
University of Iowa
Iowa Research Online

Theses and Dissertations

Summer 2012

Latent feature networks for statistical relational
learning
Mohammad Khoshneshin
University of Iowa

Copyright 2012 Mohammad Khoshneshin

This dissertation is available at Iowa Research Online: http://ir.uiowa.edu/etd/3323

Follow this and additional works at: http://ir.uiowa.edu/etd

Part of the Business Administration, Management, and Operations Commons

Recommended Citation
Khoshneshin, Mohammad. "Latent feature networks for statistical relational learning." PhD (Doctor of Philosophy) thesis, University
of Iowa, 2012.
http://ir.uiowa.edu/etd/3323.

http://ir.uiowa.edu?utm_source=ir.uiowa.edu%2Fetd%2F3323&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F3323&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F3323&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/623?utm_source=ir.uiowa.edu%2Fetd%2F3323&utm_medium=PDF&utm_campaign=PDFCoverPages

LATENT FEATURE NETWORKS

FOR STATISTICAL RELATIONAL LEARNING

by

Mohammad Khoshneshin

An Abstract

Of a thesis submitted in partial fulfillment of the
requirements for the Doctor of Philosophy

degree in Business Administration
in the Graduate College of

The University of Iowa

July 2012

Thesis Supervisor: Professor W. Nick Street

1

ABSTRACT

In this dissertation, I explored relational learning via latent variable models.

Traditional machine learning algorithms cannot handle many learning problems where

there is a need for modeling both relations and noise. Statistical relational learning

approaches emerged to handle these applications by incorporating both relations and

uncertainties in these problems. Latent variable models are one of the successful ap-

proaches for statistical relational learning. These models assume a latent variable for

each entity and then the probability distribution over relationships between entities

is modeled via a function over latent variables. One important example of relational

learning via latent variables is text data modeling. In text data modeling, we are in-

terested in modeling the relationship between words and documents. Latent variable

models learn this data by assuming a latent variable for each word and document. The

co-occurrence value is defined as a function of these random variables. For modeling

co-occurrence data in general (and text data in particular), we proposed latent logistic

allocation (LLA). LLA outperforms the-state-of-the-art model — latent Dirichlet al-

location — in text data modeling, document categorization and information retrieval.

We also proposed query-based visualization which embeds documents relevant to a

query in a 2-dimensional space. Additionally, I used latent variable models for other

single-relational problems such as collaborative filtering and educational data mining.

To move towards multi-relational learning via latent variable models, we pro-

pose latent feature networks (LFN). Multi-relational learning approaches model mul-

2

tiple relationships simultaneously. LFN assumes a component for each relationship.

Each component is a latent variable model where a latent variable is defined for each

entity and the relationship is a function of latent variables. However, if an entity par-

ticipates in more than one relationship, then it will have a separate random variable

for each relationship. We used LFN for modeling two different problems: microarray

classification and social network analysis with a side network. In the first applica-

tion, LFN outperforms support vector machines — the best propositional model for

that application. In the second application, using the side information via LFN can

drastically improve the link prediction task in a social network.

Abstract Approved:

Thesis Supervisor

Title and Department

Date

LATENT FEATURE NETWORKS

FOR STATISTICAL RELATIONAL LEARNING

by

Mohammad Khoshneshin

A thesis submitted in partial fulfillment of the
requirements for the Doctor of Philosophy

degree in Business Administration
in the Graduate College of

The University of Iowa

July 2012

Thesis Supervisor: Professor W. Nick Street

Copyright by
MOHAMMAD KHOSHNESHIN

2012
All Rights Reserved

Graduate College
The University of Iowa

Iowa City, Iowa

CERTIFICATE OF APPROVAL

PH.D. THESIS

This is to certify that the Ph.D. thesis of

Mohammad Khoshneshin

has been approved by the Examining Committee for the
thesis requirement for the Doctor of Philosophy degree
in Business Administration at the July 2012 graduation.

Thesis committee:

W. Nick Street, Thesis Supervisor

Samuel Burer

Jeffrey Ohlmann

Gautam Pant

Padmini Srinivasan

To my parents, Sima and Rahim,
and my wife, Mahtab

ii

ACKNOWLEDGEMENTS

I owe my deepest gratitude to my PhD supervisor, Dr. Nick Street, who helped

me through all stages of my doctoral studies. Not only he was my advisor in research,

but he also was a friend who supported me tremendously during these past years. He

provided me with latitude to select the research direction that I was most passionate

about, insuring that abundant technical and intuitive guidance was within my reach.

I also would like to express my gratitude to my committee members: Drs. Padmini

Srinivasan, Samuel Burer, Jeffery Ohlmann, and Guatam Pant. This dissertation

would not has been possible without their fruitful ideas, constructive comments, and

warm support.

I would like to thank my colleagues, Lian Duan and Michael Rechenthin, for

the many helpful discussions and endless laughs that we shared. I have also had the

pleasure of working alongside Viet Ha-Thuc, Si-Chi Chin, Dengfeng Zhang, Justin

Goodson, Kamal Lamsal, Amit Kumar Verma, Nicholas Leifker, Senay Yasar Saglam,

Ray Hylock, Brian Almquist, Chris Harris, Jieqiu Chen, Wenjun Wang, Bob Arens,

and Chen Yang, whose camaraderie was a privilege I enjoyed on several occasions.

I am grateful to the DMIG group members who challenged me to think deeper and

wider about my research. I would like to thank Barbara Carr and Renea Jay for all

their assistance during my time at U Iowa. I greatly appreciate the support of my

Iowa City friends: Mohammad Ahmadi Basir, Niloufar Salimi, Hamid Fahimrezaei,

and Raheleh Mohammad.

iii

I would like to express my sincere appreciation to my parents, Sima Sharifi and

Rahim Khoshneshin. Their unconditional love, belief, and support has always given

me courage and direction. I am in their debt for all I have or will have in life. I also

would like to thank my brothers, Puya and Milad, and my parents-in-law, Mehrnaz

Yamini and Ali Akbar Ghazizadeh, for their support and love. Last but not least, I

wish to thank my beloved wife, Mahtab, for her love, patience, and support during

these years. She encouraged me when I was hopeless and supported me when I was

frustrated. I truly believe this dissertation could not have been possible without her

by my side.

iv

ABSTRACT

In this dissertation, I explored relational learning via latent variable models.

Traditional machine learning algorithms cannot handle many learning problems where

there is a need for modeling both relations and noise. Statistical relational learning

approaches emerged to handle these applications by incorporating both relations and

uncertainties in these problems. Latent variable models are one of the successful ap-

proaches for statistical relational learning. These models assume a latent variable for

each entity and then the probability distribution over relationships between entities

is modeled via a function over latent variables. One important example of relational

learning via latent variables is text data modeling. In text data modeling, we are in-

terested in modeling the relationship between words and documents. Latent variable

models learn this data by assuming a latent variable for each word and document. The

co-occurrence value is defined as a function of these random variables. For modeling

co-occurrence data in general (and text data in particular), we proposed latent logistic

allocation (LLA). LLA outperforms the-state-of-the-art model — latent Dirichlet al-

location — in text data modeling, document categorization and information retrieval.

We also proposed query-based visualization which embeds documents relevant to a

query in a 2-dimensional space. Additionally, I used latent variable models for other

single-relational problems such as collaborative filtering and educational data mining.

To move towards multi-relational learning via latent variable models, we pro-

pose latent feature networks (LFN). Multi-relational learning approaches model mul-

v

tiple relationships simultaneously. LFN assumes a component for each relationship.

Each component is a latent variable model where a latent variable is defined for each

entity and the relationship is a function of latent variables. However, if an entity par-

ticipates in more than one relationship, then it will have a separate random variable

for each relationship. We used LFN for modeling two different problems: microarray

classification and social network analysis with a side network. In the first applica-

tion, LFN outperforms support vector machines — the best propositional model for

that application. In the second application, using the side information via LFN can

drastically improve the link prediction task in a social network.

vi

TABLE OF CONTENTS

LIST OF TABLES . ix

LIST OF FIGURES . x

CHAPTER

1 INTRODUCTION . 1

1.1 Dissertation outline . 6
1.2 Contributions of the dissertation 7

2 BACKGROUND AND RELATED WORK 10

2.1 Graphical models . 10
2.1.1 Representation . 11
2.1.2 Inference and Learning 16

2.2 Statistical relational learning . 19
2.2.1 Rule-based models . 20
2.2.2 Frame-based models . 22
2.2.3 Latent variable models 26

2.2.3.1 Collaborative filtering 27
2.2.3.2 Learning co-occurrence data 29

3 SINGLE-RELATIONAL LEARNING 39

3.1 Collaborative Filtering . 39
3.1.1 Model . 42

3.1.1.1 Time complexity 45
3.1.1.2 Visualization . 46
3.1.1.3 Fast recommendation generation 47
3.1.1.4 Incorporating new users and items 49

3.1.2 Experimental results . 51
3.1.3 Conclusion . 58

3.2 Incremental Collaborative Filtering 59
3.2.1 Baseline algorithm . 61
3.2.2 Incremental CF via co-clustering 61
3.2.3 Model . 63
3.2.4 Experimental results . 69
3.2.5 Conclusion . 72

3.3 Latent logistic allocation . 72

vii

3.3.1 Model . 75
3.3.1.1 Hetero-undirected 79
3.3.1.2 Hetero-directed 80
3.3.1.3 Homo-undirected 81
3.3.1.4 Homo-directed 82
3.3.1.5 Approximate inference 82

3.3.2 Experimental results . 88
3.3.3 Query-based visualization 94
3.3.4 Experimental results . 96
3.3.5 Conclusion . 99

3.4 Analyzing the language evolution 101
3.4.1 Model . 108
3.4.2 Experimental results . 112
3.4.3 Conclusion . 117

4 LATENT FEATURE NETWORKS 118

4.1 General model . 118
4.2 Microarray classification . 122

4.2.1 Model . 125
4.2.2 Experimental results . 130
4.2.3 Conclusion . 131

4.3 Social network analysis . 132
4.3.1 Model . 133

4.3.1.1 Gibbs sampling 135
4.3.2 Experimental results . 136
4.3.3 Conclusion . 138

5 CONCLUSION AND FUTURE DIRECTIONS 139

5.1 Summary and conclusion . 139
5.2 Future directions . 141

5.2.1 Modeling . 143
5.2.2 Inference and learning . 146
5.2.3 Applications . 148

REFERENCES . 150

viii

LIST OF TABLES

Table

3.1 RMSE, average number of iterations, and average time per iteration for
MF and EE in 5, 25, and 50 dimensions 52

3.2 Precision and recall for simple MF, EE, and EE with candidate generation
using KNN-search (D = 50 for all runs) 57

3.3 Average MAE of different methods . 71

3.4 Average time (milliseconds) of different methods per rating 71

3.5 ARDP on a 2-dimensional space (Best results are in bold) 98

3.6 query-based visualization + LLA-RBF versus CODE with 2 dimensions
(best results are bold) . 98

3.7 The list of activities in the classroom . 104

3.8 Test of linear relationship over time in the cosine similarity between the
normalized word vector of the teacher and individual students 106

3.9 The words for which usage is increasing or decreasing at 0.05 significance 107

3.10 The test of linear regression of change in activity language model for in-
dividual students and all of them as a whole 113

4.1 The accuracy results of ten runs of 10-fold cross-validation experiments
(total of 100 runs) . 131

ix

LIST OF FIGURES

Figure

2.1 Bayesian network . 13

2.2 Markov network . 14

2.3 A factor graph . 15

2.4 An example of Markov logic network . 22

2.5 An example of a relational model . 24

2.6 Probabilistic relational model structure 25

2.7 Some examples of conditional probability distributions 26

2.8 The graphical model of the latent Dirichlet allocation model 34

3.1 Users (circles) and items (triangles) are embedded in a unified Euclidean
space . 43

3.2 Representing close items (triangles) to a user (circle) besides the movies
he has already liked (bold triangles) to assist him in selection 47

3.3 The search space for a query user . 49

3.4 Test RMSE of EE (a) and MF (b) in each iteration of the gradient descent
algorithm for five different folds . 53

3.5 Precision/recall curve for different dimension size 54

3.6 Visualization of movies using Euclidean embedding and classic MDS . . 56

3.7 Precision and recall for EEa and MFa . 58

3.8 Incremental training in evolutionary co-clustering 66

3.9 Evolutionary algorithm . 67

x

3.10 Crossover algorithm . 68

3.11 The graphical model of LLA . 76

3.12 The predictive perplexity for TDT-2 dataset 89

3.13 The predictive perplexity for Reuters21578 dataset 89

3.14 The test accuracy for TDT-2 dataset . 90

3.15 The test accuracy for Reuters21578 dataset 90

3.16 Average precision for queries of CRAN dataset 91

3.17 Average precision for queries of MED dataset 91

3.18 Visualization of a typical query from MEDLINE dataset using CODE with
2 dimensions . 100

3.19 Visualization of a typical query from MEDLINE dataset using query-based
visualization + LLA-RBF with 100 dimensions 100

3.20 The structure of the dataset of the classroom conversations 105

3.21 The cosine similarity between the normalized word vectors of the teacher
and students (all students treated as one person) over time 106

3.22 The graphical model of the proposed topic model 108

3.23 The cosine similarity between the 4-category language usage probability
vector of the teacher and students (all students treated as one person) over
time . 115

3.24 The cosine similarity between the personal topic usage probability vector
of the teacher and students (all students treated as one person) over time 115

3.25 The 4-category language usage of students (all students treated as one
person) over time . 116

3.26 The 4-category language usage of the teacher 116

4.1 A latent feature network for 4 relations among 4 entity types 119

xi

4.2 The graphical model of the latent feature network for microarray classifi-
cation . 123

4.3 Iterative algorithm for microarray classification 129

4.4 The graphical model of the latent feature network for social network anal-
ysis with side information . 134

4.5 Gibbs sampling algorithm for the social network analysis with side book-
marking network . 137

4.6 The average rank results for LFN-F versus LFN-FB with different dimensions138

5.1 Three modules regarding the future directions for improving the latent
feature network . 142

xii

1

CHAPTER 1
INTRODUCTION

The goal of artificial intelligence and machine learning approaches is accom-

plishing tasks automatically. Many of these tasks can be done by a human, while

the limitation of human computational power limits performing them in large scale.

For example, analyzing a picture and distinguishing the objects in a picture might

be an easy task for a human and hard for machine, but what if we want to process

thousands of pictures? Retrieving relevant documents to a query is still an easy task

for a human but when the domain of documents is the web, no one is able to be

comprehensive. Therefore, a machine with human intelligence — or at least close

— and great computational power — compared to humans — will open an array

of wonderful possibilities. Among the different aspects of modern life, many tools

such as Internet search engines, recommender systems, and intelligent transportation

systems have enjoyed the efforts in this direction — towards intelligent machines.

Traditional machine learning approaches can be divided into two separate

schools — logic-based models and propositional models. Logic-based models represent

knowledge using logic languages such as first-order logic. Questions or queries can be

expressed in the same language and then using logical inference, we can answer these

questions. Logic programming approaches use deductive inference: given a knowledge

base or a set of logic formulas, how we can decide whether a query formula holds?

Inductive logic programming (ILP) approaches use an inductive way to generalize

from instances. ILP approaches are more powerful compared to logic programming

2

due to their ability to create knowledge bases automatically.

Propositional models treat the learning problem as points in a high-dimensional

space and the goal is predicting a value — continuous or discrete — for each point.

That is, there is a group of entities — all from the same type — and based on the

attributes that exist for the entities, we want to predict the value of the goal attribute.

Algorithms with statistical origin such as linear regression or logistic regression fall in

to this group. One important class of these models is classification approaches such

as decision trees, artificial neural networks, and support vector machines which are

tailored for binary prediction.

There are advantages and disadvantages to both logic-based and propositional

models. Propositional models can only handle flat data. For example if we want

to predict if a person has a disease using propositional models, we only consider his

attributes such as his age, gender, and smoking status. However, if the disease is a

contagious one, then whether any person in his social network has the disease is very

important information which is ignored by propositional model. While it is possible

to incorporate the relational data in the propositional data — propositionalizing —

it has some limitations. One is that the result might be a very huge dataset due

to the exponential growth per each relationship that cannot be handled efficiently.

On the other hand, logic-based models can handle relational data easily as they

define some structure over entities — predicates. However, logic-based approaches

are very poor in dealing with uncertainty and only can handle deterministic settings.

In contrast, propositional models are statistical learning approaches and are robust

3

to uncertainties.

Recently, there has been an emergence in models which can simultaneously

handle both uncertainty and relational structure — known as statistical relational

learning (SRL). Some SRL models are extensions to logic-based models which are

known as rule-based models. Some others are extensions to statistical learning and

object-oriented models which are known as model-based approaches. There is another

class of SRL models — latent variable models — which assumes a latent variable for

each entity and then the probability distribution over relationships between entities

is modeled via a function over latent variables.

There are many SRL models proposed in the literature as we will explain in

the next section. Each model is tailored for a special type problem. Rule-based

models are more successful when logic is an appropriate representation language.

Many frame-based models are based on relational database design and therefore are

useful if one wants to construct a model over an already existing database. Latent

variable models are more studied in the case where inference over only one relation

is of interest, where they work better than the two other SRL models.

Here, I explain two examples of relational data for which latent variable models

work well and will be presented in the next chapters. The first example is preference

data. In preference data, there are two types of entities: users and items. Each

user rates a number of items. The goal is usually to recommend items of interest

based on the rating history of users. Traditional machine learning algorithms fail in

this problem. For using the propositional models, we need a unique goal to predict.

4

However, for a user, we need to predict the rating for all unrated items. That is,

instead of predicting an attribute, we want to predict a relationship. Also, it is hard

to model such a problem with a logic-based model as there is a lot of noise in the

data and the relationship is not binary.

Another examples is text data. In text data, entities are documents and

words. Given the bag of words assumption — ignoring the sequence of words in

documents — text data can be expressed as a matrix where each element represents

the co-occurrence between a word and a document. One goal might be finding the

category of each document such as a news group. The co-occurrence between words

and documents can be treated as attributes. Such an approach ignores the relational

structure of data as all words are from the same type. Also, the number of unique

words is usually huge which makes using the propositional models burdensome.

Latent variable models can deal with these types of problems in a natural way.

In preference data, we can assume a latent variable (which is a vector) for each user

and each item. Then, the rating of a user for an item is a function of their latent

variables. Similarly, given a latent variable for each word and document in a text data,

the co-occurrence between a word and a document is a function of their respective

latent variables. Note that in the latter example, predicting the co-occurrence value

is not of interest per se but the latent variable of words and documents can be used

for other purposes such as document categorization using their latent variables.

While latent variable models are very powerful in learning only one relation,

extending them to multi-relational learning is not straightforward. For example, in

5

the preference data example, some side information might be available regarding a

user or an item. How can we use this information to perform better? One approach is

using the same latent variable of one entity for learning all types of relationships. This

hasn’t been completely successful as different types of features explain different types

of relationships. On the other hand, other SRL models — rule-based and model-based

— can handle multi-relational data naturally but they need supervision to construct

a sound model. Also, they are not as powerful as latent variable models. To date, no

other SRL model has been as successful as matrix factorization — a latent variable

model — in collaborative filtering problems.

The main goal of this dissertation is to explore learning and modeling relational

data via latent variable models. First, I start with single-relational problems with

specific characteristics and then I encounter multi-relational problems. In summary,

the final destination is a generic model that can address following characteristics:

1. minimal human supervision

2. strong learning power

3. general purpose: covers all types of relationships

4. can be updated by adding new relationships.

To this end, we propose latent feature networks (LFN). LFN assumes a com-

ponent for each relationship. Each component is a variant of latent variable models

in which a latent variable is defined for each entity and the relationship is a function

of latent variables. However, if an entity participates in more than one relationship,

then it will have a separate random variable per relationship. Therefore, we call these

6

latent variables in the component level local features. The local features for each en-

tity are enforced to be correlated via some transformational functions such as linear

functions. As a result, information flows between different relationships via enforcing

correlation among local features.

LFN can address our goals as it automatically defines a component for an

arbitrary relationship (minimal human supervision). LFN has a good learning power

(via latent variable models). It can be general purpose if we can define a component

for all types of relationships. Finally, we can add a new component to the system if

we want to incorporate a new relationship.

1.1 Dissertation outline

In Chapter 2, background and related work relevant to the dissertation is

presented. It starts with graphical models which are a key ingredient in statistical

relational learning. Graphical models are used for very complex probabilistic mod-

els. Almost all modern statistical relational learning approaches use this framework.

Similarly, we use graphical models for representing latent feature networks. Then,

statistical relational learning literature is discussed. Chapter 2 is concluded with the

main drawbacks in SRL literature. In Chapter 3, my work related to single-relational

problems is discussed and presented. In Chapter 4, the latent feature network, a gen-

eral approach for multi-relational learning via latent variable models, is presented.

Finally, the conclusion and future directions are presented in Chapter 5.

7

1.2 Contributions of the dissertation

In this dissertation, I explored using latent variable models for learning re-

lational problems. First, I modified latent variable models to improve the existing

state-of-the-art single-relational models. In one direction, I proposed using Euclidean

distance kernel in latent variable models which has several benefits such as visualiza-

tion, fast information retrieval and fast embedding of new entities in an old model.

In another direction, a kernel-based approach —latent logistic allocation — for co-

occurrence data was developed. The state-of-the-art models for co-occurrence data

use categorical latent space. This limits the learning power of algorithm. We re-

laxed this constraint and developed a Bayesian inference approach which was very

successful in areas of information retrieval and dimensionality reduction. Further-

more, the scalability of collaborative filtering via co-clustering was improved via a

memetic algorithm. Finally, a latent variable model — latent Dirichlet allocation —

was customized for unsupervised learning in an educational problem.

Most previous studies — including mine — have applied latent variable mod-

els to single-relational data. However, learning multiple relations simultaneously can

be very useful as one relation can improve learning another. Recently, some models

have been proposed for handling multi-relational learning via latent variables [97, 96].

These models assume the same latent variable for each entity in different relation-

ships. However, the essence of relations is different. Furthermore, available data for

different relations might be imbalanced. Therefore, one random variable might ad-

dress some relations well but some others poorly. To remedy this problem Agarwal

8

et al. [1] proposed using a local latent variable for each relation of an entity and a

single global latent variable for the entity. They assume that local latent variables

are generated from a normal distribution with the mean of a linear transformation

of the global random variable. Finally an ad-hoc algorithm based on maximum like-

lihood estimation is used for learning the latent variables. Although the theoretical

model is sound, the impact of the model is not as expected and it mostly performs

well in the cold start movie recommendation — when a user has only a few movies

rated. Additionally, the mentioned literature is limited to real-valued relationships

while many relationships are categorical. Also, they are mainly limited to the matrix

factorization framework — using a dot product kernel in the latent variable models.

In the path towards multi-relational learning vial latent variable models, I

proposed a general framework — latent feature networks. Latent feature networks

assume a component for each relationship which is a single-relational latent variable

model. Then it connects these components with the shared entities among relation-

ships. All of the previous models studied in the literature can be derived from this

framework. Therefore, latent feature network can be used as a flexible core model

for constructing an all-purpose program for multi-relational learning via latent vari-

able models. Furthermore, we derived special cases of latent feature networks for

two specific problems: Microarray classification and social network analysis. Com-

pared to models studied in the literature, in these approaches I modeled categorical

relationships and developed an efficient Bayesian learning algorithm. In Microarray

classification, our model outperforms support vector machines — the state-of-the art

9

algorithm for the studied problem. In social network analysis, we showed that using

bookmarking information can improve link prediction in a social network.

10

CHAPTER 2
BACKGROUND AND RELATED WORK

In this Section, we provide a survey on statistical relational learning approaches

as the relevant literature. First, we review graphical models, a probabilistic model

that often is used as a learning and inference representation for statistical relational

learning.

2.1 Graphical models

The goal of graphical models [55, 89, 76, 68, 103] is presenting a high dimen-

sional distribution over n random variables x1, x2, ..., xn in a compact way. When

random variables are binary, then there are 2n different configurations over the ran-

dom variables. Graphical models use local dependency between random variables to

represent a probability distribution in a structured way. A graph is used to repre-

sent the complex probability distribution. Nodes denote random variables and edges

denote dependencies between random variables. The key concept to the compact rep-

resentation is conditional independence. Random variables x and y are conditionally

independent given random variable z if

P (x, y|z) = P (x|z)P (y|z).

Generally speaking, two random variables are conditionally independent given a third

one, if the given random variable blocks information flow between them in the graph.

That is, the given random variable should block any path between to random variable

nodes in the graph. We will detail on conditional independence for different types of

11

graphical models later.

Three important concepts related to graphical models — and generally to

probabilistic modeling — are representation, inference, and learning. Representa-

tion is about the structure and properties of the probability distributions and mainly

the way conditional independence can be derived. Inference concerns evaluating the

values of random variables given the dependency and conditional independence struc-

ture. Learning is regarding the parameters associated to a probability distribution.

In the next two sections we briefly describe representation, inference and learning for

graphical models.

2.1.1 Representation

There are three different types of graphical models: Bayesian networks, Makrov

networks and factor graphs. Bayesian networks (BNs) are directed acyclic graphs

[47, 53, 89, 52, 23]. In BNs — similar to other graphical models — each random

variable is represented by a node in the network. The dependency between random

variables are defined via directed edges between nodes which can be interpreted as

causal relationships. An example of a Bayesian network is shown in Figure 2.1-(a).

There are 5 distinct binary random variables in this BN which represents the health

condition of a typical person. A person might have Pneumonia, Tuberculosis, none

or both. Both of these diseases might cause Lung Infiltrates. XRay can determine if

Lung infiltrates exist. Seputum Smear is a test for detecting tuberculosis. This is a

toy model but it represents a group of Bayesian network models for disease diagnosis.

12

A probability distribution represented by a Bayesian network is factorized as

follows:

P (x1, ..., xn) =
∏
i

P (xi|Pi) (2.1)

where Pi represents the set of parents of random variable xi. In the example, par-

ents of the “Lung Infiltrates” random variable are “Pneumonia” and “Tuberculosis”.

