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ABSTRACT

Sugarcane is an important crop around the world. With each producing coun-

try having a different infrastructure, the logistics for each country are unique. In this

work, we study the sugarcane harvest and transport operations in two major sugar

producing nations – Brazil and the United States.
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CHAPTER 1
INTRODUCTION

Despite a growing global appetite for sugar as both a foodstuff and a fuel source

there exists limited literature that explores sugarcane operations. In this paper, we

look at harvest operations in the US and Australia which account for significant

portions of the total sugarcane production costs in both countries. We develop a

framework for coordinating harvest and transport of sugarcane to reduce the waiting

time at the mill by maximizing the minimum gap between two successive arrivals at

the mill. Our results show that arrivals can easily be coordinated to reduce truck

waiting time at the mill.

Sugarcane is an important crop around the world. With each producing coun-

try having a different infrastructure, the logistics for each country are unique. In this

paper, we focus on harvest operations in Louisiana in the United States. The key

issue in Louisiana is the excessive queueing of trucks at the mill. The delayed turn

around time disrupts harvest operations on farms and also increases the number of

trucks required to haul the mill’s daily quota of sugarcane. In this paper, we present a

model that spreads the cane arrival throughout the day to match the mill’s processing

capacity. Our work generalizes previous work in the literature and better reflects the

actual operation while maintaining tractability. We introduce new datasets based on

the existing sugarcane infrastructure in Louisiana and present computational results

that demonstrate our approach improves upon results in the literature.

Sugar mills in Brazil represent significant capital investments. To maintain
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appropriate returns on their investment, sugar companies aim to run the mills at full

capacity over the entire nine months of the sugarcane harvest season. Because the

sugar content of cane degrades considerably once it is cut, maintaining inventories

of cut cane is undesirable. Instead, mills want to coordinate the arrival of cut cane

with production. In Chapter 2, we present a model of the sugarcane harvest logistics

problem in Brazil. We introduce a series of valid inequalities for the model, introduce

heuristics for finding an initial feasible solution, and for lifting the lower bound.

Computational results establish the effectiveness of the inequalities and heuristics. In

addition, we explore the value of allowing trucks to serve multiple rather than single

locations and demonstrate the value of permitting the harvest speed to vary.

In Chapter 3, we focus on harvest operations in Louisiana in the United States.

The fundamental issue in Louisiana is the excessive queueing of trucks at the mill.

Delayed turn around time disrupts harvest operations at farms and also increases the

number of trucks required to haul the mill’s daily quota of sugarcane. We present a

model that spreads the cane arrival throughout the day to match the mill’s processing

capacity. Our work generalizes previous work in the literature and better reflects the

actual operation while maintaining tractability. We introduce new datasets based on

the existing sugarcane infrastructure in Louisiana and present computational results

that demonstrate our approach improves upon results in the literature.

In Chapter 4, we build on the work in Chapter 3 and propose a different

objective function for the US problem. In particular, we maximize the minimum gap

between the consecutive mill arrivals. We believe this objective proxies the goal of
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reducing congestion at the mill and the number of trucks needed better than the

other objectives proposed in the literature while also maintaining tractability. We

have identified sets of valid inequalities that help to solve the model efficiently. We

use the results from Chapter 3 to find initial feasible solutions.

In Chapter 5, we return to the problem of harvesting and delivery sugarcane to

a mill in Brazil. This problem deals with harvesting operations (cutting and shipping)

at the fronts, transportation by the trucks via road network, and unloading of the

cane at the mill yard while accounting for the stochasticity in day-to-day operations.

In practice, the sugarcane harvest and transport are not deterministic, as we

have described in Chapter 2. There are uncertainties in both operations. Harvesters

break down at the fronts. The weather causes the shut down of harvesting at the

front. The vehicles break down en-route to the mill or to the fronts. Many of these

events need a change in the original plan of actions.

We develop a rolling horizon model that uses the math program in Chapter

2 to solve certainty equivalent problems as new information becomes available. We

update constraints to account for changes in trucks or fronts.
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CHAPTER 2
SUGARCANE HARVEST LOGISTICS IN BRAZIL

Sugar mills in Brazil represent significant capital investments. To maintain

appropriate returns on their investment, sugar companies seek to run the mills at

capacity over the entire nine months of the sugarcane harvest season. Because the

sugar content of cane degrades considerably once it is cut, maintaining inventories of

cut cane is undesirable. Instead, mills want to coordinate the arrival of cut cane with

production. In this chapter, we present a model of the sugarcane harvest logistics

problem in Brazil. We introduce a series of valid inequalities for the model, introduce

heuristics for finding an initial feasible solution, and for lifting the lower bound.

Computational results demonstrate the effectiveness of the inequalities and heuristics.

In addition, we explore the value of allowing trucks to serve multiple rather than single

locations and demonstrate the value of allowing the harvest speed to vary.

2.1 Introduction

Since 1989, the monthly global price of raw sugar has averaged US$ 0.1191 per

pound. Starting in 2008, however, the price of raw sugar has steadily risen, peaking at

US$ 0.3209 per pound in January of 2011. While prices have fallen from those highs,

raw sugar was trading at US$ 0.2039 per pound in October 2012, the last month

for which aggregate data is available [Economic Research Service, 2012]. There are

two key sources of this rise in world sugar prices. First, consumption is increasing

in countries such as India, China, Indonesia, and Turkey [McConnell et al., 2010].
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Second, ethanol production diverts raw sugar from consumers. Between 2000 and

2010, world ethanol use increased by 300%, and as a result of increasing oil prices,

economic growth, and new government mandates, the growth is expected to continue

[Valdes, 2011]. Importantly, the recent lifting of an US import tariff on foreign-made

ethanol led to a ninefold increase in US imports of Brazilian sugar-based ethanol in

2012. Additional growth is expected in 2013 [Wexler, December 17, 2012].

In the face of these high sugar prices, both consumers and producers have a

keen interest in increasing world sugar supplies. As the world’s largest exporter of

both raw and refined sugar and the country whose production costs drive world sugar

prices [McConnell et al., 2010], Brazil deserves particular focus. Yet surprisingly, the

authors are not aware of any research that addresses logistics in the Brazilian sugar-

cane industry, and the work from other countries does not apply due to significant

industry differences.

The focal point of the Brazilian industry is its sugar mills that crush raw

cane to extract the juice from which raw sugar is eventually made. Sugar mills

represent significant capital investments, and to maintain appropriate returns on their

investment, sugar companies seek to run the mills near or at capacity over the entire

nine months of the sugarcane harvest season.

Running the mills at capacity requires an adequate supply a sugar cane. We

define this adecute supply of truck loads of cane needed to keep the mill continu-

ously running as mill needs. To overcome the challenges of coordinating harvest and

transport operations with the mill needs, the obvious solution is to decouple the mill
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operation from the supply operation by carrying a stock of raw cane. However, raw

cane presents a complication. Because of evaporation and bacterial growth, the sugar

content of cut cane degrades considerably over time [Salassi et al., 2004, Saska et al.,

2009, Saxena et al., 2010]. In areas of the world where cane is cut whole stalk, the cut

stalk can last several days without significant lost of sugar content. However, in Brazil

and some other countries, cane is primarily mechanically harvested, resulting in 12 -

18 inch billets of cane stalk. The multiple exposed ends increase the degradation in

comparison to whole stalk cane [Salassi et al., 2004].

Because of the degradation, sugar producers want to reduce the cut-to-crush

time, the time between when the sugar cane is cut in the field and when it is crushed

at the mill. According to our conversations with our industry partners, a conservative

estimate of average cut-to-crush time in a typical mill area in Brazil is three hours,

even though the average travel time between the fronts and the mill is less than

an hour (Personal Communication with Jose Coelho, Sugar Cane Segment Manager,

John Deere, April 13, 2010). Improved logistics coordination, particularly coordinat-

ing the rate of harvest with the availability of trucks, offers an opportunity to reduce

the cut-to-crush time and improve sugar yields while maintaining required service

levels at the mill.

Estimating the cost of sugar loss is challenging. Sugar loss is affected by the

cane variety, temperature, whether the cane is cut whole stock or billeted, whether

it is burnt or clean, and the amount of debris entering the cane stalk during cutting

and storage. These attributes differ by country, and only limited research explores
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the issue. As a rough estimate, for 2012/2013, Brazil is expected to crush 570 metric

tons of sugarcane [Barros, 2012]. According to Saska et al. [2009], sugar loss per hour

is linear over 24 hours and depends on the temperature range of the cane. Saska et al.

[2009] finds that, for billeted cane (the case in Brazil) in the temperature range of 22-

27 ℃ a reasonable range for temperatures during the harvest season in Brazil’s largest

sugar producing region, the center-south, is 0.03 tons per 100 tons of sugarcane per

hour. At $0.20 per pound of sugar, the cost of sucrose loss alone is over $225 million

and over $330 million if prices were again to rise near $0.30 per pound. However,

if consider the possibility that the storage temperatures are much higher than the

ambient temperature, notably over 27 ℃ the sugar loss increases to 0.32 tons per

100 tons of sugarcane per hour. In that scenario, the losses increase to $2.4 billion

and $3.6 billion at $0.20 and $0.30 per pound of sugar, respectively. As noted in

Salassi et al. [2004], dextran formation over time can additionally impact sugar value.

Regardless, even small reductions in cut-to-crush time are likely to have an important

monetary impact.

The sugarcane harvest is composed of three operations that must be coor-

dinated: infield operations, over-the-road transport, and the mill operations. The

infield operations usually occur in several pre-specified fronts a day. A front is a

cluster of geographically close, but not necessarily contiguous, fields. The infield op-

erations have several components. First, the cane is cut in the field, usually using

a machine known as a harvester that processes the cane into uniformly sized billets

(12-18 inches). While in operation, the harvester continuously feeds billets into an
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infield storage unit known as a cart. The cart is pulled by an infield transporter.

This infield transporter and cart combination runs along side the harvester during

the harvest operations, and when the cart is filled, the transporter and cart combina-

tion must be rotated with another infield vehicle and its associated cart to allow for

continuous harvest operations. Filled carts are transported to an area known as the

trans-loading zone that serves all of the fields in a front.

The second operation of the harvest begins at the trans-loading zone. At the

trans loading zone in the fronts, the contents of the filled carts are transferred to

over-the-road transport vehicles. These vehicles take the harvested cane from the

fronts to the mill. The final operation of the harvest takes place at the mill where the

over-the-road vehicles are unloaded. Once an over-the-road vehicle is unloaded, it can

return to a front for its next load. Figure 2.1 illustrates the sugarcane harvest logistics

problem. Note that, in practice, there are multiple fronts at varying distances from

the mill even though only one representative front is shown in Figure 2.1.

In this chapter, we present a mixed linear integer programming model for the

deterministic sugarcane harvest logistics problem in Brazil. The decision variables

are the speed of harvesters at the fronts and the assignment of trucks to each of the

loads produced at the fronts. Our objective is to minimize the cut-to-crush time of

the sugarcane subject to the constraint that the mill is never starved of raw material.

We present valid inequalities that allow us to strengthen the original formulation of

the problem and also a heuristic for finding an initial feasible solution. In addition,

we introduce a heuristic for lifting the lower bound of the linear relaxation. The
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Figure 2.1: Mill Area Operation

result is particularly important in proving optimality as the linear relaxation of the

original model often returns an objective value of zero. With the valid inequalities and

heuristics, we demonstrate the ability to solve real-world sized problems in reasonable

time. We demonstrate the value of our approach by contrasting it with the potentially

managerially desirable approach of allowing trucks to serve a single front throughout

the day. We also demonstrate the value of allowing the harvest rates to vary.

The rest of the paper is organized as follows. In Section 2.2, we survey related

literature. Section 2.3 presents our math programming formulation. Section 2.4.2

presents the valid inequalities that strengthen the formulation, develops a heuristic

for generating a feasible solution to the math program, and also introduces a heuristic
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for lifting the lower bound of the linear relaxation. Section 2.5 presents our exper-

imental design and includes a description of the datasets on which we perform our

computational experiments. The section also presents bounds on the number trucks

needed to a serve a particular mill area. These bounds are useful in designing our

experiments. In Section 2.6, we present the results of our computational experiments.

Section 2.7 provides conclusions and presents future work.

2.2 Literature Review

Agricultural applications have a long history in the Operations Research lit-

erature, beginning with Heady [1954] that introduced the use of linear programming

to the agricultural sector. Recent reviews of this broad field can be found in Lowe

and Preckel [2004] and Ahumada and Villalobos [2009]. The supply of feedstock to

sugar mills has garnered significant attention in the academic literature. Giles [2009]

gives an overview of logistics issues stressing the need for the coordination between

harvesting, transport, and storage for the smooth operation and the profitability of a

sugar mill. Yet, to the best of the authors’ knowledge, none of the literature addresses

the degradation of sucrose during the cut-to-crush delay, a key concern in Brazil.

Most work on the sugarcane industry has been done in the last 15 years. The

work can be more or less divided into value chain optimization and harvest scheduling.

The only work related to the Brazilian sugarcane industry of which the authors’ are

aware focuses on value chain optimization. Kawamura et al. [2006] and Paiva and

Morabito [2009] focus on production planning across multiple sugar mills, and da Silva
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et al. [2013] considers production planning at the individual mill level. Jena and Poggi

[2013] present an optimization model for scheduling fields for harvest. Additional

value-chain related literature includes Higgins et al. [1998], Grunow et al. [2008],

and Kostin et al. [2011], which cover the Australian, Venezuelan, and Argentinian

industries, respectively.

In this chapter, we focus on harvest and scheduling. This subset can be divided

by country, notably Australia, South Africa, Brazil, Cuba and Thailand. There is

very little similarity among the work from different countries because of differences

in industry structure and operation. The harvesting practices and resultantly the

transportation of the cane from the field is influenced by the terrain, the relative

cost of labor and capital, the state of road and rail networks, and the distribution

of sugarcane fields relative to the mill. In Brazil, in 2009, 70.0% of the cane supply

was harvested from mill controlled fields, with 55.5% being mill owned [Neves et al.,

2010], giving mill operators significant control over the supply process for the mill.

In this situation, the mill does not face the problem of being oversupplied during the

peak season as in Thailand nor is the issue of integrating the decision making process

between growers and harvesters of the importance that it is in South Africa. Further,

harvesting in Brazil is done 24 hours a day, and as a result, storage is not an issue as

it is Australia, Cuba, and the United States.

Most closely related to the work presented here is Salassi et al. [2009a]. Salassi

et al. [2009a] focus on sugar harvest logistics in Louisiana in the United States. As

in the Brazilian case, each farm supplies a pre-determined number of truckloads each
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day. A key difference is that, once assigned to a farm, a truck serves loads at that

farm until the harvest is completed at the farm. Further, harvest rates are fixed, and

because harvesting only takes place over 14 hours in a day, the objective is designed to

reduce truck congestion at the mill rather than to minimize cut-to-crush delay. One

similarity is that Salassi et al. [2009a] groups the many farms harvested in a day into

farm groups. These farm groups reduce the problem size as fronts do in the research

presented here. Previously, Salassi et al. [2004] had explored the value of extending

the hours of harvesting in the day. The goal was to reduce the degradation of cane

resulting from storage.

In South Africa, the mill neither owns nor controls a big share of the farms.

Hansen et al. [2002] develop a simulation model and conduct sensitivity analysis to

investigate and reduce the delays in the South African sugarcane harvest and delivery

systems. Their study shows that an integrated system comprising the harvest, trans-

port, and mill process can lead to significant reductions in delay times and cost. Le

Gal et al. [2009] develop a simulation to investigate the impact of increased mecha-

nization of the sugarcane harvest.Lejars et al. [2008] also develop a simulation model

to see the effects of centralized decision-making among the various stakeholders (sugar

cane growers, harvesters, haulers, and millers) in the South African industry versus

decentralized decision-making. McDonald et al. [2008] also develop a similar simula-

tion model to simulate the sugarcane harvesting, transport and mill-yard activities

for a mill supply area.

In Thailand, the sugar industry has a large number of small-sized, independent
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farms. This industry configuration causes uneven supplies throughout the harvesting

season. Thus, research addresses supply issues to Thai sugar mills. Supsomboon

and Yosnual [2004] present a stochastic model that helps mills optimize their order

quantities, given the uncertainties of farmers’ delivery lead times and quantities.

Prichanont et al. [2005] use discrete-event simulation to demonstrate that the number

of trucks should be reduced in order to avoid excess supply. They show that the

excessive transportation cost is due to inefficient cane delivery truck utilization and

extensive truck waiting time at the mill. Using the simulation model for one of the

mills they studied, they show that as much as 600 of the existing 1000 trucks can be

eliminated while the mill’s needs remain statistically unchanged.

