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ABSTRACT

We present solution methodologies for vehicle routing problems (VRPs) with

stochastic demand, with a specific focus on the vehicle routing problem with stochas-

tic demand (VRPSD) and the vehicle routing problem with stochastic demand and

duration limits (VRPSDL). The VRPSD and the VRPSDL are fundamental prob-

lems underlying many operational challenges in the fields of logistics and supply chain

management.

We model the VRPSD and the VRPSDL as large-scale Markov decision pro-

cesses. We develop cyclic-order neighborhoods, a general methodology for solving a

broad class of VRPs, and use this technique to obtain static, fixed route policies for

the VRPSD. We develop pre-decision, post-decision, and hybrid rollout policies for ap-

proximate dynamic programming (ADP). We provide analytical results that position

these policies within the rollout literature and identify conditions under which our

proposed rollout methods are equivalent to the traditional form. Our rollout policies

lay a methodological foundation for solving large-scale sequential decision problems

and provide a framework for developing dynamic routing policies.

Our dynamic rollout policies for the VRPSDL significantly improve upon

benchmark fixed route policies frequently implemented in practice. We also identify

circumstances in which our rollout policies appear to offer little or no benefit com-

pared to this benchmark. These observations can guide managerial decision making

regarding when the use of our procedures is justifiable. We also demonstrate that our
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methodology lends itself to real-time implementation, thereby providing a mechanism

to make high-quality, dynamic routing decisions for large-scale operations.

Finally, we consider a more traditional ADP approach to the VRPSDL by

developing a parameterized linear function to approximate the value functions corre-

sponding to our problem formulation. We estimate parameters via a simulation-based

algorithm and show that initializing parameter values via our rollout policies leads to

significant improvements. However, we conclude that additional research is required

to develop a parametric ADP methodology comparable or superior to our rollout

policies.

Abstract Approved:

Thesis Supervisor

Title and Department

Date

Thesis Supervisor

Title and Department

Date



SOLUTION METHODOLOGIES FOR VEHICLE ROUTING PROBLEMS WITH

STOCHASTIC DEMAND

by

Justin Christopher Goodson

A thesis submitted in partial fulfillment of the
requirements for the Doctor of Philosophy

degree in Business Administration
in the Graduate College of

The University of Iowa

July 2010

Thesis Supervisors: Associate Professor Jeffrey Ohlmann
Associate Professor Barrett Thomas



Copyright by
JUSTIN CHRISTOPHER GOODSON

2010
All Rights Reserved



Graduate College
The University of Iowa

Iowa City, Iowa

CERTIFICATE OF APPROVAL

PH.D. THESIS

This is to certify that the Ph.D. thesis of

Justin Christopher Goodson

has been approved by the Examining Committee for the
thesis requirement for the Doctor of Philosophy degree
in Business Administration at the July 2010 graduation.

Thesis committee:

Jeffrey Ohlmann, Thesis Supervisor

Barrett Thomas, Thesis Supervisor

Ann Campbell

Timothy Lowe

Pavlo Krokhmal



To Heidi, Dallin, Christian, Bethany, and Abigail

ii



My God hath been my support.

2 Nephi 4:20

iii



ACKNOWLEDGEMENTS

A candid remark from one of my children seems appropriate: “You’re still

working on the truck problem? Wow, that’s a really long homework assignment!”

With this in mind, I express my deepest appreciation to my wife, Heidi, and to my

children, Dallin, Christian, Bethany, and Abigail. Their patience and support have

enabled the completion of this thesis.

I am indebted to my advisors, Jeff Ohlmann and Barry Thomas. On many

occasions, I felt as though I had encountered insurmountable obstacles in my research.

Each time, their insight and direction led to a solution. I will always value the

friendship that grew out of our weekly meetings.

During the first two years of my doctoral program, Thaddeus Sim and Kaan

Ataman were my mentors. I appreciate their frequent advice and words of encour-

agement. Throughout my studies I have enjoyed the camaraderie of fellow doctoral

students Brent Hickman, Adam Bradford, James Lambert, Jieqiu Chen, and Nick

Leifker. Their willingness to discuss the complexities of graduate student life put my

mind at ease on more than one occasion.

I express my appreciation to various faculty members in my department and

on my committee: Nick Street, Kurt Anstreicher, Sam Burer, Ann Campbell, Ray de

Matta, and Pavlo Krokhmal. During my time at the University of Iowa, they have

offered support and timely advice. I would also like to thank my department secretary,

Barb Carr, and the Ph.D. program coordinator, Renea Jay – their assistance with

iv



administrative tasks was very much appreciated.

Regarding the “nuts and bolts” of my thesis, I sincerely appreciate the time

and efforts of Robert Hansen. He taught me the nuances of programming in C++,

something I never could have learned from a textbook or instruction manual. I also

gratefully acknowledge the University of Iowa Information Technology Services for

allowing me access to a computing cluster. Without their assistance, I literally would

have been unable to carry out the computational experiments necessary to complete

my thesis. I also express my appreciation for a grant from the Executive Council for

Graduate and Professional Students at the University of Iowa. The grant allowed for

the purchase of a computer on which I conducted many preliminary computational

experiments.

v



ABSTRACT

We present solution methodologies for vehicle routing problems (VRPs) with

stochastic demand, with a specific focus on the vehicle routing problem with stochas-

tic demand (VRPSD) and the vehicle routing problem with stochastic demand and

duration limits (VRPSDL). The VRPSD and the VRPSDL are fundamental prob-

lems underlying many operational challenges in the fields of logistics and supply chain

management.

We model the VRPSD and the VRPSDL as large-scale Markov decision pro-

cesses. We develop cyclic-order neighborhoods, a general methodology for solving a

broad class of VRPs, and use this technique to obtain static, fixed route policies for

the VRPSD. We develop pre-decision, post-decision, and hybrid rollout policies for ap-

proximate dynamic programming (ADP). We provide analytical results that position

these policies within the rollout literature and identify conditions under which our

proposed rollout methods are equivalent to the traditional form. Our rollout policies

lay a methodological foundation for solving large-scale sequential decision problems

and provide a framework for developing dynamic routing policies.

Our dynamic rollout policies for the VRPSDL significantly improve upon

benchmark fixed route policies frequently implemented in practice. We also identify

circumstances in which our rollout policies appear to offer little or no benefit com-

pared to this benchmark. These observations can guide managerial decision making

regarding when the use of our procedures is justifiable. We also demonstrate that our

vi



methodology lends itself to real-time implementation, thereby providing a mechanism

to make high-quality, dynamic routing decisions for large-scale operations.

Finally, we consider a more traditional ADP approach to the VRPSDL by

developing a parameterized linear function to approximate the value functions corre-

sponding to our problem formulation. We estimate parameters via a simulation-based

algorithm and show that initializing parameter values via our rollout policies leads to

significant improvements. However, we conclude that additional research is required

to develop a parametric ADP methodology comparable or superior to our rollout

policies.

vii



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

LIST OF ALGORITHMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

CHAPTER

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 PROBLEM FORMULATIONS . . . . . . . . . . . . . . . . . . . . . . 7

2.1 VRPSD Formulation . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.1 States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.3 Transition to Post-decision State . . . . . . . . . . . . . . 12
2.1.4 Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.5 Transition to Pre-decision State . . . . . . . . . . . . . . 13
2.1.6 Criterion and Objective . . . . . . . . . . . . . . . . . . . 14

2.2 VRPSDL Formulation . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.3 Transition to Post-decision State . . . . . . . . . . . . . 20
2.2.4 Rewards . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.5 Transition to Pre-decision State . . . . . . . . . . . . . . 21
2.2.6 Criterion and Objective . . . . . . . . . . . . . . . . . . 22

3 CYCLIC-ORDER NEIGHBORHOODS FOR VEHICLE ROUTING
PROBLEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Generation of Candidate Routes from a Cyclic Order . . . . . . . 26
3.3 Cyclic-Order Neighborhoods . . . . . . . . . . . . . . . . . . . . 29
3.4 Updating Procedure for Neighboring Cyclic Orders . . . . . . . . 31
3.5 Application of Cyclic-Order Neighborhood Search . . . . . . . . 39

3.5.1 Test Problems . . . . . . . . . . . . . . . . . . . . . . . . 39
3.5.2 Implementation Details . . . . . . . . . . . . . . . . . . . 42
3.5.3 Benefit of Updating Procedures . . . . . . . . . . . . . . . 45
3.5.4 VRP Results . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.5.5 VRPSD Results . . . . . . . . . . . . . . . . . . . . . . . 51

viii



3.6 Conclusion and Future Research . . . . . . . . . . . . . . . . . . 53

4 ROLLOUT POLICIES FOR APPROXIMATE DYNAMIC
PROGRAMMING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3 Traditional Rollout Policies . . . . . . . . . . . . . . . . . . . . 59
4.4 Pre- and Post-Decision Rollout Policies . . . . . . . . . . . . . . 63
4.5 Hybrid Rollout Policies . . . . . . . . . . . . . . . . . . . . . . . 66
4.6 Sequentially Consistent Heuristics . . . . . . . . . . . . . . . . . 68
4.7 Restricted Optimal Heuristics . . . . . . . . . . . . . . . . . . . 74

5 A HYBRID ROLLOUT POLICY FOR THE VEHICLE ROUTING
PROBLEM WITH STOCHASTIC DEMAND AND DURATION
LIMITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.2 VRPSDL-Related Literature . . . . . . . . . . . . . . . . . . . . 81
5.3 A Hybrid Rollout Policy . . . . . . . . . . . . . . . . . . . . . . 84

5.3.1 Fixed Route Heuristic . . . . . . . . . . . . . . . . . . . 85
5.3.2 Action Space Partition . . . . . . . . . . . . . . . . . . . 91

5.4 Computational Experience . . . . . . . . . . . . . . . . . . . . . 92
5.4.1 Benchmark Fixed Route Policies . . . . . . . . . . . . . . 93
5.4.2 Problem Instances . . . . . . . . . . . . . . . . . . . . . 95
5.4.3 Implementation Details . . . . . . . . . . . . . . . . . . . 97
5.4.4 Results and Discussion . . . . . . . . . . . . . . . . . . . 99

5.5 Conclusion and Future Research . . . . . . . . . . . . . . . . . . 105
5.6 Polynomial-Time Procedure . . . . . . . . . . . . . . . . . . . . 107

6 A RESTOCKING-BASED PRE-DECISION ROLLOUT POLICY
FOR THE VEHICLE ROUTING PROBLEM WITH STOCHASTIC
DEMAND AND DURATION LIMITS . . . . . . . . . . . . . . . . . . 110

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.2 Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . . 111
6.3 Restocking-Related Literature . . . . . . . . . . . . . . . . . . . 116
6.4 A Pre-Decision Rollout Policy . . . . . . . . . . . . . . . . . . . 118
6.5 Evaluating Restocking Policies . . . . . . . . . . . . . . . . . . . 118

6.5.1 Dynamic Programming Formulation . . . . . . . . . . . . 119
6.5.2 Structural Properties . . . . . . . . . . . . . . . . . . . . 123
6.5.3 Solution Approach . . . . . . . . . . . . . . . . . . . . . 125

6.6 Computational Experience . . . . . . . . . . . . . . . . . . . . . 130
6.7 Conclusion and Future Research . . . . . . . . . . . . . . . . . . 137

ix



7 PARAMETRIC APPROXIMATE DYNAMIC PROGRAMMING FOR
THE VEHICLE ROUTING PROBLEM WITH STOCHASTIC
DEMAND AND DURATION LIMITS . . . . . . . . . . . . . . . . . . 142

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
7.2 Related Literature . . . . . . . . . . . . . . . . . . . . . . . . . 143
7.3 Value Function Approximation . . . . . . . . . . . . . . . . . . . 147

7.3.1 Basis Functions . . . . . . . . . . . . . . . . . . . . . . . 148
7.3.2 Partitioning Method . . . . . . . . . . . . . . . . . . . . 150
7.3.3 Parameter Estimation . . . . . . . . . . . . . . . . . . . 151

7.4 Computational Experience . . . . . . . . . . . . . . . . . . . . . 154
7.5 Conclusion and Future Research . . . . . . . . . . . . . . . . . . 159

8 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

x



LIST OF TABLES

Table

3.1 Example of Updating R(π) to Obtain R(π′) for a 3-shift Neighbor with
i = 2 and j = 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Percentage Decreases in CPU Time When R(π′) is Obtained by Updating
R(π) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Computational Results for the VRP . . . . . . . . . . . . . . . . . . . . . 49

3.4 Computational Results for the VRPSD . . . . . . . . . . . . . . . . . . . 52

5.1 Problem Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.2 Confidence Intervals for Percent Increase in Demand Served by Hybrid
Rollout Policies Over Benchmark Fixed Route Policies . . . . . . . . . . 101

5.3 Average and Maximum Per Epoch CPU Seconds for Hybrid Rollout
Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.1 Example Data and Results for A Priori and Restocking Policies . . . . . 113

6.2 Confidence Intervals for Percent Increase in Demand Served by Pre-
Decision Rollout Policy πRH̃′′ Over Benchmark Restocking Policies . . . 134

6.3 Confidence Intervals for Percent Increase in Demand Served by Pre-
Decision Rollout Policy πRH̃′′ Over Hybrid Rollout Policy πHY . . . . . . 136

6.4 Average and Maximum Per Epoch CPU Seconds for Pre-Decision Rollout
Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

xi



LIST OF FIGURES

Figure

2.1 VRPSD Timeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 VRPSDL Timeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Optimal VRP Solution Corresponding to π – We Note that this Solution
Corrects a Minor Oversight in Ryan et al. (1993) . . . . . . . . . . . . . 31

3.2 Optimal VRP Solution Corresponding to π′ . . . . . . . . . . . . . . . . 32

4.1 Markov Decision Process Depicted as a Decision Tree . . . . . . . . . . . 59

4.2 Traditional, Post-Decision, Pre-Decision, and Hybrid Rollout Policies . . 62

6.1 Example A Priori Route . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.2 Example Restocking Route . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.3 Example Dynamic Program . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.1 ADP Results with |P| = 2 Regions . . . . . . . . . . . . . . . . . . . . . 155

7.2 ADP Results with |P| = 5 Regions . . . . . . . . . . . . . . . . . . . . . 156

7.3 ADP Results with |P| = 11 Regions . . . . . . . . . . . . . . . . . . . . . 157

7.4 ADP Results when Parameters are Initialized to Zero . . . . . . . . . . . 160

7.5 ADP Results when Parameters are Initialized via the Hybrid Rollout . . 161

xii



LIST OF ALGORITHMS

Algorithm

3.1 Sweep Procedure for Customer π(i) Beginning at Customer π(j) . . . . . 27

3.2 Update R(π) to Obtain R(π′) for a k-shift Neighbor . . . . . . . . . . . 34

3.3 Update R(π) to Obtain R(π′) for a Scramble or Reverse Neighbor . . . . 37

3.4 Update R(π) to Obtain R(π′) for an Exchange Neighbor . . . . . . . . . 40

4.1 Calculation of Expected Future Reward in Traditional Rollout Policies . 61

4.2 Calculation of Expected Future Reward in Post-Decision Rollout Policies 65

5.1 Hybrid Rollout Policy for the VRPSDL . . . . . . . . . . . . . . . . . . . 85

5.2 Calculation of Expected Demand Served at Customer vk for an A Priori
Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.1 Pre-Decision Rollout Policy for the VRPSDL . . . . . . . . . . . . . . . 119

6.2 Valuation of Optimal Restocking Policy . . . . . . . . . . . . . . . . . . 129

7.1 k-Means Clustering Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 151

7.2 Double Pass Parameter Estimation Procedure . . . . . . . . . . . . . . . 152

xiii



1

CHAPTER 1
INTRODUCTION

An important aspect of supply chain management is the coordination of logis-

tical operations for the transport of products within the supply chain. The task of

designing delivery (or pickup) routes to service customers in a company’s supply chain

is known in the literature as a vehicle routing problem (VRP). In practice, customer

demands may not be known with certainty prior to arrival at customer locations.

In such situations, vehicle capacity may be insufficient to fulfill the demand actually

encountered, thereby necessitating a return trip to a central depot to replenish capac-

ity before continuing to service customers. Designing routes that effectively manage

these potential route failures is an important consideration and a difficult task.

In this thesis, we present solution methodologies to address vehicle routing

in the presence of stochastic demand. The two problem variants we consider share

the following base problem description. Let G = (N , E) be a complete graph where

N = {0, 1, . . . , n} is a set of n + 1 nodes and E = {(i, j) : i, j ∈ N} is the set of

edges connecting the nodes. Node 0 represents a depot and nodes 1, . . . , n represent

customer locations. Vehicles routes begin and end at the depot. Travel times t(i, j)

associated with each edge (i, j) ∈ E are known and assumed deterministic. Let

M = {1, . . . ,m} be a set of m identical vehicles initially located at the depot. Let

Q denote vehicle capacity. Customer demands are random variables that follow a

known joint probability distribution f with a support restricted to be a subset of

[0,∞)n. Prior to arrival at customer locations, customer demands are known only
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in distribution. Upon arrival, customer demands are observed and served to the

maximum extent, given available vehicle capacity. When its capacity is reached or

exceeded, a vehicle must return to the depot to restore capacity up to Q.

The first variant we consider requires demand at each customer to be fully

served and employs a traditional objective of minimizing expected costs. We refer to

this variant as the vehicle routing problem with stochastic demand (VRPSD). Histor-

ically, the VRPSD serves as the fundamental problem underlying many operational

challenges in the field of logistics. For example, in less-than-truckload operations,

an estimate of customer demands may be available at the time vehicle routes are

planned, but actual demands often differ from the initial estimate. Additionally, in

many vendor-managed inventory systems, actual customer inventory levels are first

observed upon arrival to the customer. In such cases, vehicle capacity may be in-

adequate to fully serve customer demand, resulting in a route failure requiring the

vehicle to return to a central depot to replenish capacity before continuing to service

customers.

In the second variant, we do not require demand to be fully served. Instead,

we employ an objective of maximizing expected demand served subject to a route

duration limit, L, by which time, e.g., end of a working day, all vehicles must return

to the depot. Demand that remains unserved after an initial vehicle visit may possibly

be satisfied on subsequent visits by the same vehicle, or by another. We refer to this

variant as the vehicle routing problem with stochastic demand and duration limits

(VRPSDL). In §2, we use the language of Markov decision processes (MDPs) to
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formulate the VRPSD and VRPSDL as stochastic shortest path problems.

The objective of the VRPSDL differs from much of the vehicle routing liter-

ature, which typically seeks to minimize some measure of expected travel cost while

requiring that all customer demand be served. Because customer demands are not

known until arrival at customer locations, and because vehicle routes must adhere to a

route duration limit, there is a positive probability that some customer demands may

be unserved, regardless of the fleet size and routing. Thus, employing a traditional

cost-minimization objective while requiring all customer demands be served results in

an ill-defined problem. Furthermore, the modification reflects an increased emphasis

on customer service levels (van de Klundert and Wormer, 2010). It also addresses

the fact that employee salaries and benefits dominate vehicle operating costs – this

is especially true for the large number of unionized drivers in the trucking industry

(ATA Economics & Statistical Analysis Department, 1999). Thus, companies are

motivated to maximize the use of drivers’ time, which occurs when drivers serve as

much demand as possible. When vehicle capacity and route duration constraints are

binding, this objective implicitly minimizes travel costs because efficient routes are

necessary to maximize demand served.

A common practice to handle uncertainty in customer demands is to design

a set of static, or fixed, routes for vehicles to follow. Often, fixed route policies

implement simple recourse strategies to accommodate route failures, such as requiring

a vehicle to return to the central depot, replenish capacity, and continue serving

customers in the order specified by the fixed route. An optimal fixed route policy
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optimizes the expected routing cost subject to these restrictions. While these static

policies can perform well on average, additional improvements may be obtained by

dynamically modifying the routing plan as customer demands become known. Recent

advances in communication technologies make such modifications possible, but the

body of literature addressing these dynamic and stochastic VRPs is limited.

In this thesis, we develop methodologies to obtain both fixed and dynamic

routing policies for VRPs with stochastic demand. In §3, we develop a general

methodology for solving a broad class of VRPs and demonstrate its effectiveness by

obtaining high-quality fixed route policies for the VRPSD. The methodology employs

a cyclic order solution representation for VRPs. A cyclic order encoding can actually

correspond to a very large number of VRP solutions, but the best of these VRP so-

lutions can be identified via a polynomial time algorithm. The primary contribution

of §3 is the design and implementation of neighborhoods to search cyclic orders. We

demonstrate the potential of cyclic-order neighborhoods to facilitate the discovery of

high quality solutions by embedding them within a simulated annealing framework

to solve the classical VRP and the VRPSD. We propose an updating procedure and

demonstrate its ability to reduce the computational expense of our approach. Our

results underscore the potential for the use of cyclic-order neighborhoods as a general

solution method for a variety of routing problems. Without tailoring our solution

procedure to a specific routing problem, we are able to obtain solutions to the classi-

cal VRP within 0.60 percent of best known solutions and are able to match 16 of 19

known optimal VRPSD solutions.
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The remainder of the thesis focuses on obtaining dynamic routing policies

for the VRPSDL. In §4, we lay the foundation for the dynamic policies of §5 and

§6 by developing new rollout policies for approximate dynamic programming (ADP).

ADP is a general solution methodology for dynamic and stochastic sequential decision

problems and seeks to overcome the well-known curses of dimensionality associated

with dynamic programs. Traditional rollout policies employ heuristic optimization to

approximate value functions in dynamic programs, but can be difficult to obtain for

problems with large action spaces. By partitioning the state transition of an MDP

(i.e., a stochastic dynamic program) into two parts, we introduce two extensions which

we refer to as pre-decision and post-decision rollout policies. Furthermore, we discuss

how these two new types of rollout policy may be used in combination, resulting

in a hybrid rollout policy that, in our experience, achieves high quality solutions

and results in a computational reduction sufficient for real-time implementation in

large-scale settings. We also provide analytical results that position our extensions

within the rollout literature and identify conditions under which our proposed rollout

methods are equivalent to the traditional form.

In §5 and §6, we use the MDP formulation of §2 and the rollout framework of

§4 to develop hybrid and pre-decision rollout policies for the VRPSDL. Similar to the

literature on dynamic solution methodologies for single-vehicle VRPs with stochastic

demand, a fixed route heuristic forms the basis of our rollout policy. We demonstrate

the effectiveness of our methods by solving large-scale instances with as many as 100

customers and 19 vehicles. By testing our procedure across a broad range of problem
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parameters, we empirically establish conditions under which the demand served by

our rollout policies is significantly higher than the demand served by benchmark fixed

route policies. We also identify circumstances in which our rollout policies appear to

offer little or no benefit compared to this benchmark. These observations can guide

managerial decision making regarding when the use of our procedures is justifiable.

Finally, we demonstrate that our methodology lends itself to real-time implementa-

tion, thereby providing a mechanism to make high-quality, dynamic routing decisions

for large-scale operations.

In §7, we depart from our rollout framework and make first steps toward de-

veloping a parametric ADP method for obtaining dynamic VRPSDL policies. Unlike

our rollout procedures, which approximate the value functions via fixed route poli-

cies, this chapter considers a parameterized linear function to approximate the value

functions. We estimate the parameters via a simulation-based algorithm. The com-

putational results we present indicate that initializing parameter values via the rollout

methods of §5 and §6 leads to significant improvements. However, we conclude that

additional research is required to develop a parametric ADP methodology comparable

or superior to the rollout policies of §5 and §6.

We conclude the thesis in §8 by summarizing our contributions and by outlin-

ing directions for future research.
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CHAPTER 2
PROBLEM FORMULATIONS

In this chapter, we use the language of Markov decision processes (MDPs) to

formulate the VRPSD and the VRPSDL as stochastic shortest path problems. We

refer to Puterman (1994) and Bertsekas (2000) for an introduction to MDPs and

stochastic shortest path problems. Contrary to standard modeling techniques for

MDPs, we split the transition from one state to another into two parts: a deterministic

transition to a post-decision state followed by a random transition to a pre-decision

state. Modeling transitions in this fashion is advocated by Powell (2007) and is

essential when employing the rollout policies we develop in §4.

2.1 VRPSD Formulation

We first summarize the sequence of events that gives rise to our problem

formulation. Figure 2.1 provides a timeline that illustrates the sequence of events

and shows how we incorporate them into our model. We elaborate on terms and

notation referenced below and in Figure 2.1 in subsequent sections. A decision epoch

is triggered by the arrival of one or more vehicles at customer locations or at the

depot (multiple vehicles may arrive simultaneously). The random time of decision

epoch k, Tk, marks the end of period k − 1 and the beginning of period k. Upon

vehicle arrival at customer locations, actual demand is observed. In addition, vehicle

capacities are replenished for vehicles arriving at the depot. These events are captured

in the random transition from post-decision state sak−1 to pre-decision state sk (the
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transition is random because customer demands may not be known prior to Tk). For

vehicles at customer locations or at the depot (i.e., vehicles not en route), an action

is selected to indicate where vehicles will travel next. Customer demand at current

vehicle locations is then served to the fullest extent given available vehicle capacity

and the selected action is executed incurring a cost of Ck(sk, a). These events are

captured in the deterministic transition from pre-decision state sk to post-decision

state sak. The next period begins at time Tk+1, when one or more vehicles arrive at

their respective destinations. The process then repeats until the pre-decision state is

in the set of absorbing states, SK .

2.1.1 States

The state of the system captures all relevant information to make routing

decisions and includes vehicle destinations, arrival times at vehicle destinations, re-

maining vehicle capacities, unserved customer demand, and the history of observed

demand. We represent attributes of vehicle c ∈ M by the tuple (lc, tc, qc), where

lc ∈ N is the destination of vehicle c (or its current location if the vehicle has ar-

rived), tc ∈ [0,∞) is the time at which vehicle c will arrive at lc, and qc ∈ [0, Q] is the

available capacity of vehicle c. Let (l, t, q) = (lc, tc, qc)c∈M denote the vector of vehicle

attributes. We characterize demand at customer i ∈ N \{0} by the pair (di, xi), where

di ∈ {{?} ∪ [0,∞)} is the unserved demand at customer i and xi ∈ {{?} ∪ [0,∞)}

is the observed demand at customer i. We include x in the state because transition

probabilities are conditional upon observed demands. Note that (di, xi) = (?, ?) in-
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Figure 2.1: VRPSD Timeline
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dicates that the demand at customer i is currently unknown. Furthermore, di = ? if

xi = ? and the demand served at customer i is xi− di. Let (d, x) = (di, xi)i∈N denote

the vector of unserved and observed demand. At decision epoch k, a state sk in state

space S = Nm× [0,∞)m× [0, Q]m×{{?}∪ [0,∞)}n×{{?}∪ [0,∞)}n takes the form

((l, t, q), (d, x)). The initial state is s0 = ((0, 0, Q)m, (?, ?)n). The set of absorbing

states is SK = {((0, t, Q)m, (0, 0)) : t ∈ [0,∞)m}, where K denotes the final decision

epoch.

We note that the inclusion of arrival time in the state variable only serves to

identify the time of the next decision epoch. An alternative is to model the problem

with a constant amount of time between epochs, e.g., 10 minutes or one hour. We

choose to include time in the state variable to be consistent with our VRPSDL model

in §2.2, where arrival times play a more prominent role.

Although Yang et al. (2000) demonstrate that an optimal single-vehicle policy

with and equivalent cost exists for any multi-vehicle policy, this result does not hold

in the presence of side constraints. Therefore, our formulation explicitly accounts for

multiple vehicles as we impose a constraint (elaborated upon in §3) that requires the

expected demand served by a vehicle to be less than or equal to vehicle capacity.

2.1.2 Actions

An action, taken at each decision epoch, is an assignment of the vehicles inM

to locations in N . Given state sk, decision epoch k occurs at time Tk = minc∈M tc(k).

At decision epoch k, let M′
k = arg minc∈M tc(k) be the set of vehicles currently at
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a customer location or at the depot (i.e., they are no longer en route). For brevity,

we suppress notational reliance on k. A vehicle in M′ may be assigned to the depot

to replenish or may be assigned to a customer whose demand is either unknown or

will be pending after customer demands are served in the current period. Vehicles in

{M \M′} remain en route to their destinations, i.e., we do not consider diverting

them.

We place the following restrictions on the available actions. If a vehicle’s

capacity will be depleted by serving customer demand at its current location, then

the vehicle must return to the depot to replenish. We prohibit actions assigning more

than one vehicle to a customer, but allow multiple vehicles to return to the depot.

