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ABSTRACT

Classification is a data mining problem that arises in many real-world applications.

A popular approach to tackle these classification problems is using an ensemble of classifiers

that combines the collective knowledge of several classifiers. Most popular methods create a

static ensemble, in which a single ensemble is constructed or chosen from a pool of classifiers

and used for all new data instances. Two factors that have been frequently used to construct

a static ensemble are the accuracy of and diversity among the individual classifiers. There

have been many studies investigating how these factors should be combined and how much

diversity is required to increase the ensemble’s performance. These results have concluded

that it is not trivial to build a static ensemble that generalizes well. Recently, a different

approach has been undertaken: dynamic ensemble construction. Using a different set of

classifiers for each new data instance rather than a single static ensemble of classifiers may

increase performance since the dynamic ensemble is not required to generalize across the

feature space. Most studies on dynamic ensembles focus on classifiers’ competency in the

local region in which a new data instance resides or agreement among the classifiers. In this

thesis, we propose several other approaches for dynamic class prediction.

Existing methods focus on assigned labels or their correctness. We hypothesize that

using the class probability estimates returned by the classifiers can enhance our estimate

of the competency of classifiers on the prediction. We focus on how to use class prediction

probabilities (confidence) along with accuracy and diversity to create dynamic ensembles

and analyze the contribution of confidence to the system. Our results show that confidence
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is a significant factor in the dynamic setting. However, it is still unclear how accurate,

diverse, and confident ensemble can best be formed to increase the prediction capability of

the system.

Second, we propose a system for dynamic ensemble classification based on a new dis-

tance measure to evaluate the distance between data instances. We first map data instances

into a space defined by the class probability estimates from a pool of two-class classifiers. We

dynamically select classifiers (features) and the k-nearest neighbors of a new instance by min-

imizing the distance between the neighbors and the new instance in a two-step framework.

Results of our experiments show that our measure is effective for finding similar instances

and our framework helps making more accurate predictions.

Classifiers’ agreement in the region where a new data instance resides has been con-

sidered a major factor in dynamic ensembles. We postulate that the classifiers chosen for a

dynamic ensemble should behave similarly in the region in which the new instance resides,

but differently outside of this area. In other words, we hypothesize that high local accuracy,

combined with high diversity in other regions, is desirable. To verify the validity of this

hypothesis we propose two approaches. The first approach focuses on finding the k-nearest

data instances to the new instance, which then defines a neighborhood, and maximizes si-

multaneously local accuracy and distant diversity, based on data instances outside of the

neighborhood. The second method considers all data instances to be in the neighborhood,

and assigns them weights depending on the distance to the new instance. We demonstrate

through several experiments that weighted distant diversity and weighted local accuracy

outperform all benchmark methods.

v



PUBLIC ABSTRACT

In classification problems, observations fall into preassigned groups. Examples include

identifying customers who would buy a product, and detecting whether a credit card expense

is made by a customer. A popular approach to tackle these problems is using a collection of

models that combines the collective knowledge of them. It has been shown that employing

multiple models outperforms a single model. A common approach has been to use the same

collection for all observations, which is also known as the static approach. Recently, there

have been more attempts in using a different collection that is more specialized for each

observation, depending on the features of observations. This is referred to as the dynamic

approach.

In this thesis, we adopt the dynamic approach and explore what sort of character-

istics we would like our models or the collections to exhibit. Two factors have been used

frequently in the literature: accuracy and diversity of models. The second factor is about

how different models are in a collection. In addition to these two factors, we consider a

third one: confidence of models. First, we investigate to what extent confidence can en-

hance the competency of models on the prediction. Second, we propose a new measure in

the dynamic approach to evaluate the similarity between observations. We show that our

measure is effective for finding similar observations and our framework helps making more

accurate predictions. Finally, we return our attention to the diversity factor and analyze

how diversity should be assessed in a dynamic setting.
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1

CHAPTER 1
INTRODUCTION

Data mining is the automatic or semi-automatic process of extracting previously

unknown interesting patterns (i.e. cluster analysis, anomaly detection), or predicting trends

and behaviors (i.e. classification, association rule mining) using large quantities of data.

Data may originate from a variety of sources, so numerous applications of data mining

tasks may be employed depending on the object of interest. Anomaly detection, which

identifies candidates for unusual data, is often used for credit card fraud detection, network

intrusion, and severe weather prediction. To find which products are frequently bought or

bundled together, association learning method such as market basket analysis are suitable

to create an advertisement plan. Another example is cluster analysis, which could be used

to recommend new movies based on consumer preferences or to group genes with related

expression patterns.

Classification is a common data mining task arising in many real-world applications.

In a classification problem, each observation is assumed to be a member in exactly one of k

classes. A classification method then predicts the membership of the observations. Examples

include identifying customers who are likely to buy a particular product in a supermarket or

to select a particular movie, and determining which expenses in an account are fraudulent.

Due to its wide range of applications, there is an extensive literature studying classification

problems [2, 11, 30, 28, 43, 59, 67, 71].

Classifier performance depends heavily on the characteristics of the data. There is no

single classifier that works best on all problems. Therefore, various classification algorithms
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have been proposed. Examples of these algorithms include neural networks [2, 30], support

vector machines [8, 71], k -nearest neighbors [11, 28], naive Bayes [31, 43], and decision tree

[59, 61].

There have been numerous empirical studies that compare classifiers’ performances

[21, 36] and discuss how this evaluation should be carried out [14, 63]. Studies have shown

that it is impossible to model a classifier that perfectly generalizes the data and always

predicts correctly. The no-free lunch theorem also states that “there is no strategy of any

kind that outperforms all others on all problems.” [33]. To solve this issue, the focus has

shifted from building an expert classifier to creating multiple classifier systems, which are also

known as ensemble systems. The goal of the ensemble systems is to improve the performance

of the system in making the right decision, by combining the decisions of multiple classifiers to

reach a final decision. The assumption here is that classifiers in an ensemble compensate each

other’s incorrect predictions, so they decrease the error rate of the whole system. Therefore,

when building an ensemble, each classifier should be different from the others as there are no

gains from having the same classifier multiple times in the ensemble. The accuracy of each

classifier’s decision is expected to show some degree of variability. This issue raises several

questions regarding the characteristics of an ensemble system:

1. How do we generate different classifiers?

2. How can we measure the diversity among classifiers?

3. What is the desired level of diversity for the classifiers in an ensemble system?

4. How do we combine the predictions of the classifiers in an effective ensemble system?

5. How many classifiers are needed to generate an ensemble system?
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6. Should we have a different ensemble for each test instance?

Over the years, several algorithms and methods have been proposed to address each

one of these questions. Breiman’s bagging [3], Freund and Schapires’ boosting [24], and Ho’s

random subspace methods [32] are most common algorithms used for ensemble generation.

Bagging and boosting methods manipulate the training data in order to generate a diverse

ensemble. Bagging generates several training sets by sampling with replacement from the

original training set. Unlike bagging, boosting may use all instances. At each iteration,

it assigns a weight to each instance in the training set that reflects its importance. These

weights are then adjusted per the performance of the classifiers from previous iterations. It

favors instances that are previously misclassified. Rather than choosing or weighting training

samples, the random subspace method [32] modifies the feature space. It randomly selects

features without replacement from original feature set. In all of the cases, the predictions

from all of the members are combined based on some voting scheme.

There have been many empirical studies comparing ensemble generation methods

[1, 17, 66, 60]. These studies compared these three methods and analyzed the conditions

under which each method is more effective. However, there are several issues that remain to

be solved, including how to decide the size of the ensemble and how to control the diversity

among the classifiers. Breiman provided some insights on the size of the ensemble, and some

pruning algorithms have been proposed for Boosting. Hansen and Salamon [29] argue that

if the members of an ensemble perform better than random guessing and they are diverse

enough, then an ensemble performs better than its members. In the last couple of decades,

several studies have proposed diversity measures [7, 12, 29, 32, 62, 78] and have used diversity



4

explicitly to build an ensemble in an attempt to obtain better performance and to control the

size of the ensemble. In bagging and boosting, the growth of an ensemble could be stopped

when diversity and accuracy satisfy a certain condition. Another way of using diversity

explicitly is by adapting the overproduce and choose paradigm [18, 26, 49, 50]. It involves

generating a pool of classifiers and selecting classifiers that are most diverse and accurate

rather than generating a certain number of classifiers to form an ensemble system as in

boosting. Several studies have been conducted to explain the relationship between diversity

and the ensemble accuracy and there have been conflicting results regarding usefulness of

the diversity [6, 13, 35, 39, 42, 68].

After selecting a set of diverse classifiers, the question of how to combine the classifiers

has drawn attention. There are three main strategies: fusion, selection, and stacking. In the

fusion approach, average and majority voting schemes are popular. The selection approach

is based on classifiers’ local competence and it chooses a classifier from the set to label the

input. Unlike these first two approaches, the stacking approach trains another classifier by

using the output of the members of an ensemble and uses its outcome to label the data [74].

Most studies have focused on finding a static set of classifiers that generalizes well

to make a prediction. Recently, there have been studies regarding how to utilize the pool

of classifiers more effectively in the overproduce-and-choose paradigm. Since the classifiers

in the pool are different from each other, it is reasonable to deduce that they are experts in

some region of data. This refers to the last question above regarding a different ensemble for

each test instance, so dynamic classifier and ensemble selection methods have been proposed.

Some of these methods treat the classifiers’ local competence in the region as an indicator
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for classifier confidence to correctly predict the data point [16, 27, 80]. Other methods

use predictions or class prediction probabilities returned by the classifiers to measure the

confidence of an ensemble and to identify which ensemble works best for a given instance

[18, 20, 37, 44, 45]. In this paper, we propose methods to utilize the initial pool of classifiers

to increase the prediction capability of the system. More specifically, we focus on how to use

class prediction probabilities (class supports) returned by the classifiers in the pool to create

dynamic ensembles, to measure similarity between data points, and to measure diversity for

building an ensemble.

The remainder of this paper is organized as follows. We discuss the literature which

explores the improvements in the field of ensemble systems in Chapter 2. Chapter 3 intro-

duces the first method for creating dynamic ensembles. In doing so, we investigate the role

of confidence in dynamic ensemble creation. In Chapter 4, we propose a method to map data

instances to classifier-based space by using the pool of classifiers. We define two distance

measures to evaluate similarity among data instances. Then, we propose a framework for

dynamic class prediction using these measures. In Chapter 5, we return our attention to

diversity among classifiers. Since diversity affects generalization capability of a static en-

semble, we explore to what extent diversity contributes to prediction capability of dynamic

ensembles. Finally, we conclude our results and propose possible future directions in Chapter

6.



6

CHAPTER 2
LITERATURE REVIEW

This chapter explains the improvements in the field of ensemble systems and their

advantages and shortcomings. First, in Section 2.1 we discuss the three ensemble generation

methods used in this dissertation: Bagging, Random Subspace Method (RSM), and Stacking.

In Section 2.2, we describe two base learning algorithms: Support Vector Machine (SVM)

and k -Nearest Neighbor (k -NN). In particular, we choose the SVM method to train the base

classifiers in our experiments, even though Bagging and RSM are designed for and usually

applied to decision trees. We will explain our rationale for the use of SVM as well as the

procedure in Section 2.2.1. Later in Section 2.2.2, the k -NN algorithm is discussed as a new

similarity measure based on class probabilities for data points is proposed in Chapter 4 and

k -NN is used to demonstrate the effectiveness of the measures.

There have been several studies in the literature regarding the factors that contribute

to the generalization ability of an ensemble. The first is the accuracy of the base classifiers.

It is clear that constructing an ensemble with the most accurate classifiers help lower the

generalization error. Furthermore, since classifiers must make different errors in order for

the ensemble to be effective, diversity among the members of an ensemble is also important.

In Section 2.3, we survey the literature for diversity measures and their effectiveness.

As many recent studies have shown, we believe that each test instance should be

treated differently, so we suggest using different classifiers/ensembles to predict the label of

an unknown instance. In Section 2.4, we review some of the important studies on dynamic

classifier and ensemble selection methods.
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2.1 Ensemble Creation Methods

Ensemble creation methods can be divided into three categories based on how base

classifiers are constructed. One way to force a learning algorithm to construct multiple

hypotheses is to run the algorithm several times and provide it with somewhat different data

in each run with a single learning method (e.g., Bagging). Another way is to provide different

training parameters for the learning algorithm (e.g., using different initial weights for each

neural network in an ensemble). A third way is to use a different learning algorithm to

generate diverse set of classifiers using the same data to build an ensemble (e.g., Stacking).

Bagging, Boosting, and Random Subspace methods have been the most commonly used

methods. Several studies compare and contrast their performances and show that they are

most beneficial for regression and decision trees [3, 24, 32].

It was demonstrated that boosting often gives a better performance than bagging,

and the RSM may outperform them both. In Breiman [4], it was stated that bagging and

boosting are useful for unstable classifiers as they reduce the variance of the classifiers.

However, it was shown that a large variance is not a requirement for boosting to be effective.

Here we will only discuss Bagging, Random Subspace Method, and Stacking.

2.1.1 Bagging

The Bagging (bootstrap aggregating) method was proposed by Breiman [3] to gen-

erate diverse classifiers by manipulating the training data. The idea behind bagging is to

sample data with replacement from the original data set and to train a base classifier on

the sample data set. Let X denote the instance space and Y the set of class labels. As-



8

sume Y = {−1,+1}. A training set D = (x1, y1), (x2, y2), ..., (xN , yN) where xi ∈ X and

yi ∈ Y(i = 1, ..., N). Each training sample xi is a p-dimensional vector xi = (xi1, xi2, ..., xip).

The algorithm specified in [3] can be summarized as follows:

Algorithm 2.1 Bagging Algorithm

1. procedure BAGGING PROCEDURE

2. Start with a training set D of N instances.

3. for j = 1 : 1 : M do

4. Uniformly draw N observations with replacement from D.

5. Define the new set of observations as Dj .

6. Construct classifier Cj using Dj .

To classify an observation, use the majority class prediction among the M base classi-

fiers. It has been shown that Bagging is most useful when the learning algorithm is unstable.

In other words, Bagging works primarily with the learning algorithms whose performance

changes with a small change in the training data. Bagging reduces/eliminates the instability

in learning algorithms (variance) and decreases the classification error by averaging base

classifiers’ errors [3].

2.1.2 Random Subspace Sampling

The Random Subspace Method [32] randomly selects subsets of features to be used in

constructing classifiers inside this reduced subspace. More specifically, in the original study

[32], 50% of the available features were selected for each decision tree. 100 decision trees

were created using that method. Given the data description in Section 2.1.1, the algorithm
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specified in [32] can be summarized as follows:

Algorithm 2.2 Random Subspace Sampling Algorithm

1. procedure RANDOM SUBSPACE ALGORITHM

2. Start with a training set D of N instances with p features.

3. for j = 1 : 1 : M do

4. Uniformly draw p∗ < p features without replacement from D.

5. Define the new set of N observations with p∗ features as Dj .

6. Construct classifier Cj using Dj .

The aggregation is performed using weighted voting on the basis of the base classifiers’

accuracy. Ho [32] showed that RSM is most effective when the data set has a large number

of features and sample sizes compared to Boosting and Bagging. The RSM is not good when

the data set has a small number of samples with very few features. Later, Kuncheva and

Whitaker [41] performed an experiment with a systematic partition of a set of 10 features

into three subsets containing (4,4,2) or (4,3,3) features to generate an ensemble with three

base classifiers to investigate what kind of improvement should be expected from an ensemble

based on the best or worst classifier accuracy. Also, Kuncheva and Whitaker [41] used nine

different combination schemes including majority vote and behavior-knowledge space, to

analyze whether the choice of the combination method would be a factor. The experiments

showed that there are no best combinations for all situations and that there is no assurance

that in all cases an ensemble will outperform the single best individual.
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2.1.3 Stacking

Another approach to generate classifiers is by applying different learning algorithms

(with heterogenous model representations) to a single data set. More complicated methods

for combining classifiers are typically used in these settings. Stacking [74] is often used to

learn a combining method in addition to the ensemble of classifiers. In step 1 of Stacking,

classifiers are generated by using different learning algorithms on a single data set. In step

2, a meta-level classifier is learned by using the outputs of the base-level classifiers as the

input attributes. The target attribute remains as in the original data set. Stacking [74]

and SCANN [53] used classifiers’ prediction as the meta-level data. Ting and Witten [69]

extended Stacking by using the probabilities predicted for each possible class by the base

classifiers to form the meta-level classifier. As a meta classifier, a variant of least squares

linear regression adapted for classification tasks was used. It performs worse on multi-class

than on two-class data sets.

Stacking performance can be improved by using output probabilities for every class

label from the base-level classifiers. It has been shown that with stacking, the ensemble

performs (at best) comparably to selecting the best classifier from the ensemble by cross

validation [22].

StackingC [65] is a Stacking variation. StackingC builds a meta model for each class

label unlike Stacking. In StackingC, each base classifier is trained and tested on the output

probabilities returned for that particular class while stacking output probabilities for all

classes and from all base classifiers. The target attribute is modified to represent whether

the data instance belongs to that class label. StackingC is shown to outperform Stacking
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especially for multi-class data sets. The reason is that the dimensionality of the meta data

is reduced by a factor equal to the number of classes. Considering fewer attributes in the

meta data also makes the meta classifier learning phase faster. StackingC also resolves the

weakness of Stacking in the extension proposed by Ting and Witten [69] and offers a balanced

performance on two-class and multi-class data sets.

As mentioned, during the training phase of the base classifier, StackingC uses one-

against-all class binarization. This class binarization is believed to be a problematic method

especially when class distribution is non-symmetric. An alternative to one-against-all class

binarization has been proposed by Lu and Yao [48]. It is called the one-against-one bina-

rization. In this method, a multiple class problem is converted into a series of two-class

problems by training one classifier for each pair of classes, using only training instances of

these two classes and ignoring all others. A new instance is classified by submitting it to

each of the binary classifiers, and combining their predictions. By using this binarization

method, Menahem et al. [52] develop three-stage stacking algorithm named Troika.

2.2 Base Learning Algorithms

As mentioned, the choice of base classifier affects the performance of the ensemble.

Also, it is important to decide which ensemble creation method should be used. Although

most of the early studies focused on decision trees or regression models as the base learning

algorithm, in this section, we will discuss only two learning algorithms: k -Nearest Neighbors

(k -NN) and Support Vector Machine (SVM).
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2.2.1 Support Vector Machine

Support vector machines (SVMs) [71] are considered among the best classification

algorithms; robust and accurate. Its success relies on margin maximization. In a two-class

learning task, the aim of SVM is to find the best classification function to distinguish between

members of the two classes in the training data. For a linearly separable data set, a linear

classification function corresponds to a separating hyperplane f(x) that passes between the

two classes, separating them. Once this function is determined, new data instance xn can

be classified by simply testing the sign of the function f(xn); xn belongs to the positive class

if f(xn) > 0. Because there are many such hyperplanes, SVM chooses the hyperplane that

maximizes the margin between the two classes. This problem can be formulated as:

min
w

{
‖w‖2

2

}
(2.1)

s.t. yi (w · xi + b) ≥ 1,∀i = 1, . . . , l

where w is the vector of attribute weights and yi is the class label of the data point xi.

This formulation can be modified to handle cases where data is not completely linearly

separable. In other words, no matter which hyperplane is drawn to be the decision boundary,

there will always be some data points which will be on the opposite side of the decision

boundary. The “soft margin” approach was introduced by Vapnik [71]. With this approach,

some misclassifications are allowed and SVM tries to minimize the cost associated with them.

Therefore, the modified formulation includes a slack variable ξ, which provides an estimate

of the error of the decision boundary on the training instance. Then, the objective function

is changed to penalize the misclassification to avoid having a wide margin with too many
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misclassifications. The parameter C is user-defined to represent the penalty of misclassifying

the training instances. It is a regularization term, which provides a way to control overfitting:

as C becomes large, the less the training error will be. However, if the value of C is increased

too much, the generalization capability of the classifier will be decreased.

min
w

‖w‖2

2
+ C

N∑
i=1

ξi (2.2)

s.t. yi (w · xi + b) + ξi ≥ 1,∀i = 1, . . . , l

ξi ≥ 0,∀i = 1, . . . , l.

The SVM formulation can also be extended to handle cases where the training in-

stances cannot be separated by a linear decision boundary. This can be done by transforming

data into a new space which will separate the training instances (points) more so that a linear

decision boundary can be drawn in this new space. Performing all the computations in the

transformed space especially finding the similarity (dot products) of two instances could be

problematic. However, the “Kernel trick” is proposed to compute the dot product of training

instances, Φ(Xi) · Φ(Xj), in the transformed space using the original attribute set, where

Φ(X) is a nonlinear mapping function applied to transform the training instances. Simply,

computing the dot product on the transformed data instances is equivalent to applying a

kernel function to the original data. Many approaches have been proposed on how to define

the kernel functions [64].

min
w

‖w‖2

2
(2.3)

s.t. yi (w · Φ(xi) + b) ≥ 1,∀i = 1, ..., l.



14

Even though SVM is computationally inefficient, it is stable, performs well, and can

be used for ranking elements [76].

2.2.2 kNN: k -N earest N eighbor Classification

Given a training set D and a new instance (t), k -nearest neighbor classification [11, 28]

calculates the distance of the test instance to the training instances (xi ∈ D), finds a group

of k data points in the training set that are “closest” or “most similar” to the test instance,

and the class labels of these nearest neighbors are then used to determine the predicted class

label of the test instance. Given the data description in Section 2.1.1, the algorithm can be

summarized as follows:

Algorithm 2.3 kNN Algorithm

1. procedure kNN PROCEDURE

2. Given a data instance,t, a training set D of N instances and a distance function, f.

3. for i = 1 : N do

4. Calculate the distance between (xt, yt) and (xi, yi).

5. endfor

6. Find the k closest instances to the new instance t.

7. Define the set of k closest observations as Dt.

8. Calculate the predicted label ŷt = argmaxz
∑

(xi,yi)∈Dt
I(z = yi)

There are several key issues that affect the performance of k -NN: the value of k, the

distance measure, and the fusion method. The choice of k is important because if k is a very

small number, then the result can be sensitive to noise. On the other hand, if k is a very large

number, then the neighborhood defined for the test instance may include many instances from
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other class labels. Another issue is the choice of distance measure (e.g. Euclidean distance,

cosine similarity, Pearson’s correlation). The distance measure should be chosen carefully

as it affects the neighborhood of the test instance. This choice should be done based on the

attribute data types, correlation between attributes, and homogeneity of the attributes [67].

For instance, if the data has all binary attributes then using Jaccard similarity may be more

appropriate. However, if the data is sparse, cosine similarity may provide more information

regarding similarity between two instances.

Some distance measures can also be affected by the high dimensionality of the data. In

particular, it is well known that the Euclidean distance measure become less discriminating

as the number of attributes increases. In case of the attributes having different scales, a

standardization method should be used to prevent distance measures from being dominated

by one of the attributes. Sometimes, the attributes in the data have different data types.

A general approach to solve that issue is computing similarity between data points for each

attribute separately and then using the average of all of similarities to find the overall

similarity. In short, the type of distance measure should fit the type of data.

Another issue that affects the performance of k -NN is the approach to combining the

class labels. The simplest method is to take a majority vote, but this can be a problem if

the nearest neighbors vary widely in their distance as closer neighbors may be more reliable

in terms of indicating the class label of the test instance. Weighing each neighbor’s vote by

the reciprocal of its distance to the test instance is more desirable and less sensitive to the

choice of k. Also, attributes may have to be scaled to prevent distance measures from being

dominated by one of the attributes.
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k -NN classifiers are lazy learners, that is, models are not built explicitly unlike decision

trees, SVMs, etc. Thus, classifying a test instance is costly since it requires the computation

of the distance of the test instance to all the instances in the training set to find the k nearest

neighbors of the test instance. A number of techniques have been developed for finding the k

nearest neighbors efficiently. Although there are some challenges associated with the k -NN

algorithm, it is still desirable since it is easy to understand and to implement. In addition,

there are no underlying assumptions regarding the distribution of the data. Despite its

simplicity, it can perform well in many situations. The results of the study by [11] shows

that the error of k -NN method asymptotically approaches that of the Bayes error as N goes

to infinity.

2.3 Diversity

Ensembles of classifiers have garnered great interest in recent years as it has been

shown by several studies that, both theoretically and empirically, they can outperform sin-

gle classifiers when the members of the ensemble are as accurate as possible and make few

coincident errors. Since it is highly unlikely to train the perfect classifier that makes no

errors, we need an ensemble of classifiers in which members make different errors to com-

plement each other. For instance, Zhang et al. [78] demonstrated that an ensemble of three

identical classifiers with 95% accuracy is worse than an ensemble of three classifiers with

67% accuracy and least pairwise correlated error. Due to this reason, diversity among the

ensemble members is crucial for having fewer prediction errors.

There are several methods proposed in the literature to generate a diverse set of clas-
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sifiers. These studies can be divided into two categories based on how they create diversity

in an ensemble: implicitly and explicitly. Methods such as Bagging [3], Boosting [24], and

Random Forest [4] introduce diversity by sub-sampling or re-weighting the training instances

for the base classifiers. Two problems with these methods are that it is hard to decide how di-

verse the classifiers are and what the ensemble size should be. Due to this reason, measuring

diversity and controlling it to increase the performance of an ensemble have become impor-

tant. To answer the first question, several diversity measures have been proposed, some of

which are borrowed from statistics, including disagreement measure, Q-statistics, and double

fault. Some of the diversity measures proposed in the literature are Kohavi-Wolpert [38],

generalized diversity [57], interrater agreement [23], measure of difficulty [29], conditional

double fault [78], etc.

To answer the second question, the following studies focused on using diversity in

the process of pruning an ensemble or building an ensemble. Ensemble pruning methods

build a pool of classifiers and chooses a subset of individual classifiers from this pool to

form a smaller ensemble for prediction. The classifiers in this new ensemble need to be

carefully chosen so that it will perform similar to or better than the original ensemble. This

problem is NP-hard as there are 2M − 1 possible subsets of an ensemble of size M . Several

studies related to ensemble pruning formulated it as mathematical or optimization problem

[56, 55, 78, 79]. Studies in this field mainly differ from each other based on the choice of

the diversity measure, the search algorithm, and the fitness function for leading the search.

For example, [50] considered Kappa statistics. However, Giacinto and Roli [26] used the

Q-statistic as a diversity measure. Zhou et al. [79] employed genetic algorithms and Fu
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et al. [25] used particle swarm optimization to select an optimal set of individual neural

networks.

Margineantu and Dietterich [50] suggested a Kappa-error plot for which diversity of

every pair of classifiers in an ensemble is plotted against average of the individual errors of

the two classifiers. This plot showed that best pairs are the ones with low errors and high

diversity. However, the shape of the curve also revealed that there is a trade-off between the

accuracy of the pair and its diversity. So, the success of ensemble pruning methods lies in

balanced accuracy/diversity trade-off, where choosing only the most diverse classifiers or the

most accurate individual classifiers to form the sub-ensemble decreases the generalization

capability.

Despite the fact that ensemble pruning methods discussed here increased the per-

formance of the system, a pool of classifiers and an effective search strategy are needed for

these methods, which are time consuming. Several studies have been proposed to explicitly

integrate diversity into the ensemble building. Liu et al. [47] simultaneously train neural

networks in an ensemble using negative correlation learning to make individual networks

negatively correlated, hence diverse. Opitz et al. [56, 55] first create an initial set of net-

works, then produce new networks by crossing over the nodes of two networks and adding

new nodes to the child networks as a mutation step to increase the diversity of the popula-

tion. To guide the search they use an objective function that incorporates both accuracy and

diversity terms. Rather than focusing on the model parameters, Tumer et al. [70] reduce the

correlation between classifiers in an ensemble by exposing them to different feature subsets.

M classifiers are trained, one corresponding to each class in an M -class problem. For each
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class, a subset of features that have a low correlation to that class is eliminated. The degree

of correlation between classifiers is controlled by the number of features that is eliminated.

Zenobi and Cunningham [77] also build ensembles based on different feature subsets. In

their approach, feature selection is done using a hill-climbing strategy based on classifier

error and diversity. A classifier is rejected if the improvement of one of the metrics leads to

a considerable decrease of the other per a pre-set threshold.

Melville and Mooney [51] proposed a method called DECORATE which increases

diversity of an ensemble by making use of artificial data to train the base classifiers. At each

iteration, DECORATE generates artificial data based on the performance of the current

ensemble’s response. More specifically, the labels for these artificially generated training

instances are chosen so as to differ maximally from the current ensemble’s predictions. Then

artificial data is added to the original training data to train a new classifier. They compared

the diversity with the ensemble error reduction, i.e., the difference between the average error

of the ensemble members and the error of the entire ensemble by computing Spearman’s

rank correlation between the two. It was claimed that the fairly strong correlation between

the two is another indication for increasing ensemble diversity to reduce generalization error.

Even though there have been several studies related to diversity, there is no agreed

upon diversity definition in the literature. This shifted the focus from how to generate

diverse ensembles to how these measures relate to each other and how they affect accuracy.

To answer that question, the relationship between ensemble performance and diversity has

been put under a microscope. Kuncheva et al. [42] compared ten diversity measures. All of

the measures are based on oracle outputs and the majority vote rule. The Oracle output only
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concerns whether a sample is classified correctly or not. Hence, the Oracle output provides

a general model for analyzing a classifier ensemble, and conclusions drawn on this model

can be easily generalized to various ensemble learning methods. Kuncheva et al. found that

these measures are highly correlated. However, they could not reach a conclusion on how to

utilize diversity for the production of effective classifier ensembles.

Later, Tang et al. [68] presented an in-depth analysis of six of the diversity measures

discussed in [42] and showed their relationship with the minimum margin of an ensemble.