In many applications of Bayesian networks, the conditional probability distribution

P (xi|Pi) is given by a table-based probability that determines the probability of the

child given each possible configuration of the parents. Such a representation is ex-

ponential in the number of parents and only applicable to discrete models. Figure

2.1-(b) represents a set of conditional probability distributions in table format for the

example.

The conditional independence in Bayesian networks is determined by the con-

cept of d-separation [76]. Two random variables — or generally groups of random

variables — are d-separated by a random variable z — or a group of random variables

— if there is no active path between them given z. A path between two nodes is ac-

tive if it is a directed path and no connecting random variable is observed along the

path or there is a directed path from both random variables to the observed random

variable z. The first type of path — directed path — is active since information can

flow from parent to child and vice versa. The second type of path is active since if

the child of two parents is observed then it gives information about all parents which

makes them dependent.

The second type of graphical models is Markov networks [89, 93, 66, 94] —

13

XRay

Lung Infiltrates

Sputum Smear

TuberculosisPneumonia

XRay

Lung Infiltrates

Sputum Smear

TuberculosisPneumonia
0.8

p
t

p
0.6

0.01
0.2

tp
t
t

p

TP P(I |P, T)
P(P)
0.05

P(T)
0.02

0.8
0.6

i
i

I P(X|I)
0.8
0.6

i
i

I P(X|I) 0.8
0.6

s
s

S P(S|T)

P T

I

X S

(a) (b)

Figure 2.1: Bayesian network, (a) Representation, (b) Conditional probability tables

(Picture from [40], chapter 2)

Markov random fields (MRF) — which are undirected graphical models. Markov

networks are very flexible in representing probability distributions given a Gibbs

distribution. A probability distribution follows a Gibbs distribution if it has the

following format:

P (x1, ..., xn) =
1

Z

∏
k

πk(Ck) (2.2)

where Ck is a set of random variables, πk is a function over random variables in

Ck, and Z =
∑

X

∏
k πk(Ck) is the partition function which enforces the probability

distribution adding to one. The function πk is called the potential function or factor

and as the only condition, it has to be positive. A Markov network is defined based on

a Gibbs distribution over variables where there is an edge between two nodes if they

share a variable set Ck. This definition results in cliques for each Ck in the Markov

network.

14

TB Patient 1

TB Patient 3 TB Patient 4

TB Patient 2

1

p1

p3

p1

0.5

2

0.5

p3p1

p3

p3

p1

P3P1 π(P1 , P3)

1

p3

p4

p3

0.5

2

0.5

p4p3

p4

p4

p3

P4P3 π(P3 , P4)

1

p1

p2

p1

0.5

2

0.5

p2p1

p2

p2

p1

P2P1 π(P1 , P2)

1

p2

p4

p2

0.5

2

0.5

p4p2

p4

p4

p2

P4P2 π(P2 , P4)

P1 P2

P3 P4

π(P1)
0.2
100

P1
p1

p1

π(P1)
0.2
100

P1
p1

p1

π(P4)
0.2
100

P4

p4

p4

π(P3)
0.2
100

P3
p3

p3

π(P2)
0.2
100

P2

p2

p2

(a) (b)

Figure 2.2: Markov network, (a) Representation , (b) Node potentials (Picture from

[40], chapter 2)

Figure 2.2-(a) shows an example of a Markov network. This Markov network

includes four random variables for different people. Each random variable is binary

and is true if the person has Tuberculosis. There is an edge between two patients if

they have been in contact. Figure 2.2-(b) shows a set of potential functions for each

contact.

Factor graphs [78, 73, 37] are very similar to Markov networks as they are used

to represent a Gibbs distribution (2.2) over random variables . The only difference is

in the graphical representation. Factor graphs are bipartite graphs with two different

types of nodes. The first type of nodes are random variables and the second type of

nodes represent factors which are a function of random variables. Figure 2.3 represents

the factor graph representation of the Markov network example in Figure 2.2.

15

TB Patient 1

TB Patient 2

TB Patient 3

TB Patient 4

π12

π13

π24

π34

Figure 2.3: A factor graph represents the Markov network in Figure 2.2-(a). Potential

functions π are defined similar to Figure 2.2.

Conditional independence is easier in Markov networks and factor graphs com-

pared to Bayesian networks. Two random variables are dependent if there is any path

between them in the undirected graph. Therefore, two variables are conditionally in-

dependent given a group of observed variables if a part of all paths between them is

observed.

There are some dependencies that only can be represented by a directed or

undirected graph. However, this only holds at the graphical representation level.

Note that the factorized probability distribution for Bayesian networks (2.1) is a

special case of Gibbs distribution (2.2). As a result, it is straightforward to convert a

Bayesian network to a Markov network while the other direction is not true [68]. This

is because of the local constraints posed on conditional probability distributions in the

16

Bayesian network model. Frey et al. [36] proposed an extended factor graph which

includes directed edges as well and has the representational power of both directed

and undirected models. However, such an extension does not affect computations for

inference.

2.1.2 Inference and Learning

Inference is one of the main goals in probabilistic models where we are inter-

ested in computing probability P (Y |E) where Y is a group of unobserved random

variables of interest and E — evidence — is the set of observed variables. From

probability theory, we have

P (Y |E) =
P (Y,E)

P (E)
.

Therefore, inference consists of simply computing marginal distributions. If we define

a set of random variables X as the rest of the random variables (other than E and

Y), then we need to compute P (Y,E) =
∑

X P (Y,E,X) and P (E) =
∑

Y P (Y,E).

These simple looking sums turn out to be intractable in high-dimensional probability

distributions. If we ignore the structure posed by the graphical model and want to

sum over unwanted random variables one by one, then the number of operations

is exponentially increasing with the number of random variables. For continuous

random variables, inference is even harder as the analytical integration may not be

possible even for one variable.

Learning in graphical models [54] includes inference over random variables,

inference over distribution parameters, or constructing a dependency structure that

17

fits the data. There are algorithms for performing exact inference which are limited to

special families of distributions. Sum-product algorithms [73] are inference algorithms

that give exact results only for factor graphs without loops or trees. As we discussed in

the previous section, other graphical models can be converted to factor graphs. This

algorithm starts by summing over random variables in leaves and passing the result

as a message to other random variables. After all random variables get the message

from their connected factors, we have the marginal for all of them. Replacing sum by

integration gives the algorithm for continuous variables. Belief prorogation [89] for

discrete random variables or Kalman filtering [3] for continuous random variables are

special cases of the sum-product algorithm.

If we are only interested in the modes of random variables, the max-sum

algorithm using dynamic programming ([8], ch 8) can be used.

If there is a loop in the graph, then the sum-product algorithm does not

work. We still can run it, but there is no guarantee that the algorithm converges and

even if it converges, the results are not exact. Such a strategy has worked in some

applications and is known as loopy belief propagation [89]. Some convergence proofs

can be found in [107].

There are two main groups of approximate inference for graphical models

which have origins in statistical physics. The first are sampling methods which are

known as Markov chain Monte Carlo approaches (MCMC) [83, 41, 4]. MCMC is an

iterative Monte Carlo simulation to sample from any probability distribution. First,

we initialize random variables. Then in each step, a new configuration is given from a

18

proposal distribution which might depend on the previous configuration. Then using

a formula, the proposed sample is accepted or rejected. Such a process is a Markov

chain since we move in the space from point to point — a chain — and the place we go

only depends on where we are now — Markovian. It can be shown that if an MCMC

algorithm converges, then we are sampling from the true probability distribution

which means our estimation based on sampling is exact in limit. However, this might

not be the case as the needed iterations before converging might be computationally

far away.

MCMC can be seen in the framework of stochastic optimization heuristics.

Greedy search might get stuck in a local mode — usually complex probability dis-

tributions are multi-modal (non-concave). A highly randomized setup might wander

aimlessly forever without sampling from the important regions of the distribution. To

resolve this trade-off problem, some optimization heuristic algorithms such as simu-

lated annealing/tempering or population based algorithms are used ([77], chapters 4

and 5).

Variational approximations [86, 106, 56, 28] use algorithms similar to methods

in variational calculus. In variational approximation, the main inference problem

P (Y |E) is replaced by an easier one Q(Y |E) — the variational distribution. Then

the divergence between Q and P — a distance function such as KullbackLeibler

divergence — is minimized. Q is family of distributions which is similar to the concept

of a functional in variational calculus. Since P (Y |E) is not tractable and we cannot

compute the distance function directly, the lower bound over the divergence which

19

involves the available P (Y,E,X) is minimized.

The most popular variational approach is the naive mean field method [103]

in which the variational distribution Q factorizes over all random variables. That is,

we recover independent distributions over random variables while they are correlated.

This is very similar to maximum likelihood estimation (MLE) or maximum a pos-

teriori probability (MAP) with the main difference that mean field methods provide

distributions over random variables while MLE or MAP only give point estimates.

While this might seem a subtle difference, the result can be much better mainly since

we use the point estimates or distribution estimates iteratively to re-estimate other

random variables and propagating uncertainty via distributions causes robustness to

noises. Variational approximations have provided results very close to exact inference

— posterior distribution — in many applications.

In average, MCMC algorithms are slower compared to variational methods

while they are easier to implement. Also, there are convergence and exactness proofs

for MCMC while there is no guarantee that variational approximation gives a good

result. Finally, a combination of both is possible where the proposal distribution

in MCMC is guided by variational approximation which gives a strong combination

[35, 105, 26, 18, 20, 19, 29]

2.2 Statistical relational learning

Traditional machine learning algorithms either address uncertainty — sta-

tistical learning approaches such as support vector machines — or relational data

20

— logic-based approaches such as inductive logic programming. Statistical relation

learning (SRL) [12, 40, 64] approaches try to address both uncertainty and relational

data.

Early efforts in the machine learning community were based on propositional-

izing — transferring relational data into a flat format [71, 67, 70]. Such an approach

is ad-hoc and inefficient since transferring relational data to flat data might explode

exponentially and some complex relations may be lost. Modern SRL approaches can

be divided into 3 categories: rule-based models, frame-based models, and Latent vari-

able models. Rule-based models use logic language — mostly first-order logic — for

representing knowledge and via probabilistic models try to infer or validate logic for-

mulas. Frame-based models are object-oriented models that use graphical models for

representing objects or entities and the relationships between them. Finally, latent

variable models assume random variables for each entity for learning the relations.

2.2.1 Rule-based models

Rule-based models use the language of logic to represent knowledge. An early

deterministic rule-based model is logic programming [50] which is a deductive method.

The syntax or language in logic programming is first-order logic and inference is based

on deducing some formulas given other formulas. Inductive logic programming (ILP)

[81] generalizes from instances in data to construct knowledge base models (a set

of logic formulas). While the early logic-based models are able to handle relational

data via logic formulas, they fail to perform in the presence of uncertainty due to the

21

rigidness of pure logic. Rule-based models are extended to SRL models by combining

logic-based methods with probabilistic representations such as Bayesian networks.

Bayesian logic programs ([40], chapter 10) combine logic programming and Bayesian

networks. Stochastic logic programs ([40], chapter 11) use a combination of logic

programs and stochastic grammar (a special case of Markov networks).

One of the successful rule-based relational learning approaches is Markov logic

networks (MLN) [90], which combine first-order logic — for representing knowledge

— and Markov networks — for probabilistic reasoning. MLN assigns a weight to

each first-order logic formula in a knowledge base which implies the likelihood of the

formula. Violating a formula in a knowledge base, a world will be less probable — not

impossible as is the case in logic programming. For example, consider the following

formulas in a knowledge base ([40], chapter 12):

∀x, Smoke(x)⇒ Cancer(x), (2.3)

∀x, y, Friend(x, y)⇒ (Smoke(x)⇔ Smoke(y)). (2.4)

Formula 2.3 means if person x smokes then person x has cancer and formula 2.4

implies friends have similar smoking habits. Using only logic representation, if only

one person smokes but does not have cancer, then (2.3) does not hold but in MLN

its likelihood decreases.

MLN constructs a Markov network using the formulas in the knowledge base

by defining a node for each predicate — such as Cancer or Smoke — in the knowledge

base and connecting nodes that share the same formulas. However, variables in the

22

Cancer(A)

Smokes(A)Friends(A,A)

Friends(B,A)

Smokes(B)

Friends(A,B)

Cancer(B)

Friends(B,B)

Ground Markov network obtained by applying the last two formulae
Figure 2.4: An example of Markov logic network (Picture from [40], chapter 12)

predicates are replaced by instances. Figure 2.4 represents a Markov network for two

persons A and B using formulas 2.3 and 2.4.

The probability distribution of an assignment to variables is computed from

P (x) =
1

Z
exp

(∑
i

wini(x)

)
(2.5)

where ni(x) is the number of times formula i holds given the assignment x and wi is

the weight of formula i.

2.2.2 Frame-based models

Frame-based models are object-oriented models that use graphical models for

representing objects or entities and the relationships between them. Many discrimi-

native frame-based algorithms are extensions to propositional machine learning algo-

rithms such as support vector machines. Some others are extensions to object-oriented

relational models such as the entity-relationship model.

23

Conditional random fields (CRF) [75] are undirected graphical models. CRF

is a discriminative model which means that the model concentrates on the discrimi-

nation task in classification. Let X denote the observed variables and Y denote the

hidden random variables that we wish to predict. Using Gibbs distribution 2.2 for

Markov random fields, the probability distribution over all variables is

P (X, Y) =
1

Z

∏
k

πk(Ck), (2.6)

where each Ck is a subset of X and Y variables and the partition function is Z =∑
X,Y

∏
k πk(Ck). In contrast, CRF is only concerned with predicting Y and uses

P (Y |X) =
1

Z

∏
k

πk(Ck), (2.7)

where Z =
∑

Y

∏
k πk(Ck). This makes computations much easier due to reducing

inference only over the variables Y .

In practice, the potential function is represented as a log-linear model over

features:

πk(Ck) = exp

(∑
j

θjkfjk(Ck)

)
(2.8)

where θjk are real-valued parameters and fjk is a feature function defined over the

data. Given this definition, we have an exponential family distribution with natural

parameters θ and sufficient statistics f . θ is often learned via maximum likelihood

and f is defined by the modeler. Note that if we have only one variable in set Y ,

then CRF reduces to logistic regression.

Relational Markov networks ([40], chapter 6) are similar to CRFs and are used

for collective classification. The specific character of relational Markov networks is

24

Professor
Popularity

Teaching-Ability

Course

Difficulty

Rating

Instructor

Registration
Course

Student

Grade

Satisfaction

Student
Intelligence

Ranking

Professor
Prof. Gump

Popularity

high

Teaching Ability
medium

Course
Phil142

Difficulty

low

Rating

high

Course
Phil101

Difficulty
low

Rating

high

Registration
#5639

Grade

A

Satisfaction

3

Registration
#5639

Grade
A

Satisfaction

3

Registration
#5639

Grade

A

Satisfaction

3

Student
John Doe

Intelligence

high

Performance

average

Student
Jane Doe

Intelligence

high

Ranking

average

(a) (b)

Figure 2.5: An example of a relational model, (a) Representation, (b) Some instances

of the relational model (Picture from [40], chapter 5)

that they use SQL queries for defining potential functions. Both CRF and RMN are

discriminative models.

Probabilistic relational models (PRM) [39] define a probability model based on

a relational database. A relational database consists of tables for different entities.

Each table includes a number of attributes associated with the entity. Tables are

related via the intrinsic relationships between entities. Figure 2.5-(a) represents a

relational database for a university course system. There are four types of entities:

professor, student, course, and registration. Each entity has some attributes as shown

in the picture. Each course is related to a professor as its instructor. Each registration

includes a course and its related student. Figure 2.5-(b) represents some instances in

this database.

PRM constructs a Bayesian network over a relational database. This is defined

25

Professor
Prof. Gump

Popularity
???

Teaching Ability

???

Course
Phil142

Difficulty
low

Rating

high

Course
Phil101

Difficulty

???

Rating
???

Registration
#5639

Grade
A

Satisfaction

3

Registration
#5639

Grade

A

Satisfaction

3

Registration
#5639

Grade

???

Satisfaction

???

Student
John Doe

Intelligence

high

Performance

average

Student
Jane Doe

Intelligence

???

Ranking

???

Popularity

Teaching-Ability

Difficulty

Rating Intelligence

Ranking

AVG

Grade

Satisfaction

AVG

(a) (b)

Figure 2.6: Probabilistic relational model structure, (a) Representation, (b) Structure

(Picture from [40], chapter 5)

at the attribute level. That is, each attribute affects some other attributes. Connected

attributes may be from the same table or different tables. Figure 2.6-(b) represents

a Bayesian network constructed over the example in Figure 2.5. Teaching-ability of

a professor affects his popularity and the satisfaction from a course — the first one is

internal while the second is external. Satisfaction influences the rating of the professor

for a course. Other relations can be interpreted similarly.

The parameterization of PRM is based on conditional probability distributions

(CPD) as shown in Figure 2.7. These CPDs are learned via maximum likelihood

estimation.

Relational dependency networks (RDN) [84] are bi-directional graphical mod-

els to represent relational data. In RDB, two entities can be parents of each other —

the bi-directional concept. However, the independence view of the graph is similar

26

Popularity

Teaching-Ability

Difficulty

Rating Intelligence

Ranking

Grade

Satisfaction

1.06.03.0
1.01.08.0
4.05.01.0
1.04.05.0

,
,
,
,
,

ll
hl
lh
hh

CBAID

Popularity

Teaching-Ability

Difficulty

Rating Intelligence

Ranking

AVG

Grade

Satisfaction

1.03.06.0
4.04.02.0
7.02.01.0

C
B
A

hmlavg

(a) (b)

Figure 2.7: Some examples of conditional probability distributions (Picture from [40],

chapter 5)

to undirected graphs ignoring the direction. Directions are only used for defining

conditional probability distributions. Therefore, the model does not represent a valid

joint distribution but using MCMC methods, it can give a sound joint distribution by

normalizing over samples. In this sense, it gives a Gibbs distribution having inconsis-

tent conditional distributions as potential function and Neville et al. [84] showed that

RDN has an equivalent relational Markov network. Factorie [79] is another frame-

based SRL model that uses factor graphs as representation and is a discriminative

model similar to conditional random fields.

2.2.3 Latent variable models

Latent variable models capture a relationship by assuming a latent variable

for each entity. Contrary to the previously-mentioned SRL models that modeled

27

relations via a log-linear function of some features, in latent variable models we do

not have to define features explicitly. Using latent variables we can model different

kinds of relationships such as real-valued or categorical easily.

In what follows, we present two latent variable models in the context of two

applications. The first application is collaborative filtering which is a real-valued

relation prediction problem. The second is text data modeling which is a categorical

relation learning problem.

2.2.3.1 Collaborative filtering

Collaborative filtering is used to suggest items of interest to users. Assume

that we have a number of users and items, and some users have rated some items

(e.g., based on a 1-to-5 scale). The main task is recommending appropriate items

to users based on their previous ratings. One natural approach, which is the goal of

many collaborative filtering methods, is the prediction of unknown ratings. The user

can then be given suggestions based on items with a high expected rating.

One of the most accurate and scalable collaborative filtering algorithms is

matrix factorization (MF), which is based on a latent factor model [69]. Singular

value decomposition (SVD) and related methods using gradient descent are often

used in collaborative filtering [15].

In a collaborative filtering (CF) problem, there are N users and M items.

Users have provided a number of explicit ratings for items; rui is the rating of user

u for item i. The goal of collaborative filtering approaches is predicting unknown

28

ratings given known ratings. There are two popular error functions; mean absolute

error (MAE) and root mean squared error (RMSE). Since the absolute value function

is not differentiable at all points, RMSE is more desirable as an objective function.

Therefore, the objective function of a model-based collaborative filtering approach

can be defined as follows:

min
∑
u

∑
i

wui(rui − r̂ui)2 (2.9)

where r̂ui is the prediction of the model for the rating of user u for item i. wui is 1 if

the rating rui is known and 0 otherwise.

Latent variable models such as SVD transfer users and items to a low-dimensional

space to uncover the latent pattern of ratings. To predict a rating via MF, the fol-

lowing formula can be used [69]:

r̂ui = µ+ bu + bi + puq
′
i (2.10)

where µ is the total average of all ratings, bu is the deviation of user u from average

and bi is the deviation of item i from average. bu and bi model the fact that some users

tend to rate higher and some items are more likable. pu and qi are the user-factor

vector and item-factor vector respectively in a D-dimensional space. puq
′
i is the dot

product between pu and qi where a higher value means user u likes item i more than

average.

Since in collaborative filtering problems the data matrix is highly sparse, clas-

sical SVD approaches have not been successful [69]. Therefore, a gradient descent

approach is suggested to solve this problem by minimizing the following objective

29

function [100, 88]:

min
p,q,b

∑
u,i

wui[(rui − µ− bu − bi − puq′i)2 + λ(‖pu‖2 + ‖qi‖2 + b2
u + b2

i)] (2.11)

where the λ(‖pu‖2+‖qi‖2+b2
u+b2

i) term avoids overfitting by restricting the magnitude

of parameters. λ is an algorithmic parameter. Using formula (2.11), the gradient

descent updates for each known rating rui can be as follows [69]:

bu ← bu + γ(eui − λbu)
bi ← bi + γ(eui − λbi)
pu ← pu + γ(euiqi − λpu)
qi ← qi + γ(euipu − λqi)

where eui is the current error for rating rui and γ is the step size of the algorithm.

Therefore, in each iteration of the gradient descent algorithm, there are T (number

of known ratings) steps to go through all ratings in the training dataset.

2.2.3.2 Learning co-occurrence data

Co-occurrence data can be represented as a matrix where each element of the

matrix — a dyad — depicts the number of times the entity represented by the row

and the one represented by the column have co-occurred. It is possible that rows and

columns represent the same or different types of objects. We explain the case of the

co-occurrence between objects from different types, and then generalizing to the case

of same types is straightforward. Most of the related work on applying latent variable

models to co-occurrence data (e.g. latent Dirichlet allocation — LDA) is applicable

to the different types case.

In co-occurrence data, each dyad can be divided into a number of separable

entities — tokens. Each token is associated with two entities from two different

30

types (an entity i and an entity k). Therefore, for each token, the distribution over

entities is categorical — multinomial. Representing each token with index u, a token

is represented as (iu, ku) where u = 1, ..., N (N is the total number of tokens), iu =

1, ..., NI (NI is the total number of entities of the first type), and ku = 1, ..., NK

(NK is the total number of entities of the second type). vik represents the number

of tokens with value (i, k). Text data is an example of co-occurrence data, where a

token (iu, ku) represents the word iu that occurred in document ku. That is, for a

token u in a document k, there is a multinomial distribution over words indexed by

i. In the case of similar entities, each dyad addresses the co-occurrence between the

entities from the same type.

A common approach in learning from co-occurrence data is latent variable

models. In these models, a latent space is assumed to be responsible for generating

the data and the learning task is recovering the latent variables.

The first proposed latent variable model for the co-occurrence data was latent

semantic indexing/analysis (LSI) [30]. LSI uses singular value decomposition (SVD)

to learn the latent variable space. Although SVD was the first latent variable approach

to model the co-occurrence data, it can be applied to any dyadic data with any format.

SVD has been used to model preference data [7] and a simpler version of SVD (matrix

factorization) has also been used for the same problem [69].

Let Xi (a 1 × D vector) represent the latent variable of entity i and Yk (a

1 × D vector) represent the latent variable of entity k in a D-dimensional space.

In LSI, the value of a dyad is estimated from the weighted dot product function:

31

vik ' XiWY T
k where W is a D ×D matrix of weights. For learning the latent space,

LSI minimizes the squared error function:
∑

ik(vik −XiWY T
k)2. The main intuition

behind LSI is that the values vik are noisy and using SVD, we can retrieve more

robust representatives for entities via a low rank matrix.

Probabilistic latent semantic indexing (pLSI) [49] moves towards a probabilis-

tic extension of LSI by constraining the latent variables and employing the maximum

likelihood approach. In pLSI, instead of constructing a model based on a dyad value

vik, the joint probability of a token (i, k) occurring is learned: P (i, k). Using the same

notation for latent variables, we have:

P (i, k) =
∑
d

P (z)P (i|z)P (k|z) = XiWY T
k

where the zth dimension of Xi is interpreted as P (i|z), the zth dimension of Yk is

interpreted as P (z|d), and the diagonal elements of W are interpreted as P (z) and

non-diagonal elements are zero. Given that we have N tokens, the probability of the

whole dataset follows a multinomial distribution:

D ∼Multinomial({P (i, k)}i,k, N).

Then the likelihood function is:

L =
∑
ik

vik logP (i, k)

which is to be maximized subject to the constraints:

∑
i

Xiz =
∑
i

P (i|z) = 1

32

∑
k

Ykz =
∑
k

P (k|z) = 1

∑
z

Wzz =
∑
z

P (z) = 1.

In pLSI, the expectation maximization algorithm is used to maximize the

likelihood function. pLSI is very prone to overfitting even though a tempered heuristic

is used in the learning algorithm. Another problem in pLSI is learning the parameters

for new documents. As we learn the probability of document k given dimension z,

learning the parameters for a new document changes the probability distribution

for the training documents. To address these problems, Blei et al. [11] proposed a

generative probabilistic algorithm — latent Dirichlet allocation (LDA). In LDA, two

types of entities are considered differently. Compared to pLSI which models a token

by P (i, k), LDA models it by P (i|k). More accurately, in LDA, we assume that each

token belongs to an entity k of the second type and the generative model chooses an

entity i from NI entities of the first type. In the text data example, for each document

k, there are Nk tokens and for each token, a word i is chosen.

Using the same notation for latent variables, we have:

P (i|k) =
∑
z

P (i|z)P (z|k) = XiY
T
k (2.12)

where the zth dimension of Xi is interpreted as P (i|z) while the zth dimension of Yk is

interpreted as P (z|k). Note that the weight matrix W is the identity matrix in this

model. LDA, also known as a topic model, is interpreted based on D topics. For each

token in entity k, a topic z is chosen from a multinomial distribution with probabilities

P (z|k) and then given the topic z, an entity i is chosen from a multinomial distribution

33

with P (i|z). The concept topic can be interpreted as an auxiliary variable. However,

the final probability for a token comes from (2.12), since the topic of the token is an

unobserved hidden variable.