Action a is an m-dimensional vector where the cth element, ac, is the action

directing vehicle c ∈M. The set of actions available in state sk is

A(sk) = { a ∈ Nm :

ac = lc ∀ c ∈ {M \M′}, (2.1)

ac 6= lc ∀ c ∈M′, (2.2)

ac = 0∀ {c ∈M′ : qc ≤ dlc , lc 6= 0}, (2.3)

ac 6= aj ∀ {c, j ∈M : c 6= j, ac 6= 0, aj 6= 0}, (2.4)

ac 6∈ {j ∈ {∪h∈M′lh \ {0}} : dj ≤ qveh(j)}, (2.5)

ac 6∈ {j ∈ {N \ {0}} : dj = 0}. (2.6)

Condition (2.1) requires that vehicles en route continue to their current destination.
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For vehicles inM′, condition (2.2) disallows assignment to the current location (i.e.,

waiting is not permitted). Condition (2.3) requires vehicles in M′ to return to the

depot if capacity will be depleted by serving customer demands at current locations.

Condition (2.4) prevents assignment of multiple vehicles to customer locations, except

in the case of assignments to the depot. Conditions (2.5) and (2.6) disallow assignment

of vehicles to locations with zero demand (veh(j) denotes the vehicle at location j).

2.1.3 Transition to Post-decision State

Given that the state is currently sk and that action a ∈ A(sk) is selected, a

deterministic transition is made to post-decision state sak = ((la, ta, qa), (da, xa)) by

updating vehicle destinations, vehicle arrival times, remaining vehicle capacities, and

served demand. Vehicle destinations in state sak are lac = ac for all c ∈ M. Arrival

times are set to

tac =


tc + t(lc, l

a
c ), ∀ c ∈M′

tc, ∀ c ∈ {M \M′}

. (2.7)

We update remaining vehicle capacities to reflect the demand served at each location

visited at the current epoch:

qac =


max{qc − dlc , 0}, ∀ c ∈ {j ∈M′ : lj 6= 0}

qc, otherwise

. (2.8)

In addition, we update unserved customer demands:
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daj =


max{dj − qveh(j), 0}, ∀ j ∈ {∪c∈M′lc \ {0}}

dj, otherwise

. (2.9)

Observed demands remain unchanged, thus xa = x.

2.1.4 Costs

A transition from pre-decision state sk to post-decision state sak results in a

cost Ck(sk, a) =
∑

c∈MCk,c(sk, a) equal to the travel time incurred by action a, where

Ck,c(sk, a) =


t(lc, ac), ∀ c ∈M′

0, otherwise

. (2.10)

2.1.5 Transition to Pre-decision State

At decision epoch k+1, a transition is made from post-decision state sak to pre-

decision state sk+1 = ((l, t, q), (d, x)) by observing customer demand and replenishing

the capacity of vehicles at the depot. The joint density function f governs state

transitions conditional on observed demand x. While it would also be correct to model

capacity replenishment in the transition to the post-decision state (as a consequence

of assigning a vehicle to the depot), we choose to model it in the transition to the pre-

decision state because capacity is not actually replenished until a vehicle arrives at the

depot. In this transition, vehicle destinations and arrival times remain unchanged,

thus l = la and t = ta. We update capacities by
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qc =


Q, ∀ c ∈ {j ∈M′ : lj = 0}

qac , otherwise

. (2.11)

Let N ′ = {lac : c ∈M′, lac 6= 0, xalc = ?} be the set of customers with unknown demand

at which a vehicle has arrived at the current decision epoch. If x̂ is the observed

demand at decision epoch k + 1, then set

xi =


x̂i, i ∈ N ′

xai , otherwise

(2.12)

and

di =


x̂i, i ∈ N ′

dai , otherwise

. (2.13)

2.1.6 Criterion and Objective

We seek a policy that minimizes the expected travel time. Because all informa-

tion required to make a decision is contained in the current state, it is straightforward

to show that the optimal policy is Markovian and deterministic (Puterman, 1994).

Let Π be the set of all Markovian deterministic policies. A policy π ∈ Π defines a

decision function δπ(s) : s 7→ A(s) that maps each state to an action. The criterion

is

V π
0 = Eπ

{
K∑
k=0

Ck(sk, δ
π(sk))

∣∣∣s0

}
. (2.14)
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We seek a policy π? such that V π?

0 ≤ V π
0 for all π ∈ Π.

2.2 VRPSDL Formulation

Although our VRPSDL and VRPSD formulations are similar, there is a fun-

damental difference. As noted in §1, the objective of the VRPSDL is to maximize

expected demand served subject to a route duration limit. This difference changes

the set of absorbing states, the feasible action set, the criterion, and the objective;

other elements of the formulation are the same. For completeness, we provide the

VRPSDL formulation in its entirety.

We first summarize the sequence of events that gives rise to our problem

formulation. Figure 2.2 provides a timeline that illustrates the sequence of events

and shows how we incorporate them into our model. A decision epoch is triggered

by the arrival of one or more vehicles at customer locations or at the depot (multiple

vehicles may arrive simultaneously). The random time of decision epoch k, Tk, marks

the end of period k−1 and the beginning of period k. Upon vehicle arrival at customer

locations, actual demand is observed. In addition, vehicle capacities are replenished

for vehicles arriving at the depot. These events are captured in the random transition

from post-decision state sak−1 to pre-decision state sk (the transition is random because

customer demands may not be known prior to Tk). For vehicles at customer locations

or at the depot (i.e., vehicles not en route), an action is selected to indicate where

vehicles will travel next. Customer demand at current vehicle locations is then served

to the fullest extent given available vehicle capacity (recorded as reward Rk(sk, a))
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Figure 2.2: VRPSDL Timeline

and the selected action is executed. These events are captured in the deterministic

transition from pre-decision state sk to post-decision state sak. The next period begins

at time Tk+1, when one or more vehicles arrive at their respective destinations. The

process then repeats until the pre-decision state is in the set of absorbing states, SK .

2.2.1 States

The state of the system captures all relevant information to make routing deci-

sions and includes vehicle destinations, arrival times at vehicle destinations, remaining
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vehicle capacities, unserved customer demand, and the history of observed demand.

We represent attributes of vehicle c ∈M by the tuple (lc, tc, qc), where lc ∈ N is the

destination of vehicle c (or its current location if the vehicle has arrived), tc ∈ [0, L] is

the time at which vehicle c will arrive at lc, and qc ∈ [0, Q] is the available capacity of

vehicle c. Let (l, t, q) = (lc, tc, qc)c∈M denote the vector of vehicle attributes. We char-

acterize demand at customer i ∈ N \ {0} is characterized by the pair (di, xi), where

di ∈ {{?} ∪ [0,∞)} is the unserved demand at customer i and xi ∈ {{?} ∪ [0,∞)}

is the observed demand at customer i. We include x in the state because transition

probabilities are conditional upon observed demands. Note that (di, xi) = (?, ?) in-

dicates that the demand at customer i is currently unknown. Furthermore, di = ?

if xi = ? and the demand served at customer i is xi − di. Let (d, x) = (di, xi)i∈N

denote the vector of unserved and observed demand. At decision epoch k, a state sk

in state space S = Nm × [0, L]m × [0, Q]m × {{?} ∪ [0,∞)}n × {{?} ∪ [0,∞)}n takes

the form ((l, t, q), (d, x)). The initial state is s0 = ((0, 0, Q)m, (?, ?)n). As we require

all vehicles to return to the depot by the duration limit, the set of absorbing states

is SK = {((0, L,Q)m, (d, x)) : di = ? if xi = ? and di ≤ xi if xi 6= ?}, where K denotes

the final decision epoch.

2.2.2 Actions

An action, taken at each decision epoch, is an assignment of the vehicles inM

to locations in N . Given state sk, decision epoch k occurs at time Tk = minc∈M tc(k).

At decision epoch k, let M′
k = arg minc∈M tc(k) be the set of vehicles currently at
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a customer location or at the depot (i.e., they are no longer en route). For brevity,

we suppress notational reliance on k. A vehicle in M′ may be assigned to the depot

to replenish or may be assigned to a customer whose demand is either unknown or

will be pending after customer demands are served in the current period. Vehicles in

{M \M′} remain en route to their destinations, i.e., we do not consider diverting

them.

We place the following restrictions on the available actions. If a vehicle’s

capacity will be depleted by serving customer demand at its current location, then

the vehicle must return to the depot to replenish. We prohibit actions assigning more

than one vehicle to a customer, but allow multiple vehicles to return to the depot.

Actions requiring a vehicle to return to the depot at a time greater than L are also

prohibited; it is possible to identify actions violating L since travel times are known

and deterministic.

Action a is an m-dimensional vector where the cth element, ac, is the action

directing vehicle c ∈M. The set of actions available in state sk is

A(sk) = { a ∈ Nm :

ac = lc ∀ c ∈ {M \M′}, (2.15)

ac 6= lc ∀ c ∈M′, (2.16)

ac = 0∀ {c ∈M′ : qc ≤ dlc , lc 6= 0}, (2.17)

ac 6= aj ∀ {c, j ∈M : c 6= j, ac 6= 0, aj 6= 0}, (2.18)
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ac 6∈ {j ∈ {∪h∈M′lh \ {0}} : dj ≤ qveh(j)}, (2.19)

ac 6∈ {j ∈ {N \ {0}} : dj = 0}, (2.20)

ac 6∈ {j ∈ N : Tk + t(lc, j) + t(j, 0) > L}}. (2.21)

Condition (2.15) requires that vehicles en route continue to their current destination.

For vehicles in M′, condition (2.16) disallows assignment to the current location

(i.e., waiting is not permitted). Condition (2.17) requires vehicles in M′ to return

to the depot if capacity will be depleted by serving customer demands at current

locations. Condition (2.18) prevents assignment of multiple vehicles to customer

locations, except in the case of assignments to the depot. Conditions (2.19) and

(2.20) disallow assignment of vehicles to locations with zero demand (veh(j) denotes

the vehicle at location j). Condition (2.21) prohibits the assignment of vehicles to

locations that will result in violations of the route duration limit.

It is instructive to compare the action space described by (2.15)-(2.21) to the

action space of the single-vehicle problems considered in the literature (see §5.2).

In a single-vehicle problem, an action is a scalar representing the location to which

the vehicle will travel next (e.g., a customer with unknown/pending demand or the

depot). In our multi-vehicle formulation, an action is a vector with one element

for each of the m vehicles. Generally speaking, vector-valued actions can result in

very large action spaces (Powell, 2010b). At a given decision epoch, the VRPSDL

action space is most likely to experience a combinatorial explosion when the number
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of vehicles in M′ is greater than one (actions for vehicles not in M′ are fixed).

Provided that these vehicles have positive capacity and enough time to visit additional

locations, then the number of feasible actions can be exponential in size, an upper

bound being |M′||N |. The difficulty imposed by this potentially large action space is

the original motivation for the methodology we develop in §4.

2.2.3 Transition to Post-decision State

Given that the state is currently sk and that action a ∈ A(sk) is selected, a

deterministic transition is made to post-decision state sak = ((la, ta, qa), (da, xa)) by

updating vehicle destinations, vehicle arrival times, remaining vehicle capacities, and

served demand. Vehicle destinations in state sak are lac = ac for all c ∈ M. Arrival

times are set to

tac =


tc + t(lc, l

a
c ), ∀ c ∈M′

tc, ∀ c ∈ {M \M′}

. (2.22)

We update remaining vehicle capacities to reflect the demand served at each location

visited at the current epoch:

qac =


max{qc − dlc , 0}, ∀ c ∈ {j ∈M′ : lj 6= 0}

qc, otherwise

. (2.23)

In addition, we update unserved customer demands:
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daj =


max{dj − qveh(j), 0}, ∀ j ∈ {∪c∈M′lc \ {0}}

dj, otherwise

. (2.24)

Observed demands remain unchanged, thus xa = x.

2.2.4 Rewards

A transition from pre-decision state sk to post-decision state sak results in a

reward Rk(sk, a) =
∑

c∈MRk,c(sk, a) equal to the served demand, where

Rk,c(sk, a) =


min{dlc , qc}, ∀ c ∈ {j ∈M′ : lj 6= 0}

0, otherwise

. (2.25)

To be consistent with standard MDP modeling techniques, we denote the reward

as a function of the action selected. Note, however, that the reward is a function

of demand served at current vehicle locations and is therefore independent of the

selected action.

2.2.5 Transition to Pre-decision State

At decision epoch k+1, a transition is made from post-decision state sak to pre-

decision state sk+1 = ((l, t, q), (d, x)) by observing customer demand and replenishing

the capacity of vehicles at the depot. The joint density function f governs state

transitions conditional on observed demand x. While it would also be correct to model

capacity replenishment in the transition to the post-decision state (as a consequence

of assigning a vehicle to the depot), we choose to model it in the transition to the pre-
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decision state because capacity is not actually replenished until a vehicle arrives at the

depot. In this transition, vehicle destinations and arrival times remain unchanged,

thus l = la and t = ta. We update capacities by

qc =


Q, ∀ c ∈ {j ∈M′ : lj = 0}

qac , otherwise

. (2.26)

Let N ′ = {lac : c ∈M′, lac 6= 0, xalc = ?} be the set of customers with unknown demand

at which a vehicle has arrived at the current decision epoch. If x̂ is the observed

demand at decision epoch k + 1, then set

xi =


x̂i, i ∈ N ′

xai , otherwise

(2.27)

and

di =


x̂i, i ∈ N ′

dai , otherwise

. (2.28)

2.2.6 Criterion and Objective

We seek a policy that maximizes the expected demand served. Because all in-

formation required to make a decision is contained in the current state, it is straight-

forward to show that the optimal policy is Markovian and deterministic (Puterman,

1994). Let Π be the set of all Markovian deterministic policies. A policy π ∈ Π

defines a decision function δπ(s) : s 7→ A(s) that maps each state to an action. The
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criterion is

V π
0 = Eπ

{
K∑
k=0

Rk(sk, δ
π(sk))

∣∣∣s0

}
. (2.29)

We seek a policy π? such that V π?

0 ≥ V π
0 for all π ∈ Π.
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CHAPTER 3
CYCLIC-ORDER NEIGHBORHOODS FOR VEHICLE ROUTING

PROBLEMS

3.1 Introduction

The problem of designing a minimum cost set of routes to serve a collection of

customers with a fleet of vehicles is a fundamental challenge in the field of logistics.

Because of the complexity of these vehicle routing problems (VRPs), vast literature is

devoted to the development of heuristic search methods that seek to achieve optimal

or near-optimal solutions with a reasonable amount of computational effort.

In this chapter, we examine a local search scheme utilizing the representation

of VRP solutions as a single permutation of customers, called a cyclic order (not to

be confused with cyclic transfers described in Thompson and Psaraftis (1993)). A

cyclic order is a permutation of the set of customers, {1, . . . , n}, for which the first

customer in the order is also treated as the (n+ 1)st, the second customer is also the

(n+2)st, and so forth. By iteratively sweeping across the permutation of customers to

generate a collection of candidate routes, Ryan et al. (1993) show that a cyclic-order

encoding corresponds to a very large number of VRP solutions from which the best

solution can be identified via a polynomial time algorithm. Furthermore, Ryan et al.

(1993) show that there exists a family of cyclic orders that correspond to an optimal

VRP solution. Motivated by these results, we investigate the application of local

search on the space of cyclic-order representations to seek optimal VRP solutions.

The main contribution of this chapter is the design and implementation of



25

local search neighborhoods for the cyclic-order representation of VRPs. The cyclic-

order neighborhood search in this chapter applies to the class of VRP problems in

which a homogeneous fleet of capacitated vehicles serves a set of customers such that:

(i) each customer is assigned to exactly one vehicle route, (ii) the objective is to find

a feasible set of routes x? such that f(x?) ≤ f(x) for all feasible route sets x, where

f is cost separable in the routes in x, and (iii) any constraints pertain to restrictions

on individual routes rather than collections of routes. We demonstrate the potential

of cyclic-order neighborhoods to facilitate the discovery of high quality solutions by

embedding them within a simulated annealing framework to solve the classical VRP

and the VRP with stochastic demand (VRPSD). Throughout this chapter, when we

refer to the VRPSD, we refer to the problem of obtaining an optimal fixed route

policy. Fixed route policies meet conditions (i), (ii), and (iii) because each customer

appears exactly once on a fixed route (although multiple visits may be required to

fully serve demand), calculating the cost of a fixed route policy (i.e., the criterion

(2.14)) is separable by route, and all constraints pertain to individual routes. When

generating a neighbor cyclic order from a current cyclic order, we demonstrate that

substantial computational savings result from employing our procedure for updating

the corresponding set of candidate routes.

In §3.2, we explain the generation of a set of candidate routes from a specified

cyclic order. We define neighborhoods to search cyclic orders in §3.3. In §3.4, we

describe methods to update the set of candidate routes in local search schemes. We

apply cyclic-order neighborhood search to the VRP and the VRPSD and present
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computational results in §3.5. We summarize the chapter and suggest directions for

future research in §3.6.

3.2 Generation of Candidate Routes from a
Cyclic Order

In this section, we detail the generation of the collection of candidate routes

corresponding to a cyclic order π. As in Gillett and Miller (1974), we use a sweep

procedure to generate R(π), the set of candidate routes consisting of contiguous

elements of π. Denoting the customer at the ith position of π by π(i), r = {π(i), π(i+

1), . . . , π(j)} is a route that visits the subset of customers corresponding to positions

i through j of π. We uniquely identify each route r ∈ R(π) by the first and last

customers of the subset of customers it visits. In this example, r can be uniquely

identified by the ordered pair 〈first(r), last(r)〉 = 〈π(i), π(j)〉.

Algorithm 3.1 describes a generic sweep procedure that we use throughout the

chapter. For a cyclic order π, a route set S, and indices i, j ∈ {1, . . . , n}, an arbitrary

call to SWEEP(π,S, i, j) begins by attempting to create a route r that visits the

subset of customers {π(i), π(i + 1), . . . , π(j)}; as before, we denote such a route as

〈π(i), π(j)〉. If r is feasible, we insert it into S, increment j, and repeat the procedure.

Otherwise, the procedure terminates and returns the updated S. As we discuss in

§3.1, π is cyclic. Thus, is j < i, then the corresponding route visits the subset of

customers {π(i), π(i + 1), . . . , π(n), π(1), . . . , π(j)}. Similarly, in line 2 of Algorithm

3.1, if index p = n, then incrementing sets p = 1.

To explain the use of Algorithm 3.1 to construct R(π), let Rπ(i) denote the

set of routes consisting of contiguous elements of π such that first(r) = π(i). We
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Algorithm 3.1 Sweep Procedure for Customer π(i) Beginning at Customer π(j)

1: procedure SWEEP(π,S, i, j)
2: for p = j to i− 1 step + 1 do

3: r ← 〈π(i), π(p)〉
4: if r is feasible then

5: S ← S ∪ r

6: else

7: break

8: return S

generate R(π) = ∪ni=1Rπ(i) by iteratively calling SWEEP(π, ∅, i, i) for i = 1, . . . , n

and storing the respective output in Rπ(i). For example, consider the cyclic order π =

(7, 8, 9, 10, 11, 12, 13, 1, 2, 3, 4, 5, 6) for the 13-customer problem instance given in

Ryan et al. (1993). We construct Rπ(1) by executing SWEEP(π, ∅, 1, 1) which first

creates the singleton route 〈π(1), π(1)〉 = 〈7, 7〉, followed by routes 〈π(1), π(2)〉 =

〈7, 8〉 and 〈π(1), π(3)〉 = 〈7, 9〉. In this example, 〈π(1), π(4)〉 = 〈7, 10〉 is infeasible

with respect to vehicle capacity, so the procedure terminates and returns Rπ(1) =

{〈7, 7〉, 〈7, 8〉, 〈7, 9〉}. Repeating the call to SWEEP(π, ∅, i, i) for each remaining po-

sition i results in the complete construction of R(π) = ∪13
i=1Rπ(i) as the left half of

Table 3.1 illustrates (the right-half of Table 3.1 will be used in a subsequent illustra-

tion).

Provided that a singleton route to each customer is feasible, R(π) will always

contain a subset of routes that corresponds to a feasible VRP solution (otherwise, the

problem instance is infeasible). In general, the total number of feasible VRP solutions

that can be assembled from R(π) cannot be determined a priori. However, for a
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Table 3.1: Example of Updating R(π) to Obtain R(π′) for a 3-shift Neighbor with
i = 2 and j = 8

i π(i) Rπ(i) π′(i) Rπ′(i)

1 7 〈7, 7〉 〈7, 8〉‡ 〈7, 9〉‡ 8 〈8, 8〉 〈8, 9〉
2 8 〈8, 8〉 〈8, 9〉 9 〈9, 9〉 〈9, 10〉
3 9 〈9, 9〉 〈9, 10〉 10 〈10, 10〉 〈10, 1〉∗ 〈10, 2〉∗

4 10 〈10, 10〉 〈10, 11〉‡ 1 〈1, 1〉 〈1, 2〉 〈1, 3〉
5 11 〈11, 11〉 〈11, 12〉 〈11, 13〉 2 〈2, 2〉 〈2, 3〉 〈2, 4〉
6 12 〈12, 12〉 〈12, 13〉 〈12, 1〉‡ 3 〈3, 3〉 〈3, 4〉
7 13 〈13, 13〉 〈13, 1〉‡ 〈13, 2〉‡ 〈13, 3〉‡ 4 〈4, 4〉 〈4, 5〉
8 1 〈1, 1〉 〈1, 2〉 〈1, 3〉 5 〈5, 5〉 〈5, 6〉
9 2 〈2, 2〉 〈2, 3〉 〈2, 4〉 6 〈6, 6〉 〈6, 7〉 〈6, 11〉∗

10 3 〈3, 3〉 〈3, 4〉 7 〈7, 7〉 〈7, 11〉∗ 〈7, 12〉∗

11 4 〈4, 4〉 〈4, 5〉 11 〈11, 11〉 〈11, 12〉 〈11, 13〉
12 5 〈5, 5〉 〈5, 6〉 12 〈12, 12〉 〈12, 13〉
13 6 〈6, 6〉 〈6, 7〉 〈6, 8〉‡ 13 〈13, 13〉 〈13, 8〉∗ 〈13, 9〉∗

solution with m vehicles, an upper bound on the number of feasible VRP solutions is

O
((|R(π)|

m

))
.

The concept of generating a VRP solution by sweeping a permutation of cus-

tomers was first proposed by Gillett and Miller (1974). Foster and Ryan (1976)

consider radial orderings of customers and show that by solving a linear program we

can find the feasible solution x?π such that f(x?π) ≤ f(xπ) for every feasible xπ ⊆ R(π).

Ryan et al. (1993) show that x?π can be found by solving a set partitioning problem

(SPP) where a column exists for each route in R(π) and each row represents one

of the n customers. In the SPP, the cost of each column is the cost of the corre-

sponding route (which can include a large fixed cost to reflect the cost of a vehicle).

Additionally, both Ryan et al. (1993) and Boctor and Renaud (2000) show that the

special structure of the routes produced by the sweep procedure allows such SPPs to

be solved in polynomial time by solving a series of shortest path problems. Renaud
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et al. (1996) and Renaud and Boctor (2002) employ this sweep method as a construc-

tion heuristic for vehicle routing problems. In contrast, we iteratively employ the

sweep procedure in a local search procedure. To the best of the authors’ knowledge,

this is the first work to examine local search for vehicle routing problems using the

cyclic-order representation.

3.3 Cyclic-Order Neighborhoods

While Ryan et al. (1993) establish that there exists at least one cyclic order

π? for which R(π?) contains the routes composing an optimal VRP solution, effective

means to obtain π? have not been explored in the literature. We propose a collection

of permutation-based neighborhoods to facilitate local search on the space of cyclic

orders.

In the following descriptions, dist(i, j) is the number of times index i of π must

be incremented such that it equals index j of π. That is, dist(i, j) = j − i if i ≤ j

and n− i+ j otherwise. We consider the following neighborhoods:

• k-shift. Select i, j ∈ {1, . . . , n} and shift π(i), . . . , π(i+ k − 1), as a group, to

the positions immediately prior to π(j). For a positive integer k < n − 1, a

k-shift neighborhood consists of the cyclic orders that can be constructed from

the set {i, j : dist(i, j) > k}.

• Scramble. Select i, j ∈ {1, . . . , n} and randomly shuffle π(i), . . . , π(j). A

scramble neighborhood consists of the cyclic orders that can be constructed

from all i, j pairs. If i = j, then the entire cyclic order is scrambled.

• Reverse. Select i, j ∈ {1, . . . , n} and reverse the order of π(i), . . . , π(j). A
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reverse neighborhood consists of the cyclic orders that can be constructed from

all i, j pairs. If i = j, then the entire cyclic order is reversed. Note that a

reverse neighborhood is a special case of the scramble neighborhood.

• Exchange. Select i, j ∈ {1, . . . , n} and exchange π(i) and π(j). An exchange

neighborhood consists of the cyclic orders that can be constructed from the set

{i, j : i < j}.

With respect to the number of cyclic orders, the size of each of the above

neighborhoods is O(n2). Because a cyclic order corresponds to a potentially large

number of VRP solutions, however, one potential advantage of operating on cyclic

orders rather than directly on VRP solutions is that a small change in the cyclic order

may result in significant change in the structure of the resulting VRP solution. To

illustrate the diversity of solutions that a cyclic-order neighborhood can generate, we

compare Figures 3.1 and 3.2, which display the optimal VRP solutions corresponding

to π = (7, 8, 9, 10, 11, 12, 13, 1, 2, 3, 4, 5, 6) and π′ = (7, 8, 9, 10, 12, 11, 13, 1, 2, 3, 4, 5, 6),

respectively, for the 13-customer problem from Ryan et al. (1993). We obtain π′ from

π by applying the exchange operation with i = 5 and j = 6. Comparing the route

structures in Figure 3.1 to those in Figure 3.2 reveals that even small changes to the

cyclic order (i.e., exchanging two consecutive elements) can result in very different

solutions. Furthermore, obtaining the route structure of Figure 3.2 from Figure 3.1

requires 10 customer insertions/removals if applying local search directly on the VRP

solution rather than the cyclic order.
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Figure 3.1: Optimal VRP Solution Corresponding to π – We Note that this Solution
Corrects a Minor Oversight in Ryan et al. (1993)

3.4 Updating Procedure for Neighboring
Cyclic Orders

As discussed in §3.2, the evaluation of a cyclic order π is a two-step process.

First, we generate the corresponding set of candidate routes, R(π). Second, we

identify x?π, the optimal VRP solution with respect to R(π). The optimization is

achieved in polynomial time by solving a series of shortest path problems (Ryan et al.,

1993; Boctor and Renaud, 2000). In a local search procedure, a naive approach to

evaluate π′, a neighbor of π, would be to construct R(π′) in its entirety by iteratively
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Figure 3.2: Optimal VRP Solution Corresponding to π′
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calling SWEEP(π′, ∅, i, i) for i = 1, . . . , n. However, many of the candidate routes

in R(π′) may also be in R(π). In this section, we show how to obtain R(π′) by

updating R(π) and demonstrate in §3.5 that this updating can significantly reduce

computation time.

To motivate our updating procedures, we again consider the example presented

in Table 3.1. As before, the left-hand portion of the table displays a cyclic order π

and the corresponding set of candidate routes for the 13-customer problem in Ryan

et al. (1993). The fourth column of Table 3.1 displays a cyclic order π′ generated by

applying the 3-shift operator on π with i = 2 and j = 8. The fifth column contains

the corresponding set of candidate routes, R(π′). To obtain R(π′) by updating R(π),

we must remove from R(π) the eight routes superscripted by ‡ and add the seven

routes superscripted by ∗ (all other routes remain unchanged). In comparison, totally

reconstructing R(π′) requires the creation of 33 routes, 26 of which already exist in

R(π).

