with

large numbers of items. As shown in Section 3.8, using top-n search takes less than

1% of the normal running time, with a small drop in resulting quality.

Another method of increasing efficiency is to set a quality threshold, which

acts as a lower bound on the quality for sets to be considered. This is used for

particularly dense datasets as described in Section 3.9, and shows around 50% run-

time efficiency improvement.

Both of these two methods provide limit number of candidates to be checked

41

without removing the important ones. The number of clusters we are interested in

analyzing are typically less than twenty, because if more clusters are constructed,

they may not be big enough to be representative. The number of candidates pro-

vided using both methods are much bigger than twenty. Together with the quality

ordering in each level, the candidates should be the ones we really need to check.

Figure 3.3 outlines the algorithm.

Input: Choice set database D, Quantity threshold (QT)

Output: Clusters

//Compute individual support

for each choice set record c ∈ D
isc ++

end

//Compute other node statistics

for each itemset x
tsx =

∑
y⊆x isy

psx =
∑

y⊃x isy

E(isx) = N
∏

i∈x pi
∏

j 6∈x(1− pj)

E(tsx) = N
∏

j 6∈x(1− pj)

E(psx) = N
∏

i∈x pi − E(isx)
qualityx = tsx/E(tsx)− psx/E(psx)

end

//Sort nodes within each level

for l = 1 to |I|
perform search reduction, if necessary

sort itemsets in level l on quality, descending

end

//Build clusters

for l = 1 to |I|
for each candidate x at level l

if tsx > QT
confirm x as a consideration set

update tsy , ∀y ⊃ x
end

end
end

Figure 3.3: HACS algorithm outline

42

3.4 Algorithm Discussion

Our algorithm differs from other related algorithms in several ways. First

of all, our algorithm handles the itemsets in a different way from commonly-used

itemset mining. Our algorithm is inspired by analyzing the consideration sets in

marketing, and our goal is not to find the frequent itemsets, nor the closed/maximal

frequent itemsets. The candidate itemsets that we are interested in are not neces-

sarily frequent ones. Rather, they are the itemsets for which a significant number of

customers bought from the set, and bought only from inside the set. We introduced

the ratios of real values with expected values as a consistent measure with which

to compute the criteria to order the candidate clusters. The structure of the lattice

efficiently stores the information, as we construct nodes only for those choice sets

that actually appear in a given dataset. The memory space required is therefore lin-

ear in the number of distinct itemsets that are included in the transaction database.

While this number is theoretically exponential in the number of items, in practice

we find that for datasets with a large number of items, the number of actual choice

sets is much smaller. For example, in a real dataset with 27 items described in

the next section, only 3273 of more than 100 million possible choice sets actually

appear.

Secondly, our algorithm is a special type of agglomerative hierarchical cluster-

ing algorithm, although it is different from existing ones. We merge itemsets that

have subset-superset relationships compared to other hierarchical clustering algo-

rithms in which similarity is the only criteria. The clusters constructed by other

hierarchical clustering can be visualized by a tree of clusters, compared with ours

that can be visualized by a lattice, which allows each node to have multiple parents.

Another important feature that distinguishes our method from other clustering

43

Table 3.1: Parameters of simulated data

Simulation I Simulation II

parameters default real default real

value value value value

number of Consideration Sets A=7 unknown A=10 unknown

number of products B=8 B=8 B=27 B=27

number of customers C=800 C=734 C=6000 C=5979

mean customer history length D=7 D= 6.85 D=14 D= 13.16

per. buy outside of CS F=0.01 unknown F=0.01 unknown

mean number of items in a CS G=3 Ga=3 G=5 Ga=4.4

std. dev. of items in a CS H=2.0 Ha=1.5 N/A N/A

number of infrequent large CS I=4 unknown I=15 unknown

a True values indicate choice sets, since consideration sets are not directly observable

algorithms is that the special structure of the dataset was taken into consideration

when clusters are built. In our algorithm, an itemset will only be clustered to its

superset. In terms of consideration set analysis, this ensures that a customer with

a certain choice set won’t be clustered to a cluster that contains fewer items than

his/her choice set.

3.5 Evaluation and Experiments

We tested our algorithm on both simulated data and real marketing datasets.

We developed a data simulator to generate data that closely resemble the real

customers’ purchase history. The simulated data was used to evaluate the ability of

44

our algorithm to identify clusters known to be in the dataset. Our approach is to

generate lifelike customer records with specific consideration sets, along with some

noise, and evaluate our algorithm on its ability to reconstruct these sets. This is a

common approach in the evaluation of clustering methods, as there is no external,

objective measure of performance on real data sets without known class labels.

3.6 The Data Simulator

The assumptions of the simulator are that each customer has a consideration

set, buys items within that set with nonzero probabilities, and is observed for some

number of purchases. We add noise to the data by allowing purchases outside the

consideration set with some small probability (say, because of a mother-in-law visit).

First, the data simulator generates the consideration sets and their corresponding

prior probabilities with respect to customers. Then the purchase history of each

customer is simulated, as described in the following subsections.

The parameters of the data simulator are listed in Table 3.1. Using these,

we create simulated data that are very much like the real datasets we have in

hand. The third and fifth columns of Table 3.1 show the statistics of the real data

sets we simulate. Differences between true parameters and the value used in the

simulation, such as the distribution of purchase history length, were empirically

chosen to create the right number of unique, non-empty sets. For example, the

ketchup dataset contains 8 products and 145 unique customer choice sets (out of

28 = 256 possible sets). Using the default values shown in the second column of

Table 3.1, we generated 10 simulated datasets and observed a mean number of

unique choice sets of 144.8.

45

3.6.1 Generate Consideration Sets

The simulation begins by generating A consideration sets. The cardinality

of the sets follows different distributions as we observed for the two datasets. We

note that we can only observe the choice sets instead of customers’ consideration

sets. Therefore, the cardinalities shown here are all for choice sets, and we assume

consideration sets follow the same distribution with the same parameters as choice

sets. For the ketchup dataset, it follows a normal distribution as shown in Figure 3.4.

A random number is generated from Normal(G,H) and rounded to an integer to

determine the cardinality. Non-positive numbers are ignored. Also, we allow no

more than two consideration sets with cardinality of one. In the example shown,

we generate 7 consideration sets, and the cardinality of the sets is drawn from

Normal(4,3).

Figure 3.4: Choice set distribution comparison for ketchup

46

The cardinality of the choice sets for the detergent dataset follows a negative

exponential distribution (G) as shown in Figure 3.5. Thus, for the detergent dataset

simulation, a random number is generated from a negative exponential distribution

with mean G. Again, we allow no more than two consideration sets with cardinality

of one.

Figure 3.5: Choice set distribution comparison for detergent

The real mean and standard deviation of the number of products purchased

by customers are 3 and 1.5, respectively, as shown in Table 3.1. The sizes of consid-

eration sets should, on average, be larger than the size of choice sets, since in any

finite observation sample we will not see most customers buy every item in their

set.

If all consumers choose only from these consideration sets, the number of

47

distinct choice sets appearing would be much smaller than observed in the real data

set. Thus, we used two methods to increase the variability of choice sets. One

method is to generate I infrequent but large consideration sets. The number of

items in the I infrequent consideration sets is uniformly distributed from five to

the number of products we are simulating. This matches the somewhat surprising

observation that in our real data set that contains 8 products, there are quite a

number of infrequent choice sets containing 6 or more items. The second method

is to add a consideration set that contains every item. This set will serve as the

superset of all possible choice sets for the dataset. It will be one of the I infrequent

consideration sets. All these infrequent consideration sets will be given smaller priors

compared with the ones generated following either Normal or Negative Exponential

distribution. In total, the expected number of consideration sets generated is A +

I, and we will evaluate our method on its ability to extract all of them, both small

and large.

After the cardinality of a consideration set is fixed, a random combination of

distinct products is chosen according to its cardinality. For example, for a consid-

eration set with cardinality 4, products 1, 4, 5, and 7 may be chosen.

3.6.2 Generate Priors for Consideration Sets

A uniform random number is generated for each consideration set to represent

its prior probability with respect to customers. We set the range of the random

number for small consideration sets to be between 0.25 and 0.75, and between 0.15

and 0.35 for large and infrequent consideration sets. These priors are normalized

to sum to 1. On average, the small consideration sets will have higher probabilities

than the large ones, as desired. However the range of priors is relatively moderate so

48

Table 3.2: Sample of simulated consideration sets

Consideration Sets prior

1 {6} 13.44%

2 {1, 6} 10.93%

3 {4, 5} 9.14%

4 {1, 5, 7} 9.96%

5 {0, 1, 2, 4} 12.78%

6 {0, 1, 2, 3, 4} 14.70%

7 {1, 2, 3, 4, 6} 5.82%

8 {1, 2, 3, 4, 6, 7} 4.55%

9 {0, 2, 4, 5, 6, 7} 4.61%

10 {0, 2, 3, 4, 5, 6, 7} 6.78%

11 {0, 1, 2, 3, 4, 5, 6, 7} 5.69%

that each constructed consideration set will have a reasonable number of customers

assigned to it. As an example, consideration sets created in a typical run are shown

in Table 3.2.

3.6.3 Simulate Each Customer’s Choices

Each customer is first assigned to a consideration set according to the consid-

eration set priors, as previously generated. We then generate priors for all products

in the customer’s consideration set. Similar to the priors for consideration sets, the

priors for each product in a customer’s set are generated uniformly between 0.25

49

and 0.75 and normalized to sum to 1.

The distribution of the number of purchases of ketchup made by customers

follows a negative exponential distribution, as was observed in the real ketchup

dataset shown in Figure 3.6. There are many customers who buy only a few times,

and only a few customers with very long purchase histories. This is reasonable, as

the time window on our real datasets is around 2-3 years. The simulation matches

real customer purchase records well, except for the number of customers with only

one purchase. This is caused by the nature of the negative exponential distribution.

We accept the simulation because it only affect the cluster construction of those

with cardinality of one, and we already limited such choice sets as we generate

candidate consideration sets. Another reason is that although there are more than

the expected number of customers with only one purchase record, their consideration

sets are different, thus their single choices should also be different. So the chances

that this may accidentally generate a “false” consideration set is very small.

The comparison of detergent purchase history distribution is shown in Fig-

ure 3.7. The simulation matches the real dataset well.

Finally, for each purchase, a customer makes a choice according to the gen-

erated priors on the products in his consideration set. We also allow a simulated

customer to choose from outside his consideration set with a small probability F.

We note that F should always be small, around 1-5%, otherwise, the product should

be regarded as being within his consideration set. Although the question remains

controversial in marketing, we believe it is realistic to view rare purchases as falling

outside the consideration set; however, our main purpose for including such events

in our simulator was to observe the effects of increased noise on our clustering

performance.