They analyzed how generalization of an ensemble changed with respect to diversity when

the average accuracy of the base classifiers is fixed, and how diversity and the average base

classifier accuracy interact with each other. Based on the experiments, the claim was that

exploiting diversity measures to seek diversity explicitly is ineffective. First, the change of

measured diversity cannot provide consistent guidance on whether a set of base classifiers has

good generalization performance. Second, the diversity measures are negatively correlated

to the average accuracy of the base classifiers. Finally, it was shown that if the average

accuracy of the base classifiers is regarded as a constant and the maximum diversity is

achievable, maximizing the diversity among the base classifiers is equivalent to maximizing

the minimum margin of the ensemble on the training samples. Since the true distribution

of the data is unknown, it was suggested that like SVM a diversity measure should contain

a regularization term and all of the discussed diversity measures contain no regularization

term. Therefore, even if these existing diversity measures can be maximized, the achieved

ensemble may overfit.

Kapp et al. [35] also investigated the relationship between diversity and margin theory
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from the perspective of which margin definition is used. There are three main measures

related to margin theory: minimum margin, cumulative margin distributions, and average

margin. They show that individual performances of the base classifiers is one factor that

contributes to the overall ensemble performance, but it is not sufficient. Thus, some diversity

is needed to get the highest majority vote performance. Experimental results showed that

the average margin is stable and minimum margin is unstable. But, maximizing average

margin chooses the ensembles with the strongest individual members in a given pool. This

leads to low diversity as the base classifiers chosen in this manner will be very similar.

Rather than using average margin, it is recommended using Chebyshev’s inequality (CI )

which states that probability of error should be less than the variance of margins divided by

average margin squared. This implies that the ensembles must be sufficiently confident on

their decisions with a certain majority vote, at least 50% in average.

De Olivieria et al. [13] addressed the accuracy/diversity dilemma for heterogenous en-

sembles using single and multi-objective GA approaches for analyzing accuracy and diversity

separately, and jointly. The Q-statistic is used to measure diversity of the ensemble. It was

concluded that similar to homogeneous systems the combination of diversity and accuracy

can lead to more accurate ensemble systems, when compared with these two parameters in-

dividually. Even though these studies attempted to show the relationship between accuracy

and diversity and to answer how much diversity is enough, these questions are not completely

answered.

Hsu and Srivasta [34] changed the direction of the focus and analyzed the relation-

ship between diversity and correlation of the classifiers instead of ensemble accuracy. The
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relationship between diversity and correlation of the classifiers in ensembles was analyzed

theoretically and formulated in a nonlinear function. They were able to derive a critical

value for disagreement measure. It was shown that before the critical value, higher diver-

sity reduces correlation which is usually associated with a better ensemble. When diversity

crosses the critical point, increasing diversity increases the correlation while highly correlated

classifiers usually correspond to an inferior ensemble. Brown [5] investigated the relationship

between accuracy and diversity by decomposing the ensemble’s mutual information into ac-

curacy and diversity terms and showed that the diversity of an ensemble exists at multiple

orders of correlation. However, estimating the interaction of these multiple correlations is

complicated and there is no proposal for applying this in practice. Later good and bad

diversity concepts were introduced, and their relationship with the upper/lower limits were

defined on majority voting error by Brown and Kuncheva [6]. Here, the majority vote error

is divided into three components: average individual accuracy, “good” diversity and “bad”

diversity. The two diversity terms are related to the majority vote limits. Good diversity is

derived to be the number of incorrect votes when the ensemble is correct. On the other hand,

bad diversity is the number of correct votes when the ensemble is incorrect. They argued

that a diversity measure should be naturally derived as a direct consequence of two factors:

the loss function and the combiner function. It is recommended to construct algorithms like

DECORATE as using artificially constructed data examples produces diversity in majority

voting by making the individuals disagree wherever possible with the ensemble.
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2.4 Dynamic Ensemble Selection

Most existing methods construct static ensembles, in which only one ensemble is

chosen from a pool of classifiers and is used for all new data instances. Recently, there

have been studies in which each new data instance is treated individually. Since different

instances are often associated with different classification difficulties, it is hypothesized that

using different classifiers for the classification task rather than a single static ensemble of

classifiers can increase performance. Earlier studies regarding this dynamic scheme focus on

selecting a classifier based on different features or different regions of the instances defined

based on similarities among them [16, 15, 27, 42, 75].

Woods et al. [75] proposed a method called Dynamic Classifier Selection by Local

Accuracy (DCS-LA) which estimates each classifier’s accuracy in a local region of the original

feature space surrounding the new instance, and then use the decision of the most locally

accurate classifier. The DCS method proposed in [27] differs from the DCS-LA with respect

to how the local region of a new instance is defined. Giacinto and Roli [27] defined the

similarity between two data instances in the classifier-based space, also known as multiple

classifier behavior (MCB). The defined similarity measure considers the number of classifiers

which assign the same label to the instances. This measure is later referred as Template

Matching (TM) in [9]. The training instances that are more similar to the test instance

than some threshold value are selected to form the local region of the new instance. As the

performance of these two studies were affected by the choice of k, Didaci and Giacinto [15]

investigated the benefits of using an adaptive metric, DANN , for finding neighbors of a new

instance, and a dynamic choice of the value of k. Based on their experimental results, it was
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shown that the performance of DCS-LA based on local accuracy estimates can be improved

by using an adaptive metric instead of Euclidean or city block distances.

These studies [75, 27, 15] showed the effectiveness of the DCS-LA approach. However,

it was outperformed by the oracle. Didaci et al. [16] claimed that the performance of an

oracle was not a realistic upper bound to compare the DCS-LA’s performance against. Thus,

they proposed three upper bounds for DCS-LA to provide a more realistic limit. Oracle k -

best upper bound exhibits the maximum accuracy attainable using the considered selection

mechanism, under the assumption that, for each new instance, the optimal size of the local

region can be estimated correctly. On the other hand, oracle k -bestAV E makes the assumption

that the optimal k parameter for the LA could be estimated. Oracle θ-bestAV E is similar to

oracle k -bestAV E but it is for the adaptive distance metric. It was shown that the considered

DCS-LA methods performed close to the proposed upper bounds. Also, results demonstrated

that a size-adaptive local region can boost the performances of DCS-LA mechanism.

To speed up the process of defining the neighborhood of a given test instance, Zhu

et al. [80] proposed a method called Attribute-Oriented Dynamic Classifier Selection (AO-

DCS). This method first statistically partitioned the evaluation set into disjoint subsets

by using the attribute values of the instances. In other words, for a given attribute, the

evaluation set is divided into disjoint partitions and this step was repeated for all attributes.

Then, the performance of the trained classifiers on these disjoint subsets was calculated.

Finally, based on new instance’s attribute values, the corresponding disjoint subsets were

decided and the “best” performing classifier on these subsets was selected to classify the

test instance. Kuncheva [39] took a similar approach by combining Cluster and Select, and
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Decision Templates. In [39], data is first divided using K -means clustering and trained base

classifiers are evaluated on these clusters. Unlike [80], it was argued that the classifier which

performs statistically significantly better than all the other classifiers should be considered

as a local expert. For each cluster, it was determined whether the best classifier is dominant

in the region by looking at the confidence interval overlap between the best classifier and the

other classifiers. If there is no overlap, the best classifier is in charge of making predictions

for that cluster. For those clusters which do not have dominant classifiers, the Decision

Templates model is presented in [40]. However, the results show that the proposed scheme

is not better than the performance of the nearest neighbor classifier.

Similar to the static classifier selection methods, the drawback of these methods is

that the choice of a single individual classifier over the rest depends on how much we trust

in that classifier’s performance. If that classifier makes an incorrect decision, we will not be

able to correct that decision. In addition, the choice of k and the distance measure affect the

performance of the DCS- based methods. Therefore, a dynamic ensemble selection (DES)

approach has been proposed by later studies.

In [19], it was assumed that the degree of agreement among the members of an

ensemble represents a high confidence level of classification. Instead of searching for an

ensemble for each instance point from a pool of classifiers, Dos Santos et al. [19] integrated

an optimization step into their experiments. First, a set of candidate ensembles is populated

from a large initial pool of candidate classifiers using single and multi-objective genetic

algorithms. To guide the search, the error rate and four diversity measures were applied

to find the best performing N ensembles. Then, for each new example the ensemble with
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highest degree of agreement among its members (lowest ambiguity) was chosen from the

candidate ensembles to make the prediction. It is shown that this method outperformed the

DCS methods but not the best candidate ensemble (static selection). Dos Santos et al. [20]

extended this study by using two more measures as a second-level objective after optimizing

on accuracy and diversity: “Margin” and “Strength relative to the closest class”. Margin

is defined as the difference between the number of votes assigned to the two classes with

the highest number of votes. However, Strength relative to the closest class normalizes the

Margin by dividing it by the performance of the candidate ensemble on the validation points

with the assigned class label. The proposed methods outperformed the static selection and

the fusion of the initial pool of classifiers. The performance of both [19] and [20] depend on

the quality of the ensembles generated in the optimization step. In addition, the data set

needs to be divided into four parts to apply these methods which is not suitable for small

data sets. Furthermore, using only the candidate ensembles generated in the optimization

step could be limiting as it was shown that there was a decrease in the oracle power of the

system.

Ko et al. [37] proposed KNORA which, for any new instance, finds its nearest k

neighbors in the validation set using the original feature set, and dynamically chooses an

ensemble for each new instance based on the estimated accuracy of the classifiers in this

local region of a new instance. More specifically, this method chooses all of the classifiers

that correctly classified at least one of the neighbors (or all of the neighbors) for creating

the ensemble. This method was compared against DCS methods proposed in [16, 75] and

a single k -NN classifier. The variant of KNORA which chooses all of the classifiers that
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correctly classified all of the neighbors performed better than the compared methods.

Following this approach, Cavalin et al. [9] adopted a hybrid framework. They used

the confidence measure defined in [20] to build the ensembles. However, when the confidence

value of any of the candidate ensembles was not enough (above a pre-set threshold), it

searched for the “closest” or “most similar” instance to the new instance in the validation

set and assigned its label to the new instance. To measure closeness (similarity), two methods

were proposed based on classifiers’ predictions for the instances in the validation set and for

the new instance. The results showed integrating contextual information helped improving

the performance of the system.

Recently, Li et al. [46] argued that the most confident M classifiers should be used to

create the ensemble for classifying the new instance. The decision of classifiers are weighted

by their class prediction probability (confidence) values for the new instance. Unlike our

methods discussed in Chapter 3, M is estimated by using margin distribution defined by

classification confidence.

Rather than defining confidence of an ensemble, Woloszynski and Kuryzynski [73]

proposed a method for calculating the classifier competence using a probabilistic model. New

instances are classified using each base classifier, and then a randomized reference classifier

(RRC) is created that produces, on average, the same vector of class supports for that

instance as the base classifier. Using the probability distribution information encapsulated

in the RRC model, a “competence” value is then calculated for each classifier on each new

instance. This competence measure represents the quality of the classifier’s decision based

on the relative values returned in the class support vector. DCS — selecting the single most-
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competence classifier — and DES — building an ensemble of all classifiers more competent

than a random classifier — schemes were proposed. Further, two variants of DES were

implemented: DES-CV, in which each classifier’s vote is weighed by its competence, and

DES-CS, in which each classifier’s class support vector is weighed by its competence. The

proposed methods were compared against other dynamic schemes, including [16, 20, 75]. It

was shown that the DES-CS had higher average rank than the others.

Vriesmann et al. [72] focused on improving the KNORA method proposed in [37].

First, the effect of using different distance measures for defining the local region of a test

instance on accuracy was investigated and [72] concluded that the choice of distance measure

had no effect on the performance of KNORA. Then, different strategies were proposed for

combining the information obtained from k neighbors of the new instance and the output

of KNORA. These strategies differed in which method should be used conditional on one of

the methods meeting a certain criteria. Based on the experimental results, [72] suggested

that additional information provided by the k -NN improved the performance of KNORA.

In Chapter 4, we hypothesize that using class supports returned by classifiers and

the information retrieved from the neighborhood of a new instance together will improve the

performance of the system. This was supported by the results presented in [9, 72].
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CHAPTER 3
THE ROLE OF CONFIDENCE IN DYNAMIC ENSEMBLES

Classifier ensembles, in which multiple predictive models are combined to produce

predictions for new data instances, generally outperform a single classifier. Most existing

methods construct a static ensemble, which features a single collection of classifiers for all

new instances. Recently, dynamic ensemble construction algorithms have been proposed; we

discuss the relevant literature in Chapter 2. These algorithms choose an ensemble specifically

for each data instance from a large pool of classifiers. To compare and contrast the benefit

of dynamic ensemble selection, two factors have been commonly used: the accuracy of the

individual classifiers and the diversity of the ensemble.

Performance of the ensembles is evaluated based on their accuracy, on the unknown

data instances (i.e. test instances), which is referred to as generalization. “Acc”, which mea-

sures the average accuracy of individual classifiers on the validation dataset, is not necessarily

the best indicator of generalization. We hypothesize that using the class probability esti-

mates returned by the classifiers can enhance our estimate of the competency of classifiers on

the prediction. Therefore, ensembles composed of accurate, diverse, and confident classifiers

should improve generalization since having classifiers that make accurate prediction with

high probability increases reliability of an ensemble, and diverse classifiers can compensate

each other’s incorrect predictions. We employ heuristic optimization, prediction ranking,

and logistic regression methods to examine the relevance of this third factor: the confidence

of each classifier’s prediction on a specific data instance. Since the confidence of a classifier

depends on the data instance, incorporating it into our ensemble selection process requires
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dynamic ensemble selection.

3.1 Dynamic Ensemble Construction using Heuristic Search Methods

Given a set of classifiers, C, which have already been trained in the overproduction

phase, heuristic search algorithms are employed to find the best subset of classifiers in the

selection phase. In this optimization problem, two important aspects are to be analyzed: (1)

the search objective and (2) the search algorithm.

For the search algorithms, we model classifier selection as a multi-objective optimiza-

tion problem (MOOP) or a Pareto optimization problem, rather than combining objectives.

A MOOP is an optimization problem with multiple objective functions and in general a single

solution will not be better than all other solutions with respect to all objectives. Therefore,

our aim is to find the tradeoffs among multiple, usually conflicting objective functions. In

a MOOP, a solution s1 is said to dominate another solution s2 if s1 is no worse than s2 on

all the objective functions and if s1 is better than s2 in at least one objective function. The

set of non-dominated solutions represent different tradeoffs between the multiple objective

functions and are referred to as the Pareto front.

Our ensemble construction problem is described as follows: For a given data instance

t and an existing pool of component classifiers C = {Ca | a = 1, . . . ,M}, find the best subset

of classifiers to create an ensemble of classifiers E ⊆ C with size N :

max
E
{Acc(E), Div(E), Conf(E, t)} (3.1)

s.t. |E| = N (3.2)

where the term |E| refers to the ensemble size. In this optimization problem, we attempt to
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Table 3.1: An example of the role of diversity in ensemble prediction (majority
voting)

Classifiers with 70% Accuracy Classifiers with 80% Accuracy

Data Instance C1 C2 C3 Prediction C1 C2 C3 Prediction

v1 1 1 1 1 1 1 1 1
v2 1 1 0 1 1 1 1 1
v3 1 1 0 1 1 1 1 1
v4 1 1 0 1 1 1 1 1
v5 1 0 1 1 1 1 1 1
v6 1 0 1 1 1 1 1 1
v7 1 0 1 1 1 1 1 1
v8 0 1 1 1 1 0 0 0
v9 0 1 1 1 0 1 0 0
v10 0 1 1 1 0 0 1 0

Accuracy 0.7 0.7 0.7 1.0 0.8 0.8 0.8 0.7

simultaneously optimize three separate objectives, which we explain in more detail below.

The first objective is the ensemble accuracy, denoted by Acc(E). To calculate this

measure, we first evaluate each classifier’s performance, denoted by Ca on a validation set:

Acc(Ca) represents the percentage of times classifier Ca correctly predicts data instances in

the validation set. The ensemble accuracy, Acc(E), is then the average of these individual

accuracies for the classifiers in the ensemble. This simple objective may be sufficient by itself

at times, but it is theoretically weak. For instance, an ensemble of three similar classifiers

with 80% accuracy may perform worse than an ensemble of three diverse classifiers with an

average accuracy of 70%. Table 3.1 illustrates such a case. Even though the ensemble with

similar classifiers has Acc(E) = 80%, generalization of the ensemble could be lower than

the individual classifiers’. On the other hand, the ensemble with more diverse classifiers has

Acc(E) = 70% accuracy but perfect generalization because they can compensate for each

other’s misclassifications and achieve higher generalization.

The second objective is the ensemble diversity, denoted by Div(E). We calculate
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the ensemble diversity on the validation dataset using the conditional double fault method

proposed in [78]. The pairwise similarity between classifiers Ca and Cb is defined to be the

average probabilities of classifier Ca misclassifying a data instance given that classifier Cb

misclassifies it, and vice versa. Pairwise diversity between Ca and Cb is calculated as follows:

Divab = 1− Pr (Oi,a = 0|Oi,b = 0) + Pr (Oi,b = 0|Oi,a = 0)

2
(3.3)

where for m = a, b; Oi,m =


1, if classifier Cm is correct on data instance i,

0, otherwise.

(3.4)

The third objective is the ensemble confidence. The ensemble confidence is a function

of the individual confidence (class prediction probability) values of the classifiers, also referred

to as classifier confidence. It is noteworthy that without the ensemble confidence, ensemble

E would be the same for all data instances, since both accuracy and diversity are defined

for the validation set and do not depend on instance t. However, the ensemble confidence

depends on each data instance, so the solution to the optimization problem in (3.1) for

different data instances may potentially vary.

The confidence of a classifier on a data instance is defined as the probability of the

most likely class. We consider two different measures for the ensemble confidence:

1. Conf1(E, t) : The ensemble confidence is the average classifier confidence in the en-

semble for instance t:

Conf1(E, t) =

∑
Ca∈E

Conf(Ca, t)

|E|
(3.5)

where Conf1(E, t) represents the ensemble confidence and Conf(Ca, t) denotes classi-

fier’s confidence for instance t.
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2. Conf2(E, t) : The margin confidence of an ensemble is the difference between the sum

of confidence values for each class label. In other words, we first split the classifiers into

two groups, depending on their classification, then calculate the difference between the

sum of confidence values for each label. Let δ`
1

Ca(t) denote the indicator function, which

equals 1 if a classifier’s prediction for instance t, denoted by `a,t, is `1, and 0 otherwise.

The confidence of an ensemble for instance t is then defined as follows:

Conf2(E, t) =

∣∣∣∣ ∑
Ca∈E

[
δ`1Ca,t

− δ`2Ca,t

]
Conf(Ca, t)

∣∣∣∣
|E|

(3.6)

where δ`2Ca,t
is defined similarly to δ`1Ca,t

.

3.1.1 Search Methods

It is important to have a search method that provides accurate and reliable solu-

tions in a reasonable time as we aim to select a new ensemble for each test point, which

is computationally intensive. The algorithm running time depends on the number of data

instances in our test set. Therefore, the choice of the search method is an important decision.

There are many heuristic search methods with a scalar objective function and we consider

three of them: (1) first improvement local search, (2) best improvement local search, and

(3) multi-objective genetic algorithm (MOGA).

For local search algorithms, the neighborhood definition is critical as this determines

the quality of the local optima and the computational effort required to identify them. Let

S be the solution space, where in our case a solution s is an ensemble of |E| classifiers. For

each solution s ∈ S, we define the neighborhood as the set N (s) = {s′ : s M s′ = 1} where

M is the symmetric difference operator. In words, s and s′ are two feasible solutions that
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have all but one common classifiers. The size of N (s) is |E| × (M − |E|), where M is the

total number of classifiers in the pool. In addition, each classifier is given a unique identifier

between [0,M − 1].

3.1.1.1 First Improvement

Our implementation of first-improvement local search begins by randomly generating

a feasible solution s and evaluating the objective function for this solution f(s); see Algorithm

3.1. In each iteration, the algorithm randomly chooses both a classifier Ca ∈ s to remove

and a classifier Cb /∈ s from the pool to replace it, creating a new ensemble, snew. Then, it

evaluates the objective function for this new solution, f(snew). If f(snew) > f(s), then the

algorithm continues the search from snew. It terminates when an iteration count, denoted

by Nstop, has been met.

3.1.1.2 Best Improvement

Our implementation of best-improvement local search also begins with a random

ensemble s; see Algorithm 3.2. At each step, it iterates over all solutions in the neighborhood

of s, picking the one that yields the best improvement in the objective function, if any. Then,

it moves on to the next neighborhood. It terminates when there is no neighbor better than

solution s.

3.1.1.3 Multi-Objective Genetic Algorithm (MOGA)

For this study, we also implement a modified version of the MOGA proposed in [54].

This method is similar to a single-objective genetic algorithm. However, the selection pro-
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Algorithm 3.1 First Improvement Algorithm

1. procedure FIRST IMPROVEMENT PROCEDURE

2. input: pool of classifier C
3. f := 0// objective function value

4. s :=<> // solution = ensemble

5. s := randomly generate |E| different numbers in range [0,M-1]

6. sbest := s

7. f := evaluate objective at s

8. fbest := f

9. for l = 1 : Nstop do

10. Cb := randomly pick a classifier /∈ s

11. Ca := randomly pick a classifier ∈ s

12. snew := s \ Ca ∪ Cb

13. fnew := evaluate objective at snew

14. if fnew > fbest then

15. fbest := fnew

16. sbest := snew

17. end if

18. end for

19. output: fbest, sbest
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Algorithm 3.2 Best Improvement Algorithm

1. procedure BEST IMPROVEMENT PROCEDURE

2. input: pool of classifier C
3. f := 0// objective function value

4. s :=<> // solution = ensemble

5. s := randomly generate |E| different numbers in range [0,M-1]

6. sbest := s

7. f := evaluate objective at s

8. fbest := f

9. improved := true

10. while improved AND l < Nstop do

11. Ca := randomly pick a classifier ∈ s that has not been evaluated

12. improved := false

13. l := l + 1

14. foreach Cb /∈ s do

15. l := l + 1

16. snew := s \ Ca ∪ Cb

17. fnew := evaluate objective at snew

18. if fnew > fbest then

19. fbest := fnew

20. sbest := snew

21. improved := true

22. end if

23. end foreach

24. end while

25. output: fbest, sbest
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cedure we adopt in this model is different than [54]. In their selection procedure, Murata

and Ishibuchi [54] take a weighted sum of the individuals’ objectives and choose individuals

for crossover accordingly. The weights of the various objectives are assigned randomly at

each generation, changing the direction of the search as it proceeds. However, in our imple-

mentation of MOGA, we keep the weights constant during all generations of a single run

to increase coverage of the objective space and make the search method comparable to our

other methods.

There are two phases of MOGA: (1) selection and (2) recombination. In the selec-

tion phase, during each successive generation, a proportion of the existing population is

selected to breed a new generation. In this study, individual solutions are selected through a

fitness-based process called roulette-wheel selection or fitness proportionate selection. In this

procedure, the evaluation function assigns fitness to possible solutions. This fitness level, fk,

is used to associate a probability of selection with each individual, pk = fk
L∑

k=1
fk

where L is the

number of individuals in the population.

In the reproduction phase, offspring are generated by combining two parents (two

individuals in the population). It is worth noting that each individual in this population

represents an ensemble and is characterized by a decimal vector of unique identifiers of the

classifiers in this ensemble (chromosome). To create children, a one-point crossover technique

is implemented. All data beyond the crossover point, cp, is swapped between the two parents.

In other words, the classifier identifiers (decimal numbers) from the beginning of a vector

to the crossover point are copied from one parent, the rest of the numbers are copied from

the second parent. The two resulting individuals are the children or offspring. Mutation
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Algorithm 3.3 Multi Objective Genetic Algorithm

1. procedure MOGA

2. input: Initial population population, Fitness vector for population F,

3. Number of generations numGen, Mutation rate mr,

4. crossover point cp, Selection rate sr

5. fbest := Max(F ) and sbest is the associated individual

6. for g = 1 : numGen do

7. parents := Selection(population,F,sr)

8. children := Crossover(parents, cp)

9. children := Mutation(children, mr)

10. Fchildren := evaluate(children)

11. [population, F] := NextGeneration(population, children, F, Fchildren)

12.
picks best L individuals from current population including children to create the new gener-
ation

13. fGA := Max(F )

14. if fGA > fbest then

15. fbest := fGA

16. sbest := sGA is the individual with fbest

17. end if

18. end for

19. output: fbest, sbest
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Algorithm 3.4 Selection Algorithm

1. procedure SELECTION PROCEDURE

2. input: population, fitness vector for population F, selection rate sr

3. L := ‖F‖
4. Calculate pi for each individual in the population

5. c := cumulative distribution of pi

6. r := rand(sr ∗ L)// randomly generate sr*L numbers between [0, 1)

7. parents := ∅
8. for t = 1 : sr ∗ L do

sr*L individuals will be chosen as parents

9. for j = 1 : L do

10. if c(j) > r(t) then

11. parents(t) := population(j − 1)

12. j := L
To break the for loop

13. end if

14. end for

15. parents := unique(parents)

16. output: parents

is applied to children that are bred after the crossover method is applied to prevent the

population from becoming too similar. Assuming that M is equal to 2k, for the mutation

implementation each classifier is represented by the k-bit binary representation of its unique

identifier. The vector that represents an individual in the population is converted into a

binary vector of size |E| ∗ k. Therefore, each chromosome or individual is represented by

|E| ∗ k bits. After the modification on the representation of the chromosomes, mutation is

done probabilistically by flipping a bit in this binary vector. At the end of the mutation,

we convert the binary vectors into decimal ones. For this study, the resulting generation of

offspring is merged with the current population and the best L individuals are kept in the

population.
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Algorithm 3.5 Crossover Algorithm

1. procedure CROSSOVER PROCEDURE

2. input: initial population population, crossover point cp,

3. size of the ensemble |E|, parents from Selection Algorithm parents

4. Randomly order parents

5. for i = 1 : ‖parents‖/2 do

6. p1 := parents(2 i - 1) // parent 1

7. p2 := parents(2 i) // parent 2

8. o1 :=
{
p1

1, . . . , p
cp
1

}
∪
{
pcp+1

2 , . . . , p
|E|
2

}
// offspring 1

9. o2 :=
{
p1

2, . . . , p
cp
2

}
∪
{
pcp+1

1 , . . . , p
|E|
1

}
// offspring 2

10. children(2 (i - 1)) := o1

11. children(2 i) := o2

12. output: children

Algorithm 3.6 Mutation Algorithm

1. procedure MUTATION PROCEDURE

2. input: children, mutation rate mr,

3. B := number of bits for each individual

4. for i = 1 : ‖children‖ do
children i is chosen

5. for j = 1 : B do

6. r := rand(0, 1)

7. if r < mr then

8. flip bit childrenj
i

9. end for

10. end for

11. output: children
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3.1.2 Experimental Results

Our hypothesis is that ensembles based on accuracy, diversity, and confidence should

make more accurate predictions on the new data instances (i.e. improve generalization).

However, since we do not know how confidence interacts with accuracy and diversity, we

experiment with all combinations of the three objectives described in Section 3.1. The

values for the objective functions are linearly scaled to the interval [0, 1], by converting the

minimum and maximum values to zero and one, respectively. To find the minimum and

maximum values of Div(E), we use the results of the single-objective heuristic search.

We consider linear combinations of the three objectives described above to apply

single-objective search algorithms to our MOOP. Since the optimal trade-off among the

various objectives is unknown, randomly-selected weights are set on the three objectives.

The search ends when Nstop is 1000 for the first improvement and is 10000 for the best

improvement. In addition, to be able to cover as much of the objective space as possible for

each new data instance, we start the search from 100 random initial solutions in the First

and Best Improvement algorithms. To compare the results from the MOGA algorithm with

the First and Best Improvement algorithms, we set the population size to 100.

There are several methods that can be used to select a single solution (ensemble of

size 25) to classify each new data instance among generated solutions. First, we examine

only those solutions on the Pareto front (i.e. non-dominated solutions), and choose one in

two different ways: (1) Pareto-ranking, which indicates the number of other local solutions

that each one dominates, and (2) validation accuracy. Alternatively, we also experiment

with choosing the final solution based on its validation accuracy of the solution among all
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generated solutions.

In our experiments, the base classifiers are RBF kernel support vector machines

(SVMs) [71], which are generated using LIBSVM. LIBSVM uses Platt’s formula [58] to

calculate the class conditional probabilities (class supports).

We employ LIBSVM in MATLAB to construct M = 1024 RBF kernel SVM classifiers,

and choose the parameters such that classifiers overfit the data. We perform the experiments

on four data sets retrieved from the LIBSVM site: Australian, Diabetes, Heart Disease, and

Liver Disorder. We construct a highly diverse initial pool of classifiers using a combination

of bootstrap instance sampling (as in bagging) and random subspace selection. We perform

5-fold cross-validation and repeat this experiment 5 times.

3.1.2.1 Comparison of Search Methods

We first carry out an experiment on the Diabetes dataset to decide on the search

algorithm. Unlike other experiments specified in this section, we only perform 5-fold cross

validation once. We consider the first definition of the confidence, Conf1. For this experi-

ment, the final ensemble is chosen from all of the generated solutions based on its validation

accuracy. Table 3.2 illustrates the results. The First Improvement algorithm is the fastest

in terms of computational time, but the tradeoff is lower objective value. MOGA improves

the objective value (about 20–30%) in exchange for a 4-fold increase in computational time.