By considering the construction of R(π) (see §3.2), it is possible to systemat-

ically identify routes to retain, remove, and add to obtain R(π′). Recall from §3.2

that each route in R(π) visits a subset of customers consisting of contiguous elements

of the cyclic order π. Thus, segments of π and π′ that are identical generate the

same subset of routes. These routes exist both in R(π) and R(π′). To illustrate the

process of removing and adding routes to obtain R(π′) by updating R(π), consider

Rπ(1) = {〈7, 7〉, 〈7, 8〉, 〈7, 9〉} in the left-hand portion of Table 3.1. Recall that the

sweep procedure creates these routes because customers 7, 8, and 9 are positioned
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Algorithm 3.2 Update R(π) to Obtain R(π′) for a k-shift Neighbor

1: Input: cyclic order π, candidate route set R(π), indices i and j, positive integer

k < n− 1

2: Output: neighbor cyclic order π′, candidate route set R(π′)

3: π′ ← (π(i), π(i+ 1), . . . , π(i+ k − 1), π(j), π(j + 1), . . . ,

π(i− 1), π(i+ k), π(i+ k + 1), . . . , π(j − 1))

4: R(π′)← R(π)

5: for p = k to 1 step − 1 do

6: if |Rπ′(p)| > dist(p, k + 1) then

7: Rπ′(p) ← Rπ′(p) \ Rπ′(p),π′(k+1)

8: Rπ′(p) ← SWEEP(π′,Rπ′(p), p, k + 1)

9: else if |Rπ′(p)| = dist(p, k + 1) then

10: Rπ′(p) ← SWEEP(π′,Rπ′(p), p, k + 1)

11: else

12: break

13: for p = k + dist(j, i) to k + 1 step − 1 do

14: if |Rπ′(p)| > dist(p, k + dist(j, i) + 1) then

15: Rπ′(p) ← Rπ′(p) \ Rπ′(p),π′(k+dist(j,i)+1)

16: Rπ′(p) ← SWEEP(π′,Rπ′(p), p, k + dist(j, i) + 1)

17: else if |Rπ′(p)| = dist(p, k + dist(j, i) + 1) then

18: Rπ′(p) ← SWEEP(π′,Rπ′(p), p, k + dist(j, i) + 1)

19: else

20: break

21: for p = n to k + dist(j, i) + 1 step − 1 do

22: if |Rπ′(p)| > dist(p, 1) then

23: Rπ′(p) ← Rπ′(p) \ Rπ′(p),π′(1)

24: Rπ′(p) ← SWEEP(π′,Rπ′(p), p, 1)

25: else if |Rπ′(p)| = dist(p, 1) then

26: Rπ′(p) ← SWEEP(π′,Rπ′(p), p, 1)

27: else

28: break
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contiguously in π and can feasibly exist on the same route. In π′, however, this is

not the case. Customers 8 and 9 are adjacent, but customer 7 precedes customer

11. Thus, R(π′) does not contain routes 〈7, 8〉 and 〈7, 9〉 and the updating procedure

must remove them. To generate the new routes beginning with customer 7 (due to its

new position 10), we execute SWEEP(π′,Rπ′(10), 10, 11) via Algorithm 3.1 to obtain

the routes 〈7, 11〉 and 〈7, 12〉. The result is Rπ′(10) = {〈7, 7〉, 〈7, 11〉, 〈7, 12〉}.

In the above example, to identify routes in Rπ(1) that do not exist in R(π′),

it is sufficient to determine which routes visit customers 7 and 8. Because customer

7 no longer precedes customer 8 in π′, we remove all routes in Rπ(1) visiting these

two customers to update R(π′). It is possible that other sets Rπ(i), i = 2, . . . , n, also

contain routes visiting customers 7 and 8 (e.g., route 〈6, 8〉 in Rπ(13)); to identify

such sets, it is sufficient to examine their cardinality. Denote by pos(x) the position

of customer x in π. If Rπ(i) contains any routes visiting customers 7 and 8, then

|Rπ(i)| > dist(i, pos(8)), where pos(8) = 2. Because |Rπ(13)| = 3 > dist(13, 2) = 2, we

know that Rπ(13) contains 3−2 = 1 route that visits customers 7 and 8 (route 〈6, 8〉).

Because |Rπ(12)| = 2 6> dist(12, 2) = 3, Rπ(12) does not contain any routes visiting

customers 7 and 8. Moreover, elements in the set {Rπ(p) : p ∈ (12, 11, . . . , 2)} do not

contain any routes visiting customers 7 and 8. We formally state these relationships

in Proposition 3.1, where Rπ(i),π(j) = {r ∈ Rπ(i) : dist(i, pos(last(r))) ≥ dist(i, j)} is

the set of routes in Rπ(i) that visit customers π(i) and π(j).

Proposition 3.1. For all i, j ∈ {1, . . . , n}, if |Rπ(i)| > dist(i, j), then routes Rπ(i),π(j)

visit customers π(i) and π(j) and |Rπ(i),π(j)| = |Rπ(i)|−dist(i, j). Otherwise, {Rπ(p) :
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p ∈ (i, i− 1, . . . , j+ 1)} do not contain any routes that visit customers π(i) and π(j).

We note that the sweep procedure in Algorithm 3.1 creates the routes of Rπ(i)

for i = 1, . . . , n, in order of increasing pos(last(·)) (we present the route sets in Ta-

ble 3.1 in this order), thus facilitating the identification of Rπ(i),π(j). To update R(π′),

we simply remove the last |Rπ(i)| − dist(i, j) routes from Rπ(i), an O(1) operation.

Furthermore, upon the insertion of new routes to update R(π′), maintaining this or-

dering requires no additional sorting as we create the new routes for insertion via the

sweep procedure in Algorithm 3.1.

For a cyclic order π and a neighbor cyclic order π′ generated from one of the

neighborhoods in §3.3, we employ Proposition 3.1 to obtain R(π′) by updating R(π).

Algorithm 3.2 details this procedure for the k-shift neighborhood. We explain the

procedure by stepping through the example in Table 3.1, where π′ is in the k-shift

neighborhood of π with k = 3, i = 2, and j = 8.

Line 3 of Algorithm 3.2 constructs π′ by shifting customers 8, 9, and 10 to

the position immediately before customer 1. In line 3, π(i) = 8, π(i + 1) = 9,

π(i+ k − 1) = 10, π(j) = 1, π(j + 1) = 2, π(i− 1) = 7, π(i+ k) = 11, π(i+ k + 1) =

12, and π(j − 1) = 13. The loop beginning on line 5 iterates over indices 3, 2,

and 1 to remove all routes containing customers 10 and 11 and to insert all routes

containing customers 10 and 1. Line 6 employs Proposition 3.1 to identify routes

for removal. When p = 3, Rπ′(3) is initially {〈10, 10〉, 〈10, 11〉}, thus |Rπ′(3)| = 2 >

dist(3, 4) = 1. Line 7 removes route 〈10, 11〉 and line 8 adds routes 〈10, 1〉 and 〈10, 2〉
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Algorithm 3.3 Update R(π) to Obtain R(π′) for a Scramble or Reverse Neighbor

1: Input: cyclic order π, candidate route set R(π), indices i and j

2: Output: neighbor cyclic order π′, candidate route set R(π′)

3: construct π′ from i, j, and π

4: R(π′)← R(π)

5: for p = i to j step + 1 do

6: if |Rπ′(p)| > dist(p, p+ 1) then

7: Rπ′(p) ← Rπ′(p) \ Rπ′(p),π′(p+1)

8: Rπ′(p) ← SWEEP(π′,Rπ′(p), p, p+ 1)

9: else

10: Rπ′(p) ← SWEEP(π′,Rπ′(p), p, p+ 1)

11: for p = i− 1 to j + 1 step − 1 do

12: if |Rπ′(p)| > dist(p, i) then

13: Rπ′(p) ← Rπ′(p) \ Rπ′(p),π′(i)

14: Rπ′(p) ← SWEEP(π′,Rπ′(p), p, i)

15: else if |Rπ′(p)| = dist(p, i) then

16: Rπ′(p) ← SWEEP(π′,Rπ′(p), p, i)

17: else

18: break
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by executing SWEEP(π′,Rπ′(3), 3, 4) via Algorithm 3.1. When p = 2, Rπ′(2) is

initially {〈9, 9〉, 〈9, 10〉}, thus |Rπ′(2)| = 2 6> dist(2, 4) = 2 and the inequality in line 6

is not satisfied. The equality in line 9 is satisfied, however, and an attempt to add

routes containing customers 9 and 1 is made by executing SWEEP(π′,Rπ′(2), 2, 4).

No such routes are added to Rπ′(2) because they are infeasible with respect to vehicle

capacity. When p = 1, neither of the conditions in lines 6 or 9 are met and the loop

terminates.

In a similar manner, the loop beginning on line 13 removes all routes containing

customers 7 and 8 and adds all routes containing customers 7 and 11. Finally, the

loop beginning on line 21 removes all routes containing customers 13 and 1 and adds

all routes containing customers 13 and 8. Table 3.1 denotes the routes that we remove

and insert during the procedure by superscripting them with ‡ and ∗, respectively.

We note that if neither of the conditions for removing and adding routes (lines 6

and 9, lines 14 and 17, lines 22 and 25, respectively) are met for an index p, then

we terminate the respective loop immediately as it is not necessary to check the

conditions for the smaller indices of the loop.

In the worst case, where we examine each route set and create n routes, the

complexity of Algorithm 3.2 is O(n2). While this is the same complexity as that of

constructing R(π′) in its entirety, we note that the worst-case complexity for this up-

dating is only approached if vehicle capacity is large enough to allow all customers to

be serviced on one route. As our results in §3.5 demonstrate, the updating procedure

provides significant computational advantages. Algorithms 3.3 and 3.4 detail similar
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updating procedures for the scramble, reverse, and exchange cyclic-order neighbor-

hoods. These procedures also have a worst case complexity of O(n2).

3.5 Application of Cyclic-Order Neighborhood
Search

To demonstrate the effectiveness of cyclic-order neighborhood search, we apply

the methods developed in this chapter to two problems, the classical VRP and the

VRP with stochastic demand (VRPSD). As discussed in §3.1, we address the problem

of obtaining optimal fixed route policies for the VRPSD. In §3.5.1, we define these

problems and provide a brief literature review, and §3.5.2 provides details relevant to

our implementations. In §3.5.3, we discuss the computational benefit of employing

the updating procedures outlined in §3.4. In §3.5.4, we report our experience with

benchmark problem instances for the VRP. Finally, in §3.5.5, we report our experience

with benchmark problem instances for the VRPSD.

3.5.1 Test Problems

The classical VRP can be formally defined as follows. Let G = (V,E) be a

connected digraph where V = {0, 1, . . . , n} is a set of n + 1 nodes and E is a set of

edges. Node 0 is a depot at which m identical vehicles of capacity Q are based, while

the remaining nodes are customers. A deterministic symmetric travel cost matrix is

defined on E. With each customer is associated a nonnegative deterministic demand

to be collected or delivered, but not both. The demand of each route cannot exceed

Q. The objective consists of determining a set of routes starting and ending at the

depot that minimize the total travel cost. The VRP has been studied extensively in
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Algorithm 3.4 Update R(π) to Obtain R(π′) for an Exchange Neighbor

1: Input: cyclic order π, candidate route set R(π), indices i and j

2: Output: neighbor cyclic order π′, candidate route set R(π′)

3: construct π′ from i, j, and π

4: R(π′)← R(π)

5: for all p ∈ {i, j} do

6: if |Rπ′(p)| > dist(p, p+ 1) then

7: Rπ′(p) ← Rπ′(p) \ Rπ′(p),π′(p+1)

8: Rπ′(p) ← SWEEP(π′,Rπ′(p), p, p+ 1)

9: else

10: Rπ′(p) ← SWEEP(π′,Rπ′(p), p, p+ 1)

11: for p = i− 1 to j + 1 step − 1 do

12: if |Rπ′(p)| > dist(p, i) then

13: Rπ′(p) ← Rπ′(p) \ Rπ′(p),π′(i)

14: Rπ′(p) ← SWEEP(π′,Rπ′(p), p, i)

15: else if |Rπ′(p)| = dist(p, i) then

16: Rπ′(p) ← SWEEP(π′,Rπ′(p), p, i)

17: else

18: break

19: for p = j − 1 to i+ 1 step − 1 do

20: if |Rπ′(p)| > dist(p, j) then

21: Rπ′(p) ← Rπ′(p) \ Rπ′(p),π′(j)

22: Rπ′(p) ← SWEEP(π′,Rπ′(p), p, j)

23: else if |Rπ′(p)| = dist(p, j) then

24: Rπ′(p) ← SWEEP(π′,Rπ′(p), p, j)

25: else

26: break
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the literature, and we do not attempt to provide a complete review here. For further

details on solution methodologies, we refer the reader to the categorized bibliography

of Gendreau et al. (2008).

In contrast to the VRP, where customer demand is deterministic, the VRPSD

associates with each customer a nonnegative stochastic demand, as described in §2.1.

We assume that customer demands are independent and that demand becomes known

only when the vehicle arrives at the customer location. As in Laporte et al. (2002)

and Christiansen and Lysgaard (2007), we require the expected demand of a route to

be less than or equal to vehicle capacity. A direct consequence of stochastic demand

is that a planned vehicle route may fail at a given customer location whenever the

accumulated demand exceeds Q. In such a case, a failure is said to occur and a

recourse action generating extra costs must be implemented. Thus, the objective

is to design a set of a priori, or fixed, routes such that the expected travel cost

is minimized. To be consistent with the majority of the literature, we restrict the

recourse action to return trips to the depot. As demonstrated by (Teodorović and

Pavković, 1992), it is straightforward to compute the criterion (2.14) for a fixed route

policy.

Compared to the classical VRP, the VRPSD has received relatively little at-

tention in the literature despite its applicability to many distribution systems. Exact

algorithms for solving the VRPSD include the methods of Gendreau et al. (1995),

Hjorring and Holt (1999), Laporte et al. (2002), and Christiansen and Lysgaard

(2007). The integer L-shaped algorithm of Laporte et al. (2002) has been successful
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in solving to optimality problem instances with up to 100 customers and two vehicles.

The branch-and-price procedure of Christiansen and Lysgaard (2007) has solved to

optimality problem instances with many more vehicles, but fewer customers. Recent

heuristic procedures for the VRPSD include the methods of Gendreau et al. (1996),

Yang et al. (2000), Chepuri and Homem-de Mello (2005), Novoa et al. (2006), and

Ak and Erera (2007). Many of these methods report solutions for problem instances

including up to 100 customers and several vehicles. Due to a lack of standard bench-

mark problems for the VRPSD, however, it is difficult to compare the effectiveness

of different heuristic methods.

3.5.2 Implementation Details

For both test problems, we implement the cyclic-order neighborhood search

within a simulated annealing algorithm. Simulated annealing (Kirkpatrick et al.,

1983; Johnson et al., 1989, 1991) is a local search algorithm in which non-improving

moves are probabilistically accepted in an attempt to avoid becoming trapped in a low-

quality, locally optimal solution. We choose simulated annealing to govern the search

process for two reasons. First, simulated annealing has proven successful on a variety

of difficult combinatorial problems such as the set covering problem (Brusco et al.,

1999), the vehicle routing problem with time windows (Bent and Van Hentenryck,

2004), and the orthogonal stock-cutting problem (Burke et al., 2009). Second, the

simple logic of simulated annealing (as opposed to a more complex search procedure)

allows us to more easily distill the impact of the cyclic-order neighborhoods.
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At each iteration of our simulated annealing implementation, we randomly

generate a neighbor cyclic order from a randomly-selected neighborhood (1-shift, 2-

shift, 3-shift, reverse, or exchange) of the current cyclic order. We accept the neighbor

solution with probability exp (−(g(xπ′)− g(xπ))+/τ), where (y)+ = y if y > 0 and 0

otherwise, τ is the current temperature (a control parameter in simulated annealing),

and g(x) is the total travel cost of routing plan x.

Our simulated annealing implementation begins with a radial ordering of the

customers about the depot (i.e., customers are ordered by their polar angle with

respect to a horizontal axis through the depot). For problems where customer loca-

tions are unknown, a randomly generated cyclic order can serve as the initial solution.

The algorithm employs a geometric cooling schedule with a multiplier of 0.97 and an

initial temperature of 10. At each temperature, we generate 50,000 neighbor cyclic

orders via the method described above. The procedure terminates after performing

at least 100 temperature decrements and not updating the best-found cyclic order for

75 successive temperature decrements. These parameter settings, established with

computational experiments, appear to be robust for the VRP instances considered in

this chapter.

For the VRPSD, we employ a two-phase procedure. In the first phase, we

apply simulated annealing to solve the deterministic version, i.e., the classical VRP,

in which customer demand is fixed at the average demand. The second phase seeks

to further improve the solution by explicitly accounting for the cost of recourse ac-

tions resulting from potential route failures. In the second phase, we again employ
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simulated annealing, but account for stochastic demand and use the VRPSD objec-

tive function, i.e., minimizing expected travel cost (Teodorović and Pavković, 1992).

We observe that, for a variety of VRPSD instances, a high-quality VRP solution is

also a high-quality VRPSD solution, thus motivating our two-phase approach (Savels-

bergh and Goetschalchx (1995) propose a similar two-phase procedure). The primary

benefit of the two-phase procedure is reduction in computation time; we obtain good

VRPSD solutions employing only the second phase, but with increased computational

effort. In both phases, we generate 7,000 neighbor cyclic orders at each temperature,

employ a temperature multiplier of 0.97, and begin with an initial temperature of 10.

Phase one begins with a radial ordering of customers and phase two begins with the

best cyclic order obtained in phase one. Both phases terminate after at least 100 tem-

perature decrements and not updating the best-found cyclic order for 75 successive

temperature decrements.

As discussed in §3.2, other authors also utilize sweep procedures to solve VRPs.

These construction approaches typically seek to improve the sequence of customers

in each sweep-generated route via a traveling salesman heuristic. In contrast to this

practice, we allow the cyclic order to define the sequence of customers in a route. This

offers two computational advantages. First, we can store a route r in memory as the

pair 〈first(r), last(r)〉, as opposed to an array containing the sequence of customers.

Second, we can calculate the cost of a route more efficiently by updating the cost from

knowledge of a subroute rather than by adding the costs of all the edges in the route.

For example, we can compute the cost of a VRP route 〈π(i), π(p + 1)〉 easily from
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the cost of route 〈π(i), π(p)〉 as 〈π(i), π(p+ 1)〉 simply inserts the customer π(p+ 1)

at the end of route 〈π(i), π(p)〉. Note that this simple updating is not possible if the

sequence of customers on a route is not strictly defined by the sweep procedure applied

to a cyclic order. Similarly, the additional cost of recourse generated by inserting a

customer on a VRPSD route depends only on the preceding customers and can be

calculated efficiently from knowledge of a subroute. For more details on the route

cost calculations for the VRPSD, see Teodorović and Pavković (1992).

The drawback of our approach is that it may be possible to improve the VRP

solution corresponding to a given cyclic order by changing the sequence of the cus-

tomers on one or more routes contained in R(π). Because the size of R(π) can be

quite large, however, this significantly increases computation time. As we evaluate

many cyclic orders during our search process, rather than performing the costly op-

timization of individual routes in R(π), we aim to find the appropriate routes by

quickly evaluating more cyclic orders during our search.

We implement the cyclic-order simulated annealing procedures for the VRP

and VRPSD in C++. We execute all computational experiments on 2.66GHz Intel

Core2 Quad processors with 4GB of RAM and openSUSE Linux version 10.3 (we do

not utilize parallel processing).

3.5.3 Benefit of Updating Procedures

We demonstrate the computational savings of our proposed updating schemes

on 10 VRP instances proposed in Augerat et al. (1995). Christiansen and Lysgaard
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(2007) adapt these instances to the VRPSD by assuming that customer demands

are Poisson random variables with the mean demand for each customer equal to

the deterministic value of demand given in the underlying VRP problem instance.

The name of each problem instance indicates the number of customers (including the

depot) and the minimum number of vehicles. For example, instance A-n38-k5 requires

37 customers be serviced by at least 5 vehicles. The instances are publicly available

(Ralphs, 2008). Table 3.2 contains the percentage decrease in CPU time when R(π′)

is constructed by updating R(π) for a cyclic order π′ in the neighborhood of π (as

opposed to totally reconstructing R(π′)). We compute each entry of Table 3.2 by

observing the CPU time required to evaluate each neighboring cyclic order in the

neighborhood of π, where π is the radial ordering of customers.

Overall, the updating procedures provide substantial computational savings.

Because the calculation of expected route cost is significantly more expensive than the

computation of deterministic route cost in the classical VRP, the savings are partic-

ularly large for the VRPSD. Other factors affecting the magnitude of computational

savings include problem size (in terms of the number of customers), type of cyclic-

order neighborhood, and the required fleet size. By comparing results for instances

with the similar numbers of vehicles but different numbers of customers, we observe

that as the number of customers increases, the computational savings also tends to

increase (although this is not always true depending on the location and demand of

the additional customers).

The type of cyclic-order neighborhood also affects the magnitude of computa-
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tional savings. The savings for the scramble and reverse neighborhoods is, on average,

33.4 percent less than the savings afforded by the updating schemes for the k-shift

and exchange neighborhoods. When updating R(π′) from R(π), the scramble and re-

verse neighborhoods require the removal and insertion of more routes than the k-shift

and exchange neighborhoods. For a similar reason, the computational savings for the

k-shift neighborhood decreases as k increases. We conclude that the computational

savings for a neighborhood is negatively correlated with the degree of change it causes

in the set of routes corresponding to the cyclic order.

We achieve larger computational savings by updating rather than reconstruct-

ing R(π′) for instances in which more vehicles are required to meet customer demand,

i.e., vehicle capacity is more constraining. By examining problem instances in Ta-

ble 3.2 with similar numbers of customers but different numbers of vehicles, we can

observe this effect. For example, comparing instances P-n21-k2 and P-n22-k8 across

all six neighborhood structures suggests that the updating procedures provide greater

computational savings when eight vehicles are required instead of only two. We can

explain this observation by examining typical sets of candidate routes for each prob-

lem instance. The size of each Rπ(i) in P-n22-k8 is generally smaller than the size of

each Rπ(i) in P-n21-k2. In other words, because vehicle capacity is more restrictive in

P-n22-k8, each call to the SWEEP procedure in Algorithm 3.1 generates fewer routes

than for problem instance P-n21-k2. Consequently, the number of routes in R(π) is

larger for P-n21-k2, thus requiring the removal and insertion of more routes when

updating R(π) for a neighboring cyclic order. Thus, as vehicle capacity decreases,
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the procedures outlined in Algorithms 3.2, 3.3, and 3.4 provide more of an advantage

over totally reconstructing R(π′).

3.5.4 VRP Results

In this section, we examine the performance of cyclic-order neighborhood

search governed by simulated annealing using the 14 benchmark problem instances

(labeled C1 through C14) for the classical VRP proposed by Christofides et al. (1979).

Problems C6 through C10, C13, and C14 constrain both vehicle capacity and route

duration. The remaining problems only constrain vehicle capacity. We compare the

solutions obtained by cyclic-order simulated annealing to the best known solutions,

as well as the solutions obtained by the algorithmic predecessors of cyclic order neigh-

borhoods (discussed in §3.2). Column 1 of Table 3.3 denotes the problem instance

with the number of customers in parentheses. Column 2 indicates the best known

solutions for each problem instance. Best known solutions are obtained by Rochat

and Taillard (1995) for all instances except C5, which is obtained by Nagata and

Bräysy (2008). Columns 3-5, 6-8, and 9-11 respectively display the results obtained

by the sweep method of Gillett and Miller (1974), the petal method of Foster and

Ryan (1976), and the improved petal method of Renaud et al. (1996). The columns

labeled “Cost” display the solution values obtained by each method. The columns

labeled “CPU” display the number of CPU seconds (on a Sun Sparc 2 workstation)

required for each method to obtain a solution. The solution values and CPU times

reported in Table 3.3 for the sweep, petal, and improved petal methods are taken
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from Renaud et al. (1996). The columns labeled “Gap” display the percentage above

the best known solution values. For example, if the best known solution value is x

and the sweep method returns a solution value of y, then the gap is (y− x)× 100/x.

Columns 12-16 display the results of cyclic-order simulated annealing. These columns

report, over 10 runs, the best solution values, the average solution values, the stan-

dard deviations of solution values, the average CPU seconds (on a 2.66GHz Intel

Core2 Quad processor), and the percentage above the best known solutions.

As Table 3.3 illustrates, our approach obtains best known solutions on 7 of the

14 benchmark problems. Moreover, our solutions are, on average, 0.60 percent above

the best known solutions, a substantial improvement over the sweep (7.20 percent),

petal (5.96 percent), and improved petal (2.46 percent) methods. The computation

time required by cyclic-order simulated annealing is longer than that required by the

sweep, petal, and improved petal methods, especially considering the difference in

computer architectures. As discussed in §3.5.2, the results reported in Table 3.3 are

obtained by generating 50,000 neighboring cyclic orders at each temperature. If we

decrease the number of neighbors generated to 5,000, the computation time decreases

from an overall average of 1,310.6 CPU seconds to 173.2 CPU seconds, while the

average gap increases from 0.60 to 1.73 percent. Thus, when computation time is

an important consideration, cyclic-order simulated annealing is still able to deliver

solutions, but of slightly less quality.
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3.5.5 VRPSD Results

In this section, we compare the performance of cyclic-order neighborhood

search embedded within simulated annealing to benchmark results for the VRPSD.

Following the protocol in the literature, we consider VRPSD instances in which the

customer demand is a Poisson random variable with the mean demand for each cus-

tomer equal to the deterministic value of demand given in the underlying VRP prob-

lem instance. Table 3.4 compares the solutions obtained by our two-phase procedure

for the VRPSD to the optimal solutions of Christiansen and Lysgaard (2007) and to

the expected cost of best known routing plans for the (deterministic) VRP. In the

columns displaying Christiansen and Lysgaard’s results, when a value is reported for

both the number of vehicles and the cost, this corresponds to the optimal routing cost.

If only a cost is reported, then this is the cost of the best integer solution obtained

within 1200 CPU seconds on a Pentium Centrino 1500 MHz processor (Christiansen

and Lysgaard (2007) do not report the number of vehicles in these cases). If neither

the number of vehicles or a cost is reported (such entries are denoted by “–”), then

an integer solution was not obtained within 1200 CPU seconds. The only exception

to this is instance P-n60-k15, where Christiansen and Lysgaard report a CPU time of

1348 CPU seconds, which is the time required to solve the root node in their branch

and price procedure. In this case, the root node yielded an optimal integer solution

which they report.

As in Table 3.3, we compute the entries of Table 3.4 corresponding to our ap-

proach over 10 runs. The column labeled “Gap” is the percentage above the minimum
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of the solution values given in columns 3 and 6. A negative number in this column

indicates that the solution value obtained by our two-phase procedure improves upon

the solution value of Christiansen and Lysgaard, the value of the best deterministic

solution, or both.

Of the 19 problem instances in which Christiansen and Lysgaard (2007) ob-

tain optimal solutions, our two-phase procedure obtains 16 optimal solutions. The

percentages above the optimal solution values are small for the three instances where

we obtain suboptimal solutions: A-n45-k7 (gap of 0.01), P-n51-k10 (gap of 0.37),

and P-n60-k15 (gap of 0.18). Of the 21 problem instances in which Christiansen and

Lysgaard (2007) do not obtain provably optimal solutions, our two-phase procedure

matches or improves upon the best integer solution returned by Christiansen and

Lysgaard’s method or the expected value of the best known deterministic solution.

The average gap for these 21 instances is -3.33. The difference in computer archi-

tectures makes it difficult to compare run times, but we find the average run time

of 581.4 CPU seconds for our two-phase method to be acceptable given that prac-

titioners typically employ VRPSD solutions as a set of fixed routes to be used over

extended periods.

3.6 Conclusion and Future Research

This chapter examines cyclic-order neighborhoods for VRPs and proposes pro-

cedures to facilitate the efficient search of such neighborhoods in local search schemes.

We demonstrate that, when embedded in a simulated annealing framework, cyclic-
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order neighborhood search is capable of obtaining high quality solutions for the classi-

cal VRP and the VRPSD. These results underscore the potential for the use of cyclic-

order neighborhoods as a general solution method for a variety of routing problems.

Without tailoring our solution procedure to a specific routing problem, we are able

to obtain solutions to the classical VRP within 0.60 percent of best known solutions

and are able to match 16 of 19 known optimal VRPSD solutions.

Due to the computational effort required to execute cyclic-order neighborhood

search, one direction for future research is to investigate techniques to reduce the size

of the cyclic-order search space. This could perhaps be accomplished by exploiting in-

formation pertaining to customer location. Specifically, cyclic orders may be removed

from a neighborhood that would generate candidate routes unlikely to be observed in

optimal solutions. For example, customers on opposite sides of the depot are unlikely

to be serviced on the same route in an optimal solution. Thus, including such routes

in the set of candidate routes is unnecessary. Such reductions in neighborhood size

may be especially advantageous when it is necessary to evaluate all cyclic orders in a

given neighborhood, such as in best-improving search, variable neighborhood search,

or tabu search. How to use memory in the search procedure is another direction

for future research. This might be accomplished by exploiting information contained

in a history of candidate route sets (R(π)), or by identifying common sequences of

customers in a history of cyclic orders.
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CHAPTER 4
ROLLOUT POLICIES FOR APPROXIMATE DYNAMIC

PROGRAMMING

4.1 Introduction

The static routing policies we consider in §3 require vehicles to visit customers

according to fixed, or a priori, routes. In this chapter, we develop a methodological

framework to relax this restriction. In §5 and §6, we employ the techniques of this

chapter to develop fully dynamic routing policies, i.e., routes that can be changed

to account for new information. To generate these dynamic policies, we employ the

solution method generally known as approximate dynamic programming (ADP).