50

Figure 3.6: Real customer purchase history distribution for ketchup dataset

Our simulator provides very realistic datasets on which to test our approach.

Emergent properties such as the total number of non-empty choice sets and the

distribution of customers with choice sets of different sizes match our true data

very closely. We conclude that, if our clustering method can reliably reconstruct

the signal (true consideration sets) in this data, then the clusters constructed from

true data will be trustworthy.

3.7 Evaluation

Clearly we would like our algorithm to find existing clusters, and not generate

clusters that are not in the data. Precision and recall are two widely used measure-

ments in information retrieval. Given a confusion matrix as shown in Table 3.3, we

51

Figure 3.7: Real customer purchase history distribution for detergent dataset

have:

precision =
TP

TP + FP
,

recall =
TP

TP + FN
.

Precision measures the fraction of records that actually to be positive in the

group the classifier has predicted as a positive class. Recall determines the fraction

of positive examples correctly predicted by the classifier. In the context of cluster

analysis, precision measures the fraction of found clusters that are known clusters,

and recall measures the fraction of the true clusters that are found.

Standard measurements such as precision and recall are inadequate for mea-

suring cluster quality in our situation, since some misses are closer than others.

For example, for known clusters {1234} and {4567}, both groups of found clusters

52

Table 3.3: Confusion matrix for a binary classification

Predicted Class

+ -

Actual + TP FN

Class - FP TN

{123}, {456}, {567} and {13}, {45}, {47} have precision and recall equal to zero,

but the first group intuitively matches the known clusters better. We thus bor-

row the idea of set similarity measurement, the Jaccard coefficient [53], to evaluate

found clusters. Given two subsets A and B, the match score matchAB is defined as

|A∩B|
|A∪B| . matchAB = 1 if A and B are identical, 0 if they have no items in common,

and is otherwise between 0 and 1. For example, given A={1234} and B={123},

matchAB = 3
4

= 0.75.

With a measure to compare subset similarity, we now need a way to compare

sets of subsets. In general, we want to match up the most similar clusters between

the true and the found sets, and compute match scores for the connected pairs.

Given two groups of clusters that may have different sizes, we want every cluster

to be matched with at least one cluster in the other group. Specifically, given two

groups of clusters A and B, with |A| ≥ |B|, we want every cluster in the smaller

group B to be matched to at least one in the larger group A, and every cluster in

A to match exactly one in B. The overall objective is to maximize
∑
matchAB,

where A ∈ A, B ∈ B, and A and B are the assigned matches. The algorithm used

to find the best matches is shown in Figure 3.8. The overall matching score of two

53

groups of clusters will be the summation of the individual match scores divided by

the total number of clusters in A. It’s a number between 0 and 1, with 1 indicating

perfect match and 0 indicating no matches at all.

As shown in Figure 3.8, the first for loop finds the best matching cluster for

every cluster A ∈ A . So the relationship between clusters in A and B is n:1, where

n ≥ 1. For example, there are two groups of clusters: group A is {12}, {35}, {34},

{134}, {1234}, {1245}, and group B is {12}, {35}, {45}, {123}, {12345}. After

the for loop, the matching will be like Figure 3.9(a) with a total score equal to

4.6, and match score 0.76. After the first step, there may be clusters in B that are

unmatched.

The following while loop finds matches for the unmatched clusters by re-

arranging the matchings. The clusters in A that have 1:1 matches are marked as

unavailable, because they are perfect matches. Then at each iteration we find the

best match for an unmatched cluster in B that introduces the least overall match

score decrease. In the end, some unmatched cluster in B may not get its best match

in A. The total score change is the new match score minus the original match score.

The unmatched cluster with the least score change is matched first, and so on, until

all clusters are matched.

Using the same example, among the unmatched clusters {45} and {123}, we

next choose to match the unmatched cluster that results in the smallest match

score decrease. The best matching for {45} is {34}, which introduces −0.07 match-

ing score. The best matching for {123} is {1234}, which introduces −0.05 matching

score. Thus, {123} is matched with {1234} first. After that, {1234} becomes un-

available, and {45} can only choose from {34}, {134}, and {1245}. {34} will be

54

Input: Groups A,B (assume |A| ≥ |B|)
Output: match score

total score = 0
for each A ∈ A

find B ∈ B with maximum matchAB =
|A∩B|
|A∪B|

match A and B

total score + = matchAB

end

mark clusters in A that have 1-1 match with B as unavailable

while ∃ unmatched cluster B ∈ B
(A∗, B∗) = argmax matchAB −matchAB′,

where B ∈ B is unmatched, A ∈ A is available,

and B′ is A’s original match

change = matchA∗B∗ −matchA∗B′

match A∗ and B∗

mark A∗ as unavailable

mark B∗ as matched

total score + = change
end
match score = total score/|A|

Figure 3.8: Matching algorithm outline

chosen and introduces −0.07 matching score. The final match is shown in Fig-

ure 3.9(b) with a total score equal to 4.48, and match score 0.74.

We note that we are using “match” differently than it appears in graph the-

ory [67, 41] . A matching in a graph G=(V, E) is a subset M of the edges E

such that no two edges in M share a common end note. A graph is bipartite

if it has two kinds of nodes and the edges are only allowed between nodes of

different kinds. A maximum cardinality matching is a matching with a max-

imum number of edges. A maximum weighted matching is a matching such

that the sum of the weights of the edges in the matching is maximum. Thus, a

maximum weighted maximum cardinality matching is a maximum cardinality

55

Figure 3.9: Matching example

matching with maximum weight.

The standard bipartite weighted matching problem is defined as following:

given a weighted bipartite network G = (N1 ∪ N2, A), with |N1| = |N2| and arc

weights cij, find a perfect matching of maximum weight. There are two major

differences between our matching algorithm and this one. First of all, we allow the

cardinalities of the two kinds of nodes to be different. Secondly, nodes in the bigger

set to have links with more than one node in the smaller set.

The bipartite matching problem allows the the cardinalities of the two kinds

of nodes to be different. One approach is to transform the problem into a maximum

flow problem [5, 14] by creating a directed version of the underlying graph G by

designating all arcs as pointing from the nodes in N1 to the nodes in N2. Based

on that, a source node s and a sink node t are added, with an arc connecting s to

56

each node in N1 and an arc connecting each node in N2 to t. The global optimal

solution can be found in O(
√
nm) time for an n-node and m-arc network. However,

the matching result given by this algorithm enforces one-to-one matches, leaving

some nodes unmatched. We are exploring the possibility that a global optimum to

our problem can be found using an extension of the method in [5].

The match score measures the similarity between the known cluster structure

with the one found by our algorithm. However, we note that this measurement

doesn’t take the size of the clusters into consideration. For example, given the

known cluster {1234} with 1500 instances, if there are two found clusters {12345}

with 300 instances and {12346} with 1600 instances, both of the clusters will have

the same match score compared with the known cluster. Taking the size of the

cluster into consideration, the one with similar size should match the known cluster

better. The match score measurement could evaluate the clusters better with some

improvement to consider cluster sizes.

3.8 Simulation

We simulated two real-world datasets. One is a dense dataset with 8 items, 145

distinct complete sets, and 6513 customer records. The other is a sparse dataset with

27 items, 3273 distinct complete sets and 5978 customers. Simulation parameters

were set empirically to match the characteristics of these real datasets. In clustering,

top-n search (as described in Section 3.3) is applied to the sparse data to increase

efficiency dramatically with little decrease in the match score of the found clusters.

Specifically, for a simulated sparse dataset, with the top-n search, the running time

is 1439 seconds, with a match score of 0.85, compared to without top-n search,

which takes 316230 seconds, with a match score of 0.89. The quantity threshold

57

was set to reflect the actual cluster size, particularly, it is between 0.05 to 0.11

for the dense data and between 0.01 to 0.11 for sparse data. All the tests are run

on 1800+ MHz, 1 GB RAM Linux workstations. We note that the match score

is the comparison between the found clusters with both frequent and infrequent

known sets. Specifically, for dense datasets, the found clusters are compared with

an average of 7 + 4 = 11 known clusters, and for sparse datasets, the found clusters

are compared with 10 + 15 = 25 known clusters, as defined in Table 3.1.

Results are shown in Figures 3.10-3.14. Figure 3.10 shows the match score

comparison averaged over 10 simulated datasets for the dense data with 1% noise.

The match scores for both hard assignment and soft assignment are pretty stable

around 0.9. Hard assignment is easier to implement and works better than soft

assignment in most of the cases. There is a large and significant (p < 0.0001)

difference between the clusters found by our algorithm compared to the frequent

itemsets. The frequent itemsets are generated using the same quantity threshold as

used to find the consideration sets as shown on the x-axis in Figure 3.10.

With the quantity threshold to be 0.08, looking into one detailed result as

shown in Table 3.4, we note that soft assignment tends to find more clusters than

hard assignment, because more support is allocated to some candidates during the

cluster construction process. We also note that frequent itemsets hardly match

the known clusters, and they tend to be itemsets that contains a small number of

items. We note that the minimum support threshold for frequent itemsets is set

to be the same as the quantity threshold as for hard and soft assignment. If we

set the quantity threshold to be higher, we will find fewer frequent itemsets. In

Table 3.4, column one shows the known clusters, column two shows the clusters

found by hard assignment, column three for soft assignment, and column four for

58

Figure 3.10: Comparison with frequent itemsets for dense dataset with 1% noise

frequent itemsets. (In order to save space, more than one cluster is shown in each

row in column four.) Here, the match score for hard assignment is 0.9038, 0.8641

for soft assignment, and 0.5590 for frequent itemsets. It matches the result shown

in Figure 3.10.

We simulate the real dataset that contains 145 distinct complete sets by al-

lowing customers to buy outside their consideration sets with 1- 5% chances. The

statistics of the simulated dense datasets are shown in Table 3.5. Our algorithm

is robust to noise as shown in Figure 3.11. The algorithm performance decreases

slightly as the noise increases. However, in general, the match score ranges from 0.8

to 0.9, compared with around 0.5 for the frequent itemsets.