Best Improvement is the slowest. Compared to MOGA, the objective value in Best Im-

provement is lower (due to the stopping rule) and its test accuracy is higher. Compared to

First Improvement, the objective value is higher, but at the expense of (generally) lower test
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Table 3.2: Comparison of search methods on the Dia-
betes dataset

First Improvement

Objectives Speeda Obj Valuec Test Acc

Div 13 sec 0.546 0.730
Acc + Confb 15sec/pt 0.584 0.733
Acc + Div 32sec 0.754 0.746
Confb+ Div 27sec/pt 0.573 0.752
Acc + Confb+ Div 43 sec/pt 0.621 0.745

MOGA

Objectives Speeda Obj Value Test Acc

Div 60sec 0.625 0.739
Acc + Confb 91sec/pt 0.866 0.739
Acc + Div 102sec 0.923 0.730
Confb+ Div 121sec/pt 0.898 0.730
Acc + Confb+ Div 137sec/pt 0.635 0.752

Best Improvement

Objectives Speeda Obj Value Test Acc

Div 300 sec 0.612 0.7411
Acc + Confb 400 sec/pt 0.824 0.746
Acc + Div 480sec 0.845 0.756
Confb+ Div 513sec/pt 0.643 0.735
Acc + Confb+ Div 600sec/pt 0.604 0.757

a Speed is measured in seconds per point when confidence
is included in the objective.
b Conf1 is used as the measure of confidence.
c Obj Value represents the linear combination of objectives.

accuracy.

While MOGA and Best Improvement result in relatively more promising solutions,

they are dramatically slower than First Improvement. In addition, to use MOGA effectively

we need to run a preprocessing step to set the parameters (e.g. crossover rate, mutation rate),

which further slows down the process for each dataset. The First Improvement algorithm

does not compromise on the test accuracy, while being much faster in terms of computational

time. Due to the computation time required for these experiments, we adopt the First
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Improvement algorithm as the search algorithm for the rest of our experiments.

3.1.2.2 Comparison of Search Objectives

In this section, we perform two sets of experiments, one for each of the two confidence

definitions introduced in Section 3.1. We present the results for the two selection schemes

(i.e. Pareto optimal solutions vs. all solutions). Performance of the ensembles is evaluated

based on their accuracy in the test dataset.

Results shown in Table 3.3 are obtained by choosing the final solution among the

solutions on the Pareto front based on validation error. Comparing the two confidence

definitions, diversity (Div) is lower for Conf1 when confidence is the only criterion in the

objective, but is higher when confidence is employed alongside other factors. This implies

that ensemble which contains confident classifiers with certain level of agreement on the

label of a new data instance are not necessarily similar. Meanwhile, accuracy (Acc) and

generalization (Gen) do not change much. When choosing classifiers based solely on their

confidence, it appears that Conf2 is slightly better than Conf1 in three of the four datasets.

The biggest difference is in the Liver Disorder dataset where Conf2 yields 0.650 relative

to 0.641 for Conf1. However, when it is complemented with the accuracy or diversity

objectives, Conf1 is better than Conf2. For instance, when Div and Conf are incorporated,

generalization for Conf1 equals 0.801 in the Australian dataset, compared to 0.605 for Conf2.

When all three objectives are incorporated together, the results are inconclusive.

Contrary to our expectations, Table 3.3 shows that ensemble confidence (Conf) ap-

pears to be a poor complement to ensemble accuracy: choosing classifiers based solely on
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Table 3.3: Summary results of the final solution based on Pareto ranking

Australian

Conf1 Definition Conf2 Definition

Acc Conf Div Gen Acc Conf Div Gen

Acc 0.833 0.842 0.308 0.824 0.833 0.737 0.308 0.824
Conf 0.553 0.951 0.388 0.792 0.553 0.944 0.447 0.791
Div 0.593 0.643 0.576 0.826 0.592 0.185 0.576 0.823

Acc+Conf 0.629 0.715 0.462 0.663 0.608 0.589 0.303 0.628
Acc+Div 0.606 0.676 0.567 0.818 0.609 0.236 0.569 0.824

Div+Conf 0.598 0.695 0.558 0.801 0.596 0.595 0.264 0.605
Acc+Conf+Div 0.612 0.699 0.548 0.794 0.615 0.430 0.486 0.794

Diabetes

Conf1 Definition Conf2 Definition

Acc Conf Div Gen Acc Conf Div Gen

Acc 0.762 0.775 0.352 0.745 0.762 0.615 0.352 0.745
Conf 0.583 0.968 0.442 0.741 0.582 0.960 0.500 0.741
Div 0.575 0.681 0.559 0.736 0.577 0.171 0.559 0.734

Acc+Conf 0.662 0.768 0.401 0.704 0.668 0.651 0.349 0.691
Acc+Div 0.595 0.711 0.552 0.741 0.599 0.234 0.553 0.743

Div+Conf 0.586 0.753 0.546 0.747 0.657 0.645 0.362 0.697
Acc+Conf+Div 0.626 0.757 0.494 0.727 0.650 0.589 0.413 0.728

Heart

Conf1 Definition Conf2 Definition

Acc Conf Div Gen Acc Conf Div Gen

Acc 0.781 0.725 0.411 0.773 0.781 0.556 0.411 0.773
Conf 0.540 0.889 0.408 0.729 0.539 0.879 0.507 0.730
Div 0.582 0.612 0.575 0.763 0.583 0.154 0.576 0.765

Acc+Conf 0.600 0.672 0.473 0.682 0.599 0.519 0.340 0.653
Acc+Div 0.586 0.639 0.569 0.753 0.591 0.194 0.570 0.758

Div+Conf 0.576 0.659 0.562 0.758 0.586 0.516 0.323 0.646
Acc+Conf+Div 0.585 0.658 0.560 0.767 0.594 0.376 0.499 0.756

Liver Disorder

Conf1 Definition Conf2 Definition

Acc Conf Div Gen Acc Conf Div Gen

Acc 0.746 0.727 0.339 0.707 0.746 0.576 0.339 0.707
Conf 0.554 0.961 0.441 0.641 0.554 0.946 0.481 0.650
Div 0.568 0.657 0.556 0.683 0.567 0.154 0.557 0.684

Acc+Conf 0.607 0.737 0.436 0.669 0.608 0.599 0.370 0.651
Acc+Div 0.582 0.685 0.549 0.699 0.582 0.215 0.550 0.691

Div+Conf 0.571 0.718 0.541 0.701 0.597 0.600 0.366 0.642
Acc+Conf+Div 0.584 0.718 0.531 0.700 0.599 0.521 0.449 0.706
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their confidence, instead of either accuracy (Acc) or diversity (Div) alone, reduces perfor-

mance (Gen) in three out of four datasets (i.e. 0.792 compared to 0.826 or 0.824 in the

Australian dataset). Confidence has a slightly positive effect for the Conf1 definition when

it is combined with diversity (i.e. Gen equals 0.747 in the Diabetes and 0.701 in the Liver

Disorder datasets), and a detrimental effect for the Conf2 definition (i.e. Gen drops to 0.697

and 0.6642 for these two datasets).

Columns 2–5 and 6–9 of Tables 3.4 and 3.5 analyze the effect of Pareto-optimal

solutions on the results (Acc, Conf,Div, Gen) across different objectives. In some cases, the

size of the Pareto front is quite small (as low as three ensembles). Therefore, we choose

the final ensemble among all generated solutions based on validation performance to check

if the results differ. We find that choosing ensembles among generated solutions based on

validation accuracy (Acc) increases the performance (Gen) in general. For instance, in Table

3.4, which employs the Conf1 definition, maximum generalization in the Liver Disorder

dataset is attained at 0.707 when only Acc is considered in the objective. However, another

effective objective, which maximizes generalization in some datasets, is when all three criteria

(Acc, Conf, Div) are taken into account (i.e. in the Australian, Diabetes, and Heart datasets

for Conf1, and Australian and Diabetes datasets for Conf2).

Furthermore, when we consider accuracy and confidence as our objectives, Pareto-

optimal solutions perform better than all solutions in accuracy and confidence, but worse

in diversity and generalization which could imply that diversity should be a factor. For the

other objectives, the results are quite similar. These findings are also robust across the two

confidence definitions.
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Table 3.4: Summary results of the final solution based on its validation
data performance for the Conf1 definition.

Australian

Pareto-Optimal Solutions All Solutions

Objectives Acc Conf Div Gen Acc Conf Div Gen

Acc 0.833 0.842 0.308 0.824 0.833 0.842 0.308 0.824
Conf 0.553 0.951 0.388 0.792 0.553 0.951 0.388 0.792
Div 0.577 0.639 0.569 0.823 0.577 0.639 0.569 0.823

Acc+Conf 0.626 0.708 0.498 0.741 0.603 0.683 0.550 0.812
Acc+Div 0.601 0.660 0.569 0.822 0.576 0.640 0.567 0.820

Div+Conf 0.589 0.669 0.571 0.823 0.574 0.652 0.566 0.825
Acc+Conf+Div 0.594 0.667 0.569 0.828 0.580 0.654 0.567 0.823

Diabetes

Pareto-Optimal Solutions All Solutions

Objectives Acc Conf Div Gen Acc Conf Div Gen

Acc 0.762 0.775 0.352 0.745 0.762 0.775 0.352 0.745
Conf 0.583 0.968 0.442 0.741 0.583 0.968 0.442 0.741
Div 0.568 0.688 0.553 0.730 0.568 0.688 0.553 0.730

Acc+Conf 0.646 0.766 0.457 0.732 0.620 0.749 0.508 0.740
Acc+Div 0.592 0.692 0.553 0.741 0.584 0.687 0.550 0.736

Div+Conf 0.576 0.722 0.554 0.742 0.573 0.708 0.551 0.743
Acc+Conf+Div 0.590 0.715 0.549 0.745 0.583 0.708 0.549 0.745

Heart

Pareto-Optimal Solutions All Solutions

Objectives Acc Conf Div Gen Acc Conf Div Gen

Acc 0.781 0.725 0.411 0.773 0.781 0.725 0.411 0.773
Conf 0.540 0.889 0.408 0.729 0.540 0.889 0.408 0.729
Div 0.560 0.611 0.565 0.769 0.560 0.611 0.565 0.769

Acc+Conf 0.597 0.665 0.522 0.726 0.578 0.645 0.554 0.755
Acc+Div 0.586 0.618 0.572 0.769 0.571 0.609 0.567 0.768

Div+Conf 0.575 0.636 0.570 0.752 0.561 0.620 0.564 0.764
Acc+Conf+Div 0.579 0.632 0.569 0.781 0.566 0.619 0.565 0.778

Liver Disorder

Pareto-Optimal Solutions All Solutions

Objectives Acc Conf Div Gen Acc Conf Div Gen

Acc 0.746 0.727 0.339 0.707 0.746 0.727 0.339 0.707
Conf 0.554 0.961 0.441 0.641 0.554 0.961 0.441 0.641
Div 0.562 0.655 0.547 0.681 0.562 0.655 0.547 0.681

Acc+Conf 0.607 0.720 0.470 0.690 0.594 0.703 0.504 0.690
Acc+Div 0.584 0.667 0.548 0.688 0.570 0.665 0.547 0.688

Div+Conf 0.565 0.691 0.550 0.699 0.562 0.675 0.547 0.701
Acc+Conf+Div 0.576 0.684 0.545 0.688 0.570 0.676 0.544 0.699
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Table 3.5: Summary results of the final solution based on its validation
data performance for the Conf2 definition.

Australian

Pareto-Optimal Solutions All Solutions

Objectives Acc Conf Div Gen Acc Conf Div Gen

Acc 0.833 0.737 0.308 0.824 0.833 0.737 0.308 0.824
Conf 0.553 0.944 0.447 0.791 0.553 0.944 0.447 0.791
Div 0.571 0.141 0.569 0.824 0.571 0.141 0.569 0.824

Acc+Conf 0.622 0.476 0.406 0.723 0.611 0.356 0.487 0.757
Acc+Div 0.602 0.215 0.567 0.822 0.580 0.168 0.566 0.813

Div+Conf 0.588 0.530 0.331 0.646 0.583 0.511 0.323 0.653
Acc+Conf+Div 0.596 0.244 0.568 0.823 0.582 0.203 0.566 0.825

Diabetes

Pareto-Optimal Solutions All Solutions

Objectives Acc Conf Div Gen Acc Conf Div Gen

Acc 0.762 0.615 0.352 0.745 0.762 0.615 0.352 0.745
Conf 0.582 0.960 0.500 0.741 0.582 0.960 0.500 0.741
Div 0.574 0.173 0.552 0.743 0.574 0.173 0.552 0.743

Acc+Conf 0.669 0.595 0.391 0.709 0.642 0.494 0.475 0.734
Acc+Div 0.603 0.234 0.549 0.746 0.585 0.198 0.550 0.736

Div+Conf 0.623 0.550 0.482 0.740 0.628 0.526 0.482 0.741
Acc+Conf+Div 0.595 0.291 0.547 0.750 0.588 0.263 0.548 0.749

Heart

Pareto-Optimal Solutions All Solutions

Objectives Acc Conf Div Gen Acc Conf Div Gen

Acc 0.781 0.556 0.411 0.773 0.781 0.556 0.411 0.773
Conf 0.539 0.879 0.507 0.730 0.539 0.879 0.507 0.730
Div 0.562 0.112 0.567 0.769 0.562 0.112 0.567 0.769

Acc+Conf 0.607 0.418 0.429 0.707 0.592 0.285 0.527 0.737
Acc+Div 0.585 0.163 0.572 0.757 0.565 0.120 0.566 0.770

Div+Conf 0.579 0.429 0.442 0.717 0.579 0.400 0.462 0.718
Acc+Conf+Div 0.582 0.208 0.568 0.763 0.568 0.160 0.565 0.760

Liver Disorder

Pareto-Optimal Solutions All Solutions

Objectives Acc Conf Div Gen Acc Conf Div Gen

Acc 0.746 0.576 0.339 0.707 0.746 0.576 0.339 0.707
Conf 0.554 0.946 0.481 0.650 0.554 0.946 0.481 0.650
Div 0.560 0.147 0.549 0.682 0.560 0.147 0.549 0.682

Acc+Conf 0.616 0.490 0.429 0.693 0.602 0.400 0.484 0.703
Acc+Div 0.585 0.211 0.541 0.693 0.568 0.179 0.542 0.691

Div+Conf 0.584 0.513 0.469 0.690 0.588 0.491 0.473 0.695
Acc+Conf+Div 0.580 0.272 0.542 0.694 0.572 0.239 0.542 0.692
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3.1.2.3 Effect of Pool Diversity

In addition to the experiments mentioned in Section 3.1.2.2, we further explore

whether classifiers with less than 50% accuracy (i.e. bad classifiers) should be discarded

from the pool. These classifiers may make incorrect predictions with high confidence value,

and hence, they can decrease the performance of the system. We perform the same experi-

ments specified in Section 3.1.2.2 with bad classifiers omitted from the initial classifier pool.

The results are presented in Tables 3.6–3.8.

When compared with the results presented in Section 3.1.2.2, it becomes clear that

diversity of an ensemble is really important for two reasons. The first reason is that gener-

alization has not increased due to the smaller classifier pool. In fact, Acc is now the only

objective (by itself) which attains the maximum generalization. The second reason is that

Div is no longer a crucial component of the objective: any objective that includes diversity

results in a substantially lower generalization value. For instance, as depicted in Tables 3.4

and 3.7, when all three (Acc, Conf, Div) are considered in the objective, it could achieve

the maximum generalization (0.745 and 0.750 for the Diabetes dataset). However, once the

bad classifiers are excluded from the pool, the same objective yields 0.730 and 0.696, respec-

tively, for the same dataset. Therefore, bad classifiers add information to the system as they

increase the diversity of the pool.

When we look at the results for Conf2, we conclude that having bad classifiers in

the initial pool is essential as they increase the diversity of the pool and the ensemble. The

objective (Div,Conf2) for the Australian dataset is also interesting as after certain diversity

is achieved, some level of confidence is required to make correct predictions.
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Table 3.6: Summary results of the final solution based on Pareto ranking.
Classifiers in the initial pool have at least 50% validation accuracy.

Australian

Conf1 Definition Conf2 Definition

Acc Conf Div Gen Acc Conf Div Gen

Acc 0.833 0.842 0.308 0.824 0.833 0.737 0.308 0.824
Conf 0.588 0.945 0.325 0.797 0.594 0.940 0.226 0.794
Div 0.630 0.648 0.493 0.632 0.630 0.312 0.493 0.632

Acc+Conf 0.660 0.726 0.382 0.590 0.621 0.673 0.252 0.570
Acc+Div 0.656 0.697 0.453 0.646 0.604 0.531 0.234 0.555

Div+Conf 0.654 0.709 0.426 0.617 0.638 0.580 0.361 0.618
Acc+Conf+Div 0.659 0.714 0.415 0.622 0.564 0.644 0.044 0.555

Diabetes

Conf1 Definition Conf2 Definition

Acc Conf Div Gen Acc Conf Div Gen

Acc 0.762 0.775 0.352 0.745 0.762 0.615 0.352 0.745
Conf 0.669 0.961 0.309 0.734 0.669 0.957 0.342 0.731
Div 0.658 0.682 0.494 0.723 0.656 0.368 0.494 0.715

Acc+Conf 0.696 0.786 0.360 0.715 0.692 0.727 0.332 0.687
Acc+Div 0.682 0.715 0.464 0.729 0.686 0.513 0.371 0.697

Div+Conf 0.682 0.761 0.435 0.726 0.684 0.708 0.357 0.704
Acc+Conf+Div 0.694 0.769 0.397 0.727 0.675 0.687 0.213 0.656

Heart

Conf1 Definition Conf2 Definition

Acc Conf Div Gen Acc Conf Div Gen

Acc 0.781 0.725 0.411 0.773 0.781 0.556 0.411 0.773
Conf 0.593 0.879 0.287 0.715 0.596 0.875 0.228 0.715
Div 0.623 0.625 0.483 0.637 0.623 0.308 0.483 0.637

Acc+Conf 0.643 0.684 0.372 0.639 0.622 0.632 0.266 0.583
Acc+Div 0.643 0.649 0.446 0.649 0.604 0.506 0.232 0.558

Div+Conf 0.638 0.671 0.422 0.640 0.631 0.559 0.363 0.641
Acc+Conf+Div 0.643 0.672 0.413 0.645 0.576 0.614 0.068 0.558

Liver Disorder

Conf1 Definition Conf2 Definition

Acc Conf Div Gen Acc Conf Div Gen

Acc 0.746 0.727 0.339 0.707 0.746 0.576 0.339 0.707
Conf 0.602 0.947 0.266 0.639 0.602 0.942 0.340 0.637
Div 0.603 0.658 0.510 0.677 0.604 0.285 0.512 0.673

Acc+Conf 0.640 0.742 0.382 0.687 0.630 0.668 0.330 0.618
Acc+Div 0.631 0.689 0.480 0.696 0.618 0.451 0.367 0.608

Div+Conf 0.624 0.718 0.463 0.679 0.626 0.618 0.392 0.677
Acc+Conf+Div 0.635 0.722 0.444 0.699 0.600 0.641 0.192 0.582
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Table 3.7: Summary results of the final solution based on its validation data
performance for the Conf1 definition. Classifiers in the initial pool have at
least 50% validation accuracy.

Australian

Pareto-Optimal Solutions All Solutions

Acc Conf Div Gen Acc Conf Div Gen

Acc 0.833 0.842 0.308 0.824 0.833 0.842 0.308 0.824
Conf 0.588 0.945 0.325 0.797 0.588 0.945 0.325 0.797
Div 0.647 0.671 0.446 0.696 0.647 0.671 0.446 0.697

Acc+Conf 0.661 0.715 0.394 0.636 0.652 0.693 0.408 0.665
Acc+Div 0.657 0.681 0.464 0.674 0.647 0.675 0.445 0.678

Div+Conf 0.648 0.688 0.455 0.675 0.647 0.680 0.443 0.679
Acc+Conf+Div 0.654 0.686 0.453 0.683 0.650 0.680 0.444 0.684

Diabetes

Pareto-Optimal Solutions All Solutions

Acc Conf Div Gen Acc Conf Div Gen

Acc 0.762 0.775 0.352 0.745 0.762 0.775 0.352 0.745
Conf 0.669 0.961 0.309 0.734 0.669 0.961 0.309 0.734
Div 0.674 0.701 0.466 0.726 0.674 0.701 0.466 0.726

Acc+Conf 0.700 0.759 0.383 0.733 0.696 0.745 0.402 0.732
Acc+Div 0.686 0.704 0.450 0.734 0.680 0.702 0.458 0.737

Div+Conf 0.672 0.731 0.466 0.726 0.677 0.717 0.458 0.726
Acc+Conf+Div 0.684 0.723 0.450 0.730 0.683 0.720 0.449 0.727

Heart

Pareto-Optimal Solutions All Solutions

Acc Conf Div Gen Acc Conf Div Gen

Acc 0.781 0.725 0.411 0.773 0.781 0.725 0.411 0.773
Conf 0.593 0.879 0.287 0.715 0.593 0.879 0.287 0.715
Div 0.639 0.642 0.443 0.677 0.639 0.642 0.443 0.677

Acc+Conf 0.650 0.663 0.402 0.666 0.646 0.654 0.420 0.680
Acc+Div 0.645 0.641 0.448 0.660 0.643 0.642 0.442 0.663

Div+Conf 0.636 0.656 0.451 0.679 0.641 0.648 0.442 0.686
Acc+Conf+Div 0.644 0.649 0.444 0.688 0.643 0.647 0.440 0.689

Liver Disorder

Pareto-Optimal Solutions All Solutions

Acc Conf Div Gen Acc Conf Div Gen

Acc 0.746 0.727 0.339 0.707 0.746 0.727 0.339 0.707
Conf 0.602 0.947 0.266 0.639 0.602 0.947 0.266 0.639
Div 0.617 0.663 0.487 0.697 0.617 0.663 0.487 0.697

Acc+Conf 0.646 0.716 0.406 0.692 0.639 0.699 0.428 0.702
Acc+Div 0.630 0.671 0.477 0.703 0.623 0.668 0.471 0.691

Div+Conf 0.616 0.693 0.490 0.695 0.621 0.680 0.479 0.704
Acc+Conf+Div 0.629 0.687 0.471 0.699 0.627 0.681 0.469 0.695
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Table 3.8: Summary results of the final solution based on its validation data
performance for the Conf2 definition. Classifiers in the initial pool have at
least 50% validation accuracy.

Australian

Pareto-Optimal Solutions All Solutions

Acc Conf Div Gen Acc Conf Div Gen

Acc 0.833 0.737 0.308 0.824 0.833 0.737 0.308 0.824
Conf 0.594 0.940 0.226 0.794 0.594 0.940 0.226 0.794
Div 0.630 0.312 0.493 0.632 0.647 0.379 0.446 0.696

Acc+Conf 0.647 0.531 0.351 0.637 0.638 0.515 0.346 0.639
Acc+Div 0.630 0.412 0.374 0.575 0.594 0.505 0.210 0.574

Div+Conf 0.636 0.464 0.424 0.661 0.639 0.429 0.424 0.673
Acc+Conf+Div 0.595 0.599 0.160 0.572 0.585 0.600 0.125 0.572

Diabetes

Pareto-Optimal Solutions All Solutions

Acc Conf Div Gen Acc Conf Div Gen

Acc 0.762 0.615 0.352 0.745 0.762 0.615 0.352 0.745
Conf 0.669 0.957 0.342 0.731 0.669 0.957 0.342 0.731
Div 0.656 0.368 0.494 0.715 0.671 0.411 0.469 0.728

Acc+Conf 0.700 0.599 0.379 0.723 0.696 0.563 0.396 0.729
Acc+Div 0.680 0.457 0.414 0.709 0.679 0.455 0.409 0.709

Div+Conf 0.672 0.524 0.465 0.729 0.677 0.481 0.458 0.731
Acc+Conf+Div 0.693 0.634 0.340 0.696 0.692 0.625 0.351 0.697

Heart

Pareto-Optimal Solutions All Solutions

Acc Conf Div Gen Acc Conf Div Gen

Acc 0.781 0.556 0.411 0.773 0.781 0.556 0.411 0.773
Conf 0.596 0.875 0.228 0.715 0.596 0.875 0.228 0.715
Div 0.623 0.308 0.483 0.637 0.639 0.352 0.443 0.677

Acc+Conf 0.646 0.462 0.377 0.653 0.644 0.427 0.397 0.657
Acc+Div 0.621 0.394 0.361 0.573 0.604 0.451 0.265 0.573

Div+Conf 0.634 0.418 0.442 0.672 0.639 0.393 0.437 0.684
Acc+Conf+Div 0.620 0.535 0.260 0.598 0.619 0.533 0.261 0.598

Liver Disorder

Pareto-Optimal Solutions All Solutions

Acc Conf Div Gen Acc Conf Div Gen

Acc 0.746 0.576 0.339 0.707 0.746 0.576 0.339 0.707
Conf 0.602 0.942 0.340 0.637 0.602 0.942 0.340 0.637
Div 0.604 0.285 0.512 0.673 0.620 0.333 0.484 0.697

Acc+Conf 0.646 0.514 0.399 0.697 0.640 0.465 0.418 0.700
Acc+Div 0.620 0.369 0.433 0.655 0.618 0.371 0.430 0.646

Div+Conf 0.618 0.427 0.485 0.693 0.622 0.390 0.476 0.704
Acc+Conf+Div 0.635 0.544 0.349 0.652 0.633 0.529 0.362 0.652
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3.2 Prediction Ranking (PRank)

The results of several experiments performed using dynamic ensemble selection with

the First Improvement algorithm are inconclusive, especially in regards to showing that

ensembles with accurate and confident classifiers make more accurate predictions. We hy-

pothesize that when the predictions of classifiers are ranked based on their validation accu-

racy and/or confidence on their predictions, there should be more correct predictions ranked

above the incorrect predictions. Therefore, ensembles formed with those classifiers should

also achieve higher accuracy. For this reason, we propose a measure called the prediction

ranking, denoted by PRank. Since the relationship between validation accuracy and confi-

dence values for the predictions is not known, we consider three variations of PRank: (1)

confidence of the classifier on the prediction (confidence), (2) validation accuracy of the

classifier which makes the prediction (accuracy), and (3) the average of accuracy and confi-

dence. Once all predictions from all classifiers are combined and sorted based on one of the

three criteria, for any given correct prediction, PRank calculates the proportion of incorrect

predictions ranked above and below. The following procedure describes how to calculate

PRankConf :

1. Combine the predictions for the test dataset from all of the classifiers.

2. Sort them according to their confidence values.

3. For each correct prediction, find the incorrect predictions above (ICa) and below (ICb)

it.
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Table 3.9: Example: Calculating the Prediction Ranking for the Confidence

Correctness 1 0 1 0 0 0 1 0 1 1

Confidence 0.55 0.63 0.74 0.76 0.85 0.85 0.85 0.87 0.93 0.95

InCorBelow 0 – 1 – – – 2 – 5 5
InCorAbove 5 – 4 – – – 1 – 0 0

Subtotal 5 – 5 – – – 3 – 5 5

4. Calculate the prediction ranking for confidence:

PRankConf =

∑
ICb∑

ICb +
∑
ICa

(3.7)

PRankAcc and PRankAC are calculated in the same way with the exception that in

Step 2 above, the relevant criterion is used for sorting.

Table 3.9 shows an example of how to compute the PRank per Confidence. There are

five correct and five incorrect predictions. The first row of the table indicates the correctness

of the predictions. Correct and incorrect predictions are shown 1 and 0, respectively. The

second row corresponds to the sorted confidence values for each prediction. The next three

rows contain the counts ICb, ICa, and Subtotal. The table is then filled from left to right.

Initially, the first correct prediction is ranked the lowest. Thus, all of the incorrect predictions

are ranked higher. Thus, the ICb = 0 and ICa = 5. This process is repeated until we reach

the end of the list. The prediction ranking per Confidence is calculates as:

PRankConf =
1 + 2 + 5 + 5

5 + 4 + 3 + 5 + 5
=

13

22

3.2.1 Experimental Results

For this experiment, we use the initial pool of classifiers built for the experiment

described in Section 3.1.2. The predictions from all of the classifiers from all of the folds and
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runs are pooled together to form the data for this analysis. The purpose of this experiment

is to analyze which properties (validation accuracy, confidence, or both) of a classifier should

be considered when evaluating the correctness of a prediction. However, the relationship

between validation accuracy and confidence values for the predictions is not known. There-

fore, we combine these two classifier properties in two different ways. First, we take a naive

approach and calculate their simple average for each prediction. Then, we use the computed

values for sorting the predictions and calculating the prediction ranking, PRankAC . In the

second approach, we gradually filter out classifiers that do not satisfy a certain cut-off value

for validation accuracy, and consider only the predictions from the remaining classifiers. As

the cut-off value for the validation accuracy increases, the prediction ranking for confidence,

PRankConf , should also increase as the predictions are made by more accurate classifiers.

The results shown in Figure 3.1 and Table 3.10 clearly indicate that accurate and

confident classifiers make better predictions. When we start the experiment with all of the

classifiers and gradually filtered them out based on the associated validation accuracies,

the PRankAcc decreases and PRankConf increases. At the beginning, the pool includes

the classifiers with low validation accuracy which may make incorrect predictions with high

confidence values. In this case, the validation accuracy of a classifier can be used as an indi-

cator for correct predictions. Therefore, the PRankAcc is higher than PRankConf . However,

as we filter out the bad classifiers, the remaining ones are more accurate and have similar

accuracy. Predictions from the classifiers with the same accuracy cannot provide ranking.

Thus, instead of accuracy, the confidence of a classifier becomes a strong signal for correct

predictions. In other words, if we have two classifiers with the same accuracy, the predictions
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Table 3.10: Summary results of prediction ranking for “confidence
only”, “accuracy only”, and “accuracy with confidence”.

