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ABSTRACT

In this dissertation, I address a range of topics in the context of mutual fund

performance and high frequency trading.

The first chapter provides novel evidence on the role of ambiguity aversion

in determining the response of mutual fund investors to historical fund performance

information. It presents a model of ambiguity averse investors who receive multiple

performance-based signals of uncertain precision about manager skill. A key implica-

tion of the model is that when investors receive multiple signals of uncertain quality,

they place a greater weight on the worst signal. There is strong empirical support

for this prediction in the data. Fund flows display significantly higher sensitivity to

the worst performance measure even after controlling for fund performance at multi-

ple horizons, performance volatility, flow-performance convexity, and a host of other

relevant explanatory variables. This effect is particularly pronounced in the case of

retail funds in contrast to institutional funds. The results suggest that fund investor

behavior is best characterized as reflecting both Bayesian learning and ambiguity

aversion.

The second chapter combines data on high frequency trading (HFT) activi-

ties of a randomly selected sample of 120 stocks and data on institutional trades, I

find that HFT increases the trading costs of traditional institutional investors. An

increase of one standard deviation in the intensity of HFT activities increases in-

stitutional execution shortfall costs by a third. Further analysis suggests that HFT
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represents an opportunistic and extra-expensive source of liquidity when demand and

supply among institutional investors are imbalanced. Moreover, the impact on insti-

tutional trading costs is most pronounced when high frequency (HF) traders engage

in directional strategies (e.g., momentum ignition and order anticipation). I perform

various analyses to rule out an alternative explanation that HF traders are attracted

to stocks that have high trading costs. First, HFT is most prevalent in liquid stocks.

Second, the results are robust to controls for stable stock liquidity characteristics and

events that might jointly affect HFT and trading costs. Third, an analysis of the HFT

behavior around the temporary short selling ban in September 2008 highlights the

opportunistic nature of liquidity provision by HF traders. Finally, Granger causal-

ity tests show that intensive HFT activity significantly contributes to institutional

trading costs, but not vice versa.

The third chapter analyzes the implications of the tournament-like competi-

tion in the mutual fund industry using a framework that addresses the risk-taking

incentives facing fund managers. The theoretical model presented in this chapter

suggests that the increase in the activeness of the interim loser manager’s portfolio

is directly related to the magnitude of the performance gap at the interim stage,

and to the strength of the investor (cash flow) response to the relative performance

rankings of the funds (i.e., the strength of the tournament effect). The empirical

evidence based on quarterly Active Share data for a sample of domestic stock funds,

is consistent with the key predictions of the model.
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CHAPTER 1
INVESTMENT DECISIONS UNDER AMBIGUITY: EVIDENCE

FROM MUTUAL FUND INVESTOR BEHAVIOR

1.1 Introduction

The technological advances of recent decades and the resulting reduction in

the cost of information have made information overload, a term popularized by fu-

turist Alvin Toffler, a reality. Investors today operate in a world with increasing

complexity requiring them to process large amounts of information while making de-

cisions. However, information quality can often be difficult to judge for investors.

As argued by Epstein and Schneider (2008), when faced by information signals of

unknown quality, investors treat the signals as being ambiguous. In this situation,

investors do not update their beliefs in Bayesian fashion. Instead, they act as if they

entertain multiple probability distributions when processing the signals. There is now

considerable experimental evidence documenting that investors are ambiguity averse

(e.g., Bossaerts et al. (2010), Ahn et al. (2011)). Understanding how information

ambiguity impacts investor choices is clearly important. In this study we provide

novel evidence on this issue by examining the response of mutual fund investors to

historical fund performance information.

Mutual funds offer an appealing setting in which to study the role of ambiguity

on investor decisions for a number of reasons. First, mutual funds represent a very

substantial component of U.S. household portfolios. Second, the well-documented

phenomenon of performance-chasing by fund investors suggests a natural link be-
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tween performance-related information and the investment/divestment decisions of

investors. Third, funds typically make available performance statistics including rel-

ative rankings measured at various horizons (e.g., 1-year, 3-year, 5-year, and since-

inception) which serve as multiple signals to investors about fund manager skill.

These performance statistics are readily available in fund prospectuses and related

marketing materials. Each of the multiple signals reflects the performance of a par-

ticular fund relative to the available pool of funds, albeit over different time horizons.

In this sense, the signals are comparable and studying the response of investors to

various signals allows for a natural test of decision making under ambiguity in a non-

experimental setting. Fourth, Condie (2008) shows that it is difficult to use asset price

data to assess the significance of ambiguity aversion since the impact of ambiguity

averse investors on prices is empirically indistinguishable from that of expected util-

ity maximizers with potentially biased beliefs. The mutual fund setting by contrast,

allows us to directly assess the impact of ambiguity aversion on investor decisions.

Our study extends the extant literature by examining the impact of ambiguity

about manager skill on investor decisions. We adopt the standard distinction made in

the literature between risk and uncertainty following Knight (1921). Knight consid-

ered risky events as those that could be described by known probability distributions

versus uncertain events for which the probability distributions were not known. As

famously demonstrated by Ellsberg (1961), individuals are averse to the ambiguity

that characterizes decisions under conditions of uncertainty. It is reasonable to believe

that individual investors are faced with considerable ambiguity when it comes to their
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fund investment decision. Investors face a dizzying array of choices. For example,

according to the 2012 Investment Company Fact Book, there were more than 4,500

U.S. equity mutual funds in existence at the end of 2011. Investors are also subjected

to a barrage of performance statistics on the funds. While these performance data

provide signals of the fund manager skill, the investors clearly face a great deal of

uncertainty about the quality of the signals. Past performance is at best a noisy

signal of managerial skill. How do ambiguity averse investors interpret and respond

to such signals? The goal of this study is to provide some answers to this question as

a way to further our understanding of mutual fund investor behavior.

We present a simple model of ambiguity averse investors who receive multiple

performance-based signals of uncertain precision about manager skill or fund alpha.

The model relies on the framework of Epstein and Schneider (2008),Klibanoff et al.

(2005), and Ju and Miao (2012). Investors in the model are risk-neutral yet averse

to the ambiguity regarding manager skill or alpha. Given the uncertainty about the

quality of multiple signals, investors do not update their beliefs in standard Bayesian

fashion but rather they behave as if they have multiple conditional distributions in

mind for the future fund performance. Intuitively, ambiguity averse investors prefer

to make a fund choice that is more robust across the multiple distributions. A key

implication of the model is that when investors receive multiple signals of uncertain

quality, they place a greater weight on the worst signal. In practical terms this im-

plies that ambiguity averse investors are more sensitive to the worst-case scenario

when evaluating funds. We find strong empirical support for this prediction in the
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data. Specifically, we examine the sensitivity of fund flows to past performance mea-

sured over multiple time horizons: 1 year, 3 years, and 5 years. We find that fund

flows display significantly higher sensitivity to the worst performance measure even

after controlling for performance volatility and a host of other relevant explanatory

variables. This heightened sensitivity holds regardless of whether fund performance

is measured by raw return or the Carhart 4-factor alpha. This effect is particularly

pronounced in the case of retail funds whose investors are likely to face a higher de-

gree of uncertainty regarding the quality of performance-related signals they observe,

compared to the institutional fund investors.1

We use a number of fund characteristics as proxies for the degree of ambi-

guity about fund performance/manager skill. These include the fund’s investment

strategy shifts, return volatility, fund flow volatility, family size, and marketing ef-

fort/expenditure. We consistently find that in cases with higher degree of ambiguity

as captured by our proxy measures, fund flows display significantly higher sensitivity

to the worst performance measure. Our results are robust to the use of additional

controls including the convexity in the flow-performance relation, Morningstar fund

ratings, and fund performance since inception.

We next examine the implications of the potential differences in the ambiguity

aversion of retail and institutional investors. The latter are typically viewed as being

1Instead of using performance measured at different time horizons as signals, in unre-
ported tests we also consider various performance measures (including the CAPM alpha,
Fama-French 3-factor alpha, Carhart 4-factor alpha, raw return, and Morningstar fund rat-
ing) over the identical time horizon (1-, 3-, or 5-year) as performance signals and obtain
qualitatively similar results. These results are available upon request.
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relatively sophisticated investors with a better understanding of the fund industry and

who are therefore better able to interpret performance-related signals. Consequently,

such investors face less ambiguity and may update their beliefs after observing the

signals in a manner consistent with Bayes’ rules. In a recent paper, Huang et al.

(2012) show that investor fund flow sensitivity to past performance is decreasing with

fund return volatility. Our analysis confirms their findings. An increase in fund re-

turn volatility implies that past performance is a less precise signal of skill or ability

and hence investors rationally moderate their response to the signal. The dampening

effect of return volatility on flow-performance sensitivity is more pronounced for in-

stitutional investors, which is consistent with the notion of such investors being more

sophisticated.

High volatility is naturally associated with a high degree of uncertainty. Tra-

ditionally, uncertainty has been viewed as being the result of low signal precision.

However, for ambiguity averse agents, high volatility could also imply a high degree

of ambiguity surrounding the signal. Hence, the impact of volatility on the flow-

performance sensitivity is likely to reflect not only the impact of signal precision, but

also the ambiguity aversion of the investors.

Interestingly, we find that an increase in performance volatility, while damp-

ening the flow-performance sensitivity in aggregate, also leads to an increase in flow

sensitivity to the worst performance signal at the margin for both groups of investors,

although the increase is more pronounced for retail investors. This suggests that in-

vestor behavior is best characterized as reflecting both Bayesian updating and am-
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biguity aversion with the two groups of investors displaying interesting differences in

their response behavior. Institutional investors appear to behave in a manner more

consistent with Bayesian updating whereas ambiguity aversion appears to play a rel-

atively bigger role in the fund investment decisions of retail investors. Our results are

consistent with the notion that retail investors are less sophisticated than institutional

investors.2

Our study makes a number of contributions to the mutual fund literature and

more generally to the evolving literature on the role of ambiguity in asset pricing.

One, to our knowledge, it is the first study that explores the impact of ambiguity on

fund investor decisions. Two, the paper complements recent findings on how fund

investors respond to information about past fund performance. Three, the paper

extends recent results in the literature on the impact of uncertainty in addition to

risk, on expected asset returns. For example, when investors receive information

of uncertain quality, theoretical models imply that aversion to ambiguity not only

induces ambiguity premia and skewness in returns (Epstein and Schneider (2008)),

but also results in non-participation (Easley and O’Hara (2009)), portfolio inertia and

excess volatility (Illeditsch (2011)). However, there is limited empirical evidence in the

literature on ambiguity-aversion behavior in asset markets. A recent exception is the

study by Anderson et al. (2009), which provides empirical evidence of an uncertainty-

return trade-off in equity markets.

2For example, Odean (1999), Barber and Odean (2000, 2001, 2002), and Bailey et al.
(2011) provide evidence on the role of behavioral biases in the investment decisions of retail
investors.
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The rest of the paper is organized as follows. Section 1.2 reviews the literature

on ambiguity aversion. Section 1.3 presents our model of ambiguity averse fund

investors and derives testable implications. The data and empirical methodology are

described in Section 1.4 while Section 1.5 presents the main empirical results. Section

1.6 presents the results of tests contrasting the response of Bayesian fund investors

with that of ambiguity averse investors. Section 1.7 presents the results of robustness

tests and concluding remarks are presented in Section 1.8.

1.2 Ambiguity Aversion

The distinction between risk and uncertainty was highlighted by Knight (1921)

who defined uncertain events as those for which the probability distribution of out-

comes is unknown.3 The work of Ellsberg (1961) famously provided evidence of

individual aversion to ambiguity or uncertainty (in contrast to risk). Subsequently, a

large theoretical literature has evolved to formally develop models that accommodate

ambiguity averse behavior and its implications. For example, Gilboa and Schmeidler

(1989) propose an axiomatic framework of ambiguity aversion. They constructed an

atemporal model in which preferences are represented by max-min expected utility

over multiple possible distributions. Epstein and Schneider (2003) provide axiomatic

foundation for intertemporal multiple-priors utility in discrete time.

3According to Knight (1921), “The practical difference between risk and uncertainty,
is that in the former the distribution of the outcome in a group of instances is known
(either through calculation a priori or from statistics of past experiences), while in the case
of uncertainty this is not true, the reason being that it is impossible to form a group of
instances, because the situation dealt with is in a high degree unique.” (p. 103).
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Epstein and Wang (1994) analyze the asset pricing implications of ambiguity

aversion while Chen and Epstein (2002) extend the framework to continuous time.

More recently this ambiguity aversion framework has subsequently been applied to

explain some of the well known phenomena in asset markets. For example, Leippold

et al. (2008) incorporate both learning and ambiguity in a Lucas exchange econ-

omy. The model is able to match the observed equity premium, the interest rate,

and the stock return volatility, under empirically plausible parameter values. Ep-

stein and Schneider (2008) study ambiguity averse investor behavior when processing

information of uncertain quality. They find that aversion to ambiguity induces ambi-

guity premia and skewness in returns. Easley and O’Hara (2009) find that ambiguity

aversion on the part of some traders can lead to non-participation in asset markets.

Illeditsch (2011) finds that when investors receive a signal with unknown precision,

ambiguity aversion causes portfolio inertia and excess volatility. In an experimental

setting, Bossaerts et al. (2010) find evidence of heterogeneity in investor attitudes

towards ambiguity. Moreover, they show that there is a wide range of prices for

which a sufficiently ambiguity averse investor will avoid an ambiguous portfolio. In

contrast to the theoretical and/or experimental studies, there is limited empirical evi-

dence regarding the ambiguity averse behavior of investors. An exception is the study

by Anderson et al. (2009) that provides empirical evidence of an uncertainty-return

trade-off in equity markets.

Our paper contributes to the ambiguity literature in two aspects. First, we

extend the extant theoretical framework to a multiple signals setting. We provide an
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answer to the question of how ambiguity aversion impacts investor decisions when

facing multiple signals with unknown quality. Second, we provide empirical evidence

based on the behavior of mutual fund investors that is consistent with the model’s

implications. To our knowledge ours is the first attempt at using an ambiguity aver-

sion framework to study the response of fund investors to fund performance based

signals.

1.3 The Model and Its Empirical Implications

In this section, we build a model to analyze the important features of the

flow-performance sensitivity for an ambiguity averse mutual fund investor and derive

testable empirical predictions.

1.3.1 The Model

Assume there is a population of investors, each with 1 unit of capital to invest

with a fund. The investor decides on whether to fully invest her unit of capital with

a particular fund. Her decision is based on her opportunity cost of capital, denoted

hereafter by k, which is assumed to differ across the investors. The investors, indexed

by k, are otherwise assumed to be identical. We assume that k has support in [0,∞),

with cumulative distribution function denoted by F (k).

The fund’s return, R, is governed by

R = µ+ α + ε, (1.1)

where α denotes the fund manager skill, µ is the market risk premium given the fund’s

risk profile, and ε ∼ N (0, σ2
ε ) represents the noisy component of the fund’s return.
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The risk-free rate is normalized to zero. We note that the managerial skill, α, is not

directly observable by the investor. The investor is assumed to have knowledge about

the distribution of skill in the population of the fund managers, i.e., investor knows

a priori: α ∼ N (µα, σ
2
α). The investor, at the time of making investing decision,

observes two signals, s1,2, about managerial ability α, si = (α− µα) + ηi, with(
η1
η2

)
∼ N

(
0,

(
σ2
1 0

0 σ2
2

))
.4 (1.2)

We define the signal-to-noise ratio by Hi = σ2
α/σ

2
i , which captures the precision of the

signal. Through the standard Bayesian updating, we have the posterior distribution

of α, after observing the two signals, as

N
(
µα + aT s, σ2

α/H
)
≡ N

(
µp, σ

2
p

)
, (1.3)

where a = (H1/H,H2/H)T , and H = 1 +H1 +H2.

What differentiates our model from the standard Bayesian model is that we

assume the investor is ambiguous about the signal precision. To capture the investor’s

attitude about this ambiguity, we adopt the framework in Klibanoff et al. (2005) and

Ju and Miao (2012). We model investors as being risk neutral but ambiguity averse.

Specifically, the investor’s utility is

U (c) = Eθ

[
− exp

(
−1

γ
Eπ(c)

)]
, (1.4)

where c is the investment payoff on a state space S, and π is a probability measure on

S. Importantly, the investor is uncertain about the “right” probability and considers a

4There may be some potential interest in analyzing the ambiguity of the signal correla-
tion. But this feature is turned off here by assuming the noise terms in the two signals are
uncorrelated.
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set of multiple probability measures denoted by ∆. The parameter θ in Equation (1.4)

denotes the investor’s subjective prior over ∆, and in effect measures the subjective

relevance of a particular probability measure, π. Due to the concavity of the negative

exponential function, the investor represented by Equation (1.4) manifests ambiguity

aversion. To capture the uncertainty faced by the investor, we assume that the

probability measure θ in the definition of her utility function, is such that H1 and H2

are independent with a 50% probability of being equal to either h or l, with h > l. In

this context, the degree of ambiguity faced by the investor is directly related to the

difference between h and l. In the limiting case, as this differences converges to zero,

we have the standard Bayesian learning framework.

From the above assumption, we have that Eπ(c) = µ + µα + aT s. Investor k,

by investing with the fund, achieves the following utility:

U(c) = −1

4
e
−(µ+µα)

γ

[
e
−h(s1+s2)
γ(1+2h) + e

−l(s1+s2)
γ(1+2l) + e

−(hs1+ls2)
γ(1+h+l) + e

−(ls1+hs2)
γ(1+h+l)

]
.

The investor will invest with the fund if and only if the above utility is above

her reservation level of utility, −e−k/γ. We note the following propositions regarding

fund flows.

Proposition 1. The amount of capital under the management of the fund is F (k?),

where

k? = µ+ µα −
γ

4
log

[
e
−h(s1+s2)
γ(1+2h) + e

−l(s1+s2)
γ(1+2l) + e

−(hs1+ls2)
γ(1+h+l) + e

−(ls1+hs2)
γ(1+h+l)

]
. (1.5)
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Flow-performance sensitivity is captured by dF (k?)/dsi, with

dF (k?)

dsi
=

1

4
F ′e

(k?−µ−µα)
γ

[
h

1 + 2h
e−

h(s1+s2)
γ(1+2h) +

l

1 + 2l
e−

l(s1+s2)
γ(1+2l) (1.6)

+
l

1 + h+ l

(
e−

(hs1+ls2)
γ(1+h+l) + e−

(ls1+hs2)
γ(1+h+l)

)
+

h− l
1 + h+ l

e−
(h−l)si+l(s1+s2)

γ(1+h+l)

]
.

Proof: Let U(c) = −e−k?/γ and solve for k? to get Equation (1.5). Then taking the

derivative of F (k?) with respect to s1 and s2 respectively, yields Equation (1.6).

This leads to the following proposition regarding the fund flow-performance

sensitivity.

Proposition 2. The flow-performance sensitivity is higher for the signal with rela-

tively lower realized value:

dF (k?)

ds1
>
dF (k?)

ds2
(1.7)

if and only if s1 < s2, i.e., in relative terms, the signal, s1, conveys bad news, while

the signal, s2, conveys good news.5

Proof: As a consequence of Proposition 1, we have

dF (k?)

ds1
− dF (k?)

ds2
=

1

4
F ′e

(k?−µ−µα)
γ

(
h− l

1 + h+ l

)[
e
−(hs1+ls2)
γ(1+h+l) − e

−(ls1+hs2)
γ(1+h+l)

]
. (1.8)

When h > l, we have hs1 + ls2 < ls1 + hs2, thus the above expression is always

positive.