Our algorithm also performs significantly (p < 0.0001 for both soft and hard

59

Table 3.4: Comparison of HACS with frequent itemsets

Known Clusters Hard Assignment Soft Assignment Frequent Itemsets

{0 6} {0 6} {0 6} {0} {1} {2}

{1 5 6} {5 7} {0 2 7} {3} {4} {5}

{3 4 7} {3 4} {1 5 6} {6} {7} {5 7}

{0 2 7} {0 2 7} {1 3 7} {3 7} {2 7}

{1 3 4 5} {1 5 6 } {3 4 7} {0 7} {4 7}

{0 1 2 4 5} {3 4 7} {1 4 5 6} {6 7} {3 5}

{0 1 3 6 7} {1 3 4 5} {1 3 4 5} {2 5} {0 5}

{0 3 4 5 6 7} {0 1 3 6 7} {0 2 5 6 7} {1 5} {4 5}

{0 1 3 4 6 7} {0 1 2 4 5} {0 2 3 6 7} {0 3} {1 3}

{2 3 4 5 6 7} {0 1 3 4 6 7} {1 3 4 5 7} {0 2} {0 1}

{0 1 2 3 4 5 6 7} {0 3 4 5 6 7} {0 1 4 5 7} {3 4} {2 4}

{2 3 4 5 6 7} {0 1 3 6 7} {0 4} {1 4}

{0 1 2 3 4 5 6 7} {0 1 2 4 5} {5 6} {3 6}

{0 1 3 4 6 7} {0 6} {1 6}

{0 3 4 5 6 7} {4 6} {4 5 7}

{0 2 3 4 5 6 7} {0 2 7} {3 4 7}

{0 1 2 3 4 5 6 7} {3 6 7} {0 6 7}

{4 6 7} {3 4 5}

{0 4 5} {1 4 5}

{1 5 6} {0 3 6}

{3 4 6} {0 3 6 7}

60

Table 3.5: Statistics of the simulated dense dataset with noise

noise percentage 0% 1% 2% 3% 4% 5% Real data

Mean of distinct CS 144.8 153.7 165.5 169.3 188.1 192.6 145

Stdev of distinct CS 8.6 9.7 12.8 12.7 11.7 17.6 N/A

Figure 3.11: Robustness test for dense data

assignment) better than K-means as shown in Figure 3.12. The same datasets

were used for this test. Since the user does not directly control the number of

clusters in our method, the match scores are recorded depending on the number

of found clusters, and then the averaged score is compared with K-means. For

61

K-means, the distance between two instances is defined as the square root of the

sum of differences between each attribute. Since we are handling binary data, the

difference is 1 if the two attributes share the same value, and 0 otherwise. As the

number of clusters increases, the match score for our algorithm goes down slightly,

especially for soft assignment. Again, we note that the number of clusters generated

using soft assignment is larger than using hard assignment given the same set of

parameters, although the match score is fairly consistent.

Figure 3.12: Match score comparison with K-means for dense datasets

When the number of clusters is set to be the same as known clusters, the result

from K-means is shown in Table 3.6. K-means performs well to find the mid-size

clusters, but fails to identify the large-sized ones, and finds some non-existing small-

size clusters. The match score for this case is 0.7455, compared to approximately

62

Table 3.6: Performance of K-means

Known Clusters K-means

{0 6} {4}

{1 5 6} {6}

{3 4 7} {7}

{0 2 7} {0 3}

{1 3 4 5} {0 6}

{0 1 2 4 5} {1 5 6}

{0 1 3 6 7} {3 4 7}

{0 3 4 5 6 7} {0 2 7}

{0 1 3 4 6 7} {1 3 4 5}

{2 3 4 5 6 7} {0 1 2 4 5}

{0 1 2 3 4 5 6 7} {0 1 3 6 7}

Table 3.7: Statistics of the simulated sparse dataset with noise

noise percentage 0% 1% 2% 3% 4% 5% Real data

Mean of distinct CS 3119.8 3257.8 3421.0 3537.4 3838.6 3957.8 3273

Stdev of distinct CS 174.9 150.4 272.9 275.3 236.2 159.3 N/A

0.9 for HACS.

63

The statistics of the simulated sparse datasets with noise are shown in Ta-

ble 3.7, and the match score comparison for the sparse dataset is shown in Fig-

ure 3.13. For efficiency reasons, only hard assignment is used in this comparison.

The overall match score for the sparse data is not as high as for the dense datasets,

while it still shows significant difference (p < 0.0001) with the match score for the

frequent itemsets. We also note that the highest match score is reached when the

quantity threshold is much smaller than that for the dense dataset, because the

simulated detergent dataset is much sparser than the simulated ketchup dataset.

This allows the method to find interesting but infrequent consideration sets with

relatively large numbers of items. In such a sparse environment, we see that frequent

itemset analysis performs poorly.

Figure 3.13: Match score comparison with frequent itemsets for sparse datasets

64

For sparse datasets, our algorithm performs about the same as K-means when

the number of clusters is small. As the number of clusters increases, our algorithm

beats K-means accordingly as shown in Figure 3.14. HACS performs significantly

(p < 0.05) better than k-means for number of clusters above 24, which is the true

number of consideration sets. In general, k-means tends to find clusters that contain

small numbers of items, where the clusters are “dense” in the common definition

of clusters. The clusters found by our algorithm are spread more evenly across the

levels of the lattice structure, which makes our algorithm suitable to find structures

in sparse datasets.

Figure 3.14: Match score comparison with K-means for sparse datasets

Our algorithm is robust to noise for sparse dataset as well, as shown in Fig-

ure 3.15. The algorithm performance decreases slightly as the noise increases, while

65

in general, the match score still significantly outperforms that for frequent itemsets.

Figure 3.15: Robustness test for sparse data

In general, our algorithm performs extremely well at extracting known con-

sideration sets from the simulated data, dominating both k-means clustering and

frequent itemsets. K-means performs reasonably well at this task, but the K-means

objective searches for clusters with the wrong shape and does not enforce the hi-

erarchical relationship needed for subset clustering. We do not show comparisons

with other clustering algorithms, say EM, because they also do not enforce the spe-

cial hierarchical relationship for subset clustering. Itemset mining fails because it

finds only the frequent itemsets, making it likely to find redundant sets near the

66

top of the lattice. Its support threshold (similar to our partial support measure)

eliminates interesting but less frequent subsets with more items.

3.9 Real Datasets

The proposed algorithm has been tested with two real datasets. One contains

customers’ purchase history from 8 brands of ketchup. Efficiency improvement

methods are not necessary for this test, since the number of products is small. In

general we would like to set our search parameters to the best values as determined

by the simulation, however in this case, not using quality threshold will result

in finding an unnecessarily large number of clusters. Experimentally, setting the

quality threshold to be positive will result in finding only one cluster that contains

every item, which indicates the quality threshold is too strict. By relaxing the

quality threshold, the number of clusters increases as shown in Figure 3.16. Quantity

threshold was set to be 7%, because this will generate the clusters of the sizes we

are interested in. Together with a quality threshold at -0.5, the result is a more

understandable market segmentation.

Since the number of products is small, the computational efficiency is not a

big concern here. Using the quality threshold, the running time is 2.82 seconds,

compared to 5.13 seconds without applying the quality threshold. As shown in

Table 3.8, among 734 customers, only half of them consider at least 4 brands of the

8. From the result, we infer that Heinz is not only the leading brand in ketchup, but

is also favored across all types of customers. Its middle-sized products, 28oz and

32oz, are included in everyone’s consideration set. People who buy smaller Heinz

products may also consider other brands, but those who include the large-size Heinz

offering are typically loyal to the brand.

67

Table 3.8: Found consideration sets example: Dense data

Consideration Sets Customers

1 {B, C} 100

2 {B, C, D} 93

3 {B, C, E} 54

4 {A, B, C, D} 66

5 {A, B, C, F} 52

6 {A, B, C, E, G} 42

7 {A, B, C, D, E, F, G, H} 327

A: Heinz 14oz B: Heinz 28oz C: Heinz 32oz

D: Heinz 44oz E: Hunts F: Delmonte

G: Other 28oz- H: Other 32oz+

68

Figure 3.16: Relationship between quality threshold and number of clusters

The algorithm has also been tested with market scanner data containing 27

different brand-sizes of non-liquid detergent. Here, products represent brand/size

pairs, e.g., all small containers of Tide go together as one product. In Table 3.9,

s stands for small size, m stands for medium, and l stands for large. The top-n

selection method constructs clusters with too many items, which is not informative

for marketing analysis. Therefore, the quality threshold is used to reduce candi-

dates. Seven clusters are constructed when the quantity threshold equals 5%, and

the quality threshold equals 3 as shown in Table 3.9. We note that the quantity

threshold for this dataset is smaller than for the ketchup dataset. The reason is that

this is a much more sparse dataset, so if we set the quantity threshold too high, we

will get only two or three clusters.

69

The result indicates that Tide is a dominant brand that exists in almost every-

one’s consideration set. Among the 5979 customers, around 10% of the customers

consider only Tide. Beyond Tide, however, the extracted consideration sets are

surprisingly large and varied, with few overlaps. This may be partially explained by

the fact that detergent brand/sizes are not strictly substitutes. Many households

may keep multiple items on hand for different laundry tasks. The market segmen-

tation defined by our result may contain other results that are useful for marketing

researchers. For example, small-sized items may in fact serve as substitutes, as most

consideration sets contain nearly all medium and large sizes. Purex and Surf bands

occur almost exclusively together, with consideration set 6 containing all offerings

of both brands.

We note that in all cases we have a default cluster that contains all items,

which is allocated all subsets that are not allocated to some other cluster. The

number of customers in these default clusters is somewhat surprising, as we find

that many customers buy from a relatively large set of items. However, few of

these large sets are representative of a large number of customers, resulting in a

disproportionate number of customers falling through to the default cluster. If

our quality threshold were relaxed, this number would fall, and a more complete

market segmentation could be achieved; however, the resulting clusters would be

of relatively poor quality. For example, as we relax the quality threshold to be

two, we will have 14 clusters, with 2425 points belonging to the last cluster; as we

set the quality threshold to be one, we will have 33 clusters, with only 400 points

belonging to the last cluster. Although the number of points in the last cluster drops

significantly, the number of resulting clusters is large, making it uninformative to

analyze each of them.

70

As is usually the case with unsupervised learning, the quality of the result

depends largely on the desires of the user, and the “true” number of clusters (and

hence, the “right” values for our thresholds) hinges on finding actionable results.

In our experiments with real data, we chose to focus on finding a small number of

clearly-defined consideration sets, instead of a complete partition of the space, so a

fairly large number of cases fell through to the default set.

Since we don’t know the exact consideration sets for the real datasets, no

match scores are shown for these results. We also don’t compare our results with

existing marketing models, for several reasons. First of all, most of the marketing

models are based on Bayesian models, which means they assume each customer

has a unique consideration set, thus these models are not comparable to ours. The

other stream of research in marketing segments customers (rather than consideration

sets) into different groups. But in their models, each product is included in each

consideration set with different weights, compared to our assumption that a product

is either considered, or not. Such Bayesian models also do not consider interactions

among the products, a primary strength of our method.