Australian

Min. Val. Acc.a PRankConf PRankAcc PRankAC Classifiers Left

0.00 0.5558 0.6074 0.5753 25000
0.30 0.5558 0.6073 0.5799 24996
0.40 0.5557 0.6073 0.5819 24985
0.45 0.5646 0.5883 0.5743 19292
0.50 0.5632 0.5869 0.5728 18861
0.55 0.5617 0.5940 0.5725 17696
0.60 0.6668 0.5792 0.6579 2888
0.65 0.6564 0.5455 0.6453 2608
0.70 0.6526 0.5242 0.6408 2422
0.75 0.6520 0.5065 0.6404 2188
0.80 0.6542 0.5017 0.6459 1175

Diabetes

Min. Val. Acc.a PRankConf PRankAcc PRankAC Classifiers Left

0.00 0.5636 0.6540 0.6305 25000
0.30 0.5629 0.6529 0.6425 24853
0.40 0.5702 0.5687 0.5811 19102
0.45 0.5643 0.5561 0.5704 18512
0.50 0.5597 0.5469 0.5628 18008
0.55 0.5563 0.5394 0.5572 17465
0.60 0.5549 0.5346 0.5544 16818
0.65 0.5726 0.5335 0.5702 11969
0.70 0.6261 0.5036 0.6181 4181
0.75 0.6459 0.4971 0.6414 920
0.80 0.6562 0.50445 0.6545 29

Heart

Min. Val. Acc.a PRankConf PRankAcc PRankAC Classifiers Left

0.00 0.5448 0.6118 0.5755 25000
0.30 0.5447 0.6117 0.5819 24988
0.40 0.5439 0.6115 0.5840 24841
0.45 0.5557 0.5821 0.5654 16853
0.50 0.5531 0.5781 0.5617 16356
0.55 0.5524 0.5807 0.5618 15875
0.60 0.6538 0.5558 0.6452 3799
0.65 0.6683 0.5257 0.6572 2751
0.70 0.6743 0.5113 0.6618 1935
0.75 0.6709 0.5011 0.6580 854
0.80 0.6390 0.4923 0.6253 198

Liver Disorder

Min. Val. Acc.a PRankConf PRankAcc PRankAC Classifiers Left

0.00 0.5381 0.5955 0.5614 25000
0.30 0.5381 0.5955 0.5683 24998
0.40 0.5392 0.5951 0.5709 24330
0.45 0.5542 0.5707 0.5659 19617
0.50 0.5550 0.5596 0.5616 17821
0.55 0.5556 0.5543 0.5602 16040
0.60 0.6029 0.5308 0.6002 5493
0.65 0.6046 0.5092 0.5979 3658
0.70 0.6002 0.4964 0.5927 1587
0.75 0.5977 0.4943 0.5919 551
0.80 0.5936 0.4670 0.5877 53

a “Min. Val. Acc.” represents the cut-off value for the validation accuracy.
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Figure 3.1: Prediction ranking for different validation accuracy cut-off values.

Note: The horizontal axis displays cut-off value for validation accuracy. The vertical axis

represents prediction ranking PRank. Predictions from classifiers with validation accuracy less

than the cut-off value are omitted when prediction ranking is calculated. Black, green, and red

lines represents PRankConf , PRankAcc, and PRankAC , respectively.
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made by these classifiers are not comparable by just considering the classifiers’ accuracy. In

fact, the classifier with the higher confidence value should be chosen to make the prediction.

The PRankAC exhibits a similar behavior as PRankConf . However, it never is better than

the PRankConf : the validation accuracy of a classifier becomes irrelevant when classifiers

reach a certain classification accuracy.

In addition, PRankConf and PRankAC decrease once the cut-off value exceeds a

threshold for the validation accuracy. This is because the number of remaining classifiers with

really high validation accuracy decreases drastically as shown in Table 3.10. Consequently,

the more accurate they get (in the validation dataset), the more similar they become, so

diversity is still a factor affecting the performance.

This experiment attempts to show that accurate, confident and diverse classifiers

should make better predictions. Even though results support this hypothesis, we still need

to explore the underlying relationship among these factors.

3.3 Logistic Regression

So far, we have established conflicting results in Sections 3.1.2 and 3.2 in investigating

if ensembles with accurate, confident, and diverse classifiers make more accurate predictions.

The objective function used in Section 3.1.2 is a linear combination of these three factors,

and the weights used for these factors were randomly chosen for the generated solutions.

However, it is still unclear which set of weights produced the best solutions, or what the

underlying relationship among these factors is. In addition, this linear formulation of the

objective assumes that there is no interaction between these factors.
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Table 3.11: Description of the Logistic Regression Models

Model Name Specificationa

Model 1 Y ∼ Acc
Model 2 Y ∼ Conf
Model 3 Y ∼ Div
Model 4 Y ∼ Acc + Conf
Model 5 Y ∼ Acc + Conf + Acc × Conf
Model 6 Y ∼ Acc + Div
Model 7 Y ∼ Acc + Div + Acc × Div
Model 8 Y ∼ Conf + Div
Model 9 Y ∼ Conf + Div + Conf × Div
Model 10 Y ∼ Acc + Conf + Div
Model 11 Y ∼ Acc + Conf + Div + Acc × Conf + Acc × Div + Conf × Div + Acc × Conf × Div

a The response Y represents the binary variable for correct prediction.

To address these questions, two experiments are performed. First, several logistic

regression models are built to assess the overall significance of the factors affecting ensembles’

performance using the whole data. In the second approach, we explore over which accuracy

and diversity ranges the confidence of an ensemble is a major predictor for making correct

predictions.

3.3.1 Experimental Results

To generate the data for the logistic regression experiments, 100 random ensembles

of size 25 are created for each data instance from the pool of trained classifiers discussed

in Section 3.1.2. The diversity (Div(E)), the average validation accuracy (Acc(E)), and the

confidence (Conf(E,t)) of the ensembles are then calculated. Both confidence definitions

described in Section 3.1 are considered. Finally, each ensemble is evaluated for each data

instance to determine whether its prediction is correct.
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3.3.1.1 Logistic Regression Experiment 1

For each dataset, the models shown in Table 3.11 are built. This process is repeated

five times. The results of the experiment for Conf1 and Conf2 are reported in Tables 3.12

and 3.13, respectively. The tables show the deviance of the model and the significance of the

regression coefficients at the 5% significance level. Deviance is similar to the idea of applying

the sum of squares of residuals in the Least Squares approach, and is useful to report for

cases where a model estimated using the method of Maximum Likelihood. The goodness of

a model is assessed based on its deviance value; a model with lower deviance is better. The

first column of Tables 3.12 and 3.13 shows the (mean, standard deviation) of the deviance

measure from all five runs for each models. The second column of these tables shows the

(mean,standard deviation) of the model accuracy from all five runs. The remainder of the

columns indicate how many times a given predictor for the model is individually significant

(out of the five runs).

According to Table 3.12, accuracy is not a significant predictor by itself except in the

Heart dataset (see model 1), while confidence and diversity each seem to perform better (in

models 2 and 3, respectively). When two of these three measures are included, the results

improve (models 4, 6, and 8), but the interaction terms do not contribute much (in models 5,

7, and 9). In fact, the deviance does not decrease significantly and the coefficients are more

likely to become insignificant. According to our results, having all three measures without

interaction terms (model 10) is the best model, as the deviance goes down considerably and

the coefficients are mostly individually significant. The results are very similar in Table 3.13,

except that the deviance is significantly lower in all models compared to those in Table 3.12.
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Table 3.12: Logistic regression results for the Conf1 definition (α = 0.05).

Australian

Dev Model Acc Acc Conf Div Acc Conf Acc Div Conf Div Acc Div Conf

Model1 (93665,239) (0.584,0.01) 1 – – – – – –
Model2 (92779,227) (0.585,0.01) – 5 – – – – –
Model3 (93335,300) (0.582,0.01) – – 5 – – – –
Model4 (92468,259) (0.591,0.01) 5 5 – – – – –
Model5 (92454,265) (0.591,0.01) 4 4 – 4 – – –
Model6 (93311,308) (0.582,0.01) 4 – 5 – – – –
Model7 (93309,308) (0.582,0.01) 2 – 2 – 1 – –
Model8 (92157,343) (0.590,0.01) – 5 5 – – – –
Model9 (92129,343) (0.590,0.01) – 5 5 – – 4 –

Model10 (92008,344) (0.594,0.01) 5 5 5 – – – –
Model11 (91958,353) (0.594,0.01) 2 2 2 2 2 2 2

Diabetes

Dev Model Acc Acc Conf Div Acc Conf Acc Div Conf Div Acc Div Conf

Model1 (94826,228) (0.692,0.00) 3 – – – – – –
Model2 (93892,349) (0.692,0.00) – 5 – – – – –
Model3 (94814,257) (0.692,0.00) – – 5 – – – –
Model4 (93866,337) (0.692,0.00) 4 5 – – – – –
Model5 (93859,341) (0.692,0.00) 3 2 – 3 – – –
Model6 (94585,169) (0.692,0.00) 5 – 5 – – – –
Model7 (94565,181) (0.692,0.00) 4 – 4 – 4 – –
Model8 (93794,348) (0.692,0.00) – 5 5 – – – –
Model9 (93785,345) (0.692,0.00) – 3 3 – – 3 –

Model10 (93658,241) (0.692,0.00) 5 5 5 – – – –
Model11 (93595,244) (0.692,0.00) 5 5 5 5 5 5 5

Heart

Dev Model Acc Acc Conf Div Acc Conf Acc Div Conf Div Acc Div Conf

Model1 (35885,135) (0.612,0.01) 5 – – – – – –
Model2 (35118,141) (0.610,0.01) – 5 – – – – –
Model3 (35694,161) (0.609,0.01) – – 5 – – – –
Model4 (35111,145) (0.611,0.01) 3 5 – – – – –
Model5 (35102,144) (0.611,0.01) 3 3 – 3 – – –
Model6 (35592,138) (0.610,0.01) 5 – 5 – – – –
Model7 (35580,134) (0.610,0.01) 5 – 5 – 5 – –
Model8 (34877,113) (0.615,0.01) – 5 5 – – – –
Model9 (34869,116) (0.615,0.01) – 1 3 – – 3 –

Model10 (34864,97) (0.615,0.01) 2 5 5 – – – –
Model11 (34824,106) (0.614,0.01) 1 1 1 1 1 1 1

Liver Disorder

Dev Model Acc Acc Conf Div Acc Conf Acc Div Conf Div Acc Div Conf

Model1 (45625,211) (0.625,0.01) 2 – – – – – –
Model2 (45399,312) (0.625,0.01) – 5 – – – – –
Model3 (45532,256) (0.625,0.01) – – 5 – – – –
Model4 (45391,311) (0.625,0.01) 2 5 – – – – –
Model5 (45380,308) (0.625,0.01) 3 3 – 2 – – –
Model6 (45512,273) (0.625,0.01) 3 – 5 – – – –
Model7 (45507,272) (0.625,0.01) 3 – 1 – 1 – –
Model8 (45262,338) (0.624,0.01) – 5 5 – – – –
Model9 (45248,342) (0.625,0.01) – 2 3 – – 4 –

Model10 (45246,340) (0.624,0.01) 4 5 5 – – – –
Model11 (45208,337) (0.625,0.01) 2 2 2 2 2 1 1
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Table 3.13: Logistic regression results for the Conf2 definition (α = 0.05).

Australian

Dev Model Acc Acc Conf Div Acc Conf Acc Div Conf Div Acc Div Conf

Model1 (93665,239) (0.584,0.01) 1 – – – – – –
Model2 (89569,407) (0.612,0.01) – 5 – – – – –
Model3 (93335,300) (0.582,0.01) – – 5 – – – –
Model4 (88540,506) (0.636,0.00) 5 5 – – – – –
Model5 (88127,699) (0.638,0.00) 5 5 – 5 – – –
Model6 (93311,308) (0.582,0.01) 4 – 5 – – – –
Model7 (93309,308) (0.582,0.01) 2 – 2 – 1 – –
Model8 (75327,946) (0.732,0.01) – 5 5 – – – –
Model9 (71912,1142) (0.763,0.00) – 5 5 – – 5 –

Model10 (74003,878) (0.733,0.01) 5 5 5 – – – –
Model11 (69470,1102) (0.769,0.00) 5 5 5 5 5 5 5

Diabetes

Dev Model Acc Acc Conf Div Acc Conf Acc Div Conf Div Acc Div Conf

Model1 (94826,228) (0.692,0.00) 3 – – – – – –
Model2 (89724,769) (0.699,0.01) – 5 – – – – –
Model3 (94814,257) (0.692,0.00) – – 5 – – – –
Model4 (88556,1039) (0.700,0.00) 5 5 – – – – –
Model5 (88402,1005) (0.701,0.00) 5 5 – 5 – – –
Model6 (94585,169) (0.692,0.00) 5 – 5 – – – –
Model7 (94565,181) (0.692,0.00) 4 – 4 – 4 – –
Model8 (87437,642) (0.709,0.00) – 5 5 – – – –
Model9 (87363,647) (0.709,0.00) – 5 5 – – 5 –

Model10 (87270,710) (0.708,0.00) 4 5 5 – – – –
Model11 (87044,672) (0.710,0.00) 5 5 5 5 5 4 4

Heart

Dev Model Acc Acc Conf Div Acc Conf Acc Div Conf Div Acc Div Conf

Model1 (35885,135) (0.612,0.01) 5 – – – – – –
Model2 (34636,299) (0.633,0.01) – 5 – – – – –
Model3 (35694,161) (0.609,0.01) – – 5 – – – –
Model4 (34498,347) (0.635,0.01) 5 5 – – – – –
Model5 (34492,341) (0.636,0.01) 4 5 – 3 – – –
Model6 (35592,138) (0.610,0.01) 5 – 5 – – – –
Model7 (35580,134) (0.610,0.01) 5 – 5 – 5 – –
Model8 (31591,356) (0.685,0.01) – 5 5 – – – –
Model9 (31040,370) (0.700,0.01) – 5 5 – – 5 –

Model10 (31407,407) (0.686,0.01) 5 5 5 – – – –
Model11 (30529,338) (0.704,0.01) 5 5 5 5 5 5 5

Liver Disorder

Dev Model Acc Acc Conf Div Acc Conf Acc Div Conf Div Acc Div Conf

Model1 (45625,211) (0.625,0.01) 2 – – – – – –
Model2 (44681,409) (0.629,0.01) – 5 – – – – –
Model3 (45532,256) (0.625,0.01) – – 5 – – – –
Model4 (44571,428) (0.633,0.01) 5 5 – – – – –
Model5 (44555,422) (0.633,0.01) 4 4 – 4 – – –
Model6 (45512,273) (0.625,0.01) 3 – 5 – – – –
Model7 (45507,272) (0.625,0.01) 1 – 1 – 1 – –
Model8 (43832,567) (0.651,0.01) – 5 5 – – – –
Model9 (43777,590) (0.651,0.01) – 5 5 – – 5 –

Model10 (43787,541) (0.652,0.01) 5 5 5 – – – –
Model11 (43682,559) (0.653,0.01) 1 1 3 1 1 1 1
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Table 3.14: Beta values in model 10.

Australian

Conf1 Definition Conf2 Definition

Intercept Acc Conf Div Intercept Acc Conf Div

Run1 -5.6573 -5.5017 12.6596 2.5063 -2.5639 -17.5092 15.0365 19.9921
Run2 -5.0361 -5.6619 12.4422 1.5691 -2.3783 -16.7989 14.3218 18.8959
Run3 -5.2644 -6.0351 13.2773 1.4791 -0.15526 -20.4622 14.4459 18.4641
Run4 -5.1766 -4.5167 11.6312 1.716 -1.5382 -18.2346 14.248 18.8874
Run5 -5.0956 -5.6275 12.3901 1.7929 -3.0063 -18.3737 16.3648 20.9814

Diabetes

Conf1 Definition Conf2 Definition

Intercept Acc Conf Div Intercept Acc Conf Div

Run1 -9.8375 6.1132 6.9379 4.7102 -5.6519 0.41152 5.0942 10.184
Run2 -7.8664 2.2049 8.781 2.8035 -2.1086 -5.4031 6.0623 9.3774
Run3 -7.7236 3.8702 6.5391 3.6121 -4.1372 -2.6267 5.5559 10.3991
Run4 -7.7347 1.5168 9.1457 2.745 -1.9717 -5.004 5.7728 8.7564
Run5 -6.4255 1.1986 7.7113 2.5673 -1.1788 -6.5845 5.9873 8.9376

Heart

Conf1 Definition Conf2 Definition

Intercept Acc Conf Div Intercept Acc Conf Div

Run1 -13.0559 3.1337 15.699 4.7857 -7.6478 -11.4295 12.9056 24.4371
Run2 -11.5497 1.3854 15.4982 3.8867 -6.0142 -13.0473 13.0636 22.9733
Run3 -13.7502 5.0976 15.8396 3.8558 -7.6361 -5.9812 12.0192 18.9395
Run4 -10.9849 0.2232 15.5666 4.0115 -4.7328 -13.7103 12.6643 21.3005
Run5 -12.8734 -0.0011 18.8719 3.9258 -6.4838 -9.9538 11.6143 20.9693

Liver Disorder

Conf1 Definition Conf2 Definition

Intercept Acc Conf Div Intercept Acc Conf Div

Run1 -3.9126 -1.6688 6.8863 1.6776 0.32608 -6.1744 3.6762 5.7779
Run2 -4.6417 2.4498 3.6864 2.8412 -1.8838 -2.7563 3.512 6.5025
Run3 -2.8214 0.53075 3.4023 1.6625 -1.1331 -4.0267 3.5169 6.44
Run4 -5.7942 3.2448 4.6101 3.1859 -3.4248 -1.1974 3.8997 7.9174
Run5 -7.3983 1.802 7.7816 3.7693 -3.7197 -2.5959 4.5793 9.6789
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Given that we select model 10 as the best model, we provide some insights to the

magnitude and sign of the coefficients in Table 3.14 for the two confidence definitions. Ac-

cording to Table 3.14, all three measures have a positive impact (except in the Australian

Dataset). Higher classifier accuracy, ensemble confidence, and diversity each increase the

probability of correct classification, after accounting for the other two factors. The sign of

the coefficient on accuracy switches with the second confidence definition. This implies that

holding the ensemble confidence and diversity constant, classifiers with higher accuracy are

less likely to classify correctly. Considering the deviance and beta values obtained for Model

10 with the Conf2 definition, we conclude that using an ensemble with high diversity and

high confidence margin (margin implies level of agreement) on the prediction increases the

correctness of predictions.

3.3.1.2 Logistic Regression Experiment 2

In the second experiment, we focus on Model 2 (see the description in Table 3.11)

and explore in detail whether confidence is a good predictor for certain ranges of accuracy

and diversity values. To do this, we divide the data into 16 partitions based on ensemble

accuracy and diversity. We first sort classifiers according to their accuracy and diversity

values, and then categorize them into four groups, with respect to each variable, as shown in

Tables 3.15 and 3.16. For instance, the 75Perc category for accuracy includes the classifiers

whose accuracy is between 50% and 75%, while the 25Perc category for diversity includes

classifiers whose diversity is between 0% and 25%.

For each partition, we build a logistic regression model with just confidence as a
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predictor. For each of these combinations, we report, in the first row, the mean and standard

deviation of the deviance as well as the number of runs (out of 5 runs) for which the coefficient

on confidence is significant at the 5% significance level. In the second row, we show the mean

and standard error of the coefficient and the number of runs (out of 5 runs) for which the

coefficient is positive.

To illustrate, consider the combination (100Perc, 100Perc) (the top left cell) in Table

3.15. The deviance of this model for these classifiers is 3232 with a standard deviation of

687. The coefficient is individually significant in all 5 runs, and its average value in these

runs equals 16 with a standard error of 2. Finally, the coefficient is positive in all five runs.

As can be seen from Table 3.15, the coefficient on confidence is positive and statisti-

cally significant in all five runs (except for the Liver Disorder sataset where it is significant

in three runs). The average value of the coefficient is different across the four datasets:

the coefficient is highest in the Heart Dataset, followed by Australian, Diabetes, and Liver

Disorder. Additionally, the coefficient on the confidence increases with the percentile range

for accuracy (e.g 10 for 25Perc accuracy and 16 for 100Perc accuracy given 100Perc for

diversity in the Australian dataset).

While the results on individual significance and the coefficient sign stay similar with

the second confidence definition, as shown in Table 3.16, the coefficient seems to decrease

with higher accuracy percentile ranges. It is also worth noting that while the deviance is

not comparable across different percentile ranges, it is comparable across different confidence

definitions for any given percentile range. According to Tables 3.15 and 3.16, the deviance

is lower with the second confidence definition across the board for any dataset and any
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percentile range. Therefore, margin confidence as a predictor better fits the logistic model.

The first confidence definition (Conf1) does not provide any indication of whether

the classifiers agree on the prediction; it only implies how confident the classifiers in the

ensemble are. Table 3.15 shows that to make better predictions, we need high accuracy and

diversity as well. This is because highly accurate and diverse classifiers will make similar

(accurate) predictions with high confidence. In contrast, the bottom right corner of the table

clearly shows that confidence does not have high impact (high beta value) for ensembles

that are formed by similar classifiers that are not accurate. On the other hand, the second

confidence definition is based on the margin definition, which is also an indicator of the level

fo agreement between the classifiers on the prediction. The results in Table 3.16 show that

if the classifiers have a high level of agreement on the decision and if they are diverse, the

overall performance of the classifiers becomes irrelevant.

3.4 Conclusion

We introduce two ensemble confidence definitions, Conf1 and Conf2, and examine the

role of classifier confidence in several experimental settings. In a multi-objective optimization

setting, the primary problem to overcome is performance: dynamic optimization for each

data instance requires significant time and reduces the size and complexity of the datasets

we can reasonably experiment on. Our results, based on a thorough examination of four

small-scale datasets, indicate that confidence (and therefore, dynamic construction) leads

to little performance improvement for some datasets and none for others. One challenge

with these small-scale datasets is to maintain reasonable accuracy and diversity in the initial
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Table 3.15: Summary results of model 2 for the Conf1 definition

Australiana

Acc\Div 100Perc 75Perc 50Perc 25Perc

100Perc (3232,687) 5 (4216,474) 5 (6345,900) 5 (8682,797) 5
(16,2) 5 (11,2) 5 (11,1) 5 (16,2) 5

75Perc (4086,407) 5 (5000,340) 5 (6305,355) 5 (7386,134) 5
(15,2) 5 (11,1) 5 (14,1) 5 (15,3) 5

50Perc (5363,312) 5 (6009,171) 5 (6071,365) 5 (5509,553) 5
(14,2) 5 (11,3) 5 (12,2) 5 (12,4) 5

25Perc (8579,1252) 5 (8260,661) 5 (4665,869) 5 (1664,106) 5
(10,2) 5 (8,3) 5 (10,1) 5 (12,2) 5

Diabetesa

Acc\Div 100Perc 75Perc 50Perc 25Perc

100Perc (732,358) 4 (1741,590) 5 (5379,308) 5 (15559,1263) 5
(12,6) 5 (12,2) 5 (11,1) 5 (9,2) 5

75Perc (3267,727) 5 (5042,372) 5 (8567,1167) 5 (6328,518) 5
(10,2) 5 (9,1) 5 (7,1) 5 (5,2) 5

50Perc (7891,1093) 5 (7285,789) 5 (6181,577) 5 (1688,676) 2
(9,1) 5 (7,1) 5 (6,1) 5 (1,3) 4

25Perc (10848,1445) 5 (9220,874) 5 (3470,993) 3 (350,152) 0
(9,1) 5 (7,1) 5 (4,1) 5 (2,3) 5

Hearta

Acc\Div 100Perc 75Perc 50Perc 25Perc

100Perc (1747,135) 5 (940,57) 5 (1814,107) 5 (3872,167) 5
(20,1) 5 (22,2) 5 (16,2) 5 (17,1) 5

75Perc (2146,88) 5 (1337,63) 5 (2180,133) 5 (2794,95) 5
(24,3) 5 (23,5) 5 (15,5) 5 (17,2) 5

50Perc (2541,148) 5 (2017,75) 5 (2282,144) 5 (1633,147) 3
(22,3) 5 (19,5) 5 (15,2) 5 (11,5) 5

25Perc (1217,215) 5 (4448,183) 5 (2793,181) 1 (757,176) 1
(20,6) 5 (9,3) 5 (4,2) 5 (2,7) 3

Liver Disordera

Acc\Div 100Perc 75Perc 50Perc 25Perc

100Perc (1935,552) 4 (1756,439) 5 (2835,571) 5 (4602,810) 5
(7,4) 5 (6,2) 5 (6,1) 5 (5,2) 5

75Perc (2547,319) 5 (2241,432) 5 (2828,233) 5 (3611,573) 3
(8,3) 5 (8,1) 5 (4,1) 5 (4,3) 5

50Perc (3277,309) 4 (2806,327) 5 (2754,467) 5 (2328,415) 3
(7,4) 5 (7,3) 5 (7,2) 5 (3,4) 4

25Perc (3183,691) 3 (4365,713) 3 (2988,402) 3 (1072,826) 1
(5,3) 5 (4,2) 5 (3,4) 4 (0,5) 3

a Each cell contains: mean and standard deviation of the deviance (top left), the
coefficient with its standard error (bottom left), the number of runs for which the
coefficient is significant (top right) and positive (bottom right).
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Table 3.16: Summary results of model 2 for the Conf2 definition

Australiana

Acc\Div 100Perc 75Perc 50Perc 25Perc

100Perc (2727,535) 5 (2776,330) 5 (4293,602) 5 (6584,898) 5
(10,1) 5 (12,1) 5 (13,1) 5 (12,1) 5

75Perc (3418,361) 5 (3314,262) 5 (4398,339) 5 (6295,114) 5
(13,1) 5 (17,1) 5 (18,2) 5 (13,2) 5

50Perc (4573,308) 5 (4305,134) 5 (4694,309) 5 (5179,465) 5
(15,1) 5 (20,2) 5 (21,1) 5 (10,2) 5

25Perc (7712,1194) 5 (7364,592) 5 (4356,805) 5 (1667,111) 5
(17,2) 5 (14,1) 5 (14,1) 5 (4,1) 5

Diabetesa

Acc\Div 100Perc 75Perc 50Perc 25Perc

100Perc (696,347) 5 (1634,560) 5 (4978,249) 5 (14093,1186) 5
(5,1) 5 (5,0) 5 (5,0) 5 (5,0) 5

75Perc (3085,708) 5 (4728,332) 5 (7870,1116) 5 (5625,374) 5
(6,0) 5 (5,0) 5 (6,0) 5 (7,1) 5

50Perc (7505,1078) 5 (6823,759) 5 (5685,437) 5 (1545,599) 5
(6,0) 5 (6,1) 5 (6,1) 5 (7,1) 5

25Perc (10537,1383) 5 (8865,894) 5 (3257,917) 5 (320,132) 5
(6,0) 5 (6,1) 5 (6,1) 5 (6,1) 5

Hearta

Acc\Div 100Perc 75Perc 50Perc 25Perc

100Perc (1684,122) 5 (862,42) 5 (1532,137) 5 (3291,250) 5
(9,1) 5 (9,1) 5 (10,1) 5 (10,1) 5

75Perc (2060,124) 5 (1216,83) 5 (1824,169) 5 (2483,123) 5
(12,2) 5 (12,1) 5 (14,1) 5 (12,1) 5

50Perc (2401,166) 5 (1828,114) 5 (1958,106) 5 (1518,131) 5
(15,1) 5 (14,1) 5 (16,1) 5 (11,0) 5

25Perc (1155,202) 5 (4183,174) 5 (2573,195) 5 (703,161) 5
(17,1) 5 (13,1) 5 (12,1) 5 (11,3) 5

Liver Disordera

Acc\Div 100Perc 75Perc 50Perc 25Perc

100Perc (1920,554) 5 (1721,404) 5 (2723,573) 5 (4280,765) 5
(3,1) 5 (3,1) 5 (3,0) 5 (4,1) 5

75Perc (2519,320) 5 (2181,414) 5 (2710,213) 5 (3410,540) 5
(4,1) 5 (4,1) 5 (4,1) 5 (4,1) 5

50Perc (3245,314) 5 (2747,329) 5 (2659,451) 5 (2225,405) 5
(4,1) 5 (4,0) 5 (4,1) 5 (4,1) 5

25Perc (3142,674) 5 (4266,686) 5 (2920,430) 5 (1051,819) 5
(4,1) 5 (4,1) 5 (3,1) 5 (3,1) 5

a Each cell contains: mean and standard deviation of the deviance (top left), the
coefficient with its standard error (bottom left), the number of runs for which the
coefficient is significant (top right) and positive (bottom right).
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classifier pool. A potential solution can be to experiment on larger-scale datasets.

We propose the PRank method to show when confidence of a classifier could be

considered as a criteria for making correct predictions. Our analysis indicate that confidence

becomes a major indicator after the classifiers in the pool reach a certain level of accuracy.

Unfortunately, this level is different for each dataset.

The logistic regression results for the margin confidence definition are encouraging

and highlight the benefits of having confident and diverse classifiers as having accuracy

in addition to confidence and diversity does not improve the performance based on the

results presented in Table 3.13. Margin confidence considers the agreement level among the

classifiers in the ensemble on the prediction. Thus, instead of taking into account the overall

accuracy of a classifier, we may focus on the local accuracy of a classifier, which can more

information regarding how much classifiers truly agree on data instances similar to the new

instance.
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CHAPTER 4
DYNAMIC CLASS PREDICTION WITH CLASSIFIER BASED DISTANCE

MEASURE

In this chapter, we continue our analysis of the dynamic class prediction models and

set up a system based on a new distance measure to evaluate the similarity between data

points and to make predictions. We propose a method to make dynamic predictions to

address the following questions:

• To find the k-nearest neighbors of a new instance, should the original feature space or

a classifier-based space be used?

• Is using class probability estimates better than just classifiers’ predictions to find sim-

ilar instances?

• Is classifiers’ performance on the validation instances helpful when finding similar in-

stances?

• Should all of the classifiers in the pool be used for computing similarity between in-

stances? If not, what criteria should be considered to eliminate certain classifiers?

• After neighbors are found, should we use them to form an ensemble or to make a

prediction directly?

In Sections 4.1 and 4.2, the general structure of the system and its running time are

explained. In Sections 4.3 and 4.4, we explain proposed and baseline distance measures. We

carry out several experiments to evaluate performance of our framework. The results are

presented in Section 4.5. Finally, Section 4.8 summarizes this chapter.
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4.1 Proposed Framework

The prediction probability returned by a classifier can be considered as a measure

of proximity of a data instance to the decision boundary. This measure can be used to

compare multiple instances and to decide whether that particular classifier considers those

data instances similar. Our proposed framework consists of two main steps: a static step

and a dynamic step. We illustrate both steps as a flow chart in Figure 4.1.