5Remark: In the model, the shape of the flow-performance relation (i.e., whether or not it
is convex) depends on the specification of the cumulative distribution function F (k). On the
one hand, this implies that the model is unable to explain why the flow-performance relation
has a specific functional form, because such a relation is driven by direct assumption. On
the other hand, the model is flexible enough to allow for such a relation. Our point is that
our key result, namely, that the flow-performance sensitivity is higher for the signal with
relatively lower realized value, is logically consistent and potentially complementary to the
convexity in the flow-performance relation.
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Thus, the model implies that ambiguity averse investors’ fund flow is more

responsive to the worst signal. In other words, in the population of ambiguity averse

investors that face multiple signals, we expect to observe heightened flow sensitivity

towards the signal that conveys bad news.

Denote (h− l)/2 by δ. The higher the parameter value for δ, the wider the gap

between the two possible parameter values for the signal precision, and therefore the

higher the ambiguity the investor faces. As a shorthand, we denote eδ(s2−s1)/γ(1+h+l)

by X. Clearly, X > 1 if s1 < s2. We have the following corollary.

Corollary 1. The extra sensitivity to the worst signal is higher when the level of

ambiguity is higher, keeping the average precision of the signal constant (i.e., (h+l)/2

is fixed). That is:

d

dδ

(
dF

ds1
− dF

ds2

)
> 0 (1.9)

if s1 < s2.

Proof: Taking the derivative of Equation (1.8) with respect to δ yields:

d

dδ

(
dF

ds1
− dF

ds2

)
=

1

2(1 + h+ l)X
F ′e

[
k?−µ−µα

γ
− (h+l)(s1+s2)

2(1+h+l)γ

] [(
X2 − 1

)
+ δ

s2 − s1
1 + h+ l

(
X2 + 1

)]
>0.

1.3.2 Bayesian Benchmark

Next, we contrast our model with the standard Bayesian benchmark case with

risk averse utility.
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1.3.2.1 Bayesian Benchmark with No Signal Precision Uncertainty

Consider first the simplest case of a risk averse investor with exponential utility

and risk aversion coefficient a, i.e., U(c) = −eac, who receives two performance-related

signals with known precision. Specifically, consider the case when h = l ≡ H. Similar

to Proposition 1, the amount of capital under management of the fund is F (k?), where

k∗ = µ+ µα +
H

1 + 2H
(s1 + s2)−

1

2
a

(
σ2
ε +

σ2
α

1 + 2H

)
. (1.10)

The flow-performance sensitivity is captured by dF (k?)/dsi, where

dF (k?)

ds1
=
dF (k?)

ds2
= F ′ ×

(
H

1 + 2H

)
. (1.11)

From the above expression, it is clear that in this case the flow-performance sensitivity

depends only on signal precision H, and is independent of the level of the signal

realization. This implies we would not expect to observe additional flow sensitivity

to the worst signal in the population of Bayesian investors who do not face signal

precision uncertainty.

1.3.2.2 Bayesian Benchmark with Signal Precision Uncertainty

We next consider the case where risk averse investors are uncertain about the

precision of the realized signals, s1 and s2. Specifically, the precision of each signal

may take on one of two values: h (high) and l (low).

Note that we assume s1 < s2 as in the ambiguity aversion model. In this case,

the investor faces the following possible scenarios:

• Both signal realizations are negative, i.e., s1 < s2 < 0.



15

• Both signal realizations are positive, i.e., 0 < s1 < s2.

• The signal realizations are opposite in sign, i.e., s1 < 0, and s2 > 0.

To explore these cases we numerically analyze the investor flow sensitivity to

the respective performance related signals over a range of plausible values of the sig-

nals. We calibrate the key parameters for this analysis based on the sample of equity

mutual funds described in detail in Section IV. In particular, we set the investor’s

prior regarding the average fund manager skill, µα, equal to zero. The value of the

parameter σ2
α is set equal to the cross-sectional variance of the Carhart 4-factor al-

phas across all funds in the sample. The appendix provides additional details of the

numerical analysis.

Intuitively, the Bayesian investor’s sensitivity to a signal is a function of the

inferred precision of the observed signal. As a result, the further away a signal is

from the investor’s prior regarding the signal, the lower the signal’s implied precision.

Recall, that the investor’s prior beliefs about the distribution of the signals are cen-

tered on zero. Accordingly, if both signal realizations are negative then the investor

attaches a lower precision to the signal further away from zero, i.e., the more negative

(worst) signal s1. On the other hand, if both signal realizations are positive then the

investor attaches a lower precision to the more positive signal, i.e., s2.

Figure 1 shows the difference in the flow-performance sensitivity of the signal,

s1, relative to the signal, s2, as a function of the respective signal realizations. Graph

A displays the case when both signals have negative realizations, i.e., s1 < s2 < 0.

As is evident, in this case the flow-performance sensitivity to the worst signal, s1,
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is consistently lower across the entire range of signal realizations. This is in stark

contrast to our earlier result for the case with ambiguity aversion.

Graph B shows the difference in the flow-performance sensitivity of signal s1

relative to the signal, s2, when both signals have positive realizations, i.e., 0 < s1 < s2.

In this case the flow-performance sensitivity to the worst signal, s1, is higher over a

certain range of signal realizations and it is lower outside of this range. This result

is also different from the case with ambiguity aversion where the flow-performance

sensitivity is consistently higher for the worst signal.

Graph C shows the difference in flow-performance sensitivity when s1 < 0 < s2.

Consistent with intuition, the flow-performance sensitivity is always lower for the

signal further away from zero. As a result, there is a certain range of signal realizations

in which the flow-performance to the worst signal is higher. However, outside this

range it is lower.

In summary, the results of this subsection confirm that the ambiguity aversion

model leads to predictions that differ from the Bayesian benchmark case with respect

to the investor flow-performance sensitivity to the worst signal.

1.3.3 Distinction with Other Behavioral Biases

In the behavioral finance literature, a number of alternatives have been sug-

gested as departures from the traditional rational agent (Savage utility) paradigm.

Examples include loss-averse preferences as well as behavioral biases such as over-
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confidence.6 It is worth noting that the hypothesis developed in Proposition 2 is

uniquely attributable to the existence of ambiguity aversion on the part of investors.

In particular, neither loss aversion, nor overconfidence will lead to a differential sensi-

tivity of investor fund flows to the lower realization signal in the absence of ambiguity

aversion. To illustrate this, we next formally examine the implications of loss aver-

sion and overconfidence respectively, on the behavior of investors who face multiple

noisy signals. For this analysis we abstract from the effect of ambiguity aversion by

imposing the restriction that the two signals have equal precision, i.e., H1 = H2 = H.

First, consider the case of loss-averse utility preferences. The case with habit

formation utility follows in similar fashion. Assume, as in Kahneman and Tversky

(1979), the investor displays loss aversion in her utility function but she is not am-

biguous about the signal precision. Thus, given the posterior distribution of α, we

assume the utility function takes the following form:

U(c) = Eπ (α1[0,∞)) + λEπ (α1(−∞, 0)) , (1.12)

where λ > 1. Writing the above equation in explicit form, we have:

U(c) =

∫ ∞
0

α√
2πσ2

p

e
−(α−µp)2

2σ2p dα + λ

∫ 0

−∞

α√
2πσ2

p

e
−(α−µp)2

2σ2p dα (1.13)

=
σp(1− λ)√

2π
e
−µ2p
2σ2p ,

where αp and µp are given in Equation (1.3) with H1 = H2 ≡ H. Thus, the flow-

6Bailey et al. (2011) provide evidence of the impact of behavioral biases including over-
confidence, on the decisions of mutual fund investors.
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performance sensitivity under the assumption of loss aversion is:

dF (k?)

ds1
=
dF (k?)

ds2
=

(λ− 1)Hµ2
p

σp(1 + 2H)
√

2π
F ′e

−µ2p
2σ2p , (1.14)

which is independent of whether or not s1 < s2.

Second, we note that overconfidence cannot by itself result in the asymmetric

sensitivity to signals with different realizations. Overconfidence is the belief on the

part of the investor that a certain signal is more precise than it actually is. For

example, suppose that an overconfident investor receives a signal, s1, from a private

channel, while another signal, s2, is publicly available. She is confident that her

private signal, s1, is always more reliable than the public signal, s2. As a result,

when making investment decisions, the investor allocates additional capital to the

fund whenever s1 is sufficiently positive, and conversely she withdraws money from

the fund whenever the signal, s1, is negative. The public signal, s2, on the other

hand, regardless of its realization, will have a lesser influence on the investor’s fund

investment decisions. Simply put, under the assumption of overconfidence, regardless

of whether s2 > s1, or s2 ≤ s1, we always have:

dF (k?)

ds1
>
dF (k?)

ds2
. (1.15)

Obviously under this setting of overconfidence, we cannot arrive at Proposition 2.

1.3.4 Empirical Predictions

In order to develop testable hypotheses, it is important to first clarify why the

mutual fund industry provides a perfect setting to test our model. First, mutual funds
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represent a significant proportion of the U.S. household assets.7 These investors span

all age, income groups, and wealth levels and are thus representative of the population

of individual investors. Another favorable feature about the mutual fund industry is

that it has separate share classes for individual investors and institutional investors,

which allows us to study the behavioral differences between the two types of investors.

Second, the mutual fund flow-performance relationship has been well doc-

umented in the literature. Previous studies (e.g., Ippolito (1992); Gruber (1996);

Chevalier and Ellison (1997); Sirri and Tufano (1998)) show that mutual fund in-

vestors make investment or redemption decisions relying on past fund performance.

This relationship allows us to directly observe the investors’ response to performance

related information. Third, mutual funds make their past performance statistics read-

ily available to investors. Such statistics include the performance figures for each share

class over the previous 1 year, 3 years, 5 years, as well as the entire period since incep-

tion. However, the degree to which past performance is informative of fund manager

skill is unknown to investors. Also, these performance data have different realizations

since a fund’s performance may fluctuate over time. Thus, these performance statis-

tics over different time horizons serve as multiple comparable signals with unknown

quality and different realizations from which investors learn about fund manager skill.

Fourth, the comprehensive data on fund flows and past performance make it possible

for us to study investors’ response to multiple signals under ambiguity aversion in a

7According to the 2012 Investment Company Institute Fact Book, 44% of all U.S. house-
holds owned mutual funds.
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non-experimental setting.

In this subsection, we develop several testable hypotheses from the model con-

cerning the impact of ambiguity aversion on mutual fund investor flow-performance

sensitivity. We have the following hypotheses:

Hypothesis 1. When a fund’s past performance is measured over multiple time hori-

zons, fund flows display additional sensitivity to the minimum performance measure

in the presence of ambiguity averse investors.

According to Proposition 2, given signals with unknown quality, ambiguity

averse investors’ fund flow response is more sensitive to the worst signal, i.e., the

signal with the worst realization. In the mutual fund industry, fund investors are

routinely provided with performance statistics measured over past 1 year, 3 years,

and 5 years, from which they try to learn about fund manager skill. Proposition

2 says that ambiguity averse investors’ fund flows will display additional sensitivity

towards the worst signal, i.e., the minimum performance over multiple time horizons

in this setting.

Hypothesis 2. Individual investors show stronger ambiguity aversion than institu-

tional investors, as measured by a higher marginal sensitivity to the minimum perfor-

mance measure.

The above hypothesis reflects the notion that individual (retail) investors are

less sophisticated compared to institutional investors. As a result, they may be less

confident about how much the past performance is indicative about fund manager
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skill. They may therefore be subject to greater ambiguity in terms of interpreting

such information. On the other hand, institutional investors, who are believed to

be much more sophisticated, may hold more confident beliefs about the precision of

signals when they look at past performance measures. As a result, we expect to see

stronger ambiguity aversion in the sample of retail investors compared to institutional

investors.

Hypothesis 3. Funds that change their investment strategy more aggressively and/or

frequently are characterized by a higher degree of ambiguity. Investor fund flows in

such funds will display a higher marginal sensitivity to the minimum performance

measure.

Fund investment strategy changes can be viewed as a proxy for a fund’s ambi-

guity level. If a fund constantly switches its’ investment strategy, e.g., from a passive

diversification strategy to active factor timing or stock selection, investors may find it

hard to evaluate its relative performance and to form a concrete expectation of future

return. Thus, the more aggressively and/or frequently a fund changes its strategy,

the more ambiguous it is from the investors’ perspective.

Hypothesis 4. Funds with more volatile cash flows are characterized by a higher

degree of ambiguity. Investor fund flows in such funds will display a higher marginal

sensitivity to the minimum performance measure.

Fund inflows reflect a general positive view among investors about the fund’s

future prospects and outflows are indicative of a negative view about the fund. Thus,
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flow volatility can be viewed as a proxy for the degree of variability or uncertainty

of investor opinion with respect to the fund’s prospects. In this sense, highly volatile

investor fund flows imply greater uncertainty about the fund’s future performance.

Hence, funds with more volatile flows are likely to be the ones that are more ambiguous

to investors.

Hypothesis 5. Funds that belong to a smaller family appear more ambiguous to

investors. Investor fund flows to such funds will display a higher marginal sensitivity

to the minimum performance measure.

Since the 1990s, there has been a sharp increase in multiple share classes that

belong to the same fund family. If a fund belongs to a family with a large asset base,

it is more recognizable and enjoys the reputation built up by the entire fund family.

On the other hand, if a fund belongs to a small and little known family, investors

may be more conservative when making their investment decisions. It may also be

harder for them to rely on past performance of such funds in drawing inference about

manager skill. In other words, funds belonging to smaller families may appear more

ambiguous to investors.

Hypothesis 6. Funds with greater marketing expenditures appear to be less ambigu-

ous to investors. Investor fund flows to such funds will display a lower marginal

sensitivity to the minimum performance measure.

We hypothesize that funds that spend more on marketing are less ambiguous

to investors since investors are likely to be more familiar with funds that advertise
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more.8 In most advertisements, funds highlight their past performance and services

through magazines, TV programs, etc., as discussed by Jain and Wu (2000). A higher

visibility (due to increased advertising) may lead to a greater degree of confidence

among investors regarding the quality of past performance as signals for manager

skill. In other words, funds with higher advertising related expenditures may be less

ambiguous to investors in general.

1.4 Data and Methodology

1.4.1 Data

We use data from the Center for Research in Security Prices (CRSP) Survivor-

ship Bias Free Mutual Fund Database, which includes information on the funds’ total

net assets, returns and characteristics. We focus on actively managed U.S. equity

mutual funds, thus, we also exclude index funds and funds that are closed to new

investors. To be consistent with prior studies, we exclude sector funds, international

funds, bond funds, and balanced funds from our analysis. We classify funds into five

categories based on their objective codes:9 aggressive growth, growth, growth and

8Marketing related expenses including 12b-1 fees have been employed as empirical proxies
for investor search and participation costs in studies by Sirri and Tufano (1998), and Huang
et al. (2007).

9We categorize funds according to the following criteria. First, funds with Lipper objec-
tive codes G, LCGE, MCGE, MLGE, SCGE, with Wiesenberger objective codes G, G-S,
S-G, GRO, LTG, SCG, or with Strategic Insight objective codes GRO, SCG are classified
as growth funds. Second, funds with Wiesenberger objective code AGG or with Strategic
Insight objective code AGG are classified as aggressive growth. Third, funds with Lipper
objective code GI, with Wiesenberger objective codes G-I-S, G-S-I, I-G, I-G-S, GCI, G-I,
I-S-G, S-G-I, S-I-G, GRI, or with Strategic Insight objective code GRI are classified as
growth and income funds. Fourth, funds with Lipper objective codes EI, EIEI, I, with
Wiesenberger objective codes I, I-S, IEQ, ING, or with Strategic Insight objective codes
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income, income and others. We also classify funds into retail shares or institutional

shares.

We primarily study the period from January 1993 through December 2011,

since the CRSP database does not report 12b-1 fees until 1992 and institutional funds

begin to mushroom in the 1990s. However, as a robustness check we confirm that our

results are qualitatively unchanged when we extend the sample to the period: January

1985 through December 2011. We examine fund flows and other characteristics at

the quarterly frequency. Consistent with prior studies, we define quarterly net flow

into a fund as

Flowi,t =
TNAi,t − TNAi,t−1(1 +Ri,t)

TNAi,t−1
, (1.16)

where Ri,t denotes fund i′s return during quarter t, and TNAi,t is the fund’s total net

asset value at the end of quarter t. Thus, our definition of flows reflects the percentage

growth of the fund’s assets in quarter t. To prevent the potential impact of extreme

values of flows resulting from the errors associated with mutual fund mergers and

splits in CRSP mutual fund database, we filter out the top and bottom 1% tails of

the net flow data. To further guard against this issue, we delete records of funds from

our analysis before their total net asset value first hits the $3 million mark.

Table 1.1 reports the summary statistics of mutual funds characteristics. We

note that since we are interested in studying the fund flow behavior of retail as well as

institutional investors we treat each fund share class as an individual fund, consistent

ING are classified as income funds. Fifth, all the other actively managed equity funds in
our sample are classified as others.
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with the research design employed by Huang et al. (2007, 2012).10 In 1993, there

are 707 distinct fund share classes in our sample and 63 of them are open only to

institutional investors. In 2011, the number of funds in our sample grows to 4,242 with

785 institutional funds. In total, our sample includes 7,020 distinct fund share classes

and 216,366 fund share class-quarters. In an average quarter, the sample includes

2,847 funds with average total net assets (TNA) of $678.06 million and an average

net flow of 1.51%. Following Sirri and Tufano (1998) we measure total expense as

the expense ratio plus one-seventh of the front-end load. The 12b-1 fees are the part

of fund expenses that cover distribution expenses and sometimes shareholder service

expenses. Distribution expenses include marketing, advertising, and compensation

paid for brokers who sell the funds. As may be seen from Table 1.1, the 12b-1 fees

for retail funds are 0.57%, which is nearly three times of that for institutional funds.

1.4.2 Empirical Methodology

We formally analyze the relationship between fund flows and performance

measured over multiple time horizons when controlling for other factors. We estimate

the following model using 76 quarters of fund-level data over the period 1993 to 2011

to test our baseline hypothesis:

Flowi,t =a+ b1Perf 1yri,t + b2Perf 3yri,t + b3Perf 5yri,t + cMin Ranki,t (1.17)

+ Controls+ εi,t.

10As emphasized in Huang et al. (2007), since our focus is to study fund flows, treating
each fund share class separately will not lead to the double-counting problem. Also, since
most of our tests require a separation between retail shares and institutional shares, we
conduct all tests at the fund share class level.
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Following Sirri and Tufano (1998), the variables Perf 1yr, Perf 3yr, and Perf 5yr

represent fractional performance ranks ranging from 0 to 1 based on fund i′s perfor-

mance during past 12 months, 36 months, and 60 months, respectively. The variable

Min Rank is defined as:

Min Ranki,t = Min (Perf 1yri,t, P erf 3yri,t, P erf 5yri,t) . (1.18)

Thus, the coefficient c in Equation (1.17) captures the additional flow sensitivity to

performance measured over the particular horizon during which the fund had the

worst performance ranking. This coefficient is the focus of our tests. As we discuss

below, this additional sensitivity is significant in both economic and statistical sense

in the population of retail investors.

Since it is unclear which measure of performance a typical investor would focus

on when evaluating funds, we consider two alternative measures. The first measure

is the average monthly raw return measured over a specified time horizon, i.e., 12

months, 36 months or 60 months. The second measure is the fund’s factor-adjusted

performance using the Carhart (1997) 4-factor model. In order to estimate the 4-

factor model, we first calculate fund i’s factor loadings in quarter t by regressing the

past 60 months’ excess returns on the four factors:

Ri,τ −Rf,τ = αi + βMKT
i MKTτ + βSMB

i SMBτ + βHML
i HMLτ + βUMD

i UMDτ + εi,τ ,

(1.19)

where Ri,τ is the return for fund i and Rf,τ is the one-month T-bill rate in month τ .