71

Table 3.9: Found consideration sets example: sparse data

Consideration Sets Customers

1 {25, 26} 528

2 {2, 6, 7, 10} 313

3 {2, 10, 11, 18, 23, 25, 26} 359

4 {4, 5, 10, 17, 18, 24, 26} 285

5 {1, 7, 10, 14, 16, 18, 25, 26} 360

6 {2, 3, 19, 20, 21, 22, 23, 25, 26} 327

7 {0-26} 3806

0: ALLm 1: ALLl 2: ARMl

3: B − 3s 4: B − 3m 5: B − 3l

6: CHm 7: CHl 8: DASHm

9: DASHl 10: DREFTm 11: F1Ss

12: FABm 13: FRSHs 14: FRSHm

15: GAINm 16: OXY DOLs 17: OXY DOLm

18: OXY DOLl 19: PUREXm 20: PUREXl

21: SURFs 22: SURFm 23: SURFl

24: TDs 25: TDm 26: TDl

72

CHAPTER 4

BUILDING CLASSIFICATION MODELS BASED ON CLUSTERING
RESULTS

As described in Chapter 1 and 2, clustering can be used to partition unlabeled

data into groups to find the unknown structure of the dataset. On the other hand,

for a dataset with known labels, clustering can be used as a preprocessing method

for other algorithms, such as classification.

The datasets we used for consideration set analysis contain customers’ choices,

thus we are able to build classifiers to predict their future choices after we found

clusters of customers that share the same consideration set. Based on the algorithm

introduced in Chapter 3, we can successfully find the consideration set structures

and then extend it with a post-processing method by building different predictive

models for each individual cluster. We are making the assumption that customers

with the same consideration set form a market segment with similar choice models.

They may behave similarly to certain changes in marketing variables. For example,

in a market with five products {ABCDE}, a group of customers whose consideration

set is {ABC} may be sensitive to the price changes of these three products, while

their purchase behavior won’t change much in response to price changes of products

D and E. By analyzing the specific model for each cluster, instead of a uniform model

built for the whole dataset, we will better capture the characteristics of each group.

Thus, better understanding and prediction of the different groups can be achieved.

There are two issues related to the predictive accuracy of this “divide-and-

conquer” method. On one hand, the accuracy goes up because of the smaller number

of output classes in most of the models. On the other hand, the accuracy may go

down because of the smaller training sets for each cluster. Therefore, we introduce

73

several prediction weighting methods to analyze the relationship between customers’

consideration sets and their purchasing pattern.

4.1 Different Prediction Weighting Methods

Multinomial logistic regression is chosen as the base classifier, because the

predictive model is simple, and it is easy to analyze and interpret the coefficients.

Since we’ve already done a fairly complex segmentation of the dataset in the clus-

tering process, we don’t need a sophisticated predictive model here. Another reason

is that logistic regression is widely used in marketing research.

In our model, different multinomial logistic regression models are built for

each of the clusters. Given a set of consideration sets found by the clustering algo-

rithm, if a customer belongs to a confirmed consideration set that has no superset

(other than the universal set) as a consideration set, his/her future choices can be

predicted using the model built for his/her consideration set. A question arises

when predicting choices for a customer who belongs to a consideration set with one

or more superset(s) as consideration sets. For example, if both {AB} and {ABC}

are consideration sets, for a customer whose current purchase history is {AB}, we

are not exactly sure what consideration set this customer has, so there are differ-

ent ways to predict his/her future choices. Thus we introduce several prediction

weighting methods to handle cases like this. In the following subsections, we in-

troduce a hard weighting scheme and two soft weighting schemes. Particularly, the

soft weighting schemes follow the idea of ensemble methods [90, 12], which achieve

better prediction by combining classifiers.

74

Figure 4.1: Hard weighting scheme example

4.1.1 Hard Weighting Scheme

The hard weighting scheme is to use only the classifier for the consideration

set represented by the smallest-cardinality cluster the customer belongs to. In the

example shown in Figure 4.1, there are four clusters constructed using our clustering

methods, namely, {AB}, {ABC}, {ABD}, and {ABCD}. Using hard assignment,

when we want to predict a customer whose current existing choice is {A}, only the

classifier for cluster {AB} will be used. This indicates that the other possible choice

for this customer is product B, although he only purchased A so far. In this case,

we don’t consider the possibility that he may choose from products C or D.

4.1.2 Soft Weighting Scheme (A)

Soft Weighting Scheme (A) uses a weighted prediction of the classifiers for all

the consideration sets that are supersets of the data of interest. The weight of each

75

classifier is dependent on the total support tsx belonging to each cluster x. Here,

tsx is calculated as tsx =
∑

y isy, where y ∈ x, and isy hasn’t contributed to any

other subset x′ yet. Using the same example, with four clusters: {AB}, {ABC},

{ABD}, and {ABCD} as shown in Figure 4.2, we have:

Figure 4.2: Soft weighting scheme example

tsAB = isA + isB + isAB = 35 + 16 + 39 = 90

tsABC = isC + isAC + isBC + isABC = 20 + 22 + 43 + 7 = 92

tsABD = isD + isAD + isBD + isABD = 10 + 14 + 9 + 10 = 43

tsABCD = isCD + isBD + isACD + isBCD + isABCD = 8 + 9 + 5 + 8 + 4 = 34

The total weight is 90 + 92 + 43 + 34 = 259. The weight of the each classifier

wk is then normalized by the total weight.

76

In multinomial logistic regression, for the instance x, the predicted probability

of a class c (c 6= C number of classes) being chosen is:

Pc(x) =
exp{βcx}∑C−1

i=1 exp{βcx}+ 1
.

The predicted probability of a class c (c = C) being chosen is:

Pc(x) = 1−
C−1∑
i=1

Pc.

Thus, given the weight of each classifier wk, where k = 1...K is the number of

clusters, and the predicted probability of each class P k
c , we have the final probability

Pc of each class c as
∑

k wkP
k
c . Then the class with the highest final probability will

be the predicted choice.

For example, suppose the probabilities predicted for each product by the differ-

ent classifiers are as shown in Table 4.1. Then, the probability of A being predicted

would be:

PA =
∑

wkP
k
A = w1P

1
A + w2P

2
A + w3P

3
A + w4P

4
A

=
90

259
0.4 +

92

259
0.2 +

43

259
0.5 +

34

259
0.2 = 19.42%

The probability of each product is calculated in the same way, and then the

one with the highest probability is chosen as the final prediction.

4.1.3 Soft Weighting Scheme (B)

Soft Weighting Scheme (B) is similar to soft weighting scheme (A) in the

sense that it also uses weighted prediction of the classifiers for the supersets of the

data of interest. The difference is that the weight for each classifier depends on the

number of items in each cluster. Again, using the same example as for soft weighting

77

Table 4.1: Probability of each product using different classifiers

A B C D

Classifier 1 for {AB} 40% 60% N/A N/A

Classifier 2 for {ABC} 20% 50% 30% N/A

Classifier 3 for {ABD} 50% 20% N/A 30%

Classifier 4 for {ABCD} 20% 30% 10% 40%

scheme (A), we have four clusters: {AB}, {ABC}, {ABD}, and {ABCD} as shown

in Figure 4.1. We will use the classifier for each cluster to predict a customer whose

current existing choice is {A}, because all these clusters are supersets of {A}. The

weight for each classifier to predict a customer’s choice depends on the cardinality

of the customer’s known choice set x and its superset y.

For example, the weight for the classifier for cluster {AB} is |A|/|AB| = 1/2,

the weight for the classifier for cluster {ABC} is |A|/|ABC| = 1/3. Similarly, the

weight for the other two classifiers are 1/3 and 1/4, respectively. The weights for

the classifiers are then normalized to sum to 1. Thus, for a customer with a choice

set x, the weight of each superset classifier wi is:

wi =
|x ∩ yi|/|yi|∑
i |x ∩ yi|/|yi|

,

where yi ranges over all confirmed consideration sets that are supersets of x.

In this example, we have

w1 =
1/2

1/2 + 1/3 + 1/3 + 1/4
= 0.35.

78

Similarly, we have w2 = w3 = 0.24, and w4 = 0.17.

Given the weight of each classifier wk, and the predicted probability of each

class P k
i as described in Soft Weighting Scheme (A), we have the final probability

Pi of each class i as
∑
wkP

k
i . Then the class with the highest final probability will

be the predicted choice.

4.2 Dataset Description

The dataset we use includes two parts. The first part is the customers pur-

chase history information, which is used to build clusters to find the consideration

sets. The second part is the selected corresponding marketing mix variables. Mar-

keting mix refers to the four major areas, sometimes called the Four Ps [23], of

decision making in the marketing process. The Four Ps include Product, Price,

Place, and Promotion, each of which consists of numerous sub-elements. Product

concentrates on product functionality, quality, appearance, and customer support

etc. Price is how much the intended customers are willing to pay. It includes list

price, discount information, financing and leasing options. Place is the channel of

distribution. It includes information about locations, logistics, channel members,

channel motivation, and market coverage. Promotion is a communication process a

business uses to achieve its awareness. Basic promotion tools include: advertising,

direct sales, and media.

In our test, the marketing mix variables we use include: price, display, and

feature information for each product when a purchase is made.

In addition, customer loyalty information is included, because a lot of re-

search [27, 29, 57] has shown that loyalty information contributes significantly to

prediction accuracy. Since we know customers purchase history, we add the loyalty

79

Table 4.2: Sample dataset for prediction problems

1 2 3 ... m

Clustering Variables purchase history 0 1 1 ... 0

Classification Variables
prices 5.57 5.21 4.03 ... 2.78

display 0 0 0 ... 1

(Predictors)
feature 0 1 0 ... 0

loyalty 0 12 1 ... 0

Response variable choice 5

variables as input to the classifier as well. The loyalty information for each customer

is the number of times the customer purchases a product. For example, for a total

of three products, if a customer purchased product A twice, product B four times,

product C nine times, then the loyalty variables are 2, 4, 9.

As shown in Table 4.2, for m products, we record each customer’s purchase-

related information. We have a set of binary purchase history variables shown

in the second row, which use 1 to indicate if a product has been purchased by a

customer, and 0 otherwise. This set of variables is used to build clusters as described

in Chapter 3. We have a set of predictors, which include price variables, display

variables, feature variables, and loyalty variables. Then we have the customer’s

final choice. This feature set is used to build classifiers. The classifiers are used

to predict customers’ choices using different weighting schemes as described in the

previous subsections.

We use the same two real datasets as for testing the clustering algorithm. One

80

is the ketchup dataset, which includes 8 products. We were given the price, display

and feature information for this dataset. The loyalty information is inferred from

customer purchase history.

The other dataset is the detergent dataset. For the detergent dataset, we

don’t define different sizes of the same brand as different brands as in Chapter

3. Instead, for choice prediction, we record only the brand choice. In addition,

we only choose the brands with more than 3% of market share. In this way, we

reorganize the detergent dataset into 10 brands. In the new definition, each brand

includes an average of 29 “products” with different UPC numbers for each product.

For example, different sizes of Tide will have different UPC numbers, and they all

belong to Tide in the new definition.