In the static step, we have a pool of classifiers, C, of size M , and we map data

instances into a new space defined by the class probability estimates from each classifier for

a given class label. Since we consider two-class problems, the choice of class label does not

change our results. Next, we find each new instance’s k-nearest neighbors in the validation

set, of size N , using this space. These k neighbors can be seen as the data instances that,

on average, the classifiers agree are similar to the new instance. This step is termed “static”

as, for all new instances, we consider the output of all M classifiers in the pool.

In the dynamic step of our framework (on the right in Figure 4.1), we use the results

from the static step to select a subset of classifiers C ′, of size E < M , from the original

pool, C, that are suitable for classifying a given new instance. Reducing the size of the space

is important because the number of classifiers in our framework is large and (dis)similarity

becomes less meaningful as the feature space dimensionality increases. Our selection method

favors classifiers that have high confidence in their predictions for the neighbors identified in

the static step (i.e. classifiers for which the predictions are far away from the 50% decision
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boundary).1 Confidence of a classifier Cm on k neighbors is calculated as follows:

Confm =

k∑
i=1

Pr(`i,m | i)

k
(4.1)

where `i,m represents the label assigned to instance i by classifier Cm and Pr(`i,m|i) represents

the probability estimate returned by the classifier for the assigned class label. In other words,

the confidence of a classifier on k neighbors is the average of probability estimates returned

for the decisions. The most confident E classifiers are chosen to form the reduced space, C ′.

Reducing the size of the classifier set in this manner avoids the unstable behavior that may

occur near the decision boundary of some classifiers.

Once the classifier subset, C ′, is generated, the original distance measure is reapplied

to find a new set of neighbors V∗ for the new instance. This neighborhood is then used for

the final classification of the instance; the new instance is assigned to the class label most

common among its k neighbors.

4.2 Running Time Analysis

To analyze the running time of the system, we first evaluate the static and dynamic

steps separately. The running time of the static step can be analyzed in two parts: (1)

forming the probability space, and (2) finding k neighbors of a new instance. Forming the

probability space consists of getting predictions for N validation instances from M classifiers,

so the computational time is O(M × N). This is a preprocessing step as once this space

is formed, it will remain the same for all new data instances. Finding k neighbors requires

getting prediction for each new instance from M classifiers (O(M)), calculating the distance

1For completeness, other selection methods are considered in Section 4.7.4.
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between the new instance and validation instances (O(M×N)), and finally finding k instances

that are closest to the new instance (O(k × N)). Overall, the running time for this static

step is O(M × N), which is for calculating the distance between a new instance and the

validation instance.

The dynamic step is composed of two main parts: (1) reducing the classifier space,

and (2) finding new k neighbors of a new instance. Since predictions for validation instances

and k neighbors of a new instance are already found in the static step, the running time

of reducing the space consists of calculating the confidence of classifiers on the neighbors

(O(k ×M)) and finding the most confident E classifiers (O(E ×M)). The running time of

the rest of the dynamic step can be analyzed in a similar manner to the static step (O(k×E)).

The overall running time of the whole system is dominated by the running time of the static

step as k < N and E < M .

4.3 Baseline Distance Measures

In this section, we consider three different distance measures for our baseline: eu-

clidean distance, template matching, and oracle-based template matching. Euclidean dis-

tance in the original feature space is used as a benchmark since we hypothesize that the space

in which similarity among data instances assessed should be different than the ones used for

classifier training. Even though template matching and oracle-based template matching mea-

sures [9] use classifier output space instead of the original feature space, they only consider

assigned labels. We argue that including probability estimates returned by the classifiers can

prove useful for assessing the similarity among data instances. These measures are explained



75

in further detail below.

4.3.1 Euclidean Distance

We first consider the Euclidean Distance (ED) between two data instances i and j:

EDi,j =

√√√√√ D∑
d=1

(φi,j,d)
2

D
(4.2)

φi,j,d =Fd(i)− Fd(j) (4.3)

where a dataset consists of the feature set F = {Fd | d = 1, . . . , D} and Fd(i) represents the

value of feature Fd for instance i.

4.3.2 Template Matching

Given a set of classifiers C = {Cm | n = 1, . . . ,M}, Template Matching (TM) consid-

ers the percentage of classifiers, denoted by TMi,j, that agree on the label of test instance i

and validation instance j:

TMi,j =
1

M

M∑
m=1

αi,j,m (4.4)

αi,j,m =


1, if `i,m = `j,m

0, otherwise.

(4.5)

where `j,m represents the label assigned to instance j by classifier Cm and αi,j,m represents

whether classifier Cm assigns the same label to instances i and j. It follows that the higher

TMi,j, the more similar the pair of instances (i, j).
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4.3.3 Oracle-Based Template Matching

Oracle-based Template Matching (OTM) extends TM by incorporating the correct-

ness of classifier predictions on data instances. Specifically, when evaluating the similarity

of test instance i to validation instance j using OTM, only those classifiers that correctly

classify j are considered.

Let `j,m indicate the label assigned to instance j by classifier Cm, while `?j is the

correct label for instance j. This measure, denoted by OTMi,j, can be formulated as follows:

OTMi,j =

M∑
m=1

βi,j,m

M∑
m=1

γj,m

(4.6)

βi,j,m =


1, if `i,m = `j,m = `?j

0, otherwise.

(4.7)

γj,m =


1, if `j,m = `?j

0, otherwise.

(4.8)

In this formulation, βi,j,m indicates if classifier Cm correctly predicts both instances

i and j, while γj,m equals 1 if classifier Cm correctly predicts instance j. Similar to TM, a

higher value of OTMi,j implies greater similarity between instances i and j.

4.4 Proposed Measures

For our dynamic class prediction framework, we propose two new distance measures:

Probability-Based Template Matching and Probability-Based Template Matching with Ac-

curacy. These measures are described in detail below.
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4.4.1 Probability-Based Template Matching

Probability-Based Template Matching (PTM) maps each data instance into an al-

ternate feature space constructed by using the probability estimates of each classifier in the

pool as the values of the features. As mentioned before, the probability estimates for the

two-class problems are taken with respect to a particular class label, and the choice of label

is arbitrary. The similarity between instances i and j, denoted by PTMi,j, is calculated as

the Euclidean distance between them in this alternate feature space:

PTMi,j =

√∑M
m=1 (φi,j,m)2

M
(4.9)

φi,j,m =P̃ri,m − P̃rj,m (4.10)

where P̃ri,n represents the probability estimate in the alternative feature space for instance

i returned by classifier Cm. Similar to the ED, the pair of instances (i, j) with the smallest

PTMi,j is considered to be the most similar.

4.4.2 Probability-Based Template Matching with Accuracy

Probability-Based Template Matching with Accuracy (PTMA) integrates the correct-

ness of classifiers on validation instance j. We focus on the probability estimates returned

by the classifier for the correct class label of the new and validation instances. Therefore,

we make adjustments on the probability estimates returned for the validation instance. For

example, if instance j is misclassified by classifier Cm, we swap the probability estimates

returned for both class labels for j by Cm because the assigned label for j is incorrect and

it should have the lower probability estimate. Since we only consider two-class problems,

swapping is straightforward: 1 − PrCm,j. There are four different cases associated with the
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adjustment of probability estimates when we consider the assigned labels of instances i and

j, and the correctness of the prediction for instance j. We do not know the true label of

the new instance i: we cannot really decide whether the probability estimates returned for

instance i need adjustments. Therefore, each case specified in equation (4.11) below should

have equal weight. To avoid one case eliminating the effect of the other cases, we re-scale all

values to be between [0, 1].

PTMAi,j =

√√√√√ M∑
m=1

(δi,j,m)2

M
(4.11)

δi,j,m =



2 | Pri,m − Prj,m |, if `i,m = `j,m&`j,m = `?j

| 1− Pri,m − Prj,m |, if `i,m = `j,m&`j,m 6= `?j

| Pri,m − Prj,m |, if `i,m 6= `j,m&`j,m = `?j

2 | 1− Pri,m − Prj,m |, if `i,m 6= `j,m&`j,m 6= `?j

(4.12)

We illustrate how these measures differ with a simple example. Table 4.1 shows the

assigned labels and the corresponding probability estimates for class label l1 returned by

classifiers C1, ..., C5. Suppose that v1 is the instance we would like to predict.

Four out of five classifiers in our example assigned the same label to instances v1 and

v2, while only two classifiers assigned the same label to v1 and v3. Thus, TM1,2 = 4/5 = 0.8

and TM1,3 = 2/5 = 0.4. Meanwhile, as explained above, OTM accounts for correctness of

assigned labels. Only two classifiers (out of five given) correctly predict v2, whose actual

label is l2. Out of these two classifiers, only one assigned the same label to v1. Thus,

OTM1,2 = 0.5. Similar algebra yields OTM1,3 = 0.66. Consequently, we may conclude that

v1 and v2 are more similar than v1 and v3, according to TM, and the similarity is about the
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Table 4.1: Assigned class labels and class proba-
bilities by classifiers

Assigned Class Labels

C1 C2 C3 C4 C5 Correct Label

v1 1 1 2 1 1 −
v2 1 1 2 1 2 2
v3 2 2 1 1 1 1

Class Probabilities for ` = 1

C1 C2 C3 C4 C5

v1 0.53 0.57 0.44 0.90 0.85
v2 0.92 0.89 0.24 0.52 0.35
v3 0.46 0.43 0.53 0.88 0.90

same according the OTM measure.

Let’s turn our attention to the PTM and PTMA measures. Given the class probabil-

ities for ` = 1 in Table 4.1, we can directly calculate the two PTM measures:

PTM1,2 =

√
0.392 + 0.322 + 0.202 + 0.382 + 0.502

5
∼= 0.3712 (4.13)

PTM1,3 =

√
0.072 + 0.142 + 0.292 + 0.022 + 0.052

5
∼= 0.0843 (4.14)

which implies that v1 and v3 are considered more similar instances according to the PTM

measure. For the PTMA measure, this result is more pronounced. Using the formula in

equation (4.11), we calculate PTMA1,2 = 0.9973 and PTMA1,3 = 0.1118. As a result,

considering only the assigned labels to determine similarity may lead to incorrect decisions.

This is especially true for instances that are closer to the decision boundary of a classifier,

as the classifier provides less confidence in its prediction for those instances.

4.5 Experimental Setup

In our experiments, we use 13 data sets with varying numbers of features and data

instances retrieved from the LIBSVM website ([10]). A summary of the data sets and the
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Table 4.2: Summary of the data sets and classifiers

Data Set #Data Points #Features Class Ratioa %Good Classifiersb Diversityc

a1a 1605 119 0.33 100 0.126
australian 690 14 0.80 64.17 0.229
breast cancer 683 10 0.54 97.14 0.050
diabetes 768 8 0.54 99.74 0.222
german 1000 24 0.43 100 0.208
heart 269 13 0.79 59.44 0.286
ionosphere 351 34 0.56 88.75 0.071
liver disorder 345 6 0.73 79.46 0.310
mushrooms 8124 112 0.93 54.05 0.006
rcvd 20242 47236 0.93 56.65 0.050
sonar 208 60 0.87 54.04 0.300
splice 1000 60 0.93 52.77 0.277
w1a 2477 300 0.03 100 0.004

a The variable Class Ratio represents the ratio of minority class to the majority class.
b The variable %Good Classifiers represents the ratio of classifiers with at least 50% accuracy
to the total number of classifiers over 100 runs.
c The variable Diversity represents the diversity of the classifiers in the pool over 100 runs
based disagreement measure.
d 1000 classifiers are generated for all datasets except the rcv dataset, for which 100 classifiers
are generated due to its size.

classifiers generated for each is presented in Table 4.2. The last column of this table illustrates

the percent of classifiers with at least 50% accuracy, referred to as %GoodClassifiers.

The programming code was written in MATLAB and LIBSVM ([10]) was used to

construct RBF kernel SVM classifiers. The training parameters were chosen such that clas-

sifiers overfit the data. Each experiment was repeated 100 times, with each run registering

a unique seed value for the random number generator.

For each run, the data sets are randomly divided into three subsets such that 60% of

the instances is used to train classifiers, 20% is used for validation, and the remaining 20%

is used for testing. A pool of 1000 classifiers is then constructed for each data set using a

combination of bootstrap instance sampling (as in bagging) and random subspace selection
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on the training set.2 In doing so, we ensure that the initial classifier pool is highly diverse.

Finally, classifiers with an error rate above 50% are removed from the pool. The last column

of Table 4.2 represents the percentage of the classifiers with less than 50% error rate in the

generated pool of classifiers.

In the following sections, we first analyze the static step. In Section 4.6.1, we perform

an experiment to set the value of k for baseline and proposed (dis)similarity measures.

Then, we compare the effectiveness of these measures to find the closest k neighbors to

make the predictions in Section 4.6.2. In Section 4.6.3, we investigate whether the classifier-

based feature space can improve the KNORA method results. In addition, we choose the

appropriate distance measure for KNORA before comparing it with the static step. We

conclude our comparison for the static step by assessing its performance against common

benchmarks in Section 4.6.4.

Once our comparison for the static step is done, we turn our attention to the dynamic

step. We first determine the optimal reduced space size in Section 4.7.1. In Section 4.7.2,

we examine the contribution of the dynamic step in our framework in addition to the static

step, while we compare the dynamic step against common benchmarks in Section 4.7.3. We

then explore various strategies in evaluating the dynamic step in Section 4.7.4. Finally, in

Section 4.7.5, we evaluate the performance of the dynamic step against that of the ensembles

formed by the classifiers for the reduced space.

2Due to its size, only 100 classifiers are generated for the rcv data set.
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4.6 Results: Static Step

4.6.1 Evaluation of Neighborhood Size

The number of neighbors considered for each similarity measure is crucial. As a

preprocessing step, we perform an experiment in which k is varied over the odd integers

from 1 to 25 to find the optimal value. In this step, for each run of a data set, we predict the

validation instances using training instances and decide for which k value maximum accuracy

is obtained. We repeated this 100 times, and considered two versions of the experiment:

unweighted and weighted averages. In the weighted version, the vote of each neighbor is

multiplied by the inverse of its distance to the new instance.

Table 4.3 shows the unweighted and weighted cases for the best k value for each

similarity measure, averaged over all of the runs. We find that the average value of k is

smaller for the OTM (ranging from 1 to 4) and PTMA (ranging from 1 to 3) measures for

both weighted and unweighted versions. A possible explanation is that these two measures

take into account the correctness of the decision associated with the validation instances.

Consequently, a small neighborhood of validation instances is sufficient to correctly classify

the new instance.

Table 4.4 shows the average accuracy of each similarity measure for the validation

data instances. The results indicate that there is very little difference between the weighted

and unweighted versions. Consequently, for the rest of the experiments carried out in this

chapter, we consider the unweighted case in which each neighbor has equal weight.

We also analyze the percentage of common neighbors between proposed measures and

baseline measures for the unweighted case. For a given data set and a k value, we look at the
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Table 4.3: Average best k value for similarity mea-
sures

Unweighted Case

Dataset TM OTM ED PTM PTMA

a1a 9.60 3.30 14.24 9.80 1.42
australian 9.34 1.50 12.14 11.24 1.46
breast cancer 9.06 1.66 5.14 7.74 1.08
diabetes 11.14 3.22 13.34 12.30 2.66
german 14.52 3.52 14.08 13.68 1.28
heart 7.48 1.56 13.32 7.06 1.86
ionosphere 9.64 2.16 2.84 9.34 1.12
liver disorder 10.02 2.20 9.02 12.12 3.82
mushrooms 9.56 1.00 1.00 10.48 1.00
rcv 16.50 4.90 1.94 16.00 3.62
sonar 5.94 1.12 1.86 8.26 1.22
splice 3.46 1.16 10.02 5.48 1.00
w1a 1.34 1.00 2.20 1.34 1.00

Weighted Case

Dataset TM OTM ED PTM PTMA

a1a 9.60 3.30 14.42 9.8 1.42
australian 9.34 1.50 12.94 11.24 1.46
breast cancer 9.06 1.66 5.40 7.74 1.08
diabetes 11.14 3.22 13.62 12.3 2.66
german 14.52 3.52 15.08 13.68 1.28
heart 7.48 1.56 12.92 7.06 1.86
ionosphere 9.64 2.16 2.86 9.34 1.12
liver disorder 10.02 2.20 10.82 12.12 3.82
mushrooms 9.56 1.00 1.00 10.48 1.00
rcv 16.50 4.90 2.90 16.00 3.62
sonar 5.94 1.12 2.44 8.26 1.22
splice 3.46 1.16 10.00 5.48 1.00
w1a 1.34 1.00 2.08 1.34 1.00
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Table 4.4: Summary results for validation instances in the preprocessing step

Unweighted Casea

Dataset TM OTM ED PTM PTMA

a1a (71.87,4.04) (76.83,0.02) (80.61,0.93) (71.57,3.90) (77.74,0.01)
australian (84.85,0.82) (85.50,0.01) (85.01,1.37) (84.44,1.10) (85.47,0.02)
breast cancer (73.31,3.39) (96.61,0.01) (96.52,0.31) (73.44,2.99) (96.64,0.01)
diabetes (59.91,2.60) (75.28,0.04) (73.19,1.25) (60.93,2.01) (75.17,0.02)
german (66.96,3.42) (71.17,0.02) (71.14,1.46) (67.39,3.26) (71.34,0.01)
heart (80.74,0.42) (81.55,0.06) (81.34,2.21) (80.46,0.40) (79.80,0.03)
ionosphere (73.49,4.03) (93.25,0.03) (80.96,3.14) (72.74,3.33) (93.96,0.02)
liver disorder (69.65,0.90) (70.18,0.07) (62.11,0.73) (67.85,1.61) (68.46,0.10)
mushrooms (95.96,4.13) (100.0,0.00) (99.98,0.02) (96.06,4.10) (100.0,0.00)
rcv (63.56,5.29) (97.05,0.00) (92.56,0.38) (65.09,5.05) (96.91,0.00)
sonar (80.24,0.35) (81.28,0.08) (71.66,4.37) (79.73,0.44) (61.10,0.02)
splice (56.37,0.16) (56.37,0.01) (68.14,0.85) (56.45,0.31) (47.48,0.01)
w1a (96.80,0.86) (97.16,0.01) (97.19,0.12) (96.89,0.63) (97.14,0.00)

Weighted Casea

Dataset TM OTM ED PTM PTMA

a1a (71.88,3.99) (76.83,0.02) (80.33,0.82) (71.64,3.70) (77.75,0.01)
australian (84.87,0.83) (85.50,0.01) (84.76,1.38) (84.51,1.07) (85.48,0.02)
breast cancer (73.48,3.59) (96.61,0.01) (96.58,0.33) (73.62,3.20) (96.64,0.01)
diabetes (59.89,2.51) (75.29,0.05) (73.44,1.27) (61.12,2.03) (75.17,0.01)
german (66.95,3.49) (71.17,0.02) (71.76,1.51) (67.39,3.35) (71.34,0.01)
heart (80.75,0.47) (81.56,0.07) (81.22,2.04) (80.51,0.34) (79.80,0.03)
ionosphere (73.45,3.95) (93.25,0.04) (81.97,2.55) (73.05,3.23) (93.96,0.01)
liver disorder (69.80,0.90) (70.20,0.06) (63.91,0.79) (67.97,1.53) (68.47,0.09)
mushrooms (96.16,4.14) (100.0,0.00) (100.0,0.00) (96.27,4.07) (100.0,0.00)
rcv (63.74,5.19) (97.05,0.01) (93.23,0.33) (65.12,5.01) (96.91,0.01)
sonar (80.33,0.26) (81.30,0.09) (74.71,3.77) (79.76,0.47) (61.09,0.02)
splice (56.38,0.12) (56.37,0.01) (68.48,0.60) (56.45,0.25) (47.48,0.00)
w1a (96.80,0.81) (97.16,0.01) (97.19,0.14) (96.95,0.37) (97.14,0.00)

a The values in parentheses are average accuracy and its standard deviation, respectively.
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Table 4.5: Common neighbors between PTM(A) and baseline measures

PTM vs.a

Dataset TM OTM ED

a1a (0, 20.58, 52.83) (0, 2.22, 4.89) (0, 0.21, 0.70)
australian (0, 16.99, 39.57) (0, 5.94, 13.32) (0, 0.77, 2.53)
breast cancer (0, 26.13, 72.87) (0, 1.75, 4.30) (0, 0.59, 1.92)
diabetes (0, 11.96, 24.99) (0, 2.96, 6.88) (0, 0.44, 1.44)
german (0, 16.31, 38.67) (0, 3.68, 8.31) (0, 0.34, 1.14)
heart (0, 18.17, 42.50) (0, 9.67, 21.33) (0, 1.92, 6.20)
ionosphere (0, 25.72, 73.11) (0, 2.50, 6.71) (0, 1.04, 3.42)
liver disorder (0, 8.61, 18.73) (0, 5.11, 12.42) (0, 1.11, 3.55)
mushrooms (0, 30.36, 91.73) (0, 0.12, 0.40) (0, 0.067, 0.22)
rcv (0, 14.69, 47.40) (0, 14.77, 47.62) (0, 14.74, 47.54)
sonar (0, 17.49, 39.86) (0, 9.91, 22.15) (0, 2.14, 6.57)
splice (0, 10.41, 21.18) (0, 4.52, 10.61) (0, 0.28, 0.95)
w1a (0, 26.98, 75.33) (0, 0.22, 0.64) (0, 0.14, 0.47)

PTMA vs.a

Dataset TM OTM ED PTM

a1a (0, 1.22, 3.05) (0, 1.01, 2.83) (0, 0.32, 1.02) (0, 1.19, 3.03)
australian (0, 1.03, 3.25) (0, 1.09, 3.50) (0, 0.84, 2.74) (0, 1.12, 3.43)
breast cancer (0, 0.70, 2.23) (0, 1.12, 3.33) (0, 0.97, 3.12) (0, 0.64, 2.08)
diabetes (0, 0.65, 2.08) (0, 0.91, 2.93) (0, 0.58, 1.94) (0, 1.11, 3.07)
german (0, 0.87, 2.53) (0, 1.31, 3.72) (0, 0.37, 1.20) (0, 1.07, 2.99)
heart (0, 2.32, 7.56) (0, 2.44, 8.06) (0, 1.93, 6.32) (0, 2.62, 8.17)
ionosphere (0, 1.5, 4.51) (0, 3.06, 8.88) (0, 1.42, 4.38) (0, 1.49, 4.51)
liver disorder (0, 1.63, 5.10) (0, 1.86, 6.08) (0, 1.15, 3.67) (0, 3.31, 8.71)
mushrooms (0, 0.15, 0.53) (0, 2.45, 5.72) (0, 0.17, 0.55) (0, 0.15, 0.52)
rcv (0, 14.71, 47.47) (0, 14.79, 47.72) (0, 14.75, 47.59) (0, 14.77, 47.67)
sonar (0, 1.98, 6.23) (0, 2.09, 5.68) (0, 1.67, 5.51) (0, 2.18, 6.83)
splice (0, 0.55, 1.39) (0, 0.04, 0.12) (0, 0.45, 1.54) (0, 1.45, 6.81)
w1a (0, 2.41, 5.76) (0, 0.84, 2.03) (0, 0.21, 0.66) (0, 1.64, 4.00)

a The values in parentheses are (min, mean, max) percentage of common neighbors.

percentage of common neighbors (training instances) found to predict the tuning instance

between proposed measures and baseline measures. The results are averaged over 100 runs.

Then, we repeat this experiment for odd numbered k values between 1 and 25.

The entries in Table 4.5, specified as (x1, x2, x3), represent (minimum, mean, maxi-

mum) of the percentage of overlaps in the neighborhood. PTM is most common with TM,

with the percent value having a mean around 15–20% and being as much as 92%. PTM does

not have many common neighbors with OTM or ED, for which the percent values are mostly
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less than 10%. Meanwhile, PTMA does not have many common neighbors with any of the

other measures, including PTM, and the average percent value is around 1–2% (with the

exception of the rcv dataset). In short, PTM and TM have more common neighbors than

others. Nonetheless, PTM and PTMA find different neighbors than other baseline measures

to make the predictions.

4.6.2 Evaluation of Distance Measures

After the best k value is determined for each of the similarity measures presented in

Section 4.3, we perform experiments to assess the accuracy of these measures in classifying

new data instances. These experiments use the k-NN algorithm to define the neighborhood

for and classify each new instance based on the validation instances deemed to be similar.

Table 4.6 summarizes the results of these experiments: we report mean and standard devi-

ation of accuracy from 100 runs in parentheses, respectively. Entries highlighted in bold in

Table 4.6 indicate the method that achieved the best accuracy for the corresponding data

set. While the mean accuracy varies considerably across datasets, its variation across the

(dis)similarity measures is not statistically significant in most cases. However, it is important

to note that PTMA achieves the highest mean accuracy in 7 out of 13 datasets. In doing

so, PTMA also managed to reduce the standard deviation, which can be quite high (around

15–20% in some cases), especially for OTM and TM. Consequently, PTMA achieves better

performance, on average, than the other measures.

We also perform pairwise t-tests at the 5% significance level to compare the proposed

distance measures with the baseline measures. Table 4.7 illustrates the relevant results.
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Table 4.6: Summary results of (dis)similarity measures for the unweighted case

Dataseta,b TM OTM ED PTM PTMA

a1a (79.65, 1.34) (76.18, 10.63) (78.92, 1.28) (81.11, 2.01) (77.54, 1.04)
australian (85.21, 2.84) (84.2, 5.22) (85.76, 3.03) (85.54, 2.93) (86.06, 2.70)
breast cancer (96.26, 2.43) (96.03, 4.64) (96.13, 1.67) (96.54, 1.49) (96.82, 1.38)
diabetes (71.03, 11.74) (52.8, 20.31) (72.04, 3.26) (74.15, 3.87) (75.36, 2.50)
german (71.35, 1.20) (71.9, 1.12) (71.16, 2.07) (72.72, 1.79) (71.46, 0.92)
heart (81.96, 5.16) (82.97, 4.76) (80.68, 5.36) (80.83, 5.56) (83.08, 5.12)
ionosphere (90.93, 12.01) (82.48, 22.58) (80.71, 5.93) (93.74, 2.79) (94.04, 2.49)
liver disorder (69.14, 6.15) (71.06, 5.71) (58.09, 5.71) (69.14, 5.11) (70.45, 4.09)
mushrooms (99.75, 0.09) (98.67, 0.08) (98.56, 0.05) (99.84, 0.04) (99.87, 0.07)
rcv (86.77, 16.49) (55.51, 17.08) (90.54, 0.51) (96.93, 0.38) (97.04, 0.26)
sonar (83.16, 5.84) (85.83, 5.63) (72.15, 7.73) (82.87, 6.65) (77.42, 6.54)
splice (69.05, 7.92) (66.25, 9.03) (65.76, 3.82) (77.55, 4.84) (53.5, 0.96)
w1a (97.18, 0.27) (92.91, 0.10) (97.19, 0.43) (97.17, 0.41) (97.13, 0.15)

a The values in parentheses are the mean and standard deviation of accuracy.
b For each dataset, the entries in bold represents the method that achieved maximum mean accuracy.

Table 4.7: Pairwise t-test results for
dis/similarity measures

TM OTM ED PTM

PTM (6,6,1) (8,2,3) (10,3,0) -
PTMA (7,3,3) (5,5,3) (8,3,2) (6,3,4)

Entries are specified as (x1, x2, x3) and represent (wins,ties,losses) of the proposed methods

against the other measures in all 13 datasets. For example, when compared to the TM

measure, the PTM measure performs statistically significantly better for 6 datasets and

worse for only 1 dataset. For the remaining 6 datasets, the differences between two measures

is not statistically significant. PTM, TM and ED use the same distance measure but in

different spaces. As demonstrated by the pairwise t-test results for the PTM measure against

the TM and ED measures, the use of the class probability space improves accuracy over

either the class prediction space or the original feature space, even without consideration of

the classifiers’ accuracies for the validation instances. Based on the results for the PTMA
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measure against the PTM measure, we can conclude that integration of the classifier accuracy

into the distance measure further improves accuracy.

4.6.3 Static Step vs. KNORA Method

Ko et al. [37] propose a method which, for each new data instance, finds its nearest

k neighbors in the validation set using the original feature set, and dynamically chooses an

ensemble based on the estimated accuracy of the classifiers in this local region of the new

data instance. Two different versions of this method are proposed by [37] in terms of how

classifiers are chosen to form an ensemble for the new instance: KNORA-Eliminate and

KNORA-Union. KNORA-Eliminate uses the classifiers that correctly classify every instance

in the local region of the new instance, whereas the KNORA-Union method utilizes classifiers

that correctly predict at least one of the neighbors.

Our proposed framework in Section 4.1 in both static and dynamic steps finds k

nearest neighbors of a new instance. Unlike KNORA, which uses the neighbors to form an

ensemble of classifiers, our proposed framework uses their labels to make predictions. In

this section, we perform experiments to compare our static step against KNORA methods.

In addition, KNORA uses the Euclidean distance measure to find the neighbors of a new

instance and the choice of distance measure had no effect on the performance of KNORA

([72]). However, the measures considered by [72] are based on finding the distance in the

original feature space. We extend [72] to analyze the effectiveness of KNORA in the classifier-

based space and find the best distance measure for the KNORA methods before comparing

with the static step.
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4.6.3.1 Evaluating Similarity Measures for KNORA Method

KNORA-Eliminate and KNORA-Union are implemented using the measures dis-

cussed in Sections 4.3 and 4.4: TM, OTM, ED, PTM, and PTMA. A pairwise t-test at

the 5% significance level is performed to compare PTM and PTMA against other measures.

Entries in Table 4.8 represent the number of (wins, ties, and losses), respectively, of the pro-

posed measures against the baseline measures (including PTMA vs. PTM) for the KNORA

methods in all 13 datasets.