The main generative model is usually explained via the language model which

generates the text content in a collection of documents. In this model, there is a

predefined number D of topics. The language model of each document is defined by

the distribution of the document over the D topics: Ykz = P (z|k) where z is the

topic and k is the document. Y is generated from a symmetric Dirichlet distribution

with parameter α (P (Y |α) = Γ(Kα)
Γ(α)K

∏
k θ

α−1
k). Document k consists of Nk tokens (an

instance of a word), and each token comes from a specific topic z. Given that a

topic z has generated a token, the probability that word i occurs for that token is

Xiz = P (i|z). X is generated from a symmetric Dirichlet distribution with parameter

β. In summary, the process of generating documents of a corpus is as follows:

1. For each topic z:

(a) Choose word distribution X.z ∼ Dir(β)

2. For each document k:

(a) Choose topic distribution Yk. ∼ Dir(α)

(b) For each token u

i. Choose a topic z ∼Multinomial(Yk.)

ii. Choose a word i ∼Multinomial(X.z)

Figure 2.8 shows the graphical model for LDA using the plate notation. The

34

α Y

z

i
β X

Nk

NK
D

Figure 2.8: The graphical model of the latent Dirichlet allocation model

number in the lower-right corner of each plate depicts the frequency of the contents

of that plate. In the corpus, there are NK documents and for each document a

distribution over topics (Y) is generated. There are D topics and for each topic a

distribution over words (X) is generated. Finally, there are Nk tokens in document

k and for each token a topic d and a word i is chosen.

Due to the intractability of inference in LDA, Blei et al. [11] used variational

inference for doing approximate inference. Gibbs sampling, a Markov chain Monte

Carlo algorithm, is another strategy to infer the parameters in LDA [44].

Both pLSI and LDA extend LSI towards a probabilistic model on the same

direction by defining latent variables X and Y as probability parameters. Therefore,

the (weighted) dot product can be interpreted as the probability model on dyads.

However, constraining latent variables to create a probabilistic model is not the only

way to extend LSI. It is possible to allow latent variables to be free variables and

translate the latent space to a probability model via other mathematical manipula-

tions such as logistic function, as will be discussed in the next section. This way, the

35

model can fit the data better due to the flexibility of latent variables.

Another drawback in pLSI and LDA is ignoring the biases in occurrence of

different entities. In the text data example, some words tend to occur more often.

Both models use the parameter P (i|d) (the probability of word i given topic d) for

explaining word distributions. Therefore, the words that occur more often dominate

the space. To address this problem, LSI and pLSI use normalized frequencies such

as tf-idf. However, due to the learning mechanism of LDA, such an approach is not

feasible and LDA alone is not very capable in retrieval [104]. As a result, it will be

helpful to model the biases of entities explicitly. Such an approach has been used

successfully in the collaborative filtering context [69] to model the biases of items

and users. In this model, a dot product of latent variables of a user and an item

represents the bias of the user for that specific item and each user and each item have

their own specific biases. Since in pLSI and LDA, the dot product itself is interpreted

as a probability, it is hard to incorporate the bias in these models. The inclusion of

biasness is possible in LLA, as will be explained.

Another relevant work is sufficient dimensionality reduction (SDR) [43], which

is a model for performing dimensionality reduction in co-occurrence data. SDR is an

information theoretic approach to model co-occurrence data rather than a probabilis-

tic model. Let P̃ (i, k) be the empirical probability distribution over tokens. It is

assumed for simplicity that marginal probabilities of the probability model and the

empirical probability are equal: P (i) = P̃ (i) and P (k) = P̃ (k). Using a maximum

entropy approach, latent variables X provide maximal information about entity k

36

when they satisfy the following constraint:

∑
i

XiP (i|k) =
∑
i

XiP̃ (i|k). (2.13)

More precisely, the expectation of latent variables for the entities of the first type with

regard to the probability model and the empirical probability should be the same. A

similar constraint is defined for latent variables Y :

∑
k

YkP (k|i) =
∑
k

YkP̃ (k|i). (2.14)

Given the equality of marginal probabilities and constraints (2.13) and (2.14),

there is a unique maximum entropy distribution for the probability model:

P (i, k) =
1

Z
exp(XiY

T
k + bi + bk), (2.15)

where Z =
∑

ik exp(XiY
T
k + bi + bk), and bi and bk can be interpreted as biases

for entities i and k. Finally, the latent variables can be found via minimizing the

Kullback-Leibler divergence between empirical and model probabilities:

P ∗ = arg min
P∈PΘ

DKL[P̃ |P]

where PΘ is the set of probabilities that satisfy the marginal and expectation equality

constraints. Note that in SDR, bias parameters are not learned and are estimated

directly from the marginal empirical distributions.

Co-occurrence data embedding (CODE) [42] is a similar approach to SDR

with the main difference of using squared Euclidean distance instead of dot product

to capture the relationship between latent variables. CODE is mainly designed to

37

visualize co-occurrence data. In CODE, two approaches are used for fitting the model

to the data. In the first approach, the joint distribution is modeled via:

P (i, k) =
1

Z
P̃ (i)P̃ (k) exp(−δ2

ik), (2.16)

where δ2
ik = (Xi − Yk)(Xi − Yk)

T is the squared Euclidean distance between latent

variables of i and k and the normalizing factor is Z =
∑

ik P̃ (i)P̃ (k) exp(−δ2
ik). Note

the similarity between CODE and SDR; replacing the dot product with the negative

squared Euclidean distance, bi = log P̃ (i) and bk = log P̃ (k), (2.15) is the same as

(2.16).

The second approach in CODE is modeling the conditional probability instead

of the joint probability:

P (i|k) =
1

Zk
P̃ (i) exp(−δ2

ik), (2.17)

where Z =
∑

i P̃ (i) exp(−δ2
ik), which is useful when the empirical conditional proba-

bility is available.

To learn the model parameters of CODE, minimization of the Kullback-Leibler

divergence between empirical and model probabilities is used. The main intuition be-

hind CODE is that if two points are related then they should be very close in the

Euclidean space. Therefore, the result of embedding can be presented as a visualiza-

tion of entities. Although the embedding is based on the relationship between entities

from different types, we expect the entities from the same type to be close due to the

transitivity of distance.

Latent logistic allocation (LLA) [61], discussed in Section 3.3, is very similar

to CODE and SDR especially for the basic probability model. The main difference

38

is extending CODE and SDR to a fully generative probabilistic model for learning

co-occurrence data. Instead of the maximum likelihood approach which is very vulner-

able to overfitting, LLA uses a Bayesian approach which has some classic advantages

such as robustness. More specifically, SDR is a mere dimensionality reduction tech-

nique and CODE is a mere visualization approach while LLA is a Bayesian generative

probabilistic model and as a result can be compared to other probabilistic models such

as LDA. In this sense, the relationship between SDR/CODE and LLA is very similar

to the relationship between LSI/pLSI and LDA. The LLA algorithm uses a Bayesian

approach to learn entity occurrence bias, whereas bias parameters were estimated di-

rectly from marginal empirical probabilities in SDR and CODE. Furthermore, CODE

and SDR are used for co-occurrence data in its all forms; however, LLA provides four

different categories for co-occurrence data and present a specific model for each.

Finally, it is worth mentioning that although some approaches such a unigrams

or mixture of unigrams [85] are latent variable models to learn co-occurrence data,

they do not embed both types of entities in the space and therefore, are fundamentally

different from models studied here.

39

CHAPTER 3
SINGLE-RELATIONAL LEARNING

In this chapter, the work related to single-relational problems is presented. All

the completed work is considered as statistical relational learning via latent variable

models. As is explained in Chapter 4, we present a multi-relational latent variable

model — latent feature networks (LFN) — in this dissertation. LFN has a component

for each relation. Given this picture, the presented models in this chapter are realized

as a single component in LFN.

In Section 3.1, we present collaborative filtering via Euclidean embedding. In

this model, a squared Euclidean distance kernel over latent variables is used to capture

the relations between data. We show that this model can be used for visualization and

fast recommendation retrieval. In Section 3.2 a co-clustering algorithm for a scalable

online recommendation is presented. Section 3.3 is concerned with modeling and

learning co-occurrence data for which it outperforms the-state-of-the-art in modeling,

learning and visualization. In Section 3.4, we present an application of latent variable

models in an education problem.

3.1 Collaborative Filtering

In [62], we proposed a novel model for collaborative filtering. The most widely

used latent variable model for collaborative filtering is matrix factorization which uses

a dot product kernel over random variables. In this work, we use Euclidean distance

as a substitute for dot product. In this method, users and items are embedded in a

40

unified Euclidean space where the distance between a user and an item is inversely

proportional to the rating. This model is comparable to matrix factorization in

terms of both scalability and accuracy while providing several advantages. First,

the result of Euclidean embedding is more intuitively understandable for humans,

allowing useful visualizations. Second, the neighborhood structure of the unified

Euclidean space allows very efficient recommendation queries. Finally, the method

facilitates online implementation requirements such as mapping new users or items

in an existing model.

Living in the information age, people use a large variety of information. Un-

fortunately, the volume of information is so huge that no one can use all of it, even

in a very specialized area. For example, there are tons of movies that you have not

seen, but how can you decide which one is best to watch in your limited time? There-

fore, customization can play an important role. The idea of a recommender system,

an automatic system that can recommend an appropriate item, has emerged in re-

sponse to this problem. There are two main approaches in recommendation systems:

content-based and collaborative filtering [17]. In a content-based recommendation

system, items are recommended based on a user profile and product information.

Collaborative filtering uses similarity to recommend items that were liked by similar

users.

Our primary approach is based on Euclidean embedding. One popular exam-

ple of Euclidean embedding is multidimensional scaling (MDS). MDS is a branch of

multivariate statistical analysis and often used to give a comprehensible visual rep-

41

resentation. MDS has been applied in a variety of disciplines including psychology,

marketing, and machine learning [13, 25]. A narrow definition of multidimensional

scaling is the search for a low dimensional space, usually Euclidean, in which points

in the space represent the objects, one point representing one object, and such that

the distances between the points in the space match, as well as possible, the original

dissimilarities [25].

In the data mining and machine learning area, Euclidean embedding has been

frequently used as a visualization approach [6], a dimensionality reduction technique

[34], and in unsupervised learning [31]. Euclidean embedding is rarely used as a core

of a supervised learning approach. For example, Trosset et al. [101] used MDS in

the first step of a two-step data mining approach where the second step is training

a classifier on the result of the MDS model. The MDS step can be considered as an

unsupervised learning approach. In this paper, we propose a Euclidean embedding

method that can be seen as a supervised version of MDS and uses the modeling results

directly in prediction.

The traditional solution approaches for MDS often include eigenvector analysis

methods for the matrix of dissimilarity between objects, resulting in a complexity of

O(N3) where N is the number of objects [80]. Besides the cubic complexity, the

computation must be repeated if data is slightly changed [80]. As a result, iterative

optimization methods have been developed [21]. Numerical optimization techniques

like gradient descent have been widely used in MDS [72].

To the best of our knowledge, Euclidean embedding has not been used as a

42

direct optimization method to implement collaborative filtering. There is a literature

about visualization for recommender systems. In [51], first a collaborative filtering

algorithm such as classical SVD is run and then some recommendations will be pro-

posed to a user in a visual manner. Note that items or users are not mapped on a

space. Users are able to use some meta data such as genre or language to filter their

result. In other work such as [33], recommended items are visualized via MDS. How-

ever, users are not mapped at the same time. Only items are scaled using classical

MDS where dissimilarities between them will be computed via their correlation.

In contrast to the literature on collaborative filtering visualization, our method

embeds both users and items in a unified space. This will facilitate visualization of a

target user and items he likes where distance is strongly correlated with his personal

preferences.

3.1.1 Model

In this section we present collaborative filtering via Euclidean embedding.

Assume that all items and users are embedded in a unified Euclidean space. Let the

location show the characteristics of each person. This is a legitimate assumption since

one of the early psychological applications of MDS is related to embedding people on

a low-dimensional space based on their preferences [25]. A similar assumption can

be set for items where the location of each movie reflects its characteristics, such as

genre. Note that this is simply the meaning of latent factor model in the framework of

Euclidean embedding. Therefore, if an item is close to the user in the unified space,

43

like

dislike

Figure 3.1: Users (circles) and items (triangles) are embedded in a unified Euclidean

space

its characteristics are attractive for the user. As a result, there will be a negative

correlation between the distance and the likability. Figure 3.1 represents this idea.

In the Euclidean embedding framework, equation (2.10) can be re-written as

r̂ui = µ+ bu + bi − (xu − yi)(xu − yi)′ (3.1)

where xu and yi are point vectors of user u and item i in a D-dimensional Euclidean

space and (xu − yi)(xu − yi)
′ is the squared Euclidean distance. The reason we

used squared Euclidean distance instead of Euclidean distance is that the former is

computationally cheaper while the accuracy of the method is empirically the same.

The main difference between the matrix factorization model and the Euclidean

embedding model lies in the latent factor space characteristics. In the space of Eu-

clidean embedding, the interpretation of user points and item points are the same,

since the maximum rating can be reached when they are at the same point. However

44

in matrix factorization the user and item space are not unified. As an example let a

user be at p = (.5, .5) in the matrix factorization model and x = (.5, .5) in the Eu-

clidean embedding model. The most similar item to this user in Euclidean embedding

is located at y = (.5, .5). However for matrix factorization there is no ideal solution

and q = (.5, .5) is worse than, for example, q = (1, 1).

Similar to matrix factorization, the goal of the Euclidean embedding model is

embedding users and movies in a low-dimensional Euclidean space based on the known

ratings and then predict the unknown ratings based on the trained model. Therefore,

Euclidean embedding is a supervised learning approach in which the training phase

includes finding the location of each item and user to minimize a loss function. Mod-

ifying equation (2.11) to Euclidean embedding, we have:

minx,y,b
∑

u,iwui[(rui − µ− bu − bi + (xu − yi)(xu − yi)′)2+

λ(‖xu − yi‖2 + b2
u + b2

i)]. (3.2)

We control the magnitude of the (xu − yi) instead of individual points since the

distance does not depend on the absolute value of the points but the relative position

of xu to yi.

This optimization problem is different from typical MDS problems in several

respects. First, here we are embedding two different kinds of objects (items and

users) in a low-dimensional space, while in standard MDS there is only one object

type. Second, the rating matrices are always extremely sparse, which makes the

45

matrix operations less trustable. Finally, in addition to coordinates of points, the b

parameters are also being optimized, while in MDS, only the object locations are of

interest. Therefore, conventional MDS techniques cannot be applied directly in our

Euclidean embedding problem.

Using gradient descent to minimize the Euclidean embedding objective func-

tion (equation 3.2), updates in each step can be defined as

bu ← bu + γ(eui − λbu)
bi ← bi + γ(eui − λbi)
xu ← xu − γ(xu − yi)(eui + λ)
yu ← yu + γ(xu − yi)(eui + λ)

where γ is the step size.

3.1.1.1 Time complexity

For comparing the time complexity of Euclidean embedding and matrix fac-

torization models, three tasks are important:

1. Training

2. Prediction

For training, if we pre-compute the (x − y) terms in each step, the other

operations will be almost the same as matrix factorization. Therefore, Euclidean em-

bedding needs D (the dimension of space) more operations than matrix factorization.

The time complexity of both methods for a step of an iteration is O(D). The total

number of iterations to converge depends on the algorithmic parameters.

For the prediction of a rating, with a similar approach as the training task, we

need only D more operations and the time complexity of prediction for both models

is O(D). However, we can decompose (x− y)(x− y)′ to xx′+ yy′− 2xy′. xx′ and yy′

46

can be pre-computed when the system is off-line and then the number of operations

for both models in the online phase will be exactly the same.

3.1.1.2 Visualization

Another advantage of Euclidean embedding is its representation. However, to

represent items to users, Euclidean embedding must be implemented only using 2 or

3 dimensions. This can deteriorate the accuracy of recommendations. To avoid this

problem, we use the following strategy:

1. Implement CF via Euclidean embedding in a high-dimensional space;

2. Select the top k items for an active user;

3. Embed user, selected items, and some favorite items in a 2-dimensional space

via classic MDS, using distances from the high-dimensional space in step 1.

Note that in the third step, MDS can be run very fast because there are only a few

objects to embed, all distances are known (from the high-dimensional space solution),

and all distances satisfy the triangle inequality (they are real distances in the high-

dimensional space).

While classic MDS has been used to visualize items in a CF setting, existing

methods use correlation between items as a similarity measure. Using this approach

it is not possible to embed a user in the same space because correlation is not defined

between an item and a user. Therefore, the picture only shows what items are similar

to each other, but it does not indicate how much a user might like each movie. Also

sparseness may cause the distance based on correlation to be unknown, and correlation

47

Titanic

The dark

Knight

Figure 3.2: Representing close items (triangles) to a user (circle) besides the movies

he has already liked (bold triangles) to assist him in selection

does not satisfy the triangle inequality which makes implementing MDS harder.

Using this low-dimensional unified user-item space, we can represent items to

users via a graphical interface such as Figure 3.2. Highly-rated items can be presented

to give an idea about movies. For example a user might be in a mood to watch a

romance movie so he can check the movies near to his favorite romance movies.

3.1.1.3 Fast recommendation generation

Although both matrix factorization and Euclidean embedding algorithms are

fast in predicting a rating, the main task of a recommendation system is finding

desirable items for a query user. This problem is rarely addressed in the literature.

Das et al. [27] proposed some strategies to select candidate items in the context of a

news recommendation system in which news items are selected based on a content-

based criteria. Also, they proposed to select items that are chosen by a cluster of

users. However, these approaches are not applicable to our problem since we are not

48

using any extra information about items, and we choose to use highly accurate latent

factor models’ features in the selection task.

A key advantage of Euclidean embedding over matrix factorization is that

the nature of the mapped space allows candidate retrieval via neighborhood search.

Consider an example with user v as the query user, and D = 2. Also let pv = [.5 .5]′

in the matrix factorization model and xv = [.5 .5]′ in the Euclidean embedding model.

In the Euclidean embedding model, the smaller the distance, the more desirable an

item will be. Therefore, we need only search for movies near the point [.5 .5]′. On

the other hand, for the matrix factorization model, the larger the value of the term

.5(qi1) + .5(qi2) (where qi1 and qi2 are movie coordinates), the more desirable the item

will be. Therefore, a large area of space may be possible. Figure 3.3 illustrates the

difference between matrix factorization and Euclidean embedding search space for a

query user.

Therefore, using Euclidean embedding, the top k closest items to an active user

can be found via K-nearest neighbors search. Then, ratings for these top k selected

items can be estimated and the ranked list can be presented to the user. There is a

highly developed literature on spatial indexing and searching for nearest neighbors,

using structures such as R-trees [45] which can be used to find recommendation

candidates efficiently.

49

a) EE model b) MF model

Figure 3.3: The search space for a query user

3.1.1.4 Incorporating new users and items

One drawback of model-based approaches is that if a new user or item arrives,

it is hard to incorporate them into the model. However, in practice there are always

new users and items which must be considered in the recommendation system. This

problem has been addressed as incremental collaborative filtering in the literature.

George and Merugu [38] used co-clustering as a very scalable incremental collaborative

filtering approach. They showed the result of incremental co-clustering is comparable

to incremental SVD while co-clustering is more scalable. However, they did not

address the problem of incorporating new users and items in their model and only

updated relevant parameters for old users and items. Sarwar et al. [95] and Brand

[15] proposed using singular value decomposition as an online collaborative filtering

strategy. In this work, the original version of SVD is optimized using eigenvalue-

50

vector operations. Furthermore, since it is hard to apply classical SVD on sparse

data, Sarwar et al. and Brand used imputation to fill in unknown ratings which

results in very poor accuracy. Then they used algebraic manipulation to map new

users/items in the existing space. However, their approach is not applicable to the

MF algorithms which use gradient descent since the user and item factor vectors are

not orthogonal.

Generally, for a new user or item, there are D + 1 unknown values (D for

the vector p or q and one for the scalar b). So if there are K ratings for the new

object, then we have a (D + 1) × K system of equations (for Euclidean embedding

these equations are non-linear). To have a unique estimation, at least D + 1 ratings

are required. However, with fewer than D + 1 ratings, it is still possible to have an

estimation via a ridge regression approach where the accuracy might compensate.

The values used for dimension in the literature are always very high (more than 50

factors). For new items, this number of ratings can be gained easily since the number

of users usually is more than the number of items. However, gathering this number

of ratings might be very tedious for a new user.

In practice many users tend to rate favorite movies first. Also, a recommender

system may employ an active learning strategy by asking new users to provide their

favorite items. This way, since we know the point vector of the items in the space,

and it is very probable that the new user is very close to her favorite items in the

Euclidean embedding space, we can estimate the user vector by

xu =

∑
j yj

n
(3.3)

51

where j indexes the items that the new user u has selected as her favorites and n is

the number of selected items.

In the matrix factorization model, knowing the favorite items for a new user

may not be as helpful as in Euclidean embedding, since closeness is not related to

likability. However, we can argue that the items similar to the favorites are probably

interesting as well. As a result, a similar function to equation (3.3) can be used in

the MF model. We address the power of both methods in the next section.

3.1.2 Experimental results

In this section, we present the results of experiments performed to evaluate

the effectiveness of the presented methods. All of the experiments are implemented

via MATLAB on a 3.2 GHz PC with 4 GB RAM.

In these experiments, two datasets were used. The first dataset is the popular

Netflix dataset which consists of 17770 movies, around 480,000 users, and around

100,000,000 ratings, which we only used for comparing accuracy (RMSE). We set

step size γ = .005, dimension D = 50, and the regularization parameter λ = .005 for

Euclidean embedding and λ = .01 for matrix factorization (for MF we used the values

from literature which gives the best result). The RMSE on the probe dataset for MF

is .9097 (after 23 iterations) and for EE is .9124 (after 27 iterations). The results

are similar despite the fact that fine-tuning was not performed on the Euclidean

embedding model.

52

For exploring the ideas presented in this paper, we used the Movielens dataset1

consisting of 100,000 ratings (1-5 scale) by 943 users on 1682 movies. We employed a 5-

fold cross-validation strategy, and all of the values presented in this section (including

time, accuracy, etc.) are the average values of the five folds. We set step size γ = .005

and dimension D = 50 (unless otherwise is noted), the regularization parameter

λ = .03 for Euclidean embedding and λ = .04 for matrix factorization. As a stopping

criteria for the gradient descent algorithm, we used a tuning set with a size of 5% of

the whole training dataset.

Learning curve: Figure 3.4 shows the values of RMSE in the test dataset

as the gradient descent algorithm proceeds. Note that the shapes of these curves are

very similar. The only difference is that MF is more prone to overfitting; as it passes

the optimal point, the error increases faster.

MF EE
Dimension 5 25 50 5 25 50

RMSE 0.9175 0.9107 0.9097 0.9157 0.9104 0.9086
Iteration 105.6 95.0 96.6 93.2 100.4 98.2

Time (sec) 0.4810 0.5221 0.6068 0.4811 0.5226 0.6074

Table 3.1: RMSE, average number of iterations, and average time per iteration for

MF and EE in 5, 25, and 50 dimensions

Dimension, accuracy, time: Table 3.1 shows the result of implementing

1http://www.grouplens.org/data/

53

a) EE

b) MF

Figure 3.4: Test RMSE of EE (a) and MF (b) in each iteration of the gradient descent

algorithm for five different folds

54

EE 50

EE 25

EE 5

MF 50

MF 25

MF 5

Figure 3.5: Precision/recall curve for different dimension size

EE and MF in 5, 25, and 50 dimensions. Again, both methods give similar results

in the sense that increasing the dimension adds little to time requirements, and the

accuracy gain from larger dimensionality is small beyond 25-50 dimensions.

Besides RMSE, another set of measurements that are popular in retrieval prob-

lems is precision and recall. Since the main goal of recommender systems is suggesting

some items of interest, it is important to measure what percent of recommendations

are desirable (precision) and what percent of interesting items are retrieved (recall).

Here, ratings of 4 and 5 are considered as desirable. Figure 3.5 shows the precision

and recall curve for different dimensions and different methods. The values are the

precision and recall for the top-k recommendation scenario for different values of k.

As k increases, recall will increase while precision decreases. Again, it seems the

55

overall accuracy of both EE and MF are not very sensitive to the size of dimension.

In general, EE performs better than MF.

Visualization: Figure 3.6 shows user visualizations constructed in the follow-

ing manner. For a typical user, the top 50 movies were selected based on Euclidean

embedding with D = 50 dimensions. Then, the active user, the top selected items

whose ratings were known in the test dataset, and items which were rated as 5 by the

active user in the training dataset were embedded in a 2-dimensional space. As a dis-

tance we used the Euclidean distance from the primary high-dimensional space. For

the sake of comparison, we scaled the same items via MDS using 1−correlation as the

distance. Note that in the comparison method, the active user cannot be embedded.

In visualization based on Euclidean embedding, movies that are closer to the active

user are more probable to be liked. However, using classic MDS, the picture is harder

to interpret since movies can only be compared to each other. For example, disliked

movies “Junior,” “IQ,” and “A Pyromaniac’s Love Story” are close to each other and

far away from the active user in the first picture, but scattered in the second. The

main reason is that, in the first picture items are embedded based on the taste of the

active user while in the second picture it is based on the taste of all users.

Generating fast recommendations: As mentioned earlier, finding new

recommendations for a user in the EE problem can be treated as a k-nearest neighbors

search problem in a Euclidean space. Table 3.2 summarizes the result of top-10

recommendation to all users. In MF and EE we simply used exhaustive search to find

best recommendations. For EE-KNN, first 100 movies for each user were selected as

56

a) Euclidean embedding

B) Classical MDS using correlation as a similarity measurement

Figure 3.6: Visualization of movies using Euclidean embedding and classic MDS

57

candidates using a brute search K-nearest neighbor search algorithm. Also we found

it useful to filter out movies with parameter bi less than the average of parameter

bi for all items. Then ratings were estimated for all candidates and the top 10 were

selected.