The data was collected from 45 stores for three years (from 1985, 35th week

to 1988, 34th week). For each week we have the price and the total number of

units sold for each product at different stores. Also, we have the unit weight for

each product. In order to get the price for each brand in each week, we handle

each week separately, and take the average of price/(units ∗ weight) for each

product across all the stores. Thus, the final price is the unit price per ounce for

each brand that the customer may see no matter which store he/she shops at. The

display information is handled differently than the price information, because we

don’t need to consider the unit weight. A product is on display no matter what its

weight is. For each week, we sum up the number of stores that have a brand on

display, and then divide it by the total number of purchases of that brand in that

week. Thus, the final display information indicates the probability of a customer

saw a brand on display when he/she goes shopping.

For the detergent dataset, we don’t have feature information. The loyalty

81

Table 4.3: Baseline for predictive models

with loyalty without loyalty accuracy

variables variables improvement

ketchup 57.84% 46.73% 23.77%

detergent 52.05% 43.59% 19.41%

information is collected the same as for ketchup dataset, which is defined as purchase

frequency.

4.3 Experiments

4.3.1 Baseline

We compare our prediction weighting schemes with the standard logistic re-

gression model, which builds one model for the whole dataset. We use 3-fold cross-

validation for both our methods and logistic regression. For each customer, two-

thirds of his/her records will be used for training, and the other one-third for testing.

We exclude customers whose purchase history is less than three.

For the baseline, we report the accuracy result both with and without loyalty

variables for both datasets as shown in Table 4.3. The results confirm that the

loyalty variables are important for predictive accuracy.

82

4.3.2 Experiments with Our Methods

We tested different weighting schemes on both real datasets. We note that the

weighting scheme we mention here is different from the data assignment methods in

Chapter 3. The data assignment methods, namely, soft and hard assignment, are

for cluster construction to find consideration sets. The weighting schemes, namely,

hard and soft (A, B) weighting schemes are for predicting customers’ choices.

The results in Chapter 3 indicate that hard assignment finds clusters that

better reflect the known structures. Thus, all the prediction experiments in this

chapter are based on the clusters found using hard assignment.

4.3.3 Ketchup

We tested the Ketchup dataset using both the hard and soft (A, B) weighting

schemes. For the hard weighting scheme, we set a wide range for the parameters to

construct clusters so that we can better analyze the relationship between clustering

and classification. The quality threshold is tested in the range of [-1, 2], and the

quantity threshold is tested in the range of [0.05, 0.15]. As shown in Figure 4.3, the

accuracy increases as the quantity threshold increases in general. One of the rea-

sons is that there are more training instances in each cluster with a bigger quantity

threshold. The best accuracy 58.41% is reached with quality threshold of 0.1, and

quantity threshold of 0.14. When we do the cross-validation, in two out of three

folds, we found only two clusters, one containing products {1,2,3} and the default

cluster that contains all products {0-7} as shown in Table 4.4. Results in Table 4.4

indicate that the classifiers built for clusters with small cardinalities always outper-

form the baseline. The quantity threshold is different from that when the highest

match score is reached for cluster construction, where the quantity threshold is 0.08

83

Figure 4.3: Hard weighting scheme accuracy

as shown in Chapter 3.

The overall accuracy for the hard weighting scheme is higher than that of the

baseline, which is using one model for the whole dataset. Our scheme performs

better for clusters with a small number of items, and performs worse for clusters

with a large number of items. As shown in Table 4.4, the number of instances

belonging to the clusters with a small number of items is much less than that

belonging to the clusters with a large number of items. For example, in Fold 1,

there are 930 instances belonging to cluster {1,2,3}, and 3741 instances in cluster

{0,1,2,3,4,5,6,7}. Table 4.5 shows the average and standard deviation of accuracy

84

Table 4.4: Details of clusters and classifiers for ketchup

Consideration # of % of Training # of % of Testing

set Training majorityAccuracy Testing majorityAccuracy

Instances class Instances class

fold 0

{1, 2, 3} 1043 57.62% 74.88% 424 54.25% 72.88%

{1, 2, 3, 4} 1099 52.96% 74.80% 170 35.88% 60.59%

{0, 1, 2, 5} 854 55.27% 82.90% 163 33.13% 66.26%

{0, 1, 2, 4, 5, 6} 1708 44.09% 71.84% 240 33.75% 57.92%

{1, 2, 3, 4, 5, 6, 7} 2971 40.09% 63.01% 661 26.32% 52.04%

{0, 1, 2, 3, 4, 5, 6} 3048 41.21% 64.83% 167 29.34% 54.49%

{0, 1, 2, 3, 4, 5, 6, 7} 4167 38.23% 60.69% 31 25.81% 32.23%

fold 1
{1, 2, 3} 930 58.17% 76.45% 467 51.82% 68.52%

{0, 1, 2, 3, 4, 5, 6, 7} 3741 37.63% 61.45% 1328 31.17% 52.94%

fold 2
{1, 2, 3} 930 55.70% 75.16% 595 57.14% 69.91%

{0, 1, 2, 3, 4, 5, 6, 7} 4228 35.10% 61.21% 1200 35.25% 53.17%

0: Heinz 14oz 1: Heinz 28oz 2: Heinz 32oz

3: Heinz 44oz 4: Hunts 5: Delmonte

6: Other 28oz- 7: Other 32oz+

85

Table 4.5: Accuracy for different sizes of clusters: ketchup dataset

Num. of Items in Consideration Set Average Standard Deviation

3 70.45% 1.75%

4 63.21% 3.64%

5 58.82% 3.35%

6 53.88% 5.88%

7 51.62% 5.26%

8 45.45% 8.13%

for tests when the quantity threshold is set to 1.4, and the quality threshold is in

the range of [0.05, 0.15]. We note that both the accuracy and the variance get worse

as the number of items in the consideration set gets bigger. Or, put another way,

for small number of items, the model is both more accurate and more consistent.

The quantity threshold is set to 1.4, because it gives the best overall accuracy for

the hard weighting scheme.

Figure 4.4 compares the detailed accuracy with the baseline. Hard weighting

outperforms the baseline for clusters with less than or equal to five items. The

performance of the classifiers for clusters with more items is not as good as the

baseline, and this affects the overall performance.

Figures 4.5 and 4.6 show the accuracy for the ketchup dataset using the soft

(A, B) weighting schemes. Using both weighting schemes, the highest accuracy is

reached when the quantity threshold is set to 0.06, and the quality threshold is in

the range of [-6, -4]. More clusters are created with a lower quantity threshold. For

86

Figure 4.4: Accuracy comparison with baseline for ketchup dataset

87

Figure 4.5: Soft (A) weighting scheme for ketchup dataset

example, using soft (A) weighting scheme, on average there are 22 clusters created

when the quantity threshold is 0.04, 16 clusters when quantity threshold is 0.06,

and 14 clusters when quantity threshold is 0.08. In general, as quality threshold

goes up, the predictive accuracy goes down. Only one cluster that contains every

item is created when the quality threshold is set to 1 or 2. In cases like this, both

weighting schemes perform just like the baseline, which builds one model for the

whole dataset.

Table 4.6 shows typical clusters built using different quantity thresholds. Soft

88

Figure 4.6: Soft (B) weighting scheme for ketchup dataset

89

weighting schemes work in the same way as ensemble methods by combining predic-

tion from different classifiers. With fewer classifiers, there are more training data for

each classifier. On average, there are 980 training instances when quantity thresh-

old is 0.08, 888 instances for threshold 0.06, and 629 instances for threshold 0.04.

The performance of the classifiers increases with the number of training instances.

Thus the overall prediction accuracy increases. On the other hand, with too few

classifiers, the ensemble effect is not obvious. As shown in Table 4.6, on average, 4

classifiers are used in the ensemble when the quantity threshold is 0.04, 5 classifiers

for 0.06, and 4 classifiers for 0.08. When the quantity threshold set to 0.06, the

classifiers have enough training data and the ensemble of classifiers work, therefore,

the best prediction accuracy is achieved.

We note that all the weighting schemes show higher accuracy than the baseline.

The best predictive accuracy of both soft weighting schemes is higher than that of

the hard weighting scheme as shown in Table 4.7. With the same constructed

clusters, soft weighting schemes use more than one classifiers to predict. Both soft

weighting schemes improve classification accuracy by aggregating the predictions of

multiple classifiers.

4.3.4 Detergent

To test the hard weighting scheme, the quantity threshold was chosen from the

range [0.02, 0.09]. As shown in Figure 4.7, the accuracy decreases as the quantity

and quality threshold increase. The best accuracy of 53.59% is reached when the

quantity threshold is 0.03, and the quality threshold is either -9 or -8. For most of

the cases, the hard weighting scheme performs better than the baseline, which is

52.05%.

90

Table 4.6: Quantity threshold comparison: ketchup dataset with soft (A)

0.04 0.06 0.08

Clustertraining # Clustertraining # Clustertraining #

points superset points superset points superset

1 12 322 20 12 322 17 12 322 14

2 123 683 9 123 683 9 123 683 9

3 012 259 6 124 253 12 0123 570 3

4 124 253 12 0123 570 3 0124 504 3

5 245 257 11 1235 394 6 1245 641 7

6 0123 458 3 1245 527 8 12346 736 2

7 1235 394 7 01246 509 2 12345 1132 4

8 1234 485 6 12346 622 3 12347 856 3

9 1245 442 8 01247 570 2 12457 915 4

10 1247 294 6 12345 1008 3 012467 897 2

11 01246 397 4 12457 801 3 124567 1172 2

12 02457 378 7 124567 1058 3 123457 1492 2

13 12345 763 5 123457 1441 2 012345 1374 2

14 12457 644 5 012345 1281 2 01234567 2431 1

15 24567 503 4 1234567 1796 2

16 012567 502 2 01234567 2372 1

17 124567 837 3

18 123567 639 3

19 123457 1124 3

20 012345 924 2

21 1234567 1414 2

22 01234567 1873 1

Average 629 5.86 888 4.88 980 4.14

91

Table 4.7: Best accuracy comparison for ketchup dataset

baseline hard weighting soft(A) soft(B)

ketchup 57.84% 58.41% 58.89% 58.69%

Figure 4.7: Hard weighting scheme for detergent dataset

92

Figure 4.8: Accuracy comparison with baseline for detergent dataset

Looking into the details of the results as shown in Figure 4.8, the hard weight-

ing scheme shows higher accuracy than the baseline for clusters with less than six

items. Using the hard weighting scheme, the clusters found by the algorithm mostly

have small cardinalities, with only a few clusters containing six items or more. Thus,

the effect of the performance of the large clusters is not as strong as that for the

ketchup dataset. The overall accuracy is higher than the baseline.

Table 4.8 shows the average and standard deviation of accuracy for clusters

with different cardinalities when the quantity threshold is 0.03, and the quality

threshold is -9. We note that the accuracy again goes down for larger clusters, but

the increase in standard deviation is less consistent than with ketchup.