ADP seeks to overcome the well-known curses of dimensionality (Powell, 2007)

associated with dynamic programs. Traditional ADP methods, which often rely on

parametric functional approximations of the value functions (Bellman, 1957), have

proven effective on a variety of problems, e.g., Topaloglu and Powell (2006) or Patrick

et al. (2008). In contrast to these parametric ADP methods, rollout policies (Bert-

sekas et al., 1997; Bertsekas, 2000) employ heuristic optimization techniques to ap-

proximate the value functions, thereby removing the dependency on a particular

functional class. Rollout policies have also demonstrated success on a variety of prob-

lems, e.g., Bertsimas and Popescu (2003) or Secomandi (2001). However, due to the

computation required to evaluate actions, practical applications of rollout policies

are often limited to problems with relatively small action spaces. In this chapter,

we suggest extensions of traditional rollout policies that more readily accommodate
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dynamic programs with large action spaces, thereby providing a general framework

for using heuristic optimization techniques to address large-scale dynamic programs.

By partitioning the state transition of a Markov decision process (MDP) (i.e.,

a stochastic dynamic program) into two parts, we introduce two extensions which we

refer to as pre-decision and post-decision rollout policies. Furthermore, we discuss

how these two new types of rollout policy may be used in combination, resulting in

a hybrid rollout policy that, in our experience, achieves high quality solutions and

results in a computational reduction sufficient for real-time implementation in large-

scale settings. Underscoring the importance of our work is the recent conversation

of Powell (2010b), Tsitsiklis (2010), Ruszczyński (2010), and Powell (2010a), which

calls for further development of ADP methods to solve large-scale MDPs.

In §4.2, we introduce the notation used throughout the chapter. In §4.3,

we discuss the computational challenge associated with traditional rollout policies.

In §4.4, we propose pre- and post-decision rollout policies aimed at reducing this

computational burden. In §4.5, we show how pre- and post-decision rollout policies

can be used in combination in a hybrid rollout policy. Finally, in §4.6 and §4.7, we

discuss special cases where the performance of our rollout policies can be bounded. We

also provide analytical results that position our extensions within the rollout literature

and identify conditions under which our proposed rollout methods are equivalent to

the traditional form.
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4.2 Notation

Throughout this chapter, we discuss rollout policies in the context of a stochas-

tic dynamic program with state space S and action space A(s) for each s ∈ S. The

set of absorbing states is SK ⊆ S, where K denotes the final decision epoch. A state

transition from the current state sk to sk+1 is a function of the selected action a

and the set of random variables Wk+1 representing the random information arriving

between decision epochs k and k + 1: sk+1 = SM(sk, a,Wk+1). We adopt the nota-

tion of Powell (2007), where the superscript M in the state transition function SM(·)

denotes the transition with respect to a specific model, M . As advocated by Powell

(2007), we split the transition into two parts – a transition from pre-decision state sk

to post-decision state sak = SM,a(sk, a) and a transition from sak to pre-decision state

sk+1 = SM,W (sak,Wk+1). The function SM,a(sk, a) captures the deterministic aspects

of the transition that occur as a result of selecting action a when the process is in state

sk. The superscript a indicates that function SM,a(·) carries out all aspects of the state

transition that occur as a result of selecting an action. The function SM,W (sak,Wk+1)

captures all random aspects of the transition that occur when the process is in state sak

and random information Wk+1 is observed. The superscript W indicates that function

SM,W (·) carries out all aspects of the transition that occur as a result of observing

random information. Thus, sk+1 = SM(sk, a,Wk+1) = SM,W (SM,a(sk, a),Wk+1). We

assume known state transition probabilities P{·}. Selecting action a while the pro-

cess is in state sk at the kth decision epoch incurs reward Rk(sk, a). Let Π be the

set of all Markovian deterministic policies. A policy π ∈ Π defines a set of decision
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functions δπ(s) : S 7→ A(s) that specify an action for each state. We seek a policy

π ∈ Π that maximizes Eπ{
∑K

k=0 γ
kRk(sk, δ

π(sk))|s0}, where Eπ{·} is the expectation

operator with respect to policy π and γ ∈ (0, 1] is a discount factor. For notational

convenience, we denote the expected reward accrued by a policy π in decision epochs

i through j − 1 as H(π, i, j) ≡ Eπ{
∑j−1

k=i γ
k−iRk(sk, δ

π(sk))|si}. Similarly, we de-

note the expected reward accrued by a policy π from decision epoch i onward as

H(π, i) ≡ Eπ{
∑K

k=i γ
k−iRk(sk, δ

π(sk))|si}.

To clarify the concepts we discuss in this chapter, we present Figure 4.1, which

depicts an MDP as a decision tree. A decision tree illustrates all possible sequences of

action selection and realizations of random information in an MDP. Square nodes are

decision nodes and round nodes are state of nature, or chance, nodes. The left-most

decision node represents an initial pre-decision state, s0. The three arcs originating

from s0 represent the three actions that comprise action space A(s0). Selecting an

action a ∈ A(s0) earns a reward R0(s0, a) (not displayed in Figure 4.1) and results

in a transition to a post-decision state sa0 = SM,a(s0, a). There are three possible

post-decision states, each represented by a chance node at the tail ends of the arcs

emanating from the initial decision node. The dashed arcs originating from these

chance nodes represent realizations of random information W1. Observing a particular

realization of W1 results in a transition to pre-decision state s1 = SM,W (sa0,W1). In

Figure 4.1, there are four possible pre-decision states s1, each corresponding to a

particular realization of W1. The process of selecting actions and observing random

information continues until an absorbing state is reached. In the context of a decision
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0s

as0

1s

as1

Figure 4.1: Markov Decision Process Depicted as a Decision Tree

tree, a policy is a set of rules that dictates the action to be selected at each decision

node. The value of a policy is the expected reward earned by following the policy

from the initial state to an absorbing state. An optimal policy is a policy that obtains

the maximum possible value.

4.3 Traditional Rollout Policies

Let H(s) be a heuristic that, when applied in state s ∈ S, generates a policy

πH(s). Heuristic H(·) may be a simple set of rules that generate a policy, or it may be
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a more elaborate procedure, such as the local search heuristic we develop in §5. The

only requirements we place on H(·) are that it takes as input a state s and that it

returns a policy capable of selecting actions in all future decision epochs. For example,

applying a heuristic H(·) to one of the four possible states s1 in Figure 4.1 results in a

policy to select actions in decision epoch one and in each subsequent decision epoch.

It is instructive to think of applying H(·) from a state sk as a method to heuristically

solve the problem of finding an optimal policy from state sk on: maxπ∈Π H(π, k).

Rollout policies aim to increase the effectiveness of a heuristic H(·) by itera-

tively applying it, or rolling it out, at each decision epoch. In a traditional rollout

policy, from a current state sk, heuristic H(·) is applied from each possible sk+1 that

may result from selecting an action in A(sk) and observing random information Wk+1.

This process is shown in Figure 4.2a, which depicts heuristic H(·) being applied to

each of six possible states at the next decision epoch k + 1, thus resulting in six

heuristic policies πH(sk+1). For a given action a, denote the set of reachable states

as S(sk, a) = {sk+1 : P{sk+1|sk, a} > 0}. In a traditional rollout policy, the future

expected reward for selecting action a is approximated as the expected value of the

heuristic policies {πH(sk+1) : sk+1 ∈ S(sk, a)}. Using the notation of §4.2, this ex-

pected value is denoted as E{H(πH(sk+1), k + 1)|sk, a}. A traditional rollout policy

selects the action that maximizes the sum of the current-state reward, Rk(sk, a), and

the approximate expected future reward. More formally, a traditional rollout policy,

πRH, assigns the action for state sk according to:
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δπRH(sk) = arg max
a∈A(sk)

{
Rk(sk, a) + γE

{
H(πH(sk+1), k + 1)

∣∣∣sk, a}} . (4.1)

For a given action a, Algorithm 4.1 details the calculation of the expected

future reward in a traditional rollout policy. The local variable λ, initialized on line

1, is used to update the calculation. The loop beginning on line 2 loops through

all states reachable from state sk given that action a is selected. For a given future

state sk+1, line 3 executes the heuristic H(·) from state sk+1 to obtain heuristic policy

πH(sk+1), which is then evaluated as H(πH(sk+1), k + 1) on line 4. The evaluation may

be estimated via simulation, or, if possible, may be obtained via an exact calculation.

Algorithm 4.1 concludes on line 5 by returning the expected future reward of the

traditional rollout policy given that action a is selected.

Algorithm 4.1 Calculation of Expected Future Reward in Traditional Rollout Poli-

cies

1: λ← 0

2: for sk+1 ∈ S(sk, a) do

3: execute H(sk+1) to obtain πH(sk+1)

4: λ← λ+H(πH(sk+1), k + 1)× P{sk+1|sk, a}

5: E{H(πH(sk+1), k + 1)|sk, a} ← λ

Algorithm 4.1 emphasizes the potential computational challenge associated

with computing a traditional rollout policy. At each decision epoch k, Algorithm 4.1

is executed for each feasible action, resulting in
∑

a∈A(sk) |S(sk, a)| executions of H(·)
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a. Traditional Rollout Policy b. Post-Decision Rollout Policy

d. Hybrid Rollout Policyc. Pre-Decision Rollout Policy

Figure 4.2: Traditional, Post-Decision, Pre-Decision, and Hybrid Rollout Policies
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and evaluations of πH(·). As |A(sk)| and |S(sk, a)| increase, evaluating (4.1) becomes

a computational challenge even when heuristic H(·) is a simple procedure.

Guerriero et al. (2002) offer two ideas for reducing this computational bur-

den by restricting A(sk) in (4.1) to a set of “promising” actions, Ã(sk) ⊆ A(sk).

In their first method, Guerriero et al. (2002) suggest scoring each action in A(sk)

via an easily computable parametric function in order to identify Ã(sk). Actions

meeting a certain threshold, as determined by the scoring function, are assigned to

Ã(sk) and further investigated via heuristic H(·) in the evaluation of (4.1). Guerriero

et al. (2002) demonstrate the effectiveness of this method by obtaining competitive

solutions for the classical traveling salesman problem. Although the method shows

promise, identifying a good scoring function may be a difficult task.

Guerriero et al.’s second method solves a relaxation of the original problem

and uses information from the corresponding solution to identify Ã(sk) at each deci-

sion epoch. The method is shown to be effective on the classical traveling salesman

problem by relaxing subtour constraints and using information related to these re-

laxed constraints to identify promising actions. However, the nature of the relaxation

and how to extract useful information from it are problem dependent.

4.4 Pre- and Post-Decision Rollout Policies

We propose a post-decision rollout policy, denoted πRH′ , as a method of re-

ducing the computational burden of (4.1). The post-decision rollout policy utilizes

post-decision state sak:



64

δπRH′ (sk) = arg max
a∈A(sk)

{
Rk(sk, a) + γE

{
H(πH(sak), k + 1)

∣∣∣sk, a}} . (4.2)

The key computational difference between (4.1) and (4.2) is the application of H(·) to

the unique post-decision state sak instead of each possible pre-decision state sk+1. For

a given action a, state sak is unique because the transition from sk to sak = SM,a(sk, a)

is deterministic by definition of the transition function. Algorithm 4.2 details the

calculation of expected future reward in a post-decision rollout policy. Because post-

decision state sak is unique for a given a ∈ A(sk), heuristic H(·) needs be executed

only once for each action, as shown in line 2 of Algorithm 4.2. Thus, a post-decision

rollout policy executes heuristic H(·) only |A(sk)| times each decision epoch instead

of
∑

a∈A(sk) |S(sk, a)| times, as in a traditional rollout policy. Similar to a traditional

rollout policy, the calculation of future expected reward requires policy πH(sak) be

evaluated for each sk+1 ∈ S(sk, a) (see line 4 of Algorithm 4.2).

Figure 4.2b depicts a post-decision rollout policy, where heuristic H(·) is ap-

plied in each of three post-decision states. The post-decision rollout policy executes

heuristic H(·) three fewer times than the traditional rollout policy of Figure 4.2a.

Although post-decision rollout policies offer some computational benefits, they

can still be challenging to evaluate for dynamic programs with large action spaces,

even when H(·) is a simple procedure. Motivated by this issue, we also propose a

pre-decision rollout policy, denoted πRH′′ , that executes heuristic H(·) only once from

the current, pre-decision state:
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Algorithm 4.2 Calculation of Expected Future Reward in Post-Decision Rollout

Policies

1: λ← 0

2: execute H(sak) to obtain πH(sak)

3: for sk+1 ∈ S(sk, a) do

4: λ← λ+H(πH(sak), k + 1)× P{sk+1|sk, a}

5: E{H(πH(sak), k + 1)|sk, a} ← λ

δπRH′′ (sk) = δπH(sk)(sk). (4.3)

The key difference between a pre-decision rollout policy and both post-decision and

traditional rollout policies is the use of H(·). In (4.1) and (4.2), the feasible action set

A(sk) is enumerated and H(·) generates policies that are in turn used to approximate

the expected future reward for each feasible action. Thus, in traditional and post-

decision rollout policies, H(·) is used solely as a tool to evaluate actions. In (4.3),

H(·) is executed once from current state sk and the resulting policy πH(sk) is used to

select an action. Thus, instead of enumerating A(sk), a pre-decision rollout policy

implicitly evaluates feasible actions via H(·). Hence, in contrast to (4.1) and (4.2),

pre-decision rollout policies use H(·) as both an evaluation tool for future actions

and to generate a policy that selects an action. This is depicted in the pre-decision

rollout policy of Figure 4.2c, where heuristic H(·) is applied only once in pre-decision

state sk. The action selected in decision epoch k is the action recommended by policy

πH(sk).
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4.5 Hybrid Rollout Policies

Despite the computational benefits afforded by pre-decision rollout policies,

a potential shortcoming of these policies provides motivation to use post-decision

rollout policies when computationally tractable. In particular, heuristic H(·) may

not be capable of generating a policy that returns certain feasible actions, even when

such actions belong to an optimal policy. Therefore, because all possible actions at

a decision epoch are not enumerated when applying a pre-decision rollout policy (it

directly recommends an action via πH(·)), it may be impossible to select optimal, or

even near-optimal, actions.

To illustrate this shortcoming and to facilitate subsequent discussion, we de-

scribe a simple heuristic for the single-vehicle VRPSDL. The heuristic, which we

denote by H̄(·), generates a fixed route, which in turn defines a policy πH̄(·) requiring

the vehicle to visit customers in the sequence given on the fixed route, returning to

the depot only when: (a) all customer demand has been served, (b) vehicle capacity

is exhausted, or (c) if continuing on the fixed route will violate the route duration

limit. Heuristic H̄(·) consists of the following three steps. First, identify a subset

of customers V (e.g., three customers) with the largest expected or known demand.

Second, for each customer v ∈ V , construct a fixed route beginning at the vehicle’s

current location, then traveling to customer v, then visiting remaining customers

with unknown/pending demand in descending order according to expected/known

demand. Third, let v? be the customer in V whose immediate visit results in the

fixed route with the largest expected demand served and return this fixed route.
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When using H̄(·) in a pre-decision rollout policy, the only actions that can

potentially be returned by πH̄(·) are the customers in V (or the depot if a route

failure has occurred, thereby requiring replenishment before visiting v?). Thus, if

the optimal action is to next visit a location not in V , then it is impossible to select

the optimal action. In contrast to pre-decision rollout policies, post-decision and

traditional rollout policies for this single-vehicle VRPSDL use πH̄(·) to approximate

the expected future reward for each feasible action, thereby making it at least possible

to select an optimal action.

Motivated by this issue, and the fact that post-decision rollout policies pose

computational challenges, we propose a hybrid rollout policy, denoted πHY , that com-

bines pre- and post-decision rollout policies. Let A′(s) ⊆ A(s) be the set of actions

possible for recommendation from state s by applying heuristic H(s) to obtain policy

πH(s). In the example above, when applying H̄(s) to obtain πH̄(s), A′(s) consists of

the customers in V . The actions in A′(s) can be thought of as decision variables

considered by heuristic H(s) and a pre-decision rollout policy as a method to select

an action from A′(s). If we evaluate remaining actions A(s)\A′(s) in a post-decision

rollout fashion, then, at decision epoch k, a hybrid rollout policy πHY selects the

action that maximizes

max

{
H(πH(sk), k),

{
Rk(sk, a) + γE

{
H(πH(sak), k + 1)

∣∣∣sk, a} : a ∈ A(sk) \ A′(sk)
}}

.

(4.4)

Following the hybrid rollout policy of (4.4) overcomes the potential shortcoming of
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a pre-decision rollout policy by considering the entire set of feasible actions, A(s).

Additionally, assuming A′(s) is nonempty, heuristic H(·) is applied fewer times than

in a post-decision rollout policy, thereby retaining some of the computational benefit

afforded by a pre-decision rollout policy.

Figure 4.2d depicts a hybrid rollout policy. Applying heuristic H(·) in pre-

decision state sk implicitly evaluates actions A′(sk), comprised by the two gray arcs

originating from sk. The third action, represented by the black arc originating from

sk, comprises A(sk) \ A′(sk), and is evaluated by heuristic H(·) in the post-decision

state. Thus, in this case, the heuristic is applied only twice, rather than three times

as in the post-decision rollout policy.

4.6 Sequentially Consistent Heuristics

Generally speaking, the primary contribution of pre-decision, post-decision,

and hybrid rollout policies is a reduction in computation over traditional rollout

policies. Unless special structure is imposed on heuristic H(·), however, we must rely

on empirical methods to compare the performance of different types of rollout policies

for a given problem. In this section, we discuss sequentially consistent heuristics,

which provide a theoretical basis for bounding the performance of rollout policies.

Bertsekas et al. (1997) propose the concept of a sequentially consistent heuris-

tic for deterministic dynamic programs and Secomandi (2003) extends the definition

to stochastic dynamic programs. Let wk be a realization of Wk, the random informa-

tion arriving between decision epoch k − 1 and k. Let w = (wk)
K
k=1 be a sequence of
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realizations from decision epoch one to K and let W be the set of all such sequences.

For a given w ∈ W , a sample path is the sequence of states visited by following a

given policy π. Denote a sample path from a state sk to an absorbing state sK ∈ SK

by p(sk, π, w) = (sk, sk+1, . . . , sK). Denote the ith element of a sample path, sk+i−1,

by pi(sk, π, w). Denote the set of all possible sample paths generated by following a

policy π from a state sk by P(sk, π) = {p(sk, π, w) : w ∈ W}.

A sequentially consistent heuristic H(·) is characterized by the set of sample

paths it generates from a current state sk to absorbing states SK . If H(·) is then

applied to any sk+1 on any of these sample paths, then the sample paths resulting

from H(sk+1) are identical to those resulting from H(sk), except they begin at sk+1

instead of at sk. In other words, if policy πH(sk) is used to select an action in decision

epoch k, then following policy πH(sk) from thereon is equivalent to following policy

πH(sk+1). Similar to Secomandi (2003), Definition 4.1 formalizes the concept of a

sequentially consistent heuristic, where ⊕ is the state concatenation operator, i.e.,

sk ⊕ p(sk+1, π, w) = (sk, sk+1, . . . , sK). Bertsekas et al. (1997) and Secomandi (2003)

provide examples of sequentially consistent heuristics for deterministic and stochastic

problems.

Definition 4.1. Heuristic H(·) is sequentially consistent if for all pairs of states sk

and sk+1, k = 0, 1, . . . , K − 1, the following holds:

{
p(sk, πH(sk), w) : p(sk, πH(sk), w) ∈ P(sk, π), w ∈ W, pw(sk, πH(sk), w) = sk+1

}
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=
{
sk ⊕ p(sk+1, πH(sk+1), w) : p(sk+1, πH(sk+1), w) ∈ P(sk+1, w), w ∈ W

}
.

Sequentially consistent heuristics yield traditional rollout policies that possess

an improvement property. As shown in Proposition 2 of Secomandi (2003), a tradi-

tional rollout policy πRH performs no worse than the heuristic policy πH(·) obtained via

a sequentially consistent H(·). In Proposition 4.1, we state the same result for post-

decision, pre-decision, and hybrid rollout policies. We also state that the improve-

ment property holds at equality for pre-decision rollout policies. Similar to Secomandi

(2003), we denote the expected reward of following a policy π from initial state s0 to

an intermediate state sk and policy πH(sk) thereafter as E{H(π, 0, k)+γkH(πH(sk), k)}.

The expectation is conditional on a given initial state s0. As in Proposition 2 of Seco-

mandi (2003), we assume policy πH(·) and the rollout policies terminate, meaning they

reach an absorbing state. Satisfaction of this condition must be verified for a given

problem and heuristic H(·), but it is generally not difficult to ensure (see Chapter 6

of Bertsekas (2000) for a more detailed discussion of termination).

Proposition 4.1. Assume heuristic H(·) is sequentially consistent and policy πH(·)

terminates from any state. Further, assume post-decision rollout policy πRH′, hybrid

rollout policy πHY , and pre-decision rollout policy πRH′′ all terminate. Then, for all

π ∈ {πRH′ , πHY , πRH′′}, the following sequence of inequalities holds for k = 1, . . . , K:
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H(πH(s0), 0) ≤ E
{
H(π, 0, 1) + γH(πH(s1), 1)

}
· · ·
≤ E

{
H(π, 0, k) + γkH(πH(sk), k)

}
· · ·
≤ E {H(π, 0)} .

(4.5)

Further, when π = πRH′′, the inequalities hold at equality.

Proof. We first prove the property holds when π = πRH′ . The proof is by induction

and mirrors the proof of Proposition 2 in Secomandi (2003), which proves the same

result for traditional rollout policies. Because H(·) is assumed to be sequentially

consistent, H(πH(s0), 0) = E{H(πH(s0), 0, 1) + γH(πH(sā0), 1)}, where ā = δπH(s0)(s0) is

the action selected by πH(s0) when the process is in state s0. Since δπH(s0)(s0) ∈ A(s0),

it follows from (4.2) that

H(πH(s0), 0) ≤ max
a∈A(s0)

{
R0(s0, a) + γE

{
H(πH(sa0), 1)

∣∣∣s0, a
}}

≡ E
{
H(πRH′ , 0, 1) + γH(πH(s1), 1)

}
. (4.6)

Hence, the property holds for k = 1. Assume the property holds for k > 1: H(πH(s0), 0)

≤ · · · ≤ E
{
H(πRH′ , 0, k) + γkH(πH(sk), k)

}
. By conditioning on the random reward

accrued to reach any intermediate state sl from state s0 before arriving at state sk,

the expected reward accrued to reach an absorbing state when πRH′ is used to take

the first k decisions can be decomposed as

E
{
H(πRH′ , 0, k) + γkH(πH(sk), k)

}
= E

{
H(πRH′ , 0, l) + E

{
γlH(πRH′ , l, k) + γkH(πH(sk), k)

}}
. (4.7)
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Proceeding as in (4.6), it is straightforward to show that γkH(πH(sk), k) ≤ E{γk

H(πRH′ , k, k + 1) + γk+1H(πH(sk+1), k + 1)}. Then, this inequality, the induction

hypothesis, and (4.7) imply

H(πH(s0), 0) ≤ E
{
H(πRH′ , 0, k) + γkH(πH(sk), k)

}
· · ·
≤ E{H(πRH′ , 0, k) + E{γkH(πRH′ , k, k + 1)

+γk+1H(πH(sk+1), k + 1)}}

= E
{
H(πRH′ , 0, k + 1) + γk+1H(πH(sk+1), k + 1)

}
.

Therefore, the property holds for k + 1. Since πRH′ terminates by assumption, the

result holds by induction when π = πRH′ .

The proof for π = πHY follows the same structure. Similar to (4.6),

H(πH(s0), 0) ≤ max

{
H(πH(s0), 0),

{
R0(s0, a) + γE

{
H(πH(sa0), 1)

∣∣∣s0, a
}

(4.8)

: a ∈ A(s0) \ A′(s0)
}}

≡ E
{
H(πHY , 0, 1) + γH(πH(s1), 1)

}
. (4.9)

Hence, the property holds for k = 1. Assume the property holds for k > 1: H(πH(s0), 0)

≤ · · · ≤ E
{
H(πHY , 0, k) + γkH(πH(sk), k)

}
. Similar to (4.7),

E
{
H(πHY , 0, k) + γkH(πH(sk), k)

}
= E

{
H(πHY , 0, l) + E

{
γlH(πHY , l, k) + γkH(πH(sk), k)

}}
. (4.10)
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Proceeding as in (4.9), it is straightforward to show that γkH(πH(sk), k) ≤ E{γk

H(πHY , k, k + 1) + γk+1H(πH(sk+1), k + 1)}. Then, this inequality, the induction hy-

pothesis, and (4.10) imply

H(πH(s0), 0) ≤ E
{
H(πHY , 0, k) + γkH(πH(sk), k)

}
· · ·
≤ E{H(πHY , 0, k) + E{γkH(πHY , k, k + 1)

+γk+1H(πH(sk+1), k + 1)}}

= E
{
H(πHY , 0, k + 1) + γk+1H(πH(sk+1), k + 1)

}
.

Therefore, the property holds for k + 1. Since πHY terminates by assumption, the

result holds by induction when π = πHY .

The fact that the inequalities hold at equality when π = πRH′′ can be seen by

noting that, for k = 1, . . . , K,

E
{
H(πRH′′ , 0, k) + γkH(πH(sk), k)

}
= E

{
k−1∑
i=0

γiH(πH(si), i, i+ 1) + γkH(πH(sk), k)

}

(4.11)

= E
{
H(πH(s0), 0)

}
. (4.12)

Equation (4.11) holds by the definition of a pre-decision rollout policy and (4.12)

holds by the sequential consistency of H(·).

In addition to establishing the improvement property for our rollout policies,

Proposition 4.1 implies H(πRH′′ , 0) = H(πH(s0), 0). From a computational perspec-

tive, this is significant since a pre-decision rollout policy built on a sequentially con-

sistent heuristic need only execute H(·) once from initial state s0, instead of once at
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each decision epoch. For a given heuristic H(·), Proposition 4.1 also implies that hy-

brid and post-decision rollout policies perform weakly better than pre-decision rollout

policies from initial state s0: H(πRH′′ , 0) ≤ H(πHY , 0) and H(πRH′′ , 0) ≤ H(πRH′ , 0).

Furthermore, Proposition 4.2 states that when H(·) is sequentially consistent,

traditional and post-decision rollout policies are equivalent. Computationally, this is

a notable result since post-decision rollout policies significantly reduce the number of

times heuristic H(·) must be executed to select an action.

Proposition 4.2. If H(·) is sequentially consistent, then traditional and post-decision

rollout policies are equivalent.

Proof. Consider a sample path generated by H(sak): (sk+1, sk+2, . . . , sK), where sK ∈

SK . For the same action, consider a sample path generated by H(sk+1): (s′k+1, s
′
k+2,

. . . , s′K), where s′K ∈ SK . By definition, sk+1 = SM,W (sak,Wk+1) = SM(sk, a,Wk+1).

Thus, for a given action and realization of Wk+1, sk+1 = s′k+1. Then, by the sequential

consistency of H(·), si = s′i for i = k+ 2, k+ 3, . . . , K. Repeating this observation for

all sample paths generated by action a, E{H(πH(sak), k+1)|sk, a} = E{H(πH(sk+1), k+

1)|sk, a}, implying that post-decision and traditional rollout policies yield the same

evaluation for a given action. Since both policies return the action with the maximum

evaluation, the policies are equivalent.

4.7 Restricted Optimal Heuristics

Although sequentially consistent heuristics facilitate the improvement prop-

erty, we note along with Bertsekas et al. (1997) and Secomandi (2003) that the im-
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provement property does not provide any guarantee on the overall performance of a

rollout policy. In our experience, the performance of a rollout policy is driven primar-

ily by the ability of H(·) to accurately approximate future rewards. Thus, we do not

believe that a sequentially consistent H(·) is a necessary condition for the success of

a rollout policy. This observation is supported by Secomandi (2003), who shows that

the performance of two related heuristics (one sequentially consistent and the other

not) is similar.