In these experiments we used dimension D = 50. Note that since we used

exhaustive search, the time complexity is a linear function of the number of movies

for each user.

Prec. Recall Time (Sec)
MF 0.9065 0.0521 18.2455
EE 0.9063 0.0525 19.5189

EE-KNN 0.9012 0.0423 0.5396

Table 3.2: Precision and recall for simple MF, EE, and EE with candidate generation

using KNN-search (D = 50 for all runs)

As Table 3.2 shows, the search time can be decreased drastically using KNN-

search, while the accuracy is competitive.

New users: As discussed in earlier, if we ask a new user to provide a list of

favorite movies, we could quickly map the user in the existing space. To simulate this

setting, we selected 224 of the 943 users in the Movielens dataset, and 3 movies with

ratings of 5 for each user were randomly selected to simulate the list of favorite movies.

Then the space was learned via the ratings of the rest of the users. Afterwards, we

estimated the point vector of a user by simple averaging for both EE and MF. The

58

 EEa
EEp
MFa

Figure 3.7: Precision and recall for EEa and MFa

result is shown in Figure 3.7. MFa and EEa (a for mapping points via averaging)

implement averaging for new users. EEp represents the precision/recall values for the

regular settings when users are not new to the system and we included it for the sake

of comparison.

As Figure 3.7 shows, EEa performs extremely well. Especially its top-5 rec-

ommendation precision (on the high-precision end of the plot) is remarkable. When

retrieving a small number of recommendations, the precision of Euclidean embedding

is much larger than MF, while the recall is about the same.

3.1.3 Conclusion

In this work, we proposed a novel collaborative filtering algorithm based on

multidimensional scaling, a latent variable model. We showed that CF via Euclidean

59

embedding is comparable to one of the most accurate MF-based algorithm in both

accuracy and scalability, while it provides some advantages. First, using Euclidean

embedding, finding recommendations is equivalent to a k-nearest neighbor search in a

metric space which can be performed very fast. Second, using the fact that closeness

in the transformed space corresponds to higher ratings, we proposed a very simple

and fast approach to incorporate new users by asking them to provide their favorite

items.

3.2 Incremental Collaborative Filtering

In this work we proposed an online algorithm for collaborative filtering[59]

using the algorithm we presented in [58]. Most collaborative filtering algorithms are

accurate but also computationally expensive, and so are best in static off-line set-

tings. It is desirable to include the new data in a collaborative filtering model in

an online manner, requiring a model that can be incrementally updated efficiently.

Incremental collaborative filtering via co-clustering has been shown to be a very scal-

able approach for this purpose. However, locally optimized co-clustering solutions via

current fast iterative algorithms give poor accuracy. Here, we present an evolution-

ary co-clustering method that improves predictive performance while maintaining the

scalability of co-clustering in the online phase.

A few published approaches have addressed the incremental CF problem. Sar-

war et al. [95] and Brand [15] proposed using singular value decomposition as an online

CF strategy. Das et al. [27] proposed a scalable online CF approach using MinHash

60

clustering, Probabilistic Latent Semantic Indexing (PLSI), and co-visitation counts.

However in this work, only binary ratings (such as implicit user feedback) were consid-

ered and therefore the proposed approaches are not applicable to prediction problems.

In K-nearest neighbors collaborative filtering approaches, similarity parameters such

as correlation can be updated incrementally during the online phase [87].

George and Merugu [38] used co-clustering as a scalable incremental CF ap-

proach for dynamic settings. They showed the performance of incremental co-clustering

is comparable to incremental SVD but much more scalable. For implementing co-

clustering they used the approach of Bregman co-clustering [5], a very fast iterative

local search which can result in very poor local optima.

In this paper we propose an incremental CF method that is both scalable and

accurate. We use an evolutionary co-clustering algorithm that finds better solutions

than Bregman co-clustering at the cost of offline training time, which is relatively

unimportant. Also, we revise the incremental algorithm suggested in [38] and intro-

duce an ensemble strategy to give better predictions.

In a collaborative filtering problem, there are U users and V items. Users

have provided a number of explicit ratings for items; rui is the rating of user u for

item i. There are two phases in a CF algorithm: an offline phase in which training

based on known ratings is performed, and an online phase in which unknown ratings

are estimated using the output of the offline phase. Most CF approaches use only

the data available offline to predict ratings. In incremental CF, the data available

during online phase is incorporated into future predictions, potentially improving the

61

predictive accuracy.

3.2.1 Baseline algorithm

The simplest way to predict a rating is the global average of all ratings. How-

ever, some users tend to rate higher and some items are more popular. Including user

bias and item bias in rating, we can predict user ratings by

r̂ui = (1− Snu,ω − Sni,ω)r̄ + Snu,ωr̄u + Sni,ωr̄i (3.4)

where r̄ is the global average, r̄u is the average of ratings by user u, r̄i is the average

of ratings for item i, nu is the number of ratings by user u, and ni is the number

of ratings for item i. Snu,ω and Sni,ω are the support function for user u and item i

which we define as

Sυ,ω =

{
υ
ω

if υ < ω,
1 otherwise.

(3.5)

If fewer ratings are available for a user or item, the support will be smaller. The

parameter ω determines the necessary support. Empirically we found three to be a

robust choice for ω. When the support of a user and an item is zero, then r̂ui = r̄;

when the support is one, r̂ui = r̄u + r̄i − r̄; and when the support of a user u is zero

and an item i is one, then r̂ui = r̄i, and vice versa for the reverse.

3.2.2 Incremental CF via co-clustering

Clustering refers to partitioning similar objects into groups [5]. Co-clustering

partitions two different kinds of objects simultaneously. If one views the clustering

problem as grouping rows of a matrix together, then co-clustering is the simultaneous

62

grouping of rows and columns.

In collaborative filtering via co-clustering as suggested in [38], each user u is

assigned to a user cluster (represented by ρ(u)) and each item i is assigned to an item

cluster (represented by γ(i)) and the prediction is as follows:

r̂ui = r̄kl + (r̄u − r̄k) + (r̄i − r̄l), (3.6)

where k = ρ(u) is the user cluster assigned to user u, l = γ(i) is the item cluster

assigned to item i, r̄kl is the average of ratings belonging to users in user cluster k

and items in item cluster l, r̄k is the average of ratings belonging to users in user

cluster k, and r̄l is the average of ratings belonging to items in item cluster l. The

term (r̄u− r̄k) tries to remove the bias of user u (some users tend to rate higher) and

(r̄i − r̄l) is the same for item i (some items are more likable).

George and Merugu [38] used a fast iterative heuristic proposed by Banerjee

et al. [5]. This algorithm has two phases: updating user clusters and updating item

clusters. When updating user clusters, we assume all co-cluster means are constant

and all items are assigned to item clusters, then we assign each user so that the sum

of squared errors is minimized. Item cluster updating follows the same approach.

Details can be found in [5, 38].

In the online phase, the prediction is as follows:

r̂ui =

r̄kl + (r̄u − r̄k) + (r̄i − r̄l) if (oldUser-oldItem)
r̄i if (newUser-oldItem)
r̄u if (oldUser-newItem)
r̄ if (newUser-newItem)

(3.7)

In [38], incremental training is achieved by using new ratings to update the

average parameters (r̄kl, r̄u, r̄k, r̄i, r̄l) in equation (3.6). However, new users or items

63

are not assigned to clusters during the online phase.

3.2.3 Model

As our experimental results will show, incremental collaborative filtering via

co-clustering [38] discussed in Section 3.2.2 may be even worse than the baseline.

Therefore, we propose a number of revisions to improve this method.

First, if the support (number of available ratings) for a user or item is low, the

co-clustering approach will not provide good predictions for them, and the training

phase will be affected by these noisy inputs. As a strategy, users and items with low

support are eliminated from the training phase so that training is both more effective

and efficient.

The prediction equation (3.6) is not appropriate for the incremental scenario,

because it incorporates three average parameters (r̄kl, r̄k, r̄l) from a co-clustering

solution that is not necessarily reliable. This is due to the fact that r̄k and r̄l tend to

be very close to the global average empirically. Therefore, this model can be equivalent

to r̂ui = r̄kl + r̄u + r̄i − 2r̄ during the online phase. On the other hand, using only

the block average r̄kl for prediction ignores user and item bias which results in poor

accuracy as well. To overcome this problem, we begin by co-clustering residuals,

rather than ratings. We model a rating prediction as

r̂ui = r̄u + r̄i − r̄ + εui. (3.8)

Note that r̄u + r̄i − r̄ is the same as the prediction equation (3.4) when the support

function is 1. As a result, εui is the correction parameter for (3.4). For a known

64

rating, (3.8) can be rewritten as

εui = rui − (r̄u + r̄i − r̄) (3.9)

where εui can be interpreted as the residual of the prediction via (3.4). For imple-

menting co-clustering, it is enough to work with the following objective function:

min
ρ,γ

∑
u

∑
i

wui(εui − ε̄ρ(u)γ(i))
2 (3.10)

where wui is one if rating rui exists in training dataset and otherwise is zero. ε̄ρ(u)γ(i)

is the block average of residuals for user cluster ρ(u) and item cluster γ(i).

Now we can define the prediction strategy based on (3.4) and (3.8). For old

user - old item,

r̂ui = r̄u + r̄i − r̄ + ε̄ρ(u)γ(i) (3.11)

and otherwise

r̂ui = (1− Snu,ω − Sni,ω)r̄ + Snu,ωr̄u + Sni,ωr̄i. (3.12)

As mentioned, one advantage of co-clustering is scalability. Therefore creating

an ensemble of different co-clusterings is desirable. Ensembles are used to improve

the accuracy of a method using a group of predictors, while increasing the running

time linearly with the number of ensemble elements. Let p denote a co-clustering

solution and P be the number of co-clusterings we use in the model. We can predict

with

r̂ui = r̄u + r̄i − r̄ +

∑
p exp(−zulp − zikp)ε̄klp∑
p exp(−zulp − zikp)

(3.13)

where zulp is the average error of prediction for user u and item cluster l in co-

clustering solution p and similarly zikp is the average error of prediction for item i

65

and user cluster k in co-clustering solution p. Intuitively if previous predictions of a

co-clustering solution are better, its weight is higher.

In the algorithm proposed in [38], new users and items are not included in the

co-clustering during the online phase. As a result, the model is unable to provide

legitimate predictions for them. However, in the revised version, it is trivial to find

an appropriate cluster for a user or item. Let u be a new user who has provided

some ratings. If a sufficient number of rated items exist in the current co-clustering

solution, then the new user’s cluster can be found using [5]:

ρ(u) = arg min
g

∑
h

nuh(ε̄uh − ε̄gh)2 (3.14)

where nuh is the number of times user u has rated the items belonging to item cluster

h during the online phase, and ε̄uh is the average of residuals for those ratings. A

similar procedure finds the cluster of a new item. Figure 3.8 shows the incremental

training algorithm. The function numberIn() is the number of ratings a user (item)

has in the co-clustering solution which is defined by
∑

h nuh (
∑

g nig) for user u (item

i). If this value is bigger than a threshold τ , then we can trust the information to

incorporate the new user or item. Otherwise, the risk of misclustering will be high.

Subsequently, new users and items will not receive prediction from co-clustering at the

very beginning. These ratings will be estimated using (3.4), which is more accurate

experimentally. As a rule of thumb, τ can be set to 3 since we wish to incorporate

new users or items as soon as possible but not at the cost of bad predictions.

We now turn to the construction of co-clusterings via evolutionary algorithms,

a population-based search approach that explores a solution space by evolving a group

66

Input: new rating, co-clustering (ρ,γ)

Update user average r̄u

Update item average r̄i

IF {old user - old item}

Update co-cluster mean ε̄ and weights z

ELSEIF {old user - new item} AND {numberIn(item)>τ}

Assign the item to an item cluster

Update co-cluster mean ε̄ and weights z

ELSEIF {new user - old item} AND {numberIn(user)>τ}

Assign the user to a user cluster

Update co-cluster mean ε̄ and weights z

ENDIF

Figure 3.8: Incremental training in evolutionary co-clustering

of individuals to find good solutions. In our context, let P co-clustering solutions ex-

ist. The goal is to find better solutions by combining the current solutions. Every

evolutionary algorithm has three main steps: selection, in which two or more individ-

uals are chosen to create offspring; crossover, in which the selected items are combined

to create new solutions; and replacement, in which the new solutions replace existing

solutions if they satisfy some criteria.

Our evolutionary co-clustering algorithm is shown in Figure 3.9. A group of

co-clustering solutions is randomly generated and locally optimized via iterative Breg-

man co-clustering. The numbers of user and item clusters are randomly selected from

a specific range. In the evolutionary iteration phase, two co-clustering solutions are

randomly selected for crossover. In the context of optimization, better individuals are

67

Input: Population size P, Rating matrix

Initialization:

FOR p = 1 to P

Kp ← RandomInteger(1, β1)

Lp ← RandomInteger(1, β2)

∀u : ρ0(u)← RandomInteger(1,Kp)

∀i : γ0(i)← RandomInteger(1, Lp)

(ρp, γp)← LocallyOptimizationCooclustering(ρ0, γ0)

ENDFOR

Evolutionary iteration:

Repeat

Select 2 co-clusterings (ρq , γq) and (ρr, γr) randomly

Ko ←
Kq+Kr

2
+RandomInteger(−β3, β3)

Lo ←
Lq+Lr

2
+RandomInteger(−β4, β4)

ρo ← crossover(ρq , ρr)

γo ← crossover(γq , γr)

(ρo, γo)← LocallyOptimizationCooclustering(ρo, γo)

DiscardWorst {(ρp, γp)Pp=1, (ρo, γo)}

Until{convergence OR iter>maxIter}

Figure 3.9: Evolutionary algorithm

chosen with higher probability. However, in machine learning, generalization is more

important than optimization and biased selection may result in premature conver-

gence. Our initial studies indicated that randomly selecting co-clusterings improved

generalization. After selecting two co-clusterings, a new solution is generated via the

crossover function presented in Figure 3.10.

The crossover operation is between two clusterings φ1 and φ2. If the required

68

Input: clusters φ1 and φ2,required cluster size K

Output: offspring cluster φo

∀x, q, r : ζqr ← x|φ1(x) = q & φ2(x) = r

FOR k = 1 to K − 1

∀x ∈ ζ(k) : φo(x)← k

ENDFOR

∀x /∈ ∪K−1
k=1 ζ

(k) : φo(x)← K

Figure 3.10: Crossover algorithm

number of clusters is K, the K−1 largest intersections between φ1 and φ2 are assigned

to the first K − 1 clusters and the remainder will be assigned to the last cluster.

Formally, let X be a N ×K assignment matrix in which an element (u, k) is one if

object u is assigned to cluster k and zero otherwise. Then the intersection matrix can

be defined as X ′X.

In the next step, the offspring from crossover will be locally optimized via the

fast iterative Bregman co-clustering algorithm from [5]. This is an important step

due to the fact that most objects will be assigned to the last cluster. However, since

the iterative co-clustering first estimates averages and then assigns users and items,

we hope that most of the blocks will have good quality averages via fewer but selected

users or items.

Finally, we should either discard a current solution or the offspring to preserve

the total number of solutions. The following function can be used to discard the worst

69

solution:

p̃ = argmax
p

∑
u

∑
i

wui(εui −
∑

p′ 6=p ε̄ρp′ (u)γp′ (i)

P
).

where p̃ represents the worst solution in the population. If the worst solution is the

offspring we just discard it, otherwise the worst solution will be replaced with the

offspring.

3.2.4 Experimental results

In this section, we present the results of experiments performed to evaluate

the effectiveness of our method. We used the Movielens dataset2 consisting of 100,000

ratings (1-5) by 943 users on 1682 movies. We used mean absolute error (MAE) to

evaluate and compare different methods. Four methods were used for comparison:

1. Baseline: based on the model proposed in Section 3.1.

2. COCL: The method presented in [38].

3. ECOCL: Evolutionary co-clustering without ensembles.

4. ECOCLE: Evolutionary co-clustering with ensembles.

5. IKNN: Incremental KNN method [87].

6. SVD: We compared our results with those from [95] for SVD on the same dataset

and similar settings.

In our experiments, we used 5-fold cross-validation. First a part of data was

held for offline training. Then the rest of data was included in an online phase which

is a combination of incremental training and prediction. In the online phase, first a

2http://www.grouplens.org/data/

70

predicted rating was used for computing prediction error, and then the new case was

incorporated into the model. The sequence of data was randomized. We performed

incremental training based on three different strategies: “20%-80%”, in which 20%

of data was used for training and 80% for incremental training; “50%-50%,” and

“80%-20%.”

All of the support parameters such as ω in (3.4) were set to 3. For the COCL

method, we implemented the algorithm for different user and item cluster numbers

and the best result (10 user clusters and 2 item clusters) is reported. The number of

ensembles for ECOCLE was set to 25 and the iteration limit was 250.

The results for all methods are summarized in Table 3.3. First, the baseline

is reasonably good compared to other methods when less data is available during the

training phase. As more data is provided for the offline phase, other methods are

more accurate than the baseline. Also, evolutionary co-clustering algorithm (ECO-

CLE) is more successful when more data is available. Using ECOCLE in all phases

gives the best results. Evolutionary co-clustering without ensembles (ECOCL) still

outperforms other methods while its performance is slightly better than baseline for

the 20%-80% case. We did not perform SVD and only report the result of Sarwar et

al. [95]. For 20%-80%, SVD has the poorest performance. However, as more data is

available for training, it gets more competent. Note that the experimental protocol

of [95] was different than ours in that new users and items were incrementally added

to the model in one step, based on a training/test split. However, it is non-trivial to

update an SVD model based on new data. Therefore, the performance of incremental

71

20%-80% 50%- 50% 80%-20%
ECOCLE .7563 .7284 .7155
ECOCL .7626 .7433 .7336
Baseline .7645 .7586 .7555
COCL .7781 .7560 .7513
IKNN .7646 .7489 .7436
SVD > .79 > .75 > .73

Table 3.3: Average MAE of different methods

offline online
ECOCLE 3.350 1.872
ECOCL 1.783 .008
Baseline .000 .006
COCL .008 .009
IKNN .053 1.532

Table 3.4: Average time (milliseconds) of different methods per rating

SVD in our protocol might be similar.

The time of both offline and online training is reported in the Table 3.4.

The offline phase of ECOCLE needs more time due to the evolutionary algorithm.

However, since this phase only needs to be done once, greater offline training time

can be ignored. Online time is the sum of both incremental online training and online

prediction. ECOCLE and IKNN have similar online speeds, while the accuracy for

ECOCLE is much higher. The time problem could be mitigated by parallelizing the

co-clustering operations, since updating is independent for the different solutions in

the ensemble.

72

3.2.5 Conclusion

Online collaborative filtering methods that can incorporate new data in real

time are advantageous in many practical situations. In this work, we extended the

idea of CF via co-clustering to fulfill this need. As our empirical results showed,

our method achieved very good accuracy compared to other incremental methods.

Training was comparatively slow, but still manageable, and could be improved by a

straightforward parallelization.

3.3 Latent logistic allocation

In [61], we proposed a kernel-based generative probabilistic model for learning

co-occurrence data. In co-occurrence data, there are a number of entities and the

data includes the frequency of two entities co-occurring. In LLA, similar to other

latent variable approaches, we assume that the position of the entities in a latent

space is responsible for generating the co-occurrence data. Therefore, the main task

of learning is to recover the latent variables for each entity. We exploit a kernel-based

approach in which the relationship between entities is captured via a kernel which is

a function of the position of entities in the space. We explore two different kernels,

linear and radial basis function, for implementing LLA. Given the intractability of

inference for the posterior distribution, we use approximate inference via variational

approaches. Our experiments show that this algorithm outperforms latent Dirichlet

allocation, the state-of-the-art generative probabilistic model for co-occurrence data

in text modeling, document categorization and information retrieval.

73

Co-occurrence data includes the number of times two entities have occurred

together. Many problems studied in the machine learning community involve co-

occurrence data. Examples are text data (with bag-of-word assumption): the co-

occurrence between a word and a document, image-keyword data: the co-occurrence

between image features and keywords, citation data (author level): the co-occurrence

between two authors — the number of times one cited another and vice versa, and

market basket data: the co-occurrence between items purchased with each other.

Our proposed algorithm, latent logistic allocation (LLA), follows a latent vari-

able model in modeling co-occurrence data. In LLA, the latent variables of both types

of entities are assumed to be generated from Gaussian priors and the relationships

between entities are computed based on a kernel which is a function of latent vari-

ables. Here, we explored two different kernels: a linear (BL) kernel and a radial basis

function (RBF) kernel. Afterwards, given the categorical nature of the co-occurrence

data, the logistic function is used to translate the continuous value of the relationship

from the kernel to a categorical relation.

Although LLA uses a kernel function to capture the relationship between en-

tities, there is a big difference between LLA and kernel-based learning algorithms

[82]. In kernel-based learning algorithms such as support vector machines, entities

with different labels need to be separable by hyperplanes in the feature space. Since

this is usually not the case, mapping entities into a new space where they can be

separated by a hyperplane is useful. The new space might be infinite in dimensions

which is impossible computationally. To remedy this problem, a kernel trick might be

74

used; instead of mapping entities into a new space, a kernel function over the original

feature space is used which is a surrogate for the dot product between entities in the

new feature space.

In comparison, LLA is not a discriminative model and separability is not an

issue. However, we believe that entities have some intrinsic features that explain

the creation of data. In co-occurrence data, the interaction between features of two

entities determines the number of times they co-occur. Generally, in co-occurrence

data, there is no access to these features and consequently the shape of interaction

is not known. Latent variables are used for discovering the features, and the kernel

function is the representative of the interaction between entities. For example, using

a linear kernel, we are mapping entities into a space where the interaction between

them is explained by the dot product of the latent variables of entities. In this sense,

we do not use kernel functions as a trick as there is no original feature space. As will

be explained in the next section, previous latent variable models such as LDA mostly

used a linear kernel.

LLA is a fully generative probabilistic model. It is possible to learn the model

via the maximum likelihood approach. However, such an approach will be highly

prone to over-fitting the data as the dimensionality of the hidden space is increased.

Therefore, we choose to use a Bayesian approach to learn the hidden variables. Given

the intractability of computing the integral for Bayesian inference, we choose approx-

imate inference via variational approaches.

Based on the intrinsic characteristics of the co-occurrence data, we propose 4

75

different groups: hetero-directed, hetero-undirected, homo-directed and homo-undirected.

Hetero stands for heterogeneous, the case of different entities and homo stands for

homogeneous entities. Directed (undirected) refers to the case that the relation be-

tween entities is directed (undirected) in the generative model. Although we explain

the generative model for all, we concentrate on the hetero-directed case in presenting

the approximate inference algorithm and in the experimental result. The approxi-

mate inference presented for the hetero-directed case is directly applicable to other

cases. Therefore, we do not claim that our model outperforms other models handling

those scenarios — if there are any. The scope of current work is showing that LLA

outperforms the state-of-the-art model LDA — which is only capable of handling the

hetero-directed case, and providing the possibility to apply LLA to other cases.

3.3.1 Model

Latent logistic allocation (LLA) is a generative probabilistic model for model-

ing co-occurrence data. To explain different types of co-occurrence data, we use graph

notation. Let G = (U,E) represent an unweighted graph with multiple edges; that is,

multiple edges are allowed to exist between any two nodes. Each edge depicts a token

in the co-occurrence dataset. So if edge or token (i, k) occurred 3 times, then vik (the

ith, kth element of co-occurrence matrix) is 3, and there are 3 edges between nodes i

and k in the equivalent graph. The reason we use graph notation is to consider some

specific relationships that cannot be represented by the matrix notation. The matrix

only represents the number of co-occurrence but not the direction between entities if

76

Yk

j, l
θI Xi

N

NK

NI

θK

bi

Yk

jθI Xi

Nk

NK

NI

θK

bi

(a) (b)

bk

j, lθI

Xi

N

NI

bi

(c)

θI

Xi

Ni

NI

bi

(d)

j

Figure 3.11: The graphical model of LLA, (a) Heterogeneous undirected, (b) Hetero-

geneous directed, (c) Homogeneous undirected, and (d) Homogeneous directed

co-occurrence is not symmetric. Based on the structure of the graph G, there are two

types of structural attributes that describe a co-occurrence data. First is whether the

graph is directed or undirected. Second is whether the nodes U are homogeneous or

heterogeneous.

When the co-occurrence graph is directed, it means that one type of entity is

responsible for generating another type, therefore it is logical to define the generative

model as a conditional probability. In the case of an undirected graph, the joint

probability is more appropriate. In the case of heterogeneous nodes, nodes in U

are divided into two groups, U1 and U2, and edges can only be defined between

77

nodes of different types; this heterogeneous graph is a bipartite graph. In the case of

homogeneous nodes, there is only one type of node. Here, for the sake of simplicity,

we assume that there is no edge from a node to itself — an assumption that can be

easily relaxed.

Based on the categories for the co-occurrence data, four different classes can

be defined:

• Hetero-directed: Each token consists of two different entities and one type

of entity is responsible for generating another type. The most popular example

of this type is text data where a document is responsible for generating words.

Therefore, the link direction is from document nodes to word nodes.

• Hetero-undirected: Each token consists of two different entities and both

entities are generated simultaneously from a joint distribution. An example of

this type is the co-occurrence of image features and keywords. One might argue

that image features generate keywords, but in fact, keywords are explanations

for images generated by a human, so the undirected assumptions seems more

valid.

• Homo-directed: Each token consists of two entities from the same type and

one entity is responsible for generating the other. An example is co-citation

data. Entities are scholars who cite other scholars in their research papers.

Each citation is directed — from one scholar to another.