Table 4.9 shows the clusters found by our algorithm, and the training/testing

93

Table 4.8: Accuracy for different sizes of clusters: detergent dataset

Num of Items in Consideration Set Average Standard Deviation

1 95.84% 2.27%

2 87.27% 9.08%

3 71.61% 6.07%

4 62.65% 6.08%

5 54.38% 8.82%

6 45.27% 6.43%

10 37.26% 2.92%

accuracy for one fold. The clusters of small cardinality are quite different from

each other with little overlap, which indicates that customers have quite different

consideration sets. Thus the classifiers are different for each cluster.

Figures 4.9 and 4.10 show the accuracy for the detergent dataset using the

Soft (A, B) weighting schemes. The highest accuracy of each scheme is summarized

in Table 4.10. The highest accuracy of Soft (A) is achieved when the quantity

threshold is 0.02. The quantity threshold is 0.01 for Soft (B) for highest accuracy.

Both of the quantity thresholds are much smaller than those for the ketchup dataset.

The detergent dataset has 81243 instances. Even with a quantity threshold 0.02,

on average there are 1893 training instances in each cluster. The large number of

training instances ensures the quality of the classifier for each cluster.

It is worth noting that as the quality threshold decreases, the prediction accu-

racy keeps increasing. Thus, we use top− n candidate selection method introduced

94

Table 4.9: Model details for detergent using hard weighting scheme

Consideration sets Training Training Testing Testing

Instances Accuracy Accuracy Instances

{9} 3291 100.00% 97.83% 1245

{2, 5} 1777 99.32% 98.41% 694

{6, 7} 988 100.00% 95.81% 358

{1, 9} 911 88.58% 81.82% 352

{2, 9} 1979 83.63% 72.77% 437

{0, 2, 9} 1987 89.63% 72.90% 417

{2, 6, 9} 3865 82.82% 71.19% 913

{2, 8, 9} 1954 88.84% 76.54% 537

{2, 5, 7, 9} 2957 91.72% 70.54% 404

{1, 2, 6, 9} 4747 81.34% 58.12% 685

{2, 4, 6, 9} 3934 82.56% 62.41% 399

{1, 7, 8, 9} 2909 81.20% 62.90% 345

{0, 3, 6, 9} 3210 83.74% 71.18% 340

{0, 2, 5, 6, 9} 6100 82.85% 59.86% 431

{2, 5, 6, 8, 9} 6140 82.40% 63.71% 598

{0, 2, 7, 8, 9} 4726 80.07% 63.03% 403

{1, 2, 4, 5, 9} 4542 82.21% 74.32% 366

{0, 1, 6, 8, 9} 5548 78.39% 52.48% 343

{4, 6, 7, 8, 9} 4639 79.20% 60.98% 264

{0 - 9} 45408 52.78% 39.89% 15376

0: ALL 1: B-3/F-S 2: CH 3: DASH 4: FAB

5: FRESH 6: OXYDOL 7: PUREX 8: SURF 9: TIDE

95

Table 4.10: Best accuracy comparison for detergent dataset

baseline hard weighting soft(A) soft(B)

detergent 52.05% 53.59% 53.76% 54.19%

Figure 4.9: Soft (A) weighting scheme for detergent dataset

96

Figure 4.10: Soft (B) weighting scheme for detergent dataset

97

in Chapter 3 to create clusters. In this case, we don’t set the quality threshold,

assuming it can be as small as possible. The results in Figures 4.9 and 4.10 show

that with no quality threshold, the best accuracy is achieved. The reason is that

with no quality threshold, clusters containing more items are created. On the other

hand, with a quality threshold, the clusters created are all the ones with small cardi-

nality. For example, Figure 4.11 shows the average cluster cardinalities for soft (A)

weighting scheme with quantity threshold 0.01. When the quality threshold is set

to -5, all the clusters created are small ones with cardinality less than 5 (except the

default one with every item). Therefore, the number of supersets of those clusters

are smaller compared with those for the clusters created with no quality threshold.

Specifically, the average number of supersets is 7 with a quality threshold -5, com-

pared with 12 with no quality threshold. The ensemble effect is more significant

with no quality threshold.

4.3.4.1 Model Interpretation for Detergent Dataset

In our model, different classifiers are built for different clusters. We can find

both the similarities and differences between those classifiers by comparing them.

This helps to capture the common and different behaviors of different groups of

customers.

We analyzed the twenty classifiers built for the clusters shown in Table 4.9.

Each classifier model with C output classes consists of a set of coefficients (β’s) for

C − 1 of the classes. As expected, the probability of each product being chosen is

always negatively related with its price, and positively related with its display and

loyalty variables.

98

Figure 4.11: Cluster cardinality comparison with different quality threshold

99

We also note the differences between the classifiers for different models. Cus-

tomers belong to different consideration set behave differently. Tables 4.11, 4.12,

and 4.13 show the coefficients for two clusters, one for consideration set {1, 9}, and

the other for consideration set {2, 9}. The price 2 coefficient is negative in classifier

B, indicating that as the price goes up, the probability of product 2 being chosen

decreases. This coefficient is positive in classifier A. The different effects of the same

variable won’t be noticed if only one classifier is built for the whole dataset. The

same thing happens to other variables as well. For example, coefficient display 1 is

positive in Classifier A, and negative in Classifier B. loyalty 2 is negative in Classifier

A, and positive in Classifier B.

Customers purchasing the same product may behave differently according to

the consideration set they belong to. For example, customers purchase product 2

in both consideration set {2,9} and {2, 6, 9}. Customers in consideration set {2,9}

are more sensitive to price changes than customers in the other consideration set,

with a price 2 coefficient of -1.0359 compared to -0.6539. Another finding is that

customers in consideration set {2, 9} are less loyal to product 2 than customers in

consideration set {2, 6, 9}, with a loyalty 2 coefficient 0.117 compared to 0.2218.

The probability of a product being chosen is affected by the product infor-

mation of the products in the same consideration set. For example, in Classifier

C, P6 is positively related with price 2, with a coefficient 0.1337, meaning that as

the price for product 2 increases, it is more likely that customers turn to purchase

product 6. The same thing happens to product 2, whose purchase probability is

positively (0.0723) related with price 6.

Loyalty variable has the same effect as price. P2 is negatively (-0.0961) related

with variable loyalty 6. P6 is negatively (-0.03) related with variable loyalty 2.

100

Within the same consideration set, if customers are more loyal to a certain product,

they are less likely to purchase other products.

The display variable has a different effect on product probabilities. Basically,

it not only increases its own probability of being chosen, but also increases the

probability of the products within its consideration set. For example, P6 is positively

related with both display 2 and display 6, with a bigger coefficient display 6, 3.3813,

and a smaller coefficient display 2, 0.5451. The reason may be that when a product

is on display, it reminds the customers to buy this type of product. For example,

when a brand of detergent is on display, the customer will remember to buy some

detergent. The probability of the brand on display been chosen increases. But

there are also chances that the customer buys the same type of product of other

brands. Another interesting finding is that P2 is positively related with display 6,

but slightly negatively related with display 2.

4.3.4.2 Alternate Model Interpretation for Detergent
Dataset

We also test a classification model using only the attributes that belong to

the brands in a certain consideration set. Specifically, for a cluster that contains

brand 1 and 9, only variables associated with these two brands are used to build

the predictive model.

The same patterns are observed using this model. As shown in Table 4.14,

in general, the probability of a product being chosen is negatively related with its

price, and positively related with its display and loyalty variables.

In general, the probability of a product being chosen is positively related with

price increase of the other product(s) in the same consideration set. For example,

101

Table 4.11: Price coefficients comparison

variable Classifier A Classifier B Classifier C

{1, 9}: P1 {2, 9}: P2 {2, 6, 9}: P2 {2, 6, 9}: P6

price 0 0.4282 -0.7462 0.6815 1.1694

price 1 -0.5434 -0.3381 0.0141 -0.275

price 2 1.0198 -1.0359 -0.6539 0.1337

price 3 -1.3578 -0.5542 -1.5854 -0.5234

price 4 -0.2518 -0.0574 0.6688 0.9916

price 5 -0.0532 0.0191 0.064 0.0054

price 6 0.2863 -0.162 0.0723 -0.4546

price 7 -1.1035 -0.3546 0.2149 -0.426

price 8 -0.7172 0.109 0.2978 0.2753

price 9 0.1629 0.2972 0.5028 0.6047

0: ALL 1: B-3/F-S 2: CH 3: DASH 4: FAB

5: FRESH 6: OXYDOL 7: PUREX 8: SURF 9: TIDE

102

Table 4.12: Display coefficients comparison

variable Classifier A Classifier B Classifier C

{1, 9}: P1 {2, 9}: P2 {2, 6, 9}: P2 {2, 6, 9}: P6

display 0 0.493 0.8518 1.6086 1.2483

display 1 1.6142 -1.202 -1.1585 -1.762

display 2 1.5107 0.1968 -0.0236 0.5451

display 3 -2.169 -0.4898 -0.7791 -1.2796

display 4 -3.3274 -0.1448 1.5515 1.5513

display 5 0.6744 -0.988 0.4134 0.0476

display 6 -1.0571 -0.3314 1.3005 3.3813

display 7 -0.3245 -0.2276 0.0387 -0.3082

display 8 -0.9931 0.3478 1.2062 0.5251

display 9 -1.6642 -0.5364 -0.5023 -0.0568

0: ALL 1: B-3/F-S 2: CH 3: DASH 4: FAB

5: FRESH 6: OXYDOL 7: PUREX 8: SURF 9: TIDE

103

Table 4.13: Loyalty coefficients comparison

variable Classifier A Classifier B Classifier C

{1, 9}: P1 {2, 9}: P2 {2, 6, 9}: P2 {2, 6, 9}: P6

loyalty 0 -0.1291 0.5209 -0.1834 0.0262

loyalty 1 0.3488 0.2287 -0.2616 -0.1113

loyalty 2 -0.134 0.117 0.2218 -0.03

loyalty 3 0.1431 -0.6572 -0.2801 -0.0868

loyalty 4 -0.1908 0.5467 -0.1459 -0.2148

loyalty 5 -0.0699 -0.7379 -0.0845 -0.1475

loyalty 6 -0.4235 -0.0671 -0.0961 0.2317

loyalty 7 -1.0315 0.0414 0.2021 0.095

loyalty 8 -0.0731 -0.0259 0.0195 -0.0105

loyalty 9 -0.198 -0.1878 -0.1238 -0.1414

0: ALL 1: B-3/F-S 2: CH 3: DASH 4: FAB

5: FRESH 6: OXYDOL 7: PUREX 8: SURF 9: TIDE

104

in Classifier B, P2 is positively related with price 9 with a coefficient of 0.1876, and

in Classifier C, both P2 and P6 are positively related with price 9.