Diaz and Perez [2000] present a simulation model for the transportation of

sugarcane in Cuba. For the same country, Lopez Milan et al. [2006] develop a linear

programming model to pick up cane from different farms and storage locations to

minimize transportation cost. The model accounts for more than one mode of trans-

port. Besides road transport, they consider inter-modal transports which include

first, transportation via trucks to warehouses, and then subsequent shipments to the

mill by train. In Cuba, the train system is a cheaper alternative to road transport and

also serves as a buffer because the mill operates for 24 hours a day while harvesting is

done only 14 hours a day. Lopez-Milan and Pla-Aragones [2013] introduce a decision

support system that builds on the work in Lopez Milan et al. [2006] . Unlike in this

paper, neither Lopez Milan et al. [2006] nor Lopez-Milan and Pla-Aragones [2013]

directly address the operational level scheduling of individual transport vehicles.
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Historically, the Australian sugar industry has been the most exposed to the

“world market price” because Australia neither has a large domestic demand like

India nor access to protected high-priced European Union or United States domestic

markets [Hildebrand, 2002]. To stay competitive in the market, the Australian sugar

industry focused on lowering the transportation cost, and this is the main theme of the

literature related to the Australian sugar industry. While some areas in the Australian

sugar industry use rail transport [Higgins and Postma, 2004, Higgins and Davies, 2005,

Higgins and Laredo, 2006], most relevant to the discussion in this paper is the use

of truck transportation. Unlike Brazil, in Australia, harvesting is limited to daylight

hours. Higgins [2006] develops an approach for scheduling the individual vehicles

in a road-bound transportation system. Two alternative solution methods based on

meta-heuristics are proposed for the model to solve problems of practical sizes. Both

meta-heuristics were able to find solutions with an average reduction in vehicle queue

time of about 90% compared to the manual methods used by the traffic officers in the

mills. This helped reduce the required number of vehicles. Unlike the work presented

in this paper, Higgins [2006] is concerned with reducing the waiting time for the trucks

only at the unloading zone at the mill. We are concerned with decreasing the overall

cut to crush time for the cane, while fulfilling the mill requirements at all times. We

also have the option of controlling the harvester rate. Unlike Higgins, we provide an

exact solution method.
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2.3 Model

In this section, we present a linear, mixed integer programming formulation

for coordinating sugarcane logistics harvests. For ease of exposition, we assume that

all trucks start at the mill and harvesting has not yet started at the fronts. We also

assume that the number of loads available at the fronts exactly matches the needs

of the mill for the time horizon in question. We first introduce the notation for the

problem and then present the math program.

2.3.1 Notation

N : Set of needs at the mill, where the cardinality of N is N .

T : Set of trucks available to service loads, where the cardinality of T is T .

F : Set of fronts, where the cardinality of F is F .

ni : Time at which a truck load is needed at the mill to ensure the mill can continue

operating at the desired rate, i = 1, . . . , N .

m : Time between two consecutive mill needs, assumed constant.

di : Dispatch time to pick up the ith need, i = 1, . . . , N .

hi : Time at which the harvest of the ith mill need is completed (ready time), i =

1, . . . , N .

pi : Pick-up Time of the ith need, i = 1, . . . , N .

ai : Arrival time of the ith load to the mill, i = 1, . . . , N .

βf : Earliest time that harvesting can begin at front f , f = 1, . . . , F .

Lf : Number of loads to be produced from front f, f = 1, . . . , F .
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tf : Travel time to the front f , f = 1, . . . , F .

sf : Travel time to mill from front f , f = 1, . . . , F .

rf : Round trip time for front f , f = 1, . . . , F .

Hf : Minimum time needed to harvest a load at front f , f = 1, . . . , F .

bt : Earliest time time that truck t can be dispatched, t = 1, . . . , T .

xit =


1 if truck t brings the ith need to the mill.

0 otherwise

yif =


1 if the ith need is fulfilled by front f

0 otherwise
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2.3.2 Formulation

(P) minimize
∑
i∈M

[(pi − hi) + (ni − ai)] (2.1)

subject to di ≤ pi ≤ ai ≤ ni , ∀ i ∈ N (2.2)

hi ≤ pi , ∀ i ∈ N (2.3)∑
t ∈ T

xit = 1 , ∀ i ∈ N (2.4)

∑
f ∈ F

yif = 1 , ∀ i ∈ N (2.5)

di +
∑
f ∈ F

[tf ∗ yif ] ≤ pi , ∀ i ∈ N (2.6)

pi +
∑
f ∈ F

[sf ∗ yif ] = ai , ∀ i ∈ N (2.7)

ai − di′ ≤ (2− xit − xi′t)×M , ∀ i, i′ ∈ N , i′ > i, ∀ t ∈ T

(2.8)

hi +Hf − hi′ ≤ (2− yif − yi′f )×M, ∀ i, i′ ∈ N , i′ > i, ∀ f ∈ F

(2.9)∑
i ∈ M

yif ≤ Lf , ∀ f ∈ F (2.10)

dt ≥ bt , ∀ t ∈ T (2.11)

hi −
∑
f ∈ F

Hfyif ≥
∑
f ∈ F

βfyif , ∀ i ∈ N (2.12)

xit binary , yif binary , ∀ i ∈ N , ∀ f ∈ F , ∀ t ∈ T .

(2.13)
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Equation (2.1) is the problem objective. We note that we can ignore travel

time as, to maintain feasibility, all of the loads from each front must be transported

to the mill and by assumption there are only enough loads available at each front

such that the total is required to meet the mill’s needs. Constraints (2.2) enforce

the order of events associated with each load. For the load that fulfills the ith need,

the dispatch time of the truck that services the ith need must occur before the actual

pick up, and the load that fulfils the ith need at the mill should arrive to the mill

before the ith need. Similarly, pickup at the front must occur before the arrival at

the mill. Constraints (2.3) stipulate that harvesting for a load must be completed

before it is picked up. Constraints (2.4) require that each load is picked up only

once and constraints (2.5) say each load is harvested only once. Constraints (2.6)

connect dispatch time and pick-up time, and the constraints (2.7) link pick-up time

with arrival time at the mill. Constraints (2.8) say that, if two loads are picked up by

the same truck, the dispatch time of the latter load is at least as large as the previous

load’s arrival time at the mill. Constraints (2.9) are the analogy of 2.8 when two loads

are from the same front. i.e. if two loads are harvested at the same front, we can start

harvesting the latter only after the first one is harvested. For both constraints (2.8)

and (2.9), M is a large number. Constraints (2.10) enforce the harvest cap on each

front. Constraints (2.11) require that no truck is dispatched before it is available.

Constraints (2.12) ensure that harvesting does not begin at a front before that front

is available. Constraints (2.13) ensure binary decision variables.
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2.4 Valid Inequalities, Initial Feasible Solutions, and Lifted Lower Bounds

While the model has obvious similarities to a constrained assignment problem,

the addition of the variable harvest rates and thus variable ready times, creates chal-

lenges. Preliminary work demonstrated that it was not possible to solve instances of

the above model using commercial solvers. In fact, it was often not possible to find

even a feasible solution in a reasonable time. Thus, in this section, we present valid

inequalities, a heuristic for finding a feasible solution, and a heuristic for lifting the

lower bound of the linear relaxation. As we demonstrate in our computational results,

these enhancements allow us to solve realistically-sized problems in reasonable time.

2.4.1 Valid Inequalities

In this section, we present results that help strengthen the formulation in

the presented previously. We first note that we can strengthen the formulation by

replacing Constraints (2.2) with

(di + t) ≤ (pi + s) ≤ ai ≤ ni, ∀ i ∈ N , (2.14)

where t = minf∈F [tf ] and s = minf∈F [sf ].

Next, we state and prove a proposition that demonstrates the loads arriving

to the mill can be processed in a first-in-first-out manner.

Proposition 1 (FIFO Arrival Times). Let ai and aj denote the arrival times of

loads i and j, respectively, at the mill. Let load i be assigned to the mill need occurring

at time ni and let load j be assigned to the mill need occurring at time nj. If ai < aj
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and the preceding assignment is feasible, then we may assume without loss of generality

that ni ≤ nj.

Proof. Because a load cannot fill a mill need that occurs prior to its arrival, it follows

that ai ≤ ni and aj ≤ nj as we have assumed feasibility. Note that the total waiting

time for the two loads at the mill is (ni − ai) + (nj − aj). With ai < aj, it follows

that ai < nj. If it were the case that nj < ni, then it would also follow that aj < ni,

and it would be possible to switch the loads so that load i is assigned to mill need

nj and load j is assigned to mill need ni. The total waiting time for the two loads

would be (nj−ai)+(ni−aj). Because the total waiting time is the same given either

assignment, the proposition follows.

The result offers a way to break symmetry among the arrival of loads to the

mill. Symmetry occurs when a group of variables forms a “symmetry group,” a group

of variables can be permuted without changing the value of the solution. As noted in

[Margot, 2010], breaking symmetry can turn a computationally intractable problem

into one that is easily solved. Consequently, we make use of the Proposition 1 and

add the following constraints to the formulation:

ai ≤ ai+1, ∀ i ∈ N \N. (2.15)

The next result bounds from below the arrival time values for a solution to

P. To facilitate presentation, we first present additional notation. Let Hf be the

minimum time required to harvest a load at front f and let αfl be the arrival time to
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the mill of the lth load harvested at front f . Then, for a front f , consider the sequence

of arrival times such that αf1 = βf +Hf +sf , αf2 = (βf +Hf )+Hf +sf = αf1 +Hf ,

and thus αfl = αf,l−1 + Hf for l = 2, . . . , Lf . Let LBf be the ordered set of such

arrival times for front f and let LB = ∪f∈FLBf , ordered in ascending order. We let a′i

be the ith element in LB. The following result follows directly from the construction

of LB and Proposition 1.

Proposition 2. The value a′i is a lower bound on ai for all i ∈ N resulting from a

solution of P.

As a result of Proposition 2, we can add the following constraints to P:

a′i ≤ ai, ∀ i ∈ N . (2.16)

The following corollary follows from the construction of LB and Proposition 2.

Corollary 1. If there exists a need i ∈ N such that a′i > ni, then P is infeasible.

We next present an upper bound on the arrival time values for a solution to P.

Again, we introduce new notation. Let ηfl be the time at which harvesting of the lth

load at front f is completed and let α̂fl be the arrival time to the mill of the lth load

harvested at front f . For each front f ∈ F , let ηfLf
= nN − sf and α̂fLf

= ηfLf
+ sf .

Then, ηfl = ηf,l+1−Hf and α̂fl = ηf,l+1−Hf + sf = α̂f,l+1−Hf , for l = 1, . . . , L−1.

Let UBf be the ordered set of such arrival times for front f and let UB = ∪f∈FUBf ,

ordered in ascending order. We let a′′i be the ith element in UB. The following result

also follows directly from the construction of UB and Proposition 1.
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Proposition 3. The value a′′i is an upper bound on ai for all i ∈ N resulting from a

solution of P.

As a result of Proposition 3, we can add the following constraints to P:

a′′i > ai, ∀ i ∈ N . (2.17)

In addition to the FIFO result and bounds on the earliest and latest arrivals of loads

to the mill, we can also fix some of the initial assignments of trucks to loads. Because

we assume a homogeneous fleet of vehicles, we begin by noting that, without loss of

generality, we can enforce:

x11 = 1 and (2.18)

x1t = 0, ∀t ∈ T , t 6= 1. (2.19)

As a consequence of Proposition 2, we know that the earliest time at which

truck 1 can possibly return back to the depot after picking up load 1 is a′1. Based on

this information, we introduce Proposition 4 that characterizes an initial set of truck

assignments.

First, it is useful to define the following notation. Recall that the round trip

time for front f is rf . Let ρ = min
f∈F

rf . Define the set S such that S = {i : i ∈ N , ni <

a′1 + ρ}.

Proposition 4. Every i in S requires a different truck.

Proof. As ρ is the smallest possible round trip time, having arrived back to the mill
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at the earliest at time a′1, truck 1 cannot arrive back to the mill with its second load

any earlier than a′1 + ρ. Further, no truck serving a load i such that ni < a′1 + ρ, the

loads in S can return from serving its second load before a′1 + ρ. Consequently, if a

truck t in T serves a load i in S, t cannot also serve a load i′ in S.

As a consequence of Proposition 4, we add the follow constraints to P, incorporating

constraints (2.18) and (2.19):

xii = 1, ∀i ∈ S and (2.20)

xij = 0, ∀i ∈ S, ∀t ∈ T , t 6= i. (2.21)

Even with the strengthened formulation, the lower bound provided by the

linear relaxation of the math program above is not tight. We note that the value of

the relaxation can be raised by solving a relaxed integer program that excludes the

truck assignment constraints (constraints 2.4 and 2.8). This integer program is easier

to solve than that presented above. The lower bound thus calculated gives the total

wait if we could pick up all the loads at their ready times. Any constraint on number

of trucks only increases the wait time.

2.4.2 A Heuristic for Generating a Feasible Solution

Starting a branch-and-bound procedure with an initial feasible solution often

improves computation time. In this section, we develop a heuristic that is capable

of generating feasible solution to problem P. The heuristic operates by decomposing
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problem P into its harvest and truck assignment components. While the heuristic

does not guarantee a feasible solution, our computational experiments demonstrate

that the method does so for all of our test cases and that the feasible solutions that

are found are effective in improving computation time.

We begin by presenting an algorithm that generates a set of assignments of

loads to fronts and corresponding arrival times to the mill. Our approach is motivated

by the construction of the set UB in the previous section. It is straightforward to see

that if the values in UB are feasible, then the arrival times in UB are optimal.

The algorithm can be found in Algorithm 2.1. The algorithm returns a set

of assignments of fronts to mill needs, denoted ȳ, and a set of arrival times for each

mill need i, denoted ā. Throughout, using the variable lf , the algorithm tracks the

number of loads at front f that are remaining to be assigned. For each front f , the

algorithm uses the value βf to track the next time at which a load from front f can

reach the mill.

The algorithm begins with the last mill need and assigns a front to meet that

need and seeks to assign loads in descending order of the time at which the load is

needed at the mill. To help maintain feasibility, before choosing a front to meet the

N th and final need of the mill, we test all fronts f to ensure that, if front f is not

assigned the N th load, then f still has enough time to harvest all Lf loads required by

front f . To meet the mth need, the algorithm chooses the front that can deliver the

load as close to nm as possible. In the case of the need to break a tie, the algorithm

chooses the front f that minimizes the ratio nm

Hf×lf
, where Hf is the minimum time
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required to harvest a load at front f . The ratio is a measure of a front’s flexibility to

meet future loads and choosing the front with the maximum ratio chooses the least

flexible front to break the tie. Once the assignment for the mth need is chosen, ā and ȳ

are updated. The algorithm then updates the latest time at which the front chosen to

fill the mth need can supply a feasible load to the mill. This updated time reflects the

fact that load m arriving at time ām and supplied by front f must have been harvested

by time ām − sf . So, the latest time at which front f could finish harvesting its next

load is ām− sf −Hf . Then, the latest time at which a load from front f could arrive

at the mill after supplying the mth load is ām− sf −Hf + sf = ām−Hf . In the next

step, the algorithm updates the next available delivery time of all fronts to reflect the

the time at which the (m− 1)st need is required by the mill.

Algorithm 2.1 Assignment of Fronts to Mill Needs

Output:
A vector of assignments of fronts to needs, ȳ, a vector a arrival times for the

mill needs, ā
Initialization:

Set m = M , βf = nN∀f ∈ F , lf = Lf∀f ∈ F , and ȳif = 0∀i ∈ N , f ∈ F
while m 6= 0 do

temp← arg max
f∈F,lf 6=0

{βf}

ām ← βtemp
ȳm,temp ← 1
βtemp ← ām −H temp

βf ← min{βf , nm−1} ∀f ∈ F
ltemp ← ltemp−1

m← m− 1
end while
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An alternative to Algorithm 2.1 is to solve a relaxation of the P that removes

constraints 2.4 and 2.8. The same relaxation is discussed in the previous section for

finding an improved root node bound. However, preliminary experiments found that

the proposed algorithm more often leads to feasible and better solutions when coupled

with the following truck assignment phase.

We next present an algorithm for assigning the loads in ā to vehicles. From ā

and ȳ returned by Algorithm 2.1, it is straightforward to compute a set of correspond-

ing harvest completion times h̄. The algorithm is presented formally in Algorithm 2.2.

Throughout, the algorithm uses the value δt to represent the time at which vehicle

t is available to service its next load. For each load i ∈ N , the algorithm chooses

the vehicle that has been at the mill the longest. Ties are broken arbitrarily. Once

a vehicle has been selected for assignment, the algorithm updates x̄ accordingly, and

then for the assigned vehicle t, the algorithm updates δt by computing the time at

which the vehicle will return to the depot.

Algorithm 2.2 Assignment of Vehicles to Harvested Loads

Output: Assignment of vehicles to loads, x̄.
Initialization:
δt = 0∀t ∈ T and x̄it = 0∀i ∈ N , t ∈ T

for i = 1 to N do
temp← arg min

t∈T
{δt}

xi,temp ← 1
δtemp ← max{h̄i, δtemp +

∑
f∈F(ȳif + tf )}+

∑
f∈F(ȳif + sf )

i← i+ 1
end for
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2.4.3 A Heuristic to Lift the Lower Bound

As the linear relaxation of the proposed model, which we call P′, is often zero,

proving optimality is challenging. We develop a heuristic that exploits the structure

of the solution to raise the lower bound. For ease of exposition, we describe the

heuristic with regard to the front-assignment variables, the y variables. Algorithm 2.3

formally presents the heuristic. The algorithm for the truck-assignment variables, the

x variables, is analogous. A lower bound can be found by taking the minimum of the

wait times computed from the two.