• Homo-undirected: Each token consists of two entities from the same type

and both entities are generated simultaneously from a joint distribution. An

78

example is the co-occurrence between items from market basket data. Each

token consists of two items that have been purchased together. Here, we cannot

say one item is responsible for purchasing another item. All we know is that

the shopper chose them both.

We present a separate model for each category. However, it is possible to apply

the model for a directed case to data that fits into the undirected case and vice versa.

For example, one might assume that the text data is undirected as pLSI treats both

words and documents similarly (i.e. the undirected assumption). On the other hand,

LDA assumes the same example to be a directed case.

In LLA, the relationship between entities is captured by embedding them in a

latent variable space. Following the same notation from previous sections, i indexes

the entities of the first type and k indexes the entities of the second type (in the

heterogeneous case). Similar to other latent space models, the dimension D of the

latent space is an algorithmic input and can be chosen in a Bayesian manner. Here,

we treat D as a known parameter. The learned positions of entities in the latent

space are denoted by Xi for the entities of the first type and Yk for the entities of the

second type. Furthermore, bi and bk represent the biases of entities. By biasness we

refer to the situation in which some entities tend to occur more often, such as some

words which have higher frequency than others.

In the current model, we assume Gaussian priors on all latent variables. This

is an arbitrary choice of distribution and one may assume any other distribution.

The relationship between entities is computed via a kernel function. This way the

79

Gaussian assumption of the latent space is not critical, since the kernel-trick idea

can be applied. More precisely, using an appropriate kernel, the latent space can be

transfered into other spaces. Now we present LLA for each category.

3.3.1.1 Hetero-undirected

Since edges in the graph are indirected, we need to model the data via the

joint probability:

P (i, k) =
1

Z
exp(K(Xi, Yk) + bi + bk), (3.15)

where Z =
∑

ik exp(K(Xi, Yk) + bi + bk), and the kernel function K(Xi, Yk) converts

the values for the two vector variables with D dimensions to a real value scalar.

The graphical model of the generative process for hetero-undirected data is

shown in Figure 3.11 (a). First, latent variables are generated for NI entities of

the first type from the prior parameters θI and NK entities of the second type from

the prior parameters θK . Then for each of the N tokens, a pair is chosen from the

NI ×NK possible pairs via a multinomial distribution with probabilities from (3.15).

The generative process can be summarized as follows:

1. For each entity i:

(a) Choose entity latent variable X ∼ N(µ0I , σ
2
0II)

(b) Choose entity bias variable b ∼ N(β0I , ξ
2
0I)

2. For each entity k:

(a) Choose entity latent variable Y ∼ N(µ0K , σ
2
0KI)

(b) Choose entity bias variable b ∼ N(β0K , ξ
2
0K)

80

3. For each token:

(a) Choose a pair (j, l) ∼Multinomial(P (., .))

where I denotes the identity matrix and P is computed using (3.15).

3.3.1.2 Hetero-directed

We assume without loss of generality that in the co-occurrence graph, the di-

rection of edges are from entities indexed by k to entities indexed by i. The probability

model for this data is defined as a conditional probability:

P (i|k) =
1

Zk
exp(K(Xi, Yk) + bi), (3.16)

where Zk =
∑

i exp(K(Xi, Yk)+ bi). Note that we do not include a bias parameter for

entity k, since we are conditioning on k and the bias of k has no effect. Even if bk is

inserted into (3.16), it will be canceled out. To justify such an approach for hetero-

directed data, let us consider text data. In text data, the author of each document

is generating words independent of words being generated by other authors. Such an

assumption has been made in the LDA model.

The graphical model of the generative process for hetero-directed data is shown

in Figure 3.11 (b). First, latent variables are generated for the NI entities of the first

type from the prior parameters θI and for the NK entities of the second type from

the prior parameters θK . Then for each of the Nk tokens in entity k, an entity of

the first type is chosen from NI possible entities via a multinomial distribution with

probabilities from (3.16). The generative process can be summarized as follows:

1. For each entity i:

81

(a) Choose entity latent variable X ∼ N(µ0I , σ
2
0II)

(b) Choose entity bias variable b ∼ N(β0I , ξ
2
0I)

2. For each entity k:

(a) Choose entity latent variable Y ∼ N(µ0K , σ
2
0KI)

(b) For each token:

i. Choose j ∼Multinomial(P (.|k))

where P is computed from (3.16).

3.3.1.3 Homo-undirected

Since edges are indirected, we need to model the data via the joint probability:

P (i, j) =
1

Z
exp(K(Xi, Xj) + bi + bj), (3.17)

where Z =
∑

i<j exp(K(Xi, Xj) + bi + bj), and bi and bj are scalars.

The graphical model of the generative process for homo-undirected data is

shown in Figure 3.11 (c). First, latent variables are generated for NI entities from

the prior parameters θI . Then, for each of the N tokens, a pair is chosen from

NI(NI − 1)/2 possible pairs via a multinomial distribution with probabilities from

(3.17). The generative process can be summarized as follows:

1. For each entity i:

(a) Choose entity latent variable X ∼ N(µ0I , σ
2
0II)

(b) Choose entity bias variable b ∼ N(β0I , ξ
2
0I)

2. For each token:

82

(a) Choose a pair (j, l) ∼Multinomial(P (., .))

where P is computed from (3.17).

3.3.1.4 Homo-directed

The model for this data is defined as a conditional probability:

P (j|i) =
1

Zi
exp(K(Xi, Xj) + bj), (3.18)

where Zi =
∑

j 6=i exp(K(Xi, Xj) + bj). The graphical model of the generative process

for homo-directed data is shown in Figure 3.11 (d). First, latent variables are gen-

erated for the NI entities θI . Then for each of the Ni tokens in entity i, an entity is

chosen from (NI−1) possible entities via a multinomial distribution with probabilities

from (3.18). The generative process can be summarized as follows:

1. For each entity i:

(a) Choose entity latent variable X ∼ N(µ0I , σ
2
0II)

(b) Choose entity bias variable b ∼ N(β0I , ξ
2
0I)

(c) For each token:

i. Choose j ∼Multinomial(P (.|i))

where P is computed from (3.18).

3.3.1.5 Approximate inference

In this section, we only provide an inference algorithm for the hetero-directed

case. Deriving the inference algorithm for other scenarios will be straightforward

based on the method proposed in this section. We study two kernel functions: linear

83

and radial basis function (RBF). If one is interested in implementing LLA via the

maximum likelihood approach, then using other kernels will be easy as long as the

kernel function is differentiable. However, the Bayesian analysis presented in this

section will be specific for the above-mentioned kernels.

The likelihood of the whole dataset given the assumption that the probability

of each token is independent from other tokens given the hidden variables is as follows:

P (U |X, Y, b) =
∏
u

P (iu|ku, X, Y, b) =
∏
ik

P (i|k,X, Y, b)vik , (3.19)

where U is the set of all tokens (i.e. the whole dataset), and vik is the number of

times the token (i, k) has occurred. Given (3.16) and (3.19), the log-likelihood is as

follows:

logP (U |X, Y, b) =
∑
ik

vikK(Xi, Yk) +
∑
i

vi.bi −
∑
k

v.k log
∑
i

exp(K(Xi, Yk) + bi),

(3.20)

where vi. =
∑

k vik and v.k =
∑

i vik. To estimate the hidden variables X, Y and b, we

can maximize the log-likelihood (3.20). However, the maximum likelihood approach

has problems such as overfitting. A Bayesian approach will result in a more robust

solution by giving the posterior distribution of hidden parameters. Given the Bayes

rule, the posterior distribution of latent variables given the data is as follows:

P (X, Y, b|U) =
P (U |X, Y, b)P (X)P (Y)P (b)∫

P (U |X ′, Y ′, b′)P (X ′)P (Y ′)P (b′)dX ′dY ′db′
, (3.21)

which is not computable analytically due to the intractability of the integral in the

denominator. Therefore, we chose to use variation inference [56] which is a popular

algorithm for approximate inference in graphical models.

84

In variational approximation, instead of finding the true posterior, we esti-

mate a variational distribution for each latent variable. The main idea is minimizing

the difference between the true posterior and the surrogate variational distribution

so then we can use the variational distribution for making inference about latent

variables. If Q(X, Y, b) shows the variational distribution over latent variables, we

are interested in minimizing the Kullback-Leibler divergence between the true poste-

rior and its approximation: KL[Q(X, Y, b)||P (X, Y, b|U)]. This is equivalent to the

following problem [8]:

logP (U) ≥ EQ[logP (U |X, Y, b)]−KL[Q(X, Y, b)||P (X, Y, b)], (3.22)

where EQ[.] is expectation with regard to variational distributions. Here we use the

naive mean field algorithm [103] and assume the variational distributions are indepen-

dent Gaussians with the following parameters: Xi ∼ N(µi, σ
2
i I), Yk ∼ N(µk, σ

2
kI),

and bi ∼ N(βi, ξ
2
i).

Note that it is possible to use a covariance matrix instead of σ2I and the only

reason we chose to use independent coordinates is simplicity in optimization. Substi-

tuting P (U |X, Y, b) with its value from (3.20), the lower bound on the probability of

data in 3.22 can be written as:

L(µ, β, σ2, ξ2) =
∑
ik

vikEQ[K(Xi, Yk) + bi]

−
∑
k

v.kEQ[log
∑
i

exp(K(Xi, Yk) + bi)]

−KL(Q(X)||P (X))−KL(Q(Y)||P (Y))−KL(Q(b)||P (b)). (3.23)

85

Given the Gaussian distribution for priors and variational distributions, all

integrals for computing the expectations in equation 3.23 are analytically solvable for

many kernel functions except for the part
∑

k v.kEQ[log
∑

i exp(K(Xi, Yk)+bi)] which

is intractable because of the log-sum-exp format. It is possible to use the concavity

of the log function to define an upper bound on the log-sum-exp function:

log a ≤ φa− log φ− 1, (3.24)

where the equality holds iff φ = 1/a. Such an approach has been used in several

works in the variational inference context [14, 9, 10]. Therefore, the new bound is as

follows:

L(µ, β, σ2, ξ2) = const.+
∑
ik

vikEQ[K(Xi, Yk) + bi]

−
∑
k

v.kφk
∑
i

EQ[exp(K(Xi, Yk) + bi)]

−KL(Q(X)||P (X))−KL(Q(Y)||P (Y))−KL(Q(b)||P (b)), (3.25)

where the constant does not depend on decision variables and we set φk = [
∑

iEQ(exp(K(Xi, Yk)+

bi))]
−1 to tighten the lower bound with regard to the log-sum-exp part. Now, we pro-

vide the specific lower bounds for linear and RBF kernels.

Linear kernel

Here, we provide the variational lower bound for the linear kernel: K(Xi, Yk) = XiY
T
k .

The only tricky part in (3.25) is deriving the integral EQ[exp(XiY
T
k + bi)]. Let x1 ∼

N(µ1, σ1) and x2 ∼ N(µ2, σ2), then it can be shown that the following equation holds:

E[exp(x1x2)] =
exp(

σ2
2µ

2
1+σ2

1µ
2
2+2µ1µ2

2(1−σ2
1σ

2
2)

)√
1− σ2

1σ
2
2

(3.26)

86

given the condition that σ2
1σ

2
2 < 1, otherwise the integral will be infinite. This happens

because of our estimation via the upper bound given in (3.24) and the integral on

the log-sum-exp function is bounded. Also, given the moment generation function for

Gaussian distribution we know EQ(exp(bi)) = exp(βi + ξ2
i /2). Based on (3.26), we

have:

EQ[exp(XiY
T
k + bi)] = ηDik exp(η2

ikζik + βi + ξ2
i /2) (3.27)

where ζik = (σ2
i µkµ

T
k + σ2

kµiµ
T
i + 2µiµ

T
k)/2 and ηik = (1− σ2

i σ
2
k)
−1/2. As a result, the

lower bound in (3.25) can be written as:

L(µ, β, σ2, ξ2) = const.+
∑
ik

vikµiµ
T
k +

∑
i

vi.βi

−
∑
k

v.kφk
∑
i

ηDik exp(η2
ikζik + βi + ξ2

i /2)

− 1

2

∑
i

[−D log σ2
i +D

σ2
i

σ2
0I

+
(µi − µ0I)(µi − µ0I)

T

σ2
0I

]

− 1

2

∑
k

[−D log σ2
k +D

σ2
k

σ2
0K

+
(µk − µ0K)(µk − µ0K)T

σ2
0K

]

− 1

2

∑
i

[− log ξ2
i +

ξ2
i

ξ2
0

+
(βi − β0)2

ξ2
0

]. (3.28)

To find variational values, we need to optimize (3.28). Since σ2
i σ

2
k < 1, to

have an unconstrained optimization problem, we use an auxiliary variable χ and the

logistic function in our experiments: σ2 = 1
1+exp(−χ)

. Any unconstrained optimization

algorithm can be used to solve (3.28). In our experiments, we used gradient ascent

due to its simplicity.

RBF

Here, we provide the variational lower bound for the radial basis function (RBF)

87

kernel: K(Xi, Yk) = −δ2(Xi, Yk) = −(Xi−Yk)(Xi−Yk)T . Note the difference between

the shape of RBF in kernel-based learning approaches and here as we only use the

negative squared Euclidean distance part of RBF. The only tricky part in (3.25)

is deriving the integral EQ[exp(−δ2(Xi, Yk) + bi)]. Let x1 ∼ N(µ1, σ1) and x2 ∼

N(µ2, σ2), then it can be shown that the following equation holds:

E[exp(−(x1 − x2)2)] =
exp(− (µ1−µ2)2

1+2(σ2
1+σ2

2)
)√

1 + 2(σ2
1 + σ2

2))
. (3.29)

Therefore we have:

EQ[exp(−δ2(Xi, Yd) + bk)] = ηDik exp(−η2
ikδ

2(µi, µk) + βi + ξ2
i /2) (3.30)

where ηik = [1 + 2(σ2
i + σ2

k))]
−1/2. As a result, the lower bound in equation 3.25 can

be written as follows:

L(µ, β, σ2, ξ2) = constant

−
∑
ik

vikδ
2(µi, µk)− (

∑
i

vi.σ
2
i +

∑
k

v.kσ
2
k)D +

∑
i

vi.βi

−
∑
k

v.kφk
∑
i

ηDik exp(−η2
ikδ

2(µi, µk) + βi + ξ2
i /2)

− 1

2

∑
i

[−D log σ2
i +D

σ2
i

σ2
0I

+
(µi − µ0I)(µi − µ0I)

T

σ2
0I

]

− 1

2

∑
k

[−D log σ2
k +D

σ2
k

σ2
0K

+
(µk − µ0K)(µk − µ0K)T

σ2
0K

]

− 1

2

∑
i

[− log ξ2
i +

ξ2
i

ξ2
0

+
(βi − β0)2

ξ2
0

]. (3.31)

To find variational values, we need to optimize (3.31). Since σ2 ≥ 0, to have

an unconstrained optimization problem, we use an auxiliary variable χ and the expo-

nential function in our experiments: σ2 = exp(χ). Any unconstrained optimization

88

algorithm can be used to solve (3.31). In our experiments, we used gradient ascent

with multiple random starts.

3.3.2 Experimental results

In our experiments, we evaluated LLA in three application areas: text model-

ing, document categorization, and information retrieval. In all three tasks, we treat

text data as hetero-directed data where the direction is from documents to words.

We set the prior mean to 0 for both words and documents, and prior variance to 2 for

words and 10 for documents. No fine tunning was done for finding priors. We chose

smaller prior variance for words due to the fact that the support for words is often

lower compared to the support for documents. There are some words that occur only

2 or 3 times while the number of occurrence of documents (the number of words in

them) is usually much higher. Throughout this section, we represent LLA with linear

kernel as LLA-L and LLA with RBF kernel as LLA-RBF.

We use LDA for the sake of comparison, as both LLA and LDA are Baysian

latent variable models that can be applied to text data and to the best of our knowl-

edge, there is no other model with this characteristic. Furthermore, Blei et al. [11]

showed that LDA outperforms some other comparable algorithms such as pLSI and

mixture of unigrams. For implementing LDA, the Gibbs sampling algorithm and the

settings in [44] were used. The number of topics for LDA and the dimensions for LLA

were set to 20, 50, 100, and 200 in all experiments.

For the first two tasks (text modeling and document categorization), we used

89

0 20 40 60 80 100 120 140 160 180 200
800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

of dimensions

P
re

di
ct

iv
e

pe
rp

le
xi

ty

LDA

LLA−RBF

LLA−L

Figure 3.12: The predictive perplexity for TDT-2 dataset

0 20 40 60 80 100 120 140 160 180 200
400

500

600

700

800

900

1000

1100

1200

of dimensions

P
re

di
ct

iv
e

pe
rp

le
xi

ty

LDA

LLA−RBF

LLA−L

Figure 3.13: The predictive perplexity for Reuters21578 dataset

90

0 20 40 60 80 100 120 140 160 180 200
94

95

96

97

98

99

100

of dimensions

A
cc

ur
ac

y

LDA

LLA−RBF

LLA−L

Figure 3.14: The test accuracy for TDT-2 dataset

0 20 40 60 80 100 120 140 160 180 200
90

91

92

93

94

95

96

97

of dimensions

A
cc

ur
ac

y

LDA

LLA−RBF

LLA−L

Figure 3.15: The test accuracy for Reuters21578 dataset

91

0 20 40 60 80 100 120 140 160 180 200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

of dimensions

A
ve

ra
ge

 p
re

ci
si

on

LSI

LDA

LLA−RBF

LLA−L

Figure 3.16: Average precision for queries of CRAN dataset

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

of dimensions

A
ve

ra
ge

 p
re

ci
si

on

LSI

LDA

LLA−RBF

LLA−L

Figure 3.17: Average precision for queries of MED dataset

92

a subset of the TDT-2 and Reuters21578 datasets3. In each dataset, we selected 5

categories so that the number of documents in categories is almost equal. Words

that occurred fewer than 3 times were excluded. Our subset of TDT-2 includes 8,676

words and 1,584 documents and our subset of Reuters21578 includes 4,711 words

and 1203 documents. We split these data into training and testing sets (80%-20%)

category-wise — the test set includes around 20% of each category. For both models,

first the training set was used to train the parameters for words and documents, then

the test dataset was used for training only test documents — we use the space of

words from the training phase to map the new documents in the latent space.

Figures 3.12 and 3.13 represent the results of text modeling for TDT-2 and

Reuters21578, respectively. We used the metric perplexity [11] on the test subset for

comparing results. Perplexity simply measures the probability a model gives to each

token and a lower perplexity implies a stronger model. The definition of predictive

perplexity is

preplexity(Dtest) = exp

(
−
∑

ku logPmodel(wku)∑
kNk

)
,

where Dtest is the test data set and wku is the word for token u and document k.

Both LLA-L and LLA-RBF outperform LDA in text modeling. LLA-L outperforms

LLA-RBF; however, in Reuters21578 dataset the difference is not sizable.

For the document categorization task, both LDA and LLA can be treated as

dimensionality reduction algorithms. For classifying documents, we trained a sup-

port vector machine (SVM) classifier on the training subset. We used the LIBSVM

3http://www.zjucadcg.cn/dengcai/Data/TextData.html

93

software package [22] in these experiments. The linear kernel was used for SVM in all

experiments. Note that the test subset were not included in either the model training

(Bayesian inference) nor classification training (SVM). We use the metric accuracy

for comparison. Accuracy is defined as the percentage of points are labeled correctly.

Figures 3.14 and 3.15 represent the results of document categorization for

TDT-2 and Reuters21578, respectively. Again, LLA outperforms LDA in both datasets.

The performance of LLA-L and LLA-RBF is very close in this task.

For information retrieval task, we used datasets CRAN and MED4. The CRAN

dataset includes 3,763 words, 1398 documents and 225 queries, and MED includes

7014 words, 1033 documents, and 30 queries. In this task, we included the result

of latent semantic indexing (LSI) as a successful information retrieval algorithm. In

both LDA and LLA, queries were treated as new documents and mapped into the

latent space. Then, the cosine similarity between queries and documents was used to

compute a score for retrieval. The metric average precision is used to compare algo-

rithms. Average precision is the average over the precision of all relevant documents

given the ranked list which conveys information regarding both precision and recall.

For this experiment, we avoid using regular weighting procedures such as tf-idf since

it is not possible to incorporate in LDA.

Figures 3.16 and 3.17 represent the results of information retrieval for CRAN

and MED, respectively. LLA outperforms other algorithms and the performance of

LLA-L and LLA-RBF is again similar.

4http://web.eecs.utk.edu/research/lsi/

94

3.3.3 Query-based visualization

In [63], we proposed an approach for visualizing retrieved list of documents

for a query based on LLA with RBF kernel. Visualization is one of the most im-

portant exploratory tools for data analysis and mining. Using Euclidean distance,

radial basis function, embedded entities can be used for visualization. The proposed

Bayesian approach enables accurate embedding in high-dimensional space which is

not useful for visualization. Therefore, we propose a method to embed a filtered

number of entities for a queryquery-based visualization. Our experiments show that

our proposed models outperform co-occurrence data embedding, the state-of-the-art

model for visualizing co-occurrence data.

It is hard to capture the essence of real-world data in two dimensions due to

high complexity. On the other hand, visualizing a large number of data points is

confusing rather than informative. Therefore, a way to present a filtered version of

data is useful. To this end, we propose a query-based visualization method. Although

we present this algorithm in the context of information retrieval, it can be applied to

any query-answering problem for co-occurrence data.

Visualizing co-occurrence data with heterogeneous nodes—generally heteroge-

neous data—has been rarely studied. Most of the literature concentrates on embed-

ding only one type of data (e.g. multi-dimensional scaling [24]). In the context of

text data—which is co-occurrence data with heterogeneous nodes—most visualiza-

tion approaches usually embed only documents or words via embedding algorithms

such as multidimensional scaling [108]. The state-of-the-art algorithm to visualize co-

95

occurrence data with heterogeneous data is co-occurrence data embedding (CODE)

[42].

The main intuition behind CODE is that if two points are related then they

should be very close in the latent space. Therefore, the result of embedding can be

presented as a visualization of entities. Although the embedding is based on the

relationship between entities from different types, we expect the entities from the

same type to be close due to the transitivity of distance.

Although LLA-RBF outperforms CODE even in a 2-dimensional space, the

difference intensifies in higher dimensions. Nevertheless, it is not possible to interpret

more than 3 dimensions visually. Our other contribution is proposing a query-based

visualization to embed a filtered number of entities.

Here, we present query-based visualization for information retrieval; however,

it can be applied to other dyadic data—see section 3.1 for a similar approach in

collaborative filtering.

In query-based visualization (QBV), documents, query words, and the query

are embedded in a Euclidean space to help the user in identifying documents of inter-

est. Unfortunately, 2 dimensions is barely enough to capture the complexity of a data,

while higher dimensions cannot be interpreted visually. Additionally, representing all

data to a user is beyond a person’s processing ability. Therefore, visualizing only

top-N (N can be specified by user) documents is of interest. These top-N documents

can be chosen by an arbitrary retrieval method.

Therefore, a two-phase visualization can be used. First, the data will be

96

embedded in a high-dimensional space and then a group of entities can be chosen

via some filtering approach to be re-embedded in a 2-dimensional space by classic

algorithms such as multidimensional scaling (MDS) [24]. The second embedding

phase is straightforward, since we already have the distances from the first phase

which satisfy all requirements for the Euclidean distance and MDS can be applied

directly. In an information retrieval context, our proposed approach is embedding

words, documents, and the query in a high-dimensional space, and then using the

distances in that space, embedding selected objects in a 2-dimensional space via

multidimensional scaling.

Another approach may be embedding the filtered data directly into a 2-

dimensional space. However, such an approach is not desirable for two reasons. First,

since there are few entities in the filtered data, generalization is expected to be poor

which deteriorates the result. Second, embedding entities separately for each query

is very time consuming and inefficient, especially given the high number of queries in

the retrieval systems.

3.3.4 Experimental results

In our experiments, we compare CODE and LLA-RBF in the context of in-

formation retrieval. Text data is considered as hetero-directed and so we use a con-

ditional probability model.

We study the quality of the embedding using two evaluation metrics. First is

the proximity of an embedded query to the relevant documents. This can be measured

97

with average precision (AP). The definition of AP that we used is averaging the

precision of all relevant documents at the point they are retrieved. Let AP (S,R) be

the average precision where R is the set of relevant documents and S is the score of

a method for ranking all documents for retrieval. Then given an embedded query q,

the average precision is AP (−δ2
q., R) where δ2

q. shows the distance of the query to all

documents. Second, the proximity of relevant documents is of interest. It is important

whether all relevant documents are close to each other compared to other documents.

To measure this, average relevant documents proximity (ARDP) is proposed:

ARDP = [
∑
c

∑
k∈Rc

AP (−δk., Rc\{k})
|Rc| − 1

]/NC , (3.32)

where c indexes categories or queries (any group of relevant documents), k indexes

documents, Rc is the set of relevant documents in c, and NC is the total number

of categories or queries. ARDP is partially similar to doc-doc measure used in [42].

More precisely, we consider each relevant document as an embedded query and then

we compute the AP of retrieving other relevant documents. This metric measures

how well we embed data, since relevant documents are expected to be closer and the

visualization is better as a result.

In LLA-RBF, we set the prior mean to 0 for both words and documents, and

prior variance to 1 for words and 2 for documents. No fine tunning was done for

finding priors. We chose smaller prior variance for words due to the fact that the

support for words is often lower compared to the support for documents. There

are some words that occur only 2 or 3 times while the number of occurrences of

documents (the number of words in them) is usually much higher. We used the same

98

four datasets as the previous section.

Table 3.5 presents the result of ARDP for all datasets. We implemented CODE

and LLA-RBF in a 2-dimensional space and then computed the ARDP score. LLA-

RBF outperforms CODE in all 4 datasets (in CRAN the performance is close).