The market factor, MKTτ , represents the monthly excess market return. The factors
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SMBτ , HMLτ , and UMDτ represent the monthly returns on the size, value, and

momentum factor mimicking portfolios, respectively. We obtain the factor returns

from Kenneth French’s website. We then calculate the fund’s factor adjusted alpha

each month using the monthly fund excess returns, and the factor loadings estimated

as above. We compute the average of these monthly alphas over distinct horizons of

12 months, 36 months, and 60 months, respectively.

To obtain fractional performance ranks (Perf 1yr, Perf 3yr, and Perf 5yr)

ranging from 0 to 1, we apply different approaches to rank funds based on the two

performance measures. In the case of the raw return measure, we rank funds every

quarter within fund objective categories based on their average raw returns over each

of the three lagged time horizons. For rankings based on the 4-factor alphas, we rank

all funds each quarter according to their Carhart (1997) alphas over each of the three

time horizons considered.11

The control variables employed in Equation (1.17) include a number of fund

characteristics that have been shown to affect fund flows. In particular, we control

for the logarithm of one plus fund age, previous quarter’s flow, fund size as measured

by the natural logarithm of fund total net asset in the previous quarter, volatility of

monthly raw returns during the prior 12 months, and the lagged total expense ratio.

Finally, following Sirri and Tufano (1998) we also include the category flow, defined

11For an average fund during the sample period 1993-2011, the correlation between its 1-
and 3-year raw return-based ranks is 0.46, between 1- and 5-year ranks is 0.32, and between
the 3- and 5-year ranks is 0.52. The correlation between the 1- and 3-year Carhart (1997)
4-factor alpha-based ranks is 0.49, between the 1- and 5-year ranks is 0.33, and between 3-
and 5-year ranks is 0.55.
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as the percentage quarterly net asset growth of the fund’s objective category.

We estimate the model in Equation (1.17) by conducting a cross-sectional

linear regression each quarter and reporting the time-series means and the related

Newey-West t-statistics of the coefficients following Fama and MacBeth (1973). We

follow this approach for all of the analysis throughout the paper.

1.5 Empirical Results

1.5.1 Ambiguity Aversion

In this subsection, we test Hypotheses 1 and 2 by studying investor ambiguity

aversion behavior within subsamples of retail funds and institutional funds respec-

tively. Our model implies that in the presence of ambiguity averse investors, fund

flows will display additional sensitivity to a fund’s minimum performance ranking.

This marginal sensitivity is in addition to the general response of flows to past per-

formance measures.

To test this implication, we estimate the baseline model in Equation (1.17)

for retail funds and institutional funds separately. According to Hypothesis 2, we

expect to see a significant coefficient, c, for the variable Min Rank for the subsample

of retail funds only. The results are reported in Table 1.2. Columns 1 and 2 report

results using raw return as the performance measure and Columns 3 and 4 report

results using the Carhart (1997) alpha as the performance measure.

Consistent with Hypothesis 2, we find that the coefficient for Min Rank is

positive and significant at the 1% level for for both measures of performance in the
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retail funds sample. However, for institutional funds, the coefficient is positive but

insignificant. Focusing on the results for retail funds in Column 1 where the perfor-

mance is measured in terms raw returns, the coefficient for the Min Rank variable is

0.048. The coefficient for performance measured over the 1-year horizon is 0.05, and

this is the performance horizon that has the largest affect on fund flows. This implies

that for retail funds, a 14% (the average absolute change in the 1-year performance

ranking for retail funds in our sample) increase in the fund’s 1-year performance rank

will result in a 0.7% increase in the fund’s assets. However, if the 1-year performance

rank happens to be the worst among the three horizons, a 14% increase in the fund’s

(1-year) ranking results in an inflow equal to (0.048 + 0.05) × 14% = 1.37% of the

fund’s assets. Thus, a 14% improvement in the worst performance rank results in a

doubling of the fund flows enjoyed by the fund relative to the normal increase in flows

from general performance improvement. The economic magnitude is quite significant

given the average flow in the retail sample is 1.32%. In Column 3 when performance

is measured using Carhart (1997) 4-factor alpha, we observe a similar coefficient for

the Min Rank. As seen from the results presented in Columns 2 and 4 of Table

1.2, in the case of institutional funds, even though the coefficients for Min Rank are

positive, they are not statistically significant and are much smaller in magnitude than

their retail counterparts.

We note that the coefficients on the other control variables included in Equa-

tion (1.17) are consistent with previous findings in literature. The positive and

significant coefficients for all three performance measures in Columns 1 through 4
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conform to the performance chasing behavior as documented in Chevalier and El-

lison (1997) and Sirri and Tufano (1998), among others. Sirri and Tufano (1998)

also document the negative impact of volatility on flows. The positive coefficient

on Previous Quarterly F low confirms the persistence in fund flows. Similarly, the

negative coefficients for Total Expense in Columns 1 through 4 are consistent with

previous studies by Barber et al. (2005) and Sirri and Tufano (1998), among others.

After controlling for above factors, the significant coefficients for Min Rank

in Columns 1 and 3 indicate that minimum performance ranks have significant ex-

planatory power for fund flows. In sum, Table 1.2 provides evidence for ambiguity

aversion behavior among retail funds investors as shown by the significant positive

coefficient for the minimum performance rank, which is consistent with Hypotheses 1

and 2. Accordingly, we focus on retail funds in conducting the tests reported for the

remainder of the section.

1.5.2 Strategy Changes as a Proxy for Fund Ambiguity

Hypothesis 3 states that fund strategy changes could be viewed as a proxy for

a fund’s ambiguity level. Investors are likely to face a higher degree of ambiguity with

regard to a fund that switches its investment strategy too aggressively/frequently. We

adopt two ways to measure a fund’s strategy shifts. The first measure is the fund’s

average absolute change in its factor loadings, while the second measure is the fund’s

R-squared computed from a time series regression using the entire history of fund

returns.

The first proxy is motivated by Lynch and Musto (2003). Each quarter t,



31

we compute a fund’s factor loadings with respect to the four Carhart (1997) model

factors over two non-overlapping 30-month periods, namely, the prior 1-30 and 31-60

month periods. We then compute the average absolute change in the factor loadings

from the initial 30-month period to the most recent 30-month period as

LDELi,t =
1

4

∑
f

|βfi,t,1−30 − β
f
i,t,31−60|, (1.20)

for f = MKT,HML, SML and UMD. A higher loading-change indicates a more

aggressive shift in the fund’s strategy.

The second proxy is the fund’s R-squared from a time series regression of the

fund’s monthly returns on the four Carhart (1997) factors. A low R-squared value

implies that the 4-factor model is a poor performance attribution model for the fund.

A potential reason could be that the factor loadings of the fund are not constant over

the sample period implying frequent shifts in the factor exposures or the investment

style. Such shifts would make it harder for investors to interpret past performance

related signals and contribute to an enhanced level of ambiguity in interpreting such

signals. Each quarter, we divide the sample of funds into three groups, Low,Mid

and High based on their LDEL or R-squared values. We then we apply the baseline

model described in Equation (1.17) to each group and report the time-series average

of the coefficients. The results are reported in Table 1.3.

Performance in Table 1.3 is measured by raw return (Column 1-3) or the

Carhart (1997) 4-factor model alpha (Column 4-6). Panel A of Table 1.3 reports

results when strategy changes are measured using the average absolute change in

factor loadings (LDEL). As shown in Column 1, for the group of funds with low
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loading-change, an indication of less aggressive strategy shifts, the additional flow

sensitivity to the minimum performance rank, as captured by the Min Rank coeffi-

cient, is only 0.011 and it is statistically insignificant. However, for funds which shift

their strategies more aggressively, as shown in Column 3, the marginal sensitivity to

minimum performance is nearly six times higher at 0.061 which is significant at the

1% level. The F -test statistic rejects the null that the Min Rank coefficients across

the three groups are equal. Columns 4-6 report qualitatively similar flow-performance

sensitivity results when performance is measured using the Carhart (1997) 4-factor

alpha.

Panel B of Table 1.3 presents results using a fund’s 4-factor model R-squared

values as a proxy for the fund’s ambiguity. Columns 1-3 report results when a fund’s

performance is measured by the ranking of its raw return. Flows of funds with low

R-squared values show additional sensitivity to the minimum performance rank as

seen by the Min Rank coefficient in Column 1 (0.056), which is significant at 1%

level. In Column 3, however, flows of funds with high R-squared values, an indication

of relatively stable investment strategy, have marginal sensitivity to minimum perfor-

mance of only 0.021 which is statistically insignificant. The F -test statistic rejects the

null that the Min Rank coefficients across the three groups are equal. Columns 4-6

report qualitatively similar flow-performance sensitivity results when performance is

measured using the Carhart (1997) 4-factor alpha.

In conclusion, the results in Table 1.3 show that funds that change investment

strategy more aggressively/frequently are more ambiguous to investors, as evidenced
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by the greater marginal sensitivity of investor fund flows to the minimum performance

measure.

1.5.3 Flow Volatility as a Proxy for Fund Ambiguity

Hypothesis 4 states that the flow volatility could be used as a proxy for a fund’s

ambiguity level. Note that fund flows are the consequence of investors’ asset allocation

decisions. A net inflow is an indication of an overall positive view of the fund while

a net outflow represents an overall negative view. Thus, flow volatility captures the

uncertainty about the funds’ future performance from the perspective of an average

investor. In this sense, flow volatility is a direct measure of the fund’s ambiguity level.

We expect to observe stronger ambiguity aversion behavior among investors of funds

with more volatile past flows. We measure flow volatility (Flow V ol) as the standard

deviation of a fund’s previous 12 quarters’ fund flows.

To test this hypothesis, we estimate the following regression model:

Flowi,t =a+ b11Low Flowvoli,t × Perf 1yri,t + b12Mid F lowvoli,t × Perf 1yri,t

+ b13High F lowvoli,t × Perf 1yri,t + b21Low Flowvoli,t × Perf 3yri,t

+ b22Mid F lowvoli,t × Perf 3yri,t + b23High F lowvoli,t × Perf 3yri,t

+ b31Low Flowvoli,t × Perf 5yri,t + b32Mid F lowvoli,t × Perf 5yri,t

+ b33High F lowvoli,t × Perf 5yri,t + c1Low Flowvoli,t ×Min Ranki,t

+ c2Mid F lowvoli,t ×Min Ranki,t + c3High F lowvoli,t ×Min Ranki,t

+ Flow V oli,t + Controls+ εi,t, (1.21)

where Low Flowvoli,t is a dummy variable that equals one if the fund i′s flow volatil-
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ity falls into the bottom tercile in quarter t, Mid F lowvoli,t is a dummy variable

that equals one if it belongs to the medium tercile, and High F lowvoli,t is a dummy

variable that equals one if the flow volatility is ranked in the top tercile. Each quar-

ter we conduct a cross-sectional regression of flows on the interaction of the three

dummy variables with Perf 1yr, Perf 3yr, Perf 5yr and Min Rank, respectively,

together with the set of control variables and report the time-series mean and Newey-

West t-statistics of the coefficients. The control variables are the same as those in

Equation (1.17). The coefficients on the interaction terms capture the differential

flow sensitivity to a certain performance horizon or to the minimum performance

for funds with low, medium or high flow volatility. For example, the coefficient

of High F lowvol × Min Rank, i.e., c3, captures the additional sensitivity to the

Min Rank for funds with high flow volatility. Given Hypothesis 4, we expect a large

and positive coefficient for High F lowvol ×Min Rank, and a small coefficient for

Low Flowvol ×Min Rank.

Table 1.4 presents the flow-performance results based on flow volatility as a

proxy for fund ambiguity level. Columns 1 and 2 report results using raw return

and Carhart (1997) alpha as performance measures, respectively. As expected, in

Column 1, the coefficients for the three interaction terms Low Flowvol×Min Rank,

Mid F lowvol ×Min Rank and High F lowvol ×Min Rank increase monotonically

from -0.002 (statistically insignificant) to 0.110 (significant at the 1% level). The

F -test statistic rejects the null that the coefficients of Low Flowvol ×Min Rank,

Mid F lowvol ×Min Rank and High F lowvol ×Min Rank are equal. In Column
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2 of Table 1.4, where fund performance is measured using the Carhart (1997) alpha,

we observe a similar increase in the value of the coefficients across the three flow

volatility terciles.

In conclusion, the results in Table 1.4 are consistent with Hypothesis 4 that

funds with more volatile flow appear to be more ambiguous to investors.

1.5.4 Family Size as a Proxy for Fund Ambiguity

Hypothesis 5 states that family size can also be used as a proxy for a fund’s

ambiguity level. In this subsection, we use the sum of total net assets for each fund

within a fund family as a measure of family size. We then test whether a larger

family size is associated with a reduction in the marginal flow sensitivity to a fund’s

minimum performance measure.

To test this hypothesis, we estimate the following model:

Flowi,t =a+ b11Low Famsizei,t × Perf 1yri,t + b12Mid Famsizei,t × Perf 1yri,t

+ b13High Famsizei,t × Perf 1yri,t + b21Low Famsizei,t × Perf 3yri,t

+ b22Mid Famsizei,t × Perf 3yri,t + b23High Famsizei,t × Perf 3yri,t

+ b31Low Famsizei,t × Perf 5yri,t + b32Mid Famsizei,t × Perf 5yri,t

+ b33High Famsizei,t × Perf 5yri,t + c1Low Famsizei,t ×Min Ranki,t

+ c2Mid Famsizei,t ×Min Ranki,t + c3High Famsizei,t ×Min Ranki,t

+D FamilySizei,t + Controls+ εi,t, (1.22)

where Low Famsizei,t is a dummy variable that equals one if fund i belongs to a

fund family whose size falls into the bottom tercile in quarter t, Mid Famsizei,t is



36

a dummy variable that equals one if family size belongs to the medium tercile and

High Famsizei,t is a dummy variable that equals one if the family size is in the top

tercile. The variable D Familysizei,t is a dummy variable that equals 1 if the fund

family size is above the median value for that quarter. We regress quarterly flows on

the interaction of the three dummy variables with Perf 1yr, Perf 3yr, Perf 5yr

and Min Rank, respectively. The coefficients on the interaction terms represent

the differential flow sensitivity to a certain performance horizon or to the minimum

performance rank for funds that belong to a small-sized family, medium-sized family

and large-sized family, respectively. For example, the coefficient c1 for the variable

Low Famsize×Min Rank in Equation (1.22) captures the additional flow sensitivity

to the minimum performance rank for funds in a small family. Given Hypothesis 5,

we expect a large and positive coefficient for Low Famsize×Min Rank, but a small

coefficient for High Famsize×Min Rank.

Table 1.5 presents results using fund family size as a proxy for the fund’s ambi-

guity level. Columns 1 and 2 report results using raw returns and the Carhart (1997)

alpha as performance measures, respectively. Consistent with our expectation, in Col-

umn 1, the coefficients for the three interaction terms Low Famsize ×Min Rank,

Mid Famsize × Min Rank and High Famsize × Min Rank decrease monotoni-

cally from 0.071 (significant at the 1% level) to 0.025 (significant at the 1% level).

This means that the flow sensitivity to minimum performance rank for funds in a

large family is nearly three times that for funds belonging to a small family. The

F -test statistic rejects the null that the coefficients of Low Famsize ×Min Rank,
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Mid Famsize×Min Rank and High Famsize×Min Rank are equal. In Column

2, when performance is measure in terms of the Carhart (1997) alpha, the coeffi-

cient for Low Famsize ×Min Rank (0.103) is more than twice the coefficient for

High Famsize×Min Rank (0.043), both significant at the 1% level.

As seen from the estimated coefficients for the variable, D FamilySize, family

size has a positive and significant impact on fund flows, consistent with the findings of

Sirri and Tufano (1998). This suggests that funds belong to bigger families experience

a faster growth in assets. As noted by Gallaher et al. (2005), strategic decisions

regarding advertising, and distribution channels are made at the fund family level.

Funds that belong to a large family have more resources in terms of both management

and reputation, allowing them to grow at a faster rate. In conclusion, the results in

Table 1.5 are consistent with Hypothesis 5 that funds belonging to smaller families

appear more ambiguous to investors.

1.5.5 The Role of Advertising

In previous subsections we examined the impact of proxies for a fund’s ambi-

guity level on the behavior of investors. The results suggest that investors’ marginal

sensitivity to a fund’s historical minimum performance is increasing in the perceived

ambiguity of a fund. Of course, the additional flow-performance sensitivity can be

costly from a fund’s standpoint. We now focus on the possible ways a fund may be

able to reduce its ambiguity level from the perspective of fund investors. According to

Hypothesis 6 a fund’s marketing effort can help reduce investors’ ambiguity towards

the fund when making decisions. In our empirical test of this hypothesis, we measure
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marketing effort using the amount of 12b-1 fees borne by a fund.

In order to test the above hypothesis, we estimate the following regression

model in the subsample of retail funds:

Flowi,t =a+ b11Low Expi,t × Perf 1yri,t + b12Mid Expi,t × Perf 1yri,t (1.23)

+ b13High Expi,t × Perf 1yri,t + b21Low Expi,t × Perf 3yri,t

+ b22Mid Expi,t × Perf 3yri,t + b23High Expi,t × Perf 3yri,t

+ b31Low Expi,t × Perf 5yri,t + b32Mid Expi,t × Perf 5yri,t

+ b33High Expi,t × Perf 5yri,t + c1Low Expi,t ×Min Ranki,t

+ c2Mid Expi,t ×Min Ranki,t + c3High Expi,t ×Min Ranki,t

+ Expensei,t + Controls+ εi,t.

To emphasize the particular role of advertising in reducing fund ambiguity, we also

study the effect of the expense ratio and non-12b-1 expenses, defined as expense ratio

minus 12b-1 fees, using the same model. In Equation (1.23), Low Expi,t is a dummy

variable that equals one if fund i′s corresponding type of fees (12b-1, non-12b-1 or

expense ratio) falls in the bottom tercile in quarter t, Mid Expi,t is a dummy variable

that equals one if it belongs to the medium tercile, and High Expi,t is a dummy

variable that equals one if the fund is in the top tercile in terms of the expenses. The

variable Expensei,t is the 12b-1, non-12b-1 or expense ratio depending on which type

of fees is under investigation.

We regress quarterly flows on the interaction of the three dummy variables

with Perf 1yr, Perf 3yr, Perf 5yr and Min Rank, respectively, for all three types
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of fees. For example, when we study the effect of 12b-1 fees, the coefficients on the

interaction terms represent the marginal flow sensitivity to a certain performance

horizon or to the minimum performance rank for funds with the low, medium and

high 12b-1 fees, respectively. According to Hypothesis 6, when focusing on 12b-1 fees,

we expect a large and positive coefficient for Low Exp×Min Rank, which captures

the additional flow sensitivity to the minimum performance rank for funds with low

12b-1 fees.

Table 1.6 reports results based on the above test. Columns 1 and 2 of the table

report results of the effect of 12b-1 fees on the flow-performance relationship when

performance is measured using raw returns and the Carhart (1997) alpha, respectively.

In Column 1, the coefficient for Low Exp×Min Rank is 0.058, and is significant at

the 1% level. The coefficient for High Exp×Min Rank, however, is only 0.021 and it

is insignificant. This suggests that moving from the bottom tercile of 12b-1 expendi-

tures funds to the top tercile, investors’ flow sensitivity to the minimum performance

rank is reduced by 64%. The F -test statistic rejects the null that the coefficients

of Low Exp×Min Rank, Mid Exp×Min Rank and High Exp×Min Rank are

equal. Column 2 reports qualitatively similar flow-performance sensitivity results

when performance is measured using the Carhart (1997) alphas.