For display variables, we note the different relationships between the brands’

display information. For a brand that shares the same consideration set with brand

9, the probability of this product being chosen is always negatively related with

brand 9’s display variable. This indicates that as brand 9 is on display, the proba-

bility of other products that share the same consideration set decreases. In contrast,

the probability of brand 2 or 6 being chosen is positively related with the other’s

display variable. This means that as brand 2 is on display, the probability of brand

6 being chosen increases, and vice versa.

As for loyalty variables, we note that the probability of a product being chosen

is always negatively related with the loyalty variable of the other product(s) in the

same consideration set. This is reasonable, because as customers are more loyal to

other products, they are less likely to buy this product.

4.4 Conclusion

A two-stage prediction model is developed and tested on two real datasets.

Specifically, three prediction weighting schemes are introduced, and compared with

the baseline. In all cases, these weighting schemes outperform the baseline by

segmenting the data into groups with similar characteristics. The hard weighting

scheme uses only one classifier to predict, and soft weighting schemes use a combi-

nation of different classifiers to predict. The difference between Soft (A) and (B) is

that the weight of each classifier is different. In Soft (A), the weight of each classifier

is proportional to the size of the cluster the classifier belongs to. In Soft (B), the

weight is proportional to the cardinality of the cluster. The experiments show that

105

Table 4.14: Coefficients comparison

variable Classifier A Classifier B Classifier C

{1, 9}: P1 {2, 9}: P2 {2, 6, 9}: P2 {2, 6, 9}: P6

price 1 -0.407 N/A N/A N/A

price 2 N/A -1.0132 -0.7486 -0.1718

price 6 N/A N/A 0.2912 0.2691

price 9 -0.2294 0.1876 0.367 0.4659

display 1 1.196 N/A N/A N/A

display 2 N/A 0.3652 -0.0547 0.2041

display 6 N/A N/A 0.6141 3.1068

display 9 -2.0935 -0.5309 -0.3713 -0.1212

loyalty 1 0.3188 N/A N/A N/A

loyalty 2 N/A 0.1181 0.2186 -0.0322

loyalty 6 N/A N/A -0.0901 0.231

loyalty 9 -0.1904 -0.1826 -0.1228 -0.1413

Intercept 3.6201 4.7803 0.4215 -2.7977

0: ALL 1: B-3/F-S 2: CH 3: DASH 4: FAB

5: FRESH 6: OXYDOL 7: PUREX 8: SURF 9: TIDE

106

the soft weighting schemes always show higher accuracy than the hard weighting

scheme.

One advantage of this two-stage model is that it helps to identify the consid-

eration sets that are easy to predict. The other advantage is that it helps to capture

the different characteristics of customers in different consideration sets.

107

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

We propose a novel heuristic subset clustering algorithm inspired by the anal-

ysis of consideration sets. Our main contribution is that the cluster construction

considers the special relationship among itemsets that can be clustered together.

We also developed an evaluation method to reflect how the extracted clusters match

known ones. The experiments on simulated data show that our algorithm can ef-

fectively identify the known clusters for both dense and sparse datasets.

We then use the resulting market segmentation as a preprocessing step for

choice prediction [21]. A specific classifier is built for each cluster. The resulting

simplified choice models identify easy-to-predict segments, and improves the overall

accuracy in all cases. It also helps us to understand the characteristics of different

groups of customers.

Several algorithm modifications are planned. Alternate quality measurements

may help us better locate candidate cluster centers, especially for sparse datasets.

Secondly, our algorithm could be generalized to use counts instead of binary vari-

ables to represent purchase history. Among people who bought products A, B and

C, if people buy products A and B much more often than C, then A and B could

have more weight for this consideration set. Third, other soft weighting schemes

could be developed. One easy choice could be using the same weight for all the

classifiers a data point belongs to.

We solved the problem of finding an optimal match between two sets of subsets

with a greedy search method. This problem may correspond to an extension of

the maximum weight bipartite matching problem [96], and as such, may have a

polynomial-time algorithm for finding an exact solution. In future work, we will

108

determine whether such a reduction is indeed possible. In the meantime, the greedy

solution serves as a lower bound on the score of the globally optimal match, and

still fairly compares one algorithm to another.

Our algorithm is a general machine learning technique that is applicable to

other fields. For example, in nursing, there are some standard references that de-

scribe which interventions should be given to a patient depending on his/her nursing

diagnosis. In practice, a nurse may or may not give patients interventions accord-

ing to the book. We will compare the interventions that are frequently given to

patients together with those that appear together in the reference books, paying

special attention to the discrepancies between the two.

109

REFERENCES

[1] F. Afrati, A. Gionis, and H. Mannila. Approximating a collection of frequent
sets. In Proc. Int. Conf. Knowledge Discovery and Data Mining (KDD’04),
pages 12–19, 2004.

[2] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace
clustering of high dimensional data for data mining applications. In Proc.
1998 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD’98), pages
94–105, 1998.

[3] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between
sets of items in large databases. In Proc. 1993 ACM-SIGMOD Int. Conf.
Management of Data (SIGMOD’93), pages 207–216, 1993.

[4] R. Agrawal and R. Srikant. Fast algorithms for mining association rules in
large databases. In Proc. 1994 Int. Conf. Very Large Data Bases (VLDB’94),
pages 487–499, 1994.

[5] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory,
Algorithms, and Applications. Prentice Hall, 1993.

[6] G. M. Allenby and J. L. Ginter. The effects of instore displays and feature
advertising on consideration sets. International Journal of Research in Mar-
keting, 12:67–80, 1995.

[7] M. R. Anderberg. Cluster Analysis for Applications. Academic Press, 1973.

[8] R. Andrews and T. Srinivasan. Studying consideration effects in empirical
choice models using scanner pannel data. Journal of Marketing Research,
32:30–41, 1995.

[9] P. Andritsos, P. Tsaparas, R. J. Miller, and K. C. Sevcik. LIMBO: Scal-
able clustering of categorical data. In 9th Int. Conf. on Extending DataBase
Technoloy, pages 123–146, March 2004.

[10] M. Ankerst, M. Breunig, H. P. Kriegel, and J. Sander. OPTICS: Ordering
points to identify the clustering structure. In Proc. 1999 ACM-SIGMOD Int.
Conf. Management of Data (SIGMOD’99), pages 49–60, June 1999.

[11] D. Barbara, Y. Li, and J. Couto. Coolcat: An entropy-based algorithm for
categorical clustering. ACM Press, pages 582–589, 2003.

[12] E. Bauer and R. Kohavi. An empirical comparison of voting classification
algorithms: Bagging, boosting, and variants. Machine Learning, pages 36(1–
2): 105–139, 1999.

110

[13] R. Bayardo. Efficiently mining long patterns form databases. In Proc. 1998
ACM-SIGMOD Int. Conf. Management of Data (SIGMOD’98), pages 85–93,
1998.

[14] M. S. Bazaraa, J. J. Jarvis, and H. D. Sherali. Linear Programming and
Network Flows. Wiley-Interscience, 2004.

[15] B. Ben-Akiva and B. Boccara. Discrete choice models with latent choice sets.
International Journal of Research in Marketing, 12:9–24, 1995.

[16] P. Berkhin. Survey of clustering data mining techniques. Technical report,
Accrue Software, San Jose, CA, 2002.

[17] D. Boley. Principal direction divisive partitioning. Data Mining and Knowl-
edge Discovery, 2(4):325–344, 1998.

[18] L. Breiman, J. Friedman, R. A. Olshen, and C. J. Stone. Classification and
Regression Trees. CA: Wadsworth International, 1984.

[19] B. J. Bronnenberg and W. Vanhonacker. Limited choice sets, local price
response, and implied measures of price competition. Journal of Marketing
Research, 33:163–173, 1996.

[20] D. Burdick, M. Calimlim, and J. Gehrke. MAFIA: A maximal frequent item-
set algorithm for transactional databases. In In Proceedings of the 17th In-
ternational Conference on Data Engineering, 2001.

[21] I. V. Cadez, P. Smyth, E. Ip, and H. Mannila. Predictive profiles for transac-
tion data using finite mixture. Tech. Report No. 01-67, University of Califor-
nia, Irvine.

[22] P. Cheeseman, J. Kelly, M. Self, J. Stutz, W. Taylor, and D. Freeman. AU-
TOCLASS: A Bayesian classification system. In Proc. 1988 ACM-SIGMOD
Int. Conf. Management of Data (SIGMOD’88), pages 54–64, 1988.

[23] A. Chernev. Essential Marketing Concepts and Frameworks. Brightstar Me-
dia, Inc., 2006.

[24] J. Chiang, C. Siddartha, and N. Chakravarthi. Markov chain monte carlo
and models of consideration set and parameter heterogeneity. Journal of
Econometrics, 89:223–48, 1999.

[25] D. Cristofor and D. Simovici. An information-theoretical approach to clus-
tering categorical databases using genetic algorithms. In 2nd SIAM ICDM,
Workshop on Clustering High Dimensional Data, 2002.

111

[26] W. S. DeSarbo and W. L. Cron. A maximum likelihood methodology for
clusterwise linear regression. Journal of Classification, 5:249–282, 1988.

[27] N. K. Dhalla and W. H. Mahatoo. Expanding the scope of segmentation
research. Journal of Marketing, pages 34–41, April 1976.

[28] I. Dhillon, S. Mallela, and S. Modha. Information-theoretic co-clustering. In
Proc. 9th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining
(SIGKDD’03), pages 89–98, 2003.

[29] A. S. Dick and K. Basu. Customer loyalty: Toward an integrated conceptual
framework. Journal of the Academy of Marketing Science, 22:99–113, 1994.

[30] S. Dolniar and F. Leisch. Behavioral market segmentation of binary guest
survey data with bagged clustering. Proc. International Conf. on Artificial
Neural Networks, pages 111–118, 2001.

[31] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. John Wiley
& Sons, second edition, 2001.

[32] M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein. Cluster anal-
ysis and display of genome-wide expression patterns. Proc. Nat. Acad. Sci.,
95:14863–14868, 1998.

[33] M. Ester, H. P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for
discovering clusters in large spatial databases. In Proc. Int. Conf. Knowledge
Discovery and Data Mining (KDD’96), pages 226–231, Aug. 1996.

[34] D. Fisher. Improving inference through conceptual clustering. In Proceedings
of 1987 AAAI Conference, pages 461–465, July 1987.

[35] V. Ganti, J. Gehrke, and R. Ramakrishnan. CACTUS - Clustering categorical
data using summaries. Knowledge Discovery and Data Mining, pages 73–83,
1999.

[36] D. S. Geert and W. S. DeSarbo. A latent class probit model for analyzing
pick any/n data. Journal of Classification, 8:45–63, 1991.

[37] G. Getz, E. Levine, and E. Domany. Coupled two-way clustering analysis of
gene microarray data. Proc. Nat. Acad. Sci., 97:12079–12084, 2000.