TDT2 Reuters21579 CRAN MEDLINE
CODE .9023 .4582 .0637 .1561

LLA-RBF .9490 .5568 .0646 .1797

Table 3.5: ARDP on a 2-dimensional space (Best results are in bold)

CRAN dataset MEDLINE dataset
AP ARDP AP ARDP

CODE-2 .1591 .1299 .4046 .4648
LLA-RBF-QBV .3231 .3498 .6145 .6384

Table 3.6: query-based visualization + LLA-RBF versus CODE with 2 dimensions

(best results are bold)

Finally, we explored query-based visualization using LLA-RBF. First, we se-

lected top-100 documents for each query using latent semantic indexing [30] which

is a successful method in information retrieval. Note that it is possible to use LLA-

RBF for filtering documents directly but here we need a method for both CODE and

LLA-RBF for the sake of comparison. Then, we re-embedded all filtered documents,

99

query words, and the query in a 2-dimensional space via MDS using distances ob-

tained from implementing LLA-RBF in a 100-dimensional space. We compare the

result to CODE’s result in a 2-dimensional space. Table 3.6 represents the result.

The performance of query-based visualization is dramatically better than CODE.

Figures 3.18 and 3.19 represent a typical snapshot of visualizing a query us-

ing CODE and query-based visualization using LLA-RBF respectively, for a specific

query in the MEDLINE dataset. Note the distinction between relevant and irrele-

vant documents in query-based visualization while they are highly mixed in CODE.

Additionally, the query is far away from other entities in CODE which makes inter-

pretation difficult. Query words might help user to identify which area in the space

is more relevant.

3.3.5 Conclusion

In this section, we propose a new latent model for co-occurrence data, latent

logistic allocation (LLA). Experimental results show that this model outperforms the

state-of-the-art latent model, latent Dirichlet allocation in 3 tasks: text modeling,

document categorization, and information retrieval. LDA is a widely used and cited

approach in the machine learning and text mining communities. We believe the

superiority of LLA over LDA in our experiments is mainly because of the flexibility

of the latent space in LLA. The latent space of LDA is restricted to non-negative

normalized variables (summed to 1) and that is the reason Dirichlet priors are used.

On the other hand, there is no restriction on the latent space of LLA and any prior

100

−1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

renal

erythematosus

azathioprin

lupus

lesion

regard
system

effect

Irrelevant documents

Relevant documents

Query words

query

Figure 3.18: Visualization of a typical query from MEDLINE dataset using CODE

with 2 dimensions

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

renal

erythematosus

azathioprin

lupus

lesion

regard
system

effect

Figure 3.19: Visualization of a typical query from MEDLINE dataset using query-

based visualization + LLA-RBF with 100 dimensions

101

can be used. Furthermore, LDA can use only dot product to estimate the probability

of a word given a document while LLA gives the possibility to use other kernels. LLA

can incorporate biases of words in modeling which is not possible for LDA. Finally,

LLA can handle other scenarios rather than hetero-directed the only scenario LDA

can handle. All these factors allow LLA to have more flexibility learning power.

Additionally, we proposed a method to embed filtered data from a high-

dimensional embedding for a queryquery-based visualization which was successful

in our experiments.

3.4 Analyzing the language evolution

In [57], we proposed an extension to latent Dirichlet allocation (LDA) [11] to

analyze the language evolution in a preliminary science classroom. More accurately,

we introduce a topic model to analyze the temporal change in the spoken language

of a science classroom based on a dataset of conversations among a teacher and stu-

dents. One of the key goals is discovering the root of the change in the language

usage of students. To accomplish this, we defined 4 categories which generate words:

1) background (general) 2) activity, 3) session subject, and 4) personal. Our exper-

imental results support the hypothesis that the change in the language of students

mainly consists of using more activity-based language which can be interpreted as

using more scientific discourse.

In traditional off-line classrooms, evaluation is mainly based on exams. Other

parameters such as attendance or participation are considered but not as much as

102

exam grades. Considering the fact that learning influences language, we believe that

the change in the spoken language of students is a representative of progress. Al-

though a teacher has day-to-day interactions with students, it might be hard to detect

the change in spoken discourse of students. Therefore, an automatic tool which ana-

lyzes temporal aspects of students’ spoken language may yield interesting patterns as

feedback to different teaching methodologies. Also, such a tool, besides offering ad-

ditional educational evaluations, may be used to detect students who are not making

progress.

In this work, we use a dataset of dialogues in a science classroom to investigate

the changes over time in the language of students. As expected, the language of

students becomes more similar to the language of instructor over time. There are two

explanations for this change: 1) the personal language usage of students is becoming

more similar to the personal language usage of teacher 2) students are learning to

use scientific discourse and since the teacher is using scientific discourse as well, their

languages are becoming more similar. To identify the main source of change, we

designed and implemented a topic model which distinguishes the sources of words. We

assume each word may be generated from one of four different sources: 1) background,

2) activity, 3) session, and 4) personal. Background words are general words such as

“I” or “is”. Activity words are the words that are related to the scientific discourse.

For example if a student is reasoning about a scientific claim, he uses activity-based

words. The following conversations are from dialogues in the classroom during a claim

and evidence activity:

103

• Student A: our claim is the more mass you have, the more force you get out of

the object

• Teacher: evidence?

• Student B: the more washers you put in the cup, the faster the erasers are going

to fall

Obviously, words such as “claim” or “evidence” are related to this activity. Session

words are related to the subject of the classroom, in the above examples, words such

as “mass” or “force” are related to the session subject. Finally, the personal words

are related to the specific way to convey concepts such as “actually”.

Using the topic model, we show that the change in the language of students

is mainly because of an increase in the activity language usage. This means that

students are learning to use more terms related to scientific discourse which is a sign

of learning. No significant change was observed in personal, session, and background

language usage. Although it might seem that growth in session language is a sign of

learning, we note that students use session language comparatively more when they

are passive and mostly responsive. More precisely, when students comparatively use

a lot of words related to the subject of the session, they are mostly responding to the

teacher’s questions with quick answers.

Our main goal is extracting useful patterns and knowledge out of classroom

conversations. We focus on temporal changes in conversation to investigate the

changes in students’ language. This may offer key insights into students’ learning

and also potential feedback on different teaching methods.

104

Number Activity # utterance # session

1 categorization 2834 5

2 claim and evidence 1861 8

3 discussing initial ideas before doing experiment 437 4

4 doing experiment 914 4

5 reflection 4 1

6 what experts say 1522 6

Table 3.7: The list of activities in the classroom

Our dataset consists of a snapshot of conversations in a science classroom.

Figure 3.20 shows the structure of the dataset. The parties in the conversation consist

of a teacher and 14 students. There are 17 sessions in temporal order over a one-year

period and there are a number of utterances in each session (total of 7572 utterances).

Each utterance starts when a new person starts talking until the next person starts

talking (there were 3 utterances in the example in the previous section). There are

2010 unique words in this dataset. The data was transcribed by human from the

videos of the classroom. Note that traditional text analysis preprocessing such as

stop-wording or stemming were not performed since some patterns such as the tense

of the verb, negative statements, or “wh” words usage are important for us.

Each utterance in the classroom has been assigned manually to an activity.

These activities have been identified by human judgment. Table 3.7 shows the title

of each activity, the number of sessions they appear in and the number of utterances

they include. Activity 5 is infrequent and only happens in one session but other

activities occur in 4 or more than 4 sessions.

The key question to be addressed is whether the language used by students

105

session 1 session 2 session 17

teacher student 1 student 14

activity 1 activity 6

Figure 3.20: The structure of the dataset of the classroom conversations

is changing over time and if yes, how it is changing. Figure 3.21 shows the cosine

similarity between the normalized word vectors of teacher and students (all students

treated as one person) over different sessions. Although the linear growth of this

similarity is not statistically significant at 0.05, a logarithmic growth in similarity is

observed.

Table 3.8 shows the test of linear relationship in the cosine similarity between

the normalized word vectors of the teacher and all individual students over time. The

word vector of a person is a vector with length of the number of words (here 2010) and

each value of the vector depicts the frequency of a word. The language of students

(all but one) is becoming more similar to teacher’s language but none of them are

statistically significant.

Table 3.9 represents the words for which the usage has significantly changed

(at 0.05 significance). We only considered words that occurred at least in 4 sessions

for the students and 8 sessions for the teacher. There are some names such as “tori” or

106

0 2 4 6 8 10 12 14 16 18
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Session

C
os

in
e

si
m

ila
rit

y

p−value=0.0811

Figure 3.21: The cosine similarity between the normalized word vectors of the teacher

and students (all students treated as one person) over time

St 1 St 2 St 3 St 4 St 5 St 6 St 7 St 8 St 9 St 10 St 11 St 12 St 13 St 14
slope .0104 .0129 .0202 .0118 .0163 .0120 .0054 .0088 -.0008 .0077 .0014 .0111 .0128 .0124
p-value .3561 .0611 .0539 .3846 .1506 .2200 .5439 .4245 .9387 .5057 .8388 .4343 .3219 .2412

Table 3.8: Test of linear relationship over time in the cosine similarity between the

normalized word vector of the teacher and individual students

“tanner” in this table. Students’ usage of comparison words such as “like” or “kind”

is increasing over time. On the other hand, the teacher usage of some key words such

as “claim”, “evidence”, or “why” is less frequent in later sessions. It might be due to

the fact that students are able to use these types of discourses more effectively so the

teacher needs to mention them less.

107

Increase in usage Decrease in usage
Student 1 like, at, blake, need was
Student 2 no, has, need and, might
Student 4 you, like, can, them in
Student 5 go, for
Student 6 it, like, you, down, first, probably, which, at, called were, would
Student 7 to and, might
Student 8 no, kind or
Student 9 it
Student 11 in, would because
Student 12 down, just is, no
Student 13 you, ok, would, them, see was
Student 14 says, are, make, sure, ok, pretty, different too
Teacher we, would, or, find, need, our, thinking, your, evidence, why, claim, group, good,

tori, little, move, her, use, well, listen, over tanner, questions, fifth, remember, people

Table 3.9: The words for which usage is increasing or decreasing at 0.05 significance

In summary, the language model of students is changing over sessions but

the essence of the change is not obvious. Is the change because of personal usage

of language or is it because of using more terms related to scientific discourse? To

investigate this question we designed a latent Dirichlet allocation based topic model

[11] to model the language usage and track changes over time, which is described in

the next section.

There is a limited literature on applying data and text mining tools to class-

room spoken language [91]. Most of the related work applies data mining to extract

patterns from discussion forums. As an example, [32] summarized the information

in an asynchronous discussion forum by applying data mining algorithms to show

the quality of discussions. However, none of these types of works attempt to analyze

the text data. In another related work, Singley and Lam[98] introduce a tool, class-

room Sentinel, to mine information related to students on the Web for finding useful

patterns about the progress of a classroom. Similarly, this work has not used text

108

U

Nu

β

φp

K

φa

A

φs

S

φb

z

w

x

θ

P

α

su

Figure 3.22: The graphical model of the proposed topic model

information of the classroom.

3.4.1 Model

Compared to the situation in LDA, in our dataset, instead of documents, there

are utterances. However, the size of each utterance is very small and it might consist

of only 1 word. As a result, assuming each utterance as a document and generating

a specific language model for each utterance causes severe overfitting. Therefore,

instead of utterance, we assume a language model for higher level entities. Each

utterance is associated with three different higher level entities: an activity, a session,

and a person. Here, we can assume that each entity can independently generate words.

For example, the activity “claim and evidence” generates words such as “claim”, and

109

“support”. Each session has a scientific subject such as the cardiovascular system.

Then, words such as “heart” or “blood” can be seen as words generated by the session

language model. A person usually has special ways of conveying concepts which

results in specific language. For example, some people use words such as “actually”

or “you know” more often.

Additionally, as mentioned in the previous section, we did not perform stem-

ming and stopwording, so the data includes very general words such as “it”, and

“is”. Therefore, we assume another entity is generating general words; we call it the

background language representing general English language usage. Such an approach

has been used in [46]. In summary, each word in an utterance can be generated from

one of the following language models:

• Activity language

• Session language

• Personal language

• Background language

For the personal language models, we adapt a a similar strategy as used in the

author-topic model [92]. In the author-topic model, each author has a distribution

over different topics. When a group of scholars writes a paper, for each token, first,

an author is chosen from a uniform discrete distribution. Then, a topic is chosen from

the selected author language topic distribution, and finally a word is chosen from the

topic language model. Here, instead of authors, there are a teacher and a group of

students. However, there is no uncertainty about which person said the word as there

110

was in the author-topic model. The uncertainty is about which of the four language

models has been used to generate a word.

For the personal language models, we assume a person-topic model. That is,

for each person there is probabilistic distribution over K topics (θzp = P (z|p)). For

each topic z, there is a distribution over different words (φ
(p)
zw = P (w|z)). Note that

we used the index (p) to distinguish the language model of personal language (which

is of personal topics over words) from other language models.

For the activity language models, each activity a generates words indepen-

dently from a distribution on words (φaw = P (w|a)). Similarly for session language

models, each session s generates words independently from a distribution on words

(φsw = P (w|s)). Finally, the background language model generates words from a

distribution on words (φ
(b)
w = Pb(w)).

Figure 3.22 represents the graphical model for the proposed topic model. There

are U utterances in the dataset. Each utterance u is associated with a set Su =

{au, su, pu} which shows which person in which session and over which activity said the

utterance. In each utterance, there are Nu tokens. For each token, a latent variable x

is chosen from a uniform multinomial distribution which shows which language model

(background, session, activity, or personal) has been used to generate the word. Note

that the distribution over categories can be learned. If x = p (personal language

generated the word), then a topic z is chosen from a multinomial distribution with

parameter θpu , and then a word w is chosen from a multinomial distribution with

parameter φ
(p)
z . Similarly, if x = b, x = a, or x = s, a word w is chosen from a

111

multinomial distribution with parameter φb, φau , or φsu respectively.

Using the topic model proposed here, we will be able to distinguish the type of

words students are using and, as a result, better understand the essence of changes.

In summary the proposed topic model is as follows:

1. For each person p:

(a) Choose θp ∼ Dir(α)

2. For each topic z:

(a) Choose φ
(p)
z ∼ Dir(β)

3. For each activity a:

(a) Choose φa ∼ Dir(β)

4. For each session s:

(a) Choose φs ∼ Dir(β)

5. Choose φb ∼ Dir(β)

6. For each utterance u:

(a) For each token t

i. Choose x ∼Multinomial({.25, .25, .25, .25})

ii. if x = b, then Choose a word w ∼Multinomial(φ(b))

iii. if x = a, then Choose a word w ∼Multinomial(φau)

iv. if x = s, then Choose a word w ∼Multinomial(φsu)

v. if x = p:

112

A. Choose a topic z ∼Multinomial(θpu)

B. Choose a word w ∼Multinomial(φ
(p)
z)

For inference and learning the parameters, we used the version of Gibbs sam-

pling used in [44]. Gibbs sampling is a special case of Monte Carlo Markov chain

algorithm which is used to sample from the posterior distribution. In Gibbs sam-

pling, the full conditional distribution of a parameter given the rest of the parameters

is derived analytically and then samples are drawn iteratively. In Gibbs sampling for

LDA, the topic of tokens is sampled given all other parameters are set. After enough

iterations, all parameters can be estimated using the drawn samples. In our model,

there are two types of hidden variables: the 4-category usage variable x and the topic

z where the latter is in effect when x = p (person is using her personal language).

The conditional probability for latent variables of token i is as follows:

P (zi = k, xi = c|z−i, x−i) =

n

(−i)
wik

+β

n
(−i)
k +Wβ

n
(−i)
pik

+α

n
(−i)
pi

+Kα
if c = p

n
(−i)
wiei

+β

n
(−i)
ei

+Wβ
if c = e 6= p

where zi, and xi are the latent variables for token i, z−i, x−i are the assignment of

latent variables for all tokens except for i, and n
(−i)
ab and n

(−i)
a show the count of tokens

assigned to entities a and b. After running the Gibbs sampling algorithm, parameters

can be estimated via harmonic mean [44].

3.4.2 Experimental results

We ran the proposed topic model on the dataset with parameters: α = 1,

β = .01, and K = 5. The Gibbs sampling algorithm was run for 3000 iterations and

then 200 samples after each 10 iterations were drawn when the algorithm was run for

113

St 1 St 2 St 3 St 4 St 5 St 6 St 7 St 8 St 9 St 10 St 11 St 12 St 13 St 14 All
slope .000 .000 .003 .001 .006 -.002 -.002 -.000 -.001 .003 -.002 .003 .006 .004 .001
P-value .974 .698 .355 .623 .040 .491 .252 .944 .784 .499 .650 .075 .003 .003 .043

Table 3.10: The test of linear regression of change in activity language model for

individual students and all of them as a whole

another 2000 iterations.

To explore the main cause of change in students’ language and the reason

that their languages are becoming more similar to the teacher’s, we used 4-category

language usage versus personal language topic usage. The 4-category language usage

is the probability distribution of using 4 different categories: background, activity,

session, and personal. For example, let us assume a person has said 100 words during

a session. The Gibbs sampling algorithm has assigned 20 of them to background,

25 to activity, 30 to session, and 25 to personal language. Then the vector for the

4-category usage probability of that person in the session is {.20, .25, .30, .25}. Fur-

thermore, from the 25 words assigned to personal language, assume the assignment

to 5 personal topic is {2, 8, 1, 0, 14}, resulting in a personal topic usage probability

vector: {2/25, 8/25, 1/25, 0, 14/25}. Since such a vector can be identified for each

person, the similarity between the teacher and students can be computed from the

cosine similarity between these vectors. Figures 3.23 and 3.24 present the similarity

between teacher’s and students’ 4-category language usage probability and personal

topic usage probability respectively. For 4-category language usage probability, the

same pattern as general cosine similarity (Figure 3.21) is observed while for per-

114

sonal topic usage probability no increase or decrease is detected. It means that the

change in students’ language is happening at a higher level than in personal usage of

language. Figures 3.25 and 3.26 show the change in 4-category language usage prob-

ability over sessions. While no special pattern is observed for teacher, the activity

usage probability for students is rising. Table 3.10 shows the linear regression test for

the activity-based language usage probability of students and the increasing pattern

for 3 of them, and for the whole student group, is significant at .05. No significant

pattern was observed for other categories.

Comparing Figures 3.25 and 3.26 reveals another key difference between the

language usage pattern of the teacher and students. Students tend to use more session

based language than the teacher. That may be due to the fact that teacher uses a

lecture based language which is based on more frequent usage of personal language

while students tend to talk about the course content which is related to the subject of

the session. Note that the relative decrease of session language usage does not mean

that students are using the related terms less but it means they are using them less

frequently compared to other categories. Based on Figure 3.25, it seems that there

is a shift from session based language to activity based language which, as discussed

earlier, can be interpreted as a shift from a passive presence to an active presence

tied with more usage of scientific discourse.

115

0 2 4 6 8 10 12 14 16 18
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Session

C
os

in
e

si
m

ila
rit

y

p−value=0.2399

Figure 3.23: The cosine similarity between the 4-category language usage probability

vector of the teacher and students (all students treated as one person) over time

0 2 4 6 8 10 12 14 16 18
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

Session

C
os

in
e

si
m

ila
rit

y

p−value=0.8585

Figure 3.24: The cosine similarity between the personal topic usage probability vector

of the teacher and students (all students treated as one person) over time

116

0 2 4 6 8 10 12 14 16 18

0.2

0.25

0.3

0.35

0.4

Session

U
sa

ge
 p

ro
ba

bi
lit

y

Background language
Activity language
Session language
Student language

Figure 3.25: The 4-category language usage of students (all students treated as one

person) over time

0 2 4 6 8 10 12 14 16 18
0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

Session

U
sa

ge
 p

ro
ba

bi
lit

y

Background language
Activity language
Session language
Teacher language

Figure 3.26: The 4-category language usage of the teacher

117

3.4.3 Conclusion

In this section, we introduced a customized topic model to decompose the

spoken speech of a science classroom. Our experimental results show that students

usage of activity language increases over time which is a sign of learning. Such an

approach can be used to investigate the effect of teaching methods or represent an

individual’s progress. However, there are many factors that are not controlled in our

dataset such as the order of session topics or activities over time. Therefore, the

change in the language of students in classroom might have been caused by some

other factors rather than learning. For example, students can be forced to use some

words by some structured questions. Nevertheless, given the observed unstructured

format of the classroom, we conjecture that learning is the strongest factor responsible

for change.

118

CHAPTER 4
LATENT FEATURE NETWORKS

This section pictures a general framework for multi-relational learning — latent

feature network. In the first section, the high-level properties of the proposed model is

described. In the second section, a latent feature network for microarray classification

is presented. Finally, a latent feature network for link prediction in a social network

using side information is presented.

4.1 General model

In latent feature networks (LFN), each relationship is represented by a com-

ponent. Each component is a latent variable model in which the relationship between

two entities is modeled as a function of latent variables. We call these latent vari-

ables latent features since they are expected to represent the intrinsic features of

the entities. If an entity is participating in different relationships, then it will have

different local latent feature variables for each relation. However, different latent fea-

ture variables for an entity are forced to be dependent. This dependency can be an

equality constraint in one extreme — the same latent variable for each relation —

which underfits the data. On the other extreme, these local latent variables could be

independent which results in overfitting the data. The main expected contribution

of LFN is designing a general model for statistical relational learning that can model

arbitrary relation types and is powerful in learning.

Let X
(r,k)
i represent the latent feature variable of entity i with type k for

119

relation 1

X
(1)
Movie X

(1)
User

Y (1)

relation 2

Y (2)

relation 3

Y (3)

relation 4

Y (4)

K1 K2

K3
K4

EMovie

EUser

EMusic

X
(3)
User

X
(4)
User

X
(2)
Movie

X
(2)
Music

X
(4)
Music

X
(3)
Gender

EGender

Figure 4.1: A latent feature network for 4 relations among 4 entity types

relation r. Y
(r)
ij shows the relation between entity i from the first entity type and

entity j from the second entity type participating in r. Y may be fully or partially

observed while X is always hidden. Here, we consider dyadic relations — between

two entity types. Generalizing to n-ary relations is straightforward from the modeling

viewpoint. We define two functions to capture the dependencies among the variables.

The first one is the relation kernel function Kr(X(r,kr1), X(r,kr2), Y (r)) which models the

relationship r between entity type kr1 and kr2. Note that a relationship between entity

i of the first type and entity j of the second type may use latent variables of other

entities rather than i and j as we saw in the co-occurrence data modeling in Section

3.3. Another dependency regards correlation between the same entities participating

120

in different relationships. Let Ek() be a function of X(r,k) for all relations r in which

entity type k participates. This function enforces dependency among the same entities

of type k.

To clarify the notation, we give a fictional example about a multi-context

recommendation system. In this example, entity types are:

1. Movie

2. User

3. Book

4. Gender.

Note that gender is usually considered as feature in machine learning algorithms but

we can model it as a relationship as well. Assume that 4 relation types are observed:

1. Movie-User: rating of a user for a movie

2. Movie-Book: is true if a movie is based on a book

3. User-Gender: gender of a user

4. Book-User: rating of a user for a book.

Using the representative indexes above, X(1,1) and X(2,1) represent the local latent

variables of movies in Movie-User and Movie-Book relationships. X(1,2), X(3,2), and

X(4,2) represent the local latent variables of users in Movie-User, User-Gender, and

Book-User relationships respectively. X(2,3) and X(4,3) represent the local latent vari-

ables of books in Movie-Book and Book-User relationships. X(3,4) represents the

latent variable of gender categories (male and female) for the User-Gender relation-

121

ship. Y (1) is the rating of a user for a movie, Y (2) is one if a movie is based on a book,

Y (3) is the assignment of a gender to a user and Y (4) is is the rating of a user for a

book.

A latent feature network can be represented by a factor graph. Random vari-

able nodes represent latent feature variables X and relationship or observed variables

Y . Function nodes represent relationship kernels K and dependencies between latent

feature variables E .

Figure 4.1 represents a latent feature network for the example explained above.

Movie participates in relations 1 and 2 and therefore a latent variable for each relation

is defined — X(1,1) and X(2,1). Similarly, user participates in relations 1, 3, and 4,

X(1,2), X(3,2), and X(4,2) for each relation. Factor function Kr for r = 1, ..., 4 models

the relationship as a function of latent feature variables. Factor function Ek for

k = 1, .., 3 models the dependency among the latent feature variables of the same

entity participating in different relationships.

Given the defined variables and relations for the latent feature network, the

joint probability distribution over all random variables is given by

P (X, Y,Θ) =
1

Z
exp

(∑
r

Kr +
∑
k

Ek
)

(4.1)

where Z =
∫
X,Y,Θ

exp (
∑

rKr +
∑

k Ek) is the normalizing or partition function. This

may be a sum instead of integral for some relation variables Y . Θ represents the

parameters that might be used in the modeling. In the example in Figure 4.1, the

122

joint probability distribution is

P (X, Y,Θ) =
1

Z
exp[K1(X(1,1), X(1,2), Y (1)) +K2(X(2,1), X(2,3), Y (2))

+K3(X(3,4), X(3,2), Y (3)) +K4(X(4,2), X(4,3), Y (4))

+ E1(X(1,1), X(2,1)) + E2(X(1,2), X(3,2), X(4,2)) + E3(X(2,3), X(4,3))]. (4.2)

Note that some of the parameter variables Θ may exist in any factor.

The main contribution of the latent feature networks is providing a unified

model for learning arbitrary relational data with any number of relations and any

type of relationships. Although a few latent variable models which are capable of

learning multi-relational data have been proposed, they are usually limited to one

type of relationships. Furthermore, one can deduce those models from LFN as LFN

is more general. The most important related work in the literature is collective

matrix factorization [96, 97] which assumes the same latent variable for an entity

that participates in different relationships. Such approach limits the learning power

as different relationships demand different features. LFN resolves this problem by

assuming a latent variable for each relationship, and then it learns the dependency

between relationships.

4.2 Microarray classification

In [60], we proposed a latent feature network for classifying gene expression

microarray data. We use maximum a posteriori estimation to learn the latent features

for the gene expression microarray classification problem. The experiments over a

small dataset are promising as the LFN outperforms SVM — the state-of-the-art

123

xg xs

vsg

ys′c

xs′

xc

ysc

φ2

φ1

φ3

W

NG

NS

NC

s′ 6= s

θG

θS

θC
θW

µW

bg

Figure 4.2: The graphical model of the latent feature network for microarray classi-

fication

classification method in microarray classification.