Columns 3 and 4 present results for the non-12b-1 expenditures for both mea-

sures of performance. In Columns 3 and 4, the three coefficients of interest display,

surprisingly, an increasing pattern, suggesting that the higher the non-12b-1 fees

charged by funds, the more ambiguous they appear to their investors. Columns 5
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and 6 present results for the expense ratio and we observe similar patterns as for

the non-12b1 fees. We conjecture that this set of results may be attributed to the

fact that high expense ratio funds attract relatively less sophisticated investors, since

the sophisticated investors would presumably avoid high expense funds. Thus, we

observe stronger ambiguity aversion among the investors in funds with high expense

ratios or non-12b-1 fees.

In conclusion, the evidence presented in this subsection confirms that 12b-1

fees that are spent on marketing and advertising do help reduce the ambiguity of

funds from the investors’ perspective.

1.6 Contrast between the Response of Ambiguity

Averse Investors and Bayesian Investors

Finally, we develop a test to distinguish ambiguity averse investor behavior

from the Bayesian learning benchmark. Following earlier discussion, we argue that

a fund’s performance volatility is another proxy for the fund’s ambiguity level in

addition to the flow volatility and family size. The more volatile the fund’s past per-

formance, the harder it is for investors to learn about the fund’s future performance.

Thus, a fund with a higher degree of performance volatility is more ambiguous from

an investor’s perspective. Accordingly, we expect to observe greater marginal flow

sensitivity to the minimum performance rank for such funds.

In a recent study, Huang et al. (2012) hypothesize that the volatility of funds’

past performance should have a dampening effect on flow-performance sensitivity if

investors update their beliefs in a Bayesian manner. As we note below, the two
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seemingly contradictory hypotheses can in fact be reconciled.

We want to first document the two effects by performing two separate tests.

We apply the following model to test our baseline hypothesis of ambiguity aversion:

Flowi,t =a+ b1Min Indi,t × Perf 3yri,t + e1Low 3yri,t + e2Mid 3yri,t + e3High 3yr

+ Controls+ εi,t. (1.24)

For the purpose of comparison, we adopt similar measures and time periods as in

Huang et al. (2012). For example, in this section, we expand our sample to in-

clude both retail and institutional funds. Also, we focus on a fund’s previous 3

years performance (Perf 3yr), defined as a fund’s performance measured by its raw

return rankings within its objective category over the past 36 months. We define

the following fractional performance rankings over the low, medium and high per-

formance ranges12. The fractional rank for funds in the bottom performance quin-

tile (Low 3yr) is Min(Perf 3yr, 0.2), in the three medium quintiles (Mid 3yr) is

Min(0.6, P erf 3yr − Low 3yr), and in the top quintiles (High 3yr) is Perf 3yr −

Mid 3yr − Low 3yr. We also include the identical set of control variables as in our

baseline model specified in Equation (1.17).

In the above specification, the variable Min Indi,t is a dummy variable that

equals one if fund i′s 3-year performance happens to be the worst among 1-year,

3-year and 5-year performance measures in quarter t. The coefficient b1 for the inter-

action term Min Indi,t × Perf 3yr captures the additional sensitivity to the 3-year

12See, for example, Huang et al. (2007, 2012) and Sirri and Tufano (1998).
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performance, if it happens to be the worst among the three performance measures.

Thus, the coefficient b1 captures the ambiguity aversion effect. We expect b1 to be

positive and significant. The results are presented in Column 1 of Table 1.7. The

coefficient b1 is estimated to be 0.053 which is highly significant in both statistical

and economic terms. It is worth noting that we do observe the convexity in the flow-

performance relationship reflected in the respective coefficients for the performance

ranges (Low 3yr, Mid 3yr and High 3yr). In particular, the coefficient for the high

performance range (0.407) is nearly 6 times the coefficient for the low performance

range (0.070) suggesting a convex flow-performance relationship.

Next, we replicate the Huang et al. (2012) results using the following test:

Flowi,t =a+ cV oli,t × Perf 3yri,t + e1Low 3yri,t + e2Mid 3yri,t + e3High 3yri,t

+ Controls+ εi,t. (1.25)

The variable V oli,t is the fund i′s previous 36 months’ raw return volatility in quarter t.

If the dampening effect of performance volatility on the flow-performance relationship

exists, we expect to see a significant negative coefficient for the interaction term,

V ol × Perf 3yr. As shown in Column 2 of Table 1.7, this coefficient is estimated to

be -0.777, which is significant at the 1% level. All of the other coefficients are also

qualitatively similar to the values reported by Huang et al. (2012).

Finally, it is of interest to show that ambiguity aversion and the dampening

effect of performance volatility could co-exist. We distinguish our ambiguity aversion
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phenomenon using the following model:

Flowi,t =a+ b2Min Indi,t × V oli,t × Perf 3yri,t + cV oli,t × Perf3yri,t + Low 3yri,t

+ e2Mid 3yri,t + e3High 3yri,t + fV oli,t + Controls+ εi,t. (1.26)

Here b2 captures the effect of performance volatility on 3-year performance if it hap-

pens to be the minimum performance rank and c captures the impact of performance

volatility on the 3-year performance, on average. Under ambiguity aversion, we ex-

pect b2 to be positive and significant, since past performance volatility is expected

to increase the fund’s ambiguity level. However, if investors are Bayesian learners as

modeled in Huang et al. (2012), we also expect to observe a negative value for the

coefficient c, since high signal noise should dampen flow sensitivity, in general.

The results from estimating Equation (1.26) are reported in Column 3 of Table

1.7. We find that the coefficient b2 has a value equal to 1.143 while the coefficient c

equals -0.906, and both coefficients are significant at the 1% level. The coefficients

imply, in economic terms, a 1 unit increase in performance volatility will decrease

sensitivity to performance by 0.906×1 = 0.906, on average. However, it will increase

sensitivity to the minimum performance rank by (1.143 − 0.906) × 1 = 0.237. Here

we observe clearly that the presence of ambiguity aversion leads to a net increase in

the overall flow-performance sensitivity despite the dampening effect of performance

volatility.

These findings show that the dampening effect and ambiguity aversion are

not contradictory to each other and may actually co-exist. This is intuitive, since

it is reasonable to conjecture that there are two distinct types of fund investors.
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The first type is the sophisticated investors who have a better understanding of the

mutual fund industry. Upon observing past fund performance, these investors face

less ambiguity and are able to update their beliefs in a manner similar to Bayesian

rules. The other type of investors is less sophisticated. They have access to the

same past performance information, but cannot update their beliefs about the fund

manager’s skill in a Bayesian fashion. They display aversion to ambiguity, as shown

by the positive and significant coefficient on the minimum performance rank variable.

We further examine the above intuition by including a dummy variable Insti,

which equals 1 if a fund is only open to institutional investors. We develop the

following test to separate the two types of fund investors with different level of so-

phistication:

Flowi,t =a+ b2Min Indi,t × V oli,t × Perf 3yri,t + d1Insti × V oli,t ×Min Indi,t

× Perf 3yri,t + cV oli,t × Perf 3yri,t + d2Insti × V oli,t × Perf 3yri,t

+ d3Insti + e1Low 3yri,t + e2Mid 3yri,t + e3High 3yri,t + Controls+ εi,t.

We expect to observe a stronger volatility dampening effect in institutional fund flows

and a weaker ambiguity aversion effect. Similar to Equation (1.26), the coefficient, b2,

captures ambiguity aversion and the coefficient, c captures the dampening effect. The

coefficient d1 captures the marginal ambiguity aversion for the institutional investors

and d2 captures the marginal volatility dampening effect for institutional investors.

We expect d1 to be negative and d2 to be positive. The results of this test are presented

in Column 4 of Table 1.7. As expected, the coefficient d1 is estimated to be -0.237
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and d2 equals -0.405. This implies that a 1 unit increase in volatility will decrease

flow sensitivity to performance by 0.885 + 0.405 = 1.29 for institutional investors.

However, it will decrease sensitivity by only 1.29 − (1.181 − 0.237) = 0.346 if the

performance measure is the minimum among 1-year, 3-year and 5-year performance

ranks. Thus, for institutional funds, regardless of whether the 3-year performance

is the minimum performance or not, there is a volatility dampening effect which

dominates the impact of ambiguity aversion. This is consistent with our intuition that

for sophisticated investors, we should see a stronger dampening effect of performance

volatility on flow-performance sensitivity.

In order to more closely match the results of Huang et al. (2012) we repeat

our tests using an identical sample period: 1983-2006. We find qualitatively similar

results and report them in Columns 5-8 in Table 1.7. In conclusion, we find that in

a population with a larger fraction of naive investors, ambiguity aversion behavior

dominates the dampening effect of performance volatility on the flow-performance

relation. Conversely, in a population with a greater fraction of sophisticated investors,

the volatility dampening effect dominates ambiguity aversion.

1.7 Robustness

In previous tests we investigated the asymmetric sensitivity of fund flows to

performance measured over 1-, 3-, and 5-year horizons caused by investor ambigu-

ity aversion. In particular, we find that the more ambiguous a fund appears to its

investors, the greater the flow-performance sensitivity to the minimum performance

over the three time horizons. Of course, investors have access to additional informa-
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tion beyond the above three measures of performance. Other information available

to investors includes the performance of the fund since inception and the Morn-

ingstar fund ratings. In fact, previous studies show that investor flows do respond

to Morningstar ratings.13 A natural question is whether the additional sensitivity to

minimum performance documented in our tests is simply due to the omission of long

term performance measures and/or Morningstar ratings. To address this concern

we reexamine the baseline model in Equation (1.17) while controlling for the funds’

performance since inception and the Morningstar fund ratings.

We measure a fund’s performance since its inception in the same manner as

its 1, 3 and 5 years performance. We rank funds based on their average monthly

raw returns since inception within their objective category. The resulting ranking

is a number between 0 and 1. In terms of the Morningstar fund ratings, according

to Sharpe (1997), Morningstar ranks funds within four asset classes before 1996 and

within smaller categories thereafter. We replicate the latter rating scheme because it

covers most of our sample period. Since we do not have access to the criteria that

Morningstar uses to classify funds into style categories, we continue to employ the

classifications used for our primary tests. Morningstar rates all funds based on their

3-, 5- and 10-year return and risk, respectively and then a weighted overall rating is

determined. We follow the procedure described in Nanda et al. (2004b) to replicate

the funds’ Morningstar fund ratings.

13See, e.g., Del Guercio and Tkac (2002).
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Our robustness tests are based on the following specification:

Flowi,t =a+ b1Perf 1yri,t + b2Perf 3yri,t + b3Perf 5yri,t + b4Perf Incepi,t+

b5MorningstarRatingi,t + cMin Ranki,t + Controls+ εi,t, (1.27)

The Morningstar Rating represents fund i′s rating based on the Morningstar fund

rating scheme in quarter t. The variable Perf Incepi,t captures a fund i′s performance

since inception in quarter t.

Table 1.8 presents results of the robustness tests. We note that the coeffi-

cient of Min Rank is consistently positive and significant for the sample of retail

funds when we control for performance since inception and/or Morningstar rating,

while it is insignificant for the institutional sample. Moreover, the coefficient of

Perf Incep is negative and insignificant in all columns. However, the coefficient for

Morningstar Rating is consistently positive and significant. For example, based on

results in Column 5, if a retail fund’s Morningstar rating increases by 1 star, there

is a corresponding increase of 1.7% in terms of fund flows. By contrast, for an insti-

tutional fund, a 1 star increase in the Morningstar rating is associated with a fund

flow increase of only 0.8%, based on the results in Column 6. These results suggest

that the Morningstar rating is an important signal for retail investors when making

investment decisions. On the other hand, institutional investors seem to rely to a

much lesser extent on this rating.

One of the most well-known findings in mutual fund literature is the convex

relationship between investor flows and past fund performance. Previous studies (e.g.

Sirri and Tufano (1998), Chevalier and Ellison (1997)) find that investor flows respond
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strongly to good past performance while being less sensitive to bad performance. As

we previously note (see footnote 5), in the context of our model, the flow-performance

convexity is potentially complementary to the effect of investor ambiguity aversion.

We now show that our baseline result is robust after controlling for the convex flow-

performance relationship. Table 1.9 presents results of this test. As in the baseline

model in Equation (1.17), we regress quarterly flow on past performance measured

over 1-, 3-, and 5-year. We adopt fractional ranks for each of the 1-, 3-, and 5-year

performance (same as Low 3yr,Mid 3yr and High 3yr defined in Equation (1.24)

to capture the convexity in flow-performance relationship. The results presented in

Table 1.9 confirm that the additional sensitivity to the minimum performance measure

remains positive and significant in the retail fund sample even after controlling for

the convexity of the flow-performance relationship.

Another possible concern is that some time variant factors, such as a change

in the fund manager, may cause differential flow sensitivity to performance measured

over different time horizons. To deal with this issue, in unreported tests, we consider

various performance measures calculated over a fixed time horizon (1-, 3- or 5-year).

The various performance measures considered include the CAPM alpha, Fama-French

3-factor alpha, Carhart 4-factor alpha, raw return, and the Morningstar fund rating.

The various performance measures calculated over the identical time horizon may be

viewed as multiple performance signals. We find that our results are qualitatively

unchanged. In particular, we find that for each of the three time horizons considered,

retail fund flows display additional sensitivity to the minimum performance measure.
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In conclusion, the results of the robustness tests confirm that mutual fund

flows display an additional sensitivity to the minimum performance rank even after

controlling for performance since inception, the funds’ Morningstar star ratings, and

convexity in the flow-performance relation.

1.8 Concluding Remarks

This paper presents a model of an ambiguity averse mutual fund investor who

faces multiple signals about the performance of the fund. The model implies that an

ambiguity averse investor, in attempting to learn about manager skill, always puts

additional weight on the worst signal. We empirically test the key implications of the

model by using a fund’s past performance measured over multiple time horizons, as

multiple signals about manager skill observed by investors.

Our study provides novel evidence on the role of ambiguity aversion in de-

termining the response of mutual fund investors to historical fund performance in-

formation. We find that consistent with our model, fund flows display heightened

sensitivity to the minimum performance measure. Further, we observe this ambi-

guity averse behavior only among retail fund investors. By contrast, fund flows in

institutional funds appear to be more consistent with standard Bayesian learning

behavior. We also find that funds with more frequent/aggressive strategy changes,

funds that have more volatile past flows, and funds belonging to smaller fund families

appear more ambiguous to investors while advertising expenditure appears to reduce

the degree of ambiguity perceived by investors. Furthermore, we distinguish between

the effect of increased performance volatility on ambiguity averse investors and on in-
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vestors whose behavior is more consistent with Bayesian learning. We find that fund

volatility increases ambiguity averse investors’ response to the minimum performance

measure while it dampens the Bayesian investors’ sensitivity to past performance in

general. Taken together, these results suggest that fund investor behavior is best

characterized as reflecting both Bayesian learning and ambiguity aversion.
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Table 1.1: Summary Statistics of the Equity Mutual Fund Sample

Share Classes

All Funds Retail Shares Institutional Shares

Total Fund Number 7,020 5,781 1,239
Average Fund Number 2,847 2,359 466
Flow (in % per quarter) 1.51 1.32 2.33
Age (in years) 11.60 12.07 8.67
TNA (in millions) 678.06 739.36 330.49
Expense Ratio (in %) 1.41 1.49 0.96
Total Expense (in %) 1.61 1.73 0.99
12b-1 Fee (in %) 0.56 0.57 0.20
Raw Return (in % per month) 0.73 0.72 0.79
Vol. of Raw Return (in % per month) 4.60 4.59 4.66

Note: This table reports the time-series averages of quarterly cross-sectional averages
of fund characteristics for the period 1993-2011. TNA is the total net assets. Flow
is the percentage change in TNA. Expense Ratio is the total quarterly management
and administrative expenses divided by average TNA. Total Expense is estimated
as expense ratio plus 1/7 of maximum front-end load. 12-b1 Fee are fees paid by
the fund out of fund assets to cover marketing expenses, distribution expenses and
sometimes shareholder service expenses. The 12-b1 fees are only available since 1992.
Raw Return is the average monthly raw return during the prior 12 months and Vol. of
Raw Return is the corresponding standard deviation. The statistics are reported for
all funds (i.e., share classes), funds open only to retail investors, and funds available
only to institutional investors.
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Table 1.2: Ambiguity Aversion of Retail and Institutional Investors

Performance Measured by Raw Return 4-Factor Alpha

Retail Institutional Retail Institutional

Perf 1yr 0.050∗∗∗ 0.055∗∗∗ 0.036∗∗∗ 0.045∗∗∗

(8.33) (3.55) (7.11 ) (5.23)
Perf 3yr 0.039∗∗∗ 0.035∗∗ 0.049∗∗∗ 0.067∗∗∗

(6.78) (2.41) (10.55 ) (5.78)
Perf 5yr 0.011∗∗∗ 0.042∗∗∗ -0.015∗∗ 0.012

(2.64) (3.16) (-2.50 ) (1.12)
Min Rank 0.048∗∗∗ 0.017 0.057∗∗∗ 0.010

(7.02) (0.89) (7.74) (0.85)
Age -0.017∗∗∗ -0.027∗∗∗ -0.010∗∗∗ -0.018∗∗∗

(-9.79) (-6.94) (-10.41) (-4.80)
Previous Quarter Flow 0.177∗∗∗ 0.137∗∗∗ 0.209∗∗∗ 0.167∗∗∗

(7.52) (5.71) (8.25) (5.08)
Size -0.004∗∗∗ -0.011∗∗∗ -0.004∗∗∗ -0.010∗∗∗

(-6.77) (-7.42) (-8.45) (-6.49)
Volatility -0.394∗∗∗ -0.622∗∗∗ 0.322∗∗ 0.293∗∗∗

(-3.98) (-2.89) (2.08) (1.31)
Total Expense -0.434∗∗∗ -1.912∗∗∗ -0.278∗∗ -1.947∗∗∗

(-2.72) (-3.42) (-2.10) (-2.85)
Category Flow 0.288∗∗∗ 0.060 0.208∗∗∗ 0.028

(3.46) (0.38) (3.52) (0.20)
Intercept 0.020∗∗∗ 0.089∗∗∗ -0.011 0.040∗∗∗

(3.06) (5.69) (-1.50) (3.49)

Note: This table examines the ambiguity aversion behavior of both retail and
institutional investors during period 1993-2011. The sample is divided into
retail shares and institutional shares. Each quarter, funds are assigned ranks
between zero and one according to their performance during the past 12 months
(Perf 1yr), 36 months (Perf 3yr) and 60 months (Perf 5yr) respectively. Perfor-
mance is measured by the average monthly raw returns or the Carhart (1997)
4-factor alphas. Funds are ranked based on raw returns within the funds’ objec-
tive category while ranks based on alphas are computed across all funds in the
sample. Min Rank is defined as the minimum performance rank among three
periods. A linear regression model is estimated by regressing quarterly flows on
funds’ three performance ranks (Perf 1yr, Perf 3yr and Perf 5yr) and the min-
imum rank (Min Rank). The control variables include fund age (Age), defined
as log (1+age), quarterly flow in previous quarter (Previous Quarter Flow),
logarithm of lagged fund TNA (Size), volatility of monthly raw return in prior
12 months (Volatility), lagged total expense (Total Expense), and aggregate
flow to the fund’ objective category (Category Flow). Time-series averages
of coefficients and the Newey-West t-statistics (in parentheses) are reported.
The symbols *, **, and *** denote significance at the 10%, 5% and 1% level,
respectively.
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Table 1.3: Strategy Changes as a Proxy for Fund Ambiguity Level

Panel A: Strategy Changes Proxied by Change in Factor Loadings
Performance Measured by Raw Return 4-Factor Alpha

Low Mid High Low Mid High

Perf 1yr 0.053∗∗∗ 0.046∗∗∗ 0.045∗∗∗ 0.038∗∗∗ 0.031∗∗∗ 0.035∗∗∗

(5.91) (6.89) (7.27) (5.01) (4.43) (5.92)
Perf 3yr 0.038∗∗∗ 0.030∗∗∗ 0.036∗∗∗ 0.053∗∗∗ 0.046∗∗∗ 0.039∗∗∗