Motivated by this observation, we focus in this section on a special class of

sequentially consistent heuristics that we refer to as restricted optimal heuristics. A

restricted optimal heuristic, denoted H?(·), is a heuristic that returns an optimal

policy over a subset of policies Π̃ ⊆ Π. By the principle of optimality, H?(·) satisfies

the definition of sequential consistency. The subset Π̃ is determined by the restrictions

a heuristic places on the original dynamic program. For example, heuristic H̄(·)

restricts attention to fixed route policies, which restrict the action space by requiring

vehicles to follow predefined routes. Thus, for H̄(·), Π̃ is the set of all fixed route

policies.

When used in rollout policies, restricted optimal heuristics yield two important

consequences. First, because restricted optimal heuristics are sequentially consistent,

the resulting rollout policy possesses the improvement property. Second, restricted

optimal heuristics result in the equivalence of hybrid and post-decision rollout poli-

cies. This result follows directly from Proposition 4.3, which states that the use of a

restricted optimal heuristic results in pre-decision and post-decision rollout policies
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being equivalent over the subset of feasible actions A′(·). Because a hybrid rollout

policy evaluates remaining actions A(·) \ A′(·) via a post-decision rollout policy, hy-

brid and post-decision rollout policies are equivalent. In light of Proposition 4.2, this

result implies that a hybrid rollout policy built on a restricted optimal heuristic is

equivalent to a traditional rollout policy. Computationally, this is a significant result

because hybrid rollout policies appreciably reduce the number of times H?(·) must

be executed to select an action.

Proposition 4.3. Assume heuristic H?(·) is a restricted optimal heuristic. Further,

assume pre- and post-decision rollout policies each employ the same, state independent

rule for resolving ties among actions with the same evaluation. Then, a pre-decision

rollout policy is equivalent to a post-decision rollout policy over actions A′(·).

Proof. As in §4.5, assume H?(·) can return any action in A′(·). Assume the policies

are not equivalent at the kth decision epoch and let a′ = δπRH′ (sk) 6= δπRH′′ (sk) = a′′.

This assumption gives rise to three cases, all of which lead to a contradiction. In

the first case, the pre-decision rollout policy is better than the post-decision rollout

policy, meaning

H(πH?(sk), k) > Rk(sk, a
′) + γE

{
H(πH?(sa

′
k ), k + 1)

∣∣∣sk, a′} . (4.13)

Because the post-decision rollout policy selected a′, it must be that
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Rk(sk, a
′) + γE

{
H(πH?(sa

′
k ), k + 1)

∣∣∣sk, a′}
> Rk(sk, a

′′) + γE
{
H(πH?(sa

′′
k ), k + 1)

∣∣∣sk, a′′} . (4.14)

By definition, for a given realization of Wk+1, sk+1 = SM,W (sa
′′

k ,Wk+1) = SM(sk, a
′′,

Wk+1). Thus, by the restricted optimality ofH?(·), H(πH?(sa
′′
k ), k+1) = H(πH?(sk), k+

1). Then, since

H(πH?(sk), k) = Rk(sk, a
′′) + γE

{
H(πH?(sa

′′
k ), k + 1)

∣∣∣sk, a′′}
> Rk(sk, a

′) + γE
{
H(πH?(sa

′
k ), k + 1)

∣∣∣sk, a′} (4.15)

by assumption, (4.14) cannot be true, thus implying that a′ cannot be the action

chosen by the post-decision rollout policy.

In the second case, the post-decision rollout policy is better than the pre-

decision rollout policy, meaning

Rk(sk, a
′) + γE

{
H(πH?(sa

′
k ), k + 1)

∣∣∣sk, a′} > H(πH?(sk), k). (4.16)

To be clear about the action selected by the pre-decision rollout policy, we augment

our notation. If the pre-decision rollout policy selects action a in state sk, then

denote the policy by πH?(sk,a). Because the pre-decision rollout policy returned a′′,

and because H?(sk) returns the optimal action in A′(sk) by assumption, it must be

that
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Rk(sk, a
′′) + γE

{
H(πH?(sk,a′′), k + 1)

∣∣∣sk, a′′}
> Rk(sk, a

′) + γE
{
H(πH(sk,a′), k + 1)

∣∣∣sk, a′} . (4.17)

As before, sk+1 = SM,W (sa
′′

k ,Wk+1) = SM(sk, a
′′,Wk+1) for a given realization of

Wk+1, and by the restricted optimality of H?(·), H(πH?(sa
′′
k ), k+1) = H(πH?(sk), k+1).

Then, since

Rk(sk, a
′) + γE

{
H(πH?(sa

′
k ), k + 1)

∣∣∣sk, a′} = Rk(sk, a
′)

+ γE
{
H(πH?(sk,a′), k + 1)

∣∣∣sk, a′} > H(πH?(sk), k)

= Rk(sk, a
′′) + γE

{
H(πH?(sk,a′′), k + 1)

∣∣∣sk, a′′} (4.18)

by assumption, (4.17) cannot be true, thus implying that a′′ cannot be the action

chosen by the pre-decision rollout policy.

In the third case, the value of the pre-decision rollout policy is equivalent to

the value of the post-decision rollout policy, meaning

H(πH?(sk), k) = Rk(sk, a
′) + γE

{
H(πH?(sa

′
k ), k + 1)

∣∣∣sk, a′} . (4.19)

Let A?(sk) ⊆ A′(sk) be the set of restricted optimal actions. By the restricted

optimality of H?(·), a′, a′′ ∈ A?(sk). By assumption, πRH′ and πRH′′ employ the same

rule for resolving ties among actions with the same evaluation. Thus, it must be that

a′ = a′′, which is a contradiction.
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The improvement property and equivalence of the various rollout policies re-

sulting from restricted optimal heuristics provide strong motivation for the use of

mathematical programming methods in the solution of large-scale dynamic programs

within a rollout framework. The downside of employing restricted optimal heuristics

within a rollout framework is the potentially large computing time required to execute

H?(·), possibly limiting the ability of a rollout procedure to make dynamic, real-time

decisions.
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CHAPTER 5
A HYBRID ROLLOUT POLICY FOR THE VEHICLE ROUTING
PROBLEM WITH STOCHASTIC DEMAND AND DURATION

LIMITS

5.1 Introduction

Traditional rollout policies have been successfully applied to obtain dynamic

policies for single-vehicle VRPs with stochastic demand (Secomandi, 2001; Novoa

and Storer, 2008). Because the fleet size is limited to only one vehicle, the num-

ber of feasible actions at each decision epoch is relatively small. When considering

multiple vehicles, however, the size of the action space can increase exponentially,

thereby rendering straightforward extensions of single-vehicle methods to the multi-

vehicle case computationally daunting. In this chapter, we demonstrate the potential

of the rollout framework we propose in §4 by developing a hybrid rollout policy to ob-

tain dynamic solutions for the multi-vehicle routing problem with stochastic demand

and duration limits (VRPSDL), an important and difficult problem in supply chain

management.

Similar to the literature on dynamic solution methodologies for single-vehicle

VRPs with stochastic demand, a fixed route heuristic forms the basis of our roll-

out policy for the VRPSDL. Fixed route policies require vehicles to follow predefined

routes and implement simple recourse strategies to accommodate route failures. Using

our rollout policy, we solve large-scale instances with as many as 100 customers and

19 vehicles. By testing our procedure across a broad range of problem parameters, we
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empirically establish conditions under which the demand served by our rollout policy

is significantly higher than the demand served by a method frequently implemented

in practice. We also identify circumstances in which our rollout policy appears to

offer little or no benefit compared to this benchmark. These observations can guide

managerial decision making regarding when the use of our procedure is justifiable.

Finally, we demonstrate that our methodology lends itself to real-time implementa-

tion, thereby providing a mechanism to make high-quality, dynamic routing decisions

for large-scale operations.

This chapter is organized as follows. In §5.2, we discuss literature related to the

VRPSDL. We discuss our hybrid rollout procedure in §5.3. We present computational

results in §5.4. In §5.5, we summarize the chapter and suggest directions for future

research.

5.2 VRPSDL-Related Literature

In this section, we review literature addressing dynamic policies for VRPs with

stochastic demand. For a review of static, fixed route policies, we refer the reader to

the recent review by Campbell and Thomas (2008). The MDP framework underlying

much of the dynamic VRP literature is the single-vehicle model proposed by Dror

et al. (1989). The objective of Dror et al.’s formulation is to obtain a policy that

minimizes expected travel cost subject to a constraint on vehicle capacity. In addition

to incorporating a route duration limit, we deviate from this model in two additional

ways. First, our model allows for multiple vehicles, which leads to a larger state space
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and a significantly more complex action space (motivating our rollout framework).

Second, as motivated in §1, our objective is to maximize expected demand served,

rather than to minimize expected travel costs.

For problem instances of any practical size, obtaining optimal policies for Dror

et al.’s single-vehicle MDP is computationally intractable due to the well known “curse

of dimensionality” associated with dynamic programs. Thus, much of the literature

focuses on heuristic solution methods. Secomandi (2000) investigates an approxi-

mate policy iteration procedure that estimates the cost-to-go via a parametric func-

tion. Such an approach, which is typical of more traditional approximate dynamic

programming, refines parameter estimates via simulation. Secomandi concludes that

a traditional rollout policy performs better than using a parametric function to ap-

proximate the cost-to-go. Within the traditional rollout framework, Secomandi (2000,

2001) establishes a single fixed route policy and repeatedly uses it to approximate the

cost-to-go for a given action by computing the expected cost of cyclically following

this fixed route (skipping customers whose demand has been fully served). Novoa and

Storer (2008) show that using a higher quality initial fixed route leads to improved

policies. They also demonstrate that computation times can be reduced, without a

loss in solution quality, by using simulation to estimate the expected cost of following

a fixed route.

As demonstrated by Fan et al. (2006), one way to address a multi-vehicle

problem is to decompose it into single-vehicle problems by first clustering customers

into groups (one for each vehicle) and then applying Secomandi (2001) to each group.
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However, extending the method of Secomandi (2001) in this fashion has limitations.

Using an initial set of fixed routes to approximate the cost-to-go can only be accom-

plished if the customers to be served by each vehicle are fixed at the start of the

time horizon. Otherwise, it is not clear how to approximate the cost-to-go for actions

that assign vehicles to customers outside of the initial fixed routes. In this paper,

we overcome this limitation by updating fixed route policies at each decision epoch

(instead of reusing an initial policy) that collectively approximate the cost-to-go for

each feasible action.

Secomandi and Margot (2009) suggest partial-reoptimization strategies for a

constrained version of Dror et al.’s single-vehicle model. The constraint requires

each customer demand to be serviced in full before proceeding to another customer,

thereby reducing the size of the state space. The state space is further reduced

by heuristically selecting a promising set of states over which an optimal policy is

obtained. Unfortunately, imposing similar constraints on a multi-vehicle problem

does not circumvent the exponential increase in the action space, thereby negating a

straightforward extension of Secomandi and Margot (2009) to the problem considered

in this paper.

Proper and Tadepalli (2006) consider a combined inventory control and multi-

vehicle routing problem with stochastic demand where the objective is to obtain a

policy that minimizes a measure of travel cost subject to a constraint on vehicle

capacity. Recognizing the computational challenge imposed by a large action space,

the authors suggest a simple local search procedure to guide action selection. From a
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given state, instead of calculating the expected cost-to-go for each feasible action, the

heuristic evaluates only a subset of the feasible actions. Using several four-vehicle,

five-customer problem instances, the authors show their method to improve upon the

performance of a greedy heuristic. Using a heuristic policy to select actions from a

current state has the flavor of the pre-decision rollout policies we propose in §4.4.

However, we consider much larger problems.

Hvattum et al. (2006, 2007) consider a multi-vehicle routing problem with

stochastic demand where customer orders are placed over a given time horizon. The

problem is modeled as a multi-stage stochastic programming problem with an ob-

jective of minimizing travel cost. Within this framework, actions are selected at

pre-defined stages through a sample-based heuristic. In our MDP framework, we

heuristically select actions whenever new information is learned. Additionally, Hvat-

tum et al. (2006, 2007) require customer demand to be served completely by one

vehicle on one visit. If this is not possible, then the customer is skipped. In contrast,

we require customer demand to be served to the fullest extent given available vehicle

capacity. Any remaining customer demand may be served during subsequent visits

by the same vehicle, by another vehicle, or not at all.

5.3 A Hybrid Rollout Policy

In this section, we describe a hybrid rollout policy for the VRPSDL. As out-

lined in §4.5, a hybrid rollout policy requires the specification of a heuristic H(·) and

the partition of the feasible actions into two subsets, A′(s) and {A(s) \ A′(s)}. In
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§5.3.1, we describe an estimation-based local search heuristic. The policies returned

by this heuristic do not explicitly consider replenishment actions, thereby leading to

a natural partition of the action space, which we describe in §5.3.2. Algorithm 5.1

summarizes the steps required to follow our hybrid rollout policy for a given VRPSDL

instance.

Algorithm 5.1 Hybrid Rollout Policy for the VRPSDL

1: k ← 0

2: while sk 6∈ SK do

3: From pre-decision state sk, execute H(sk) to obtain πH(sk)

4: For each a ∈ {A(sk) \ A′(sk)}, execute H(sak) to obtain πH(sak)

5: Select action ā according to a policy that satisfies (4.4)

6: Make state transitions: sk → sāk → sk+1.

7: k ← k + 1

5.3.1 Fixed Route Heuristic

Similar to Secomandi (2001) and Novoa and Storer (2008), the heuristic H(·)

we employ is a fixed route heuristic, which returns a fixed route policy. Fixed route

policies for the VRPSDL require vehicles to visit customers in the order specified by

predefined routes, where each customer with pending or unknown demand appears

exactly once on exactly one vehicle route. After serving demand at a given customer,

a vehicle continues directly to the next customer on its fixed route. If continuing on

to the next customer will result in a violation of the route duration limit, a vehicle is

required to return to the depot. A return trip to the depot for the purpose of capacity
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replenishment is required in the event of a route failure and is not permitted otherwise.

Although it is possible to consider fixed route policies that permit replenishment prior

to route failures, our experience indicates that local search schemes designed around

such policies are computationally prohibitive.

We denote a fixed route for vehicle c ∈ M by the sequence of locations vc =

(vc1, . . . , v
c
b), where vc1 ∈ N and vck ∈ N \ {0} for k = 2, . . . , b. When in initial

state s0, vc1 = 0 for all c ∈ M. When H(s) is executed from some s ∈ S, vc1 is

initialized by s and may not necessarily be the depot. We denote a collection of fixed

routes by v = (vc)c∈M and require that each customer with unknown or unserved

demand be assigned to exactly one route in v. For individual customers, we drop

the superscript c except when doing so leads to ambiguity. In accordance with the

literature on fixed route policies, we assume customer demands are independent. This

assumption results in separability by route when calculating the value of a policy,

thereby improving the computational tractability of searching for fixed route policies.

Our fixed route heuristicH(·) is a first-improving local search procedure with a

relocation neighborhood (Kindervater and Savelsbergh, 2003). The relocation neigh-

borhood of a current solution v consists of all fixed routes that can be obtained by

relocating a customer vci after another customer vc
′
j such that i 6= 1 (current vehicle

locations are fixed). If c = c′, i.e., the customer is not assigned to a different vehicle,

then we also require j 6= i and j 6= i− 1, as these moves do not change the solution.

Given a current set of fixed routes, we randomly generate a neighbor set of fixed routes

from the relocation neighborhood. If the expected demand served by the neighboring
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fixed routes is greater than the expected demand served by the current fixed routes,

then the current solution is updated with the neighboring solution and the process

repeats. Otherwise, the search continues in the neighborhood of the current solution

and the procedure terminates when a current solution is determined to serve at least

as much expected demand as all solutions in its relocation neighborhood.

Denote by v?(k − 1) the fixed routes returned by the hybrid rollout policy at

decision epoch k− 1. At the next decision epoch, when executing H(sk) or H(sak) for

some action a ∈ {A(sk)\A′(sk)}, an initial set of fixed routes is obtained by updating

v?(k−1) to reflect pre- or post-decision state transitions. Specifically, the first location

on each route is synchronized with vehicle destinations. Arrival times and remaining

vehicle capacities at the these locations are also adjusted. Our experience indicates

that initializing the local search in this fashion accelerates convergence to high-quality,

locally-optimal solutions.

In §5.6, we develop an exact, polynomial-time procedure to calculate the ex-

pected demand served at a given customer. Applying this method to each customer

in a collection of fixed routes and summing the results allows for the exact evaluation

of a fixed route policy. Even though the complexity of this procedure can be bounded,

calculating the expected demand served by a fixed route policy can be computation-

ally prohibitive, particularly when many policies must be evaluated, as is the case

with H(·).

A computationally attractive alternative is to estimate the value of a policy

via simulation. Recently, Birattari et al. (2008) and Balaprakash et al. (2010) have
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demonstrated the effectiveness of estimation-based local search on fixed route policies

for the probabilistic traveling salesman problem. They show that estimating the dif-

ference between the objective values of two solutions offers significant computational

advantages over exact evaluation methods. Furthermore, because their estimation-

based procedures can search many more solutions in a given period of time than exact

procedures, the authors are able to find high quality solutions in less computing time.

We have observed similar results when estimating the value of fixed route policies

in H(·). Therefore, we only employ our exact evaluation to precisely compute the

expected demand served of the solution returned by H(·).

Denote by Rvk the random amount of demand served at customer vk. Given

M randomly generated demand realizations from f , x̂1, . . . , x̂M , the expected demand

served at customer vk is estimated to be

Ê{Rvk} =
1

M

M∑
j=1

Rvk(x̂
j), (5.1)

where Rvk(x̂
j) is the demand served at customer vk given demand realization x̂j. It is

straightforward to show that (5.1) is an unbiased estimator of the expected demand

served at customer vk. The total value of a fixed route policy, π(v), is estimated to

be the sum of the estimated demand served at each customer:

V̂ π(v) =
m∑
c=1

|vc|∑
k=1

Ê{Rvck
}. (5.2)

As we show below, Rvk depends on vehicle capacities, arrival times, and de-

mands at customers v1, . . . , vk. In the local search procedure of H(·), this allows
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the values of fixed route policies within the neighborhood of a current solution to be

computed efficiently. Let v be a current solution and v̄ a solution in the relocation

neighborhood of v obtained by relocating customer vci after customer vc
′
j . To calculate

V̂ π(v̄), it is not necessary to estimate the expected demand served at each customer.

If c 6= c′, i.e., they are different vehicles, then it is only necessary to calculate Rv̄ck
for

k = i, . . . , |vc| − 1 and Rv̄c
′
k

for k = j + 1, . . . , |vc′| + 1. If c = c′, i.e., they are the

same vehicle, and i < j, then it is only necessary to calculate Rv̄ck
for k = i, . . . , |vc|.

If c = c′ and i > j, then it is only necessary to calculate Rv̄ck
for k = j + 1, . . . , |vc|.

Calculation of estimated demand served at other customers in v̄ remains the same as

in v.

Rvk depends on vehicle capacity upon arrival to customer vk and arrival time

at vk. Denote these quantities as Qvk and Avk , respectively, and denote the random

amount of demand at customer vk by xvk . We separate the calculation of Qvk and

Avk into three cases:

Qvk =



Qvk−1
− xvk−1

, xvk−1
< Qvk−1

Q,
xvk−1

−Qvk−1

Q
=
⌊
xvk−1

−Qvk−1

Q

⌋
⌈
xvk−1

−Qvk−1

Q

⌉
Q− xvk−1

+Qvk−1
,

xvk−1
−Qvk−1

Q
>
⌊
xvk−1

−Qvk−1

Q

⌋
, (5.3)

and
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Avk =



Avk−1
+ t(vk−1, vk), xvk−1

< Qvk−1

Avk−1
+
(
xvk−1

−Qvk−1

Q
+ 1
)
t(vk−1, 0)

+
(
xvk−1

−Qvk−1

Q

)
t(0, vk−1) + t(0, vk),

xvk−1
−Qvk−1

Q
=
⌊
xvk−1

−Qvk−1

Q

⌋
Avk−1

+ t(vk−1, vk) +
⌈
xvk−1

−Qvk−1

Q

⌉
× (t(vk−1, 0) + t(0, vk−1)) ,

xvk−1
−Qvk−1

Q
>
⌊
xvk−1

−Qvk−1

Q

⌋

,

(5.4)

where v1 = lc, Qv1 = qc, and Av1 = tc are given by the current state of vehicle c.

In the first case, demand at customer vk−1 is less than vehicle capacity upon arrival

to vk−1, thus vehicle capacity is simply decremented by the amount of demand and

the vehicle travels directly from vk−1 to vk. The second and third cases account for

situations where demand at customer vk−1 is greater than or equal to vehicle capacity

upon arrival to vk−1, thereby requiring return trips to the depot to replenish capacity.

The required number of return trips is b(xvk−1
− Qvk−1

)/Qc. In the second case,

satisfying demand at vk−1 exactly depletes vehicle capacity, thus requiring the vehicle

to replenish at the depot one additional time and travel directly to customer vk with

full capacity. In the third case, there is some capacity remaining after serving demand

at customer vk−1. After making the necessary return trips to the depot, the vehicle

travels directly from vk−1 to vk with the remaining capacity.

To compute Rvk , we consider the route duration limit, noting that violations

of the route duration limit result in zero demand served. Three cases are considered
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in the calculation:

Rvk =



0, Avk > L− t(vk, 0)⌊
L−t(vk,0)−Avk
t(vk,0)+t(0,vk)

⌋
Q+Qvk ,

⌊
L−t(vk,0)−Avk
t(vk,0)+t(0,vk)

⌋
≤
⌊
xvk−Qvk

Q

⌋
xvk , xvk ≤ Qvk and Avk ≤ L− t(vk, 0),

or
⌊
L−t(vk,0)−Avk
t(vk,0)+t(0,vk)

⌋
>
⌊
xvk−Qvk

Q

⌋
. (5.5)

In the first case, zero demand is served because the route duration limit is violated.

In the second case, only a portion of demand is served because the vehicle does not

have enough time to make the return trips to the depot necessary to serve demand

in full. In the third case, demand is served in full either because the vehicle arrives

prior to the route duration limit and with sufficient capacity, or because the vehicle

has enough time to make any necessary replenishments.

5.3.2 Action Space Partition

When applied in a pre-decision state sk = ((l, t, q), (d, x)), fixed route heuristic

H(sk) returns a set of fixed routes v that constitute a fixed route policy πH(sk). The

policy recommends an action a as follows. As required by (2.15), vehicles en route are

not diverted. Thus, for a vehicle c ∈ {M \M′}, ac = vc1, the current destination of

vehicle c. In accordance with (2.17), vehicles in M′ whose capacity will be depleted

after serving demand at current locations must replenish at the depot: ac = 0 for all

c ∈ M′ such that qc ≤ dvc1 . Further, to respect (2.21), vehicles in M′ with positive

capacity after serving demand at current locations must return to the depot if visiting
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the next customer on the fixed route will result in a violation of the route duration

limit: ac = 0 for all c ∈ M′ such that qc > dvc1 and tc + t(vc1, v
c
2) + t(vc2, 0) > L. For

remaining vehicles c ∈ M′, the action recommended by the fixed route policy is to

travel directly to the next customer on the fixed route (ac = vc2), unless |vc| = 1, then

vehicle c returns to the depot (ac = 0) having served all customer demand on its fixed

route.

Because a fixed route policy does not explicitly consider capacity replenishment

actions (except to maintain feasibility with respect to vehicle capacity and the route

duration limit), we consider such actions in a post-decision rollout policy. Let {A(sk)\

A′(sk)} = {a ∈ A(sk) : ac = 0 for some c ∈M′ such that qc > dvc1 and tc+ t(vc1, v
c
2)+

t(vc2, 0) ≤ L} be the set of actions that allow vehicles to replenish capacity prior to

a route failure. An upper bound on the number of actions in this set is 2|M
′| − 1,

which is only obtained if all vehicles in M′ meet the specified criteria. As outlined

in (4.4), for each action a ∈ {A(sk) \ A′(sk)}, we transition to post-decision state

sak and apply heuristic H(sak). We then compare the best post-decision policy to the

pre-decision policy and select the action corresponding to the policy with the largest

expected demand served. This process of obtaining pre- and post-decision policies to

solve (4.4) is summarized in Algorithm 5.1.

5.4 Computational Experience

In this section, we examine the effectiveness of our hybrid rollout policy for the

VRPSDL and discuss the managerial implications of our method. Ideally, our hybrid
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rollout policy should be compared to an optimal policy. However, a primary motiva-

tion for the methodology we develop in this paper is the difficulty of obtaining optimal

VRPSDL policies. To emphasize this, consider the work of Secomandi and Margot

(2009), which addresses a single-vehicle VRP with stochastic demand. Provably op-

timal policies are obtained only for problems with 15 or fewer customers. Moreover,

the authors are only able to obtain perfect-information bounds on the value of opti-

mal policies for problem instances with 15 or fewer customers. Due to the additional

complexity introduced by multiple vehicles, obtaining optimal VRPSDL policies or

bounds on the value of optimal VRPSDL policies, is a nontrivial task and is a subject

of future research.

Given these limitations, we choose to benchmark our results by comparing the

demand collected by our hybrid rollout policy to the demand collected by a stand-

alone fixed route policy for the VRPSDL. This comparison allows us to compare

dynamic updating to the static routing often implemented in practice (Erera et al.,

2010). Our methodology for obtaining benchmark fixed route policies is described

in §5.4.1. In §5.4.2, we detail the generation of problem instances used to make the

comparison. Implementation details are outlined in §5.4.3. A discussion of the results

and their managerial implications is provided in §5.4.4.

5.4.1 Benchmark Fixed Route Policies

To ensure our benchmark fixed route policies are of high quality, we use a

simulated annealing procedure that has matched many of the optimal fixed route
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policies obtained by Christiansen and Lysgaard (2007) for a VRP with stochastic

demand. Simulated annealing is a local search algorithm in which non-improving

moves are probabilistically accepted in an attempt to avoid becoming trapped in a

low-quality, locally-optimal solution (Kirkpatrick et al., 1983; Johnson et al., 1989,

1991).

Given a current set of fixed routes, our simulated annealing procedure gen-

erates a neighboring set of fixed routes via one of the five neighborhood structures

employed by Bent and Van Hentenryck (2004) in a simulated annealing algorithm for

the VRP with time windows: two-exchange, Or-exchange, relocation, exchange, and

crossover. A detailed explanation of these neighborhoods is given in Kindervater and

Savelsbergh (2003). At each iteration of our simulated annealing implementation,

we randomly generate a neighboring set of fixed routes from a randomly selected

neighborhood of the current set of fixed routes. Denote the policy induced by the

current set of fixed routes by π(v) and the policy induced by a neighboring set of

fixed routes by π(v′). Denote the expected demand served by these policies as V π(v)

and V π(v′), respectively. We accept the neighboring fixed route policy with proba-

bility exp(−(V π(v) − V π(v′))+/τ), where (y)+ = y if y > 0 and 0 otherwise and τ

is the current temperature, a control parameter in simulated annealing (Kirkpatrick

et al., 1983). In the manner discussed in §5.3.1, to reduce the computational bur-

den of evaluating a fixed route policy, we estimate the expected demand served via

simulation.
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5.4.2 Problem Instances

To facilitate our experiments, we modify eight problems derived from the in-

stances of Solomon (1987), ignoring the time windows, with the aim of considering

a broad range of problem types. The problems include R101 (randomly dispersed

customers) and C101 (clustered customers), each with 25, 50, 75, and 100 customers.

We vary vehicle capacity, impose route duration limits, and vary customer demand

variability to yield a total of 216 problem instances. We set problem parameters as

follows. For each of the eight Solomon instances, we consider vehicle capacities of

25, 50, and 75 units, hereafter referred to as small, medium, and large. To determine

fleet size and route duration limits, we first solve each of the eight Solomon instances

as a classical VRP (i.e., time windows are ignored) with a vehicle capacity of 100.

We employ the cyclic-order neighborhood search heuristic of §3 for this purpose. The

fleet size m for each problem instance is set to the number of routes in the VRP

solution. We then multiply the length of the longest route in each solution by 0.75,

1.25, and 1.75. The resulting route duration limits are hereafter referred to as short,

medium, and long. Fleet size, route duration limits, and capacities are displayed in

Table 5.1. To the best of our knowledge, only Hvattum et al. (2006, 2007) consider

similarly sized dynamic and stochastic VRP instances. In their work, the number of

orders revealed dynamically over a given time horizon is as large as 151. However,

the fleet size never exceeds six vehicles, whereas we consider as many as 19 vehicles.