Because of the availability of huge gene expression microarray datasets, many

machine learning and pattern recognition algorithms have emerged to analyze them

[102]. One of the important applications of gene expression microarray data is in

cancer diagnosis [99]. Here, we try to discover the latent features of entities in a

low-dimensional space via random variable or nodes in the factor graph. That is, for

each entity, a random variable is defined which is latent variable. The relationship

between entities is captured via a function of the latent features — representative

random variables — which is a factor in the factor graph. The graphical model for

the gene expression microarray classification problem, is shown in Figure 4.2 where

124

there are 3 types of entities: genes, samples and cancer categories. xs, xg and xc are

the random variables representing latent features of samples, genes and categories.

Two types of relationships are of interest: expression level (shown by vsg) and samples’

cancer category (shown by ysc). The expression level of a gene for a sample will be

a function of the latent features of the gene and the sample (factor φ1). Similarly,

the cancer category relationship is a function of the latent features of the sample

and cancer categories (factor φ2). To boost classification power, we force similarity

between the latent features of two samples with the same cancer category (factor φ3).

The proposed latent feature network is similar to collective matrix factoriza-

tion [96] in some aspects as we use weighted linear functions for factors. However,

collective matrix factorization is capable of predicting values from several matrices

while the goal of our model is classification. Collective matrix factorization assumes

a generative model from latent features to relationships — a directed graph — which

is limiting, while LFN assumes correlation between latent feature variables — which

can be directed or undirected given the definition of potentials. Therefore, apply-

ing collective matrix factorization to gene expression microarray classification is not

straightforward. However, non-negative matrix factorization has been used for clus-

tering microarray data [16] where the learning is only based on the microarray data

— an unsupervised approach. While this approach is worthwhile since it does not

need labels for training, it is not as powerful as supervised learning approaches.

125

4.2.1 Model

In the latent feature network for microarray classification, we introduce one

random variable per entity. In classification using microarray gene expression data,

there are 3 groups of entities: xs — a (1× d) vector — denotes the latent feature for

sample s, xg — a (1×d) vector — denotes the latent feature for gene g, bg — a scalar

— denotes the bias in expression for gene g, and xc — a (1 × d) vector — denotes

the latent feature for category c. Generally, latent features are vectors with the same

size. However, it is possible to assume different sizes for the entities of different

types. As a result, the relationship between entities can be captured as a function of

entities’ latent feature variables — a factor. Here, two types of relationships exist.

The expression level of each gene g for each sample s, denoted by vsg, and the category

c of each sample s, denoted by ysc which is a binary variable and is one if sample s is

in category c and zero otherwise. For the expression level relationship, we define the

factor as

φ1(xg, xs, vsg) = exp

(
−τ (xgx

T
s + bg − vsg)2

2

)
. (4.3)

Such a factor implies that the distribution over vsg is Gaussian with mean xgx
T
s + bg

and precision (one over variance) τ . For the category relationship, we define the factor

φ2(xs, xc, ysc) = exp(xsWxTc ysc), (4.4)

where W — a (d×d) matrix — is a weight matrix to transfer xs from the microarray

gene expression data space to the classification space. Note that (4.4) resembles the

numerator of the multinomial logistic regression probability. However, they are not

126

equivalent due to our third factor definition. In the third factor, the relationship

between categories and latent features of two different samples is captured with the

factor

φ3(xs, xs′ , ysc, ys′c) = exp

(
xsWW TxTs′yscys′c∑

s′′ ys′′c

)
, (4.5)

where
∑

s′′ ys′′c is a normalizing term for unbalanced categories.

The factor graph representing the explained model is shown in Figure 4.2 via

plate notation. In plate notation, the enumeration over random variables is denoted

by plates. In classification based on gene expression data, there are NG genes, NS

samples, and NC categories. For the relationship between two distinct samples, the

plate with index s′ 6= s is used. The priors over latent features are shown by directed

relationships. The Gaussian prior with mean zero is assumed for all latent variables

(relaxing the zero-mean assumption is straightforward). Each θ in the graphical model

is the precision for the relevant variable where we assumed Multivariate Gaussian with

independent elements. The prior mean of matrix W is the matrix µW .

The probability distribution over all random variables is

P (X,W, Y, V |Θ) =

1

Z
exp(−ατ

∑
gs

(xgx
T
s + bg − vsg)2

2
+(1−α)

(∑
sc

xsWxTc ysc +
∑
s<s′,c

xsWW TxTs′yscys′c∑
s′′ ys′′c

)

− θG
2

∑
g

(||xg||22 + b2
g)−

θS
2

∑
s

||xs||22 −
θC
2

∑
c

||xc||22 −
θW
2
||W − µW ||22), (4.6)

where Z is the partition function and 0 < α < 1 is the weight for combining expression

level factor and classification factor. Such a weighting is necessary since the data is

usually unbalanced — very fat in the gene expression side.

127

For learning the latent features, we only use the samples for which the category

is given — the training set. However, it is possible to use the unlabeled data given the

latent feature network in a semi-supervised learning manner — similar to the work of

Zhu and Ghahramani [111] — which we leave for future directions. Therefore, in the

learning phase, the latent feature parameters are learned given the observed variables

vsg and ysc. Here we use maximum a posteriori probability (MAP) estimation which

is the mode of the posterior distribution over the latent feature variables.

As another strategy, instead of finding the right weight parameter α, we opti-

mize the probability distribution by alternating between the factors for the expression

level and the category. That is, in an iterative way, first we optimize the log-posterior

function over variables xg, bg, and xs based on the factor f1, and then over variables

xs, xc, and W based on the factors f2 and f3. This is because of the fact that based

on the joint probability distribution (4.6), the only common random variable between

f1, f2, and f3 is xs. To make xs satisfy both groups, we update the prior of xs be-

tween alternating. As mentioned, the prior over xs is Gaussian with mean zero and

precision θS. Given x̂s as the output of one half of the algorithm, the prior over xs

will be a Gaussian with mean x̂s/2 and precision θS which is the posterior of the xs

given the first prior and the new received x̂s. That way, the prior mean over xs for

updating based on factor 1 is half of the xs as the output of updating based on factors

2 and 3 and vice versa. We show the updated prior over xs by µs.

For optimizing the log-posterior function based on the first factor, first we

update xg and bg to fit them to the xs coming from factors 2 and 3. The equation for

128

updating xg is

xg = (−
∑
s

(bg − vsg)xs)(
∑
s

xTs xs + θGI)−1 (4.7)

for all g, where I is the identity matrix. The equation for updating bg is

bg =
−∑s(xsx

T
g − vsg)

NS + θG
(4.8)

for all g. The equation for updating xs is

xs = (θSµs −
∑
g

(bg − vsg)xg)(
∑
g

xTg xg + θSI)−1. (4.9)

Optimizing the log-posterior function based on the second and third factors

is more complex due to the difficulty of computing the partition function. This

is because of the exponential growth for summing over all possible ysc variables in

computing the partition function. To remedy this problem, instead of optimizing the

log-posterior function given all variables, we work on the conditional probability of

one sample given the labels for the rest of samples:

P (ysc, X,W |ys′ 6=s,c) = (const)
exp

(∑
c xsWxTc ysc +

∑
s′ 6=s,c

xsWWT xT
s′yscys′c∑

s′ ys′c

)
∑

ysc
exp

(∑
c xsWxTc ysc +

∑
s′ 6=s,c

xsWWT xT
s′yscys′c∑

s′ ys′c

)
exp

(
−θS

2

∑
s

||xs − µs||22 −
θC
2

∑
c

||xc||22 −
θW
2
||W − µW ||22

)
, (4.10)

where const does not depend on any decision variable and sum over ysc means enu-

merating over all categories for sample s. In this phase, we update the variables with

regard to one sample via gradient ascent. The order of going over different samples

is randomized. Note that the xs′ 6=s variables are updated given (4.10) for sample s.

The inside loop for updating xs′ is randomized as well.

129

Input [{ysc}, {vsg}, θC, θS, θG, θW , µW]

Output [{xs},{xg},{bg},{xc},W]

Initialize [{xs},{xg},{bg},{xc},W]

∀s µs ← xs/2

Repeat

Phase 1

Update {xg} using (4.7)

Update {bg} using (4.8)

Update {xs} using (4.9)

∀s µs ← xs/2

Phase 2

Repeat

For s ∈ RandomizedOrder

optimize (4.10) over {xs},{xc},W by gradient ascent

End

Until(convergence)

∀s µs ← xs/2

Until (convergence)

Figure 4.3: Iterative algorithm for microarray classification

The algorithm for learning latent features is presented in Figure 4.3. Note

that we repeat phase 2 until convergence since in phase 1 we use closed-form updates

while in phase 2 we use gradient ascent and changes are slower.

Finally, given the latent feature variables, we can classify test sample t. First,

using

xt = (−
∑
g

(bg − vtg)xg)(
∑
g

xTg xg + θGI)−1, (4.11)

130

we map the sample t in the new space. Then using

P (ytc|Ytrain, X,W) =
exp

(∑
c xtWxTc ytc +

∑
sc

xtWWT xTs ytcysc∑
s ysc

)
∑

ytc
exp

(∑
c xtWxTc ytc +

∑
sc

xtWWT xTs ytcysc∑
s ysc

) , (4.12)

we can predict the class of the sample t.

4.2.2 Experimental results

For experimental evaluation, we used the 9-tumors dataset explained in [99].

In this dataset, there are 60 samples, 5726 genes, and 9 categories. We compared

LFN to SVM as a best known classifier for this problem [99]. LIBSVM [22] was used

for evaluating SVM.

For SVM, we optimized over RBF and polynomial kernels via cross-validation.

The best result was a linear kernel with C = 200. As preprocessing, we tried different

normalizing procedures and for SVM, linear scaling data to [0,1] interval worked best.

For LFN, we optimized over θG = θS = θs = θ (equal θ for all entities for

simplicity of optimization) and θ = 30 gave the best result. The step size for gra-

dient ascent was set to 1.0e − 5. Latent features were initialized using the standard

normal distribution. As preprocessing, we tried different normalizing procedures and

normalizing by dividing data by the standard deviation of each gene worked best.

Due to the small size of the data, we repeated 10-fold cross-validation exper-

iments 10 times — a total of 100 experiments. In each run, data was split into 10

mutually exclusive groups randomly. We did not implement stratified splitting since

it impaired randomness given the small size of the dataset.

The results are given in Table 4.1. We use accuracy — the percentage of

131

correctly labeled samples — for comparing LFN and SVM. LFN outperforms SVM

in all runs and for eight runs the differences were significant at 0.05. In total, LFN

outperforms SVM with p-value equal to 1.4e-10.

run 1 run 2 run 3 run 4 run 5 run 6 run 7 run 8 run 9 run 10 total
SVM 48.33 53.33 53.33 51.67 55.00 55.00 51.67 53.33 51.67 58.33 53.17
LFN 65.00 63.33 71.67 63.33 71.67 68.33 70.00 63.33 66.67 68.33 67.17
p-value 0.002 0.109 0.006 0.044 0.032 0.026 0.009 0.012 0.041 0.130 1.4e-10

Table 4.1: The accuracy results of ten runs of 10-fold cross-validation experiments

(total of 100 runs)

4.2.3 Conclusion

In this section, we propose a novel classification approach for gene expression

microarray classification via latent feature network. LFN assumes a latent feature

variable for each entity — a random variable in a factor graph — and captures the

relationship between entities with a function of the latent feature variables — a factor

in a factor graph.

We use maximum a posteriori probability (MAP) estimation to learn the latent

features for the gene expression microarray classification problem. The experiments

over a small dataset are promising as LFN outperforms support vector machine (SVM)

— the state-of-the-art classification method in microarray classification [99]. We

conjecture that LFN is successful because it behaves as a supervised dimensionality

reduction method. It embeds entities in a low-dimensional dot product space where

132

the samples from the same class are more similar to each other. In comparison to

SVM that uses kernel trick to transfer original space to a dot product space, LFN

constructs the dot product space from scratch using both features and labels.

4.3 Social network analysis

In this section, a latent network model is proposed for link prediction in social

networks. Latent variable models are successful approaches for social network analysis

[48]. A social network consists of social actors and edges between them which usually

convey concepts such as friendship. In latent variable models, individuals are mapped

into a latent space and the relationship between them is a function of the position of

individuals in the latent space.

In this section, we exploit side information for better social network analysis.

Side information might be the interaction of individuals with other entities. One

example is the ratings of individuals for items as we have seen in the collaborative

filtering problem. Here, we propose a latent feature network for modeling a social

network with a side network of bookmarked URLs. We derive a Gibbs sampling algo-

rithm for Bayesian inference and run experiments on a real world dataset — Delicious

dataset1. We use the two networks that exist in this dataset: a bookmarking network

and a social network. Based on the experiments, using both networks significantly

outperforms using only the social network for link prediction.

1http://www.grouplens.org/node/462

133

4.3.1 Model

In the latent feature network for social network analysis, we introduce one

random variable per entity. In link prediction with a side network of bookmarking,

there are two groups of entities: individuals and URLs. We use latent variable X
(1)
i

— a 1 × k1 vector — for features of individual i participating in the social network

relationship, latent variable X
(2)
i — a 1 × k2 vector — for features of individual i

participating in the bookmarking relationship, and Yh — a 1×k2 vector — for features

of URL h participating in the bookmarking relationship. Note that the social network

relationship is modeled by a k1−dimensional latent variable feature space while the

bookmarking relationship is modeled by a k2−dimensional latent feature space. Here,

two types of relationships exist: the friendship between individuals i and i′ denoted

by the friendship link binary variable lii′ which is one if there are friends and zero

otherwise, and the bookmarking relationship between individual i and URL h denoted

by the the bookmarking binary variable bih which is one if user i has bookmarked

URL h and zero otherwise.

The generative model for the proposed model is depicted in 4.4 which is as

follows:

1. Choose precision matrix ΛX ∼ Wishart(W0, ν0)

2. Choose precision matrix ΛY ∼ Wishart(W0, ν0)

3. For each individual i:

(a) chose latent variables

(
X

(1)
i

X
(2)
i

)
∼ N ormal(0,ΛX)

4. For each URL h:

134

W0 ν0

ΛX ΛY

NI

X
(1)
i

X
(1)
i′

i′ 6= i

uii′

lii′

Yh

NH

vih

bih

X
(2)
i

Figure 4.4: The graphical model of the latent feature network for social network

analysis with side information

(a) Choose latent variable Yh ∼ N ormal(0,ΛY)

5. For each pair of individuals (i, i′) where i 6= i′:

(a) Choose latent variable uii′ ∼ N ormal(X(1)
i X

(1)
i′

T
, 1)

(b) Set link variable lii′ =

1 if uii′ > 0

0 otherwise

6. For each pair of individual and URL (i, h):

(a) Choose latent variable vih ∼ N ormal(X(2)
i Yh

T , 1)

135

(b) Set bookmark variable bih =

1 if vih > 0

0 otherwise

Here we use auxiliary random variables uii′ and vih similar to what is used in [2].

The benefit of such a modeling is that the conditional probability distributions are

known which is very helpful in inference. Note that the precision matrix ΛX enforces

transferring knowledge between two different relationships. In the following, we derive

the Gibbs sampling algorithm to derive the posterior distribution of needed statistics.

4.3.1.1 Gibbs sampling

To infer the latent variables we use Gibbs sampling which was explained in

the second chapter. In Gibbs sampling, we need to derive the conditional probability

of each latent variable given the rest of latent variables. The conditional distribution

of precision matrices is as follows:

ΛX |X ∼ Wishart

(
(W0 +

∑
i

XT
i Xi)

−1, NI + ν0

)
, (4.13)

where Xi =

(
X

(1)
i

X
(2)
i

)
, and

ΛY |Y ∼ Wishart

(
(W0 +

∑
h

XT
hXh)

−1, NH + ν0

)
. (4.14)

The conditional distribution of auxiliary random variables uii′ and vih are as follows:

uii′|lii′ , X(1)
i , X

(1)
i′ ∼ 1(uii′ ≥ 0)lii′1(uii′ < 0)1−lii′N ormal

(
X

(1)
i X

(1)
i′

T
, 1
)
, (4.15)

and

vih|bih, X(2)
i , Yh ∼ 1(vih ≥ 0)bih1(vih < 0)1−bihN ormal

(
X

(2)
i Y T

h , 1
)
. (4.16)

136

Finally, the conditional distribution of latent feature variables Yh and Xi are as fol-

lows:

Yh|X(2), v,ΛY ∼ N ormal
((∑

i vihX
(2)
i

)
Σh,Σh

)
, (4.17)

where

Σh = (ΛY +
∑
i

X
(2)
i

T
X

(2)
i)−1, (4.18)

and

Xi|Y,X−i, u, v,ΛX ∼ N ormal
((∑

i′ 6=i uii′X
(1)
i′

∑
h vihYh

)
Σi,Σi

)
, (4.19)

where X−i includes all latent variables X except for Xi and

Σi =

(
ΛX +

(∑
i′ 6=iX

(1)
i′

T
X

(1)
i′ 0

0
∑

h Y
T
h Yh

))−1

. (4.20)

The Gibbs sampling algorithm is depicted in Figure 4.5. First, we iteratively

sample random variables for a specific number of iterations which is known as burn-

in phase. Then we sample needed statistics which are the score of a link score —

X
(2)
i X

(2)
i

T
for each i′ 6= i.

4.3.2 Experimental results

For experimental evaluations, we used a subset of the Delicious dataset. We

sampled from this dataset so that remaining individuals and URLs have enough sup-

port in the social network matrix and the bookmarking network. In the subset, there

are NI = 869 individuals and NH = 2214 URLs. The main goal is predicting the

friendship link between two individuals. For evaluation, for each individual i we ran-

domly selected a friend and eliminated the link from the social network. Then for each

137

Input [{lii′}, {bih}, W0, ν0]

Output [Pr(lii′ = 1)]

Initialize [ΛX,ΛY ,{X(1)
i },{X

(2)
i },{Yh},{uii′},{vih}]

Repeat

Sample ΛX |X

Sample ΛY |Y

∀i<i′ sample uii′ |lii′ , X
(1)
i , X

(1)
i′

∀i,h sample vih|bih, X
(2)
i , Yh

∀h sample Yh|X(2), v,ΛY

∀i ∈ RandomizedOrder sample Xi|Y,X−i, u, v,ΛX

Until (Sufficient samples achieved)

Figure 4.5: Gibbs sampling algorithm for the social network analysis with side book-

marking network

selected link, 50 individuals who were not friends with individual i were randomly

selected. We use metric average rank for evaluation:

AverageRank =

∑
iRank(ji, Si)

NI

(4.21)

where ji is the index of the individual who is friends with individual i and Si is the

set of individuals who are not friends with individual i, and Rank(ji, Si) computes

the rank of the individual with true friendship among all individuals. The rank can

be between 1 and 51.

Here, we compare two algorithms: the LFN algorithm explained in the pre-

vious section which exploits both friendship and bookmarking relationship — shown

by LFN-FB — and an LFN algorithm that only exploits the friendship relationship

138

0 10 20 30 40 50 60 70 80 90 100
16

17

18

19

20

21

22

23

24

25

26

of dimensions

A
ve

ra
ge

 r
an

k

LFN−F

LFN−FB

Figure 4.6: The average rank results for LFN-F versus LFN-FB with different dimen-

sions

with the same setup of LFN-FB but without the bookmarking component — shown

by LFN-F. LFN-F is very similar to the algorithm proposed in [48] but with Probit

model instead of Logit model.

The results are given in Figure 4.6. The lower average rank is better. Using

all dimensions, LFN-FB outperforms LFN-F (significant at p-value< 10−4).

4.3.3 Conclusion

In this section, we derive a model and inference algorithm for social network

analysis with side information. We show that link prediction via latent space models

can be improved by using extra information given latent feature network setup.

139

CHAPTER 5
CONCLUSION AND FUTURE DIRECTIONS

5.1 Summary and conclusion

In this dissertation, we explored using latent variable models for modeling and

analyzing relational learning problems. In Chapter 3, single-relational models were

proposed for tasks such as prediction or visualization. In Chapter 4, we propose

a component-wise latent variable model for learning multi-relational data — latent

feature network (LFN). The path from the single-relational models to LFN may be

considered as bottom-up. We started by learning only one relation in early works and

then moved to multi-relational learning by proposing latent feature networks.

In Sections 3.1 and 3.2, we present two models for collaborative filtering ap-

plications. The dominant latent variable model for collaborative filtering — matrix

factorization — uses dot product. In Section 3.1 we proposed using squared Eu-

clidean distance instead of dot product. Such an approach helps to visualize data,

facilitates fast recommendation generation, and gives an efficient way to include new

users and items in the system. The disadvantage of using Euclidean distance is that

the resulting objective function is harder to optimize. We have not compared these

two mathematically but according to experiments, optimizing the objective function

resulting from using dot product is easier. For example, dot product kernel is not very

sensitive to the initial solution — for iterative algorithms such as gradient descent —

while for Euclidean distance kernel, random multi-start is very helpful.

140

In Section 3.2, a scalable online algorithm is explained for collaborative filter-

ing. Contrary to other latent variable models discussed in this chapter, this model

uses discrete latent variables represented in the format of co-clustering. Given the

combinatorial nature of the resulting problem, we used an evolutionary algorithm for

better results.

In Section 3.3, we propose a novel model for learning co-occurrence data —

latent logistic allocation. The state-of-the-art models in the literature use discrete

latent variables for modeling categorical data including co-occurrence data. In this

work, we showed that we still can use the power of continuous latent variables even

in categorical data. The proposed model outperforms the state-of-the-art algorithms

in several areas. Furthermore, we moved towards a more general model for giving a

flexible framework for non-continuous data.

We present a latent topic model for analyzing the language evolution in a

science classroom in Section 3.4. Contrary to other latent variable models, in this

model, latent variables have real meaning. That is, we used latent variables to resolve

a confusion about hidden variables.

In Section 4.1, we present latent feature network as a general-purpose frame-

work for multi-relational learning. Two specific derivations of LFN were presented in

the following sections. Section 4.2 gives a model for two components: one real-valued

and another categorical for microarray data classification. This is an example of

learning data that can be modeled by propositional learning approaches (e.g. SVM)

with relational approaches. In Section 4.3, a latent feature network for social network

141

analysis with a side network is derived. We employed Gibbs sampling for Bayesian in-

ference. The experimental results show that using the side information can drastically

improve the link prediction task in a social network.

The results presented in Sections 4.2 and 4.3 reveal the usefulness of multi-

relational learning via latent feature networks. In the microarray classification prob-

lem, the fat shape of the feature space — there are only few samples and many

features — causes poor performance of propositional models. On the other hand, the

features are homogeneous entities — different genes. Latent feature network uses this

to transfer all genes to an expression relationship space and then use that space for

better prediction. We conjecture that in many-heterogeneous-features situations, our

method cannot perform as well since the unified space for all features may not be as

effective. In the social network analysis example, we examine transferring information

via latent feature networks. This helps to perform better using the side information

compared to the situation in which we only use directly related information.

5.2 Future directions

The future directions can be divided into 3 modules: modeling, learning and

inference, and applications. The high level of the modeling part is addressed in

Chapter 4. However, more details need to be specified based on a specific application.

Inference and learning is the next module, which is very important. No matter

how perfect the model, lack of a strong inference and learning algorithm results in

failure. Applications are the final module. A good model accompanied with a powerful

142

Modeling

Inference
& learning

Applications

Figure 5.1: Three modules regarding the future directions for improving the latent

feature network

inference engine will have no value if is not useful in real life.

Figure 5.1 represents 3 modules of the future directions. Modeling should be

refined in order to design the inference and learning algorithm. Similarly, inference

and learning is needed to apply the proposed ideas to a problem. However, this is

not a one-way precedence. The lessons learned from designing the inference algo-

rithm may encourage some changes in the model. For example, a repeated observed

overfitting in some type of variables might be resolved with some modeling tricks.

Applications have the potential for improving both the model and the inference al-

gorithm. There may be some relationship types that we have not embedded in the

model. Given an application including the special relationship, we can converge to

a general model. Also, an inference algorithm may not be scalable enough for an

application, demanding a faster but less accurate inference and learning strategy.

143

5.2.1 Modeling

The big picture of latent feature network is explained in the previous chapter.

There are some decisions to make regarding the definition relation kernels K and

entity dependency functions E . For the relation kernel, we might use a dot product

kernel or Euclidean distance kernel as discussed in Section 3.3. Dot product may be

easier for learning while Euclidean distance can be used for visualization (Sections

3.1 and 3.3.3). However, if we assume Gaussian distributions as priors for some

generative parts of the model, then squared Euclidean distance function mixes well

with the Gaussian kernel. Therefore, an exploratory approach about which kernel

helps more in what situation will be helpful. Also, we can try other kernels used by

kernel-based approaches such as support vector machines.

The next function is the dependency function E that enforces correlation be-

tween latent feature variables of the same entity participating in different relation-

ships. For the sake of simplicity, let x1, x2, ..., xn denote the latent feature variables of

the same entity participating in n different relations. Agarwal et al. [1] called these

latent variables, local variables and then they defined a global latent variable for the

entity and assumed a Gaussian generative direction from a linear transformation of

the global variable to the local variables. That is,

xi ∼ Gaussian(Aiz, σ
2
i), (5.1)

where Ai is the linear transformation matrix to move from the global feature z to the

local feature xi but with introducing noise with the strength of variance σ2
i . σ

2
i can

144

be learned from data. Given this generative model, the dependency function is

E(x1, ..., xn) = −
∑
i

1

σ2
i

||xi − Aiz||22 (5.2)

where z, Ai, and σ2
i are subsets of the parameter variables Θ.

Such an approach gives a weak dependency among the local latent variables.