For the KNORA-Eliminate method, PTM does not outperform TM or OTM, espe-

cially when the k value is bigger. For low k values, PTM, on average, wins 5–6 datasets

while losing around 3–4. However, as k increases, OTM and TM outperform PTM. Therefore,

PTM seems to be more suitable for smaller k values. Meanwhile, PTMA wins convincingly

against all four measures (including PTM): for any k value, PTMA does not lose more than

5 datasets, whereas as k increases, PTMA is clearly dominant, winning up to 10–11 datasets.

For the KNORA-Union method, while the proposed measures prove to be more useful,

PTM, in particular, performs better than the baseline measures and PTMA. While PTM

does not lose more than 1 dataset, we see a lot of ties in this method. Meanwhile, PTMA

performs considerably worse compared to others, winning around 2 datasets.

Figures 4.2 and 4.3 visualize these results. The vertical axis indicates the difference

between wins and losses across all 13 datasets for a given k value, whereas the horizontal

axis indicates the k values. The top and bottom plots are for the KNORA-Eliminate and

KNORA-Union methods, respectively. As a result of this experiment, we can conclude that

KNORA performs well with our proposed measures in a classifier based space.
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Table 4.8: Pairwise t-test: comparison of (dis)similarity measures

KNORA-Eliminate Method

PTM vs. PTMA vs.

k TM OTM ED TM OTM ED PTM

1 (5,7,1) (6,3,4) (3,7,3) (7,1,5) (5,5,3) (6,2,5) (6,3,4)
3 (6,6,1) (7,4,2) (5,5,3) (7,2,4) (6,4,3) (8,1,4) (8,1,4)
5 (5,5,3) (8,2,3) (3,9,1) (7,2,4) (8,2,3) (8,2,3) (7,2,4)
7 (5,5,3) (7,3,3) (5,6,2) (7,3,3) (7,3,3) (8,3,2) (7,3,3)
9 (4,6,3) (6,4,3) (6,5,2) (5,5,3) (8,2,3) (9,1,3) (7,5,1)
11 (4,3,6) (6,2,5) (7,4,2) (5,6,2) (7,3,3) (10,1,2) (9,3,1)
13 (4,3,6) (5,3,5) (7,4,2) (5,5,3) (6,4,3) (11,1,1) (10,2,1)
15 (4,3,6) (5,2,6) (7,4,2) (5,6,2) (6,3,4) (11,1,1) (11,1,1)
17 (4,3,6) (5,1,7) (8,4,1) (6,5,2) (5,3,5) (11,1,1) (11,1,1)
19 (4,4,5) (5,1,7) (8,4,1) (7,5,1) (5,3,5) (11,1,1) (10,2,1)
21 (4,4,5) (4,2,7) (9,3,1) (10,3,0) (5,3,5) (11,1,1) (11,1,1)
23 (2,7,4) (4,2,7) (8,4,1) (10,3,0) (6,2,5) (11,1,1) (11,1,1)
25 (2,7,4) (4,3,6) (8,4,1) (10,3,0) (7,2,4) (11,1,1) (11,2,0)

KNORA-Union Method

PTM vs. PTMA vs.

k TM OTM ED TM OTM ED PTM

1 (5,7,1) (6,3,4) (3,6,4) (7,1,5) (5,5,3) (7,1,5) (6,3,4)
3 (7,6,0) (6,5,2) (5,7,1) (2,6,5) (4,5,4) (2,5,6) (1,6,6)
5 (5,8,0) (6,6,1) (5,7,1) (2,4,7) (3,5,5) (2,6,5) (2,3,8)
7 (5,8,0) (4,8,1) (3,9,1) (2,4,7) (2,7,4) (2,6,5) (1,5,7)
9 (5,8,0) (4,8,1) (6,6,1) (1,5,7) (1,8,4) (2,7,4) (1,5,7)
11 (3,10,0) (4,6,3) (4,9,0) (2,4,7) (2,6,5) (2,5,6) (1,5,7)
13 (3,9,1) (5,6,2) (5,8,0) (1,5,7) (1,7,5) (2,5,6) (1,5,7)
15 (5,7,1) (4,8,1) (4,8,1) (1,5,7) (1,7,5) (2,7,4) (1,5,7)
17 (3,9,1) (3,9,1) (5,7,1) (1,6,6) (1,7,5) (2,8,3) (1,5,7)
19 (3,10,0) (4,8,1) (5,7,1) (1,7,5) (1,8,4) (2,8,3) (1,6,6)
21 (4,8,1) (4,8,1) (5,7,1) (1,8,4) (1,8,4) (2,5,6) (1,6,6)
23 (3,9,1) (2,9,2) (5,6,2) (1,7,5) (1,7,5) (2,5,6) (1,7,5)
25 (3,10,0) (1,11,1) (5,7,1) (1,9,3) (1,9,3) (2,7,4) (1,7,5)
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Figure 4.2: Comparisons of PTM(A) against baseline measures for KNORA-Eliminate
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Figure 4.3: Comparisons of PTM(A) against baseline measures for KNORA-Union
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4.6.3.2 Comparison of Static Step with KNORA Method

Since the size of an ensemble used to make predictions for each new instance changes

for the KNORA-Eliminate and -Union methods, we analyze the performance of KNORA-

Eliminate and -Union against the static step of our framework. We explore whether k-

NN (Static Step) is better than KNORA, after neighbors are found by using the proposed

measures, since the experiments in Section 4.6.3.1 indicate that KNORA performs better

with PTM and PTMA measures compared to ED, TM, and OTM. Table 4.9 shows the

t-test performed to compare KNORA and k-NN in the classifier-based probability space.

Figure 4.4 illustrates the difference between the number of wins and losses of the

KNORA methods against the static step of our framework. For instance, for k = 1 and

distance measure PTM, static step of our framework outperforms KNORA-Eliminate for

10 datasets and under-performs for only 1 dataset. For the remaining 2 datasets, there is

a tie. Therefore, for k = 1, Figure 4.4 indicates 1 − 10 = −9. The results in Table 4.9

and in Figure 4.4 show that the static step (k-NN with PTM or PTMA) outperforms the

KNORA-Eliminate and -Union methods with PTM or PTMA. More specifically, the static

step with either proposed measure wins at least half of the 13 datasets, with the static step

using the PTM measure winning up to 12 datasets.

4.6.4 Static Step vs. Common Benchmarks

Since the set of classifiers used in the static step is constant for all test instances,

we run experiments to compare the static step against some of the common static classi-

fier/ensemble selection methods to assess the merit of our framework. The baseline bench-
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Table 4.9: Pairwise t-test: KNORA methods vs.
static step

KNORA-Eliminate vs.a KNORA-Union vs. a

k PTM-S PTMA-S PTM-S PTMA-S

1 (1,2,10) (3,3,7) (1,2,10) (3,3,7)
3 (1,2,10) (3,3,7) (5,4,4) (3,4,6)
5 (1,1,11) (3,1,9) (5,4,4) (3,3,7)
7 (0,2,11) (3,2,8) (5,4,4) (3,4,6)
9 (0,2,11) (3,1,9) (5,3,5) (3,4,6)
11 (0,1,12) (3,1,9) (4,4,5) (3,5,5)
13 (0,1,12) (3,1,9) (5,3,5) (3,3,7)
15 (0,1,12) (2,2,9) (4,4,5) (3,4,6)
17 (0,1,12) (2,1,10) (4,2,7) (3,4,6)
19 (0,1,12) (2,1,10) (4,2,7) (3,5,5)
21 (0,1,12) (2,1,10) (4,2,7) (3,3,7)
23 (0,1,12) (2,1,10) (4,2,7) (3,2,8)
25 (0,1,12) (2,1,10) (4,3,6) (3,3,7)

a The values in parentheses are (wins, ties, losses),
respectively.

Figure 4.4: Comparison of the static step with KNORA methods
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Table 4.10: Summary results of the benchmark methods and static step

Dataseta,b Best Classifier Best 25 Single SVM PTM PTMA

a1a (75.50, 2.33) (78.06, 1.05) (75.40, 0.78) (81.11, 2.01) (77.54, 1.04)
australian (75.93, 6.64) (84.95, 3.03) (82.07, 2.94) (85.54, 2.93) (86.06, 2.70)
breast cancer (94.80, 2.19) (96.45, 1.40) (95.80, 1.40) (96.54, 1.49) (96.82, 1.38)
diabetes (65.94, 2.05) (65.12, 0.38) (73.95, 2.66) (74.15, 3.87) (75.36, 2.52)
german (69.89, 0.60) (70.01, 0.01) (70.37, 1.22) (72.72, 1.79) (71.46, 0.92)
heart (72.96, 6.76) (80.85, 5.30) (73.28, 5.71) (80.83, 5.56) (83.08, 5.12)
ionosphere (91.80, 3.63) (93.27, 3.03) (92.19, 3.09) (93.74, 2.79) (94.04, 2.49)
liver disorder (63.03, 6.25) (64.22, 3.86) (71.13, 4.71) (69.14, 5.11) (70.45, 4.09)
mushrooms (99.76, 0.62) 99.97, 0.51) (99.99, 0.01) (100, 0.0) (100, 0.0)
rcv (95.17, 1.61) (97.03, 0.26) (97.17, 0.25) (96.93, 0.38) (97.04, 0.26)
sonar (72.28, 7.73) (79.54, 6.81) (73.85, 6.26) (82.87, 6.65) (77.42, 6.50)
splice (55.37, 3.61) (56.68, 1.44) (56.19, 1.22) (77.55, 4.84) (53.50, 0.96)
w1a (97.10, 0.18) (97.11, 0.12) (97.16, 0.25) (97.17, 0.41) (97.13, 0.15)

a The values in parentheses are the mean and standard deviation of accuracy.
b For each dataset, the entries in bold represents the method that achieved maximum mean accu-
racy.

marks considered here are:

• Use of the best classifier from set C,

• Use of the 25 best-performing classifiers from set C with majority voting, and

• Use of a single SVM classifier trained on all of the training data.

Table 4.10 compares the performance of our proposed measures against these bench-

marks in terms of average accuracy. The static step with PTM or PTMA achieves the

maximum mean accuracy in all but 2 datasets, while lowering the sandard deviation as well.

Furthermore, Table 4.11 carries out the pairwise t-tests to evaluate the performance

of the static step and common benchmarks. Both PTM and PTMA win at least 11 datasets

against Best Classifier, and 7 datasets against Best 25 and Single SVM. Therefore, we

conclude that even PTM, a basic dissimilarity measure in the probability space, performs

better than any of these benchmarks.
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Table 4.11: Pairwise t-test: static step vs.
benchmark methods

Best Classifier Best 25 Single SVM

PTM (12,1,0) (7,5,1) (8,3,2)
PTMA (11,1,1) (7,3,3) (8,3,2)

Table 4.12: Pairwise t-test: dynamic vs.
static steps across reduced space size (E)

PTM-D vs. PTMA-D vs.

E PTM-S PTMA-S PTM-S PTMA-S

10 (0,7,6) (3,3,7) (5,4,4) (4,6,3)
15 (0,8,5) (3,3,7) (5,4,4) (5,7,1)
20 (0,9,4) (3,4,6) (6,3,4) (5,8,0)
25 (1,8,4) (3,4,6) (6,3,4) (5,8,0)
30 (1,8,4) (3,3,7) (7,2,4) (5,8,0)
35 (2,7,4) (4,3,6) (6,3,4) (5,8,0)
40 (0,9,4) (4,4,5) (7,2,4) (5,8,0)
45 (0,10,3) (4,3,6) (6,3,4) (5,8,0)
50 (1,9,3) (4,5,4) (5,4,4) (4,9,0)

4.7 Results: Dynamic Step

4.7.1 Evaluating Reduced Space Size

It has been shown that the marginal improvement in ensemble performance diminishes

for sizes beyond 25 [3]. In this section, we test this assumption by investigating the effects of

the reduced space size on the performance of our framework. We carry out experiments for

various reduced space sizes E, in increments of 5 over the range of 10 to 50. The results are

tabulated in Table 4.12. The choice of the reduced space size overall has minimal effect on

the performance of the framework. Therefore, for the experiments in Sections 4.7.2–4.7.4,

the size of the reduced space is fixed at 25.
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4.7.2 Dynamic Step vs. Static Step

Even though our analysis in Section 4.2 indicates that the running time of our system

is dominated by the static step, performing the tasks in the dynamic step has additional time

cost. This experiment is performed to evaluate the gain achieved by having the dynamic

step as part of our framework.

Tables 4.13 compares the results from the static and dynamic steps for both the PTM

and PTMA distance measures. We report, in parentheses, mean and standard deviation of

accuracy from 100 runs, respectively. The static step with the ED measure fails to achieve

the maximum mean accuracy in all 13 datasets. Meanwhile, the static model with the PTM

and PTMA measures (PTM-S and PTMA-S) performs no worse than the dynamic model

(PTM-D and PTMA-D): PTM-S and PTMA-S wins exclusively 7 datasets and ties for the

maximum mean accuracy for another 2.

Table 4.14 provides information on the pairwise comparisons. PTM-D and PTMA-D

consistently outperform the static step for the ED measure. When we check the comparison

between PTM-S and PTM-D, we find that the PTM measure works better with the static

step: PTM-S wins 4 datasets and ties for another 8. Overall, PTM-D performs significantly

worse than PTM-S and PTMA-S.

In contrast, PTMA-D dominates PTMA-S, winning 5 datasets and losing none.

PTMA-D also wins more against PTM-S (6 wins to 4 losses). Therefore, PTMA-D per-

forms at least as well as PTM-S and PTMA-S.

When the classifiers for the reduced space are chosen, the aim is to find expert classi-

fiers on the neighbor instances. The results from this experiment imply that expert classifiers
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Table 4.13: Summary results of the static and dynamic steps

Dataseta,b ED PTM-S PTMA-S PTM-D PTMA-D

a1a (78.92, 1.28) (81.11, 2.01) (77.54, 1.04) (79.37, 2.08) (79.69, 1.63)
australian (85.76, 3.03) (85.54, 2.93) (86.06, 2.7) (85.43, 2.79) (85.79, 2.81)
breast cancer (96.13, 1.67) (96.54, 1.49) (96.82, 1.38) (96.63, 1.49) (96.82, 1.37)
diabetes (72.04, 3.26) (74.15, 3.87) (75.36, 2.5) (74.39, 3.57) (75.51, 2.58)
german (71.16, 2.07) (72.72, 1.79) (71.46, 0.92) (71.65, 1.87) (71.89, 1.26)
heart (80.68, 5.36) (80.83, 5.56) (83.08, 5.12) (80.33, 5.45) (82.95, 4.92)
ionosphere (80.71, 5.93) (93.74, 2.79) (94.04, 2.49) (94.13, 2.64) (94.13, 2.47)
liver disorder (58.09, 5.71) (69.14, 5.11) (70.45, 4.09) (68.62, 5.71) (70.49, 4.52)
mushrooms (98.56, 0.05) (100, 0) (100,0) (100, 0) (100, 0)
rcv (90.54, 0.51) (96.93, 0.38) (97.04, 0.26) (96.93, 0.37) (97.03, 0.26)
sonar (72.15, 7.7) (82.87, 6.65) (77.42, 6.5) (82.68, 5.82) (80.77, 6.15)
splice (65.76, 3.82) (77.55, 4.84) (53.5, 0.96) (75.85, 4.06) (55.22, 1.2)
w1a (97.19, 0.43) (97.17, 0.41) (97.13, 0.15) (96.79, 0.58) (97.19, 0.24)

a The values in parentheses are the mean and standard deviation of accuracy.
b For each dataset, the entries in bold represents the method that achieved maximum mean accuracy.

Table 4.14: Pairwise t-test: dynamic vs.
static steps

ED PTM-S PTMA-S

PTM-D (8,4,1) (1,8,4) (3,4,6)
PTMA-D (10,2,1) (6,3,4) (5,8,0)

can be identified by considering both the confidence and accuracy of the classifiers on the

neighbors, which explains the performance difference between PTMA-D and PTM-D.

4.7.3 Dynamic Step vs. Common Benchmarks

We also compared the performance obtained with our framework against the common

benchmarks presented in Section 4.6.4. In addition, we used “Modified Best Improvement”

algorithm to find the best ensemble of size E over the validation set as an ensemble’s per-

formance on the validation set has been seen as an indicator of generalization. Since it

may be impractical to evaluate all
(
N
E

)
possible ensembles, as required for the traditional
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Table 4.15: Summary results of benchmark methods and dynamic step

Dataseta,b Best Classifier Best 25 Single SVM Best Ens PTM-D PTMA-D

a1a (75.50, 2.33) (78.06, 1.05) (75.40, 0.78) (77.11, 1.10) (79.37, 2.08) (79.69, 1.63)
australian (75.93, 6.64) (84.95, 3.03) (82.07, 2.94) (85.33, 2.87) (85.43, 2.79) (85.79, 2.81)
breast cancer (94.80, 2.19) (96.45, 1.40) (95.80, 1.40) (96.50, 1.47) (96.63, 1.49) (96.82, 1.37)
diabetes (65.94, 2.05) (65.12, 0.38) (73.95, 2.66) (75.01, 2.90) (74.39, 3.57) (75.51, 2.58)
german (69.89, 0.60) (70.01, 0.01) (70.37, 1.22) (71.31, 1.15) (71.65, 1.87) (71.89, 1.26)
heart (72.96, 6.76) (80.85, 5.30) (73.28, 5.71) (80.89, 5.21) (80.33, 5.45) (82.95, 4.92)
ionosphere (91.80, 3.63) (93.27, 3.03) (92.19, 3.09) (93.21, 2.84) (94.13, 2.64) (94.13, 2.47)
liver disorder (63.03, 6.25) (64.22, 3.86) (71.13, 4.71) (68.57, 4.28) (68.62, 5.71) (70.49, 4.52)
mushrooms (99.76, 0.62) (99.97, 0.51) (99.99, 0.01) (99.99,0.01) (100, 0.0) (100, 0.0)
rcv (95.17, 1.61) (97.03, 0.26) (97.17, 0.25) (97.05, 0.24) (96.93, 0.37) (97.03, 0.26)
sonar (72.28, 7.73) (79.54, 6.81) (73.85, 6.26) (80.71, 6.50) (82.68, 5.82) (80.77, 6.15)
splice (55.37, 3.61) (56.68, 1.44) (56.185, 1.22) (56.83, 1.98) (75.85, 4.06) (55.22, 1.22)
w1a (97.10, 0.18) (97.11, 0.12) (97.16, 0.25) (97.13, 0.16) (96.79, 0.58) (97.19, 0.24)

a The values in parentheses are the mean and standard deviation of accuracy.

b For each dataset, the entries in bold represents the method that achieved maximum mean accuracy.

“Best Improvement” algorithm, a modified form of the algorithm is employed: given one

of the E classifier slots in the ensemble, each of the N − E unused classifiers is, in turn,

substituted into that slot, and the accuracy of the ensemble is re-evaluated. The classifier

that provides the best ensemble performance is permanently assigned to the slot, and the

displaced classifier is returned to the pool of unused classifiers. This process is then repeated

for the next classifier slot in the ensemble until all slots have been processed. We perform

an experiment in which E is set to 25 to find the best ensemble on the validation set for

a given data set. Tables 4.15 and 4.16 compare the performance of our proposed measures

against these benchmarks in terms of average accuracy and pairwise t-test results, respec-

tively. From these tables, we conclude that PTMA outperforms all of the benchmarks. Even

PTM, a basic distance measure in the probability space, performs better than any of these

benchmarks.
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Table 4.16: Pairwise t-test: dynamic step vs. benchmark
methods

Best Classifier Best 25 Single SVM Best Ens

PTM-D (12,0,1) (7,4,2) (8,2,3) (4,7,2)
PTMA-D (12,1,0) (9,3,1) (8,3,2) (9,3,1)

4.7.4 Evaluating Different Strategies for Dynamic Step

As described in Section 4.1, our proposed framework takes into account the class

prediction probabilities assigned to the k-nearest neighbors found in the static step to choose

the classifiers whose outputs will be used for generating the reduced probability space for

the dynamic step. In this section, we investigate different strategies for choosing a subset of

classifiers from the original pool to be used in the dynamic step. In addition to the selection

strategy employed earlier, five alternate strategies are implemented:

• Local Accuracy (LA): Classifiers which correctly predict at least one of the k neigh-

bors are added to C ′. If |C ′| > 25, then only 25 top-performing classifiers are considered.

• Local Accuracy with Accuracy in Validation Set (LAA): This strategy is sim-

ilar to LA; however, if |C ′| < 25, additional classifiers are selected to reach a size of

25. These classifiers are chosen from the best-performing classifiers on the validation

instances that are not already in C ′.

• Conditional Local Accuracy (CLA): According to this strategy, only the classifiers

with at least 50% accuracy in the neighborhood are considered. If there is no such

classifier found, then the label for a new instance is assigned randomly. If there are

more than 25 classifiers, then 25 most accurate classifiers in the region are considered.
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Table 4.17: Pairwise t-test: dynamic vs. static
steps under different strategies

PTM-D vs. PTMA-D vs.

Strategy PTM-S PTMA-S PTM-S PTMA-S

LA (1,7,5) (4,4,5) (4,5,4) (2,6,5)
LAA (0,6,7) (4,2,7) (2,6,5) (1,7,5)
CLA (0,6,7) (4,2,7) (3,6,4) (1,7,5)
LACl (0,6,7) (4,2,7) (2,6,5) (1,7,5)
MinDist (0,6,7) (4,2,7) (3,5,5) (1,7,5)

• Local Accuracy with Closeness (LACl): If the total number of classifiers that

correctly predict at least one of the k neighbors is less than 25, the classifiers that

are closest to making the correct decision on the neighbors are also added. Closeness

is defined as the absolute difference between the probability estimate returned by the

classifier for the correct class label and the 50% decision boundary.

• Minimum Distance (MinDist): This strategy chooses classifiers that minimize the

average distance between a test instance and its neighbors.

Table 4.17 lists the pairwise t-test results for each of these classifier selection strategies

against the static step of our framework. None of these strategies yield improved accuracy

over the static step. In contrast, the selection strategy discussed in Section 4.7.2 improves

performance over the static step when the PTMA measure is used. Intuitively, this can

be due to the complementary natures of the classifier selection method, which favors high

levels of confidence, and the similarity measure, which favors similar levels of confidence.

Furthermore, while the PTM and PTMA measures achieve improved performance by con-

sidering instance classification as a continuous range of probabilities rather than as discrete

labels–thereby being able to recognize the similarity of two instances close to but on opposite
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sides of the decision boundary–the area near the decision boundary still reflects uncertainty

regarding the nature of the new instance. Therefore, especially refining the static step with

the PTMA measure to favor high classification confidence on the neighbors while still con-

sidering the full range of class label probabilities, as is done in the dynamic step, further

improves the accuracy of our framework. However, none of the strategies proposed in this

section removes the uncertainty associated with the decision boundary, and so they do not

result in improved performance.

4.7.5 Dynamic Step vs. Classifiers in the Reduced Space

The reduced space technique of our framework can be considered a dynamic ensemble

selection method. Instead of performing k-NN in this reduced space, those classifiers can

be used to form an ensemble to make predictions on the new instance. We performed this

experiment with several ensemble and neighborhood size values, (E and k) respectively. As

mentioned in Section 4.7.4, we employed different strategies to choose the classifiers to form

the reduced space, C ′. For the experiments in this section, we consider three strategies: (1)

Maximum Confidence, (2) Local Accuracy, and (3) Minimum Distance. Figures 4.5–4.7 are

plotted based on the difference between the number of wins and losses of dynamic step of

our framework against dynamic ensemble selection strategy for a given (k,E) pair.

Figure 4.5 summarizes Table 4.18, which illustrates the comparison results between

dynamic framework (with PTM/PTMA) against classifiers chosen to form the reduced space

per their confidence on the k neighbors chosen in the static step. The top plot in Figure 4.5

shows that for the PTM measure, if k > 7 and E > 11 our dynamic framework performs at
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least as well as using the E classifiers that form the reduced space. According to the bottom

plot in Figure 4.5, the dynamic framework is still better than the ensemble built by using

the classifiers that are chosen to form the reduced space based on their high confidence on

the neighbors of a test instance. Dynamic framework with PTMA does not dominate the

ensemble as strongly as PTM does, but it almost always performs at least as well as the

ensemble.

The local accuracy based classifier selection methods that are used for reducing the

space in the dynamic step of our framework performed similarly. We present the results for

the LA method in Figure 4.6 and Table 4.19. According to the top plot, PTM-D performs

worse or similar to dynamic ensemble generated based on local accuracy. However, PTMA-D

performs especially better for smaller k values; see the bottom plot in Figure 4.6. Changing

the ensemble size does not have any effect in the PTMA-D performance.

According to Figure 4.7 and Table 4.20, PTM-D and PTMA-D clearly dominate the

dynamic ensembles formed by the classifiers that minimize the average distance between a

test instance and its neighbors in the static step.

4.8 Conclusion

This work proposes a framework for dynamic class prediction using two dissimilar-

ity measures, PTM and PTMA, defined based on the probability estimates returned for

a particular class by classifiers for data instances. These measures are compared to three

baseline dis/similarity measures. We conclude that the two proposed measures outperform

the baseline measures. Our experiments also reveal that using classifiers’ outputs is better
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than using the original feature space to find similar instances.

In addition, we compare the results from the static and dynamic steps of our frame-

work with some of the standard classifier and ensemble selection methods. We conclude

that performing k-NN in the probability-based classifier space is better than using the best

classifier, 25 top performing classifiers, or an SVM classifier trained using the entire training

dataset. The performance of the dynamic framework against KNORA and against dynamic

ensemble selection methods show that the dynamic step of our framework is important to

improve performance.
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Figure 4.5: Comparison of the dynamic step (PTM-D in the top plot, PTMA-D in the

bottom plot) and the maximum confidence ensemble
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Figure 4.6: Comparison of the dynamic step (PTM-D in the top plot, PTMA-D in the

bottom plot) and the local accuracy ensemble
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Figure 4.7: Comparison of the dynamic step (PTM-D in the top plot, PTMA-D in the

bottom plot) and the minimum distance ensemble
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CHAPTER 5
EFFECT OF DIVERSITY IN DYNAMIC CLASS PREDICTION

Ensembles of classifiers have been shown to improve the performance of a prediction

system compared to a single classifier. The two key factors affecting an ensemble’s per-

formance are the accuracy of classifiers and the diversity among them, as no gain can be

achieved by having the same classifier in the ensemble multiple times. Earlier studies regard-

ing static ensembles have focused on generating diverse classifiers by changing the training

set [3, 24, 4]. These methods do not explicitly maximize the diversity; on the contrary, it is

achieved implicitly. Due to the success of these methods, many studies have proposed new

diversity measures and have aimed to choose the classifiers with high accuracy and diver-

sity to form the ensemble. These studies have conflicting results, which put the benefits of

diversity into question [38, 23].

Margineantu and Dietterich [50] show that there is a trade-off between accuracy and

diversity using a Kappa-error plot. Later, Kuncheva et al. [42] and Tang et al. [68] provide

an in-depth analysis of some of the diversity measures and show their relationships and

shortcomings. These studies conclude that diversity is beneficial only to a certain degree

and that maximizing it decreases performance. Hsu and Srivasta [34] analyze the relationship

between diversity and correlation among classifiers to provide a proxy for the relationship

between diversity and accuracy. The motivation for their approach is that the connection

between correlation and accuracy has been well established [70, 4]. A critical value for

the disagreement measure (which is a measure of diversity) is formulated in terms of the

correlation among classifiers in the ensemble, and it is shown that beyond this critical value,
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the system performance decreases. In [6], they argue that methods implicitly integrating

diversity should be used to form the ensembles.

The perspective on diversity has changed with the introduction of dynamic class

prediction systems. These systems treat each new data instance individually while making

a prediction. They dynamically adjust for each new data instance by choosing a classifier(s)

from the pool of already-trained classifiers. Most of the studies in the field of dynamic class

prediction have focused on finding the neighborhood of the new data instance and choosing

the most competent classifier(s) to make predictions. Competency is generally defined in

terms of the local accuracy of the classifiers in the region. When classifiers are chosen to

form an ensemble, these studies do not take into account the diversity factor as the system

is not required to generalize. In other words, when focused on a single instance, the general

approach is that classifiers’ performance on the different regions of the instance space is

irrelevant. However, if we ignore the diversity of the classifiers in other regions, then we may

form an ensemble of similar classifiers. These similar classifiers will be unable to compensate

for each other’s incorrect predictions.

Throughout this thesis, we have also proposed several methods for making predic-

tions on new instances based on classifiers’ responses. In these methods, we rely on the

effectiveness of ensembles as they use the collective knowledge of several classifiers. How-

ever, unlike static ensembles, our focus has been on exploring the benefits of confidence in

making dynamic predictions. Consequently, we either add confidence as one of the objectives

in selecting a dynamic ensemble to make a prediction (as in Chapter 3), or as a criterion for

choosing classifiers to form the reduced probability space (as in Chapter 4). Similar to the
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other dynamic class prediction methods, we do not focus on diversity among the classifiers.

However, the results we obtain in those chapters lead us to investigate the effect of diversity.

We believe that the agreement among different classifiers is more important than that

among similar ones in the local region in which a new data instance resides. In other words,

we hypothesize that high local accuracy and high diversity outside of the local region may

be desirable. Consequently, just like in static ensembles, diversity still plays a role in the

dynamic class prediction.

It is worth noting that even though in Chapter 3 we use the conditional double

fault measure, in this chapter we decide to use the disagreement measure for the diversity

calculation as the conditional double fault cannot assess the pairwise diversity when one of

the classifiers makes no error for the data instances considered.

5.1 Analysis of Diversity in Dynamic Ensemble Selection

The results of the experiments performed in Section 3.1.2 of Chapter 3 show that

diversity is important for performance. In particular, when we analyze the effect of the

diversity of the pool, we observe that diversity values decrease for all objectives, which in

turn decreases the performance. In addition, to assess the importance of diversity in the

dynamic setting, we compare the performance achieved with the Conf objective against

Conf + Div, as well as Acc + Conf against Acc + Conf + Div objectives (see Table 5.1).