(6.50) (4.55) (4.58) (5.79) (7.30) (4.25)
Perf 5yr 0.032∗∗∗ 0.015∗∗ 0.008 -0.005 -0.020∗∗ -0.012∗∗

(6.31) (2.55) (1.33) (-0.73) (-2.06) (-2.33)
Min Rank 0.011 0.044∗∗∗ 0.061∗∗∗ 0.033∗∗∗ 0.053∗∗∗ 0.061∗∗∗

(1.13) (4.03) (6.12) (3.04) (4.56) (4.67)
Age -0.014∗∗∗ -0.016∗∗∗ -0.015∗∗∗ -0.007∗∗∗ -0.009∗∗∗ -0.011∗∗∗

(-6.88) (-8.44) (-9.84) (-6.86) (-5.89) (-6.19)
Previous Quarter Flow 0.189∗∗∗ 0.260∗∗∗ 0.253∗∗∗ 0.217∗∗∗ 0.291∗∗∗ 0.279∗∗∗

(7.64) (9.19) (9.70) (8.31) (8.62) (9.03)
Size -0.004∗∗∗ -0.005∗∗∗ -0.006∗∗∗ -0.004∗∗∗ -0.004∗∗∗ -0.005∗∗∗

(-6.14) (-8.05) (-4.99) (-5.28) (-5.80) (-4.78)
Volatility -0.378∗∗∗ -0.368∗∗∗ -0.370∗∗∗ 0.628∗∗ 0.253 0.140

(-3.07) (-2.73) (-3.45) (2.49) (1.02) (1.08)
Total Expense -1.085∗∗∗ -0.869∗∗∗ -0.092 -0.462 -0.576∗∗ -0.174

(-3.36) (-3.49) (-0.58) (-1.61) (-2.44) (-1.34)
Category Flow 0.364∗∗∗ 0.130 0.225 0.131 0.036 0.323∗∗

(3.71) (1.41) (1.60) (1.58) (0.43) (2.35)
Intercept 0.023∗∗ 0.027∗∗∗ 0.016∗ -0.026∗ -0.000 0.002

(2.13) (3.16) (1.87) (-1.91) (-0.03) (0.20)
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Table 3 Continued
Panel B: Panel B: Strategy Changes Proxied by Fund R-Squared Values

Performance Measured by Raw Return 4-Factor Alpha

Low Mid High Low Mid High

Perf 1yr 0.046∗∗∗ 0.058∗∗∗ 0.046∗∗∗ 0.032∗∗∗ 0.049∗∗∗ 0.020∗∗

(10.39) (6.53) (6.37) (5.54) (6.08) (2.29)
Perf 3yr 0.031∗∗∗ 0.037∗∗∗ 0.034∗∗∗ 0.034∗∗∗ 0.051∗∗∗ 0.056∗∗∗

(3.76) (6.28) (6.76) (4.19) (8.46) (4.79)
Perf 5yr 0.005 0.020∗∗∗ 0.026∗∗∗ -0.014∗∗ -0.009 -0.021∗∗

(0.96) (3.61) (5.01) (-2.51) (-1.53) (-2.37)
Min Rank 0.056∗∗∗ 0.028∗∗∗ 0.021 0.063∗∗∗ 0.027∗∗ 0.054∗∗∗

(6.01) (3.04) (1.54) (5.52) (2.62) (3.97)
Age -0.013∗∗∗ -0.019∗∗∗ -0.014∗∗∗ -0.007∗∗∗ -0.013∗∗∗ -0.007∗∗∗

(-6.93) (-11.25) (-5.63) (-5.07) (-7.76) (-5.22)
Previous Quarter Flow 0.274∗∗∗ 0.228∗∗∗ 0.199∗∗∗ 0.298∗∗∗ 0.286∗∗∗ 0.201∗∗∗

(11.00) (8.30) (7.75) (11.83) (8.47) (9.72)
Size -0.005∗∗∗ -0.004∗∗∗ -0.003∗∗∗ -0.005∗∗∗ -0.004∗∗∗ -0.004∗∗∗

(-5.17) (-6.73) (-4.70) (-5.85) (-6.03) (-5.73)
Volatility -0.409∗∗∗ -0.388∗∗∗ -0.398∗∗∗ 0.188 0.446∗∗ 0.674∗

(-3.64) (-3.41) (-2.93) (1.44) (2.18) (1.93)
Total Expense -0.169 -0.900∗∗∗ -0.676∗∗ -0.151 -0.493∗ -0.568∗

(-1.31) (-3.15) (-2.62) (-1.30) (-1.73) (-1.85)
Category Flow 0.291∗∗ 0.150∗ 0.398∗∗∗ 0.207∗ 0.083 0.160

(2.22) (1.89) (5.28) (1.67) (1.11) (1.35)
Intercept 0.013∗ 0.034∗∗∗ 0.024∗∗ -0.009 -0.003 -0.012

(1.86) (3.51) (2.18) (-0.97) (-0.33) (-0.70)

Note: This table presents results of tests that use a measure of a fund’s strategy
changes as a proxy for the fund’s ambiguity level. The sample includes only the
retail funds. Each quarter, the sample is divided into three groups, Low, Mid, and
High based on the value of the strategy change measure. Panel A reports results
when strategy changes are measured by the average absolute change in the fund’s
(Carhart (1997) model) factor loadings between the prior 1-30 and 31-60 months. In
Panel B, fund strategy changes are measured by a fund’s R-squared value over its
lifetime based on the Carhart (1997) 4-factor model. The table presents coefficient
estimates obtained by regressing quarterly fund flows on the funds’ 1-year, 3-year,
and 5-year performance ranks (Perf 1yr, Perf 3yr and Perf 5yr) and the minimum
rank (Min Rank). Performance is measured by the average monthly raw returns or
the Carhart (1997) 4-factor alphas. The control variables are the same as the ones
in Table 2. Time-series averages of coefficients and the Newey-West t-statistics (in
parentheses) are reported. The symbols *, **, and *** denote significance at the 10%,
5% and 1% level, respectively.
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Table 1.4: Flow Volatility as a Proxy for Fund Ambiguity Level

Performance Measured by Raw Return 4-Factor Alpha

Low Flowvol×Perf 1yr 0.046∗∗∗ 0.033∗∗∗

(9.94) (6.84)
Mid Flowvol×Perf 1yr 0.050∗∗∗ 0.044∗∗∗

(7.35) (6.35)
High Flowvol×Perf 1yr 0.072∗∗∗ 0.045∗∗∗

(6.78) (4.50)
Low Flowvol×Perf 3yr 0.026∗∗∗ 0.028∗∗∗

(5.63) (5.60)
Mid Flowvol×Perf 3yr 0.038∗∗∗ 0.052∗∗∗

(6.04) (8.53)
High Flowvol×Perf 3yr 0.049∗∗∗ 0.067∗∗∗

(4.70) (6.36)
Low Flowvol×Perf 5yr 0.036∗∗∗ 0.016∗∗∗

(9.65) (2.56)
Mid Flowvol×Perf 5yr 0.008 -0.022∗∗∗

(1.59) (-2.90)
High Flowvol×Perf 5yr -0.035∗∗∗ -0.064∗∗∗

(-4.06) (-7.07)
Low Flowvol×Min Rank -0.002 0.007

(-0.54) (1.08)
Mid Flowvol×Min Rank 0.041∗∗∗ 0.043∗∗∗

(5.10) (4.31)
High Flowvol×Min Rank 0.110∗∗∗ 0.122∗∗∗

(8.12) (7.41)
Flow Vol 0.060∗∗∗ 0.034∗∗∗

(6.36) (3.11)
Age -0.008∗∗∗ -0.004∗∗∗

(-6.20) (-3.43)
Previous Quarter Flow 0.158∗∗∗ 0.192∗∗∗

(7.11) (7.74)
Size -0.003∗∗∗ -0.003∗∗∗

(-5.08) (-6.44)
Volatility -0.527∗∗∗ 0.135

(-5.08) (0.92)
Total Expense -0.292∗∗ -0.187

(-2.05) (-1.58)
Category Flow 0.281∗∗∗ 0.201∗∗∗

(3.89) (3.39)

Intercept -0.006 -0.026∗∗∗

(-1.12) (-3.48)

Note: This table presents results of tests that use flow volatility as a proxy for a fund’s ambi-
guity level. The sample includes only the retail funds. Flow Vol is the standard deviation of
quarterly flows over prior 12 quarters. Each quarter, a dummy variable Low Flowvol equals
one if the flow volatility falls in the bottom tercile, a dummy variable Mid Flowvol equals
one if the flow volatility belongs to the medium tercile and a dummy variable High Flowvol
equals one if the flow volatility is in the top tercile. A linear regression is performed A
linear regression is performed as in Table 1.3. The control variables are the same as the
ones in Table 1.2. Time-series averages of coefficients and the Newey-West t-statistics (in
parentheses) are reported. The symbols *, **, and *** denote significance at the 10%, 5%
and 1% level, respectively.



56

Table 1.5: Fund Family Size as a Proxy for Fund Ambiguity Level

Performance Measured by Raw Return 4-Factor Alpha

Low Famsize×Perf 1yr 0.050∗∗∗ 0.019∗∗

(7.59) (2.01)
Mid Famsize×Perf 1yr 0.045∗∗∗ 0.042∗∗∗

(6.00) (5.54)
High Famsize×Perf 1yr 0.049∗∗∗ 0.032∗∗∗

(6.12) (7.12)
Low Famsize×Perf 3yr 0.028∗∗∗ 0.026

(3.12) (1.41)
Mid Famsize×Perf 3yr 0.030∗∗∗ 0.061∗∗∗

(3.48) (7.67)
High Famsize×Perf 3yr 0.043∗∗∗ 0.040∗∗∗

(6.03) (7.73)
Low Famsize×Perf 5yr 0.002 -0.028∗∗∗

(0.29) (-3.24)
Mid Famsize×Perf 5yr 0.018∗∗ -0.016∗∗∗

(2.18) (-3.28)
High Famsize×Perf 5yr 0.027∗∗∗ 0.010

(4.93) (1.44)
Low Famsize×Min Rank 0.071∗∗∗ 0.103∗∗∗

(5.14) (4.37)
Mid Famsize×Min Rank 0.056∗∗∗ 0.039∗∗∗

(5.94) (3.36)
High Famsize×Min Rank 0.025∗∗∗ 0.043∗∗∗

(3.25) (5.34)
D FamilySize 0.005∗∗∗ 0.004

(2.78) (1.13)
Age -0.017∗∗∗ -0.010∗∗∗

(-8.56) (-9.95)
Previous Quarter Flow 0.175∗∗∗ 0.207∗∗∗

(7.52) (8.25)
Size -0.006∗∗∗ -0.006∗∗∗

(-5.78) (-7.97)
Volatility -0.409∗∗∗ 0.310∗∗

(-4.11) (2.02)
Total Expense -0.486∗∗∗ -0.331∗∗

(-3.21) (-2.65)

Category Flow 0.305∗∗∗ 0.225∗∗∗

(3.56) (4.01)
Intercept 0.025∗∗∗ -0.005

(3.86) (-0.58)

Note: This table presents results of tests using family size as a proxy for a fund’s ambiguity
level. The sample includes only retail funds. Family size is total net asset of all fund share
classes that belong to the same fund family. Each quarter, a dummy variable Low FamSize
equals one if fund i belongs to a family whose size falls into the bottom tercile, a dummy
variable Mid FamSize equals one if family size belongs to the medium tercile, and a dummy
variable High FamSize equals one if the family size is in the top tercile. D FamliySize is a
dummy variable that equals one if family size is above the median value for that quarter.
A linear regression is performed as in Table 1.3. The control variables are the same as the
ones in Table 1.2. Time-series averages of coefficients and the Newey-West t-statistics (in
parentheses) are reported. The symbols *, **, and *** denote significance at the 10%, 5%
and 1% level, respectively.
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Table 1.8: Robustness Test–Morningstar and Peformance Since Inception

Retail Institutional Retail Institutional Retail Institutional
Perf 1yr 0.050∗∗∗ 0.063∗∗∗ 0.052∗∗∗ 0.068∗∗∗ 0.052∗∗∗ 0.068∗∗∗

(10.13) (3.48) (9.68) (3.47) (9.82) (3.44)
Perf 3yr 0.032∗∗∗ 0.023 0.014∗ 0.014 0.014∗∗ 0.012

(4.68) (1.16) (1.95) (0.65) (2.06) (0.51)
Perf 5yr 0.017∗∗∗ 0.049∗∗ -0.01 0.026 -0.009 0.036∗∗

(3.05) (2.47) (-1.53) (1.66) (-1.45) (2.04)
Perf Incep -0.001 -0.013 . . -0.007 -0.016

(-0.16) (-1.24) . . (-1.29) (-1.54)
Morningstar Rating . . 0.016∗∗∗ 0.007∗ 0.017∗∗∗ 0.008∗∗

. . (9.05) (1.87) (8.92) (2.02)
Min Rank 0.054∗∗∗ 0.019 0.045∗∗∗ 0.012 0.045∗∗∗ 0.012

(7.68) (0.93) (6.38) (0.50) (6.37) (0.52)
Age -0.007∗∗∗ -0.021∗∗∗ -0.008∗∗∗ -0.020∗∗∗ -0.006∗∗∗ -0.021∗∗∗

(-6.67) (-4.31) (-9.01) (-5.11) (-5.37) (-4.34)
Previous Quarter Flow 0.199∗∗∗ 0.161∗∗∗ 0.197∗∗∗ 0.161∗∗∗ 0.196∗∗∗ 0.161∗∗∗

(8.35) (5.09) (8.48) (5.03) (8.45) (5.03)
Size -0.006∗∗∗ -0.011∗∗∗ -0.007∗∗∗ -0.011∗∗∗ -0.007∗∗∗ -0.011∗∗∗

(-8.37) (-6.68) (-9.56) (-6.72) (-8.77) (-6.70)
Volatility -0.300∗∗∗ -0.431∗ 0.001 -0.369∗ 0.055 -0.350

(-4.06) (-1.97) (0.01) (-1.69) (0.75) (-1.53)
Total Expense -0.230∗ -2.001∗∗∗ -0.186 -1.955∗∗∗ -0.195 -1.970∗∗∗

(-1.72) (-3.03) (-1.44) (-2.99) (-1.49) (-3.01)
Category Flow 0.411∗∗∗ 0.318∗∗ 0.389∗∗∗ 0.279∗ 0.412∗∗∗ 0.313∗∗

(6.90) (2.17) (6.05) (1.77) (6.30) (2.00)
Intercept -0.006 0.066∗∗∗ -0.034∗∗∗ 0.050∗∗∗ -0.042∗∗∗ 0.053∗∗∗

(-1.35) (4.11) (-6.92) (2.96) (-7.30) (3.14)

Note: This table reexamines the baseline model that studies ambiguity aversion
behavior of both retail and institutional investors when controlling for perfor-
mance since inception and/or the Morningstar star rating during the period
1993-2011. The sample includes all retail and institutional shares. Morningstar
overall rating (Morningstar Rating) is a weighted average of a fund’s 3, 5 and
10 years category star rating ranging from 1 to 5 (See Nanda et al. (2004b)
for details). A linear regression is performed by regressing quarterly flows on
funds’ three performance ranks and the minimum rank. The control variables
are the same as the ones in Table 1.2. Time-series averages of coefficients and
the Newey-West t-statistics (in parentheses) are reported.
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Table 1.9: Robustness Test–Flow-Performance Convex Relationship

Performance Measured by Raw Return 4-Factor Alpha

Retail Institutional Retail Institutional
Low 1yr 0.070∗∗∗ 0.091∗∗ 0.076∗∗∗ 0.038

(4.27) (2.57) (4.04) (1.03)
Mid 1yr 0.029∗∗∗ 0.052∗∗∗ 0.018∗∗∗ 0.043∗∗∗

(4.81) (2.98) (3.96) (2.97)
High 1yr 0.241∗∗∗ 0.101∗∗ 0.200∗∗∗ 0.098∗∗

(10.47) (2.50) (10.36) (2.20)
Low 3yr 0.042∗∗∗ 0.028 0.029∗∗ 0.147∗∗

(2.80) (0.49) (2.23) (2.07)
Mid 3yr 0.026∗∗∗ 0.027∗ 0.036∗∗∗ 0.056∗∗∗

(4.26) (1.77) (7.35) (4.89)
High 3yr 0.184∗∗∗ 0.139∗∗ 0.207∗∗∗ 0.215∗∗∗

(6.17) (2.56) (7.72) (2.87)
Low 5yr -0.033∗ -0.190∗∗∗ -0.015 -0.094

(-1.82) (-3.62) (-0.81) (-1.34)
Mid 5yr 0.013∗∗∗ 0.052∗∗∗ -0.015∗ 0.011

(2.87) (3.38) (-1.92) (0.81)
High 5yr 0.056∗∗ 0.118∗∗∗ 0.009 0.059

(2.34) (2.69) (0.33) (1.01)
Min Rank 0.036∗∗∗ 0.005 0.041∗∗∗ -0.006

(4.85) (0.24) (6.20) (-0.34)
Age -0.018∗∗∗ -0.027∗∗∗ -0.010∗∗∗ -0.017∗∗∗

(-9.59) (-7.32) (-10.30) (-4.16)
Previous Quarter Flow 0.172∗∗∗ 0.137∗∗∗ 0.203∗∗∗ 0.162∗∗∗

(7.57) (5.94) (8.38) (5.06)
Size -0.004∗∗∗ -0.010∗∗∗ -0.004∗∗∗ -0.009∗∗∗

(-6.92) (-7.40) (-8.24) (-5.98)
Volatility -0.573∗∗∗ -0.693∗∗∗ 0.106 0.012

(-5.47) (-3.06) (0.71) (0.05)
Total Expense -0.509∗∗∗ -2.031∗∗∗ -0.351∗∗ -2.172∗∗∗

(-3.14) (-3.79) (-2.54) (-2.93)
Category Flow 0.295∗∗∗ 0.130 0.219∗∗∗ 0.083

(3.45) (0.77) (3.17) (0.54)
Intercept 0.038∗∗∗ 0.125∗∗∗ 0.001 0.058∗∗∗

(5.18) (7.68) (0.15) (4.36)

Note: This table reexamines the baseline model that studies ambiguity aversion
behavior of both retail and institutional investors when controlling for the con-
vexity in flow-performance relationship during the period 1993-2011. The sam-
ple includes all retail and institutional shares. Each quarter, we adopt fractional
ranks for funds’ performance measured over past 1-, 3-, and 5-year horizon. For
example, the 1-year performance of a fund in the bottom quintile (Low 1yr)
is defined as Min(Perf 1yr, 0.2), in the three medium quintiles (Mid 1yr) is
defined as Min(0.6, Perf 1yr-Low 1yr), and in the top quintiles (High 1yr) is
defined as Perf 1yr-Low 1yr-Mid 1yr. Performance is measured by the ranking
within category of the average monthly raw returns. Min Rank is defined as
the minimum performance rank among 1-year, 3-year and 5-year performance
ranks. A linear regression is performed by regressing quarterly flows on funds’
fractional performance ranks and the minimum rank. The control variables are
the same as the ones in Table 1.2. Time-series averages of coefficients and the
Newey-West t-statistics (in parentheses) are reported. The symbols *, **, and
*** denote significance at the 10%, 5% and 1% level, respectively.
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Figure 1.1: Difference in Flow-Performance Sensitivity to Signal s1 Relative to s2
across Difference Signal Realizations
The figure shows the difference in flow-performance sensitivity to signal s1 relative to s2. In
particular, it graphs the value of the term G in Equation (2) as we vary s1 and s2. Graph A,
B and C shows the value of G when s1 < s2 < 0, 0 < s1 < s2, and s1 < 0 < s2, respectively.
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CHAPTER 2
A BLESSING OR A CURSE? THE IMPACT OF HIGH FREQUENCY

TRADING ON INSTITUTIONAL INVESTORS

2.1 Introduction

In recent years, financial markets have undergone tremendous changes with

the adoption of new technology. Trades are now mostly placed and executed elec-

tronically, while there are over a dozen for-profit exchanges as well as alternative

trading venues competing for volume and liquidity. Equally prominently, computer-

based high frequency trading (HFT) has grown from being virtually non-existent, to

becoming a dominant force in the market. By some statistics, HFT firms account for

70% of the U.S. stock trading volume in 2009.1 The rapid growth of HFT has led to

considerable media attention and policy interest in the issue of the impact of HFT on

market quality and on the welfare of other market participants. Despite this interest,

there is so far scant evidence on the question of how the recent explosion in HFT has

affected a particularly important class of market participants, namely, institutional

investors. The goal of this study is to provide evidence regarding the impact of HFT

activity on the trading costs of institutional investors.