All local variables are conditionally independent given the global latent variable —

the dependency among them flows through the global variable. As a result, it is hard

to model the different degrees of dependency among different pairs of local latent vari-

ables. For example, suppose we want to perform collaborative filtering for the same

set of users in three different contexts: movies, fiction books, and laptops. We ex-

pect that a stronger correlation exists between the latent variables of users in movies

and fiction books context, compared to among the former and laptops. Therefore,

a mutual dependence model captures the specific correlation between pairs of local

latent variables. Such an approach resembles kernel-based approaches which incor-

porate closeness of data records in the feature space. In Section 4.3, the dependency

function can be defined as:

E(x1, ..., xn) = −
(
x1 x2 ... xn

)
Λx

x1

x2

.

.

.
xn

 (5.3)

where the relationship between local latent variables can be learned directly.

Another decision is about the priors over latent feature variables. While the

Gaussian distribution enjoys some attractive traits such as straightforward inference,

assuming exponential families as priors gives a more generalized capability. The choice

145

of priors depends on the assumption on latent feature variables. Categorical latent

variables — e.g. co-clustering in Section 3.2 and latent Dirichlet allocation (LDA)

[11] — require prior distributions such as the Dirichlet distribution.

In our completed work, only dyadic relations are considered. However, there

are some types of relations that exist among 3 different types of entities and breaking

them into dyadic relationships may not be wise. Incorporating an n-ary relation

requires an operator function with more than two operands — a generalized version

of Euclidean distance or dot-product.

In many relational data, there is a relational structure that is essentially dif-

ferent from the relation between two entities. One example is the structure posed

by time. While time can be considered as an entity, the dynamic and linear nature

of time has some intrinsic characteristics that make it a different type of structure.

Another example is sequential data, such as texts in which each word has a pre-

ceding and a succeeding word. Therefore, some properties such as part-of-speech of

each word depends on the properties of its neighbors. The question is how we can

incorporate these structures into the latent feature network model.

Depending on the goal of each relational component in the latent variable

network, a relation might be learned in a discriminative or non-discriminative way. A

discriminative approach is of interest if predicting the relation is the main goal. For

example, in the gene expression microarray classification (Section 4.2), a generative

— non-discriminative — approach was used for learning the expression level while

a discriminative strategy was employed for the categorization problem. The goal

146

is finding strategies that give high discriminative power when needed and efficient

learning capability when discrimination is not required.

Finally, we are interested in addressing the updating of an existing constructed

model for a problem when some new relationships or entities are available. The

component-wise design of latent feature network facilitates adding a relationship by

only assuming a new local latent variable for the new relationship and learning the

correlation between the new local latent variable and other peers. Adding a new

entity type to the system is straightforward since it means no relations exist in the

system for this entity.

In summary the directions for the research regarding modeling are

1. Choice of relationship Kernel function and entities dependency function

2. Choice of priors

3. Modeling n-ary relationships

4. Modeling structural relationships

5. Modeling discriminative learning

6. Updating a system based on the model.

5.2.2 Inference and learning

Exact inference and learning are intractable when there are loops in the graph-

ical model. In latent feature networks there are a lot of loops even if we only consider

one relation. Furthermore, using continuous latent feature variables, computing some

integrals is intractable. Moreover, we are interested in fully Bayesian treatment of

147

latent random variables and parameter variable to give robust results.

Two Bayesian methods — widely used in the graphical models context —

for approximate inference are variational methods and Markov chain Monte Carlo

(see Section 2.1.2). Variation methods define an optimization problem over inference

where the difference between a surrogate probability distribution Q and true posterior

probability distribution P over latent variables is minimized. Based on the definition

of latent variable models, such a problem is non-convex. Let P = 1
Z

exp(XiX
T
j Yij)

denote a simple relationship between two types of entities indexed by i and j and with

the observed relation random variable Yij and T denote transpose. This function is

non-concave, but assuming Xi is constant, we retrieve the exponential family distri-

bution which is concave in the parameters although still non-linear. So far, we used

the simple gradient ascent algorithm in the completed work but some more advanced

numerical optimization methods based on convex analysis have a lot of potential.

Markov chain Monte Carlo algorithms sample the distribution space and es-

timate the needed values via averaging over samples. The mechanism of MCMC al-

gorithms is similar to stochastic heuristic search methods. Although heuristic search

methods mostly have been used in the context of combinatorial optimization prob-

lems, some of them such as simulated annealing has been successfully applied to con-

tinuous problems. Heuristic search ideas have been successfully applied to MCMC

algorithm for guiding the sampling more intelligently. On one hand, we want to sam-

ple from regions with high probability and on the other hand, we do not want to

become stuck in one mode of the probability distribution — a local optimum. An

148

algorithm such as tabu search may be used if we have enough samples of one region

and we do not want to sample from that region anymore. Furthermore, some unob-

served variables are still discrete in the latent feature networks which result in mixed

continuous-discrete problem that suggests using heuristic optimization methods even

more.

Finally, it is possible to combine variation methods and MCMC. MCMC needs

a proposal function which shows the direction to move in the probability solution

space. Via variation methods, we can guide the proposal distribution towards the

true posterior regions.

In summary the directions for the research regarding inference and learning

are

1. using convex analysis for better optimizing the variational objective function

2. using heuristic ideas in Markov chain Monte Carlo

3. combining MCMC and variational inference

5.2.3 Applications

Many machine learning problems can fit into the relational learning frame-

work. The classic transactional flat data can be considered as relational data as well

where each attribute or feature is considered as a relation. Applying latent feature

networks to transactional data is expected to give properties such as robustness to

noise (probabilistic model for each feature), automatic feature selection (no feature

influences classification directly), and robustness to missing values (only some ob-

149

served features are enough to recover the latent feature of a sample). Note that the

microarray classification problem is a flat transactional classification application and

a relational learning model proposed in Section 4.2 works well compared to transac-

tional learning approaches such as support vector machines.

Among those, the following problems seem interesting:

1. collaborative filtering in different contexts with side information [1, 96]: The

recommendation system problem but given different types of products and side

information regarding users and items.

2. Text categorization [110, 74], text data modeling and document categorization

simultaneously

3. Marketing data such as customer targeting [65] where transferring knowledge

between product domains is helpful [109].

4. applications that are used for other models such as rule-based or frame-based

relational learning approaches.

150

REFERENCES

[1] D. Agarwal, B.C. Chen, and B. Long. Localized factor models for multi-context
recommendation. In Proceedings of the 17th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pages 609–617. ACM, 2011.

[2] J.H. Albert and S. Chib. Bayesian analysis of binary and polychotomous re-
sponse data. Journal of the American Statistical Association, pages 669–679,
1993.

[3] B. Anderson and J.B. Moore. Optimal Filtering, volume 1. Prentice-Hall Infor-
mation and System Sciences Series, Englewood Cliffs: Prentice-Hall, 1979.

[4] C. Andrieu, N. De Freitas, A. Doucet, and M.I. Jordan. An introduction to
MCMC for machine learning. Machine Learning, 50(1):5–43, 2003.

[5] A. Banerjee, I. Dhillon, J. Ghosh, S. Merugu, and D.S. Modha. A generalized
maximum entropy approach to Bregman co-clustering and matrix approxima-
tion. The Journal of Machine Learning Research, 8:1919–1986, 2007.

[6] W. Basalaj. Incremental multidimensional scaling method for database visual-
ization. In Proc. Visual Data Exploration and Analysis VI, SPIE, volume 3643,
pages 149–158, 1999.

[7] D. Billsus and M.J. Pazzani. Learning collaborative information filters. In
Proceedings of the Fifteenth International Conference on Machine Learning,
volume 46-53, page 48, 1998.

[8] Christopher M. Bishop. Pattern Recognition and Machine Learning (Informa-
tion Science and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 2006.

[9] D. Blei and J. Lafferty. Correlated topic models. Advances in Neural Informa-
tion Processing Systems, 18:147, 2006.

[10] David M. Blei and John D. Lafferty. Dynamic topic models. In Proceedings
of the 23rd International Conference on Machine Learning, ICML ’06, pages
113–120, New York, NY, USA, 2006. ACM.

[11] D.M. Blei, A.Y. Ng, and M.I. Jordan. Latent Dirichlet allocation. The Journal
of Machine Learning Research, 3:993–1022, 2003.

151

[12] H. Blockeel. Statistical relational learning. Handbook of Neural Information
Processing, 2011.

[13] I. Borg and P.J.F. Groenen. Modern Multidimensional Scaling. Springer New
York, 1997.

[14] G. Bouchard. Efficient bounds for the softmax function, applications to infer-
ence in hybrid models. Advances in Neural Information Processing Systems,
2007.

[15] M. Brand. Fast online SVD revisions for lightweight recommender systems. In
SIAM International Conference on Data Mining, pages 37–46, 2003.

[16] J.P. Brunet, P. Tamayo, T.R. Golub, and J.P. Mesirov. Metagenes and molec-
ular pattern discovery using matrix factorization. Proceedings of the National
Academy of Sciences of the United States of America, 101(12):4164, 2004.

[17] L. Candillier, F. Meyer, and M. Boulle. Comparing state-of-the-art collaborative
filtering systems. Lectures Notes in Computer Science, 4571:548, 2007.

[18] P. Carbonetto. New Probabilistic Inference Algorithms that Harness the
Strengths of Variational and Monte Carlo Methods. PhD thesis, University
of British Columbia, Department of Computer Science, 2009.

[19] P. Carbonetto and N. De Freitas. Conditional mean field. Advances in Neural
Information Processing Systems, 19:201, 2007.

[20] P. Carbonetto, M. King, and F. Hamze. A stochastic approximation method for
inference in probabilistic graphical models. In Advances in Neural Information
Processing Systems, volume 22, pages 216–224, 2009.

[21] Matthew Chalmers. A linear iteration time layout algorithm for visualising high-
dimensional data. In VIS ’96: Proceedings of the 7th conference on Visualization
’96, pages 127–ff., Los Alamitos, CA, USA, 1996. IEEE Computer Society Press.

[22] C.C. Chang and C.J. Lin. LIBSVM: A library for support vector machines.
ACM Transactions on Intelligent Systems and Technology (TIST), 2(3):2–27,
2011.

[23] Robert G. Cowell, A. Philip Dawid, Steffen L. Lauritzen, and David J. Spiegel-
halter. Probabilistic Networks and Expert Systems: Exact Computational Meth-
ods for Bayesian Networks. Springer Publishing Company, Incorporated, 1st
edition, 2007.

152

[24] M.A.A. Cox and T.F. Cox. Multidimensional scaling. Handbook of Data Visu-
alization, pages 315–347, 2008.

[25] T.F. Cox and M.A.A. Cox. Multidimensional Scaling. CRC Press, 2001.

[26] T. Damoulas and M.A. Girolami. Combining information with a Bayesian multi-
class multi-kernel pattern recognition machine. World Scientific Review, 2008.

[27] A.S. Das, M. Datar, A. Garg, and S. Rajaram. Google news personalization:
Scalable online collaborative filtering. In Proceedings of the 16th International
Conference on World Wide Web, pages 271–280. ACM New York, NY, USA,
2007.

[28] J. Dauwels. On variational message passing on factor graphs. In Information
Theory, 2007. ISIT 2007. IEEE International Symposium on, pages 2546–2550.
IEEE, 2007.

[29] N. De Freitas, S. Russell, et al. Variational MCMC. In Uncertainty in artificial
intelligence, pages 120–127, 2001.

[30] S. Deerwester, S.T. Dumais, G.W. Furnas, T.K. Landauer, and R. Harshman.
Indexing by latent semantic analysis. Journal of the American society for In-
formation Science, 41(6):391–407, 1990.

[31] W.S. DeSarbo, D.J. Howard, and K. Jedidi. Multiclus: A new method for
simultaneously performing multidimensional scaling and cluster analysis. Psy-
chometrika, 56(1):121–136, 1991.

[32] L.P. Dringus and T. Ellis. Using data mining as a strategy for assessing asyn-
chronous discussion forums. Computers & Education, 45(1):141–160, 2005.

[33] D. Fisher, K. Hildrum, J. Hong, M. Newman, M. Thomas, and R. Vuduc.
Swami: A framework for collaborative filtering algorithm development and eval-
uation. In SIGIR 2000, 2000.

[34] I.K. Fodor. A survey of dimension reduction techniques.
Technical report, Lawrence Livermore National Labora-
tory,https://computation.llnl.gov/casc/sapphire/pubs
/148494.pdf, 2002.

[35] F. Forbes and G. Fort. Combining Monte Carlo and mean-field-like methods
for inference in hidden Markov random fields. Image Processing, IEEE Trans-
actions on, 16(3):824–837, 2007.

153

[36] B.J. Frey. Extending factor graphs so as to unify directed and undirected
graphical models. In Proc. 19th Conf. Uncertainty in Artificial Intelligence,
pages 257–264, 2003.

[37] B.J. Frey, F.R. Kschischang, H.A. Loeliger, and N. Wiberg. Factor graphs and
algorithms. In Proceedings of the Annual Allerton Conference on Communica-
tion Control and Computing, volume 35, pages 666–680, 1997.

[38] T. George and S. Merugu. A scalable collaborative filtering framework based
on co-clustering. In Proceedings of the IEEE Conference on Data Mining, pages
625–628, 2005.

[39] L. Getoor and J. Grant. PRL: A probabilistic relational language. Machine
Learning, 62(1):7–31, 2006.

[40] L. Getoor and B. Taskar. Introduction to Statistical Relational Learning. The
MIT Press, 2007.

[41] W.R. Gilks, S. Richardson, and D.J. Spiegelhalter. Markov Chain Monte Carlo
in Practice. Chapman & Hall/CRC, 1996.

[42] A. Globerson, G. Chechik, F. Pereira, and N. Tishby. Euclidean embedding of
co-occurrence data. Journal of Machine Learning Research, 8:2265–2295, 2007.

[43] Amir Globerson and Naftali Tishby. Sufficient dimensionality reduction. J.
Mach. Learn. Res., 3:1307–1331, March 2003.

[44] T.L. Griffiths and M. Steyvers. Finding scientific topics. Proceedings of the Na-
tional Academy of Sciences of the United States of America, 101(Suppl 1):5228,
2004.

[45] Antonin Guttman. R-trees: A dynamic index structure for spatial searching. In
SIGMOD ’84: Proceedings of the 1984 ACM SIGMOD International Conference
on Management of Data, pages 47–57, New York, NY, USA, 1984. ACM.

[46] Viet Ha-Thuc and Jean-Michel Renders. Large-scale hierarchical text classifi-
cation without labelled data. In Proceedings of the Fourth ACM International
Conference on Web Search and Data Mining, WSDM ’11, pages 685–694, New
York, NY, USA, 2011. ACM.

[47] D. Heckerman. A tutorial on learning with Bayesian networks. Innovations in
Bayesian Networks, pages 33–82, 2008.

154

[48] P.D. Hoff, A.E. Raftery, and M.S. Handcock. Latent space approaches to
social network analysis. Journal of the American Statistical Association,
97(460):1090–1098, 2002.

[49] Thomas Hofmann. Probabilistic latent semantic indexing. In Proceedings of the
22nd Annual International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, SIGIR ’99, pages 50–57, New York, NY, USA,
1999. ACM.

[50] C.J. Hogger. Essentials of Logic Programming, volume 1. Oxford University
Press, USA, 1990.

[51] F.J. Igo Jr, M. Brand, K. Wittenburg, D. Wong, and S. Azuma. Multidimen-
sional visualization for collaborative filtering recommender systems. Technical
Report TR20003-39, Mitsubishi Electric Research Laboratories, 2002.

[52] Finn V. Jensen. Introduction to Bayesian Networks. Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 1st edition, 1996.

[53] F.V. Jensen and T.D. Nielsen. Bayesian Networks and Decision Graphs.
Springer Verlag, 2007.

[54] M.I. Jordan. Learning in Graphical Models. Kluwer Academic Publishers, 1998.

[55] M.I. Jordan. Graphical models. Statistical Science, pages 140–155, 2004.

[56] M.I. Jordan, Z. Ghahramani, T.S. Jaakkola, and L.K. Saul. An introduction
to variational methods for graphical models. Machine Learning, 37(2):183–233,
1999.

[57] M. Khoshneshin, M.A. Basir, P. Srinivasan, W. N. Street, and B. Hand. An-
alyzing the language evolution of a science classroom via a topic model. In
KDD-2011 Workshop on Knowledge Discovery in Educational Data, San Diego,
CA, August 2011, 2011.

[58] M. Khoshneshin, M. Ghazizadeh, W. N. Street, and J.W. Ohlmann. A memetic
heuristic for the co-clustering problem. In Bionetics, 2010.

[59] M. Khoshneshin and W. N. Street. Incremental collaborative filtering via evo-
lutionary co-clustering. In Proceedings of the Fourth ACM Conference on Rec-
ommender Systems, RecSys ’10, pages 325–328, New York, NY, USA, 2010.
ACM.

155

[60] M. Khoshneshin and W. N. Street. A latent feature factor graph for cancer
diagnosis using microarray gene expression data. In Sixth INFORMS Workshop
on Data Mining and Health Informatics, 2011.

[61] M. Khoshneshin, W. N. Street, and P. Srinivasan. Latent logistic allocation: A
kernel-based approach. Under review.

[62] Mohammad Khoshneshin and W. N. Street. Collaborative filtering via Eu-
clidean embedding. In Proceedings of the Fourth ACM Conference on Recom-
mender Systems, RecSys ’10, pages 87–94, New York, NY, USA, 2010. ACM.

[63] Mohammad Khoshneshin, W. N. Street, and Padmini Srinivasan. Bayesian
embedding of co-occurrence data for query-based visualization. In Proceedings
of IEEE International Conference on Machine Learning and Applications, 2011.

[64] H. Khosravi and B. Bina. A survey on statistical relational learning. Advances
in Artificial Intelligence, pages 256–268, 2010.

[65] Y.S. Kim, W.N. Street, G.J. Russell, and F. Menczer. Customer targeting: A
neural network approach guided by genetic algorithms. Management Science,
pages 264–276, 2005.

[66] R. Kindermann, J.L. Snell, and American Mathematical Society. Markov ran-
dom fields and their applications. American Mathematical Society Providence,
RI, 1980.

[67] A. Knobbe, M. De Haas, and A. Siebes. Propositionalisation and aggregates.
Principles of Data Mining and Knowledge Discovery, pages 277–288, 2001.

[68] D. Koller and N. Friedman. Probabilistic Graphical Models. MIT press, 2009.

[69] Yehuda Koren. Factorization meets the neighborhood: A multifaceted collabo-
rative filtering model. In Proceeding of the 14th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’08, pages 426–
434, New York, NY, USA, 2008. ACM.

[70] S. Kramer, N. Lavrac, and P. Flach. Propositionalization approaches to rela-
tional data mining. Relational data mining, page 262, 2001.

[71] M.A. Krogel, S. Rawles, F. Železnỳ, P. Flach, N. Lavrač, and S. Wrobel. Com-
parative evaluation of approaches to propositionalization. Inductive Logic Pro-
gramming, pages 197–214, 2003.

156

[72] J.B. Kruskal. Nonmetric multidimensional scaling: A numerical method. Psy-
chometrika, 29(2):115–129, 1964.

[73] F.R. Kschischang, B.J. Frey, and H.A. Loeliger. Factor graphs and the sum-
product algorithm. IEEE Transactions on Information Theory, 47(2):498–519,
2001.

[74] S. Lacoste-Julien, F. Sha, and M.I. Jordan. Discriminative learning for di-
mensionality reduction and classification. In Advances in Neural Information
Processing Systems, volume 21, 2008.

[75] J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Prob-
abilistic models for segmenting and labeling sequence data. In International
Conference on Machine Learning, pages 282–289, 2001.

[76] S.L. Lauritzen. Graphical models. Oxford University Press, USA, 1996.

[77] F. Liang, C. Liu, and R. Carroll. Advanced Markov chain Monte Carlo methods:
Learning from past samples. Wiley, 2010.

[78] H.A. Loeliger. An introduction to factor graphs. Signal Processing Magazine,
IEEE, 21(1):28–41, 2004.

[79] A. McCallum, K. Schultz, and S. Singh. Factorie: Probabilistic programming
via imperatively defined factor graphs. In Neural Information Processing Sys-
tems Conference (NIPS), 2009.

[80] A. Morrison, G. Ross, and M. Chalmers. Fast multidimensional scaling through
sampling, springs and interpolation. Information Visualization, 2(1):68–77,
2003.

[81] S. Muggleton. Inductive Logic Programming. Morgan Kaufmann, 1992.

[82] K.R. Muller, S. Mika, G. Ratsch, K. Tsuda, and B. Scholkopf. An introduction
to kernel-based learning algorithms. IEEE Transactions on Neural Networks,
12(2):181–201, 2001.

[83] R.M. Neal. Probabilistic inference using Markov chain Monte Carlo Methods.
Technical report, University of Toronto, Department of Computer Science, 1993.

[84] J. Neville and D. Jensen. Relational dependency networks. The Journal of
Machine Learning Research, 8:653–692, 2007.

157

[85] K. Nigam, A.K. McCallum, S. Thrun, and T. Mitchell. Text classification from
labeled and unlabeled documents using EM. Machine Learning, 39(2):103–134,
2000.

[86] M. Opper and D. Saad. Advanced Mean Field Methods: Theory and Practice.
Massachusetts Institute of Technology Press (MIT Press), 2001.

[87] M. Papagelis, I. Rousidis, D. Plexousakis, and E. Theoharopoulos. Incremental
collaborative filtering for highly-scalable recommendation algorithms. In Proc.
of International Symposium on Methodologies of Intelligent Systems, pages 553–
561. Springer, 2005.

[88] A. Paterek. Improving regularized singular value decomposition for collabora-
tive filtering. In KDD 2007: Netflix Competition Workshop.

[89] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, 1988.

[90] M. Richardson and P. Domingos. Markov logic networks. Machine Learning,
62(1):107–136, 2006.

[91] C. Romero and S. Ventura. Educational data mining: A review of the state
of the art. Systems, Man, and Cybernetics, Part C: Applications and Reviews,
IEEE Transactions on, 40(6):601–618, 2010.

[92] Michal Rosen-Zvi, Thomas Griffiths, Mark Steyvers, and Padhraic Smyth. The
author-topic model for authors and documents. In Proceedings of the 20th
Conference on Uncertainty in Artificial Intelligence, UAI ’04, pages 487–494,
Arlington, Virginia, United States, 2004. AUAI Press.

[93] I.U.A. Rozanov. Markov Random Fields. Springer Verlag, 1982.

[94] H. Rue and L. Held. Gaussian Markov Random Fields: Theory and Applica-
tions, volume 104. Chapman & Hall, 2005.

[95] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Incremental singular value
decomposition algorithms for highly scalable recommender systems. In Fifth
International Conference on Computer and Information Science, pages 27–28,
2002.

[96] Ajit P. Singh and Geoffrey J. Gordon. Relational learning via collective matrix
factorization. In Proceeding of the 14th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’08, pages 650–658, New York,
NY, USA, 2008. ACM.

158

[97] A.P. Singh. Efficient Matrix Models for Relational Learning. PhD thesis,
Carnegie Mellon University, School of Computer Science, Machine Learning
Department, 2009.

[98] Mark K. Singley and Richard B. Lam. The classroom sentinel: Supporting
data-driven decision-making in the classroom. In Proceedings of the 14th In-
ternational Conference on World Wide Web, WWW ’05, pages 315–321, New
York, NY, USA, 2005. ACM.

[99] A. Statnikov, C.F. Aliferis, I. Tsamardinos, D. Hardin, and S. Levy. A compre-
hensive evaluation of multicategory classification methods for microarray gene
expression cancer diagnosis. Bioinformatics, 21(5):631, 2005.

[100] G. Takacs, I. Pilaszy, B. Nemeth, and D. Tikk. On the Gravity recommendation
system. In KDD 2007: Netflix Competition Workshop.

[101] Michael W. Trosset, Carey E. Priebe, Youngser Park, and Michael I. Miller.
Semisupervised learning from dissimilarity data. Computational Statistics and
Data Analysis, 52(10):4643 – 4657, 2008.

[102] F. Valafar. Pattern recognition techniques in microarray data analysis. Annals
of the New York Academy of Sciences, 980(1):41–64, 2002.

[103] M.J. Wainwright and M.I. Jordan. Graphical models, exponential families, and
variational inference. Foundations and Trends in Machine Learning, 1(1-2):1–
305, 2008.

[104] Xing Wei and W. Bruce Croft. LDA-based document models for ad-hoc re-
trieval. In Proceedings of the 29th Annual International ACM Conference on
Research and Development in Information Retrieval, pages 178–185, New York,
NY, USA, 2006. ACM.

[105] Y. Wexler and D Geiger. Importance sampling via variational optimization.
Uncertainty in Artificial Intelligence. Morgan Kaufmann, 2007.

[106] John Winn and Christopher M. Bishop. Variational message passing. J. Mach.
Learn. Res., 6:661–694, December 2005.

[107] J.S. Yedidia, W.T. Freeman, and Y. Weiss. Generalized belief propagation.
Advances in Neural Information Processing Systems, pages 689–695, 2001.

[108] J. Zhang. Visualization for Information Retrieval. Springer Verlag, 2008.

159

[109] Yi Zhang, Samuel Burer, and W. Nick Street. Ensemble pruning via semi-
definite programming. J. Mach. Learn. Res., 7:1315–1338, December 2006.

[110] Jun Zhu, Amr Ahmed, and Eric P. Xing. Medlda: Maximum margin supervised
topic models for regression and classification. In Proceedings of the 26th Annual
International Conference on Machine Learning, ICML ’09, pages 1257–1264,
New York, NY, USA, 2009. ACM.

[111] X. Zhu and Z. Ghahramani. Towards semi-supervised classification with Markov
random fields. Technical report, CMU-CALD-02-106, Carnegie Mellon Univer-
sity, 2002.

	University of Iowa
	Iowa Research Online
	Summer 2012

	Latent feature networks for statistical relational learning
	Mohammad Khoshneshin
	Recommended Citation

	tmp.1352240283.pdf.LyYVj