During the comparison, we observe that the objective function with high average diversity

performs well compared to the other one for all datasets except “Liver disorder” for the

Conf2 definition. This motivates us to investigate the effect of diversity further even though
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Table 5.1: Summary results of the final solution based on its validation data
performance for the Conf1 and Conf2 definitions

Australian

Conf1 Conf2

Acc Conf Div Gen Acc Conf Div Gen

Conf 0.553 0.951 0.388 0.792 0.553 0.944 0.447 0.791
Div+Conf 0.574 0.652 0.566 0.825 0.583 0.511 0.323 0.653

Acc+Conf 0.603 0.683 0.550 0.812 0.611 0.356 0.487 0.757
Acc+Conf+Div 0.580 0.654 0.567 0.823 0.582 0.203 0.566 0.825

Diabetes

Conf1 Conf2

Acc Conf Div Gen Acc Conf Div Gen

Conf 0.583 0.968 0.442 0.741 0.582 0.960 0.500 0.741
Div+Conf 0.573 0.708 0.551 0.743 0.628 0.526 0.482 0.741

Acc+Conf 0.620 0.749 0.508 0.740 0.642 0.494 0.475 0.734
Acc+Conf+Div 0.583 0.708 0.549 0.745 0.588 0.263 0.548 0.749

Heart

Conf1 Conf2

Acc Conf Div Gen Acc Conf Div Gen

Conf 0.540 0.889 0.408 0.729 0.539 0.879 0.507 0.730
Div+Conf 0.561 0.620 0.564 0.764 0.579 0.400 0.462 0.718

Acc+Conf 0.578 0.645 0.554 0.755 0.592 0.285 0.527 0.737
Acc+Conf+Div 0.566 0.619 0.565 0.778 0.568 0.160 0.565 0.760

Liver Disorder

Conf1 Conf2

Acc Conf Div Gen Acc Conf Div Gen

Conf 0.554 0.961 0.441 0.641 0.554 0.946 0.481 0.650
Div+Conf 0.562 0.675 0.547 0.701 0.588 0.491 0.473 0.695

Acc+Conf 0.594 0.703 0.504 0.690 0.602 0.400 0.484 0.703
Acc+Conf+Div 0.570 0.676 0.544 0.699 0.572 0.239 0.542 0.692

we do not need to generalize in the dynamic setting.

In this section, we aim to perform an in-depth analysis of diversity in the experimental

setting discussed in Chapter 3 using more datasets. We can involve diversity in two ways

to the system. First, we can add it as a search criterion to the objective function. Second,

it can be used as a final ensemble selection criterion for the candidate solutions generated



115

Table 5.2: Pairwise t-test: Comparing average diversity
and performance of search objectives that include diversity
against the corresponding alternative

Average Diversitya Average Performancea

Conf Acc+Conf Conf Acc+Conf

Conf+Div (11,0,0) - (3,3,5) -
Acc+Conf+Div - (11,0,0) - (2,6,3)

a Final ensembles are chosen based on validation accuracy.

using different weight combinations for a given new data instance. We explore these two

ideas in this section.

5.1.1 Dynamic Ensemble Construction with Heuristic Search

To assess whether the contribution of the diversity is significant we follow the same

approach undertaken in Section 3.1 of Chapter 1. However, we employ the classifiers con-

structed for Chapter 4. We run the experiment for all 11 datasets discussed in Chapter 4

except for “Mushrooms” and “Rcv”. In Chapter 3, we find that choosing the final ensemble

among the candidates based on ensemble validation accuracy outperforms other selection

methods.

Table 5.2 shows the t-test results at the 5% significance level when performance and

diversity values of ensembles are compared, respectively. Entries are specified as (x1, x2, x3)

and represent (wins, ties, losses) of the search objectives that include Div(E) against the

corresponding alternatives in all 11 datasets. Table 5.2 illustrates that when Div(E) is

included in the search objective, it generates more diverse classifiers. However, including

diversity in the objective function does not necessarily improve the performance.

In addition, we analyze whether choosing the final ensemble among the generated
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Table 5.3: Pairwise t-test: Diversity vs Ensemble vali-
dation accuracy

Acc+Conf Conf+Div Acc+Conf+Div

Performance (2,6,3) (0,4,7) (0,6,5)
Diversity (11,0,0) (11,0,0) (11,0,0)

Table 5.4: Performance and diversity values for different en-
semble selection criteria

Ensemble Validation Accuracy

Acc+Conf Conf+Div Acc+Conf+Div

Dataset Div Perf Div Perf Div Perf

a1a 0.140 0.782 0.162 0.783 0.155 0.785
australian 0.165 0.857 0.255 0.853 0.238 0.854
breast cancer 0.038 0.968 0.067 0.970 0.059 0.967
diabetes 0.195 0.764 0.237 0.752 0.224 0.757
german 0.200 0.714 0.256 0.716 0.240 0.716
heart 0.261 0.822 0.323 0.820 0.304 0.823
ionosphere 0.065 0.938 0.085 0.937 0.078 0.935
liver disorder 0.283 0.709 0.344 0.702 0.328 0.701
sonar 0.276 0.835 0.349 0.833 0.328 0.839
splice 0.191 0.573 0.497 0.635 0.488 0.628
w1a 0.004 0.972 0.007 0.971 0.006 0.972

Ensemble Diversity

a1a 0.157 0.782 0.170 0.782 0.169 0.784
australian 0.230 0.853 0.304 0.841 0.301 0.842
breast cancer 0.053 0.970 0.076 0.967 0.075 0.968
diabetes 0.232 0.753 0.258 0.741 0.258 0.742
german 0.242 0.716 0.271 0.715 0.270 0.715
heart 0.305 0.819 0.347 0.814 0.346 0.817
ionosphere 0.083 0.936 0.092 0.934 0.091 0.936
liver disorder 0.332 0.699 0.373 0.685 0.372 0.687
sonar 0.329 0.830 0.373 0.821 0.370 0.824
splice 0.368 0.578 0.504 0.612 0.500 0.604
w1a 0.006 0.971 0.008 0.972 0.008 0.971
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solutions using diversity outperforms choosing based on ensemble validation accuracy. Table

5.3 illustrates the t-test result at 5% significance level, while Table 5.4 displays the diversity

and performance values for these criteria. Entries (x1, x2, x3) in Table 5.3 represent (wins,

ties, losses) of the selection method based on diversity in all 11 datasets. While having

diversity as the final ensemble selection criterion instead of ensemble validation accuracy

increases diversity values for all datasets, it lowers the performance.

5.1.2 Regression Analysis for the Static Ensemble

Given a set of classifiers C = {Ca|a = 1, ..,M}, a validation dataset D, and a test

dataset T , four regression models are built to assess the effect of diversity when an ensemble

is chosen to be used for all new data instances (i.e. static ensemble):

• Model 1 : Y ∼ Conf(E)

• Model 2 : Y ∼ Conf(E) +Div(E)

• Model 3 : Y ∼ Acc(E) + Conf(E)

• Model 4 : Y ∼ Acc(E) + Conf(E) +Div(E)

We define the predictors, Acc(E), Conf(E), and Div(E) and the response as follows:

1. Acc(E): Average accuracy of the classifiers in the ensemble on the validation dataset

Acc(E) =
∑
Ca∈E

AccCa

|E|
(5.1)

where AccCa represents accuracy of classifier Ca on the validation set.
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2. Conf(E): Average confidence of an ensemble on all data instances in T .

Conf(E, t) =
∑
Ca∈E

ConfCa(t)

|E|
(5.2)

Conf(E) =
∑
t∈T

Conf(E, t)

|T |
(5.3)

where ConfCa(t) denotes the confidence of classifier Ca on instance t and Conf(E, t)

represents the average of classifier confidence on instance t in the ensemble.

3. Div(E): Disagreement among the classifiers in the ensemble is measured as:

Divab =
∑
v∈D

δ(`v,a 6= `v,b)

|D|
(5.4)

Div(E) =2
∑
Ca∈E

∑
Cb 6=Ca∈E

Divab
|E| (|E| − 1)

(5.5)

where Divab represents the disagreements between Ca and Cb, and δx denotes the

indicator function, which equals 1 if the x is true, and 0 otherwise.

4. Y : Average accuracy of the ensemble on the test dataset, T .

For this experiment, 1000 ensembles are chosen randomly to make predictions on

the test dataset T . Table 5.5 displays the results. The entries are specified as (x1, x2)

and represent the total number of runs for which confidence and diversity are significant

predictors, respectively. The results indicate that diversity is a significant predictor after

accounting for the other predictors, Acc(E) and Conf(E). Unlike diversity, confidence

seems to be a weak predictor when we consider a static ensemble.

5.1.3 Logistic Regression Analysis for the Dynamic Ensemble

Several logistic regression models are built to assess the overall significance of the

diversity in dynamic class prediction. In other words, we investigate whether having classi-



119

Table 5.5: Summary results for the regression models

Dataset Model 1 Model 2 Model 3 Model 4

a1a (100,-) (86,100) (97,-) (76,100)
australian (83,-) (57,48) (61,-) (50,72)
breast cancer (66,-) (41,59) (54,-) (38,65)
diabetes (97,-) (88,67) (80,-) (80,56)
german (62,-) (58,64) (60,-) (53,65)
heart (59,-) (62,60) (53,-) (56,77)
ionosphere (71,-) (67,61) (73,-) (66,68)
liver disorder (99,-) (98,80) (89,-) (91,90)
sonar (78,-) (86,94) (67,-) (74,96)
splice (98,-) (32,100) (85,-) (57,100)
w1a (46,-) (47,32) (46,-) (45,36)

fiers that behave differently increases the probability of correct prediction for a given data

instance. We build four models as follows:

• Model 1 : Y ∼ Conf(E, t)

• Model 2 : Y ∼ Conf(E, t) +Div(E)

• Model 3 : Y ∼ Acc(E) + Conf(E, t)

• Model 4 : Y ∼ Acc(E) + Conf(E, t) +Div(E)

In these models, the response Y denotes the correctness of a prediction. Acc(E) and

Div(E) are defined in the same way as in Section 5.1.2. For the confidence measure, we use

average classifier confidence Conf(E, t) in the ensemble for instance t.

100 ensembles are generated randomly for each data instance in T . For each gen-

erated ensemble, we calculate the values of the predictors and determine the correctness of

the prediction. Table 5.6 shows the relevant results. The entries are specified as (x1, x2)

and represent the total number of runs for which confidence and diversity are significant

predictors, respectively. The results indicate that diversity is not a significant predictor.
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Table 5.6: Summary results for the logistic regression
models

Dataset Model 1 Model 2 Model 3 Model 4

a1a (100,-) (100,55) (100,-) (100,47)
australian (100,-) (100,94) (100,-) (100,40)
breast cancer (100,-) (100,15) (100,-) (100,8)
diabetes (100,-) (100,29) (100,-) (100,18)
german (100,-) (100,29) (100,-) (100,31)
heart (98,-) (99,17) (98,-) (99,18)
ionosphere (100,-) (100,18) (100,-) (100,20)
liver disorder (95,-) (95,29) (94,-) (94,31)
sonar (100,-) (100,58) (100,-) (100,66)
splice (100,-) (100,54) (100,-) (100,32)
w1a (100,-) (100,12) (100,-) (100,9)

Unlike generalization capability of a static ensemble, the prediction capability of a dynamic

ensemble is not affected by the diversity among the classifiers in the ensemble. Therefore,

for individual instances, diversity loses its importance while confidence on the prediction

becomes more crucial.

5.2 Analysis of Diversity in Dynamic Class Prediction Framework

In Chapter 4, our main focus is on the probability estimates returned by the classifiers

when they make predictions. The key component of the framework introduced in that

chapter is the reduction of the probability space. We introduce several methods for selecting

classifiers to form the reduced space. One of the interesting results of that chapter is that

the methods based on local accuracy do not perform well compared to the method based on

confidence. Even though the results in Section 5.1 do not support the importance of diversity

in dynamic class prediction, we suspect that choosing classifiers based on confidence provides

diversity implicitly in the neighborhood. In this section, we carry out an analysis to compare

the diversity among the classifiers in the reduced space to the diversity of:
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Table 5.7: Pairwise t-test: Reduced space vs.
benchmark diversity

CombinedRS Best Ens Pool LAcc

PTM (10,0,1) (2,0,9) (2,0,9) (3,3,5)
PTMA (10,0,1) (2,2,7) (2,2,7) (5,1,5)

1. the best static ensemble chosen by maximizing validation accuracy,

2. the whole classifier pool,

3. all chosen classifiers for the reduced space based on confidence combined,

4. chosen classifiers for the reduced space based on local accuracy.

Once the first set of k neighbors of a new data instance is determined, we find the confident

or accurate classifiers on the neighbors and calculate the diversity among them. Overall

running time of the system is quite fast even though we perform k-NN.

We perform pairwise t-test at the 5% significance level. Entries in Tables 5.7 and

5.8 are specified as (x1, x2, x3) and represent (wins, ties, losses) for diversity. The best

static ensemble and the classifier pool C are more diverse than the ensembles formed the

reduced space. Even though classifiers with less than 50% accuracy are omitted from the

pool, the pool’s diversity is higher than the confident classifiers chosen to create the reduced

space. When we use these ensembles to make predictions, the results indicate that using the

ensemble formed by the confident classifiers chosen for the reduced space to make predictions

is better than the other methods.

Our analysis here reveals conflicting results with those from Section 5.1 regarding the

usefulness of diversity in the dynamic setting. However, we still believe that diversity has
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Table 5.8: Pairwise t-test: Reduced space vs.
benchmark performance

CombinedRS Best Ens Pool LAcc

PTM (7,3,1) (9,2,0) (7,4,0) (6,2,3)
PTMA (4,5,2) (8,2,1) (5,5,2) (8,3,0)

positive effect towards increasing the performance of the system. In Sections 5.3 and 5.4, we

propose two methods to show the effect of diversity.

5.3 Distant Diversity

We believe that the classifiers chosen for a dynamic ensemble should behave similarly

in the region in which the new instance resides, but differently outside of this area. In

other words, we hypothesize that high local accuracy, combined with high diversity in other

regions, may be desirable, and that just like in static ensembles, diversity still plays a role in

dynamic class prediction. In this section, we propose the concept of “Distant Diversity” and

a method for making dynamic predictions by increasing local accuracy and distant diversity.

5.3.1 Problem Formulation

Given a set of classifiers C = {Ca|a = 1, ..,M}, a validation dataset D, and a new

data instance, t, we first calculate the distance between t and v, ∀v ∈ D and find the closest

k instances. These instances form the neighborhood of instance t, which is defined as Din(t).

The data instances that are not in the neighborhood of t are defined as Dout(t) = D\Din(t).

max
E
{LAcc(E, t), DDiv(E, t)} (5.6)

|E| = n (5.7)
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In this formulation, we attempt to simultaneously optimize two separate objectives.

The first objective is the local ensemble accuracy, denoted by LAcc(E, t). To calculate

this measure, we first evaluate the performance of each classifier (denoted by Ca) on the

neighborhood of the new data instance, Din(t). LAcc(Ca(Din(t))) represents the percentage

of data instances in Din(t) for which the classification of Ca is correct. The local ensemble

accuracy is then the average of these individual classifier accuracies for each classifier in the

ensemble.

LAccCa =
∑
v∈Din

δ(`v,a = `?v)

|Din|
(5.8)

LAcc(E, t) =
∑
Ca∈E

LAccCa

|E|
(5.9)

where `v,a is the assigned label for instance v by classifier Ca and `?v is the actual label of v.

The second measure is the ensemble diversity outside of neighborhood of instance t,

denoted by DDiv(E, t). We calculate the ensemble diversity on the validation dataset using

a Disagreement Measure. First, the pairwise diversity between two classifiers, Ca and Cb, is

formulated as follows:

DDivab =
∑

v∈Dout

δ(`v,a 6= `v,b)

|Dout|
(5.10)

The diversity of the ensemble is then the average of the pairwise diversities for each

possible combination of classifiers in the ensemble:

DDiv(E, t) =
∑
Ca∈E

∑
Cb∈E
Cb 6=Ca

DDivab(t)

|E| (|E| − 1)
(5.11)

Since our problem formulation involves two separate objectives, a method must be

defined to combine them into a single objective function, f , for which a maximum can be
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sought. In this study, we consider linear combinations of the objectives. Since the relative

scale and significance of the local accuracy and distant diversity is unknown in a dynamic

setup, the weighting of each objective is dynamically varied to cover as much of the objective

space as possible. Given the set of weights, W :

f = w LAcc(E, t) + (1− w) DDiv(E, t), where w ∈ W . (5.12)

The First Improvement algorithm, discussed in Section 3.1.1 of Chapter 3, is slightly

modified for these experiments. Since the purpose is to show the benefit of distant diversity

alongside local accuracy, and to have comparable result, we start the search from the most

locally accurate ensemble instead of a random one. Then, this algorithm is employed to

search for the candidate classifier subsets (candidate ensembles) CS. Even though this is a

conservative approach and do not fully assess the benefit of diversity, we believe even in this

situation we should benefit from diversity.

5.3.2 Effect of Weights

In this experiment, we use the PTM measure from Chapter 4. We decrease the

weight on local accuracy, w, from 1 to 0 with 0.1 increments to analyze the effect of the

chosen weights. Table 5.9 demonstrates the results of this experiment for neighborhood size

equals to 13. The results indicate that the weight of the diversity (1 − w) does not affect

the performance, especially for w > 0.5. Similar results are obtained for k = 1, 7, 19, 25; see

Tables A.1 - A.4 in Appendix.

Since the results from previous experiment indicate that the weight value does not

affect the performance once distant diversity is included in the objective function, we repeat
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Table 5.9: Performance, local accuracy, and distant diversity values when k = 13

Performance

Dataset / wa 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

a1a 0.765 0.805 0.805 0.804 0.805 0.805 0.805 0.805 0.805 0.805 0.802
australian 0.845 0.849 0.849 0.849 0.849 0.849 0.845 0.846 0.853 0.840 0.846
breast cancer 0.977 0.973 0.973 0.973 0.973 0.972 0.974 0.973 0.975 0.976 0.971
diabetes 0.765 0.757 0.757 0.757 0.757 0.758 0.758 0.759 0.760 0.757 0.743
german 0.714 0.729 0.729 0.729 0.729 0.729 0.729 0.730 0.731 0.732 0.727
heart 0.811 0.801 0.801 0.801 0.801 0.801 0.803 0.798 0.800 0.809 0.803
ionosphere 0.933 0.937 0.937 0.937 0.937 0.937 0.937 0.940 0.937 0.935 0.932
liver disorder 0.646 0.696 0.696 0.693 0.697 0.697 0.701 0.706 0.690 0.688 0.670
sonar 0.788 0.846 0.846 0.846 0.844 0.841 0.839 0.836 0.795 0.803 0.798
splice 0.566 0.777 0.777 0.775 0.776 0.774 0.771 0.764 0.762 0.746 0.689
w1a 0.971 0.973 0.973 0.973 0.973 0.973 0.973 0.973 0.973 0.973 0.972

Local Accuracy

Dataset / wa 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

a1a 0.902 0.902 0.902 0.901 0.901 0.901 0.900 0.899 0.898 0.896 0.885
australian 0.924 0.924 0.923 0.921 0.916 0.908 0.892 0.862 0.833 0.814 0.801
breast cancer 0.998 0.998 0.998 0.998 0.998 0.997 0.997 0.996 0.994 0.991 0.987
diabetes 0.884 0.884 0.884 0.884 0.883 0.882 0.879 0.870 0.837 0.780 0.751
german 0.909 0.909 0.908 0.907 0.906 0.904 0.902 0.898 0.893 0.881 0.854
heart 0.933 0.933 0.933 0.932 0.930 0.927 0.919 0.894 0.833 0.784 0.764
ionosphere 0.982 0.982 0.982 0.982 0.982 0.981 0.981 0.980 0.979 0.974 0.970
liver disorder 0.834 0.834 0.834 0.833 0.831 0.825 0.808 0.769 0.700 0.652 0.627
sonar 0.862 0.862 0.862 0.859 0.856 0.848 0.830 0.772 0.707 0.679 0.665
splice 0.839 0.839 0.832 0.797 0.741 0.701 0.675 0.661 0.653 0.648 0.643
w1a 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996

Distant Diversity

Dataset / wa 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

a1a 0.150 0.165 0.166 0.167 0.167 0.168 0.169 0.169 0.169 0.170 0.170
australian 0.208 0.218 0.222 0.229 0.237 0.247 0.260 0.276 0.285 0.290 0.290
breast cancer 0.054 0.071 0.072 0.072 0.072 0.073 0.074 0.074 0.074 0.075 0.075
diabetes 0.214 0.223 0.223 0.223 0.224 0.226 0.228 0.233 0.243 0.253 0.255
german 0.243 0.248 0.250 0.253 0.256 0.257 0.259 0.261 0.263 0.265 0.266
heart 0.281 0.282 0.283 0.286 0.288 0.292 0.299 0.312 0.333 0.342 0.342
ionosphere 0.077 0.099 0.099 0.100 0.100 0.101 0.101 0.101 0.102 0.103 0.103
liver disorder 0.272 0.273 0.273 0.275 0.279 0.287 0.300 0.320 0.344 0.353 0.354
sonar 0.227 0.229 0.231 0.239 0.245 0.254 0.269 0.299 0.322 0.326 0.327
splice 0.082 0.098 0.134 0.234 0.341 0.391 0.413 0.421 0.424 0.424 0.425
w1a 0.004 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007

a The column headers are for w, which denotes the weight on local accuracy.
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the experiment by changing the weight of the local accuracy in the single objective from 1

to 0.9 for several neighborhood sizes. Table 5.10 demonstrates the improvement of including

distant diversity in our optimization relative to having only local accuracy of the classifiers

(Perf(w = 0.9) − Perf(w = 1)). For the breast cancer, diabetes, and heart datasets, we

see small deterioration in the performance. For the remaining datasets, including distant

diversity as a factor when choosing locally accurate classifiers has a positive effect. Therefore,

as we increase the neighborhood size, diversity increases and in turn the overall performance

of the system improves. However, for some datasets (e.g. splice) after a certain k, value we

observe a decrease in the performance.

To sum up, the results support our hypothesis that diversity is useful in the dynamic

setup when we consider it along with local accuracy. As we increase the weight of diversity

in Equation 5.12, we do not see significant increase in the performance compared to w = 0.9

case. One reason is that for the breast cancer and w1a datasets, the classifiers are similar

and highly accurate. Therefore, the diversity among the classifiers is considerably low and

constructing ensembles in this manner becomes meaningless. Another reason is that our

search algorithm starts from the best locally accurate classifier. Even though we change the

weights, we find similar ensembles at the end of optimization. In other words, we may not be

fully exploring the search space. In addition, for small neighborhood sizes distant diversity

does not affect the performance. For small neighborhood sizes, there are several candidate

classifiers with high local accuracy which imply that there are more possible ensembles

compared to the case with large neighborhood. Therefore, our search algorithm may be

terminating before it evaluates most of the candidate ensembles.
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5.3.3 Effect of Distance Measure

Since finding k nearest neighbors is a crucial step of the proposed method, we inves-

tigate whether the choice of distance measure has a significant effect on the results. In that

regard, we consider the five distance measures discussed in Chapter 4.

We perform an experiment for w = 0.9. Table 5.11 shows the percent improvement of

PTM over the compared distance measures. Positive (negative) entries indicate that PTM

performs better (worse) compared to the other distance measure. The results indicate that

there is not much difference in performance for different distance measures. Table A.5 in the

Appendix shows results from this experiment for w = {0.8, 0.6, 0.4, 0.2}. We reach the same

conclusion. Therefore, we decide to continue our analysis with PTM.

5.3.4 Comparison Against Baseline Methods

We perform two more experiments to evaluate the effect of distant diversity (DDiv)

compared to global (Div) and local diversity (LDiv), while maximizing local accuracy (LAcc).

Unlike distant diversity, global diversity considers disagreements between classifiers on all

data instances (both inside and outside of the neighborhood). Local diversity only considers

the disagreements on the data instances in the neighborhood. In addition, we compare

dynamic optimization with distant diversity and local accuracy against the static model

with global accuracy (Acc) and global diversity.

One may argue that diversity among the classifiers should not be restricted to the

outside of the neighborhood: the size of the neighborhood affects this diversity measure and

we will not be able to capture its full effect. Additionally, another argument can be made
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Table 5.12: Performance of several diversity definitions for k = 13
and w = 0.9

Dataset DDiv+LAcc Div+LAcc LDiv+LAcc Div+Acc

a1a 0.805 0.805 0.805 0.772
australian 0.849 0.849 0.849 0.857
breast cancer 0.973 0.973 0.973 0.972
diabetes 0.757 0.757 0.757 0.765
german 0.729 0.729 0.729 0.717
heart 0.801 0.801 0.801 0.816
ionosphere 0.937 0.937 0.937 0.932
liver disorder 0.696 0.696 0.696 0.690
sonar 0.846 0.846 0.846 0.808
splice 0.777 0.777 0.777 0.573
w1a 0.973 0.973 0.973 0.972

in favor of local diversity. Specifically, once the neighborhood of a new instance is defined,

we should follow a similar approach to finding static ensemble by maximizing accuracy and

diversity in this local region, since this chosen ensemble could be seen as the most competent

ensemble in this given neighborhood.

We focus on finding the closest k instances to the new data instance to form its

neighborhood. Unlike the whole data space, in this neighborhood the data instances should

have similar features including class labels. Therefore, an expert classifier for this region

should be highly locally accurate. An ensemble composed of the expert classifiers for a

given region should behave similarly in the associated region. However, maximizing global

diversity or local diversity would lead the classifiers in an ensemble to behave differently

in the local region, which is not what we need. However, diversity outside the local region

is still important, since we want predictors that come to the same conclusion in different

ways. Consequently, diversity outside of the local region should be considered instead of

local diversity.

Table 5.12 displays the mean performance of each method over 10 runs for k = 13 and
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w = 0.9. Based on the results provided in Table 5.12, dynamically maximizing local accuracy

and distant diversity is better than maximizing global diversity and accuracy except for

three datasets: australian, diabetes, and heart. However, we do not observe much difference

among global, local, and distant diversity combined with local accuracy in terms of their

contribution to the performance. For high k and small w values we observe performance

differences between these diversity concepts and benefit of distant diversity. This could also

be an artifact of our search algorithm as we start the search from most locally accurate

ensemble.

Distant Diversity is also compared against following methods as well:

• Static step of the framework discussed in 4(Static Step)

• KNORA Eliminate (KNORA E), and KNORA Union (KNORA U)

• Best Classifier

• Ensemble composed of best 25 classifiers (Best 25)

• Single SVM

• Ensemble with maximum validation accuracy(Best Ens)

Similar to our method, the static step and KNORA methods are dynamic class pre-

diction methods. Unlike our method, once the neighborhood is defined, the static step uses

the labels of the neighbors to make the prediction. Hence, comparing our method against

the static step could inform us whether we should rely on the label of the data instances in

the neighborhood. The KNORA methods follow a similar approach to our method as they

find the competent classifiers in the neighborhood. KNORA Eliminate focuses on finding the

most accurate classifier(s) in the neighborhood and does not take diversity into account as
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a factor. Meanwhile, KNORA Union considers diversity by weighingthe predictions of clas-

sifiers on a new data instance based on their performance in the neighborhood. In addition

to dynamic class prediction methods, having static methods as benchmarks could help us

determine whether the trade-off between accuracy and computational cost is worth taking.

Performance of these baselines is presented in Table 5.13. In this table, for static step and

KNORA methods, we consider k = 13. Maximizing distant diversity and local accuracy

outperforms all of the baselines except “static step of the framework” and “best ensemble”

over all datasets. Distant diversity along with local accuracy performs better than the static

step of the framework and the best ensemble on the validation set for 6 and 7 datasets,

respectively.

To perform in detail analysis, we carry out an experiment to compare the performance

of distant diversity against static step and KNORA methods for various weight and neigh-

borhood size values. Pairwise t-test at 5% significance level is performed to compare the

performance of these methods. The results are provided in Tables A.6, A.7, and A.8 in the

Appendix. Entries in these tables represent (wins, ties, losses) for distant diversity. Table

A.6 shows that static step of the framework performs better than constructing ensembles

solely based on local accuracy (w = 1). However, when distant diversity along with local

accuracy is considered (w < 1), system performance becomes similar to static step of the

framework. Tables A.7, and A.8 indicate that the proposed method outperforms KNORA

Eliminate and KNORA Union.

To sum up, the results presented in this section clearly show that when constructing a

dynamic ensemble, diversity among the classifiers is a significant factor regardless of diversity
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concept (distant, global or local).

5.4 Weighted Distant Diversity and Weighted Local Accuracy

The results obtained from Section 5.3.4 indicate that there could be a scaling issue

between local accuracy and distant diversity. In particular, when we look at the change in

local accuracy and diversity for different weights, we observe the effect of change in diversity

on the performance for high k values and high w values. For the rest, local accuracy is

dominating the objective function.