The method takes as input a solution to P′, with assignment variables yif ,

which we will refer to as y′ to represent that the binary condition has been relaxed.

For each f = 1, . . . , F , we let Rf = {i | i ∈ N , y′if /∈ {0, 1}}, the set of mill needs for

which the front f fulfills a partial load in the solution to P′. We assume that the set

Rf is ordered from smallest to largest, and for algorithmic convenience, we assume

that 0 is an element ofRf for every front f . Thus, given any two consecutive elements

in Rf , say rj and rk, there exists a sequence of mill needs i = rj + 1, . . . , rk − 1 such

that y′if ∈ {0, 1}.

Now, consider some sequence i = rj + 1, . . . , rk − 1. Let ī be the largest value

in i = rj + 1, . . . , rk − 1 such that y′if = 1. Using an idea similar to that used in

the heuristic for finding a feasible solution, we recognize that the latest possible time

at which the harvest of the īth mill need could be completed while still maintaining

the feasibility of the solution is nī − sf . Ignoring any constraints on vehicles, this

completion time would also imply that the īth mill need is satisfied with no wait.
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Now, if it exists, we let ī−1 be the next largest i = rj + 1, . . . , rk−1 such that

y′if = 1. Given the previous logic, the load ī − 1 could not have been harvested any

later than nī− sf − H̄f . Thus, if front f satisfied mill need ī by harvesting the load at

nī− sf , the latest that front f can harvest load ī− 1 is min{nī− sf − H̄f , nī−1− sf}.

If the minimum is obtained by nī− sf − H̄f , then the (̄i−1)th load incurs a minimum

wait of nī−1 − sf − [nī − sf − H̄f ] time units. The correctness of the lifted lower

bound follows from these feasibility arguments. The algorithm sums these waits over

all fronts and all mill needs to compute the lifted lower bound.

2.5 Experimental Design

In this section, we describe the computational experiments designed to test

our approach as well as to gain insight into the sugarcane harvest logistics problem.

To aid the description of the experiments, we first describe how we determine the

number of trucks that should be used in a dataset and then the datasets that we use.

2.5.1 Bounds on the Number of Trucks

As the number of available trucks is fixed in the short term, the number of

trucks is a parameter in our sugarcane logistics model. We test our approach on a

range of the number of trucks. It is obvious that, if there are too few trucks available,

there is no feasible solution to our problem. The number of trucks necessary for

feasibility depends on how far the fronts are from the mill and the times when the

mill needs the loads. As the number of available trucks increases, we can find better

solutions in that the average wait time per load decreases. A sufficient increase in the
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Algorithm 2.3 Heuristics to raise lower bound

Output: Lower bound to the integer solution
Initialization: Wait = 0
Input: A solution to P′

for f = 1 to F do
for k = 1, . . . , | Rf | do

if k 6=| Rf | then
i← rk+1 − 1

else
i← N

end if
Flag ← TRUE
while i 6= rk && Flag = TRUE do

temp←∞
if y′if = 1 then

Flag ← FALSE
Next← ni − sf − H̄f

for j = i− 1, . . . , rk + 1 do
if y′jf = 1 then

if Next < nj − sf then
Wait← Wait+ nj − sf −Next
Next← Next− H̄f

else
Next← nj − sf − H̄f

end if
end if

end for
end if
i← i− 1

end while
end for

end for
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number of trucks guarantees we can pick up all the loads at their ready times so each

load arrives at the mill exactly when needed. Any further increase in the number of

trucks beyond that point cannot further reduce the wait time.

Thus, we present bounds on the number of trucks required to achieve feasibility

and the number of trucks necessary to achieve a wait time of zero. A corollary of

the upper bound is that it guarantees a solution for which each truck need serve only

one front. This number of trucks provides a managerially attractive solution, but

requires more trucks to achieve the same level of average wait time per load than the

alternative in which we allow trucks to serve multiple fronts.

We begin by bounding the number of trucks necessary for feasibility. The

amount of truck time associated with each load i depends on the front at which

the load is harvested. For each truck t, t’s shift ends when the last load it trans-

ports arrives at the mill. Let endt be that time for truck t such that endt =

a(i|i is the last load picked up by truck t). The start time for the truck t is denoted by bt.

Proposition 5. The number of trucks needed to fulfill all the mill needs at the mill

need times, {n1, n2 . . . nN}, is bounded on the lower side by a positive number k such

that k is the smallest integer satisfying
∑
t∈1...k

(nN−t+1) ≥
∑
f∈F

Lfrf .

Proof. Because of the assumption that the total number of loads harvested across

all fronts is exactly the number of loads needed to fulfill the mill needs,
∑
f∈F

Lfrf is

the same regardless of what need is served by what front. Further, we note that the

minimum possible time needed to serve all loads, the time when the trucks do not
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wait at either the mill or the fronts, is the same sum
∑
f∈F

Lfrf .

Then, for k available trucks, the maximum available truck time is

∑
t∈1...k

n(N−t+1) ≥
∑
t∈1...k

n(N−t+1) −
∑
t∈1...k

bt

≥
∑
t∈1...k

a(N−t+1) −
∑
t∈1...k

bt =
∑
t∈1...k

endt −
∑
t∈1...k

bt

=
∑
t∈1...k

(endt − bt).

The second inequality follows from the the fact that a load must arrive before the mill

need time that it satisfies. The first equality holds by definition of endt. The second

equality rearranges terms and represents the time that k trucks needed to serve all of

the mill needs.

Thus, the smallest k such that
∑
t∈1...k

n(N−t+1) ≥
∑
i∈1...N

ρi is the smallest number

of trucks that could cover the minimum possible time needed to serve all loads.

If the mill needs are evenly spaced, we can rewrite
∑
t∈1...k

n(N−t+1) as k×
(
nN+n(N−k+1)

2

)
.

We also note that, by treating each front as a separate mill area, Proposition 5

allows us to compute a lower bound on the number of trucks required to serve each

front with dedicated vehicles. We call this separability. We formally present the

result in Corollary 2. The proof follows directly from Proposition 5 and is omitted.

Corollary 2. For f ∈ F , let kf be the smallest integer that satisfies

∑
t∈1...kf

n(N−t+1) ≥ Lfrf .
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Then, k =
∑

(f∈F) kf is the minimum number of trucks that could possibly serve each

front separably.

We next present an upper bound on the number of vehicles required to serve

the loads. The proof of the upper bound requires the realization that, if each load

is picked up at its ready time, the solution can be improved only by changing the

harvest times.

Proposition 6. The upper bound on the number of trucks needed meet all mill needs

among fronts is given by k̂ such that k̂ =
∑

(f∈F) k̂f where k̂f = min {Lf , d rfH̄f
e}.

Proof. The shortest possible time between the ready times of two consecutive loads

at front f is H̄f . To serve at their ready times loads whose ready times differ by H̄f ,

it is clear that we need at least k̂ = d rf
H̄f
e trucks. For any front, however, we never

need more than k̂f = Lf trucks, because Lf trucks is enough to serve each load at

front f with its own vehicle. If each load is served by its own vehicle, then a vehicle

is always capable to serving the load at its ready time.

2.5.2 Datasets

Our computational analysis uses several datasets generated based on our con-

versations with our industry partners (Personal Communication with Jose Coelho,

Sugar Cane Segment Manager, John Deere, April 13, 2010; Personal Communication

with Craig Wenzel, Staff Engineer, Worksite Systems and Productivity Group, John

Deere, May 28, 2010). All of the data is available from myweb.uiowa.edu/bthoa/

iowa/Research.html.
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Each instance represents a typical mill area operations in Brazil . A mill area

has four to eight fronts. We generate two mill areas each for four through eight fronts.

The front to mill travel time is on average one and half times higher than the

mill to front travel time. The increase in return trip time reflects the impact of a load

trailer. In each mill area, the closest front has the trip time between 30 minutes and

50 minutes whereas the farthest front has the round trip time between 70 minutes

and 120 minutes.

Each front also has a harvest quota, the number of loads to be produced from

the front in the given problem instance. The sum of the harvest quotas across all

fronts in an instance is equal to the number of the total mill needs. The closest front

serves 5% to 10% of the total mill needs and the farthest front serves between 35%

and 60%.

The minimum time required to harvest a load at each front is based on the

number of loads each front serves. We first compute the time that would elapse if

loads from a front were evenly spaced. We then assume that the minimum time is

70% of that time. The 70% reflects the fact that, in practice, a capacity cushion is

used as reactive capacity. Given the previously described harvest quotas, the closest

front has the highest minimum time required to harvest a load. The minimum harvest

time of the closest front ranges from 15 minutes to 50 minutes. The farthest front has

the lowest minimum harvest time which ranges between 10 minutes and 30 minutes.

In all our instances, all the fronts and the trucks are allowed to start their

operations 100 minutes before the the mill’s first need. If the mill’s first need is at the
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100th minute, all the fronts can potentially start harvesting at 0th minute and trucks

are available to leave mill for a pick up at 0th minute. We call this gap between when

fronts can start harvesting and the time of mill’s first need the “warm-up period.”

This warm-up period is analogous to having a setup time in manufacturing setting

and eases the construction of feasible datasets.

Each geography is solved for four different inter-mill need times, three, four,

five, and 10 minutes, for a total of 480 loads. These inter-mill need times reflect

the range of values that might be encountered. For each instance and inter-mill need

time combination, we also solve for the number of trucks in the range (lower bound to

upper bound) as calculated in Section 2.5.1. Altogether, we generate 204 instances.

2.5.3 Experiments

In this chapter, we seek to address three questions. First, what is the com-

putational value of the proposed valid inequalities and initial solution heuristic in

finding optimal solutions in reasonable computation times? Two, what is the value

of coordinating vehicles across fronts rather than assigning vehicles to specific fronts

for the entire horizon? Third, what is the value of allowing variable harvest rates?

We address the first question by running our datasets using the initial model.

We then add the valid inequalities and finally combine the valid inequalities with the

initial feasible solution. We note that we tried various subsets of the valid inequalities,

but were able to achieve provably optimal solutions in reasonable runtime only by

using the entire set. The results of these experiments are discussed in Section 2.6.1.
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Our second question is motivated by our review of the literature. We found

that, in sugarcane harvesting and transportation operations, one common practice

was to assign the trucks to a single front for the entire horizon. The practice arises

particularly in countries in which the industry is not vertically integrated. In such

countries, the growers are responsible for the transport of cane to the mill, and conse-

quently growers employ a dedicated set of vehicles. In Brazil and as modeled in this

chapter, however, the high level of vertical integration allows the coordination across

the fronts. While coordination can reduce the number of trucks, separability de-

creases the managerial complexity of the operation. The results of these experiments

are presented in Section 2.6.2.

Our third question is motivated by the knowledge, that in practice, harvesters

are run at approximately 70% of their capacity. As noted previously, this extra

capacity is used as reactive capacity, but on average this reactive capacity is unused.

Thus, on average, the capacity cushion could also be used facilitate coordination, as

we have modeled in this chapter. However, there is a managerial challenge to such

coordination, particularly when decisions are being made without automated decision

support.

To assess the value of varying harvest rates to reduce cut-to-crush time, we

consider a case in which harvest rates are fixed. We create fixed harvest rates by

setting the harvest time at each front to the average harvest time required to meet

each front’s quota of loads. This choice of harvest rates causes infeasibility in most

instances. We overcome this issue by increasing the warm-up period. To determine
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this warm-up period, we iterated through warm-up times seeking the lowest warm-up

time that achieved feasibility. We did not consider the cases where only a subset of

fronts’ warm-up time is increased. Consequently, the average wait time that we report

for the fixed harvest rates is using the minimum warm-up period needed to meet all

the mill needs. The results of these experiments are presented in Section 2.6.3.

2.6 Computational Results

This section presents the results of our computational experiments. We first

demonstrate the value of our valid inequalities and the use of an initial feasible so-

lution. We then explore the cost of the managerially attractive separable solution.

Finally, we explore the value of variable harvest rates.

The math programs are solved using GUROBI OPTIMIZER 5.1. The exper-

iments were performed on a 3.40 GHz Intel Core i7-3770 CPU running the Ubuntu

12.04 operating system. For all of the reported results, we implement the lifting

heuristic described in Section 2.4.3 and Gurobi’s relaxation-induced-neighborhood-

search routine, called RINS. The lifting heuristic was implemented in C++ and com-

munication with Gurobi was achieved through Gurobi’s C++ Interface. In our initial

experiments, these heuristics alone did not improve the performance of branch-and-

bound, but proved valuable in proving optimality once the valid inequalities of Sec-

tion 2.4.1 and the initial solution of Section 2.4.2 were implemented. The heuristics

are run on all relaxed solutions for which 5% or fewer of the binary variables are frac-

tional. The 5% value represents a compromise between the runtime of the heuristic
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and their value in reducing overall runtime. Branching was set to give priority to the

front assignments or y variables. All runs were terminated when the optimality gap

was 1% or less.

2.6.1 Algorithmic Performance

Tables 2.1 through 2.4 present the results of the experiments testing the value

of the valid inequalities and the initial feasible solution. As noted previously, without

the valid inequalities, the instances rarely found a feasible solution and never return

an optimal solution, even with significant runtime. Thus, the tables report the com-

putation times for runs with just the valid inequalities and then runs with both the

valid inequalities and an initial feasible solution. We label these computation times as

“VI” and “Both,” respectively. For each instance, the table also reports the average

wait time per load. We also report the runtimes for each instance. In almost all cases,

we were able to prove optimality with reasonable runtimes. Instances marked with

“*” are instances for which we could not prove optimality even with 10,000 seconds

of runtime. In those cases, the reported result is the best found feasible solution with

the integer gap reported in the brackets after 1,000 seconds of runtime.

Finally, for some instances, such as instance 5a with 24 trucks, we do not report

any values. In these cases, the reported number of trucks is the number of trucks that

achieves the lower bound on the number of trucks for the instance. However, even

after 10,000 seconds of runtime, we were unable to find a feasible solution for such

instances. Given that the lower bound presented in Section 2.5.1 does not guarantee
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feasibility, we believe that it is likely that the lower bound is infeasible in these

instances, but we were also unable to prove infeasbility. We mark these instances

with “–”.

The results in the tables demonstrate that valid inequalities alone are almost

always able to achieve optimal solutions. In only ten cases out of 204 did the solver

return a solution without being able to prove optimally in 10,000 seconds. Only four

instances require more than 1,000 seconds to prove optimality.

In most cases, the addition of the initial feasible solution has a positive impact

on runtimes. Using results for the instances with an inter-mill need time of 3, the

initial feasible solution improves runtime by an average of almost 17% for the instances

proved to optimality. We are also able to prove optimality for three cases for which

it was not previously proven.

In terms of problem characteristics, run times increase in the number of fronts

but decrease in the number of trucks. This result is not surprising. The problem

size grows as the number of fronts grows, increasing runtime. However, the fronts are

not the challenge in determining feasibility. Feasibility is driven by the trucks and

their assignments. Thus, while the problem size also grows in the number of trucks,

the computation time associated with the growth in problem size is overcome by the

decrease that comes from the reduced challenge in finding feasible solutions and the

resulting increase in fathoming in the branch-and-bound algorithm.