We assume customer demands are independent random variables, and we con-

struct discrete, symmetric probability distributions for customer demand with low,
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Table 5.1: Problem Parameters

Duration Limits Capacities

Problem Vehicles (short, medium, long) (small, medium, large)

R101 (25) 4 (85.575, 142.625, 199.675) (25, 50, 75)

C101 (25) 5 (67.875, 113.125, 158.375) (25, 50, 75)

R101 (50) 8 (89.475, 149.125, 208.775) (25, 50, 75)

C101 (50) 9 (67.875, 113.125, 158.375) (25, 50, 75)

R101 (75) 11 (103.05, 171.75, 240.45) (25, 50, 75)

C101 (75) 14 (99.45, 165.75, 232.05) (25, 50, 75)

R101 (100) 15 (94.875, 158.125, 221.375) (25, 50, 75)

C101 (100) 19 (95.325, 158.875, 222.425) (25, 50, 75)

moderate, and high variability. The expected demand for each customer is set to

the deterministic demand given in the original Solomon instances; denote this quan-

tity by x̄. To construct a high variability probability distribution for a given cus-

tomer, we assign uniform probabilities of 0.20 to {0, x̄/2, x̄, 3x̄/2, 2x̄}. To construct

a moderate variability probability distribution for a given customer, we assign prob-

abilities of {0.05, 0.15, 0.60, 0.15, 0.05} to {0, x̄/2, x̄, 3x̄/2, 2x̄}. To construct a low

variability probability distribution for a given customer, we assign probabilities of

{0.05, 0.9, 0.05} to {x̄/2, x̄, 3x̄/2}.

For each of the 216 problem instances, we randomly generate 500 realizations

according to the specified probability distributions for customer demand (a total

108,000 realizations). For each realization, we compare the demand collected by the

benchmark fixed route policy to the demand collected by our hybrid rollout policy.
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This is accomplished by constructing a confidence interval on the percent increase in

demand served by the hybrid rollout policy over the benchmark fixed route policy.

Let πHY denote the hybrid rollout policy, π(v) the benchmark fixed route policy, and

x̂i the ith demand realization. For each demand realization, we calculate the percent

increase in demand served by the hybrid rollout policy over the benchmark fixed route

policy as

∆̂πHY ,π(v)(x̂i) =
V̂ πHY (x̂i)− V̂ π(v)(x̂i)

V̂ π(v)(x̂i)
× 100.

We then calculate the average percent increase across all 500 realizations of the prob-

lem instance:

∆̄πHY ,π(v) =
1

500

500∑
i=1

∆̂πHY ,π(v)(x̂i).

Letting S∆ be the sample standard deviation of (∆̂πHY ,π(v)(x̂i))500
i=1, we calculate a

confidence interval as

[
∆̄πHY ,π(v) − z0.975S∆, ∆̄

πHY ,π(v) + z0.975S∆

]
.

5.4.3 Implementation Details

In the case of our hybrid rollout procedure, for each realization of each problem

instance, the action taken in the first decision epoch is obtained by following the

benchmark fixed route policy. Actions are selected in subsequent decision epochs via

the hybrid rollout policy. This serves as a control in the first decision epoch and
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it also provides a method to initialize the first application of heuristic H(·), which

occurs in the second decision epoch.

The simulated annealing procedure used to obtain benchmark fixed route poli-

cies begins with an initial set of m fixed routes obtained by assigning customers to

routes in a radial fashion with respect to the depot. We generate 7,000 neighbor solu-

tions at each temperature, employ a temperature multiplier of 0.95, and begin with an

initial temperature of 100. The procedure terminates after at least 100 temperature

decrements and not updating the best-found solution for 75 successive temperature

decrements. Our experience suggests that these parameters yield high-quality solu-

tions. We run the procedure 10 times and select as the benchmark policy the fixed

routes serving the greatest expected demand.

When estimating the expected demand served by fixed routes in the simulated

annealing procedure, we use M = 100 demand samples. We decrease the number

of demand samples to M = 30 in fixed route heuristic H(·). We observe that 30

demand samples provides an acceptable tradeoff between solution quality and com-

puting time. When we apply H(·) in our hybrid rollout policy, computing time is

an important consideration for real-time decision making. In either method, we use

the same set of M demand samples throughout the procedure. As in Birattari et al.

(2008), using common random numbers in this fashion reduces the variance of the

difference between two solution values and also decreases computing time.

We implement our experiments, which required more than two CPU years, in

C++ and execute them on a computing cluster provided by the University of Iowa
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Information Technology Services. The cluster contains eight nodes with the CentOS

5.3 operating system. Each node consists of dual quad core AMD Opteron Processors

2350 at 2GHz and 16GB of ECC DDR2 667MHz SDRAM.

5.4.4 Results and Discussion

Table 5.2 displays confidence intervals for the percent increase in demand

served by our hybrid rollout policies over the corresponding benchmark fixed route

policies. Confidence intervals to the right of zero are in bold and indicate a statis-

tically significant increase in demand served by our hybrid rollout policies over the

benchmark fixed route policies. Confidence intervals containing zero are in normal

typeface and indicate no statistically significant difference in demand collected by the

two policies.

Across all 216 problem instances, the lower limit of the confidence intervals

is never less than zero, thereby suggesting, with a strong likelihood, that following

our hybrid rollout policy weakly improves upon a stand-alone fixed route policy. In

some cases the improvement is dramatic, and in others, there is little to no benefit.

We note that our initial attempts to outperform the benchmark fixed route policies

were unsuccessful, often resulting in a statistically significant decrease in demand

served. These attempts consisted primarily of greedy fixed route heuristics, similar

to H̄(·) described in §4.5, implemented in a post-decision rollout policy. Due to

the large action space of the VRPSDL, use of more sophisticated heuristics, such as

the heuristic described in §5.3.1, was computationally intractable in a post-decision
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rollout policy. Only after developing the concept of pre-decision and hybrid rollout

policies were we able to address the large action space and obtain desirable results.

We observe several notable trends in Table 5.2. First, for a given duration

limit, as vehicle capacity decreases, the percent demand served over benchmark fixed

route policies almost always increases. Intuition suggests the following explanation.

Vehicles with smaller capacities experience more route failures/replenishments than

vehicles with larger capacities. Fixed route policies handle route failures by requiring

a single vehicle to make return trips to the depot until the customer’s demand is

satisfied. The hybrid rollout policies allows unserved demands resulting from a route

failure to be met by multiple vehicles, thereby reducing the number of time-consuming

return trips to the depot and allowing more demand to be served.

One way to support this claim is to compare the total distance traveled by

the hybrid rollout policy to the total distance traveled by the benchmark fixed route

policy. The following example is illustrative of the trend across other problem in-

stances. For problem R101(50) with high variability in customer demand, a medium

duration limit, and a large capacity, the average percent decrease in distance traveled

by the hybrid rollout policy compared to the benchmark fixed route policy is –3.39

percent, indicating that the hybrid policy incurred a larger travel distance than the

benchmark fixed route policy. In contrast, when the capacity is medium the average

percent decrease is 4.41 percent and when the capacity is small the average percent

decrease is 17.02 percent, thereby suggesting that the hybrid rollout policy is particu-

larly efficient compared to the benchmark fixed route policy when capacity is medium
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or small.

Second, when variability in customer demand is high, hybrid rollout policies

tend to perform better on clustered problem instances than on randomized problem

instances. We suggest the following as a likely explanation for this trend. For a fixed

route policy, route failures in a clustered problem instance tend to be more costly

than route failures in a randomized problem instance. In a randomized problem

instance, because customer locations are scattered about the service area, fixed route

policies may be designed so that route failures are most likely to occur near the

depot, thereby minimizing the time required to make return trips to the depot and

allowing additional time to serve more demand. In a clustered problem instance,

because customers are located in groups which may be some distance from the depot,

each route failure requires a similar time to make a return trip to the depot, therefore

making it difficult to leverage customer location when designing fixed routes. Because

hybrid rollout policies allow customer demands to be served by multiple vehicles, some

return trips to the depot can be avoided, thus allowing vehicles to use this time to

serve more demand. This trend becomes less prominent as variability in customer

demand decreases to moderate and low. When customer demands are known with

higher accuracy, the likelihood of a well-designed fixed route collecting more demand is

higher, thereby decreasing the potential to leverage customer location when designing

fixed routes for randomized problem instances.

As before, we can support this claim by comparing the average percent decrease

in distance traveled by hybrid rollout policies compared to benchmark fixed route
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policies for randomized and clustered instances with high demand variability. For

problem C101(50) with high variability in customer demand and a medium duration

limit, the percent decreases are 10.11, 14.51, and 15.75 percent for large, medium,

and small capacities, respectively. Comparing these figures to those given above for

R101(50), we see that when capacity is large or medium, the hybrid rollout policy

decreases travel distance more for the clustered problem than for the randomized

problem. The figures are similar when capacity is small. This example is illustrative

of the trend we observe across other problem instances with high demand variability.

Third, the benefit of our hybrid rollout policies over the benchmark fixed route

policies generally decreases as variability in customer demand decreases. As before, it

appears that when customer demands are known with higher accuracy, the likelihood

of well-designed fixed routes yielding high performance is high.

For companies that employ fixed routes, these observations suggest conditions

under which operations may be improved by employing our hybrid rollout policy.

The largest benefit is most likely to be realized when vehicle capacities are small

relative to demand, customers are clustered, and demand variability is high. As

vehicle capacities increase and customer demand variability decreases, the benefits

diminish. Because fixed routes offer certain managerial advantages over a dynamic

routing scheme (Campbell and Thomas, 2008), these considerations are important.

Although solution quality is our primary consideration, the potential for real-

time decision making is also important. Table 5.3 displays per epoch computing

times. The first number of each pair is the average number of CPU seconds required
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to select an action across all decision epochs in all 500 realizations. The second

number of each pair is the average of the maximum number of CPU seconds required

to select an action across all 500 realizations. For the problems we consider, two CPU

minutes is the largest average maximum number of CPU seconds required to select

an action, thereby suggesting that our method is implementable in real time for the

problem instances we consider.

Speaking more generally, per epoch computing times are influenced by three

things. First, the number of actions in {A(s) \ A′(s)} determines the number of

times heuristic H(·) is applied. While these applications of H(·) may be processed in

parallel, the CPU seconds reported in Table 5.3 correspond to a serial implementa-

tion. Second, the number of demand samples, M , used to estimate expected demand

served by a set of fixed routes can significantly influence the computation required

to execute H(·). For the problems we consider, M = 30 yields an acceptable trade-

off between computation time and solution quality, but different problem instances

may necessitate adjustments to this parameter. Third, as demonstrated in Table 5.3,

problem size can increase per epoch computing times considerably.

5.5 Conclusion and Future Research

We demonstrate the potential of the rollout framework we propose in §4 by

developing a hybrid rollout policy to obtain dynamic solutions for the vehicle rout-

ing problem with stochastic demand and duration limits, an important and difficult

problem in supply chain management. We develop a fixed route heuristic that forms
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the basis of our rollout policy. Using our rollout policy, we solve large-scale prob-

lem instances and demonstrate that our method can significantly improve upon a

method frequently implemented in practice. We also identify circumstances in which

our rollout policy appears to offer little or no benefit compared to this benchmark.

These observations can guide managerial decision making regarding when the use of

our procedure is justifiable. We also demonstrate that our methodology lends itself

to real-time implementation, thereby providing a mechanism to make high-quality,

dynamic routing decisions for large-scale operations.

A potential drawback of using fixed route policies to approximate future de-

mand served is that the approximation does not account for possible interactions

among vehicle routes. This is because fixed route policies restrict vehicles to disjoint

sets of customers. Accounting for these interactions may lead to improved policies.

A method that may avoid this shortcoming is to approximate future demand served

via a parametric function. Such an approach, which is typical of more traditional

approximate dynamic programming, often refines parameter estimates via simula-

tion. Preliminary work in this area suggests that seeding initial parameter values

based on rollout policies is advantageous (see §7). Another possibility is to use more

sophisticated fixed route policies, such as those suggested by Ak and Erera (2007),

which coordinate vehicle routes in pairs. However, incorporating these more complex

recourse actions may lead to increased computing times, thereby making it difficult

to implement such methods in real time.
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5.6 Polynomial-Time Procedure

In this appendix, we derive a polynomial-time procedure to calculate the ex-

pected demand served by a fixed route policy. Let N ′ = {lai : i ∈M′, lai 6= 0, xali = ?}

be the set of customers with unknown demand at which a vehicle has arrived and let

N ′′ = {i ∈ N : lai 6= 0, xai 6= ?} be the set of customers whose demand has been ob-

served. We denote by xI the vector of customer demands indexed by the set I. Then,

fxN′ |xN′′ (·) is the joint density function of the demand at customers in N ′ conditional

on the observed demand at customers in N ′′.

By conditioning on vehicle capacity, arrival time, and customer demand, ex-

pected demand served at customer vk may be calculated as

E{Rvk} =
∑
q

∑
t

E {Rvk |Qvk = q, Avk = t} × P {Qvk = q, Avk = t} (5.6a)

=
∑
q

∑
t

∑
x

E {Rvk |Qvk = q, Avk = t, xvk = x} (5.6b)

× P {xvk = x|Qvk = q, Avk = t} × P {Qvk = q, Avk = t} (5.6c)

=
∑
q

∑
t

∑
x

E {Rvk |Qvk = q, Avk = t, xvk = x} × fxvk |xN′′ (x|xN ′′) (5.6d)

× P {Qvk = q, Avk = t} , (5.6e)

where we assume a discrete joint probability distribution for computational tractabil-

ity. The conditional expectation in (5.6d) may be obtained directly from (5.5). The

second term in (5.6d) follows from the independence of demand conditional on q and

t and is given as the density f . The joint probability term in (5.6e) may be calculated
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as follows:

P {Qvk = q, Avk = t} =
∑
q′

∑
t′

P
{
Qvk = q, Avk = t|Qvk−1

= q′, Avk−1
= t′

}
(5.7a)

× P
{
Qvk−1

= q′, Avk−1
= t′

}
(5.7b)

=
∑
q′

∑
t′

∑
x′

P{Qvk = q, Avk = t|Qvk−1
= q′ (5.7c)

Avk−1
= t′, xvk−1

= x′} × fxvk−1
|xN′′ (x

′|xN ′′) (5.7d)

× P
{
Qvk−1

= q′, Avk−1
= t′

}
, (5.7e)

where P
{
Qvk = q, Avk = t|Qvk−1

= q′, Avk−1
= t′, xvk−1

= x′
}

= 1 if (5.3) and (5.4) are

satisfied and 0 otherwise.

Using this recursive relationship, Algorithm 5.2 describes a procedure to cal-

culate E{Rvck
}, the expected demand served at customer vck. We define g(vk, q, t) =

P {Qvk = q, Avk = t} and append Qvk , Avk , and Rvk with (·) to denote their depen-

dence on other terms. The support of xvk is denoted supp(xvk). Assuming inte-

ger demand values and travel times, the worst case complexity of Algorithm 5.2 is

O(Q× L×maxj=1,...,k{supp(xvk)}).



109

Algorithm 5.2 Calculation of Expected Demand Served at Customer vk for an A

Priori Policy

1: g(v1, qc, tc)← 1

2: g(v1, q, t)← 0 for all (q, t) 6= (qc, tc)

3: g(vj, q, t)← 0 for j = 2, 3, . . . , k and for all (q, t)

4: E{Rvk} ← 0

5: for j = 2, 3, . . . , k do

6: for g(vj−1, q
′, t′) 6= 0 do

7: for x′ ∈ supp(xvj−1
) do

8: g(vj, Qvj(x
′, q′), Avj(x

′, q′, t′))←
g(vj−1, Qvj−1

(x′, q′), Avj−1
(x′, q′, t′))× fxvj−1 |xN′′ (x

′|xN ′′)

9: for g(vk, q
′, t′) 6= 0 do

10: for x′ ∈ supp(xvk) do

11: E{Rvk} ← E{Rvk}+Rvk(x
′, q′, t′)× g(vk, q

′, t′)× fxvk |xN′′ (x
′|xN ′′)
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CHAPTER 6
A RESTOCKING-BASED PRE-DECISION ROLLOUT POLICY FOR

THE VEHICLE ROUTING PROBLEM WITH STOCHASTIC
DEMAND AND DURATION LIMITS

6.1 Introduction

In this chapter, we develop a pre-decision rollout policy to obtain dynamic

solutions for the multi-vehicle routing problem with stochastic demand and duration

limits (VRPSDL). The fundamental difference between the methods of this chap-

ter and the hybrid rollout policy of §5 is how capacity replenishment, or restocking,

actions are evaluated. In the hybrid rollout policy of §5, restocking actions are enu-

merated and evaluated in the post-decision state via a fixed route heuristic. In this

chapter, we expand the action space of the policy derived from a fixed route to ex-

plicitly consider restocking actions prior to route failures. In our fixed route heuristic,

we still require vehicles to visit customers in the order specified by a fixed route, but

we now consider preemptive returns to the depot as a way to improve the expected

demand served by a fixed route. As a result, we are able to consider the full set of

feasible actions, including restocking actions, from a pre-decision state via the fixed

route heuristic. Computationally, this is important because the fixed route heuristic

needs be executed only once at each decision epoch, as opposed to at least twice in

the hybrid rollout policy of §5. Computational results for our pre-decision rollout

policy reflect this by showing a decrease in per epoch computing times compared to

the hybrid rollout policy of §5. In addition, results indicate that the demand served
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by our pre-decision rollout policy is comparable to the demand served by the hybrid

rollout policy of §5. Thus, a contribution of this chapter is a comparable rollout

policy to that of §5, but with shorter per epoch computing times.

Expanding the action space of a fixed route policy to explicitly consider re-

stocking actions poses computational challenges. Unlike the more restricted fixed

route policy we describe in §5.3.1, we are unable to evaluate a restocking fixed route

policy in polynomial time. A second contribution of this chapter is a computationally

feasible method to estimate the value of an optimal restocking policy along a given

fixed route.

This chapter is organized as follows. In §6.2, we provide an example that

illustrates the difference between restocking fixed route policies and the fixed route

policies of §5.3.1. In §6.3, we review literature related to restocking policies for fixed

routes. In §6.4, we describe our restocking-based pre-decision rollout policy. In §6.5,

we develop a computationally tractable method to estimate the value of a restocking

fixed route policy. We summarize our computational experience in §6.6 and provide

concluding remarks in §6.7. Unless otherwise noted, we adopt the notation of §5

throughout this chapter.

6.2 Illustrative Example

In this section, we present an example that illustrates the difference between

restocking fixed route policies and the fixed route policies of §5.3.1, which refer to

as a priori fixed route policies. As in §5.3.1, the fixed route policy we consider for
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a vehicle c ∈ M is characterized by a fixed route vc = (vc1, v
c
2, . . . , v

c
b). After fully

serving demand at a customer vci , instead of requiring the vehicle to travel directly

to customer vci+1, the vehicle may first replenish capacity at the depot.

The first five columns of Table 6.1 display data for a single fixed route v =

(23, 22, 13, 15, 2) for problem R101(25) with vehicle capacity Q = 50 and route dura-

tion limit L = 171.681. The column labeled “xvk” displays the deterministic demand

at customer vk. The horizontal and vertical coordinates of each customer are given

in the columns labeled “x-coord” and “y-coord,” respectively. The depot is located

at (35, 35) and one time unit is equal to one unit of distance, as measured by the

Euclidian metric. The remainder of Table 6.1 compares an a priori policy for fixed

route v with a restocking policy for fixed route v. The a priori policy requires the

vehicle to visit customers in the order given on the fixed route, only returning to the

depot in the event of a route failure or if proceeding to the next customer will result

in a violation of the route duration limit.

The restocking policy we consider requires the vehicle to replenish capacity

after fully serving demand at customer v1 = 23 and before beginning service at

customer v2 = 22. Beginning at customer v2 = 22, the restocking policy requires the

vehicle to travel directly to each subsequent customer on the fixed route. As in the

a priori policy, the vehicle must return to the depot in the event of a route failure or

if servicing additional demand will result in a violation of the route duration limit.

We note that this represents only one of 16 possible restocking strategies for fixed

route v. In §6.5, we develop a procedure to obtain the optimal restocking policy for
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Table 6.1: Example Data and Results for A Priori and Restocking Policies

Data A Priori Policy Restocking Policy

k vk xvk x-coord y-coord Qvk Avk Rk Qvk Avk Rk

1 23 39 55 5 50 36.0555 39 50 36.0555 39

2 22 18 45 10 11 47.2359 18 50 99.0368 18

3 13 23 30 25 43 122.301 23 32 120.25 23

4 15 8 30 5 20 142.301 0 9 140.25 8

5 2 7 35 17 12 155.301 0 1 153.25 1

a given fixed route. For each policy, Table 6.1 displays the capacity upon arrival to

each customer (denoted Qvk), the arrival time at each customer (denoted Avk), and

the demand served at each customer (denoted Rk).

The a priori policy begins service at customer v1 = 23 at time A23 = 36.0555

(the time required to travel from the depot to customer 23) and with initial vehicle

capacity Q23 = 50. After fully serving demand at customer v1 = 23, vehicle capacity

is positive, thus the a priori policy requires the vehicle to travel directly to customer

v2 = 22. Because vehicle capacity upon arrival Q22 = 11 is insufficient to fully

serve demand x22 = 18, a route failure occurs. As required by the a priori policy,

the vehicle serves 11 units of demand and then makes a return trip to the depot to

replenish capacity. After serving the remaining seven units of demand, the vehicle

travels directly to customer v3 = 13 and fully serves demand x13 = 23. At this point,

the a priori policy requires the vehicle to conclude its route and return to the depot

because visiting customer v4 = 15 results in a violation of the route duration limit.

Thus, zero demand is served at customers v4 = 15 and v5 = 2 and the total demand
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to Route Failure

Figure 6.1: Example A Priori Route

served by the a priori fixed route policy is 80 units. The route traversed by the vehicle

under the a priori policy is displayed in Figure 6.1.

The restocking policy also begins service at customer v1 = 23 at time A23 =

36.0555 and with initial vehicle capacity Q23 = 50. Although vehicle capacity is

positive after fully serving demand at customer v1 = 23, the restocking policy we

employ requires the vehicle to replenish capacity at the depot before visiting customer

v2 = 22. This proactive capacity replenishment, not permitted in the a priori policy,

enables the vehicle to directly visit each subsequent customer on the fixed route

without violating the route duration limit. As a result, demand is fully served at all

customers except customer v5 = 2, where only one of x2 = 7 demand units is served.
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Figure 6.2: Example Restocking Route

The total demand served by the restocking policy is 89 units, nine units higher than

the demand served by the a priori policy. The route traversed by the vehicle under

the restocking policy is displayed in Figure 6.2.

In this example, the restocking policy is the optimal restocking policy for

fixed route v (we discuss how to obtain the optimal restocking fixed route policy in a

subsequent section). In general, for a given fixed route, the optimal restocking policy

always serves at least as much expected demand as the a priori policy. This is because

optimal restocking fixed route policies are a relaxation of a priori fixed route policies.
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6.3 Restocking-Related Literature

In this section, we review literature related to restocking policies for a given

fixed route. The literature we review focuses on obtaining restocking policies with

an objective of minimizing some measure of travel cost. Although the methods we

develop focus on maximizing demand served, there are methodological similarities

between our work and the literature.

Much of the literature on restocking policies is founded on the work of Bert-

simas et al. (1995), which considers restocking policies for a single-vehicle routing

problem with stochastic demand. For a given fixed route, Bertsimas et al. (1995)

formulate a dynamic program to determine the expected length of the route that

results from following the optimal restocking policy. Because Bertsimas et al. (1995)

assume that customer demands are discrete, the dynamic program can be solved in

polynomial time. We also formulate a dynamic program to determine the demand

served that results from following the optimal restocking policy for a given fixed

route. However, because we model arrival times to customers as continuous (rather

than discrete), we are unable to obtain a similar complexity result. In §6.5, we derive

structural results and a forward dynamic programming procedure that overcome this

difficulty. Our results apply to both discrete- and continuous-time models.

Yang et al. (2000) establish a key structural property for the dynamic pro-

gram proposed by Bertsimas et al. (1995): an optimal policy is a threshold policy on

available vehicle capacity. Yang et al. (2000) also show that routing a single vehicle

along a single fixed route is equivalent to using multiple vehicles unless additional con-
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straints are imposed, such as the route duration constraints we consider. Although

the structural result reduces the computation required to evaluate a fixed route as a

restocking policy, Yang et al. (2000) find that searching for an optimal fixed route is

still computationally prohibitive. To further reduce computation, Yang et al. (2000)

develop a method to approximate the change in the expected length of a fixed route

when it is modified by a local search procedure. Bianchi et al. (2006) embed this

approximation strategy in metaheuristic procedures and demonstrate that the com-

putational results of Yang et al. (2000) can be improved by considering more complex

search methods.

Secomandi (2003) develops a rollout procedure to search for restocking policies

in a single-vehicle routing problem with stochastic demand. Given an initial fixed

route, the method is guaranteed to return a restocking fixed route policy at least as

good as the initial policy.

Tsirimpas et al. (2008) and Tatarakis and Minis (2009) consider three varia-

tions of the basic model proposed by Bertsimas et al. (1995) to evaluate the expected

length of a given fixed route: the case of multi-product deliveries when each product

is stored in its own compartment in the vehicle, the case of multi-product deliveries

when all products are stored together in the vehicle’s single compartment, and the

case in which the vehicle picks up from and delivers a single product to each customer.

The authors identify structural properties that aid in solving the dynamic programs.
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6.4 A Pre-Decision Rollout Policy

Our pre-decision rollout policy employs a local search based fixed route heuris-

tic identical to that of §5.3.1, except that fixed routes are evaluated as restocking

policies, not as a priori policies. To differentiate this heuristic from that of §5.3.1, we

refer to it as H̃(·) and to the resulting pre-decision rollout policy as πRH̃′′ .

Denote a restocking fixed route policy for vehicle c ∈ M by π̃(vc). Similar to

the discussion in §5.3.1, M demand samples are employed to estimate the value of

π̃(vc). Let V π̃(vc)(x̂j) be the value of policy π̃(vc) when customer demands are given

by the jth demand sample x̂j (we discuss calculation of V π̃(vc)(x̂j) in §6.5). Then, we

estimate the expected value of π̃(vc) as

V̂ π̃(vc) =
1

M

M∑
j=1

V π̃(vc)(x̂j). (6.1)

Denoting a collection of fixed routes by v = (vc)c∈M and the corresponding collection

of restocking policies as π̃(v), we estimate the value of policy π̃(v) as

V̂ π̃(v) =
∑
c∈M

V̂ π̃(vc). (6.2)

Algorithm 6.1 summarizes the steps required to follow a pre-decision rollout policy

πRH̃′′ for a given VRPSDL instance.

6.5 Evaluating Restocking Policies

In this section, we develop a method to calculate V π̃(vc)(x̂j), the value of

the restocking policy for fixed route vc = (vc1, v
c
2, . . . , v

c
b) when observing demand
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Algorithm 6.1 Pre-Decision Rollout Policy for the VRPSDL

1: k ← 0

2: while sk 6∈ SK do

3: From pre-decision state sk, execute H̃(sk) to obtain π̃H̃(sk)

4: ā← δ
π̃H̃(sk)(sk)

5: Make state transitions: sk → sāk → sk+1.

6: k ← k + 1

x̂j. For notational brevity, we refer to fixed route vc as v and to demand sample

x̂j as x, except when doing so leads to ambiguity. To obtain a restocking policy,

we must determine, after fully serving demand at each customer on fixed route v,

whether to proceed directly to the next customer or to first replenish capacity at the

depot. Given fixed route v and customer demands x, an optimal restocking policy

can be obtained by solving a deterministic dynamic program, which we formulate in

§6.5.1. In §6.5.2, we derive structural properties that, when coupled with our forward

solution approach of §6.5.3, significantly reduce the computational burden of solving

the dynamic program. Our empirical experiences reveals that the structural results

and forward solution approach significantly decrease computation time, particularly

for fixed routes with more than 25 customers.