[38] D. Gibson, J. Kleinberg, and P. Raghavan. Clustering categorical data: An
approach based on dynamical systems. VLDB Journal: Very Large Data
Bases, 8(3–4):222–236, 2000.

112

[39] K. Gouda and M. J. Zaki. Fast algorithms for mining association rules in
large databases. In Proc. of the IEEE Int. Conference on Data Mining, pages
163–170, 2001.

[40] G. Grahne, L. Lakshmanan, and X. Wang. Efficient mining of constrained
correlated sets. In Proc. 2000 Int. Conf. Data Engineering(ICDE’00), pages
512–521, 2000.

[41] J. L. Gross and J. Yellen. Graph Theory and its Application. International Se-
ries in Quantitative Marketing. Boston: Kluwer Academic Publishers., second
edition, 2000.

[42] S. Guha, R. Rastogi, and K. Shim. ROCK: A robust clustering algorithm for
categorical attributes. Information Systems, 25(5):345–366, 2000.

[43] S. Guha, R. Rastogi, and K. Shim. Cure: An efficient clustering algorithm
for large databases. In Proc. 1998 ACM-SIGMOD Int. Conf. Management of
Data (SIGMOD’98), pages 73–84, June 1998.

[44] D. Gunopulos, H. Mannila, R. Khardon, and H. Toivonen. Data mining,
hypergraph transversals, and machine learning. In Proc. 1997 ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems(PODS’97),
pages 209–216, 1997.

[45] L. C. Hamilton. Regression with Graphics: A Second Course in Applied Statis-
tics. Brooks/Cole, 1992.

[46] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan
Kaufmann, San Francisco, CA, 2001.

[47] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate
generation. In In Proc. 2000 ACM-SIGMOD Int. Conf. Management of Data
(SIGMOD’00), pages 1–12. ACM Press, May 2000.

[48] J. Han, J. Wang, Y. Lu, and P. Tzvetkov. Mining top-k frequent closed
patterns without minimum support. In Proc. 2002 Int. Conf. on Data Min-
ing(ICDM’02), pages 211–218, 2002.

[49] J. Hartigan. Clustering Algorithms. Wiley, 1975.

[50] A. Hinneburg and D. A. Keim. An efficient approach to clustering in large
multimedia databases with noise. In Knowledge Discovery and Data Mining,
pages 58–65, 1998.

[51] A. Hinneburg and D. A. Keim. An efficient approach to clustering in large
multimedia databases with noise. In Proc. Int. Conf. Knowledge Discovery
and Data Mining (KDD’98), pages 58–65, Aug. 1998.

113

[52] Z. Huang. Extensions to the k-means algorithm for clustering large data set
with categorical values. Data Mining and Knowledge Discovery, 2:284–304,
1998.

[53] A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice Hall,
1988.

[54] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A review. ACM
Computing Surveys, 31(3):264–323, 1999.

[55] J. R. Jensen. Introductory digital image processing: A remote sensing per-
spective. Prentice Hall, second edition, 1996.

[56] G. John and P. Langley. Estimating continuous distributions in Bayesian
classifiers. In Proc. 11th Conf. Uncertainty in Artificial Intelligence, pages
338–345, 1995.

[57] M. A. Jones, D. L. Mothersbaugh, and S. E. Betty. Why customers stay:
measuring the underlying dimensions of services switching costs and managing
their differential strategic outcomes. Journal of Business Research, 55:441–
450, 2002.

[58] W. Kamakura and G. Russell. A probablistic choice model for market seg-
mentation and elasticity structure. Journal of Marketing Research, 26:379–90,
1989.

[59] G. Karypis, E. H. Han, and V. Kumar. CHAMELEON: A hierarchical clus-
tering algorithm using dynamic modeling. Computer, 32:68–75, 1999.

[60] L. Kaufman and P. J. Rousseeuw. Finding Groups in Data. John Wiley, 1990.

[61] T. Kohonen. Self-organized formation of topologically correct feature maps.
Biological Cybernetics, pages 43:59–69, 1982.

[62] T. Kohonen. Self-Organizing Maps. Springer, 1995.

[63] S. L. Lauritzen. The EM algorithm for graphical association models with
missing data. Computational Statistics and Data Analysis, 19:191–201, 1995.

[64] T. Li. A general model for clustering binary data. In Proc. Int. Conf. Knowl-
edge Discovery and Data Mining (KDD’05), pages 188–197, 2005.

[65] T. Li. A unified view on clustering binary data. Machine Learning, 62:199–
215, 2006.

[66] T. Li and S. Zhu. On clustering binary data. Proc. of the 2005 SIAM Int.
Conf. On Data Mining(SDM’05), pages 526–530, 2005.

114

[67] L. Lovasz and M. D. Plummer. Matching Theory. New York, 1986.

[68] T. Lwin and P. J. Martin. Probit of mixtures. Biometrics, 45:721–732, 1989.

[69] R. Maclin. Boosting classifiers regionally. In In Proceedings of 1998 AAAI
Conference, pages 700–705, 1998.

[70] J. MacQueen. Some methods for classification and analysis of multivariate
observations. Statistics and Probability, 1:281–298, 1967.

[71] J. Moody and C. Darken. Fast learning in networks of locally-tuned processing
units. Neural computation, 1:281–294, 1989.

[72] R. Ng and J. Han. Efficient and effective clustering method for spatial data
mining. In Proc. Int. Conf. Very Large Data Bases(VLDB’94), pages 144–
155, 1994.

[73] C. Ordonez. Clustering binary data streams with k-means. Proc. of the 8th
ACM SIGMOD Workshop on Research Issues on Data Mining and Knowledge
Discovery, pages 12–19, 2003.

[74] C. Ordonez, E. Omiecinski, and N. Ezquerra. A fast algorithm to cluster high
dimensional basket data. In Int. Conf. on Data Mining (ICDM’02), pages
633–636, 2001.

[75] J. Park, M. Chen, and P. Yu. An effective hash-based algorithm for mining
association rules. In Proc. 1995 ACM-SIGMOD Int. Conf. Management of
Data (SIGMOD’95), pages 175–186, 1995.

[76] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed
itemsets for association rules. In Proc. of 7th Int. Conf. on Database Theory
(ICDT’99), pages 398–416, 1999.

[77] J. Pei, G. Dong, W. Zou, and J. Han. On computing condensed frequent
pattern bases. In Proc. 2002 Int. Conf. on Data Mining (ICDM’02), pages
378–385, 2002.

[78] Y. Peng, G. Kou, Y. Shi, and Z. Chen. Improving clustering analysis for credit
card accounts classification. In Proc. Int. Conf. on Computational Science,
3:548–553, 2005.

[79] M. Peters and M. Zaki. CLICK: Clustering categorical data using k-partite
maximal cliques. Technical Report 04-11, Computer Science Dept., RPI, 2004.

[80] J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81–106, 1984.

115

[81] R. J. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufman, San
Manteo, CA, 1993.

[82] J. Roberts and J. Lattin. Development and testing of a model of consideration
set composition. Journal of Marketing Research, 28:429–440, 1991.

[83] J. H. Roberts and J. M. Lattin. Consideration: Review of research and
prospects for future insights. Journal of Marketing Research, 34:406–410,
1997.

[84] D. Rumelhart, G. Hinton, and R. Williams. Learning internal representations
by error propagation. Parallel Data Processing, 1:318–362, 1986.

[85] S. Sarawagi, S. Thomas, and R. Agrawal. Integrating association rule mining
with relational database systems: Alternatives and implications. In Proc.
1998 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD’98), pages
343–354, 1998.

[86] A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining
association rules in large databases. In Proc. 1995 Int. Conf. Very Large Data
Bases (VLDB’94), pages 432–443, 1995.

[87] S. Siddarth, R. E. Bucklin, and D. G. Morrison. Making the cut: Model-
ing and analyzing choice set restriction in scanner panel data. Journal of
Marketing Research, 32:255–266, 1995.

[88] N. Slonim and N. Tishby. Document clustering using word clusters via the
information bottleneck method. In Proc. of the 23rd Annual International
ACM SIGIR Conference on Research and Development in Information Re-
trieval (SIGIR’00), pages 208–215, 2000.

[89] H. Spath. Algorithm 39: Clusterwise linear regression. Computing, 22:367–
373, 1979.

[90] P. N. Tang, M. Steinbach, and V. Kumar. Introduction to Data Mining.
Addison Wesley, 2006.

[91] V. N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag,
New York, 1995.

[92] B. Vroomen, P. H. Franses, and E. V. Nierop. Modeling consideration sets
and brand choice using artificial neural networks, 2001. ERIM Report Series
ERS-2001-10-MKT.

[93] M. Wedel and W. S. DeSarbo. A latent class binomial logit methodology for
the analysis of paired comparison data: An application reinvestigating the
determinants of perceived risk. Decision Sciences, 24:1157–1170, 1993.

116

[94] M. Wedel and W. S. DeSarbo. A mixture likelihood approach for generalized
linear models. Journal of Classification, 12:21–55, 1995.

[95] M. Wedel and W. Kamakura. Market Segmentation: Conceptual and Method-
ological Foundations. CRC Press LLC, second edition, 1998.

[96] D. B. West. Introduction to Graph Theory. Prentice Hall, 2001.

[97] P. Willet. Recent trends in hierachical document clustering: A critical review.
Information Processing and Management, 24(5):577–597, 1988.

[98] I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools
and Techniques with Java Implementation. Morgan Kaufmann, 1999.

[99] D. Xin, J. Han, X. Yan, and H. Cheng. Mining compressed frequent-pattern
sets. In Proc. 31th Int. Conf. Very Large Data Bases(VLDB’05), pages 709–
720, 2005.

[100] W. Xu and Y. Gong. Document clustering by concept factorization. In Proc.
of the 27rd Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR’04), pages 202–209, 2004.

[101] D. Yuan and W. N. Street. ICC: A new machine learning technique for iden-
tifying response-specific subpopulations. Working Paper, 2006.

[102] D. Yuan and W. N. Street. HACS: heuristic algorithm for clustering subsets.
Proc. of the 2007 SIAM Int. Conf. On Data Mining(SDM’07), 2007.

[103] M. J. Zaki and C.-J. Hsiao. CHARM: An efficient algorithm for closed itemset
mining.

[104] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: An efficient data clus-
tering method for very large databases. In Proc. 1996 ACM-SIGMOD Int.
Conf. Management of Data (SIGMOD’96), pages 103–114, June 1996.

[105] Y. Zhang, A. Fu, C. Cai, and P. Heng. Clustering categorical data. In Proc.
of the 16th Int. Conf. on Data Engineering (ICDE’00), page San Deigo, 2000.

	University of Iowa
	Iowa Research Online
	2007

	Heuristic subset clustering for consideration set analysis
	Ding Yuan
	Recommended Citation

	tmp.1232138404.pdf.o2ipH