Our hypothesis is that the ensemble composed of classifiers that have agreement on

the data instances close to the new data and disagree on the data instances further away from

the new instance should make more accurate prediction on this new instance. Therefore,

when the local accuracy of a classifier is evaluated, correct predictions on the points that

are close to the test instance should weigh more than the points further away. Similarly,

when diversity between two classifiers is considered, the disagreement for the data instances

further away from the new data instance should be more valuable. To avoid the effect

of neighborhood size, we decide to weigh the accuracy of classifiers and diversity among

them based on the distance between the new instance and all the other instances. The new

classifier accuracy and disagreement measure definitions are as follows:
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Table 5.14: Performance of weighted distant diversity and weighted local accu-

racy

Dataset / wa 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

a1a 0.773 0.810 0.810 0.810 0.810 0.807 0.806 0.806 0.802 0.801 0.796
australian 0.849 0.860 0.860 0.861 0.858 0.853 0.853 0.849 0.843 0.841 0.834
breast cancer 0.977 0.975 0.975 0.975 0.975 0.972 0.974 0.976 0.976 0.974 0.974
diabetes 0.770 0.760 0.760 0.760 0.766 0.757 0.763 0.758 0.750 0.749 0.748
german 0.724 0.730 0.731 0.731 0.730 0.729 0.732 0.732 0.730 0.727 0.728
heart 0.811 0.809 0.803 0.801 0.796 0.803 0.805 0.803 0.816 0.822 0.820
ionosphere 0.935 0.938 0.938 0.938 0.938 0.939 0.942 0.937 0.935 0.934 0.935
liver disorder 0.646 0.700 0.700 0.700 0.703 0.696 0.683 0.690 0.683 0.678 0.681
sonar 0.788 0.858 0.858 0.858 0.858 0.856 0.829 0.820 0.813 0.803 0.798
splice 0.566 0.648 0.650 0.653 0.645 0.610 0.597 0.594 0.595 0.591 0.591
w1a 0.973 0.974 0.974 0.974 0.974 0.974 0.974 0.974 0.974 0.974 0.973

a The column headers are for w, which denotes the weight on local accuracy.

LwAccCa =

∑
v∈D

δ(`v,a = `?v)
1

d(t,v)∑
v∈D

1
d(t,v)

(5.13)

DwDivab(t) =

∑
v∈D

δ(Ca(v) 6= Cb(v))d(t, v)∑
v∈D

d(t, v)
(5.14)

DwDiv(E, t) =

∑
Ca∈E

∑
Cb 6=Ca∈E

Divab(t)

(|E| (|E| − 1))
(5.15)

where d(t, v) is the distance between data instances t and v.

When the new local accuracy and new diversity measures are applied, for weight

values 1 > w > 0.6 adding diversity in the objective function increases performance. Table

5.14 shows the performance values for weighted distant diversity and weighted local accuracy

for different weights. Similar to our analysis in Section 5.3.2, incorporating diversity in

addition to accuracy provides higher performance except for the breast cancer, diabetes and

heart datasets.
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Table 5.15: Performance of global diversity and global accuracy

Dataset / wa 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

a1a 0.769 0.772 0.770 0.767 0.771 0.774 0.771 0.769 0.775 0.770 0.775
australian 0.849 0.857 0.851 0.862 0.853 0.839 0.848 0.841 0.838 0.842 0.841
breast cancer 0.973 0.972 0.974 0.976 0.977 0.974 0.976 0.974 0.975 0.972 0.974
diabetes 0.763 0.765 0.758 0.762 0.753 0.758 0.747 0.747 0.754 0.747 0.747
german 0.710 0.717 0.712 0.713 0.716 0.719 0.711 0.718 0.713 0.717 0.716
heart 0.807 0.816 0.820 0.803 0.809 0.798 0.814 0.816 0.811 0.796 0.794
ionosphere 0.933 0.932 0.936 0.930 0.932 0.939 0.936 0.935 0.936 0.937 0.930
liver disorder 0.701 0.690 0.699 0.696 0.681 0.688 0.681 0.678 0.658 0.697 0.677
sonar 0.786 0.808 0.793 0.822 0.822 0.805 0.776 0.796 0.820 0.800 0.794
splice 0.567 0.573 0.581 0.585 0.576 0.578 0.584 0.578 0.580 0.589 0.579
w1a 0.972 0.972 0.972 0.972 0.971 0.972 0.972 0.971 0.971 0.972 0.972

a The column headers are for w, which denotes the weight on local accuracy.

Table 5.16: Performance of weighted distant diversity
and local accuracy against other diversity definitions for
k = 13 and w = 0.9

Dataset DDiv+LAcca Div+Accb DwDiv+LwAccc

a1a 0.805 0.772 0.810
australian 0.849 0.857 0.860
breast cancer 0.973 0.972 0.975
diabetes 0.757 0.765 0.760
german 0.729 0.717 0.730
heart 0.801 0.816 0.809
ionosphere 0.937 0.932 0.938
liver disorder 0.696 0.690 0.700
sonar 0.846 0.808 0.858
splice 0.777 0.573 0.648
w1a 0.973 0.972 0.974

a DDiv and LAcc denote distant diversity and local accuracy.
b Div and Acc denote global diversity and global accuracy.
c DwDiv and LwAcc represent weighted distant diversity and
weighted local accuracy.
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Table 5.17: Performance of weighted distant diversity and local accuracy

against other benchmarks methods

Dataset Static Step Best Classifier Best 25 Single SVM Best Ens DwDiv+LwAcc

a1a 0.798 0.756 0.778 0.751 0.764 0.810
australian 0.853 0.768 0.842 0.814 0.850 0.860
breast cancer 0.976 0.952 0.974 0.969 0.974 0.975
diabetes 0.750 0.654 0.651 0.738 0.762 0.760
german 0.729 0.697 0.700 0.696 0.712 0.730
heart 0.803 0.709 0.805 0.748 0.807 0.809
ionosphere 0.934 0.905 0.929 0.926 0.935 0.938
liver disorder 0.687 0.620 0.628 0.719 0.664 0.700
sonar 0.820 0.714 0.755 0.719 0.779 0.858
splice 0.771 0.570 0.566 0.562 0.566 0.648
w1a 0.974 0.971 0.971 0.970 0.971 0.974

Based on Tables 5.14 and 5.15, except for the heart dataset, adjusting the weight of

data instances while focusing on each new test case performs better than assuming every

data instance has the same importance for the test case. Similar to our analysis in 5.3.4, we

compare performance achieved by maximizing weighted distant diversity and weighted local

accuracy against the baselines specified in that section. The results are presented in Tables

5.16 and 5.17 for k = 13 and w = 0.9.

Table 5.16 shows the comparison results against other diversity and accuracy concepts

including distant diversity. Weighted distant diversity and weighted local accuracy together

performs better than all the other diversity and accuracy concepts.

We also carry out an experiment to compare the proposed diversity and local ac-

curacy measures against several other benchmarks. The results indicate that our method

dominates all of the benchmarks specified in Table 5.17. For detail comparison, we carry

out an experiment to compare the performance of distant diversity against static step. The

results are provided in Table A.9 in the Appendix. Entries in this table represent (wins,
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ties, losses) for the case where weighted distant diversity and weighted local accuracy are

maximized simultaneously. This table shows that the system with our proposed diversity

and accuracy measures performs similar to the static step discussed in Chapter 4.

5.5 Conclusion

In this chapter we have investigated the role of diversity and proposed two diversity

concepts for dynamic ensemble selection. First, we carried out regression analysis for the

static ensemble selection and confirmed that diversity was necessary for generalization while

confidence is not very relevant. Then, we ran logistic regression models for the dynamic

steps and found that the results for the static case have been reversed: confidence was a

significant predictor while diversity did not contribute much to the prediction capability,

which was contrary to our expectation. Second, we anaylized whether diversity was part of

the success of our framework in Chapter 4. According to our results, diversity of the reduced

space was irrelevant.

The findings from the previous exercises did not support our hypothesis. Therefore,

we proposed alternative ways to test our claim. The first alternative was distant diversity,

which considered disagreements among the classifiers outside of the neighborhood. Based

on our experimental results, we concluded that incorporating diversity with local accuracy

improved the performance of dynamic ensembles regardless of the diversity concept (global,

local, distant).

To avoid the issue of finding the optimal neighborhood size for each dataset, we

proposed a second alternative that changes the definition of neighborhood. In this approach,
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all data instances were in the neighborhood. However, the importance of data instances for

accuracy and diversity depended on the distance to the new instance. We demonstrated

that weighted distant diversity and weighted local accuracy outperformed all benchmark

methods.

Our proposed methods perform better for some datasets than others. This depends

on the effect of the characteristics of those datasets on the generated pool of classifiers. For

instance, the “diabetes” dataset has 8 features and 768 data instances. The ratio of minority

to majority class label is 0.54. The best classifier in our pool has 65.4% accuracy. However,

a single SVM generated using the whole dataset has 73.8% accuracy. This may indicate the

need for the full feature set to generate expert classifiers. Additionally, the performance of the

methods that take into account the whole dataset (i.e. “Best Ensemble”, “DwDiv+LwAcc”,

and “Div+Acc”) are better than the methods that focus on locality (i.e. “Static Step” and

“DDiv+LAcc”). This could be due to the minority and majority class data instances being

highly mixed in the neighborhood. Furthermore, even though the “breast cancer” dataset

has similar characteristics to the “diabetes” dataset, the classifiers in the generated pool have

high accuracy but are not diverse (see Table 4.2). This is because data instances belonging

to the two classes are well separated. Let’s also consider the “heart” and “liver disorder”

datasets. The number of features and data instances in these datasets are low. Even though

we are able to create diverse and accurate classifiers, the number of validation data instances

are not enough to clearly define a local neighborhood of a new instance (e.g. for the “heart”

dataset, 24 and 30 data instances from minority and majority class labels, respectively).

Since the diversity of the ensemble is maximized in our proposed methods, the pool of base
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classifiers should be diverse. However, for the “ionosphere” and the “w1a” datasets, the

pool is not diverse at all. Hence, our proposed methods perform similarly to the static

ensemble generation methods. The generated pool of classifiers for the remaining datasets

have diverse classifiers. In addition, the size of the validation data for these datasets is large

enough to establish locality and the ratio between minority and majority classes is not too

low. Consequently, our proposed methods outperform the benchmark methods for these

datasets.
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CHAPTER 6
CONCLUSIONS AND FUTURE DIRECTIONS

Ensembles of classifiers have been shown to improve prediction performance compared

to a single classifier. Even though, each new data instance is different, existing static methods

treat them similarly. Therefore, dynamic class prediction methods focus on individual data

instances to increase the generalization. It has been shown that dynamic class prediction

methods are better than static ones. However,while constructing an ensemble for each new

data instance, these methods do not consider neither confidence nor diversity. In this thesis,

we proposed several novel ways to incorporate the diversity and confidence of classifiers to

approach dynamic class prediction.

In Chapter 3, we hypothesized that confidence of a classifier could be used as an

indicator of its competency. We proposed two measures for evaluating the confidence of an

ensemble. First, we carried out several experiments to assess whether confidence by itself

would be enough or it should be combined with accuracy or diversity or both. The results

of these experiments were inconclusive, especially in regards to showing that ensembles with

accurate and confident classifiers make more accurate predictions. We therefore proposed

“prediction ranking” and showed that accurate, confident and diverse classifiers should make

better predictions. Even though the results using prediction ranking support our claim, the

underlying relationship among these factors are yet to be defined. We further assessed the

overall significance of the factors affecting ensembles’ performance using the whole data.

These results highlighted the benefits of having confident and diverse classifiers. Thus,

instead of taking into account the overall accuracy of a classifier, we might focus on the local
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accuracy or local confidence of a classifier.

We used a prediction ranking to measure the effect of accuracy and confidence on

generalization. One extension to our work could be using prediction ranking for choosing

classifiers for dynamic ensemble construction. Each classifier’s predictions could be ordered

by the associated confidence value. After the classifier predicts a new data instance with

some confidence, we could find the ranking of this new instance and choose classifiers based

on these ranking values.

In Chapter 4, we changed our approach to dynamic class prediction. Instead of

choosing classifiers to form an ensemble to make the prediction, we focused on finding similar

instances to the test instance and assigned a label based on those of similar data instances.

We proposed a framework using two dissimilarity measures, PTM and PTMA, based on the

probability estimates returned for a particular class. We concluded that the two proposed

measures outperformed the baseline measures. Our experiments also revealed that using

classifiers’ outputs was better than using the original feature space to find similar instances.

Furthermore, we showed that performing k-NN in the probability-based classifier space was

better than several benchmark static and dynamic methods.

Diversity has not been considered as a factor in dynamic class prediction since a

dynamic ensemble is chosen for a particular data instance. However, not accounting for

diversity may lead to having similar classifiers in the ensemble, which makes it harder to

average out the prediction error (if similar classifiers are wrong in their prediction). We

investigated the role of diversity and proposed two diversity concepts for dynamic ensemble

selection in Chapter 5. The first method is “distant diversity”, which considers disagreements
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among the classifiers outside of the new instance’s neighborhood. Based on our experimental

results, we concluded that incorporating diversity with local accuracy improves the perfor-

mance of dynamic ensembles. To avoid the issue of finding the optimal neighborhood size

for each dataset, we proposed a second method that considers all data instances to be in the

neighborhood, and assigns them weights depending on the distance to the new instance. We

demonstrated that weighted distant diversity and weighted local accuracy outperformed all

benchmark methods.

It is worth nothing that the methods proposed in Chapters 4 and 5 make use of a

pool of diverse classifiers to increase the prediction capability of the system. Particularly,

these methods focus on defining a neighborhood of data instances based on the classifiers’

responses, except for weighted distant diversity and weighted local accuracy. Hence, when

generating the pool of classifiers, the characteristics of the datasets should be considered

since these have considerable impact on the generated classifiers. The approach that we

follow for generating training data is random sampling of features and data instances. If

the number of data instances or features is low, or if the features are correlated, then the

generated classifiers could have low accuracy. Two factors we should consider are: (1) the

distribution of class labels and (2) the degree of separation of data instances from each

class in the feature space. These two factors affect the diversity of the generated pool.

Besides having enough features and data instances, our proposed methods work best for the

datasets in which the minority and majority classes are not perfectly separated and there

are enough observations for each class label. Furthermore, if data instances from both class

labels appear in each other’s neighborhood, then the weighted distant diversity and weighted
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local accuracy method may be more convenient.

If the class ratio is too low, our methods could be modified to focus on the minority

class to avoid the bias towards the majority class. Once the validation data instances from

minority and majority class labels are identified, the classifiers that incorrectly classify the

minority instances can be removed from the pool. Then, the probability-based space can

be formed using the remaining classifiers, and the proposed methods discussed in Chapters

4 or 5 can be followed accordingly. After generating the probability space, an alternative

approach is to assess the similarity of new data instances to those from each class label

separately. To do so, the similarity between the new data and validation data instances

from the minority class label is first calculated. Then, the average of the calculated distance

values is taken. The same procedure can be applied to the data instances from the majority

class label. Consequently, we can decide whether a new data instance is more similar to

those from minority or majority class labels and assign the label accordingly.

The downside of dynamic prediction systems is the running time since, for each new

data instance, a search is performed either for finding the dynamic ensemble or similar data

instances to assign a label to this new instance. One way to speed up the process could

be clustering data instances using the PTM or PTMA measures proposed in Chapter 4,

and generating several candidate ensembles for each cluster using the proposed diversity

methods in Chapter 5 as a preprocessing step. When a new data instance is received, it will

be assigned to a cluster. Either data instances or candidate ensembles for that cluster could

then be used to make prediction on this new instance.
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APPENDIX A
TABLES FOR CHAPTER 5

Table A.1: Performance, local accuracy, and distant diversity values when k = 1

Performance

Dataset / wa 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

a1a 0.760 0.787 0.795 0.787 0.788 0.791 0.787 0.787 0.788 0.788 0.790
australian 0.828 0.822 0.818 0.814 0.817 0.814 0.818 0.816 0.816 0.817 0.817
breast cancer 0.977 0.972 0.972 0.974 0.972 0.972 0.973 0.974 0.974 0.973 0.971
diabetes 0.758 0.716 0.718 0.727 0.723 0.726 0.718 0.727 0.716 0.719 0.721
german 0.714 0.726 0.717 0.720 0.715 0.717 0.721 0.720 0.720 0.722 0.723
heart 0.809 0.792 0.787 0.794 0.781 0.798 0.790 0.788 0.796 0.790 0.788
ionosphere 0.929 0.933 0.933 0.927 0.930 0.932 0.927 0.932 0.929 0.929 0.933
liver disorder 0.626 0.646 0.641 0.643 0.641 0.649 0.654 0.658 0.638 0.651 0.638
sonar 0.788 0.822 0.825 0.829 0.822 0.829 0.827 0.827 0.829 0.825 0.827
splice 0.566 0.768 0.768 0.768 0.768 0.768 0.768 0.768 0.768 0.768 0.768
w1a 0.970 0.971 0.972 0.971 0.971 0.971 0.972 0.971 0.971 0.971 0.971

Local Accuracy

Dataset / wa 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

a1a 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
australian 0.993 0.993 0.993 0.993 0.993 0.993 0.993 0.993 0.993 0.993 0.993
breast cancer 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
diabetes 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995
german 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
heart 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ionosphere 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999
liver disorder 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
sonar 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
splice 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
w1a 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997

Distant Diversity

Dataset / wa 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

a1a 0.138 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165
australian 0.221 0.272 0.272 0.272 0.272 0.272 0.272 0.272 0.272 0.272 0.272
breast cancer 0.051 0.070 0.070 0.070 0.070 0.070 0.070 0.070 0.070 0.070 0.070
diabetes 0.216 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241
german 0.206 0.254 0.254 0.255 0.254 0.254 0.254 0.254 0.254 0.254 0.254
heart 0.280 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326
ionosphere 0.067 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089 0.089
liver disorder 0.298 0.336 0.336 0.336 0.336 0.336 0.336 0.335 0.335 0.336 0.336
sonar 0.254 0.301 0.301 0.301 0.300 0.301 0.301 0.302 0.301 0.301 0.301
splice 0.105 0.189 0.189 0.188 0.189 0.189 0.189 0.189 0.189 0.188 0.188
w1a 0.004 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007

a The column headers are for w, which denotes the weight on local accuracy.
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Table A.2: Performance, local accuracy, and distant diversity values when k = 7

Performance

Dataset / wa 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

a1a 0.765 0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.799 0.800 0.797
australian 0.845 0.851 0.851 0.851 0.852 0.851 0.852 0.852 0.849 0.845 0.841
breast cancer 0.977 0.974 0.974 0.974 0.974 0.974 0.974 0.974 0.974 0.974 0.975
diabetes 0.765 0.747 0.747 0.747 0.747 0.747 0.745 0.746 0.755 0.747 0.748
german 0.714 0.727 0.727 0.727 0.727 0.727 0.727 0.729 0.731 0.730 0.730
heart 0.811 0.816 0.816 0.816 0.816 0.816 0.813 0.813 0.809 0.803 0.824
ionosphere 0.933 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.937 0.937 0.935
liver disorder 0.646 0.686 0.686 0.686 0.688 0.686 0.684 0.684 0.688 0.697 0.651
sonar 0.788 0.837 0.837 0.837 0.834 0.841 0.834 0.844 0.817 0.824 0.820
splice 0.566 0.781 0.781 0.781 0.780 0.778 0.775 0.771 0.771 0.763 0.710
w1a 0.971 0.973 0.973 0.973 0.973 0.973 0.973 0.973 0.973 0.973 0.972

Local Accuracy

Dataset / wa 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

a1a 0.912 0.912 0.912 0.912 0.911 0.911 0.910 0.909 0.908 0.905 0.884
australian 0.937 0.937 0.936 0.935 0.932 0.927 0.917 0.894 0.853 0.820 0.799
breast cancer 0.998 0.998 0.998 0.998 0.998 0.998 0.997 0.997 0.996 0.992 0.984
diabetes 0.915 0.915 0.915 0.915 0.914 0.914 0.912 0.905 0.882 0.809 0.747
german 0.949 0.949 0.949 0.948 0.946 0.945 0.942 0.938 0.934 0.922 0.879
heart 0.970 0.970 0.969 0.969 0.967 0.964 0.959 0.946 0.897 0.819 0.777
ionosphere 0.981 0.981 0.981 0.981 0.981 0.980 0.980 0.979 0.978 0.972 0.963
liver disorder 0.876 0.876 0.876 0.876 0.875 0.872 0.863 0.831 0.750 0.674 0.633
sonar 0.916 0.916 0.916 0.915 0.913 0.907 0.894 0.862 0.768 0.724 0.702
splice 0.852 0.851 0.844 0.814 0.771 0.741 0.722 0.711 0.704 0.699 0.691
w1a 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.994

Distant Diversity

Dataset / wa 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

a1a 0.147 0.163 0.163 0.164 0.164 0.165 0.165 0.166 0.166 0.167 0.168
australian 0.213 0.227 0.229 0.234 0.239 0.246 0.253 0.265 0.279 0.285 0.286
breast cancer 0.052 0.070 0.070 0.070 0.070 0.070 0.071 0.071 0.071 0.072 0.072
diabetes 0.213 0.222 0.222 0.222 0.223 0.224 0.225 0.229 0.236 0.248 0.252
german 0.232 0.243 0.245 0.247 0.250 0.252 0.254 0.256 0.258 0.260 0.261
heart 0.279 0.284 0.286 0.288 0.292 0.295 0.298 0.306 0.321 0.335 0.337
ionosphere 0.071 0.092 0.092 0.092 0.092 0.092 0.093 0.093 0.093 0.094 0.095
liver disorder 0.278 0.279 0.280 0.281 0.283 0.286 0.293 0.309 0.335 0.349 0.352
sonar 0.254 0.259 0.260 0.263 0.267 0.273 0.285 0.302 0.333 0.341 0.342
splice 0.098 0.122 0.156 0.243 0.325 0.363 0.379 0.385 0.387 0.388 0.389
w1a 0.004 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007

a The column headers are for w, which denotes the weight on local accuracy.
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Table A.3: Performance, local accuracy, and distant diversity values when k =

19

Performance

Dataset / wa 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

a1a 0.765 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.802 0.804 0.803
australian 0.845 0.850 0.850 0.850 0.852 0.850 0.850 0.859 0.857 0.838 0.849
breast cancer 0.977 0.974 0.974 0.974 0.974 0.974 0.975 0.975 0.977 0.977 0.975
diabetes 0.765 0.765 0.765 0.764 0.765 0.766 0.765 0.766 0.763 0.757 0.749
german 0.714 0.724 0.724 0.724 0.724 0.726 0.726 0.726 0.726 0.727 0.726
heart 0.811 0.811 0.811 0.811 0.811 0.813 0.811 0.805 0.790 0.801 0.805
ionosphere 0.933 0.936 0.936 0.936 0.936 0.936 0.936 0.939 0.939 0.932 0.930
liver disorder 0.646 0.706 0.706 0.706 0.707 0.700 0.712 0.713 0.694 0.688 0.665
sonar 0.788 0.844 0.844 0.844 0.844 0.832 0.839 0.817 0.812 0.800 0.786
splice 0.566 0.759 0.759 0.759 0.755 0.755 0.756 0.747 0.744 0.731 0.676
w1a 0.971 0.973 0.973 0.973 0.973 0.973 0.973 0.973 0.973 0.973 0.971

Local Accuracy

Dataset / wa 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

a1a 0.898 0.898 0.897 0.897 0.896 0.896 0.895 0.895 0.894 0.893 0.885
australian 0.919 0.918 0.917 0.914 0.909 0.899 0.877 0.846 0.827 0.814 0.806
breast cancer 0.998 0.998 0.997 0.997 0.997 0.996 0.995 0.994 0.993 0.990 0.988
diabetes 0.866 0.866 0.866 0.865 0.865 0.863 0.859 0.846 0.813 0.771 0.751
german 0.883 0.883 0.882 0.881 0.880 0.878 0.876 0.871 0.866 0.855 0.832
heart 0.904 0.904 0.904 0.904 0.901 0.897 0.887 0.844 0.784 0.756 0.741
ionosphere 0.981 0.981 0.980 0.980 0.979 0.978 0.977 0.976 0.974 0.970 0.968
liver disorder 0.807 0.807 0.807 0.806 0.803 0.794 0.773 0.721 0.669 0.635 0.622
sonar 0.821 0.821 0.821 0.820 0.817 0.808 0.779 0.715 0.669 0.655 0.645
splice 0.833 0.833 0.827 0.791 0.729 0.683 0.654 0.639 0.631 0.627 0.622
w1a 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.996

Distant Diversity

Dataset / wa 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

a1a 0.152 0.166 0.167 0.169 0.170 0.170 0.171 0.171 0.171 0.171 0.172
australian 0.207 0.214 0.220 0.228 0.238 0.251 0.268 0.285 0.292 0.294 0.295
breast cancer 0.055 0.073 0.073 0.074 0.075 0.076 0.077 0.077 0.077 0.078 0.078
diabetes 0.216 0.225 0.225 0.226 0.227 0.229 0.232 0.239 0.249 0.257 0.258
german 0.249 0.251 0.254 0.256 0.258 0.260 0.262 0.265 0.266 0.268 0.269
heart 0.274 0.274 0.274 0.275 0.280 0.285 0.293 0.315 0.334 0.339 0.341
ionosphere 0.083 0.103 0.104 0.106 0.107 0.109 0.109 0.110 0.110 0.111 0.111
liver disorder 0.269 0.269 0.270 0.272 0.277 0.287 0.305 0.332 0.351 0.357 0.358
sonar 0.204 0.205 0.205 0.207 0.213 0.224 0.248 0.282 0.297 0.300 0.300
splice 0.084 0.098 0.129 0.230 0.348 0.405 0.429 0.438 0.441 0.441 0.441
w1a 0.004 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007

a The column headers are for w, which denotes the weight on local accuracy.
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Table A.4: Performance, local accuracy, and distant diversity values when k =

25

Performance

Dataset / wa 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

a1a 0.765 0.800 0.800 0.800 0.800 0.801 0.801 0.801 0.801 0.803 0.801
australian 0.845 0.852 0.852 0.853 0.849 0.850 0.850 0.844 0.844 0.843 0.853
breast cancer 0.977 0.973 0.973 0.973 0.972 0.973 0.973 0.973 0.974 0.977 0.974
diabetes 0.765 0.768 0.768 0.768 0.767 0.770 0.767 0.760 0.759 0.757 0.747
german 0.714 0.723 0.723 0.723 0.725 0.725 0.726 0.726 0.725 0.728 0.725
heart 0.811 0.807 0.807 0.805 0.807 0.807 0.809 0.803 0.796 0.822 0.805
ionosphere 0.933 0.936 0.936 0.936 0.936 0.936 0.937 0.936 0.936 0.933 0.932
liver disorder 0.646 0.701 0.700 0.700 0.704 0.703 0.714 0.696 0.675 0.680 0.675
sonar 0.788 0.854 0.854 0.854 0.858 0.856 0.851 0.817 0.796 0.789 0.786
splice 0.566 0.746 0.746 0.746 0.746 0.745 0.743 0.741 0.737 0.714 0.668
w1a 0.971 0.973 0.973 0.973 0.973 0.973 0.973 0.973 0.973 0.973 0.971

Local Accuracy

Dataset / wa 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

a1a 0.895 0.895 0.895 0.894 0.894 0.893 0.893 0.892 0.892 0.890 0.885
australian 0.916 0.916 0.915 0.911 0.904 0.890 0.864 0.838 0.823 0.814 0.807
breast cancer 0.997 0.997 0.996 0.996 0.995 0.994 0.993 0.992 0.991 0.988 0.986
diabetes 0.856 0.856 0.855 0.855 0.854 0.852 0.847 0.834 0.801 0.767 0.753
german 0.865 0.865 0.865 0.864 0.862 0.860 0.858 0.854 0.847 0.835 0.814
heart 0.876 0.876 0.876 0.876 0.875 0.871 0.854 0.796 0.750 0.732 0.724
ionosphere 0.965 0.965 0.965 0.965 0.964 0.963 0.961 0.958 0.954 0.950 0.947
liver disorder 0.788 0.788 0.787 0.787 0.782 0.770 0.737 0.684 0.648 0.629 0.618
sonar 0.807 0.807 0.806 0.804 0.800 0.784 0.739 0.686 0.656 0.645 0.640
splice 0.829 0.829 0.823 0.787 0.721 0.671 0.639 0.622 0.613 0.610 0.605
w1a 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997

Distant Diversity

Dataset / wa 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

a1a 0.154 0.167 0.169 0.170 0.171 0.172 0.172 0.173 0.173 0.173 0.173
australian 0.204 0.209 0.215 0.225 0.240 0.257 0.277 0.291 0.297 0.298 0.299
breast cancer 0.058 0.074 0.074 0.076 0.077 0.078 0.080 0.080 0.080 0.081 0.081
diabetes 0.220 0.228 0.228 0.229 0.231 0.233 0.237 0.244 0.255 0.261 0.262
german 0.253 0.253 0.255 0.258 0.261 0.263 0.265 0.267 0.270 0.271 0.273
heart 0.259 0.259 0.260 0.260 0.262 0.267 0.280 0.311 0.326 0.330 0.330
ionosphere 0.085 0.103 0.104 0.105 0.106 0.107 0.109 0.111 0.112 0.113 0.113
liver disorder 0.264 0.264 0.265 0.267 0.275 0.289 0.316 0.343 0.357 0.360 0.360
sonar 0.153 0.154 0.155 0.161 0.169 0.187 0.224 0.251 0.262 0.265 0.265
splice 0.087 0.098 0.127 0.229 0.353 0.416 0.443 0.452 0.455 0.455 0.456
w1a 0.005 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007

a The column headers are for w, which denotes the weight on local accuracy.
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Table A.10: Pairwise t-test: Weighted distant diver-
sity and weighted local accuracy vs. static benchmark
methods

wa Best Classifier Best 25 Single SVM Best Ens

1.0 (8,3,0) (4,7,0) (10,0,1) (2,9,0
0.9 (11,0,0) (7,4,0) (8,3,0) (6,5,0))
0.8 (11,0,0) (8,3,0) (8,3,0) (6,5,0)
0.7 (11,0,0) (7,4,0) (8,3,0) (6,5,0)
0.6 (11,0,0) (7,4,0) (9,2,0) (6,5,0)
0.5 (11,0,0) (7,4,0) (7,4,0) (5,6,0)
0.4 (10,1,0) (8,3,0) (9,1,1) (4,7,0)
0.3 (11,0,0) (8,3,0) (9,2,0) (5,6,0)
0.2 (11,0,0) (8,3,0) (8,3,0) (4,7,0)
0.1 (11,0,0) (7,4,0) (7,3,1) (4,7,0)
0.0 (11,0,0) (8,3,0) (7,4,0) (4,7,0)

a The term w denotes the weight on weighted local accu-
racy.
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