6.5.1 Dynamic Programming Formulation

Let Qvk be the vehicle capacity upon arrival to customer vk, Avk the time of

arrival at customer vk, and xvk the demand at customer vk. As in §2, t(i, j) denotes

the time required to travel from location i to location j. The state of the system

is captured by sk = (Qvk , Avk). We denote by adk−1 the action to proceed directly
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to customer vk and by ark−1 the action to replenish capacity before proceeding to

customer vk. A transition from state sk−1 to sk is a function of state sk−1 and the

action selected when in state sk−1. We denote the capacity and arrival time transition

functions as Q(sk−1, ak−1) and A(sk−1, ak−1), respectively, for ak−1 ∈ {adk−1, a
r
k−1}. If

action adk−1 is selected, we separate the calculation of Q(sk−1, a
d
k−1) and A(sk−1, a

d
k−1)

into three cases:

Q(sk−1, a
d
k−1) =



Qvk−1
− xvk−1

, xvk−1
< Qvk−1

Q,
xvk−1

−Qvk−1

Q
=
⌊
xvk−1

−Qvk−1

Q

⌋
⌈
xvk−1

−Qvk−1

Q

⌉
Q− xvk−1

+Qvk−1
,

xvk−1
−Qvk−1

Q
>
⌊
xvk−1

−Qvk−1

Q

⌋
(6.3)

and

A(sk−1, a
d
k−1) =



Avk−1
+ t(vk−1, vk), xvk−1

< Qvk−1

Avk−1
+
(
xvk−1

−Qvk−1

Q
+ 1
)
t(vk−1, 0)

xvk−1
−Qvk−1

Q

+
(
xvk−1

−Qvk−1

Q

)
t(0, vk−1) + t(0, vk), =

⌊
xvk−1

−Qvk−1

Q

⌋
Avk−1

+ t(vk−1, vk) +
⌈
xvk−1

−Qvk−1

Q

⌉
xvk−1

−Qvk−1

Q

× (t(vk−1, 0) + t(0, vk−1)) , >
⌊
xvk−1

−Qvk−1

Q

⌋

,

(6.4)

where v1 = lc, Qv1 = qc, and Av1 = tc are given by the current state of vehicle

c, as described in §2.2. In the first case, demand at customer vk−1 is less than
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vehicle capacity upon arrival to vk−1, thus vehicle capacity is simply decremented

by the amount of demand and the vehicle travels directly from vk−1 to vk. The

second and third cases account for situations where demand at customer vk−1 is

greater than or equal to vehicle capacity upon arrival to vk−1, thereby requiring

return trips to the depot to replenish capacity. The number of return trips required

is b(xvk−1
−Qvk−1

)/Qc. In the second case, satisfying demand at vk−1 exactly depletes

vehicle capacity, thus requiring the vehicle to replenish at the depot one additional

time and travel directly to customer vk with full capacity. In the third case, there is

some capacity remaining after serving demand at customer vk−1. After making the

necessary return trips to the depot, the vehicle travels directly from vk−1 to vk with

the remaining capacity.

If action ark−1 is selected, then vehicle capacity upon arrival to customer vk

is Q(sk−1, a
r
k−1) = Q and arrival time at customer vk is A(sk−1, a

r
k−1). We consider

three cases when calculating A(sk−1, a
r
k−1):

A(sk−1, a
r
k−1) =



Avk−1
+ t(vk−1, 0) + t(0, vk), xvk−1

< Qvk−1

Avk−1
+
(
xvk−1

−Qvk−1

Q
+ 1
)
t(vk−1, 0)

xvk−1
−Qvk−1

Q

+
(
xvk−1

−Qvk−1

Q

)
t(0, vk−1) + t(0, vk), =

⌊
xvk−1

−Qvk−1

Q

⌋
Avk−1

+ t(vk−1, 0) + t(0, vk) +
⌈
xvk−1

−Qvk−1

Q

⌉
xvk−1

−Qvk−1

Q

× (t(vk−1, 0) + t(0, vk−1)) , >
⌊
xvk−1

−Qvk−1

Q

⌋

.

(6.5)
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In the first case, demand at customer vk−1 is less than vehicle capacity upon arrival to

vk−1, thus demand xvk−1
is fully served without replenishing capacity at the depot and

the arrival time at customer vk is simply the arrival time at customer vk−1 plus the

travel time required to visit the depot and then travel to customer vk. The second

and third cases account for situations where demand at customer vk−1 is greater

than or equal to vehicle capacity upon arrival to vk−1. These cases account for the

b(xvk−1
−Qvk−1

)/Qc return trips to the depot and the additional travel time required

to replenish capacity before traveling to customer vk.

To compute Rk(sk), the demand served at customer vk, we consider the route

duration limit, noting that violations of the route duration limit result in zero demand

served. Three cases are considered in the calculation:

Rk(sk) =



0, Avk > L− t(vk, 0)⌊
L−t(vk,0)−Avk
t(vk,0)+t(0,vk)

⌋
Q+Qvk ,

⌊
L−t(vk,0)−Avk
t(vk,0)+t(0,vk)

⌋
≤
⌊
xvk−Qvk

Q

⌋
xvk , xvk ≤ Qvk and Avk ≤ L− t(vk, 0),

or
⌊
L−t(vk,0)−Avk
t(vk,0)+t(0,vk)

⌋
>
⌊
xvk−Qvk

Q

⌋
. (6.6)

In the first case, zero demand is served because the route duration limit is violated.

In the second case, only a portion of demand is served because the vehicle does not

have enough time to make the return trips to the depot necessary to serve demand

in full. In the third case, demand is served in full either because the vehicle arrives

prior to the route duration limit and with sufficient capacity, or because the vehicle

has enough time to make any necessary replenishments.
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For a fixed route v, we seek a restocking policy that maximizes the demand

served at each customer v1, v2, . . . , vb. Let Π̃(v) be the set of all restocking policies

for fixed route v. We seek a restocking policy π̃?(v) such that V
π̃?(v)

1 ≥ V
π̃(v)

1 for all

π̃(v) ∈ Π̃(v), where V
π̃(v)

1 =
∑b

k=1Rk(sk) is the total demand served at customers

v1, v2, . . . , vb. The optimal policy π̃?(v) can be found by solving the optimality equa-

tions (Puterman, 1994):

Vk(sk) = Rk(sk) + max
a∈{adk,a

r
k}

{
Vk+1

(
sk+1 =

(
Q(sk, a), A(sk, a)

))}
, (6.7)

for k = 1, . . . , b− 1 and

Vb(sb) = Rb(sb). (6.8)

6.5.2 Structural Properties

A sequence of states from stage 1 to stage b in the dynamic program represents

one possible sequence of arrival time and capacity upon arrival to each customer

v1, . . . , vb on the fixed route. Consider a sequence of states s1, s2, . . . , sk′ , . . . , sb, where

k′ is the first stage such that the demand at customer vk′ is not fully served, i.e.,

R(sk′) < xvk′ . By (6.6), it must be that demand is not fully served because doing so

violates the route duration limit. Assuming the triangle inequality holds for travel

times, then because we require demand to be served in full at customer vk′ before

proceeding to customer vk′+1, it is not possible to serve any demand at customers

vk′+1, vk′+2, . . . , vb because doing so violates the route duration limit. We formalize



124

this observation in Proposition 6.1. In §6.5.3, we use this result to prune the state

space in a forward dynamic programming solution approach.

Proposition 6.1. Assume travel times t(·, ·) satisfy the triangle inequality. Consider

a sequence of states s1, s2, . . . , sb. Let k′ be the smallest k such that Rk(sk) < xvk . If

k′ exists, then:

(i). Rk(sk) = 0 for k = k′ + 1, k′ + 2, . . . , b; and

(ii). Rk(sk) = xvk for k = 1, 2, . . . , k′ − 1.

Proof. We first prove property (i). Since Rk′(sk′) < xvk′ , we have one of two cases.

In the first case, Rk′(sk′) = 0, implying by (6.6) that Avk′ + t(vk′ , 0) > L. By

the triangle inequality, this implies that for any Avk′+1
that may result from (6.4)

or (6.5), Avk′+1
+ t(vk′+1, 0) > L. Thus, Rk′+1(sk′+1) = 0. The same argument

applies for k = k′ + 2, . . . , b. In the second case, 0 < Rk′(sk′) < xvk′ , implying by

(6.6) that b(L − t(vk′ , 0) − Av′k)/(t(vk′ , 0) + t(0, vk′))c ≤ b(xvk′ − Qvk′
)/Qc, meaning

the number of replenishments required to satisfy demand in full is greater than the

number of replenishments possible before violating the route duration limit L. Let

t′ be the time at which demand at customer vk′ is served in full. It must be that

t′ + t(vk′ , 0) > L. Then, by the triangle inequality, t′ + t(vk′ , vk′+1) + t(vk′+1, 0) > L

and t′ + t(vk′ , 0) + t(0, vk′+1) + t(vk′+1, 0) > L, meaning that Avk′+1
+ t(vk′+1, 0) > L

regardless of the action selected at decision epoch k′. Thus, Rk′+1(sk′+1) = 0. Then,

using the arguments presented for the first case, Rk(sk) = 0 for k = k′ + 2, . . . , b.

We prove property (ii) by contradiction. Suppose there exists some k ∈
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{1, 2, . . . , k′ − 1} such that Rk(sk) < xvk . Then, by property (i), Rj(sj) = 0 for

j = k + 1, k + 2, . . . , b. Yet, by assumption, Rj(sj) = xvj for j = 1, 2, . . . , k′ − 1.

Proposition 6.2 shows that the demand served from a given state sk through

sb is non-decreasing as the capacity upon arrival Qvk increases and as the arrival time

Avk decreases. We use this result, in conjunction with Proposition 6.1, to further

prune the state space in the forward dynamic programming approach we develop in

§6.5.3.

Proposition 6.2. For sk = (Qvk , Avk) and s′k = (Q′vk , A
′
vk

) such that 0 ≤ Qvk ≤ Q′vk

and 0 ≤ A′vk ≤ Avk , Vk(sk) ≤ Vk(s
′
k).

Proof. The proof is by induction. First, note that if Vb(sb) < xvb , then Vb(sb) increases

as Qvb increases and as Avb decreases. If Vb(sb) = xvb , then Vb(sb) is constant as it

is bounded above by xvb . Thus, the result holds for stage b. Assume the result

holds for stages b − 1, b − 2, . . . , k + 1. At stage k, it follows from (6.6) that Rk(sk)

increases as Qvk increases and as Avk decreases. As in stage b, Rk(sk) is constant

if Rk(sk) = xvk . By the induction hypothesis, the reward-to-go, Vk+1(sk+1), also

increases as Qvk increases and as Avk decreases. Because the value function at stage

k is the sum of two functions that increase as Qvk increases and as Avk decreases, the

result holds at stage k.

6.5.3 Solution Approach

Because we do not require travel times to be discrete, the state space of the dy-

namic program we formulate in §6.5.1 is infinite, thereby rendering the standard back-
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ward dynamic programming procedure computationally intractable. To overcome this

obstacle, we develop a forward dynamic programming approach that only considers

states that may actually occur as a result of a given initial state. Our approach mir-

rors the well-known reaching algorithm for dynamic programming (Denardo, 2003)

and leverages the structural results of §6.5.2 to prune. Our forward dynamic program-

ming procedure is able to obtain the values of optimal restocking policies for large

fixed routes. Without the pruning afforded by our structural results, our forward

approach enumerates the entire solution space. We note that our structural results

and forward solution approach are also applicable to the discrete-time case discussed

in §6.3.

Our solution approach utilizes a graph structure. Each node in the graph is

labeled by a state, the demand served in that state, and the total demand served

so far. Thus, a node associated with a state sk is represented by the tuple (sk =

(Qvk , Avk), Rk(sk), λk =
∑k

i=1 Rk(sk)). Nodes are connected by arcs representing

actions. An arc from a node sk−1 to a node sk represents an action ak−1 ∈ {adk−1, a
r
k−1}

denoting the decision to travel directly from vk−1 to vk or to first replenish capacity

at the depot. The graph is constructed in stages, one for each customer on the fixed

route. We refer to the set of nodes belonging to stage k as Λk. Stage 1 of the graph

is constructed via s1, the given initial state of the vehicle. Stage 2 is constructed by

extending the initial node corresponding to state s1, i.e., by considering the states

that result by taking actions ad1 and ar1 from the initial state. Any stage k + 1 is

constructed in a similar manner by extending the nodes in stage Λk. The node in Λb
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that achieves the largest λb indicates the value of the optimal restocking policy for

the given fixed route. The optimal policy is represented by the sequence of actions

leading to this node.

The total number of nodes in the graph is 2b − 1, where b is the number

of customers on the fixed route. The total number of node sequences from stage 1

through stage b, each of which represents a policy, is 2b−1. In our computational

experience, storing the graph in memory becomes problematic as b approaches 25.

Further, because heuristic H̃(·) requires us to obtain optimal restocking policies for

many fixed routes, evaluating fixed routes can be computationally prohibitive even

when b is much smaller.

These computational issues can be mitigated by exploiting Propositions 6.1

and 6.2. Consider a partial path through the graph, which we denote by the sequence

of states s1, s2, . . . , sk′ , where k′ is the first stage along this path such that the demand

at customer vk′ is not fully served. By Proposition 6.1, any extension of this path

will result in zero demand served at customers vk′+1, vk′+2, . . . , vb, i.e., Rk(sk) = 0 for

k = k′ + 1, k′ + 2, . . . , b. Thus, to obtain the value of the optimal restocking policy,

it is only necessary to extend nodes that fully serve demand. Thus, at stage k, we

extend only nodes Λ′k = {(sk, Rk(sk), λk) : Rk(sk) = xvk}.

Additional pruning is possible by using the result of Proposition 6.2 to further

refine Λ′k. For any two nodes (sk = (Qvk , Avk), Rk(sk), λk) and (s′k = (Q′vk , A
′
vk

), Rk(s
′
k),

λk) in Λ′k, if Qvk ≤ Q′vk and A′vk ≤ Avk , then it is not necessary to extend sk because

the total demand served by extending s′k will be at least as large. More formally, let
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Λ′′k = {(sk, ·, ·) ∈ Λ′k : @ (s′k, ·, ·) ∈ Λ′k such that Qvk ≤ Q′vk and A′vk ≤ Avk} be the

set of non-dominated nodes in Λ′k. Proposition 6.2 guarantees that an optimal policy

will be obtained by extending only the non-dominated Λ′′k ⊆ Λ′k.

Algorithm 6.2 details our forward dynamic programming procedure. The

EVALUATE(v, x, s1) procedure in Algorithm 6.2 takes as input a fixed route v,

customer demands x, and initial state s1 at customer v1. It returns V π(v)(x), the

value of the optimal restocking policy for fixed route v. The procedure begins in

line 2 by initializing Λ1 with the given initial state s1, R1(s1), and λ1 = R1(s1), the

demand served in state s1. For k = 2, . . . , b, Λk is initialized to the empty set. Line

4 begins the process of identifying nodes in Λk to extend. Per Proposition 6.1, states

not fully serving demand at customer vk need not be extended. Thus, Λ′k ⊆ Λk re-

stricts attention to nodes such that Rk(sk) = xvk . If Λ′k is empty, then, by Proposition

6.1, it is not necessary to extend any nodes because doing so will not increase the

total demand served. Line 6 accomplishes this by exiting the for loop. In line 7, the

set of nodes to be extended is further refined by applying Proposition 6.2. When

identifying nodes for inclusion in Λ′′k, it may be that several nodes are identical, and

therefore each node dominates the other. In such cases, we extend one of these nodes,

provided that it is not dominated by another node. Lines 9 and 10 construct Λk+1 by

extending the nodes in Λ′′k. Line 11 identifies the non-empty node set with the largest

index, k̄. Finally, the procedure returns the maximum demand served by the nodes

in Λk̄.

Figure 6.3 depicts the full graph for the example fixed route we consider in
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Algorithm 6.2 Valuation of Optimal Restocking Policy

1: procedure EVALUATE(v, x, s1)

2: Λ1 ← {(s1, R1(s1), λ1 = R1(s1))}, Λk ← ∅ for k = 2, 3, . . . , b

3: for k = 1 to b− 1 do

4: Λ′k ← {(sk, Rk(sk), λk) ∈ Λk : Rk(sk) = xvk}
5: if Λ′k = ∅ then

6: break

7: Λ′′k ← {(sk, ·, ·) ∈ Λ′k : @ (s′k, ·, ·) ∈ Λ′k such that Qvk ≤ Q′vk and A′vk ≤
Avk}

8: for (sk, λk) ∈ Λ′′k do

9: Λk+1 ← Λk+1 ∪ {(sk+1 = (Q(sk, a
d
k), A(sk, a

d
k)), λk +Rk+1(sk+1)}

10: Λk+1 ← Λk+1 ∪ {(sk+1 = (Q(sk, a
r
k), A(sk, a

r
k)), λk +Rk+1(sk+1)}

11: k̄ ← largest k ∈ {1, 2, . . . , b} such that Λk 6= ∅
12: return max{λk̄ : (sk̄, Rk̄(sk̄), λk̄) ∈ Λk̄}

Table 6.1. For convenience, each node is numbered in the upper-left corner. We

demonstrate Algorithm 6.2 by stepping through the construction of the graph in

Figure 6.3. Given v = (23, 22, 13, 15, 2), x = (29, 18, 23, 8, 7), and s1 = (50, 36.0555),

the procedure begins by calling EVALUATE(v, x, s1). Node set Λ1 is initialized via

s1, R1(s1) = 39, and λ1 = 39. Because Λ1 = Λ′1 = Λ′′1 = {1}, node 1 is extended to

create Λ2 = {2, 3}. Because Λ2 = Λ′2 = Λ′′2, nodes 2 and 3 are extended to create

Λ3 = {4, 5, 6, 7}. All four nodes in Λ3 fully serve demand at customer v3 = 13,

thus Λ′3 = Λ3. However, node 5 is dominated by node 7, thus we only extend the

nodes in Λ′′3 = {4, 6, 7} to create Λ4 = {8, 9, 12, 13, 14, 15}. Only node 12 fully serves

demand at customer v4 = 15, thus Λ′4 = Λ′′4 = {4}. Extending node 12 results in

Λ5 = {24, 25}. The procedure concludes by returning max{89, 88} = 89, which is the

value of the optimal restocking policy for fixed route v when demand is x and the
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initial state is s1. The optimal policy is represented by the sequence of nodes 1, 3, 6,

12, 24, which corresponds to an optimal sequence of actions ar1, a
d
2, a

d
3, a

d
4.

In this example, Algorithm 6.2 decreases the number of nodes in the graph

from 31 to 15. In our experience, for large fixed routes, Algorithm 6.2 can decrease the

number of nodes by several orders of magnitude, thereby making it computationally

feasible to solve the dynamic program required to obtain an optimal restocking policy

for a given fixed route. For smaller problem instances where the number of customers

in a fixed route is typically smaller, we observe runtime reductions up to 75 percent

when embedding Algorithm 6.2 in heuristic H̃(·).

6.6 Computational Experience

In this section, we examine the effectiveness of our pre-decision rollout policy

for the VRPSDL. Ideally, our rollout policy would be compared to an optimal policy.

However, we experience the same difficulties we discuss in §5.4 and are unable to

obtain optimal policies or bounds on the value of optimal policies. Given these lim-

itations, we develop two benchmarks for our results. First, we compare the demand

collected by our pre-decision rollout policy to the demand collected by a stand-alone

restocking policy. This benchmark restocking policy is obtained by applying H̃(·)

to the benchmark a priori policy described in §5.4.1. This comparison allows us to

compare dynamic updating to the static routing often implemented in practice (Erera

et al., 2010). Second, we compare the demand collected by our pre-decision rollout

policy to the demand collected by the hybrid rollout policy developed in §5.3. This
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comparison allows us to gauge the benefit of using a restocking policy (instead of an

a priori policy) to approximate future rewards.

To facilitate our experiments, we use the same set of 216 problem instance de-

scribed in §5.4.2. We also utilize the same 500 realizations for each problem instance.

As in §5.4.2, we present a confidence interval for the demand served by one policy

over the demand served by another policy. When estimating the expected demand

served by a restocking policy in H̃(·), we use M = 30 demand samples. We use the

same set of M demand samples throughout the procedure.

We implement our experiments, which required more than 180 CPU days, in

C++ and execute them on a computing cluster provided by the University of Iowa

Information Technology Services. The cluster contains eight nodes with the CentOS

5.3 operating system. Each node consists of dual quad core AMD Opteron Processors

2350 at 2GHz and 16GB of ECC DDR2 667MHz SDRAM.

Table 6.2 displays confidence intervals for the percent increase in demand

served by our pre-decision rollout policies over the corresponding benchmark restock-

ing policies. Confidence intervals to the right of zero are in bold and indicate a

statistically significant increase in demand served by our pre-decision rollout policies

over the benchmark restocking policies. Confidence intervals containing zero are in

normal typeface and indicate no statistically significant difference in demand collected

by the two policies.

Across all 216 problem instances, the upper end of the confidence intervals

in Table 6.2 is always greater than zero, thereby suggesting that following our pre-
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decision rollout policy weakly improves upon the benchmark restocking policy. In

some cases the improvement is dramatic, while in others, there is little to no benefit.

We observe the same trends in Table 6.2 as we observe in Table 5.2, which compares

demand collected by the hybrid rollout policy of §5.3 to benchmark a priori poli-

cies. First, for a given duration limit, as vehicle capacity decreases, the the percent

demand served over benchmark restocking policies tends to increase. Second, when

variability in customer demand is high, pre-decision rollout policies tend to perform

better on clustered instances than on randomized instances. Third, the benefit of

our pre-decision rollout policies over the benchmark restocking policies generally de-

creases as variability in customer demand decreases. The explanations for the same

observations, provided in §5.4.4, apply.

Table 6.3 displays confidence intervals for the percent increase in demand

served by our pre-decision rollout policies over the corresponding hybrid rollout poli-

cies. Confidence intervals to the right of zero are in bold and indicate a statistically

significant increase in demand served by our pre-decision rollout policies over the hy-

brid rollout policies. Confidence intervals containing zero are in normal typeface and

indicate no statistically significant difference in demand collected by the two policies.

Confidence intervals to the left of zero are in italics and indicate a statistically signif-

icant decrease in demand served by our pre-decision rollout policies over the hybrid

rollout policies.

The confidence intervals in Table 6.3 show both statistically significant in-

creases and decreases in demand served by the pre-decision rollout policies over the
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hybrid rollout policies. In the latter case, differences in demand collected are small,

almost never exceeding one percent. On the other hand, the pre-decision rollout

policy sometimes collects as much as five percent more demand than the hybrid roll-

out policy. In general, while there does not appear to be an overarching pattern in

these results, there is one notable trend: pre-decision rollout policies tend to perform

better than hybrid rollout policies when vehicle capacities are small. As vehicle ca-

pacities increase to medium and large, the confidence intervals tend to shift to the

left, indicating a decrease in this benefit. Intuition suggests the following explanation.

Vehicles with smaller capacities experience more route failures/replenishments than

vehicles with larger capacities. The hybrid rollout policy projects the impact of route

failures via an a priori fixed route policy, while the pre-decision rollout policy utilizes

a restocking fixed route policy. Because restocking fixed route policies relax a pri-

ori fixed route policies by permitting capacity replenishment prior to route failures,

restocking fixed route policies are able to better plan for capacity replenishments.

This is corroborated by the fact that we observe no statistically significant differences

in the distances traveled by the hybrid and pre-decision rollout policies. Thus, the

difference in demand collected is most likely due to more intelligent capacity replen-

ishment actions. As vehicle capacities increase to medium and large, the number of

route failures tends to decrease, thus providing fewer opportunities to leverage the

ability of restocking fixed route policies to better respond to route failures.

Although solution quality is our primary consideration, potential for real-time

decision making is also important. Table 6.4 displays per epoch computing times
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for the pre-decision rollout policy. The first number of each pair is the average

number of CPU seconds required to select an action across all decision epochs in

all 500 realizations. The second number of each pair is the average of the maximum

number of seconds required to select an action across all 500 realizations. For problem

C101(100) with high variability, a long duration limit, and medium capacity, the

average of the maximum computing time required to select an action is nearly 10

minutes. This problem instance appears to be an exception, however, as the average

of the maximum computing time required to select an action rarely exceeds one

minute across the remaining 215 problem instances.

Compared to the per epoch computing times of hybrid rollout policies dis-

played in Table 5.3, pre-decision rollout policies are generally more computationally

efficient. Typically, the a priori-based fixed routes heuristic employed by hybrid

rollout policies requires less time to execute than the restocking-based fixed routes

heuristic employed by pre-decision rollout policies. However, at a given a decision

epoch, a hybrid rollout policy must execute the fixed routes heuristic at least twice,

whereas a pre-decision rollout policy executes a fixed routes heuristic only once.

6.7 Conclusion and Future Research

We propose a pre-decision rollout policy to obtain dynamic solutions for the

multi-vehicle routing problem with stochastic demand and duration limits (VRPSDL).

In contrast to the a priori-based fixed routes heuristic underlying the hybrid rollout

policy we develop in §5.3, the restocking-based fixed routes heuristic underlying our
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pre-decision rollout policy explicitly considers capacity replenishment actions prior to

route failures. As a result, our pre-decision rollout policy is able to consider the full

set of feasible actions from a pre-decision state via only one application of the fixed

route heuristic, thereby yielding shorter per epoch computing times than the hybrid

rollout policy of §5. Evaluation of restocking policies poses a computational challenge,

which we address by exploiting structural properties of a dynamic program. Our com-

putational experiments indicate that our pre-decision rollout policy can significantly

improve upon benchmark restocking policies, a method frequently implemented in

practice. Compared to the hybrid rollout policy of §5.3, our pre-decision rollout pol-

icy tends to perform better when vehicle capacity is small, sometimes collecting as

much as five percent more demand than the hybrid rollout policy. However, we ob-

serve some problem instances where the hybrid rollout policy performs better than

the pre-decision rollout policy. In these instances, the difference in demand collected

is small, almost never exceeding one percent. Overall, the performance of the pre-

decision and hybrid rollout policies is similar. Because pre-decision rollout policies

typically require less computing time to select an action than hybrid policies, they

may offer an advantage in circumstances where real-time decision making is impor-

tant.

One avenue for future research is to develop a restocking-based hybrid rollout

policy for a VRPSDL that includes waiting actions. At a given decision epoch, instead

of requiring vehicles to travel to the depot or to customers with pending or unknown

demand, vehicles may also wait at their current location until the next decision epoch.
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This modification leads to an expansion of the feasible action set developed in §2.2.2.

When waiting actions are considered, the set of actions available in state sk becomes

A(sk) = { a ∈ Nm :

ai = li ∀ i ∈ {M \M′}, (6.9)

ai = 0∀ {i ∈M′ : qi ≤ dli , li 6= 0}, (6.10)

ai 6= aj ∀ {i, j ∈M : i 6= j, ai 6= 0, aj 6= 0}, (6.11)

ai 6∈ {j ∈ {∪h∈M′lh \ {0 ∪ li}} : dj ≤ qveh(j)}, (6.12)

ai 6∈ {j ∈ {N \ {0 ∪ li}} : dj = 0}, (6.13)

ai 6∈ {j ∈ N : Tk + t(li, j) + t(j, 0) > L}, (6.14)

ai 6= li ∀ {i ∈M′ : Tk+1 + t(li, 0) > L}}. (6.15)

Condition (6.9) requires that vehicles en route continue to their current des-

tination. Condition (6.10) requires vehicles in M′ to return to the depot if capacity

will be depleted by serving customer demands at current locations. Condition (6.11)

prevents assignment of multiple vehicles to customer locations, except in the case of

assignments to the depot. Except for a vehicle’s current location, (6.12) and (6.13)

disallow assignment of vehicles to locations with zero demand (veh(j) denotes the ve-

hicle at location j). Condition (6.14) prohibits the assignment of vehicles to locations

(other than the current location) that will result in violations of the route duration

limit. Condition (6.15) does not allow vehicles inM′ to wait at their current location

if doing so will result in a violation of the route duration limit; note that the feasi-
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bility of a vehicle waiting at a particular location is dependent on Tk+1, the time of

decision epoch k+ 1, which is determined by the actions taken by the other vehicles.

When waiting actions are considered, the transition to the post-decision state,

originally stated in §2.2.3, must be modified. Arrival times are set to

tai =


ti + t(li, l

a
i ), ∀ i ∈ {j ∈M′ : lj 6= laj }

ti, ∀ i ∈ {M \M′}

, (6.16)

and then for all i ∈ {g ∈M′ : lg = lag}, we set

tai = min
j∈{{M\M′}∪
{h∈M′:lh 6=lah}}

taj , (6.17)

in order to correctly calculate arrival times for vehicles waiting at their current loca-

tions.