Finally, from a managerial perspective, it is also valuable to consider the trade-

off between the number of trucks and the average wait of each load. As an example,
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Figure 2.2 presents a graph of the average waiting time per load and the number of

trucks. It is clear that most of the reduction in wait time comes from the addition

of one truck over the number required for feasibility. This relationship is evident

throughout the instances. Given the lower bound is analytically computable and

generally feasible, the result offers a potential “rule of thumb” for planning purposes.
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Table 2.1: Intermill-Needtime = 3, 480 loads

Geography # of trucks Average wait VI Both

4a 29 25.00 * (7.4 %) * (6%)
30 22.63 728 600
31 18.38 716 537
32 11.225 599 454
33 8.53 421 414
34 4.79 297 274
35 4.2 206 239
36 1.36 193 181
37 0.2 184 180

4b 30 34.2 * (4.5%) * (4%)
31 30.1 928 680
32 14.7 730 543
33 5.03 695 435
34 3.31 547 356
35 0.5375 539 281
36 0.2625 356 248
37 0.09 310 217

5a 24 – – –
25 23.05 846 827
26 19.15 784 741
27 13.31 516 497
28 9.375 425 408
29 5.13 394 342
30 0.10 341 325

5b 16 17.02 909 855
17 15.2 823 693
18 7.6 735 672
19 2.1 556 422
20 0.5 556 523
21 0.3 380 347

6a 17 14.41 768 711
18 9.78 832 645
19 4.25 564 518
20 1.20 510 454
21 0.425 398 386
22 0.25 319 366

6b 17 17.39 660 646
18 9.70 485 431
19 4.17 470 422
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Table 2.1 – Continued

Geography # of trucks Average wait VI Both

20 0.41 400 356
21 0 205 190

7a 16 8.1 * (5.6%) * (2.4%)
17 6.98 * (1.1%) 956
18 1.46 951 895
19 1.10 813 608
20 0.12 728 340
21 0.033 567 361
22 0 507 226

7b 26 – – –
27 6.27 946 811
28 4.13 909 840
29 1.56 871 729
30 0.67 723 626
31 0.31 701 597
32 0.17 664 501

8a 23 21.81 * (7.5%) * (2.6%)
24 12.3 992 889
25 9.22 831 714
26 6.19 982 648
27 4.27 765 682
28 1.29 722 561
29 0.54 710 513
30 0.44 557 340
31 0.18 522 296

8b 31 9.56 1536 1077
32 6.725 937 918
33 2.8 639 581
34 1.70 599 394
35 0.95 564 336
36 0.67 465 432
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Table 2.2: Intermill-Needtime = 4, 480 loads

Geography # of trucks Average wait VI Both

4a 22 27.39 * (5.3%) * (2.2%)
23 7.51 924 876
24 3.26 780 764
25 2.84 543 510
26 1.45 388 334
27 0.416 306 276
28 0.0625 289 254

4b 23 26.32 * (1.1%) 1030
24 10.9 952 873
25 8 928 715
26 5.07 837 680
27 0.996 782 490
28 0.375 650 406
29 0.083 468 362
30 0 355 227

5a 18 – – –
19 22.34 * (1.9%) * (1.7%)
20 16.28 471 401
21 8.125 418 380
22 4.08 391 358
23 0.13 184 179

5b 12 18.81 879 776
13 7.56 742 708
14 0 194 182

6a 13 17.70 878 637
14 11.28 707 581
15 1.25 462 497
16 0 256 201

6b 13 10.90 985 917
14 1.50 446 372
15 0.19 258 229
16 0 218 231

7a 13 5.99 * (3.2%) * (1.6%)
14 4.01 1103 905
15 2.64 845 706
16 1.27 615 543
17 0.96 638 566
18 0.85 517 421

7b 20 22.9 * (1.5%) 812
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Table 2.2 – Continued

Geography # of trucks Average wait VI Both

21 9.09 885 711
22 1.85 685 547
23 0.57 600 433
24 0.29 610 306

8a 17 25.05 * (2.1 %) * (1.8 %)
18 16.96 903 877
19 4.97 850 762
20 1.575 776 655
21 0.85 680 519
22 0.33 585 458
23 0.21 617 364

8b 21 30.86 * (4.7 %) * (3.8 %)
22 22.02 879 764
23 11.18 709 676
24 8.15 760 619
25 2.47 469 246
26 1.17 342 221
27 0.09 305 197
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Table 2.3: Intermill-Needtime = 5, 480 loads

Geography # of trucks Average wait VI Both

4a 17 28.44 970 879
18 14.92 575 617
19 8.89 538 512
20 4.95 421 418
21 0 272 259

4b 19 26.02 1811 1750
20 15.01 945 932
21 2.93 863 606
22 0.5875 717 596
23 0.35 532 356
24 0 547 301

5a 15 21.09 946 803
16 15.37 734 613
17 0 342 303

5b 9 – – –
10 10.89 818 713
11 0.47 602 510

6a 11 10.59 917 835
12 1.08 771 625
13 0.16 337 299
14 0.04 261 240

6b 10 26.01 963 872
11 17.15 876 774
12 8.68 677 531
13 0.22 668 594

7a 11 4.15 * (1.5%) * (1.2%)
12 2.21 630 512
13 0.575 587 369
14 0.125 557 290

7b 16 19.62 1708 1286
17 12.41 962 855
18 1.83 878 729
19 1.22 749 561
20 1.05 701 473
21 0.34 623 414

8a 13 19.87 1025 901
14 14.80 816 785
15 4.66 728 632
16 2.24 714 563
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Table 2.3 – Continued

Geography # of trucks Average wait VI Both

17 0.64 698 501
18 0.18 688 317

8b 17 12.66 1757 1491
18 9.56 932 859
19 5.39 888 702
20 1.67 867 623
21 1.01 607 434
22 0.2 556 406
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Table 2.4: Intermill-Needtime = 10, 480 loads

Geography # of trucks Average wait VI Both

4a 9 51.875 788 714
10 0.5 335 321
11 0 206 194

4b 9 54.8375 992 717
10 16.06 863 600
11 0.746 620 596
12 0.416 477 218

5a 8 17.37 833 621
9 0 247 202

5b 5 4.10 768 605
6 0 200 196

6a 6 7.51 451 319
7 0.67 298 284
8 0.32 290 264
9 0.16 244 231

6b 5 17.75 953 786
6 1.47 813 802
7 0.1 342 343

7a 5 7.03 * (6.4 %) * (2.1 %)
6 1.86 812 726
7 0.325 875 574
8 0 465 257

7b 10 10.35 706 634
11 2.6 517 369
12 0.02 408 321

8a 7 3.22 917 573
8 0 267 202

8b 9 9.56 856 632
10 3.7 800 665
11 0.48 711 533
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Figure 2.2: Relationship between Number of available trucks and average wait times
(4a- 4 mins)

2.6.2 Cost of a Separable Solution

Table 2.5 presents the results of the experiment to demonstrate the value

of coordination. For each geography and intermill need time, the table presents

the number of trucks needed to find a feasible separable solution, or a solution for

which the trucks serve only one front, and the number of trucks needed to find a

feasible solution when coordination across fronts is allowed. These columns are labeled

“Separable” and “Coordination,” respectively.

As the table shows, on average, when coordination is allowed, almost 27%

fewer vehicles are needed to achieve feasibility compared to the number needed to

achieve feasibility when requiring separability. This result is consistent regardless

of the number of fronts. However, the value of coordination increases as the time
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between mill needs increases. When the intermill need time is three, the average

difference in the number of trucks is 18.1%. At an intermill need time of 10, the

difference increases to 40.3%.
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Table 2.5: Number of trucks needed for separable solution

Geography InterMill Need Time Separable Coordination

4a 3 32 29
4 27 22
5 21 17
10 14 9

4b 3 34 30
4 26 23
5 23 19
10 13 9

5a 3 32 25
4 24 19
5 20 15
10 11 8

5b 3 20 16
4 17 12
5 13 10
10 10 5

6a 3 22 17
4 17 13
5 14 11
10 10 6

6b 3 21 17
4 17 13
5 15 11
10 9 5

7a 3 19 16
4 18 13
5 16 11
10 9 5

7b 3 33 27
4 25 20
5 22 16
10 16 10

8a 3 39 23
4 24 17
5 19 13
10 13 7

8b 3 38 31
4 29 21
5 23 17
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Table 2.5 Continued:

10 16 9

2.6.3 Value of Variable Harvest Rates

Table 2.6 presents the results of our experiments designed to demonstrate the

value of variable harvest rates. For each instance, geography and intermill need time,

we present the number of trucks required to achieve a feasible solution when harvest

rates are constant, called “Const Trucks.” We also presented the average wait time

per load associated with this number of trucks, called “Const Avg Wait.” Finally, in

Table 2.6 we present the number of trucks required to achieve a zero wait time using

the variable harvest rates, called “Var Trucks.”

As the table shows, allowing variable harvest rates leads to solutions that have

often considerably less wait time per load, almost 24 minutes on average, than the

constant harvest rate solutions. Further, the constant harvest rate solutions require

12% more trucks than the variable harvest rate case to pick up all of the loads at their

ready times. In only one case does the constant harvest rate case achieve feasibility

with fewer trucks than the number required to achieve no wait with variable harvest

rates.



51

Table 2.6: Number of trucks needed to pick up loads at ready times and the corre-
sponding average wait times

Geography InterMill Need Time Const Trucks Const Avg Wait Var Trucks

4a 3 39 43 37
4 31 19 28
5 24 26 21
10 13 21 11

4b 3 42 20 39
4 31 44 30
5 24 16 21
10 14 15 12

5a 3 34 64 30
4 25 38 23
5 20 26 17
10 11 45 9

5b 3 22 23 21
4 17 15 14
5 14 11 11
10 9 19 6

6a 3 24 9 22
4 19 9 16
5 14 5 14
10 8 18 9

6b 3 23 13 21
4 18 17 16
5 15 23 13
10 9 29 7

7a 3 24 28 22
4 19 13 18
5 16 20 14
10 8 33 8

7b 3 34 10 32
4 26 17 24
5 22 25 21
10 13 35 12

8a 3 34 20 31
4 25 18 23
5 20 15 18
10 12 25 8

8b 3 43 36 36
4 33 29 27
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Table 2.6 Continued:

5 25 23 22
10 13 15 11

2.7 Conclusion

In this chapter, we introduce the sugarcane harvest logistics problem for Brazil.

We introduce valid inequalities and a heuristic to generate a feasible initial solution.

Our results show that the presented valid inequalities and heuristic for finding feasible

solutions provide significant computational advantages. We also introduce a lifting

heuristic that was advantageous in proving optimality. We further demonstrate that

coordinating the trucks across fronts offers the opportunity to dramatically reduce the

number of vehicles needed to serve the mills. Finally, our results show that variable

harvest rates reduce cut-to-crush times while also reducing the number of vehicles

needed to serve the loads.

There are two important directions for future work. The first direction builds

on the work of Salassi et al. [2009b] that explores a sugarcane harvest logistics problem

in the United States. While there are key differences between Brazilian and US-based

operations, most notably the fact that harvests in Brazil run 24 hours a day, the US

operations have many more farms involved in a daily harvest operation. Even with

the enhancements introduced in this chapter, the size of the US problem requires

additional research.

Second, the problem introduced here is deterministic. Not surprisingly, a har-

vest operation has a number of uncertainties. Importantly, there are isolated weather
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events and breakdowns that require attention. Yet, this research is an important

foundation for the stochastic case. For one, the research presented here can be used

to solve for perfect information solutions for the stochastic case. These solutions

can be helpful for evaluating heuristic approaches. Second, the methods here can be

valuable in a rolling horizon procedure. When one considers a horizon of four to six

hours rather than 24 as we have here, the proposed solution method runs in a few

seconds and can thus be amenable for use in real time.
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CHAPTER 3
SUGARCANE HARVEST LOGISTICS IN THE US

3.1 Introduction

The sugarcane industry in the United States produces an annual sugarcane

crop with an estimated economic value of over $5 billion annually. This chapter fo-

cuses more specifically on the sugarcane industry within the State of Louisiana for two

reasons: first, Louisiana accounts for approximately 50% of the cane sugar production

in the US with an annual estimated economic value of $2.7 billion, and second, data

for sugarcane production in Louisiana is publicly available since production is spread

throughout 475 (mostly) family farms on approximately 440,000 acres [United States

Department of Agriculture, Economic Research Service, 2010]. In contrast, sugarcane

production in other states is less significant economically and is sometimes controlled

by a single private owner, making the availability of data problematic.

In recent years, US sugar prices have fallen, due largely to the North American

Free Trade Agreement (NAFTA) which allows Mexico to export unlimited amounts

of sugar to the United States without tariff: in the first 9 months of 2013, Mexican

sugar exports to the US total is approximately 1.9 million metric tons [Polopolus

et al., 2010, United States Department of Agriculture, Economic Research Service,

2010]. As a result of these imports, US sugar prices have fallen below government

support levels, but production costs have actually increased at the same time due to

increasing costs of fuel used for harvesting and transporting the sugarcane to mills
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[Salassi and Deliberto, 2012].

Salassi and Barker [2008] estimate that the total harvest cost per acre is

$241.32 per acre (variable cost is $144.54 per acre), and for every additional minute

harvesting resources are forced to wait for the truck returning from the mill, the vari-

able cost increases by approximately $1.30 using 2007 harvest fuel and labor prices

[Barker, 2007]. Because mills pay for the cost of hauling the cane from the farms,

growers thus have an incentive to use enough trucks to pick up all the loads as soon

as they become ready. The situation is further complicated by the fact that harvest

operations among farms are often uncoordinated. The result is congestion at the mill,

and a vicious cycle that leads growers to use even more trucks. To reduce the costs

associated with congestion at the mill, the mill operators have two choices. First,

they can increase the unloading capacity at the mill. Second, they can seek to coor-

dinate the harvests. Salassi and Barker [2008] and Salassi et al. [2009a] suggest that

coordination can be achieved simply by coordinating the start times of the harvests

so truck arrivals to the mill are evenly spread throughout the day. By allowing that

farms can continue to harvest at a constant rate and that loads are picked up at their

ready times, the proposed solution structure minimally disrupts current practices in

the operations while offering the promise of reducing the number of trucks. In this

chapter, we generalize Salassi and Barker [2008] and Salassi et al. [2009a] and de-

velop a model that can solve real-sized problems without making the aggregating and

discretization assumptions required for tractability by Salassi and Barker [2008] and

Salassi et al. [2009a]. As a result, we present a model that more closely matches the
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operational environment of sugarcane harvest logistics in Louisiana and reduces the

number of trucks required to pick up the loads. Like Salassi and Barker [2008] and

Salassi et al. [2009a], we employ an approach that first determines the start times for

the harvest at each farm supplying the mill and then determine the number of trucks

required.

This chapter makes several contributions to the literature. First, taking ad-

vantage of ideas from the modeling of piecewise linear functions, we develop a model

that overcomes the limitations of existing models for the problem such that realistic

problem sizes can be solved by modern integer program solvers. Relatedly, this model

eliminates the need to discretize problem parameters as is required in previous work

and allows us to penalize not only having too many arrivals to a time block but also

too few. Second, via computational experiments, we demonstrate that forcing the

loads to be spread as evenly as possible through out the day has the desired effect of

reducing the number of trucks needed to serve the loads.

Section 3.2 of the paper discusses previous work on sugarcane logistics and

importantly details the contributions of Salassi and Barker [2008] and Salassi et al.

[2009a]. Section 3.3 presents our model. In section 3.4, we present the results of

two studies using our model. The first study uses a set of benchmark problems

developed by Salassi and Barker [2008] and Salassi et al. [2009a] and compares the

effectiveness of solutions developed by our approach to those developed by Salassi and

Barker [2008] and Salassi et al. [2009a] for the same problems. Since these benchmark

problems do not correspond to any particular real instance, we also present a second
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study in which we use publicly available data on the geographical locations of each

of Louisiana’s 456 sugarcane farms and 11 sugarcane mills as well as their production

and processing rates to construct a set of 11 sugarcane logistics problems (1 for each

of the 11 mills in Louisiana) based upon real data. We shall show that our modeling

approach improves upon existing approaches in the literature and can easily solve

realistically sized problems. In section 3.5.2, we develop managerial insights and

section 3.6 presents our conclusions.

3.2 Literature Review

Sugarcane is an important agricultural commodity grown around the world.

A key challenge in studying the logistics of sugarcane harvests is that almost ev-

ery sugarcane producing country has a different infrastructure and differing levels of

vertical integration. Hansen et al. [2002], Lejars et al. [2008], Le Gal et al. [2009],

and McDonald et al. [2008] explore supply chain issues in the South African sugar-

cane industry. Supsomboon and Yosnual [2004] and Prichanont et al. [2005] study

uncertainty arising in the Thai sugarcane industry. Diaz and Perez [2000], Lopez Mi-

lan et al. [2006], and Lopez-Milan and Pla-Aragones [2013] explore the multi-model

sugarcane logistics in Cuba. Hildebrand [2002], Higgins and Postma [2004], Higgins

and Davies [2005], Higgins and Laredo [2006], and Higgins [2006] explore sugarcane

supply logistics in Australia. Lamsal et al. [2013a] study the coordination of harvest

logistics in Brazil and provide a detailed review of harvest logistics around the world.

As noted previously, the most closely related to the work in this chapter is
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the work by Salassi and Barker [2008] and Salassi et al. [2009a]. With the intent

of reducing congestion at the mill and the associated increase in trucks, Salassi and

Barker [2008] and Salassi et al. [2009a] suggest coordinating harvest start times in

the fields so that the number of deliveries to the mill are evenly spread over the

mill’s delivery time window. In concept, smoothing the arrivals to the mill reduces

the congestion at the mill, and fewer trucks are needed to pick up the loads at their

respective ready times. In both Salassi and Barker [2008] and Salassi et al. [2009a],

the daylight hours, during which harvesting takes place, are divided into thirteen

hourly blocks. The mill is assumed to have the same unloading capacity during each

block.

To maintain tractability of the real-sized problem, Salassi and Barker [2008]

and Salassi et al. [2009a] make modeling choices that are more restrictive than the

actual operational constraints. First, they assume that the travel time between the

farms and the mill are in multiples of 15 minutes. Specifically, in their model, they

have some farms 15 minutes away from the mill, some farms 30 minutes away for the

mill and others 45 minutes away from the mill. They also assume that the harvest

time for every load in every farm is exactly 45 minutes. Finally, they assume that

the harvesting at each farm can start only on the hour, 15 minutes past the hour, 30

minutes past the hour, and 45 minutes past the hour.

It is also worth noting Higgins [2006] who studies the problem of truck con-

gestion at an Australian sugar mill. His objective is to minimize the sum of mill’s

idle time and the trucks’ queue time. The main difference with the problem studied
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in this chapter is that, in the Australian case, the cane filled trailers can wait for the

trucks returning from the mill at the fields. We also note that Higgins [2006] explic-

itly models the queue at the mill. Unfortunately, this modeling approach impacts the

tractability of the model. Given that we restrict loads to being picked up at their

ready-times in the field, as discussed subsequently, we do not explicitly model the

queue.