Traditional institutional investors such as mutual funds, pensions, insurance

firms, and hedge funds account for over 50% of the public equity ownership in the

U.S. (French (2008)). They play a critical role in price discovery by trading based

on new information or in response to price deviations from fundamentals. Moreover,

1See, e.g., “High-frequency trading under scrutiny,” Financial Times, July 28, 2009.
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they generate a huge volume of trading and trading costs are a critical determinant of

their performance. Hence, institutional trading costs are often viewed as an important

yardstick for measuring the quality and liquidity of the financial markets. For this

reason, facilitating efficient execution of institutional trades has been a key objective

of the securities markets design and regulation. Whether HFT is good news or bad

news for traditional institutional investors has been extensively discussed and debated

in public media. Some institutional investors have expressed serious concerns that

high frequency (HF) traders may negatively impact their trading profits (e.g., Arnuk

and Saluzzi (2008)). Such concerns are apparently heard by regulators, as noted in the

2010 speech by Mary Schapiro, the former SEC Chairperson, “Institutional investors

also have expressed serious reservations about the current equity market structure.

Institutional investors questioned whether our market structure meets their need to

trade efficiently and fairly, in large size.” In fact, asset managers’ concerns regarding

HFT have led to the growing popularity of off-exchange trading venues, e.g., “dark

pools”.2

Interestingly, the widespread concerns about the negative impact of HFT on

institutional trading costs are in sharp contrast to the findings of a few recent aca-

demic studies. Academic evidence so far seems to suggest that, predominantly, HFT

is associated with improved market liquidity, reduced volatility, and increased price

efficiency/discovery; see, for example, Chaboud et al. (2009), Brogaard (2010), Hen-

2The trading volume in dark pools has grown by almost one-half between the years
2009-2012; see “U.S. ‘dark pool’ trades up 50%,” Financial Times, November 19, 2012.
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dershott et al. (2011), Boehmer et al. (2012), Menkveld (2010), Hasbrouck and Saar

(2013), Brogaard et al. (2013), and Malinova et al. (2013). The evidence produced by

these studies is consistent with the view that HFT firms are the modern day version

of market makers with enhanced technology. If technology expedites the execution of

trades and/or improves the efficiency of market making, HFT should benefit market

participants, including institutional investors.3

However, some researchers have raised the concern that the liquidity provided

by HF traders may be illusory. Since HF traders do not have an affirmative obligation

to provide liquidity, their trading is opportunistic in nature, and the liquidity they

create may disappear quickly when it is most needed on the market. Kirilenko et al.

(2011) and Easley et al. (2011a) both note that during the Flash Crash of May 6,

2010, many HF traders withdrew from the market while others turned into liquidity

demanders. In the context of institutional trading, an open question is whether HFT

is a reliable source of liquidity when liquidity is most demanded by institutional

investors.

The illusory nature of liquidity created by HFT may also be understood in the

context of specific HFT strategies. Two particular types of directional HFT strategies

appear to directly take advantage of the large trades made by institutional investors –

3A study perhaps most related to mine is Brogaard et al. (2012). Using UK data, they
find no clear evidence that increases in HFT activities due to speed changes at London
Stock Exchange affect institutional trading costs. However, to my knowledge, so far there
is no study on the impact of HFT on institutional trading cost in the context of the U.S.
market.
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order anticipation (front running) and momentum ignition.4 An HF trader following

an order anticipation strategy detects large orders from institutional investors and

trades in front of them. For example, a HF trader who buys in front of a large

buy order will subsequently attempt to sell to the large buyer at a higher price or

to hold on to the position in case of a permanent price increase. The institutional

investor who submits the large buy order is adversely impacted in either case. With

momentum ignition, HF traders may ignite rapid price movement along one direction

through a series of submissions and cancelations of orders, and profit by establishing

an early position. Such strategies may increase intraday price volatility and drive up

the trading costs of institutional investors.

In this study, I combine two sources of data to examine the relationship be-

tween HFT and institutional trading costs. Data on institutional trading costs are

from Ancerno (formerly Abel/Noser). The main measure of trading cost is execu-

tion shortfall, defined as the percentage difference between the execution price and a

benchmark price that is prevailing in the market when the ticket is placed with the

broker. The execution shortfall captures the bid-ask spread, the market impact, and

the drift in price while the ticket is executed. Data on HFT is provided by NASDAQ.

This dataset contains all trades on NASDAQ for a randomly selected sample of 120

stocks during 2008 and 2009, with identification of trades executed by HFT firms.

I assess the relation between HFT and institutional trading costs using both

4Several popular types of HFT strategies are discussed in the Concept Release on Equity
Market Structure by Commission (2010). In addition to directional trading strategies, three
other broad types of strategies include passive market making, arbitrage, and structural
trading.
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sorted portfolios and multivariate regressions. Using sorted portfolios, I show that

while HFT is positively associated with stock liquidity and the latter is negatively as-

sociated with institutional trading costs, the relation between HFT and institutional

trading costs is positive. The multivariate panel regressions confirm this relation

by controlling for various stock characteristics and institutional trading characteris-

tics. The regression coefficient suggests that one standard deviation increase in HFT

activity is associated with an increase in average execution shortfall by one third.

Considering that an average institution in the sample has a daily trading volume

of $20.5 million for the sample stocks, one third increase in execution shortfall cost

implies an additional transaction cost of more than $10,000 per day. I also find that

the impact of HFT on institutional trading costs is stronger for both small-cap and

large-cap stocks, relative to mid-cap stocks.5

I consider alternative explanations for the positive relation between HFT and

institutional trading cost. These include the possibility of omitted variables causing

both HFT activity and institutional trading costs to increase at the same time. Al-

ternatively, it could be that HF traders find it more attractive to trade on stocks that

have high trading costs. I seek to rule out the alternative interpretations through

several approaches.

5The main measure of trading cost in this study is execution shortfall, which captures the
bid-ask spread as well as the price impact (e.g., Anand et al. (2012)). I have also examined
the timing delay component of trading cost to test a hypothesis that HFT reduces delays
in trade execution. However I do not find evidence in favor of this hypothesis. In addition,
the main regressions performed in the study are based on stock-day observations. I have
also obtained similar results using regressions at individual trade level that control for
heterogeneity in institutional trading skills.
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First, the sorted portfolio analysis indicates that HF traders are most active

in liquid stocks, rather than illiquid stocks which have high trading costs. Second, I

include firm- and time-fixed effects in the multivariate regression specification, which

helps to ensure that unobserved slow-moving stock characteristics and time-invariant

factors do not cause the positive relationship between HFT activity and trading costs.

Third, since days with news releases may also affect both HFT and trading costs, I

control for earnings announcements and mergers and acquisitions events in the sample

and the results still hold. Fourth, I study the short selling ban on financial stocks

instituted on September 19, 2008, which is an exogenous shock to execution shortfall.

I find that, as expected, the execution shortfall increases sharply on that day due to

the ban. If HF traders choose to be more active when the execution shortfall is high,

we would expect an increase in HFT after the implementation of the ban. However, I

find that the HFT activity drops sharply subsequent to the ban being implemented.

This evidence also suggests that when liquidity is low, HF traders withdraw from the

market. Fifth, Granger causality tests provide further evidence that intensive HFT

activity contributes to an increase in trading costs, but not vice versa.

Finally, I perform two sets of analysis to understand the specific mechanisms

through which HFT may increase the costs of traditional institutional investors. First,

I examine whether HF traders profit from providing liquidity when institutional in-

vestors exhibit large buy-sell imbalance, i.e., when institutional investors on the net

are either large buyers or sellers of a stock. I find that on days with large institutional

buy-sell imbalance on a given stock, HFT activities are more intense, but at market
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close HF traders manage to keep virtually no open positions on the stock. Further,

the impact of HFT on institutional trading costs is more pronounced when institu-

tions exhibit large imbalance on the buy side. Therefore, if anything, HFT represents

an ephemeral and expensive source of liquidity provision to institutional investors.

Second, I use the non-randomness of HF trades to test whether directional

trading, electronic marketing making, and other types of HFT strategies have different

impact on institutional trading costs. In the case of directional strategies such as

momentum ignition and front running, one would observe long sequences of HF trades

in the same direction.6 As for electronic market making, HF traders have to buy and

sell the same stocks very fast so that one should observe rapid reversals of HF trade

directions. I use the runs test to detect non-randomness in HF trade directions on

each stock on a given day. The runs tests detect the pervasive use of directional

trading and market making strategies by HF traders. More importantly, the impact

of HFT on institutional trading costs is most pronounced when HF traders engage in

directional trading strategies. This lends support to the anecdotal observations made

by institutional investors that their trades are front-run by HF traders.

The rest of the paper is organized as follows: Section 2.2 discusses the litera-

ture related to HFT. Section 2.3 describes the data. Section 2.4 presents the baseline

results and analyses on causality between HFT and institutional trading costs. Sec-

tion 2.5 provides further analysis on how and when HFT affects institutional trading

6Front-running trades by HF traders are more likely in the form of a sequence of small
trades in the same direction than a few large trades, because in recent years both institutions
and HF traders split large orders into small sizes for execution.
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costs as well as the robustness of the results. Section 2.6 concludes.

2.2 Related Literature

This paper fits in the growing literature on algorithmic trading and HFT.

Theoretical models in this area focus primarily on the interaction between HF traders

and traditional investors. Such studies generally predict undesirable impacts of HFT

and a wealth transfer from slow traders to HF traders. Hoffmann (2013) finds that

algorithmic traders suffer less from adverse selection because of their speed advantage

and that they decrease the profits of human traders. Cartea and Penalva (2005)

present a model with a liquidity trader, a market maker and a HF trader. Their

model predicts an increase in volatility and price impact of the liquidity trader. In

the model built by McInish and Upson (2011), HF traders use their speed advantage

to learn quote updates quicker than slow traders, which allows the former to profit

from trading at stale prices with the latter. Jarrow and Protter (2011) find that HF

traders create temporary mispricing and profit from it. Biais et al. (2011) document

that multiple equilibriums can arise for a given level of algorithmic trading and some

of them are associated with a sharp increase in the price impact of trades. Jovanovic

and Menkveld (2012) model HF traders as middlemen between the buyers and sellers.

Their model suggests that HF traders can exert positive or negative effects depending

on their informational advantage stemming from their speed.

In contrast to the overall negative predictions of theoretical models, most

empirical studies document a positive impact of HFT. Using the same dataset as in

this study, Brogaard et al. (2013) provide evidence that HF traders facilitate price
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efficiency by placing marketable orders in the direction of permanent price changes

and in the opposite direction of transitory pricing errors on average days and the days

with highest volatility. Their limit orders are adversely selected but are compensated

by liquidity rebates. With the same dataset, Brogaard (2010) finds no evidence that

HF traders withdrawing from markets in bad times or that they front run large

non-HFT trades. Using message counts as a proxy for algorithmic trading (AT),

Hendershott et al. (2011) find that AT improves liquidity and brings about more

efficient price discovery. With the same proxy, Boehmer et al. (2012) document that

on average AT improves liquidity and informational efficiency. Another study by

Chaboud et al. (2009) also documents that algorithmic traders increase their supply

of liquidity over the hour following macroeconomic data releases, even though they

restrict activity in the minute following each release. Also, Hasbrouck and Saar (2013)

find improved spreads, depth and volatility associated with HFT. Menkveld (2010)

finds that the bid-ask spreads of a new market for Dutch stocks, Chi-X, were reduced

by about 30% within a year with the entry of a new HF trader on the market.

There are also some empirical studies that document negative effects of HFT.

The major concerns are the quality of the liquidity provided by HF traders and

whether they increase volatility. Kirilenko et al. (2011) find evidence that instead of

supplying liquidity, some HF traders withdrew from the market and some demanded

liquidity during the Flash Crash on May 6, 2010. Hasbrouck and Saar (2013) docu-

ment the “fleeting” nature of many limit orders in electronic markets and point out

the liquidity provided by HF traders is short-lived. Similarly, Egginton et al. (2014)
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question the degraded quality of liquidity and elevated volatility caused by HFT.

Easley et al. (2011a) find that extraordinary flow toxicity, i.e., market makers being

adversely selected without knowing, in the hours leading up to the Flash Crash causes

HF traders to withdraw from the market.

Overall, even though theoretical models predict the shift in wealth from slow

traders to HF traders, there is limited empirical evidence along this direction. In

fact, most empirical evidence suggests an improvement in market quality with the

occurrence of HFT. However, this improvement does not immediately lead to more

efficient trading for traditional investors. A related study by Malinova et al. (2013)

examines the impact of HFT on retail investors. They find that a reduction of HFT

causes a decline in market liquidity and trading profits of retail traders. In a recent

study, Brogaard et al. (2013) use data from the London Stock Exchange and find no

clear evidence of change in trading costs caused by increases in HFT activities due to

speed changes at the exchange. However, in the U.S. market, there is so far no direct

analysis on whether HFT increases institutional investors’ trading costs. This paper

fills the gap.

2.3 Data and Descriptive Statistics

2.3.1 Measuring HFT

The HFT dataset is provided by NASDAQ under a non-disclosure agreement.

The dataset contains trading data from 2008 and 2009 for a sample of 120 randomly

selected stocks listed on NASDAQ or the New York Stock Exchange (NYSE). The

timestamp for trades in the dataset is to the millisecond. For each trade in the
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dataset, a variable named “Type” identifies the liquidity demander and supplier as a

high-frequency (HF) trader or non-high-frequency (nHF) trader based on NASDAQ’s

knowledge of its customers and analysis of the firm’s trading, such as how often its

net trading in a day crosses zero, its order duration, and its order to trade ratio.

NASDAQ identifies a total of 26 HFT firms in the data. However, HFT firms

that route their orders through large integrated firms such as Goldman Sachs and

Morgan Stanley cannot be identified and thus are excluded. As noted in Brogaard

et al. (2013), even though the 26 HFT firms represent a significant amount of HFT

activity, it is not possible to completely identify all HF trades. Despite this limitation,

this dataset is by far the most suitable for this study. Previous academic studies that

use this dataset include Brogaard (2010), Brogaard et al. (2013), and Carrion (2013).

The dataset categorizes 120 stocks into three market capitalization groups:

large, medium and small. Each size group contains 40 stocks, with 20 stocks listed on

NYSE and the other 20 listed on NASDAQ. The top 40 stocks are from the largest

market capitalization stocks. The medium-size category consists of stocks around the

1000th largest stocks in the Russell 3000, and the small-size category contains stocks

around the 2000th largest stock in the Russell 3000. For each stock, the dataset

contains the following fields: Ticker Symbol, Date, Time (in milliseconds), Shares,

Price, Buy/Sell Indicator, and Type (HH, HN, NH, NN). The Type variable identifies

whether the two participants in a trade are HFT firms (H) or not (N). For example,

“HN” means that an HF firm demands liquidity and an nHF (non-HF) firm supplies

liquidity in the trade. See Brogaard et al. (2013) for additional details on this dataset.



75

In this paper, I focus on the total HFT activity on a stock. To construct the

measure of HFT activity, I first calculate the trading volume of each trade in the

dataset by multiplying Price and Shares traded. Each day, the aggregate trading

volume of all trades that HFT firms participate in (with Type of HH, HN or NH)

for a particular stock captures the total HFT volume on that stock. The measure of

HFT daily activity on stock i, denoted as HFT Intensityit, is defined as the aggregate

HFT volume for stock i on day t divided by the stock’s average daily trading volume

in the past 30 days .

2.3.2 Measuring institutional trading cost

The NASDAQ dataset is merged with a proprietary database of institutional

investors’ equity transactions compiled by Ancerno Ltd., from which I construct the

measure of institutional trading cost. There are 204 institutions in the Ancerno

dataset that are involved in trading the 120 sample stocks during 2008 and 2009,

with an average trading volume of $20.5 million per institution per day. Previous

academic studies that use Ancerno’s data include Anand et al. (2010, 2012), Goldstein

et al. (2009), Chemmanur et al. (2009), Goldstein et al. (2010), and Puckett and Yan

(2011).

A typical order from a buy-side institution is large in size and usually has

high information content. To reduce market impact, the trading desk of the buy-side

institution splits the large order to several brokers. The allocation to each broker is

defined as a ticket and each ticket may result in several distinct trades or executions.

For each execution, the database reports identity codes for the institution, the CUSIP
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and ticker for the stock, the stock price at placement time, date of execution, execution

price, number of shares executed, whether the execution is a buy or sell, and the

commissions paid. See Anand et al. (2012) for additional details on this dataset.

Following Anand et al. (2012), the cost of each trade (referred to as “ticket”

in the Ancerno data) is defined in terms of execution shortfall:

Execution Shortfall =
P1 − P0

P0

×D, (2.1)

where P1 measures the value-weighted execution price of the ticket, P0 is the price at

the time when the broker receives the ticket, and D is a dummy variable that equals

1 for a buy trade and −1 for a sell trade. I calculate the volume-weighted average

of the execution shortfall of all trading tickets for stock i on day t and denote it as

Execution Shortfallit.

In this study, I conduct most of the tests at the stock level using the daily

measures of HFT Intensityit and Execution Shortfallit. As a robustness test, I also

examine the relationship between HFT activity and execution shortfall at the trading

ticket level.

Another aspect of institutional trading costs is the execution timing delay cost

incurred between the initial trading decision point (market open) and the price at the

time the order is placed with the broker:

Timing Delay =
P0 −Open Price

Open Price
×D, (2.2)

where Open Price is the opening price on the execution day. This timing delay cost

can be thought of as the cost of seeking liquidity (e.g, Group (2009)). This measure



77

is constructed for each trading ticket in the sample. I calculate the volume-weighted

average of the timing delay of all trading tickets for stock i on day t and denote it

as Timing Delayit. The main focus of this paper is to examine the impact of HFT

on execution shortfall which is a major component of institutional investors’ trading

costs. However, it is also of interest to examine if HFT helps to reduce the timing

delay costs.

2.3.3 Sample descriptive statistics

I obtain data on institutional trading and HFT from 2008 to 2009 on a sample

of 120 stocks. To minimize observations with errors I impose several data screens. I

delete tickets with execution shortfall greater than an absolute value of 10%. Also,

I delete tickets with ticket volume larger than the stock’s total trading volume on

the execution date. I obtain data on stock daily trading volume, daily returns, close

price, and total shares outstanding from CRSP . In addition, I identify earnings

announcement dates from I/B/E/S and COMPUSTAT . I obtain information on

mergers and acquisitions from SDC Platinum.

Table 1 reports the summary statistics of HFT and the institutional trading.