Using the restocking-based fixed routes heuristic H̃(·) in a hybrid rollout policy

for a VRPSDL with waiting actions is appealing because applying H̃(·) in the pre-

decision state implicitly evaluates all actions in A(·) except actions that allow vehicles

to wait at their current locations. Heuristic H̃(·) can then be applied, from the post-

decision state, to each action allowing vehicles to wait. Because inclusion of waiting

actions relaxes the Markov decision process formulation of §2.2, we anticipate that

policies can be devised to collect more demand than when waiting actions are ignored.
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CHAPTER 7
PARAMETRIC APPROXIMATE DYNAMIC PROGRAMMING FOR

THE VEHICLE ROUTING PROBLEM WITH STOCHASTIC
DEMAND AND DURATION LIMITS

7.1 Introduction

In this chapter, we present the results of our first steps toward a more tra-

ditional approximate dynamic programming (ADP) procedure to obtain dynamic

solutions for the vehicle routing problem with stochastic demand and duration limits

(VRPSDL). Unlike the rollout procedures of §5 and §6, which approximate the value

functions (Bellman, 1957) via fixed route policies, we consider a parameterized linear

function to approximate the value functions. Our linear value function approxima-

tion exploits key information in the state variable, such as the expected demand in

a particular geographic region or the vehicle capacity allocated to a given set of cus-

tomers. We estimate the parameters in our linear value function approximation via

a simulation-based algorithm advocated by Powell (2007). The simulation procedure

is analogous to estimating the parameters in a linear regression.

Three observations motivate consideration of a parametric functional form

to approximate the value functions. First, when evaluating actions, a parametric

functional form has the potential to capture future interactions among vehicle routes.

The rollout procedures of §5 and §6 evaluate actions via fixed route policies, which,

by definition, do not consider future interactions among vehicle routes. Second, the

simulation procedure we employ to estimate parameters can be executed offline. After



143

determining an appropriate set of parameters, it is not time consuming to select

actions in real time, even for large-scale problems. Third, the body of literature on

traditional ADP procedures for vehicle routing problems is small. This work will

further the comparison between parametric ADP procedures and rollout procedures

for vehicle routing problems.

This chapter is organized as follows. In §7.2, we review related literature. We

describe our value function approximation in §7.3. In §7.4, we provide the results

of computational experiments. We conclude with remarks and directions for future

research in §7.5.

7.2 Related Literature

In this section, we review literature that applies ADP techniques to dynamic

and stochastic vehicle routing and related problems. Often, ADP methods restrict

the value function to lie within a specified class of functions and then seek to find the

optimal value function in this class. Challenges associated with these methods include

determining the best class of functions to use for a given problem and determining

the optimal approximation within a chosen class. As of this writing, the choice of

functional class remains as much an art as a science. However, determining the

optimal approximation within a chosen class is typically done analytically or via

simulation.

Analytical approaches build on the work of Schweitzer and Seidman (1985),

with more recent work by Adelman (2004, 2005) and de Farias and Van Roy (2003,
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2006, 2004). A typical analytical solution method proceeds as follows. First, trans-

form the Markov decision process (MDP) into its equivalent linear program (Put-

erman, 1994). Second, approximate the value functions by assuming a specific pa-

rameterized form. This step typically involves the identification of basis functions

that simplify the state representation. For example, in the VRPSDL, a basis func-

tion might represent the state as the number of vehicles in given geographic regions.

Third, use the chosen approximation in the linear program to create the approximate

linear program. In the approximate linear program, the decision variables are the

parameters, or weights, associated with each basis function. Fourth, solve the ap-

proximate linear program to obtain the optimal set of parameters. Finally, use this

optimal linear value function approximation to select actions for any visited states.

The difficulty with analytical approaches is solving the approximate linear program,

which may be quite large despite the reduction in the state space afforded by basis

functions. An example of this methodology applied to a stochastic inventory rout-

ing problem is Adelman (2004), who approximates the value function as the sum of

single-customer value functions.

Simulation-based approaches (Powell, 2007) generate sample paths of the prob-

lem and seek to update the parameters that determine the chosen class of functions in

an iterative fashion. Similar to analytical methods, these methods typically employ

basis functions to simplify the state space. Simulation-based methods suffer from

the fact that not only is the true value function approximated, but a further source

of approximation is introduced through sampling error. Despite these limitations,
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simulation-based methods can be very effective, especially when the general shape

of the value functions is known. For example, Topaloglu and Powell (2006) consider

time-staged integer multicommodity-flow problems and approximate the value func-

tion by a piecewise-linear, concave function. The approach approximates the true

shape of the value functions and enables the successful management of large-scale

business-jet operations. Maxwell et al. (2010) develop linear value function approxi-

mations for ambulance redeployment. The basis functions they consider are based on

insights from static deployment policies. Parameters are tuned via simulation and the

authors demonstrate practically significant improvements in performance relative to

benchmark static policies. Meisel et al. (2009) construct linear value function approx-

imations for a dynamic and stochastic routing problem where a single, uncapacitated

vehicle serves customer requests that arrive randomly over a given time horizon. The

authors tune their approximations via simulation and demonstrate improvement over

state-of-the-art heuristics.

Although analytical and simulation-based methods are the foundation of main-

stream ADP techniques, other ADP procedures have also proven successful for routing

problems. Kleywegt et al. (2004) decompose a stochastic inventory routing problem

into tractable MDP subproblems by partitioning customers to be served into small

groups. Parameters for each MDP subproblem, determined via simulation, are set

to mimic the behavior of the original MDP. Such an approach alleviates the curses

of dimensionality via decomposition, but transfers these difficulties to determining

appropriate parameters for each subproblem.
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Hvattum and Løkketangen (2009) and Hvattum et al. (2009) simplify the state

space of a stochastic inventory routing problem by considering only a subset of ran-

dom events, which they refer to as a scenario tree. At each decision epoch, actions are

selected by solving the associated scenario tree problem, which is a math program-

ming representation of the state-reduced MDP from the current state forward. The

potential advantage of this approach is that it does not impose a functional form on

the cost-to-go, thereby making it possible to obtain better approximations.

Similar to scenario trees, Hvattum et al. (2006, 2007) apply the concept of

scenario-based planning to a multi-vehicle routing problem with stochastic demand.

Scenario-based planning heuristically selects actions based on a subset of random

events, called scenarios. Each scenario is a random sample of stochastic parameters in

the problem. For each scenario, the sample-based planning method typically solves a

deterministic problem induced by the scenario. From the corresponding deterministic

solutions, an action is extracted from a distinguished solution selected via a consensus

function designed to select the solution that bears the most similarity to the other

solutions. The underlying idea is that the distinguished solution will lead to the most

“robust” action.

Finally, as we discuss in §4, rollout procedures offer an additional ADP frame-

work. The reader is referred to §5.2 for a review of literature that applies rollout

procedures to routing problems.
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7.3 Value Function Approximation

To apply value function approximation to the VRPSDL, recall the MDP for-

mulation in §2.2. Also, recall the state transition functions introduced in §4:

sk+1 = SM(sk, a,Wk+1) = SM,W (SM,a(sk, a),Wk+1).

The transition from a pre-decision state sk to a post-decision state sak is accomplished

via function SM,a(sk, a). The transition from a post-decision state sak to a pre-decision

state sk+1 is accomplished via function SM,W (sak,Wk+1), where Wk+1 represents the

random customer demands first observed at decision epoch k + 1.

The value functions formulated around the post-decision state are

V a
k−1(sak−1) = E

{
max
a∈A(sk)

{Rk(sk, a) + V a
k (sak)}

∣∣∣sak−1

}
, (7.1)

where V a
k−1(sak−1) is the optimal reward-to-go from the (k − 1)st decision epoch when

the process is in post-decision state sak−1. The expectation is taken over the random

variable sk = SM,W (sak−1,Wk). A post-decision state sak = SM,a(sk, a) is deterministic

conditional on pre-decision state sk and action a.

To approximate (7.1), we consider linear functions of the form

V̂k(s) =
J∑
j=1

θjφj(s), (7.2)

where each φj(s) is a basis function that maps a state s ∈ S to a real number and

each θj is a real-valued weight, or parameter, associated with a basis function. We

discuss our choice of basis functions φ1(·), . . . , φJ(·) in §7.3.1. In §7.3.3, we describe
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a simulation-based procedure to determine parameters θ1, . . . , θJ . Substituting (7.2)

into (7.1), the approximate value functions are

V̂ a
k−1(sak−1) = E

{
max
a∈A(sk)

{
Rk(sk, a) +

J∑
j=1

θjφj(s
a
k)

}∣∣∣∣sak−1

}
. (7.3)

As we will show, the advantage of working with the approximate value func-

tions formulated around the post-decision state is that, for a given sample realization

of customer demands, (7.3) is a deterministic problem. As Powell (2007) points out,

the more traditional choice of formulating the value functions around the pre-decision

state requires the calculation of an expected reward-to-go, which can be computation-

ally prohibitive. Solving deterministic problems reduces the computational burden of

the simulation-based parameter estimation procedure we describe in §7.3.3.

7.3.1 Basis Functions

We now define the basis functions φ1(·), . . . , φJ(·), each of which maps a state

s = ((l, t, q), (d, x)) to a real number. Our choice of basis functions is based on

intuition and reflects what we believe are important elements of the state variable.

Our basis functions are also similar to those of Secomandi (2000). For any state

s ∈ S, φ1(s) = 1, thereby allowing θ1 to serve as a location parameter, much like

the intercept in a regression model. For each vehicle inM = {1, . . . ,m}, we define a

basis function that returns the time until the route duration limit for that vehicle:

φ1+j(s) = L− tj,∀ j ∈ {1, . . . ,m}, (7.4)
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where tj is the time at which vehicle j ∈M arrives at its current destination.

The remainder of our basis functions require the customers in N , not including

the depot, to be partitioned into disjoint sets. We denote the collection of these sets

as P . For example, if N = {0, 1, 2, 3, 4, 5}, then P might be {{1, 4}, {3}, {2, 5}}. We

refer to the jth customer set in P as pj. In §7.3.2, we describe a method to obtain P .

For each customer set p ∈ P , we define a basis function that returns the

number of vehicles assigned to visit a customer in p:

φ1+m+j(s) = |{li : i ∈M, li ∈ pj}|,∀ j ∈ {1, . . . , |P|}, (7.5)

where li is the current destination of vehicle i ∈M.

For each customer set p ∈ P , we define a basis function that returns the sum

of the expected and pending demand in set p:

φ1+m+|P|+j(s) =
∑

i∈pj :xi=?

E{xi}+
∑

i∈pj :xi 6=?

di, ∀ j ∈ {1, . . . , |P|}, (7.6)

where xi is the random amount of demand at customer i ∈ N and di is the pending

demand at customer i ∈ N .

For each customer set p ∈ P , we define a basis function that returns the sum

of the standard deviation of demand in set p:

φ1+m+2|P|+j(s) =
∑

i∈pj :xi=?

σxi ,∀ j ∈ {1, . . . , |P|}, (7.7)

where σxi is the standard deviation of demand at customer i ∈ N .
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For each customer set p ∈ P , we define a basis function that returns the total

vehicle capacity allocated to set p:

φ1+m+3|P|+j(s) =
∑

i:i∈M,li∈pj

qi,∀ j ∈ {1, . . . , |P|}, (7.8)

where qi is the available capacity in vehicle i ∈ M. The total number of basis

functions is J = 1 +m+ 4|P|.

7.3.2 Partitioning Method

We partition customers into sets by heuristically solving the k-means clustering

problem (Lloyd, 1982), a standard problem in the machine learning community. The

goal is to partition the customers in N into k sets P = (p1, p2, . . . , pk) so as to

minimize the within cluster sum of squares:

min
P

k∑
i=1

∑
j∈pi

g(j, µi)
2, (7.9)

where µi is the demand-weighted centroid of cluster pi and we define the function

g(j, µi) to be the Euclidian distance from customer j to µi multiplied by the ex-

pected/pending demand at customer j.

To solve the k-means clustering problem, we employ the iterative heuristic of

Lloyd (1982), displayed in Algorithm 7.1. We execute Algorithm 7.1 1000 times and

choose the clustering that yields the lowest objective value.
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Algorithm 7.1 k-Means Clustering Algorithm

1: Randomly initialize cluster means.

2: Assign each customer to the cluster with the closest mean.

3: Calculate the new cluster means.

4: Repeat steps 2 and 3 until the objective (7.9) does not improve and return the

clustering with the lowest objective value.

7.3.3 Parameter Estimation

Our simulation-based procedure for estimating the parameter vector θ =

(θ1, θ2, . . . θJ) is equivalent to the classical problem of estimating parameters in a linear

regression, except that we perform the estimation in an iterative fashion. Specifically,

each iteration of our procedure returns a set of state-value pairs. The value associated

with each pair is analogous to the dependent variable in a regression. Applying the

basis functions of §7.3.1 to the state associated with each pair yields the independent

variables. At each iteration of our procedure, these “dependent” and “independent”

variables are used to update, and hopefully improve, our current estimate of θ.

Algorithm 7.2 gives an overview of our procedure, which is termed by Powell

(2007) as a double pass procedure because each iteration consists of a forward and

backward pass. We denote the parameter vector at the ith iteration of our procedure

by θi. For a given realization of customer demands, the forward pass begins in initial

state s0 and steps forward through time using the current parameter vector to select

actions and using the MDP model to make state transitions. Lines 4-8 constitute the

forward pass, which continues until an absorbing state sK ∈ SK is reached. Then,

the backward pass traverses the visited post-decision states sa0, s
a
1, . . . , s

a
K−1 in reverse
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order to calculate the reward-to-go achieved at each post-decision state by using the

current parameter vector to select actions. At the ith iteration, we denote the reward-

to-go from state sak on as v̂ik and we define v̂iK = 0 because sK is an absorbing state.

Lines 9-11 constitute the backward pass. A single iteration of the procedure concludes

in line 12 by updating the parameter vector using information from the forward and

backward passes. We denote the updating process by a function U(·), which takes as

arguments the current parameter vector, the post-decision states visited during the

current iteration, and the calculated rewards-to-go. We perform a total of I iterations,

where each iteration consists of a forward and backward pass on a randomly generated

set of customer demands.

Algorithm 7.2 Double Pass Parameter Estimation Procedure

1: Initialize θ0

2: for i = 1 to I do

3: Randomly generate demands xi

4: k ← 0

5: while sk 6∈ SK do

6: āk ← arg maxa∈A(sk)

{
Rk(sk, a) +

∑
j∈J θ

i−1
j φj(s

a
k)
}

7: sk+1 ← SM(sk, āk, x
i)

8: k ← k + 1

9: while sk 6= s0 do

10: v̂ik−1 ← Rk(sk, āk) + v̂ik
11: k ← k − 1

12: θi ← U
(
θi−1, (sak)

K−1
k=0 , (v̂

i
k)
K−1
k=0

)

The updating procedure U(·) results in a parameter vector that minimizes the
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squared errors of the entire history of state-value pairs observed through the current

iteration. Let

(
(φj (sak))

J
j=1 , v̂

i
k

)K−1

k=0

be the set of state-value pairs that result from the ith iteration of Algorithm 7.2 and

let

((
(φj (sak))

J
j=1 , v̂

i
k

)K−1

k=0

)h
i=1

be the set of state-value pairs observed during iterations 1 through h < I. At iteration

h, the updating function U(·) returns the parameter vector θh that solves

min
θh

h∑
i=1

Ki−1∑
k=0

(
v̂k −

J∑
j=1

θhj φj(sk)

)2

, (7.10)

where Ki denotes the final decision epoch in the ith iteration. Powell (2007) describe

procedures to obtain θh in a recursive fashion by updating θh−1. We employ these

procedures because they eliminate the need to maintain the entire history of state-

value pairs.

In our computational experiments, we consider two methods for initializing θ.

The first method simply initializes each element of θ0 to zero, as is common practice

in the literature. The second method collects state-value pairs from the hybrid rollout

policy of §5 and uses these in (7.10) to obtain θ0.
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7.4 Computational Experience

In this section, we present the results of preliminary computational experi-

ments. The aim of our experiments is to gauge the potential effectiveness of the value

function approximation strategy proposed in §7.3. To accomplish this, we compare

the results of our value function approximation to the benchmark fixed route policies

and the hybrid rollout policies of §5. Our experiments are conducted on problem

instance A-n32-k5 (Ralphs, 2008), which consists of 31 customers and five vehicles.

Vehicle capacity is small, the route duration limit is long, and variability in customer

demand is high, as defined in §5.4.2.

Our first experiment examines the influence of the number of customer sets,

|P|, on the effectiveness of the value function approximation. Figures 7.1, 7.2, and

7.3 display the results of each of I = 900 iterations of Algorithm 7.2 when the number

of customers sets, or regions, is two, five, and 11, respectively. As described in §7.3.3,

we obtain the initial parameter vector by executing the hybrid rollout policy of §5

on 100 demand realization and using the resulting state-value pairs to obtain θ0. A

single data point represents the percent increase in demand served by our linear value

function approximation over the benchmark fixed route policy. A negative number

indicates a decrease in demand served compared to the benchmark fixed route policy,

while a positive number indicates an increase. The confidence band for the demand

served by the hybrid rollout policy is also displayed.

In Figures 7.1, 7.2, and 7.3, it would be ideal to observe an upward trend over

the course of 900 iterations. Such a trend would indicate learning, or improvement,
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in the parameter vector θ. While there does appear to be somewhat of an upward

trend in the first iterations of Figures 7.2 and 7.3, performance appears to plateau

after iteration 100. At least two explanations exist for this behavior. First, more

iterations may be required to observe a more pronounced improving trend. Second,

our linear value function approximation may adequately capture the behavior of the

true value functions.

Despite the lack of an improving trend, the data series corresponding to 11

regions generally performs better than when there are two or five regions. For this

problem, increasing the number of regions beyond 11 results in little improvement.

Moreover, our linear value function approximation is unable to consistently outper-

form either the benchmark fixed route policy or the hybrid rollout policy. Thus, the

primary conclusion of this experiment is that additional regions are beneficial up to

a point, but additional work is required to compete with the benchmark fixed route

and hybrid rollout policies.

Our second experiment examines the influence of the two methods of parameter

initialization we discuss in §7.3.3. A visual comparison of the two methods is displayed

in Figures 7.4 and 7.5, which, for each method, show the results of I = 900 iterations

of Algorithm 7.2. For each method, the number of customer sets is 11. As in Figures

7.1, 7.2, and 7.3, a single data point represents the percent increase in demand served

by our linear value function approximation over the benchmark fixed route policy. A

negative number indicates a decrease in demand served compared to the benchmark

fixed route policy, while a positive number indicates an increase. The confidence band
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for the demand served by the hybrid rollout policy is also displayed.

While neither data series in Figures 7.4 and 7.5 contains an improving trend

beyond iteration 100, it is clear that initializing parameters via the hybrid rollout

policy is beneficial. However, over the course of 900 iterations, neither method of

initialization leads to an approximation that consistently serves more demand than

the benchmark fixed route or hybrid rollout policies.

7.5 Conclusion and Future Research

We propose a linear value function approximation in a simulation-based ap-

proximate dynamic programming algorithm to obtain dynamic solutions to the multi-

vehicle routing problem with stochastic demands and duration limits. Our computa-

tional experiments make first steps in this direction, but indicate that further research

is necessary. Below, we discuss two directions for future research.

The linear value function approximation we consider in this chapter is pre-

liminary, and we believe improved results can be obtained by adjusting the approxi-

mation. As we note in §7.2, value function approximations are typically better when

they leverage structural properties of the associated MDP. Although we are unable to

show general structural properties for the MDP model of §2.2, intuition suggests that

a non-linear structure may be advantageous. For example, it seems reasonable that

the value of assigning vehicles to visit a particular region should initially increase as

the number of vehicles assigned is small. However, as the number of vehicles assigned

becomes larger, the value of assigning additional vehicles should eventually decrease.
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This intuitive behavior can be modeled by a concave function and can be estimated

via piecewise-linear functions, similar to Topaloglu and Powell (2006).

Another possibility for improving the quality of the value function approxima-

tion is to include basis functions that correspond to different levels of aggregation.

For example, we might include basis functions for two, five, and eleven regions. The

Bias Adjusted Kalman Filter, proposed by Powell (2007), provides a mechanism to

dynamically adjust weights to account for these different levels of aggregation. In

the early iterations of the procedure, higher weights are placed on higher levels of

aggregation (e.g., two regions). As the algorithm progresses and more information

is obtained, these weights decrease and the weights associated with lower levels of

aggregation increase. Powell (2007) reports success with this method in dynamic re-

source allocation problems, particularly when it is not possible to leverage problem

structure.
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CHAPTER 8
CONCLUSION

In this thesis, we present solution methodologies to address vehicle routing

problems (VRPs) with stochastic demand, an important class of problems in sup-

ply chain management. We consider two extensions of the base problem description

provided in §1: the vehicle routing problem with stochastic demand (VRPSD) and

the vehicle routing problem with stochastic demand and duration limits (VRPSDL).

The VRPSD and the VRPSDL are fundamental problems underlying many opera-

tional challenges in the field of logistics. In this conclusion, we highlight the major

contributions of each chapter and summarize directions for future research.

In §3, we develop a general methodology for solving a broad class of VRPs

and demonstrate its effectiveness by obtaining high-quality fixed route policies for the

VRPSD. The methodology employs a cyclic order solution representation for VRPs.

The primary contribution of §3 is the design and implementation of neighborhoods

to search cyclic orders. We demonstrate the potential of cyclic-order neighborhoods

to facilitate the discovery of high quality solutions by embedding them within a sim-

ulated annealing framework to solve the classical VRP and the VRPSD. We propose

an updating procedure and demonstrate its ability to reduce the computational ex-

pense of our approach. Our results underscore the potential for the use of cyclic-order

neighborhoods as a general solution method for a variety of routing problems.

Due to the computational effort required to search a neighborhood of cyclic

orders, one direction for future research is to investigate techniques to reduce the size
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of the cyclic-order search space. This could perhaps be accomplished by exploiting in-

formation pertaining to customer location. Specifically, cyclic orders may be removed

from a neighborhood that would generate candidate routes unlikely to be observed in

optimal solutions. For example, customers on opposite sides of the depot are unlikely

to be serviced on the same route in an optimal solution. Thus, including such routes

in the set of candidate routes is unnecessary. Such reductions in neighborhood size

may be especially advantageous when it is necessary to evaluate all cyclic orders in a

given neighborhood, such as in best-improving search, variable neighborhood search,

or tabu search. How to use memory in the search procedure is another direction for

future research. This might be accomplished by exploiting information contained in

a history of candidate route sets, or by identifying common sequences of customers

in a history of cyclic orders.

In §4, we lay the foundation for the dynamic routing policies of §5 and §6 by

developing new rollout policies for approximate dynamic programming (ADP). ADP

is a general solution methodology for dynamic and stochastic sequential decision

problems and seeks to overcome the well-known curses of dimensionality associated

with dynamic programs. Traditional rollout policies employ heuristic optimization to

approximate value functions in dynamic programs, but can be difficult to obtain for

problems with large action spaces. By partitioning the state transition of an Markov

decision process (i.e., a stochastic dynamic program) into two parts, we introduce

two extensions which we refer to as pre-decision and post-decision rollout policies.

Furthermore, we discuss how these two new types of rollout policy may be used in
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combination, resulting in a hybrid rollout policy that, in our experience, achieves

high quality solutions and results in a computational reduction sufficient for real-

time implementation in large-scale settings. We also provide analytical results that

position our extensions within the rollout literature and identify conditions under

which our proposed rollout methods are equivalent to the traditional form.

In §5 and §6, we use the Markov decision process (MDP) formulation of §2

and the rollout framework of §4 to develop hybrid and pre-decision rollout policies

for the VRPSDL. Similar to the literature on dynamic solution methodologies for

single-vehicle VRPs with stochastic demand, a fixed route heuristic forms the basis

of our rollout policy. We demonstrate the effectiveness of our methods by solving

large-scale problems. By testing our procedure across a broad range of problem pa-

rameters, we empirically establish conditions under which the demand served by our

rollout policies is significantly higher than the demand served by a method frequently

implemented in practice. We also identify circumstances in which our rollout policies

appear to offer little or no benefit compared to this benchmark. These observations

can guide managerial decision making regarding when the use of our procedures is

justifiable. Finally, we demonstrate that our methodology lends itself to real-time im-

plementation, thereby providing a mechanism to make high-quality, dynamic routing

decisions for large-scale operations.

One avenue for future research related to §6 is to develop a restocking-based

hybrid rollout policy for a VRPSDL that includes waiting actions. At a given decision

epoch, instead of requiring vehicles to travel to the depot or to customers with pending
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or unknown demand, vehicles may also wait at their current location until the next

decision epoch. Using a restocking-based fixed routes heuristic in a hybrid rollout

policy for a VRPSDL with waiting actions is appealing because applying executing

the heuristic from the pre-decision state implicitly evaluates all feasible actions except

those that allow vehicles to wait at their current locations. The fixed route heuristic

can then be applied, from the post-decision state, to each action allowing vehicles to

wait. Because inclusion of waiting actions relaxes the MDP formulation of §2.2, we

anticipate that policies can be devised to collect more demand than when waiting

actions are ignored.

A potential drawback of using the fixed route-based rollout policies of §5 and

§6 to approximate future demand served is that the approximation does not account

for possible interactions among vehicle routes. This is because fixed route policies

restrict vehicles to disjoint sets of customers. Accounting for these interactions may

lead to improved policies. A method that may account for this shortcoming is to

use more sophisticated fixed route policies, such as those suggested by Ak and Erera

(2007), which coordinate vehicle routes in pairs. However, incorporating these more

complex recourse actions may lead to increased computing times, thereby making it

difficult to implement such methods in real time.

Another method that has the potential to account for interactions among ve-

hicle routes when approximating future demand served is the parametric functional

approximation we consider in §7. The method we employ in this chapter is more typ-

ical of traditional ADP. We develop a parameterized linear function to approximate
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the value functions and estimate the parameters via a simulation-based algorithm.

The computational results we present indicate that initializing parameter values via

the rollout methods of §5 and §6 leads to significant improvements. However, we con-

clude that additional research is required to develop a parametric ADP methodology

comparable or superior to the rollout policies of §5 and §6.

Value function approximations are typically better when they leverage struc-

tural properties of the associated MDP. Although we are unable to show general

structural properties for the MDP model of §2.2, intuition suggests that a non-linear

structure may be advantageous. For example, it seems reasonable that the value of

assigning vehicles to visit a particular region should initially increase as the number

of vehicles assigned is small. However, as the number of vehicles assigned becomes

larger, the value of assigning additional vehicles should eventually decrease. This

intuitive behavior can be modeled by a concave function and can be estimated via

piecewise-linear functions, similar to Topaloglu and Powell (2006).

Another possibility for improving the quality of the value function approxima-

tion is to include basis functions that correspond to different levels of aggregation.

For example, we might include basis functions for two, five, and eleven regions. The

Bias Adjusted Kalman Filter, proposed by Powell (2007), provides a mechanism to

dynamically adjust weights to account for these different levels of aggregation. In

the early iterations of the procedure, higher weights are placed on higher levels of

aggregation (e.g., two regions). As the algorithm progresses and more information

is obtained, these weights decrease and the weights associated with lower levels of
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aggregation increase. Powell (2007) reports success with this method in dynamic re-

source allocation problems, particularly when it is not possible to leverage problem

structure.

In this thesis, we consider objectives that optimize expected values, e.g., min-

imize expected travel costs or maximize expected demand served. Another avenue

for future research is to incorporate some measure of risk into the objective, much

like the ideas underlying “robust” optimization. Such objectives have many practical

applications and may lead to different route structures.
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Teodorović, D. and G. Pavković (1992). A simulated annealing technique approach
to the vehicle routing problem in the case of stochastic demand. Transportation
Planning and Technology 16, 261–273.

Thompson, P. and H. Psaraftis (1993). Cyclic transfer algorithms for multi-vehicle
routing and scheduling problems. Operations Research 41, 935–946.

Topaloglu, H. and W. Powell (2006). Dynamic-programming approximations for
stochastic time-staged integer multicommodity-flow problems. INFORMS Jour-
nal on Computing 18 (1), 31–42.

Tsirimpas, P., A. Tatarakis, I. Minis, and E. Kyriakidis (2008). Single vehicle routing
with a predefined customer sequence and multiple depot returns. European Journal
of Operational Research 187, 483–495.

Tsitsiklis, J. (2010). Perspectives on stochastic optimization over time. INFORMS
Journal on Computing 22 (1), 18–19.

van de Klundert, J. and L. Wormer (2010). ASAP: the after-salesman prob-
lem. Forthcoming in Manufacturing and Service Operations Management. doi:
10.1287/msom.1100.0292.

Yang, W., K. Mathur, and R. Ballou (2000). Stochastic vehicle routing problem with
restocking. Transportation Science 34 (1), 99–112.


	University of Iowa
	Iowa Research Online
	Summer 2010

	Solution methodologies for vehicle routing problems with stochastic demand
	Justin Christopher Goodson
	Recommended Citation


	tmp.1286482323.pdf.9wKB4