3.3 Model Formulation

In this section, we present a formal model of the problem. Our ultimate goal

is to reduce the number of trucks needed to pick up loads at the times that they

are ready. However, directly modeling to minimize the number of trucks leads to

an intractable problem. As a result, we seek an alternative objective that minimizes

congestion at the mill and thus should have the effect of minimizing the number of

trucks. That is, we seek to spread the load arrivals among the sections in the partition

as per the mill’s predefined capacity.

The first step of the model is that we divide the daylight hours into blocks

of time. A block can be of arbitrary length. For each of these blocks, the mill

has a predefined unloading capacity, expressed as the number of loads that the mill

can process in the block of time. The unloading capacity need not be the same for

each block, reflecting potentially changing capacity throughout the day. We call this

partition of the day P .

Suppose we have the partition P of the delivery window. As shown in Fig-
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ure 3.1, a partition P , with n blocks can be specified by the set of n + 1 points.

Specifically, {ak}, for k = 0, 1, · · ·n. We enforce a0 < a1 < a2 · · · < an. The start

time of the delivery window at the mill is a0 and an is the end time of the delivery

window.

For each block k, the time between ak−1 and ak, we have a predefined unloading

capacity of Nk loads. We solve for a harvest schedule that matches load arrivals with

the mill’s capacity in each block and penalizes any deviation from the mill’s desired

unloading capacity in each block.

a0 a1 a2 a3 a4

N0 N1 N2 N3 NnNn−1

an−2 an−1 an

Figure 3.1: Partition of the delivery window and the unloading capacity

Let xij be the arrival time at the mill of ith farm’s jth load. Let yi be the time

when harvesting starts at farm i, and hi be the time it takes to harvest a load at farm

i. Let the travel time between farm i and the mill be ti, and Qi, the daily load quota

of the farm i in F . The arrival time of a load to the mill depends on the harvest

start time for the originating farm, the harvest rate at that farm, and the travel time

between the farm and the mill. Mathematically,

xij = yi + j · hi + ti ∀(i, j) | i ∈ F, j ∈ {1 . . . Qi}
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To distribute the loads among blocks, we need to count the number of load

arrivals in each of these time blocks. A straightforward approach is to introduce

binary variables bkij for k = 1 . . . n, that indicate whether or not load j from field i

arrives between ak−1 and ak. With M as a large number and using the constraints

ak−1 ≤ xij + (1− bkij)×M ∀(i, j)∀i ∈ F, j ∈ {1 . . . Qi}, k ∈ 1...n (3.1)

xij + (1− bkij)× (−M) ≤ ak ∀(i, j)∀i ∈ F, j ∈ {1 . . . Qi}, k ∈ 1...n (3.2)

n∑
k=1

bkij = 1 ∀(i, j)∀i ∈ F, j ∈ {1 . . . Qi}, (3.3)

we can determine in which block each arrival occurs.

While constraints (3.1) to (3.3) may be straightforward, they lead to a formu-

lation with a poor relaxation. Consequently, we propose an alternative that expresses

the arrival time xij as a convex combination of the beginning and the end time of the

section k in which the arrival time lies. Specifically, xij in section k can be expressed

as:

xij = λk−1
ij × ak−1 + λkij × ak

λk−1
ij + λkij = 1

0 ≤ λk−1
ij ≤ 1

0 ≤ λkij ≤ 1.
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More generally, we can write

xij =
n∑
k=1

λkij × ak,
n∑
k=1

λkij = 1, λkij ∈ R+ ∀i ∈ F, j ∈ {1 . . . Qi},

if for given i and j, we force at most two λkij variables among λkij variables, k =

0, 1, · · ·n, to be positive. If λkij and λlij are positive, then k = l− 1 or k = l+ 1. This

situation can be modeled using binary variables bkij for k = 1 . . . n, (where bkij = 1 if

ak−1 ≤ xij ≤ ak and bkij = 0, otherwise), and the following constraints:

λ0
ij ≤ b1ij ∀(i, j)∀i ∈ F, j ∈ {1 . . . Qi}

λkij ≤ bk−1
ij + bkij ∀k ∈ 1, · · ·n− 1, i ∈ F, j ∈ {1 . . . Qi}

λnij ≤ bnij ∀(i, j)∀i ∈ F, j ∈ {1 . . . Qi}
n∑
k=1

bkij = 1 ∀(i, j)∀i ∈ F, j ∈ {1 . . . Qi}.

To account for the situation when not all the required loads can be delivered or extra

loads must be delivered during any section in the partition, we define slack variables,

s+
k and s−k for k = 1 . . . n. Then,

∑
i∈F

∑
j∈1···ni

bkij + s+
k − s

−
k = Nk ∀k ∈ 1...n.
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Now, we can express a complete math program as:

min
∑
k∈1···n

(s+
k + s−k )

xij = yi + j · hi + ti ∀(i, j) | i ∈ F, j ∈ {1 . . . Qi} (3.4)

xij =
n∑
k=1

λkij × ak ∀i ∈ F, j ∈ {1 . . . Qi} (3.5)

n∑
k=1

λkij = 1, ∀i ∈ F, j ∈ {1 . . . Qi} (3.6)

λ0
ij ≤ b1ij ∀(i, j)∀i ∈ F, j ∈ {1 . . . Qi} (3.7)

λkij ≤ bk−1
ij + bkij ∀k ∈ 1, · · ·n− 1, i ∈ F, j ∈ {1 . . . Qi} (3.8)

λnij ≤ bnij ∀(i, j)∀i ∈ F, j ∈ {1 . . . Qi} (3.9)

n∑
k=1

bkij = 1 ∀(i, j)∀i ∈ F, j ∈ {1 . . . Qi} (3.10)

∑
i∈F

∑
j∈1···ni

bkij + s+
k − s

−
k = Nk ∀k ∈ 1...n (3.11)

bkij ∈ {0, 1} ∀(i, j)∀i ∈ F, j ∈ {1 . . . Qi}, k ∈ 1...n (3.12)

λkij ∈ [0, 1] ∀(i, j)∀i ∈ F, j ∈ {1 . . . Qi}, k ∈ 1...n. (3.13)

The objective function penalizes both positive and negative deviation from the mill’s

unloading capacity, but this does not always have to be the case. We can choose to just

penalize the number of arrivals that are above the mill’s capacity in the given period.

Such a scenario might be appropriate when adding one extra arrival significantly

affects the average turn around time for trucks. We can also choose to penalize just

the deviation on the lower side. This might be appropriate when we want to achieve

high utilization for the resources at the mill yard. We can also choose to penalize
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deviations in one direction more heavily than the deviation on the other side. We

could also give more weight to the deviations in one period than the deviations in

other periods.

3.4 Comparison with Results in the Literature

In this section, we compare our modeling approach with that proposed by by

Salassi and Barker [2008] and Salassi et al. [2009a]. Table 3.1 summarizes the two

instances from Salassi and Barker [2008] and Salassi et al. [2009a]. In both instances,

the harvest time for a load for each grower is set at 45 minutes. In the first instance,

there are 45 growers and 360 loads, and in the second scenario, there are 48 growers

and 432 loads. In both instances, harvesting at the farms can start as early as 6:00

a.m. and loads arrive to the mill between 7:00 a.m. and 8:00 p.m. The hourly

limit for the number of arrivals is set at 30 and 36, respectively, for the two instances.

Salassi and Barker [2008] and Salassi et al. [2009a] only penalize the arrivals above the

limit. We will refer these two instances collectively as “Salassi instances.” Because

the Salassi instances include groups of identical fields, we add symmetry breaking

constraints to the model when running these instances.

To calculate the number of trucks needed, Salassi and Barker [2008] and Salassi

et al. [2009a] do not model the queue at the mill. In their models, a truck becomes

available for another dispatch one hour after the arrival to the mill. This is true

regardless of how many trucks arrive at the mill in the given hour. We propose an

alternative that explicitly models the queueing at the mill in determining the number
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of trucks. First, we assume a FIFO queue at the mill and that growers start harvesting

at the optimal start times given by the model. Then, we assign the trucks to pick

up the loads at their respective ready times. The trucks pick up the cane, travel to

the mill, wait in the queue, unload, and become available for next dispatch when the

cane is unloaded (unloading time of two minutes per load for the first instance and

and 1.66 minutes per load for the second instance). Because Salassi and Barker [2008]

and Salassi et al. [2009a] set their maximum loads per hour at 30 and 36 for the two

instances, we set unloading times of two minutes and 1.66 minutes, respectively.

In this section and the next, given a solution to the math program, we can

compute the optimal number of trucks needed to pick up the loads at their ready

times at the growers by using a slightly modified version of an algorithm presented in

Lamsal et al. [2013a]. The truck assignment algorithm is coded in Python and runs

instantaneously on the subsequently described hardware.

In this section and the next, all computational results for instances of the pro-

posed math program are obtained using GUROBI OPTIMIZER 5.6. The experiments

were performed on a 2.3 GHz Intel Core i7 CPU running OS X 10.9. Communication

with Gurobi was achieved through Gurobi’s C++ interface.

In Table 3.2, we report the objective value for the math program and the

number of trucks needed to pick up all the loads at their respective ready times with

a FIFO queue at the mill. Using the approach, we find the number of trucks needed

are 32 and 43 for our solutions. Evaluating the solutions in Salassi and Barker [2008]

in a similar manner, that is if we model the queue at the mill and use the optimal truck
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Table 3.1: Summary of Salassi instances

Group A Group B Group C Group D Group E Group F
Instance 1
Grower numbers 24 12 3 2 3 1
Daily loads 6 12 6 12 6 12
Total daily loads 144 144 18 24 18 12
Travel time 15 15 30 30 45 45
to the mill (mins)
Instance 2
Grower numbers 12 12 8 8 4 4
Daily loads 6 12 6 12 6 12
Total daily loads 72 144 48 96 24 48
Travel time 15 15 30 30 45 45
to the mill (mins)

assignments according to the optimal algorithm, the solutions found by Salassi and

Barker [2008] need 53 and 72 trucks for the first and second instances, respectively.

In an attempt to spread the loads equally across the hours of the day, for the first

Table 3.2: Solution comparison for Salassi instances

Objective (Salassi) Trucks(Salassi) Objective Trucks
Scenerio 1 9 53 0 32
Scenerio 2 9 72 0 43

instance, we also consider an the hourly limit of 27 between 7:00 a.m. and 11:00 a.m.

and the hourly limit of 28 between 11:00 a.m. and 8:00 p.m. Again, we return an

objective value of zero for the math program. Further, as a result, we are able to

spread the loads across the day. Figure 3.2 shows the number of loads per hourly

block for our solution. As is shown Figure 3.3, the solution given in Salassi and Barker

[2008] for the first instance does not spread the loads as evenly across the day. For

example, there are 39 arrivals between 3:00 p.m. and 4:00 p.m. and nine for the last
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hour of the day. While it is only one instance, it suggests that there is an advantage

to spreading the loads as evenly through the day as possible. We will revisit this

question in the next section.

6:00 7:00 8:00 9:00 10:0011:0012:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00

27 27 27 27 28 28 28 28 28 28 28 28 28

Figure 3.2: Our Solution

6:00 7:00 8:00 9:00 10:0011:0012:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00

23 30 29 30 30 30 29 30 39 30 30 21 9

Figure 3.3: Salassi and Barker [2008] Solution

Again considering the first instance and the case where we constrain the load

limit in each block to spread the loads across the day, Figure 3.4 compares the time

spent by each load arrival at the mill yard in our solution and the solution in Salassi

and Barker [2008]. In Figure 3.5, we plot the number of trucks at the mill yard for

our solution and for the solution in Salassi and Barker [2008]. In these comparisons

we make the truck assignments for both our and Salassi and Barker [2008]’s solution

by assuming a FIFO queue with unloading time of two minutes per load at the mill.

In Figure 3.5, each line on the graph is a moving moving average of the previous 10

minutes. It is noticeable that the waiting time for each load is significantly shorter
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in our solution despite of having the same unloading time. This fact is also evident

by comparing the number of trucks at the mill yard throughout the day. With our

solution, the number of trucks in the queue at the mill is much more consistent

through out the day.

Figure 3.4: Comparison of time spent at the mill by each load

3.5 Computational Experiments

In this section, we present a series of experiments to test both the computa-

tional limits our our modeling approach and the value of spreading the loads evenly

throughout the day. For these tests, we develop a class of instances using publicly
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Figure 3.5: Comparison of number of trucks at the mill yard

available mill and farm data.

3.5.1 Datasets

There are 11 mills and approximately 475 farms in Louisiana. United States

Department of Agriculture, Economic Research Service [2010] and League [2013] pro-

vide zip-code level addresses for 456 farms and exact addresses of the 11 mills. We

also have the county level data on sizes of the farms that puts them into buckets of

various sizes [United States Department of Agriculture, Economic Research Service,

2010]. First, we calculate the distances between the farms and the mills. Then, we

randomly assign the sizes for the individual farms according to the distribution of
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farm sizes in the respective counties. We then assume that farms that harvest more

than 750 acres of cane a year have two combine harvesters and the ones that harvest

less than 750 acres have one combine harvester. This harvester distribution is mo-

tivated by the fact Salassi and Barker [2008] found the average number of combines

to be 1.5. Each combine harvester takes approximately 45 minutes to fill a load. So,

the time to harvest a load in the farm with one harvester is 45 minutes plus a small

random component (chosen from uniform random between negative 5 and positive 5)

and the time to harvest a load in the farm with two harvesters is 22.5 minutes plus

a small random component (chosen from uniform random between negative 2.5 and

positive 2.5) [Barker, 2007, Salassi and Barker, 2008]. In total, we have 456 farms

in 85 zip codes with a daily capacity of 4044 loads. The number of farms in the

respective counties and the location of the mills are shown in Figure 3.6. Each dot

represents the location of a mill and the number inside a county is the number of

farms in the county.

To create mill assignments for each farm, we solve a capacitated assignment

problem. The objective is to minimize the sum of the distances between the farms and

the mill that serves the respective farms. We assume the mills are of approximately

the same size, each receiving between 365 and 370 loads. Table 3.3 provides the

summary of the 11 farm scenarios. The first mill is served by 55 farms and has a

daily quota of 370 loads and so forth.
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Figure 3.6: Distribution of farms and the mills in Louisiana

3.5.2 Computational Results

In this section, we present the results of our computational experiments with

the newly created datasets. In our first test, presented in section 3.5.2.1, we demon-

strate that simply controlling the start of the harvest time can have a remarkable

effect in reducing the number of trucks needed to serve the loads at their ready times.

In section 3.5.2.2, we explore the impact on solution quality when we reduce the size

of the time blocks from an hour to half an hour to 15 minutes. This experiment also

demonstrates the limits of the proposed math programming formulation.
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Table 3.3: Distribution of farms and total loads

Mill Area # of farms # of loads
1 55 370
2 66 367
3 29 369
4 39 365
5 23 365
6 69 370
7 28 370
8 53 370
9 27 365
10 26 365
11 41 368

3.5.2.1 Changing the Load Arrival Limits

Salassi and Barker [2008] and Salassi et al. [2009a] suggested that mill oper-

ators could coordinate harvests simply by controlling the starting times of harvests

at the farms that supply the mill. In this section, we demonstrate this value of this

coordination. We consider hourly load limits of 29, 30, 31, 32, 35, and 40. A limit

of 29 represents the smallest integer limit that is equal across all hours and offers

the chance of a solution that does not violate the load limit. Increasing the limit

mimics an increasingly uncoordinated solution. Table 3.4 presents the number of

trucks needed to pick up all the loads at their ready times corresponding to optimal

solutions of the math program for each of the 11 instances.

The results clearly show a steady increase in the number of vehicles required

as the solution becomes less coordinated. The solution also demonstrates how simply

controlling the start of harvests at the farms can have a remarkable impact on the

number of trucks.
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Table 3.4: Relationship between load arrival limits and number of trucks needed

Arrival Limits
Mill Area 29 loads 30 loads 31 loads 32 loads 35 loads 40 loads
1 32 39 40 45 48 59
2 36 40 41 43 51 64
3 31 31 37 39 42 57
4 34 37 39 40 54 66
5 35 40 36 49 47 86
6 48 53 55 55 61 72
7 30 32 34 34 50 68
8 35 39 41 43 46 47
9 38 41 40 45 49 79
10 28 32 33 35 41 70
11 33 33 36 40 48 58

3.5.2.2 Size of Time Blocks

In this section, we seek to demonstrate that reducing the size of the time

blocks considered can lead to improved solutions in terms of the number of trucks

required. To make a fair comparison among the solutions using various time blocks,

we want to have the total number of loads be divisible by the number of one hour,

half an hour, and 15 minute time blocks. For our instances, we have 13, 26 and 52

blocks with one hour, half an hour, and 15 minute blocks. The first number greater

370 such that we have a whole number as target in each block is 416. With the total

loads of 416, we have an arrival limit of 32 loads, 16 loads and 8 loads, respectively,

for one hour, 30 minutes and 15 minute blocks. To make a scenario with 416 loads,

we take scenario 1, which has 55 farms and 370 total loads, and add one load each

to the first 46 growers. Scenario 2 has 29 farms and 369 loads. So, we add two loads

each to the first 18 farms and one load each to the remaining 11 farms. We proceed

in a similar fashion for the remaining nine instances, thus creating 11 scenarios.
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We solve these 11 scenarios for one hour, half an hour, and 15 minute blocks.