These numbers reveal some notable patterns in HFT. The HF traders are most active

in large stocks. The average daily HFT volume on large stocks, medium stocks and

small stocks is $158.23, $3.65 and $0.38 million, respectively. This pattern raises a

natural question about the role of HF traders. If, as the proponents of HFT typically

advocate, HF traders play a role in providing liquidity, they should be more active

in small stocks where liquidity is scarce. The average Execution Shortfall for large,
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medium and small stocks is 0.15%, 0.16%, and 0.20%, respectively. The results

indicate that trading tickets placed on small stocks are more difficult to execute,

as shown by the larger execution shortfall. This observation is consistent with the

findings of Anand et al. (2010). The size of an average trading ticket placed on

large stocks is $487,871 and it takes more than three executions to implement the

ticket. The average ticket size on small stocks is only $63,943 and it takes about 1.8

executions to implement the ticket.

2.3.4 Determinants of HFT

Before an examination on the relation between HFT and institutional trading

cost, it is useful to understand the firm characteristics that may be associated with

the intensity of HFT. These characteristics may also be related to trading costs and

serve as control variables in my main analysis.

I consider the following characteristics. 1) firm size (Log Market Cap), the

logarithm of a stock’s daily market capitalization; 2) Book-to-Market Ratio, mea-

sured using information available at the beginning of each calendar quarter; 2) Event

Dummy, a dummy variable that equals one for a stock on a given day if there is a

corporate event (earnings announcement or merger and acquisition announcement),

and equals zero otherwise; 3) Daily Return Volatility, which is a stock’s range-based

estimate of daily volatility (annualized), following Parkinson (1980); 4) Prior 1-day

Return, Prior 1-month Return, and Prior 12-month Return, which are a stock’s lagged

daily return, lagged monthly return, and lagged 12 months return, respectively; 5)

stock illiquidity as measured by the Amihud Illiquidity Ratio, i.e., the daily absolute
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return divided by the dollar trading volume on that day; 6) Daily Dollar Turnover,

a stock’s daily dollar trading volume scaled by the stock’s total shares outstanding;

7) Average Institutional Order Size, the average dollar volume of all tickets placed

on a stock, scaled by the average trading volume of that stock in prior 30 days; 8)

Absolute Institutional Imbalance, the absolute value of the daily total dollar volume

of all institutional buy tickets minus that of all sell tickets on a stock, scaled by the

average trading volume of that stock in the past 30 days; 9) Average Trades Per Or-

der, defined as the average number of trades to complete a trading ticket on a stock;

10) Prior 1-month Market Volatility, annualized daily return volatility of the CRSP

value-weighted index in prior month; 11) Prior 1-day Market Return, the return of

the CRSP value-weighted index during the previous day.

A panel regression model is estimated by regressing daily stock HFT Inten-

sity on these firm characteristics. The estimated coefficients and two-way clustered

t-statistics are reported in Table 2. The results suggest that HFT intensity is posi-

tively related to firm size, return volatility, and negatively related to illiquidity. HF

trading is also more active in stocks with high daily dollar turnover and high absolute

institutional trading imbalance, stocks with large number of institutional trades per

order, and on days with event announcements.

2.4 Impact of HFT on Institutional Trading Costs

2.4.1 HFT, liquidity, and trading costs: sorted portfolios

I begin with a sorted portfolio analysis to present an intuitive picture on the

relations among HFT activity, liquidity, and trading costs of institutional investors.
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First, I look at the relation between HFT and the conventional measure of

stock liquidity, the Amihud Illiquidity Ratio. Since that the 120 stocks are in three

distinctive size categories, I first sort all stocks into three groups based on size. Within

each size group stocks are further divided into three groups based on the Amihud

Illiquidity Ratio on each day. I calculate the average HFT Intensity of all stock-

days in each of the nine (3×3) groups. Figure 2.1 plots the average HFT Intensity

against the Amihund Illiquidity Ratio across the nine groups; it shows clearly a

positive relation between HFT and liquidity, within each size group. This finding

complements those reported by the existing literature. However, we cannot infer the

direction of the causality from such a simple statistical association. It may be the

case that HF traders choose to trade more in liquid stocks, given their reliance on

rapid-fire trading strategies.

Next, I look at the relation between stock liquidity and institutional trading

costs measured by Execution Shortfall. I continue to rely on the nine groups of stocks

sorted on size and Amihud Illiquidity Ratio. Figure 2.2 plots the average Execution

Shortfall across the nine groups; it shows a clear negative relation between execution

shortfall and liquidity within each size group. That is, trading costs are lower for

liquid stocks.

Combining the patterns from the first two panels of Figure 2.1 and 2.2, one may

expect a negative relation between HFT Intensity and Execution Shortfall. However,

Figure 2.3 shows that the opposite holds. In this plot, I sort stocks into terciles based

on HFT Intensity within each size group to form nine portfolios and compute the
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average Execution Shortfall within each portfolio. The plot shows that within each

size group, when HFT is more active, the average Execution Shortfall for institutional

investors is also higher. In other words, the HFT activity is positively correlated with

institutional trading costs.

Figure 2.1-2.3 present rather intriguing relationship among HFT activity, liq-

uidity, and institutional execution shortfall. If HFT activity could improve liquidity,

as documented in the extant literature, why does execution shortfall increase when

HFT activity is more intensive? Considering the distinctive features of institutional

trading, HFT may indeed bring more harm than good to institutional investors. First

of all, the liquidity provided by HFT may be illusory and may disappear when insti-

tutional investors most need it. Moreover, the large order sizes and potentially high

information content make institutional trades most vulnerable to HFT strategies such

as front running (see Hirschey (2011)). Such strategies can dramatically increase the

price drifts and market impact during the execution of a large order.

2.4.2 Multivariate analysis

In order to control for other relevant factors that may affect trading costs, I

move on to conduct the following tests in a multivariate panel regression setting with

controls of various firm characteristics. Specifically, I estimate a panel regression

model of the form:

Execution Shortfallit = αi + yt + a× HFT Intensityit + b×Xit + εit, (2.3)
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where αi and yt represent firm-fixed effects and time(day)-fixed effects, respectively.

HFT Intensityit is the measure of daily HFT activity on stock i. Execution Shortfallit

is volume-weighted average execution shortfall of all trading tickets on stock i at day t.

Xit represents a set of firm characteristics that have been considered in Table 2 when

I examine the determinants of HFT activity. These include firm size, book-to-market

ratio, stock returns during prior one day, one month, and 12 months, the Amihud

illiquidity ratio, a range-based daily stock volatility measure, daily trading turnover,

average institutional order size, absolute institutional trade imbalance, and average

number of trades per order. For inference I use standard errors that are robust to

cross-sectional and time-series heteroskedasticity and within-group autocorrelation

based on Petersen (2009).

Table 3 presents estimates of coefficients and the two-way clustered t-statistics.

The first two columns report the estimates of the model without controlling for day-

and firm-fixed effects. However, to control for market conditions I additionally include

the prior 1-day market return and prior 1-month market volatility as control variables.

In the last two columns, the linear regression model in Equation (2.3) is estimated

with both day dummies and firm-fixed effects, but without the two market-condition

variables.

In both sets of tests, the coefficient on HFT Intensity is positive and signif-

icant at the 1% level. This positive coefficient suggests that after controlling for

other economic determinants of trading costs, HFT activity has an increasing effect

on execution shortfall of institutional investors. In particular, the coefficient from
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the fixed-effects regression indicates that a one standard deviation increase in HFT

activity leads to a 5bp increase in execution shortfall. Considering that an average

institution in my sample generates a daily trading volume of $20.5 million, a 5bp

increase in execution shortfall means an additional cost of more than $10,000 per day

on the sample stocks.

To better evaluate the effects of control variables on execution shortfall, I focus

on the estimation results of the model without day- and firm-fixed effects, as shown

in the first two columns of Table 3. The coefficients for the control variables are of

expected signs. The coefficient of the illiquidity measure is positive and significant

since a higher illiquidity measure means lower liquidity which leads to a higher execu-

tion shortfall. The coefficient of the absolute value of institutional buy-sell imbalance

is positive and significant at the 1% level. This is because the higher imbalance leads

to more competition for liquidity in one direction, thus execution shortfall is higher.

Similar to prior studies, I find that execution shortfall increases with stock volatility.

In sum, the results from the multivariate panel regression indicate that when

HFT activity is more intense, institutional investors’ execution shortfall is higher.

More importantly, this positive relationship holds when I control for various firm

characteristics as well as the time- and firm-fixed effects.

2.4.3 Impact of HFT across firm size

I further examine the differential effects of HFT on execution shortfall for

stocks with different sizes. To do this, I estimate the baseline model in Equation

(2.3) within each size group. I expect the impact of HFT on execution shortfall to
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be stronger for small stocks. This is because it is more costly for HF traders to

participate in small stocks and they will charge a higher premium to do so. In fact,

in order to make profit, HFT strategies require such traders to be able to buy and

sell in a timely manner, yet this is harder to accomplish in the case of small stocks

(e.g.,Arnuk and Saluzzi (2008)).

Table 4 reports the estimates of coefficients and the two-way clustered t-

statistics. The regression model is estimated with both day dummies and firm-fixed

effects. From left to right, the table reports the estimation results in the subsamples

of large, mid, and small stocks. The coefficient of HFT Intensity suggests that, as

expected, the increasing effect of HFT activity on execution shortfall is strongest on

small stocks. Thus, HF traders charge a high premium when they trade small stocks.

It is further noted that the coefficient for HFT Intensity is also significantly positive

for large-cap stocks, suggesting an important impact by HFT on the trading costs of

such stocks. Finally, the coefficient for HFT Intensity is insignificantly positive in the

subsample of midcap stocks.

2.4.4 Direction of causality

There are two alternative explanations for the multivariate test results. This

includes the possibility of some omitted variables that cause both HFT activity and

execution shortfall to increase at the same time. Alternatively, it could be that it is

precisely when execution shortfall is high that it is more profitable for HF traders to

trade actively.

In fact, the tests conducted in the previous subsections have already help to
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rule out the alternative interpretations to certain degree. First, the sorted portfolio

analysis indicates that HF traders are most active in liquid stocks, rather than illiquid

stocks featured with high trading costs. Second, I include firm- and time-fixed ef-

fects in the multivariate regression specification, which helps ensure that unobserved

slow-moving stock characteristics and time-invariant factors do not cause the positive

relationship between HFT activity and execution shortfall.

In this subsection, I conduct further analysis on this issue.

The above results establish the increasing effect of HFT activity on execu-

tion shortfall for institutional investors after controlling for time- and firm-fixed ef-

fects. However, there may be certain special events that cause an increase in both

HFT activity and execution shortfall. To rule out this possibility, I control for two

types of important corporate events: earnings announcements and mergers and ac-

quisitions (M&A). I identify earnings announcement days from COMPUSTAT (and

augmented with I/B/E/S data in the case of missing earnings announcement dates

in COMPUSTAT ). The M&A dates are identified from SDC. In total, during the

two year period, there are 960 quarterly earnings announcements and 323 M&A an-

nouncements where the 120 firms in my sample are either acquirers or targets.

In order to observe the different impact of HFT on execution shortfall on event

days and non-event days, I create a dummy variable Event Dummy that equals one

for a stock-day observation falling within a 5-day window of a corporate event for

that stock. It is zero otherwise. No-Event Dummy is a dummy variable that equals

one for a stock-day not in any 5-day corporate event window for that firm. I then
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interact HFT Intensity with Event Dummy and No-Event Dummy, respectively, and

use the interaction terms in place of HFT Intensity in the panel regression analysis.

Other variables in the regression remain the same as those reported in Table 3.

Table 5 presents estimates of the coefficients and the two-way clustered t-

statistics. The coefficient of the interaction between HFT Intensity and Event Dummy

is positive but not significant. However, the interaction between HFT Intensity and

No Event Dummy is positive and significant at the 1% level. The results indicate

that the increasing effect of HFT activity on execution shortfall mainly occurs on

days without corporate events. This is inconsistent with the hypothesis that certain

corporate events drive both HFT Intensity and Execution Shortfall higher.

In the previous subsection, I find that when HF traders participate more,

institutional investors encounter a higher execution shortfall. Alternatively, it could

also be that HF traders choose to be more active when execution shortfall is high. In

this subsection, I will rule out this possibility through analysis of an exogenous event

- the short selling ban.

I study the behavior of HF traders and the pattern of execution shortfall

around the short selling ban from September 19, 2008 to October 8, 2008. On Septem-

ber 19, 2008, the SEC released an emergency order prohibiting short selling in a group

of 799 financial stocks. The initial list of securities covers 13 stocks in my sample. On

September 22, the list expanded to cover 16 stocks in my sample, and one more stock

was added to the banned list on September 23.7 This short selling ban was instituted

7The trading symbols of the sample stocks in the initial short-selling ban list are: AINV,
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immediately without any advance notice, and thus can be viewed as an exogenous

event. The prohibition on short selling has an immediate impact on institutional

investors’ execution shortfall cost in the banned stocks. This ban, however, does not

by itself impact HF traders directly.

Figure 2.4 presents the time-series pattern of the average Execution Shortfall

of the banned and unbanned stocks around the short selling ban. As expected, the

execution shortfall of banned stocks increases sharply when the ban is imposed on

September 19. Figure 2.5 plots the time-series of the average HFT Intensity for

the banned and unbanned stocks around the same period. On September 19, when

execution shortfall reaches its highest level in the picture, I observe a sharp decrease

in HFT activity. If the increasing effect of HFT activity on execution shortfall is

because that the HF traders choose to participate more when trading costs are high,

one should observe an increase in HFT activity instead. This pattern also raises a

question on the HF trader’ role in providing liquidity. Clearly when liquidity is most

needed, they appear to withdraw from the market altogether (e.g., Carrion (2013)).

In conclusion, through observations of institutional trading costs and the be-

havior of HF traders during the shore selling ban, I further rule out the alternative

explanation that the positive relation between HFT and trading cost is due to a

selection effect, i.e. HF traders choose to be more active when trading cost is high.

I use the Granger causality test to further establish the direction of causality.

BXS, CB, CRVL, DCOM, EWBC, FFIC, FMER, FULT, MIG, PNC, PTP, SF. The list is
expanded to cover GE, AXP, and CSE on 9/22/2008 and ARCC on 9/23/2008.
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The Grander causality test enables one to infer, in a statistical sense, whether a

lagged variable (e.g., lagged HFT Intensity) bears a causal effect on another variable

(e.g., Execution Shortfall). Specifically, for a given stock, the Granger causality test

is performed under the following VAR(1) framework:

(
ESi,t
HFTi,t

)
=
(
a1,i
a2,i

)
+
(
b11,i b12,i
b21,i b22,i

)(
ESi,t−1
HFTi,t−1

)
+
(
ε1,i,t
ε2,i,t

)
, (2.4)

where ESi,t and HFTi,t are the Execution Shortfall and HFT Intensity for stock i on

day t, respectively. a1,i, a2,i, b11,i, b12,i, b21,i, b22,i are parameters. ε1,i,t and ε2,i,t are

innovation terms.

I examine the following two null hypotheses: (1) HFT Intensity does not

Granger cause Execution Shortfall; (2) Execution Shortfall does not Granger cause

HFT Intensity. If b12,i 6= 0 then null hypothesis (1) is rejected, indicating that HFT

Intensity Granger causes Execution Shortfall. On the other hand, if b21,i 6= 0 then

null hypothesis (2) is rejected, which means that Execution Shortfall Granger causes

HFT Intensity.

A statistical issue here is that inference has to be made jointly on 120 stocks.

Take the inference on the first hypothesis (i.e., HFT Intensity does not Granger cause

Execution Shortfall) for example. Even when the true values of b12,is are all zero

across the 120 stocks, by statistical randomness the sample estimates of some of the

b12,is will be significantly different from zero. Therefore, in the presence of a relatively

large cross-section of stocks, inference in a stock-by-stock fashion is likely problematic.

Instead, I focus on the distribution of the estimated coefficients (i.e., b12,i and b21,i)



89

across the 120 stocks, and assess whether the sample distribution of the coefficients

is different from what one would observe under the null hypothesis of no causality.

To do so, a further complication to take into account is that the variables of interest,

b12,is or b21,is, are correlated across stocks.8

I take a bootstrap approach to perform statistical inference jointly on the 120

stocks, in a way similar to the bootstraps performed by Kosowski et al. (2006) and

Jiang et al. (2007) in their studies of mutual fund performance. In the context of

this study, the bootstrap procedure generates randomized observations of ESi,t and

HFTi,t under the null of no causality (i.e., b12,i=0 and b21,i=0 for all i), while at the

same time keep the time-series persistence parameters of ESi,t and HFTi,t per se, the

correlation between ε1,i,t and ε2,i,t for any given stock, as well as the correlations among

ε1,i,t and ε2,i,t across 120 stocks.9 For each bootstrap, I estimate the cross-sectional

statistics including the mean, median, 1st and 3rd qunitiles of the t-statistics for the

8In addition to inference based on the cross-sectional distribution of the coefficients, one
can also use more conventional Wald-type test on the hypothesis that the coefficients b12,is
(or 120 b21,is) are jointly zero across all 120 stocks. However, in the presence of a large
cross-section relative to the length of the time series, the power and size of the conventional
test are likely an issue.

9Specifically, the procedure involves the following steps. Across the 120 stocks, I compute
the cross-sectional distribution statistics such as mean, median, 1st and 3rd quintiles of the
t-statistics. First, I estimate the VAR(1) model described in (2.4) using the sample data,
and obtain the coefficients, corresponding t-statistics, and the estimated residuals for all
stocks. Second, I bootstrap (i.e., resampling with replacements) the residuals to reconstruct
the bootstrapped time series of ESi,t and HFTi,t, using the bootstrapped residuals and the
estimated parameters from the model (2.4) but restricting b12,t and b21,i to be zero. Third, I
estimate the model (2.4) using the bootstrapped ESi,t and HFTi,t, and obtain a new set of
coefficients and the corresponding t-statistics. Across 120 stocks, I obtain the cross-sectional
distribution statistics of the bootstrapped t-statistics. Step 2 and 3 are repeated for 2,000
times to obtain 2,000 bootstrapped observations of the cross-sectional statistics (i.e., mean,
median, 1st and 3rd quintiles of the t-statistics). Note that I bootstrap t-statistics rather
than the coefficients per se, because the t-statistics are pivotal statistics that have a better
convergence property.
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estimated coefficients. The bootstraps are performed 2,000 times, and the sample

cross-sectional statistics (e.g., the mean of the t-statistics) are compared with the the

corresponding bootstrapped statistics to assess statistical significance. Specifically,

the bootstrapped p-value is computed as the percentage of bootstrapped statistics

that exceed the sample statistics. A bootstrapped p-value close to 1 indicating that

the sample statistic is abnormally low relative to the distribution under the null

hypothesis of no causality; and a bootstrapped p-value of 0 indicating that the sample

statistic is abnormally high relative to what one would expect under the null of no

causality.

Table 6 presents the results of the Granger causality test. As shown in Panel

A, across the 120 stocks, b12,i, the coefficient related to the causality of HFT on ES,

has a positive mean of 0.317, and its corresponding t-statistic has a positive mean of

0.311. The bootstrapped p-value is 0.002, indicating that the mean of the sample t-

statistic is abnormally high relative to what is expected under the null of no causality.

Note that the p-values for other cross-sectional statistics, i.e., median, 1st and 3rd

quintiles, are all very low. Therefore, we infer that across the 120 stocks, there is

a pervasive pattern that the intensity of HFT Granger-causes institutional trading

cost.

On the other hand, as shown in Panel B of the table, the coefficient related to

the causality of ES on HFT, b21,i, has a small mean of 0.001; and the corresponding

t-statistic has a small mean of 0.039, with a bootstrapped p-value of 0.341. This

suggests that the mean of the sample t-statistic is within the normal range of what
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one would expect under the null of no causality. In addition, the p-values for the

median and 1st and 3rd quintiles are in the range of 0.14 to 0.70. Overall, this suggests

that there is no pervasive support to the hypothesis that institutional trading cost

Granger-causes HFT.