To find the number of trucks, we assume a FIFO queue at the mill and that growers

start harvesting at the optimal start times given by the model. Then, we assign the

trucks to pick up the loads at their respective ready times. The trucks pick up the

cane, travel to the mill, wait in the queue, unload and become available for next

dispatch when the can is unloaded. We assume the unloading time for each load is

1.875 minutes, because the arrival window is 780 minutes and each instance has 416

loads.

In Table 3.5, we report the solution time for one hour, half hour, and 15 minute

blocks for the 11 instances with 416 loads and the number of trucks needed to meet

the ready times for the corresponding best solution. The instances marked with “*”

are not solved to optimality, and we present the number of trucks or the best solution

obtained at 3600 seconds. All but one of the one hour block instances were solved to

optimality. The solutions obtained using smaller time blocks better spread the load

across the arrival window which in turn reduces the number of trucks needed to haul

all the loads. This seems to be consistent even when the solutions obtained using

smaller time blocks are not optimal.

To better understand the advantage of the narrower time blocks, in Table 3.6,

we describe Scenario 1’s one hour, half hour, and 15 minute block solutions. We

divide the arrivals in each solution into 52 different 15-minute bins. All but the last

bin (7:45 p.m. - 8:00 p.m.) is half-open. In other words, in counting the total arrivals

in the first bin (7:00 a.m. - 7:15 a.m.), we assume the bin is the interval [7:00 a.m. -
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7:15 a.m.) and thus include arrivals 7:00 a.m., but exclude the arrivals at 7:15 a.m.

The last bin, however, is [7:45 p.m. - 8:00 p.m.], which includes 8:00 p.m. This

differs from how time blocks are defined in the math program above. For the math

program with 15 minute blocks, the arrival at 7:15 a.m. can be counted in the first

block (7:00 a.m. -7:15 a.m.) or the second block (7:15- 7:30 a.m.). More, specifically,

if we have two arrivals at 7:15, one arrival could be counted towards the first block

and the second arrival could be counted towards the second block. Not including

the half-open intervals in the model maintains a continuous solution space, reducing

computation time. We make the change in the presentation in Table 3.6 to simplify

the presentation of the table. Because of this modeling choice, in the first 4 bins,

(7:00 a.m. - 7:15 a.m., 7:15 a.m. - 7:30 a.m., 7:30 a.m. - 7:45 a.m., 7:45 a.m. - 8:00

a.m.), we have only 23 arrivals (5+3+8+7), even though the instance with hour long

blocks is solved to an objective of zero. In the optimal solution, there are nine arrivals

at 8:00 a.m. that the math program counts for the block (7:00 a.m - 8:00 a.m).

Analysis of the arrivals in each of the 15-minutes bins offers a clue as to why

the number of trucks decreases for instances run with the smaller 15-minute blocks.

Having divided the arrivals for each solution into bins, we calculate the standard

deviation of arrivals across the 52 bins for the one hour, half hour and 15 minute

blocks, respectively, obtaining 3.02, 2.03 and 1.20, respectively. As queueing analysis

predicts, the queueing at the mill increases as the variability in arrivals increases.

Because of the increased queueing, more trucks are then required to serve the loads

at their ready times.
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Table 3.5: Relationship between size of time blocks and number of trucks needed

# Trucks needed
Unloading time

Scenario Time blocks Solution time (secs) = 1.875 min/load
1 Hour blocks 88 48

30 minutes blocks 1922 37
15 minutess blocks * 34

2 Hour blocks 272 41
30 minutes blocks 2514 33
15 minutess blocks * 32

3 Hour blocks 989 33
30 minutes blocks * 31
15 minutess blocks * 33

4 Hour blocks 52 40
30 minutes blocks * 39
15 minutess blocks * 38

5 Hour blocks * 58
30 minutes blocks * 52
15 minutess blocks * 51

6 Hour blocks 118 52
30 minutes blocks 3279 50
15 minutess blocks * 48

7 Hour blocks 237 35
30 minutes blocks * 35
15 minutess blocks * 34

8 Hour blocks 94 43
30 minutes blocks * 37
15 minutess blocks * 31

9 Hour blocks 1473 42
30 minutes blocks * 41
15 minutess blocks * 38

10 Hour blocks 509 34
30 minutes blocks * 34
15 minutess blocks * 32

11 Hour blocks 361 41
30 minutes blocks 3410 30
15 minutess blocks * 32



77

Table 3.6: Break-down of arrivals

Time Hour 30 Minutes 15 Minutes
7:00 a.m. - 7:15 a.m. 5 7 6
7:15 a.m. - 7:30 a.m. 3 5 7
7:30 a.m. - 7:45 a.m. 8 10 8
7:45 a.m. - 8:00 a.m. 7 7 7
8:00 a.m. - 8:15 a.m. 10 8 9
8:15 a.m. - 8:30 a.m. 8 9 7
8:30 a.m. - 8:45 a.m. 13 9 10
8:45 a.m. - 9:00 a.m. 5 9 7
9:00 a.m. - 9:15 a.m. 8 8 8
9:15 a.m. - 9:30 a.m. 14 5 8
9:30 a.m. - 9:45 a.m. 8 12 9
9:45 a.m. - 10:00 a.m. 3 7 8
10:00 a.m. - 10:15 a.m. 17 8 8
10:15 a.m. - 10:30 a.m. 5 6 8
10:30 a.m. - 10:45 a.m. 9 13 8
10:45 a.m. - 11:00 a.m. 5 5 8
11:00 a.m. - 11:15 a.m. 11 6 7
11:15 a.m. - 11:30 a.m. 10 8 6
11:30 a.m. - 11:45 a.m. 6 9 8
11:45 a.m. - 12:00 p.m. 5 8 8
12:00 p.m. - 12:15 p.m. 13 7 8
12:15 p.m. - 12:30 p.m. 5 6 6
12:30 p.m. - 12:45 p.m. 4 12 10
12:45 p.m. - 1:00 p.m. 6 7 6
1:00 p.m. - 1:15 p.m. 11 10 6
1:15 p.m. - 1:30 p.m. 6 7 9
1:30 p.m. - 1:45 p.m. 9 11 7
1:45 p.m. - 2:00 p.m. 6 5 7
2:00 p.m. - 2:15 p.m. 11 12 10
2:15 p.m. - 2:30 p.m. 3 3 9
2:30 p.m. - 2:45 p.m. 12 9 7
2:45 p.m. - 3:00 p.m. 6 7 9
3:00 p.m. - 3:15 p.m. 8 8 8
3:15 p.m. - 3:30 p.m. 8 7 6
3:30 p.m. - 3:45 p.m. 6 9 6
3:45 p.m. - 4:00 p.m. 9 8 9
4:00 p.m. - 4:15 p.m. 9 7 8
4:15 a.m. - 4:30 a.m. 8 9 9
4:30 p.m. - 4:45 p.m. 11 8 9
4:45 p.m. - 5:00 p.m. 7 7 7
5:00 p.m. - 5:15 p.m. 9 11 9
5:15 p.m. - 5:30 p.m. 10 5 8
5:30 p.m. - 5:45 p.m. 9 8 10
5:45 p.m. - 6:00 p.m. 4 9 7
6:00 p.m. - 6:15 p.m. 12 9 9
6:15 p.m. - 6:30 p.m. 8 7 9
6:30 p.m. - 6:45 p.m. 9 9 9
6:45 p.m. - 7:00 p.m. 5 7 7
7:00 p.m. - 7:15 p.m. 11 9 9
7:15 p.m. - 7:30 p.m. 9 6 9
7:30 p.m. - 7:45 p.m. 6 8 9
7:45 p.m. - 8:00 p.m. 6 10 10
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3.6 Conclusion

For sugarcane farms and mills in Louisiana to remain profitable when sugar

prices are falling and production cost is high and rising, increasing efficiency is impor-

tant. By using a new modeling technique, this chapter demonstrates that a tractable

model can be developed that reduces operational restrictions necessary for tractability

in existing models. With this new model, truck costs can be reduced with coordina-

tion that requires minimal changes to the operating standards of the current harvest

operations.

There are two areas of future work. First, as is demonstrated in the results,

even small-sized blocks have some variability in arrivals and importantly in the time

between arrivals. Ideally, arrivals throughout the day would be equally spaced. Pre-

liminary work showed such a model to be intractable. In future work, we propose to

explore valid inequalities and cuts for such a model in the hope of obtaining tractabil-

ity. It is notable that the model proposed in this chapter can be used to generate

initial feasible solutions for the cases of equally spacing arrivals. A second area of

future work rests in methods for managing real-time harvest logistics. The proposed

model offers a planning tool for determining the start times of harvests, but is less

helpful in handling the unknown events that are certain to arise throughout a day’s

operations.
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CHAPTER 4
A CONTINUOUS TIME MODEL FOR SUGARCANE HARVEST

LOGISTICS IN THE UNITED STATES AND AUSTRALIA

4.1 Introduction

Despite a growing global appetite for sugar as both a foodstuff and a fuel source

[Shapouri and Salassi, 2006, Jacobs, 2006, Service/USDA, 2014], there exists limited

literature that explores sugarcane operations. In this chapter, we look at harvest

operations in the US and Australia. Sugarcane harvests in the US and Australia

have three operations that must be coordinated: infield operations, over-the-road

transport, and mill operations. Infield operations usually occur in several pre-specified

farms and have numerous components. First, the cane is cut in the field, usually using

a mechanical harvester that cuts the cane into uniformly sized billets (12-18 inches).

While in operation, the harvester continuously feeds billets into a cart pulled by an

infield transporter. This infield transporter and cart combination runs alongside the

harvester, and, when the cart is filled, the transporter and cart combination must

be rotated with another infield vehicle and its associated cart for continuous harvest

operations. Filled carts are transported to a loading pad that serves the farm. At

the loading pad, the sugarcane is transferred to trucks that take the harvested cane

from the farms to the mill. The final operation of the harvest takes place at the mill

where the trucks are unloaded. Once a truck is unloaded, it can return to a farm for

its next load.

Harvest operations on farms are generally conducted only during daylight
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hours, and most farms begin harvesting operations as early in the morning as possible.

One of the key challenges in both countries is the lack of coordination among growers

as well as between growers and the mill. As a result, there can be a long queue of

trucks waiting to be unloaded at the mill yard. This extra waiting time at the mill

reduces the number of loads that can be hauled by each individual truck. Thus, the

existing harvest and transport arrangement increases the number of trucks required

to haul the mill’s daily quota of sugarcane. Collaboration between farmers on the one

hand and the mill on the other could improve the overall efficiency of harvested cane

transport operations by reducing number of trucks required to haul the cut cane.

In this chapter, we seek to reduce congestion at the mill and as well as the

number of trucks required to serve the harvest. We seek to reduce mill congestion

rather than to model the trucks directly because the latter leads to intractable models.

We consider a set of fields which provide a pre-specified set of loads to the mill. The

farms harvest at a fixed rate. All the trucks start their shifts at the mill. The travel

time between the farms and the mill is deterministic. The trucks arriving at the mill

form a single first in first out queue. When a truck is unloaded, it is available for the

next dispatch. The cycle continues until all the loads are picked up from the farms

are unloaded at the mill. Our objective is to maximize the minimum time between

consecutive truck arrivals to the mill. The objective is maximized by setting the

start times of the harvests at the farms. Given the solution to the math program, we

generate truck assignments.

This chapter makes two contributions to the literature. We demonstrate that



81

the mills and the growers can achieve significant savings by spreading the harvesting

throughout the daylight hours. We show that we can achieve this savings by coordi-

nating start times at the fields. Through start time coordination, we spread arrivals

of trucks, reducing congestion, and thus reducing the number of trucks required to

serve the harvest. Our computational results show that setting the start times of har-

vests at the various farms is sufficient to achieve the necessary coordination. These

validate Salassi and Barker’s conjecture (2008) that truck congestion at the mill could

be reduced by coordinating the start times of the harvests at the farms. Second, we

introduce a model that eliminates the discretization required in Salassi and Barker

[2008] and in Lamsal et al. [2013b]. We demonstrate that eliminating discretization

reduces the number of trucks. We also introduce a series of valid inequalities that

lead to a practical model. As a minor contribution, we demonstrate the value of using

the model presented in Lamsal et al. [2013b] to generate initial feasible solutions.

Section 4.2 of the paper discusses previous work on sugarcane logistics. Section

4.3 presents our model as well as valid inequalities and optimality cuts. In Section

4.4, we describe the solution approach. In Section 4.5, we present the results of two

computational studies using our model. The first study uses the benchmark problems

developed by Lamsal et al. [2013a]. These benchmark datasets use publicly available

data on the geographical locations of each of Louisiana’s 456 sugarcane farms and 11

sugarcane mills as well as their production and processing rates to construct a set of

11 sugarcane logistics problems (one for each of the 11 mills in Louisiana). The second

study uses a set of benchmark problems used by Higgins and Laredo [2006] to study
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harvest logistics in Australia. We compare the effectiveness of solutions developed by

our approach to those developed by Higgins and Laredo [2006] for the same problem.

Section 4.6 presents our conclusions.

4.2 Literature Review

Trying to maintain the desired delivery schedule at the mill while reducing the

number of harvesters and the size of the fleet of the trucks is a recurring theme in

the literature related to sugarcane harvesting and transportation system. In different

countries, the sugarcane harvesting and transportation system has varying divisions

of decision making between farm and mill levels. A lack of coordination among

the decision makers affects the efficiency of the whole system. For a more detailed

discussion of the literature, specially on the other objective functions used in the

sugarcane harvest and transportation models and the discussion on the literature

related to the infrastructure different from those in the US and Australia, we refer

the reader to Lamsal et al. [2013a].

Most closely related to the work in this chapter are Salassi et al. [2009a] and

Lamsal et al. [2013b]. Both papers use mixed integer mathematical programming

models to evaluate the impact of alternative harvest schedules at the farms that re-

sult in shorter queues at the mill of the trucks waiting to be unloaded thus reducing

the total truck hours and the number of trucks needed to haul the cane. Salassi et al.

[2009a] and Lamsal et al. [2013b] divide the day into blocks of time and use discretiza-

tion techniques to spread arrivals among these blocks of time. Lamsal et al. [2013b]
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show that as the time blocks become smaller, the model produces more desirable

results, in the sense that the loads arrivals are spread more uniformly throughout the

day and also require fewer trucks. On the flip side, the complexity of the problem

increases when the size of the time blocks decreases, eventually leading to a compu-

tationally intractable problem. Our objective is motivated by the results in Lamsal

et al. [2013b]. In this chapter, we make the problem continuous by removing the no-

tion of time blocks and maximally spread the load arrivals by maximizing the smallest

gap between two successive arrivals at the mill.

Also closely related to the work in this chapter is Higgins et al. [2004] and

Higgins and Laredo [2006]. The two papers develop a framework for integrating

a complex harvesting and transportation system for sugar production in Australia.

They seek to reduce the congestion at the mill. They use heuristic methods to produce

transportation schedules such that mill idle time, queue length and the number of

trucks needed to haul the cut cane are reduced. We add to their work by coordinating

harvest schedules with the transport schedules to further reduce the queue length and

number of trucks needed.

Also related to the work in this chapter is Lamsal et al. [2013a]. However, Lam-

sal et al. [2013a] focuses on sugarcane operations in Brazil where the infrastructure,

notably the level of vertical integration, differs from that in the US and Australia.

Consequently, Lamsal et al. [2013a] develop a model that coordinates the load arrivals

at the mill with the objective of minimizing the cut-to-crush delay.

Other papers in the literature have explored sugarcane harvests from a tactical



84

rather than operational level. One of the first such models for sugarcane harvesting

and transportation is described in Whitney and Cochran [1976]. They use queuing

theory to predict delivery rates of the harvested cane. Their model is meant for

a transport system of tractors and wagons and one continuous road between the

farm and the sugar factory. Loading times are assumed to follow an exponential

distribution, and arrival times of the trucks at the farms and the mill are Poisson

distributed. They use their model outputs to forecast the rate at which sugarcane

can be delivered from the farms. Arjona et al. [2001] developed a discrete event

simulation model of the harvesting and transportation system of a sugarcane farm

in Mexico that covers all processes from the burning of the cane to its unloading

at the processing line. Their solutions show that machinery is underutilized. They

suggest methods to improve the efficiency of machinery in use, thereby allowing a

reduction in the number of machinery without increasing sugarcane processing times.

Both of these papers look at the harvest and transportation problem from a broader

approach. Instead of developing a harvest schedule and truck assignments, they study

the impact of a given set of resources on the on delivery rate, and how varying these

available resources would impact on the delivery rate. In our paper, we are more

concerned with developing an implementable harvest and truck assignment schedule.

4.3 Model

In this section, we present a formal model of the problem. Our goal is to

minimize the number of trucks required to pick up loads at the times when they
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become ready. However, directly modeling the minimization of the number of trucks

results in intractable problem. As a result, we propose an alternative objective that

minimizes congestion at the mill and has the effect of greatly reducing the number

of trucks. Our objective maximizes the minimum time between arrivals to the mill.

In this model, we eliminate the notion of time blocks and maximally spread the load

arrivals by maximizing the smallest gap between the two successive arrivals to the

mill. We introduce the notation and a basic model and discuss the constraints.

4.3.1 Base Model

Sets:

F set of farms.

Parameters:

hi i ∈ F time to harvest one load at the farm i

ti i ∈ F travel time from mill to the farm i

ni i ∈ F daily load quota of the farm i

[aij, bij] i ∈ F, j ∈ {1 . . . ni} feasible harvest bounds for load ij

Uiji′j′ i, i′ ∈ F, j ∈ {1 . . . ni − 1}, j′ ∈ {1 . . . n′
i − 1}, i < i′ upper bound to the difference of xij and xi′j′

Liji′j′ i, i′ ∈ F, j ∈ {1 . . . ni − 1}, j′ ∈ {1 . . . n′
i − 1}, i < i′ lower bound to the difference of xij and xi′j′ .

Variables:
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yi i ∈ F time when harvesting starts at farm i

zij i ∈ F, j ∈ {1 . . . nj} ready time for load j from farm i

xij i ∈ F, j ∈ {1 . . . nj} arrival time at the mill for load j from farm i

S+
iji′j′ i, i′ ∈ F, j ∈ {1 . . . ni}, dummy variable that takes the value as the difference

j′ ∈ {1 . . . ni′}, i < i′ between xij and xi′j′ if xij > xi′j′ and zero otherwise

S−iji′j′ i, i′ ∈ F, j ∈ {1 . . . ni}, dummy variable that takes the value as the difference

j′ ∈ {1 . . . ni′}, i < i′ between xij and xi′j′ if xij < xi′j′ and zero otherwise

Biji′j′ ∈ {0, 1} i, i′ ∈ F, binary variable that takes the value of 1 if xij is larger

j ∈ {1 . . . ni}, than xi′j′ and 0 if xij is smaller than xi′j′

j′ ∈ {1 . . . ni′}, i < i′

obj objective value, minimum gap between two consecutive
arrivals.

Objective:

max Obj
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Constraints:

zij = yi + j × hi ∀(i, j) | i ∈ F, j ∈ {1 . . . ni} (4.1)

xij = zij + ti ∀(i, j) | i ∈ F, j ∈ {1 . . . ni} (4.2)

aij ≤ xij ≤ bij ∀(i, j) | i ∈ F, j ∈ {1 . . . ni} (4.3)

xij − xi′j′ = S+
iji′j′ − S

−
iji′j′ ∀(i, j), (i′, j′) | i, i′ ∈ F, j ∈ {1 . . . ni}, j′ ∈ {1 . . . ni′}, i < i′

(4.4)

0 ≤ S+
iji′j′ ≤ Uiji′j′ ·Biji′j′ ∀(i, j), (i′, j′) | i, i′ ∈ F, j ∈ {1 . . . ni}, j′ ∈ {1 . . . ni′}, i < i′

(4.5)

0 ≤ S−iji′j′ ≤ |Liji′j′ | × (1−Biji′j′) ∀(i, j), (i′, j′) | i, i′ ∈ F, j ∈ {1 . . . ni}, j′ ∈ {1 . . . ni′}, i < i′

(4.6)

Obj ≤ S+
iji′j′ + S−iji′j′ ∀(i, j), (i′, j′) | i, i′ ∈ F, j ∈ {1 . . . ni}, j′ ∈ {1 . . . ni′}, i < i′.

(4.7)

Constraints 4.1 relate the harvest start times of the farms to the ready times

of all the loads from the respective farms. Constraints 4.2 relate the ready times of

the loads with the loads’ arrival times at the mill. Constraints 4.3 set lower and upper

bounds for the arrival times for each load. In Contraints 4.4, we represent the dif-

ference between two arrival times as the difference of two non-negative variables. We

note that we do not define Contraints 4.4 for i′ ≤ i. Such constraints are unnecessary.

We do not consider the situation when i = i′ because the difference between two clos-

est arrivals from the same farm is fixed. Further, for two arbitrary arrival times xij
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and xi′j′ and i′ < i, xij−xi′j′ = − (xi′j′ − xij) and S+
iji′j′−S

−
iji′j′ = −

(
S+
i′j′ij − S

−
i′j′ij

)
.

Constraints 4.5 and Constraints 4.6 force one of the two non-negative variables

from Constraints 4.4 to be zero. Unlike in min-max formulations, in the max-min

objective, increasing S+
iji′j′ or S−iji′j′ improves the objective value. Thus, we need to

introduce constraints to force one of the variables in each pair to be zero. The variable

S+
iji′j′ is positive and S−iji′j′ is zero if xij is larger than xi′j′ , and if xij is smaller than

xi′j′ , S
−
iji′j′ is positive and S+

iji′j′ is zero. The binary variable Biji′j′ takes the value 1

when xij is larger than xi′j′ and zero when xij is smaller than xi′j′ . Constraints 4.7

forces the objective to be larger than the absolute difference of any two arrivals.

4.3.2 Valid inequalities and Optimality Cuts

In this section, we present results that help strengthen the present formulation.

In the first result, we state and prove a proposition demonstrating monotonicity

among the binary variables B. The result takes advantage of the fact that all loads

from any given farm must picked up at their ready time and the physical constraint

of the harvest time for each load. These cuts are added at the root nodes.

Proposition 7 (Monotonicity). For all i, i′, j, and j′ such that i, i′ ∈ F , i < i′,

j ∈ 1, . . . , ni − 1, and j′ ∈ 1, . . . , ni′

Biji′j′ ≤ Bi(j+1)i′j′ .

Similarly, for all i, i′, j, and j′ such that i, i′ ∈ F , i < i′, j ∈ 1, . . . , ni, and j′ ∈
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1, . . . , ni′ − 1

Biji′j′ ≥ Biji′(j′+1).

Proof. Consider a series of arrivals from farm i, xi,1, xi,2, . . . , xi,ni
. By Constraints 4.1

and 4.2, we know that xi,1 < xi,2 < · · · < xi,ni
. Next, consider any load from farm i′.

Let this be load j′. The arrival time for the j′th load from farm i′ is xi′,j′ . Subtracting

the arrival time xi′,j′ from the arrival times of each of the loads from farm i gives us

(xi,1 − xi′,j′) < (xi,2 − xi′,j′) < · · · < (xi,ni
− xi′,j′).

As a result of constraints 4.5 and 4.6, for any load j from farm i, Bi,j,i′,j′ = 1

if xi,j − xi′,j′ is positive and 0 otherwise. Then, because (xi,j − xi′,j′) < (xi,j+1− xi′,j′)

for every j ∈ {1, . . . , ni − 1}, Biji′j′ ≤ Bi(j+1)i′j′ .

The second part of the proof follows analogously. Again as a result of Con-

straints 4.1 and 4.2, we have the following series of inequalities (xi,j − xi′,1) >

(xi,j − xi′,2) > · · · > (xi,j − xi′,ni′
), which implies Bi,j,i′,1 ≥ Bi,j,i′,2 ≥ · · · ≥ Bi,j,i′,n′i

.

As a result of Proposition 7, we add following sets of valid inequalities to the

base model:

Biji′j′ ≤ Bi(j+1)i′j′ ∀(i, j), (i′, j′) | i, i′ ∈ F, j ∈ {1 . . . ni − 1}, j′ ∈ {1 . . . ni′}, i < i′

(4.8)

Biji′j′ ≥ Biji′(j′+1) ∀(i, j), (i′, j′) | i, i′ ∈ F, j ∈ {1 . . . ni}, j′ ∈ {1 . . . ni′ − 1}, i < i′.

(4.9)
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We next present two optimality cuts that use the value of a feasible solution to

bound the number of arrivals to the mill that can occur between to successive arrivals

from a given farm. The first result bounds the number of arrivals that occur from a

single farm in the interval between two successive arrivals from another. The second

results bounds the number of arrivals from all farms that can occur in the interval

between two successive arrivals from any farm. In both cases, we take advantage of

the objective value of a feasible solution and also the fact that the harvest rates at

each farm are constant and that we require loads to be picked up when they are ready.

Proposition 8. Given a feasible solution value obj and for two successive loads ar-

riving to the mill from farm i, the number of maximum arrivals originating from any

farm i′ 6= i is bounded by
(⌊

hi−2×obj
hi′

⌋
+ 1
)

.

Proof. Let xi,j and xi,j+1 be any two successive arrivals to the mill from the farm i .

By construction, we know that xi,j+1 − xi,j = hi. Further, the time between any two

arrivals must also be greater than the given objective value of a feasible solution obj.

Then, there exists at most hi − 2 × obj units of time in which loads can arrive. We

also know from the data that farm i′ produces a load every hi′ time units and thus

all arrivals from farm i′ are separated by at least hi′ .

Thus, if
hi−2×obj

hi′
is non-integer, no more than

(⌈
hi−2×obj

hi′

⌉)
loads can arrive

from farm i′ between two successive loads from farm i. However, if
hi−2×obj

hi′
is integer,

we must account for the fact that a load can arrive exactly at time xi,j + obj and

resultantly the bound becomes
(⌈

hi−2×obj
hi′

⌉
+ 1
)

. However, this bound is not tight in

the non-integer case. We can tighten the bound by instead using
(⌊

hi−2×obj
hi′

⌋
+ 1
)

.
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To introduce inequalities that take advantage of the result in Proposition 8,

we first note that
∑

j′∈1..ni′

Bi(j+1)i′j′ counts the total number of arrivals prior to xi,j+1

from farm i′. Similarly, the term
∑

j′∈1..ni′

Biji′j′ counts the number of arrivals prior to

xi,j from farm i′. Thus, the sum

 ∑
j′∈1..ni′

Bi(j+1)i′j′ −
∑

j′∈1..ni′

Biji′j′


reflects the total number of loads from farm i′ that arrive to the mill between xi,j and

xi,j+1. Thus, as a result of Proposition 8 and when a feasible solution exists, we add

the following set of optimality cuts to the base model:

0 ≤
∑

j′∈1..ni′

Bi(j+1)i′j′ −
∑

j′∈1..ni′

Biji′j′ ≤
(⌊

hi − 2× obj
hi′

⌋
+ 1

)

∀(i, j), &i′ | i, i′ ∈ F,j ∈ {1 . . . ni − 1}, i < i′.

(4.10)

Similar to Proposition 8, we can bound the number of arrivals from all farms

that can occur between two successive loads from a given farm. The proof is analogous

to that of Proposition 8 and is omitted.

Proposition 9. Given a feasible solution value obj and for two successive loads ar-

riving to the mill from farm i, the number of maximum arrivals originating from all

other farms is bounded by Given a feasible solution value obj and for two successive

loads arriving to the mill from farm i, the number of maximum arrivals originating
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from any farm i′ 6= i is bounded by
(⌊

hi−2×obj
obj

⌋
+ 1
)

.

As was the case with Constraints 4.10, to implement Proposition 9, we need

to count the arrivals that occur between two successive loads from the same farm.

We make use of the following sums:

∑
i′>i

∑
j′∈1..ni′

(
Bi(j+1)i′j′

)
, (4.11)

∑
i′>i

∑
j′∈1..ni′

(Biji′j′) , (4.12)

∑
i′<i

∑
j′∈1..ni′

(
1−Bi′j′i(j+1)

)
, and (4.13)

∑
i′<i

∑
j′∈1..ni′

(1−Bi′j′ij) . (4.14)

The sum 4.12 counts the total number of arrivals prior to xi,j+1, and the sum 4.13

counts the total number of arrivals prior to xi,j from the farms with index i′ greater

than i. The sum 4.14 counts the total number of arrivals prior to xi,j+1, and the

sum 4.14 counts the total number of arrivals prior to xi,j from the farms with index

i′ less than i.

Thus, as a result of Proposition 9, we add the following optimality cuts when

a feasible solution is available:

0 ≤
∑
i′>i

∑
j′∈1..ni′

Bi(j+1)i′j′ −
∑
i′>i

∑
j′∈1..ni′

Biji′j′ +
∑
i′<i

∑
j′∈1..ni′

(
1−Bi′j′i(j+1)

)
−
∑
i′<i

∑
j′∈1..ni′

(1−Bi′j′ij) ≤
(⌊

hi − 2× obj
obj

⌋
+ 1

)
∀(i, j), | i, i′ ∈ F, j ∈ {1 . . . ni − 1}.

(4.15)
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4.4 Experimental Design and Solution Approach

We first, compare our solutions with the solutions in Lamsal et al. [2013b]

for the number of trucks needed to pick up all the loads at their ready times. A

side-by-side comparison of number of trucks needed is presented in Table 4.2. The

approach presented in this chapter reduces the number of trucks in all but one instance

(Instance 3), in which case the number of trucks are equal. On average, the number

of trucks is reduced by 7%.

To understand why the approach presented in this chapter reduces the number

of trucks, we compare the two solution methods with respect to truck utilization.

Figure 4.1 compares the time spent by each truck arriving to the mill in our solution

and the solution in Lamsal et al. [2013b] for the first instance. In this comparison,

we make the truck assignments for both our and Lamsal et al.’s (2013b) solution by

assuming a FIFO queue with unloading time of two minutes per load at the mill. It

is noticeable that the waiting time for each load is shorter in our solution in-spite of

having the same unloading time. The regular pattern for the hourly block solution is

because of the staggering of the loads at the hour ends.

We next describe the Australian instance described in Higgins [2006]. Aus-

tralian industry practices are different from those in the US. In the US, enough trucks

are scheduled to pick up all loads as soon as they become ready. As a result, any

waiting time for a given load occurs at the mill, not in the field. In Australia, even

though the harvesting is done only during the day light hours, the hauling continues

through out the night. So, the cut cane waits at the loading pads at the farms waiting
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to be picked up. In Higgins [2006], the harvesting hours and the harvest rates for

each farm is treated as given and the model solves for the truck assignment. In this

chapter, we take the length of harvesting hours and the harvest rates as given and

solve for the time when the harvesting should begin to reduce the congestion at the

mill, maintaining the restriction that harvesting must occur during daylight hours.

In our truck assignment, we pick up the loads at their ready times and do not allow

them to wait at the farms. As such, our truck assignments are more constrained than

those in Higgins [2006].

We seek to answer two questions. First, what is the computational value of

the proposed valid inequalities and optimality cuts? The computational value of the

proposed valid inequalities and optimality cuts is readily apparent from the fact that

the problem is insolvable without these additions to the base model. We show that

each of the realistic instances can be solved to optimality in about two hours.

There is however a remaining question as to whether the continuous model

has an advantage over the discrete model in Lamsal et al. [2013b]. This question is

motivated by the observation in Lamsal et al. [2013b] that, as time blocks become

smaller, the model produces solutions using fewer trucks and spreading load arrivals

more uniformly throughout the day. Lamsal et al. [2013b] also shows that the com-

plexity of the problem increases when the size of the time blocks decreases to the

extent that making the size of the time blocks smaller than 10 minutes (thus result-

ing large number of blocks) produced unsolvable problems. For practical purposes,

the continuous model proposed in this chapter is equivalent to having infinitesimal
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time blocks.

To compare the approach presented in this chapter to those in the literature, we

use the 11 instances developed in Lamsal et al. [2013b] to represent the approximately

475 farms in 11 mill areas in Louisiana. United States Department of Agriculture,

Economic Research Service [2010] and League [2013] provide zip-code level addresses

for 456 farms and exact addresses of the 11 mills. In total, we have 456 farms in 85

zip codes with a daily capacity of 4044 loads. The zip codes with sugarcane farms

and the location of the mills are shown in Figure 4.2. Each start represents the

location of a mill and the represents the centroid of the zip code that has at least one

sugarcane farm. Using this data as well as additional data from [Barker, 2007] and

Salassi and Barker [2008], each farm was assigned a daily harvest volume, either one

or two harvesters, and a per load harvest time determined. Table 4.1 summarizes the

11 mill areas.

Table 4.1: Distribution of farms and total loads

Instance # of farms # of loads
1 55 370
2 66 367
3 29 369
4 39 365
5 23 365
6 69 370
7 28 370
8 53 370
9 27 365
10 26 365
11 41 368
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Figure 4.1: Time spent at the mill yard for individual load
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Table 4.2: Comparison of number of trucks needed to haul the cane in ready times

Instance # of trucks needed (old) # of trucks needed (new)
1 32 31
2 36 33
3 31 31
4 34 29
5 35 32
6 48 42
7 30 30
8 35 34
9 38 34
10 28 26
11 33 30

To solve the instances, we use a branch-and-bound algorithm. We note that

we significantly reduce solution time by using an initial feasible solution. Moreover,

to instantiate the Constraints 4.10 and 4.15, we need a non-zero lower bound to the

objective. We use the model and algorithm described in Lamsal et al. [2013b] with

hourly time blocks to get a feasible solution to the model presented in this chapter.

Because solutions to the model in Lamsal et al. [2013b] can have two arrivals that

occur at the same time, we iteratively perturb the start times of the farms whose

loads have the same arrival times until we have a solution in which no two loads

have the same arrival times. As there are infinite real numbers, we are guaranteed

to find a non-zero solution. In our implementation, we decrease the start time of the

lower numbered farm greedily by ε = [0.05, 0.25] and increase the start time of the

higher numbered farm by ε, when two loads have same arrival times. Constraints

4.10 and 4.15 are instantiated using the objective of the initial feasible solution as the

lower bound.. When a better lower bound is found, the constraints are updated and
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Figure 4.2: Distribution of farms and the mills in southern Louisiana

added as new optimality cuts. The algorithm stops when the optimality condition is

satisfied.

Given a solution to the math program, we can compute the optimal number

of trucks needed to pick up the loads at their ready times at the growers by using

the algorithm presented in Lamsal et al. [2013a]. The truck assignment algorithm

is coded in Python and runs instantaneously on the previously described hardware.

The math programs are solved using GUROBI OPTIMIZER 5.6 using the Python

interface. The experiments are performed on a 3.40 GHz Intel Core i7-3770 CPU

running the Ubuntu 12.04 operating system.
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4.5 Computational Results

This section presents computational results for both the US and Australian

instances. Further evidence of the value of the method presented in this chapter can

be seen by comparing variation in truck hours. We define truck hours for a truck as

the time between when the last load hauled by the truck is unloaded at the mill and

the time when the truck is dispatched from the mill to pick up the truck’s first load.

A better solution would reduce the variability in truck hours across all the trucks.

That is, the trucks would all work about the same number of hours. One of the

weaknesses of the solutions in Lamsal et al. [2013b] is that a significant number of

trucks serve a single load. Thus, variability in truck hours is high in those solutions.

Such reduction in variability in truck hours should be desirable because it would be

useful to equitably divide work among drivers.

In Table 4.3, “old STDEV” refers to the standard deviation of the truck hours

and “old Max - Min” refers to the difference between the maximum and minimum

truck hours for each solution using the best solutions from [Lamsal et al., 2013b].

Similarly, “new STDEV” and “new Max - Min” refer to the standard deviation and

the difference between the maximum and minimum of the truck hours for our solu-

tions. The approach presented in this chapter reduces this variability by an average

of 19% across the 11 mill areas. The difference between the maximum and minimum

truck hours is also reduced by about 11.66 %.

Figure 4.3 plots the cumulative arrivals with three different solutions for the

first instance. The line labelled as “Earliest Start for all farms,” represents the so-
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Table 4.3: Comparison of standard deviations and differences in working time

Instance old STDEV old Max - Min new STDEV new Max - Min
1 131.35 601 95.79 478
2 159.28 689 130.38 635
3 140.76 579 90.90 460
4 136.35 512 125.95 460
5 125.85 438 116.29 374
6 132.27 588 96.83 557
7 114.76 418 96.65 378
8 135.59 543 110.02 508
9 170.42 633 137.14 633
10 147.01 570 139.21 412
11 134.17 553 116.13 522

lution that simulates the current practice in which all farms start harvesting at the

beginning of the day. The line labelled as “Hourly Block Solution” represents time

block solution obtained using the solution method described in Lamsal et al. [2013b]

(Hourly blocks and 29 loads per hour limit). The line labelled as “Our Solution”

represents the solution from our proposed solution method. Our best estimate for

the number of trucks needed to pick up all the loads for the first solution is 62 trucks.

Similarly, we need 32 and 31 trucks, respectively for the second and third solution.

In “Earliest Start for all farms” solution, most loads arrive at the mill within

the 500 minutes. This causes congestion at the mill increasing the turn around times

for the trucks, thus increasing the number of trucks required to haul all the cane.

In “Hourly Block Solution,” the hourly truck arrival rate is constant but within the

hour, truck arrivals are not spread out. So, there are times, when the unloading

resource at the mill is idle and there are also times when there is congestion as

loads arrive simultaneously. In “Our Solution,” the trucks arrive at the constant rate
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Figure 4.3: Cumulative arrivals at the Mill throughout the daylight hours

which reduces the chances of unloading resource at the mill being idle or the chances

of congestion.

In the Australian instance of Higgins [2006], a total of 21 trucks are used for

the total of approximately 505 hours of truck time, with the average shift length of

each truck being slightly higher than 24 hours. By using the approach presented in

this chapter, we can pick up all the loads with 19 trucks using approximately 438

hours of truck time and none of the trucks needing a shift longer than 24 hours.
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4.6 Conclusions

Optimizing operations in a sugar mill area is a difficult task involving several

stake holders with competing interests. Previous literature in the area uses a discrete

time approach that results in problems becoming computationally intractable as the

time discretization becomes finer. This chapter uses an objective function, maximiz-

ing the minimum difference between two consecutive arrivals at the mill, which allows

the problem to be solved in continuous time; thereby obviating difficulties encoun-

tered using previous approaches. Our results show that this new approach provides

solutions that not only reduce the number of trucks needed to conduct the harvest,

but that also reduce variation of truck utilization. Reducing such variation is impor-

tant for a variety of efficiency and operational reasons, but also because it spreads

the workload more evenly amongst truck drivers, thereby increasing perceived fairness

and equity. Additionally, our results show that these advantages can be obtained with

only minimal coordination between the mills and farms: namely the farms must allow

the mill to set the time of day at which the sugar cane harvest starts. Since the farms

are independently owned, such minimal coordination requirements are important if

the solution is to be workable in a practical setting.

There are two areas of future work. First, the model can be extended to

include random events that commonly occur such as equipment breakdowns. Second,

methods for managing harvest logistics in real time are needed to deal with randomly

occurring events. Although the model in this chapter could be used to determine

the start time of the daily harvest, additional work is needed before it could handle



103

unknown events that might arise during a day’s operations as they occur. Relaxing

the strong assumption of no wait at the farm also offers area of future exploration.
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CHAPTER 5
HARVEST LOGISTICS UNDER UNCERTAINTY IN BRAZIL

5.1 Problem Description

In this chapter, we return to the problem of harvesting and delivery sugarcane

to a mill in Brazil. This problem deals with harvesting operations (cutting and

shipping) at the fronts, transportation by the trucks via road network, and unloading

of the cane at the mill yard while accounting for the stochasticity in day-to-day

operations.

In practice, the sugarcane harvest and transport are not deterministic, as we

have described in Chapter 2. There are uncertainties in both operations. Harvesters

break down at the fronts. The weather causes the shut down of harvesting at the

front. The vehicles break down en-route to the mill or to the fronts. Many of these

events need a change in the original plan of actions.

We develop a rolling horizon framework that uses the math program in Chapter

2 to solve certainty equivalent problems as new information becomes available. We

update constraints to account for changes in trucks or fronts.

5.2 Model

We model the problem as a Markov decision process. Let G = (N , E) be a com-

plete graph whereN = {0, 1, ..., N} is a set ofN+1 nodes and E =
{(
n, n

′)
: n, n

′ ∈ N
}

a set of edges connecting the nodes in the network. Node 0 represents mill and nodes

1, . . . , N represent the fronts. Travel times t(n, n
′
) associated with each edge (n, n

′
) in
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E are known. LetM = {1, . . . ,M} be a set of M identical vehicles initially located at

the mill. Each front n in N \ 0 has Bn harvesters. Let Hn = (Hn,1, Hn,2, . . . , Hn,Bn)

be a vector of binary variables, where 1 represents, the harvester is up and run-

ning and 0 means it is down and Bn is the number of harvesters in the front n.

let Rn = (Rn,1, Rn,2, . . . , Rn,Bn) be a column vector, where Rn,1 is the capacity

of harvester 1 in front n. The maximum harvest rate at front n is given by a

vector multiplication, HT
nRn. For the sake of brevity, let H = (Hn)n∈N\0 be a

set containing harvester information for all the fronts. Let the vector, HTR =(
HT

1 R1, H
T
2 R2, . . . , H

T
NRN

)
, represent the maximum possible harvest rates of all the

fronts, such that the first element is the maximum possible harvest rate at front 1

and second element is the harvest rate at front 2 and so on.

A decision epoch is triggered by the arrival of one or more vehicles at the fronts

or at the mill. The time of decision epoch k, Tk, characterizes the end of period k− 1

and the beginning of the period k. Even though we assume deterministic travel times,

Tk is a random variable because the breakdowns and shut-downs at fronts impact our

decisions and thus make it impossible to determine decision epochs a priori.

At decision epochs, for vehicles at the the mill, an action is selected prescribing

the front where these vehicles will travel next. When a vehicle arrives at the front,

an action is selected prescribing the vehicle’s return to the mill. Both of these actions

take place during the deterministic transition from pre-decision state sk to the post-

decision state sak. During the transition from post decision state sak−1 to the next pre-

decision state sk, the status of the harvesters, Hk becomes available which enables
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us to calculate the maximum harvest rate at each front for the next epoch. We

assume that the the epochs are short enough that the status of the harvesters we

received before the beginning of an epoch stays unchanged during that epoch. At

decision epochs, we also decide the harvest rates for the fronts. (using the information

contained in HTR, among other state information. The next period begins when next

decision epoch is triggered. The process repeats until the end of planning horizon is

reached.

5.2.1 State

The state of the system captures all relevant information required to define

available actions and to determine the transitions. We represent attributes of a vehicle

m ∈ M by a triple (dm, tm, um) where dm ∈ N is the destination of the vehicle (or

its current location if the vehicle has arrived) and tm ∈ [0, L] is the time at which the

vehicle m is scheduled to arrive at dm. The third component um is a binary variable

which takes the value 1 if the vehicle has a loaded trailer and 0 when the trailer is

empty. Let (d, t, u) = (dm, tm, um)m∈M denote the vector of vehicle attributes.

We represent attributes of the nodes, n ∈ N by a vector (ln, hn). For the

fronts (n ∈ N \ 0), ln is the total number of loads already harvested in the planning

period and hn is the harvest rate. Harvest rate at the front is expressed as trailer per

unit time. For the mill (n = {0} ⊂ N ), ln is the number of loads waiting at the mill

yard and hn is the crushing rate, which is constant in our model but could very well

be a variable. Let (l, h) = (ln, hn)n∈N .
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5.2.2 Actions

An action is taken at each decision epoch. A decision epoch is triggered by the

arrival of a vehicle at the mill or one of the fronts. Our state information includes a

vector of expected arrival times (tm)m∈M of all the vehicles to their respective destina-

tions. Decision epoch occurs at time Tk = minm∈M {tm}. LetM′
= arg minm∈M {tm}

be the set of vehicles currently at the fronts or at the mill.

There are two sets of actions available at each epoch. The first set of actions

assigns the vehicles in the set M′
to n ∈ N . The second set of actions changes the

harvest rates at the fronts.

Let A1(sk) be the action space for first set of actions. Each member of the

set A1(sk) is a vector of length M . Let am be the mth member of this vector. It can

only take the value n ∈ N and is the new destination for the vehicle m ∈ M. Even

though each action is defined by a vector of length of M , in each decision epoch, only

|M ′| members of the action vector change. Let a ∈ A1(sk), and a is a vector of length

of M . In each decision epoch we change only those members of this vector a which

belong to the setM′
. Remaining members of ak is same is that of a(k−1). The reason

behind this is we assume that vehicles that are en-route cannot be re-routed. The

action space for the first set of actions is given by

A1(sk) =
{
a : a ∈ NM

}
.
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Each member am of an action vector a ∈ A1(sk) can be defined as follows:

am = dm, ∀m ∈ {M \M
′}, (5.1)

am = n ∈ N , ∀m ∈ {M′
, dm = 0, Tk + t(dm, n) + t(n, 0) ≤ L}, (5.2)

am = 0, ∀m ∈ {M′
, dm = 0, Tk + t(dm, n) + t(n, 0) > L}, (5.3)

am = 0 ∀m ∈ {M′
, dm 6= 0} (5.4)

Condition 5.1 requires that the vehicles en route continue to their destination. Con-

dition 5.2 allows waiting at the mill and Condition 5.3does not allow assignment to

the front that would violate the planning horizon limit and Condition 5.4 requires

the vehicles that reach to the fronts to get back to the mill.

Let A2(sk) be the action space for second set of actions. Each member b of

the set A2(sk) is a vector of length N . Let bn be the nth member of this vector b. It

can only take the value between
[
0, HT

nRn

]
and is the new harvest rate of the front

n ∈ N \ 0.

The action space for this second set of actions is given by

A2(sk) =

{
b : b ∈

[
0, max

n∈ N\0

[
HT
nRn

]]N}
.

If l̄n is the pre-decided, number of loads to be harvested in front n during the

planning horizon, each member bn of an action vector b ∈ A2(sk) can be defined as



109

follows:

bn = h : min

[
min
h

[
(ln, 1) + (tm − Tk) ∗ h ≥ |m

′
: dm′ = n & tm′ ≤ tm|

]
{m: dm= n}

, (HT
nRn)

]
(5.5)

bn = 0 when ln = l̄n.(5.6)

Condition 5.5 requires the new harvest rate in all the fronts to be minimum

of (a) minimum rate such that enough cane is harvested to fill the trailers for all the

vehicles en-route to the front, just on time or before the vehicle arrives at the front

(b) maximum harvest rate. Condition 5.6 requires to stop harvesting at the front

when the limit for the number of loads from the front is reached.

Let A(sk) be the complete action space such that each member is a vector of

length (M + N) where the first M members come from the a in A1(sk) and next N

members come from b in A2(sk).

5.2.3 Exogenous Information

This is the information that first becomes known to us each epoch. In our

model, in each epoch, we get the information on what are the maximum possible

harvest rates in each front for the next epoch (in fact, we get the information on

which harvesters are up or down and this allows us to calculate the maximum possible

harvest rates).

We have defined status of each harvester by a binary variable variable, H(n∈N\0, i∈{1...Bn}).

We can assume that
{
H(n∈N\0, i∈{1...Bn})(k), k = k0, k1, . . .

}
and{

Hn′∈N\0, i′∈Bn
(k), k = k0, k1, . . .

}
are independent Markov chains for n 6= n

′
. We
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assume the dynamics of all of these Markov chains are described independently by

the one epoch transition matrix (the assumption that the epochs are almost equal

allows us to assume this) Kim and Lee [2005].

T (k,k+1) =

[
γk 1− γk

1− βk βk

]
.

Let P (H(k + 1)|H(k)) be the probability of a transition occurring from H in epoch

k to H(k + 1) in epoch k + 1. Due to our assumption of independence,

P (H(k + 1)|H(k)) =
∏

n∈N\0

Bn∏
i=1

P (Hn∈N\0, i∈Bn(k + 1)|Hn∈N\0, i∈Bn(k))

If we assume that the time between two epochs are roughly constant, we can

compute the transitions between all the states by

T (k,k
′
) =

[
γk 1− γk

1− βk βk

]
X

[
γk+1 1− γk+1

1− βk+1 βk+1

]
X

[
γk+2 1− γk+2

1− βk+2 βk+2

]

. . . X

[
γk′ 1− γk′

1− βk′ βk′

]
.
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So,

P (H(k
′
)|H(k)) =

∏
n∈N\0

Bn∏
i=1

P (H(n∈N\0, i∈Bn)(k
′
)|H(n∈N\0, i∈Bn)(k)).

5.2.4 Transition

The transition function determines how our system evolves from the state sk

to the state s(k+1). The transition from sk to sk+1 is a function of the current state,

the chosen action α, and the random information wk+1 and is denoted by SM().

s(k+1) = SM(sk, αk, wk+1) (5.7)
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The transition function is given by:

(dm)(k+1) = am (5.8)

(tm)(k+1) =


tm if m ∈ {M \M′}

Tk + t(dm, am) if m ∈M′

(5.9)

(um)(k+1) =



um if m ∈ {M \M′}

0 if m ∈M′
& dm = 0

0 if m ∈M′
& dm 6= 0 & HT

(dm)R(dm) = 0

1 if m ∈M′
& dm 6= 0 & HT

(dm)R(dm) 6= 0

(5.10)

(lm)(k+1) =


ln + (Tk+1 − TK)× (hn)k if n ∈ {N \ 0}

ln − ((Tk+1 − TK)× h0) +
∑

m∈M′ um if n = 0

(5.11)

(hn)(k+1) = bn (5.12)

Condition 5.8 says the destination of the vehicle m is given by the mth com-

ponent of action a. Condition 5.9 says the estimated arrival time for the vehicle m

at its destination. Condition 5.10 updates the status of the trailer of the vehicle m.

Condition 5.11 updates the amount the cane harvested at the front n and the amount

of cane waiting at the mill yard.
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5.2.5 Rewards and Objective

Our primary goal is to maintain a constant buffer at the mill while trying to

minimize the total cut to crush time. Let R̃(l0, k) be a strictly concave function with

a positive coefficient for l0. Let us also assume that this quadratic function achieves

unique global maximum when l0 = B, where B is the optimal buffer at the mill. The

strict convex nature of the function R̃(l0, k) penalizes the deviation from optimal

buffer.

5.3 Future Work

In our future work, we want to develop a dymanic model for sugarcane harvest

and logistics. We want to prescribe a policy, π, that prescribes actions (where should

a vehicle be dispatched and what should be the harvest rate at each front) until

the end of planning horizon is reached. If the random variable K be the number of

decision epochs before time T. The total reward under the policy π is

vπ(sk) = R̃k(l0, k) + E

{
K∑
i=0

δi+1 ∗ Rk+i(l0, k)

}
(5.13)

where δ is the discount factor.

We seek an optimal policy such that vπ
? ≥ vπ for all policies.

The existence of such a policy is guaranteed because from every state there is

a path to the boundary condition of t = T . [Powell, 2007]
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