In sum, the Granger causality tests provide further confirmation that more

intensive HFT activities lead to an increase in institutional trading costs, but not

vice versa.

2.5 Further Analysis of HFT activities

The analysis in this section consists two parts. The first part includes two sets

of robustness results, based on the timing delay component of trading costs and on

trade-level regression analysis. The second part includes two sets of results on the

specific mechanisms through which HFT impacts institutional trading costs.

2.5.1 Robustness: Timing delay costs and trade-level regressions

I have provided evidence that intensive HFT activities lead to an increase in

institutional investors’ execution shortfall. This finding suggests that even though

HFT improves the overall market quality, as documented in current literature, it

causes additional trading costs for institutional investors. A natural question to ask

is whether improved market quality may benefit institutional investors in some other

ways, and to some extent offset the increase in trading costs. Considering the large

amount of quotes sent by HF traders, one possible benefit to institutional investors

may be that the costs incurred while waiting for liquidity may go down. Here, I

perform analysis to address this possibility.
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The cost incurred while seeking liquidity is known as timing delay in the

literature. The specific measure of the timing delay cost is defined in Equation (2.2).

To study the impact of HFT on timing delay, I estimate the following panel regression

model:

Timing Delayit = αi + yt + a× HFT Intensityit + b×Xit + εit (2.5)

where αi are the firm-fixed effects, the yt are day dummies, and HFT Intensityit

is the measure of daily HFT activity on stock i as describe in subsection 2.3.1,

Timing Delayit is the volume-weighted average timing delay of all institutional trades

on stock i at day t, and Xit represents the same set of control variables as in Equation

(2.3).

Table 7 presents the estimates of coefficients, with t-statistics computed using

the two-way (by stock and by day) clustered standard errors. The regression model

is estimated with both day dummies and firm-fixed effects. The coefficient of HFT

Intensity is insignificant, which suggests that after controlling for other economic

determinants of trading costs, HFT activity has no effect on the timing delay costs

of institutional investors. Thus, while HFT activity increases institutional investors’

execution shortfall, it does not provide the benefit of reduced timing delay costs.

So far, I conduct all the multivariate panel regression analyses at the stock-day

level, where execution shortfall costs are aggregated for each stock on each trading day.

The aggregation at stock-day level provides a strong indication that HFT increases

institutional trading costs. However, one factor may be missing in the analysis of the

data at the stock-day level, which is the difference in the trading skills of institutional
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investors. As pointed out by Anand et al. (2012), some institutions consistently

execute trades with lower execution shortfalls than the others. If trades are executed

by different institutions at different days on different stocks, the heterogeneity of

institutional trading skills likely influences the aggregated measure of trading costs at

stock-day level. To control for this factor, I estimate the following regression model

based on trade-level observations:

Execution Shortfalli,j,t = αj + γm + a× HFT Intensityit + b×Xit + εit (2.6)

where Execution Shortfalli,j,t is the execution shortfall of each trade (referred to as

a “ticket” in the Ancerno data) for stock i on day t by institution j. αj represents

the institution-fixed effects, and γm represents the time(month)-fixed effects. Xit

represents the same set of control variables as in Equation (2.3).

Table 8 presents the estimates of coefficients, with the t-statistics computed

using the two-way clustered standard errors. The coefficient of HFT Intensity is

positive and significant at the 1% level. This suggests that after controlling for het-

erogenous institutional trading skills, HFT increases execution shortfall at the trade

level, consistent with the conclusion drawn from stock-day level analysis.

2.5.2 When and how does HFT
impact institutional trading costs

In this subsection, I investigate two specific conjectures related to the mecha-

nisms via which HFT affects institutional trading costs. The first is that HFT may

profit from providing liquidity to institutions when the latter have large buy-sell im-

balance among themselves. The second is that HF traders front run institutional
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investors’ large trades.

I first investigate the possibility that HFT profits from providing liquidity to

traditional institutional investors when the latter have large trade imbalances. If this

notion of liquidity provision turns out to be true in the data, then the profits made by

HF traders in a way resemble the profits made by traditional market makers. After

all, electronic market making is an important form of HF strategies. However, even

in this case, it is important to question whether the liquidity provision by HFT comes

with extra costs to institutional investors, given the same level of trade imbalances

among the institutions.

To begin with, I compare the daily buy-sell imbalance of the two types of

investors–institutional investors and HF traders. I define the daily institutional im-

balance on each stock as the buy dollar volume minus sell dollar volume of all insti-

tutions (HF traders) normalized by the stock’s average daily trading volume over the

prior 30 days. Panel A of Table 9 presents the distribution of such buy-sell imbal-

ances for the sample stocks from 2008 to 2009. The table shows that while the daily

imbalance by traditional institutional investors exhibits large variations, the daily

imbalance for HF traders is mostly very close to zero. This contrast is consistent

with the notion that institutional investors trade on information or mispricing that

may pay off over a relatively long horizon, while HF traders profit mostly from price

swings at very short horizons.Both anecdotal evidence and academic researchers have

suggested that holding overnight positions can be very costly for HF traders (e.g.,

Menkveld (2010)).
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Next, I use sorted portfolios to examine the relation of institutional buy-sell

imbalance with both HFT activity and HFT buy-sell imbalance. Specifically, within

each of the three size group, I sort stocks into terciles based on institutional buy-sell

imbalance, and examine the average HFT Intensity and average HF buy-sell imbalance

across the nine groups.

Panel B and C of Table 9 report the average institutional buy-sell imbalance

and HFT buy-sell imbalance in each of the nine groups, respectively. The numbers

suggest that despite the large swings of institutional imbalances, the imbalances of

HF traders tend to be very small. This is consistent with the statistics reported in

Panel A on HF trade imbalances. Finally, Panel D shows that when institutions

exhibit buy-sell imbalance on either the buy or sell side, HFT Intensity becomes

higher relative to the case when institutional trades are balanced.

Combining results from all panels of Table 9, one can make the following

inferences. First, HFT becomes more active when institutions encounter large trade

imbalances; presumably this is consistent with a liquidity provision role played by HF

traders. However, the results in Panel C suggest that HF traders have minimum trade

imbalances at the end of a trading day. Thus, if they provide liquidity to institutions,

such liquidity provision is quite ephemeral – within a day, literally. Therefore, a more

accurate description of the liquidity provision role of HF traders is that they serve as

intra-day intermediaries and quickly pass the imbalances from institutions to other

market participants.

We then investigate another important question regarding the liquidity pro-
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vision role of HF traders. Our analysis in Table 3 shows that institutional trading

costs are higher when institutions face large trade imbalances. If the presence of HFT

reduces institutional trading costs on such occasions, then liquidity provision by HFT

has a socially beneficial element. On the other hand, if the presence of HFT increases

trading costs on such occasions, it is likely that HF traders are successful in taking

advantage of institutional investors when the latter face large trade imbalances.

To address this question, I examine the differential impact of HFT on execution

shortfall when institutions are net sellers, net buyers, or trading with relative balance.

Specifically, I divide all stock-days into three groups based on institutional buy-sell

imbalance, and then estimate the panel regression model specified in Equation (2.3)

within each group. The results are reported in Table 10. The first two columns of the

table report results when institutions are net selling. The coefficient of HFT Intensity

is negative but not significant at the 5% level, suggesting that HFT activity does not

hurt institutional investors significantly when the latter are net selling. The middle

two columns report results when institutional trading is relatively balanced. The

coefficient of HFT Intensity is 0.524 and significant at the 5% level, suggesting that

HFT activity significantly increases institutional investors’ trading costs when their

trading is balanced. The most striking results are reported in the last two columns,

for the case when institutional investors are net buyers. The coefficient of HFT

Intensity is 0.612 and significant at the 1% level, which suggests that the impact of

HFT activity on execution shortfall is most pronounced when institutional investors

are net buyers. Overall, there is no evidence that HFT helps reduce trading costs
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when institutional investors have large trade imbalances; rather, HF traders appear

to have successfully taken advantage of institutions when the latter are net buyers on

a stock, making their trades extra costly.

In sum, the evidence presented in this part of the analysis suggests that HFT

serves as a sort of intraday liquidity providers to institutions when the latter have

large buy-sell imbalance among themselves; however such liquidity provision is extra

costly to institutions, especially when they are net buyer of a stock.

I now turn to the second conjecture, that is, HF traders use certain strategies

(e.g., front-running) to take advantage of institutional investors and increase the

latter’s trading costs. Here, I rely on the non-randomness, or sequences and reversals,

of HF trade directions to detect the presence of HF strategies. For example, if HF

traders engage in electronic market making, a type of HFT strategy considered to

provide liquidity to the market, they have to buy and sell the same stocks very fast

so that one should observe rapid reversals of trade directions. In contrast, directional

trading strategies such as momentum ignition and front-running large institutional

orders typically involve long sequences of trades in the same direction.

The non-randomness of HF trading is tested using the runs test on all trades

made by HF traders on a stock on a given day. The runs test has been used in early

studies on the random walk properties of stock prices (e.g., Fama (1965) and Camp-

bell et al. (1970)). In the context of this study, I create a trading direction variable

that equals 1 if an HF trader is on the buy side of a trade and -1 otherwise. I then

use the runs statistic to test the null hypothesis of randomness in the sequence of HF
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trade directions at the stock-day level.10 A negative and significant runs test statis-

tic indicates frequent reversals in trade directions, an indication of market making

strategies in play. A positive and significant test statistic means the popularity of

sequential trades in the same direction, an indication directional trading strategies in

use.

Based on the one-way critical value at the 2.5% level (i.e., -1.96 and 1.96), I

identify 18506 cases at the stock-day level where the runs statistics are significantly

positive, 18195 cases where the runs statistics are significantly negative, and 18262

cases of insignificant runs statistics. This translates into approximately one-third of

stock-day cases where directional HF strategies are detected, and approximately one-

third of cases where market making strategies are detected. Such high frequencies

are striking; if HF trades are random, one would expect the significant cases to be

only 2.5% in each direction. Therefore, both market making and directional trading

are important strategies employed by HF traders.

The important question is what these strategies mean to the trading costs of

institutional investors. To address this question, I perform panel regressions following

the model specified in Equation (2.3), but separately for the cases where the runs tests

at stock-day level are significantly positive, significantly negative, and insignificant.

The results are presented in Table 11. First, as shown in the first two columns of

10Runs test is also known as the Wald-Wolfowitz test and is used to test the hypothesis
that a series of numbers is random. A run is a series of numbers below or above the
benchmark. The test statistic is: Z = (R − E(R))/

√
(V (R)), where R is the number or

runs, E(R) and V (R) are expectation and variance of R. The test statistic is asymptotically
normally distributed; see Wald and Wolfowitz (1940).



99

the table, when HF trades exhibit directional sequences (i.e., when the runs statistics

are significantly positive), the coefficient of HFT Intensity is 0.409, significant at the

1% level. This result indicates that HF traders’ use of directional trading strategies

significantly increases the execution shortfall of institutional investors. Second, as

shown in the middle two columns of the table, when HF trades exhibit frequent

reversals, the coefficient of HFT Intensity is 0.291, significant at the 5% level. This

suggests that the electronic market making strategies employed by HF traders also

increases institutional trading costs, although at a smaller magnitude relative to the

case when HF traders engage in direction trading. Finally, the results reported in

last two columns of the table show that when neither directional trading nor market

making strategies are detected (i.e., when the runs statistics are insignificant), HFT

Intensity does not have a significant impact on institutional trading costs (with a

coefficient of 0.196 and a t-statistic of 1.64).

2.6 Conclusions

This paper fills a gap in the literature by directly examining the impact of

HFT on the trading costs of institutional investors in the U.S. market. To establish

the relation, I first construct daily measures of trading costs and HFT activity during

2008 and 2009 from two datasets. I obtain daily measures of HFT activity from a

dataset of 120 stocks, representing a subset of HFT activity, which NASDAQ makes

available to academics. To measure trading costs I use a proprietary database of

institutional investors’ equity transactions compiled by Ancerno.

Using direct measures of institutional trading costs and daily HFT activity on
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each of 120 sample stocks, I conduct a sorted portfolio test and a panel regression

with control for various firm characteristics. I find strong evidence that an increase in

HFT is associated with an increase in the trading costs of institutional investors. The

regression result suggests that a one standard deviation increase of HFT activity leads

to an additional trading cost of more than $10,000 per day for an average institution

in the dataset. I also find that this incremental effect of HFT on execution shortfall

is stronger on smaller stocks.

I adopt a variety of approaches to rule out the alternative interpretation that it

is precisely when execution shortfall is high that it is more profitable for HF traders to

trade more aggressively. First, the sorted portfolio analysis indicates that HF traders

are most active in liquid stocks, rather than in illiquid stocks which tend to have

high trading costs. Second, I include firm- and time-fixed effects in the multivariate

regression specification, which helps ensure that unobserved slow-moving stock char-

acteristics and time-invariant factors do not cause the positive relationship between

HFT activity and execution shortfall. Third, I control for corporate events such as

earnings announcements and M&A announcements and the results still holds. Fourth,

I use the short selling ban imposed on financial stocks on September 19, 2008 as an

exogenous shock to execution shortfall. I find that for the stocks in my sample that

are subject to the short selling ban, HF traders’ market participation rate declined

while institutional trading costs rose sharply. Fifth, I apply the Granger causality test

to establish the direction of causality between HFT activity and execution shortfall.

The results provide further evidence that intensive HFT activity contributes to an
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increase in trading costs, but not vice versa.

I perform further analysis to understand the mechanisms via which HFT af-

fects institutional trading costs. My analysis shows that HFT provides liquidity to

the market when institutions have large trade imbalances. However, the liquidity

provision by HFT is short-lived as HF traders maintain zero open positions at mar-

ket close. And such liquidity provision proves particularly expensive for institutions

in terms of their trading costs. My analysis also shows the prevalence of both di-

rectional strategies and market making strategies used by HF traders. The presence

of either type of strategies results in increased institutional trading costs; but the

impact is most pronounced when the directional trading strategies are in use. This

lends support to the anecdotal observations among institutional investors that their

trades have been front-run by HF traders.

In sum, the evidence provided in this paper suggests a significant impact of

HFT on traditional institutional investors. An increase in HF traders’ participation

rate is associated with higher trading costs for institutional investors. This finding

underscores the need for further investigation into the broader impact of the rapid

growth in high frequency trading, particularly in terms of its implications for long

term investors.
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Table 2.1: Summary statistics

All Large Cap Mid Cap Small Cap
Average Market Capital ($billion) 17.500 46.780 1.590 0.400
Average HFT Total Trading Volume (million) 54.570 158.230 3.650 0.380
Average Execution Shortfall (%) 0.167 0.146 0.163 0.196
Amihud Illiquidity Ratio 0.006 7.6E-05 0.002 0.019
Average Institutional Order Size 244,286 487,871 154,823 63,943
Average Trades Per Order 2.303 3.126 1.861 1.850

Note: this table reports the averages of stock characteristics, HFT activity,
and execution shortfall of all stock-days, as well as the averages by market
capital, during the periods of 2008 and 2009. All the variables are measured
on a daily basis. Market Capitalization is a stock’s market value. HFT Total
Trading Volume is the daily total trading volume of HFT on a stock. Average
Execution Shortfall is the volume-weighted average execution shortfall of all
institutional trades on a stock. Amihud Illiquidity Ratio is the daily absolute
return divided by the dollar trading volume on that day. Average Institutional
Order Size is the average dollar volume of all institutional trades placed on a
stock. Average Trades Per Order is the average number of trades to complete
an order (“ticket”) on a stock.
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Table 2.2: Determinants of HFT

Dependent Variable HFT Intensity

Coefficient t-value

Intercept -0.179 (-3.65)
Log Market Cap 0.022 (6.75)
Book-to-Market Ratio -3.080 (-1.92)
Event Dummy 0.058 (10.89)
Daily Return Volatility 0.098 (1.98)
Prior 1-day Return 0.192 (6.83)
Prior 1-month Return -0.003 (-0.36)
Prior 12-month Return -0.010 (-2.69)
Amihud Illiquidity Ratio -0.570 (-3.20)
Daily Dollar Turnover 0.036 (3.18)
Average Institutional Order Size -0.161 (-1.69)
Absolute Institutional Imbalance 0.132 (3.80)
Average Trades Per Order 0.000 (2.06)
Prior 1-month Market Volatility -0.003 (-0.24)
Prior 1-day Market Return -0.376 (-3.98)

Day-fixed Effects No
Stock-fixed Effects No
Two-way Clustered Standard Deviations Yes
Adjusted R-squared (%) 29.2
Number of Observations 52809

Note: this table reports the determinants of HFT intensity based on panel regressions.
The dependent variable is HFT Intensity. The explanatory variables include the follow-
ing. Log Market Cap is the logarithm of a stock’s daily market capitalization. Book-
to-Market Ratio is the quarterly book-to-market ratio. Event Dummy is a dummy
variable that equals one for a stock within a 5-day window of corporate events (earnings
announcement or M&A announcement), and zero otherwise. Daily Return Volatility is
a stock’s annualized range based daily volatility. Prior 1-day Return is a stock’s lagged
daily return. Prior 1-month Return is a stock’s lagged monthly return. Prior 12-month
Return is a stock’s lagged 12 months return. Amihud Illiquidity Ratio is the ratio of
the daily absolute return to the dollar trading volume on a trading day. Daily Dollar
Turnover is a stock’s daily dollar trading volume scaled by the stock’s total shares out-
standing. Average Institutional Order Size is the average dollar volume of all tickets
placed on a stock on a trading day, scaled by the average trading volume of that stock
in prior 30 days. Absolute Institutional Imbalance is the absolute value of the daily
total dollar volume of all institutional buy trades minus that of all sell trades on a stock
on a trading day, scaled by the average trading volume of that stock in the past 30
days. Average Trades Per Order is the average number of trades to complete a trading
ticket on a stock for a trading day. Prior 1-month Market Volatility is the market’s
annualized monthly return volatility in prior month. Prior 1-day Market Return is the
market return in prior day. The t-statistics are computed using two-way (by stock and
by day) clustered standard errors.
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Table 2.3: HFT’s impact on Execution Shortfall

Dependent Variable Execution Shortfall Execution Shortfall

Coefficient t-value Coefficient t-value

Intercept 0.025 (0.24) -1.144 (-1.77)
HFT Intensity 0.336 (4.48) 0.309 (3.37)
Log Market Cap -0.004 (-0.66) 0.043 (1.08)
Book-to-Market Ratio -5.978 (-0.95) 6.303 (1.23)
Prior 1-day Return -0.072 (-0.24) -0.178 (-0.64)
Prior 1-month Return 0.017 (0.25) -0.037 (-0.69)
Prior 12-month Return 0.013 (0.92) -0.004 (-0.26)
Amihud Illiquidity Ratio 3.955 (3.14) 4.687 (3.36)
Daily Return Volatility 0.324 (1.42) 0.046 (0.30)
Daily Dollar Turnover -0.007 (-1.66) -0.001 (-0.19)
Average Institutional Order Size 0.743 (1.37) 0.735 (1.42)
Absolute Institutional Imbalance 0.271 (2.56) 0.281 (2.67)
Average Trades Per Order 0.000 (0.16) 0.000 (-0.44)
Prior 1-month Market Volatility 0.285 (3.24)
Prior 1-day Market Return -0.031 (-0.05)

Day-fixed Effects No Yes
Stock-fixed Effects No Yes
Two-way Clustered Standard Deviations Yes Yes
Adjusted R-squared (%) 0.69 3.47
(Number of Observations) 54963 54963

Note: this table reports the results of panel regressions that examine the impact of HFT
intensity on the execution shortfall costs of institutional investors. The dependent variable
is Execution Shortfall, the volume-weighted average execution shortfall of all institutional
trades on a stock for a trading day. The main explanatory variable, HFT Intensity, is the
total daily trading volume of HFT on a stock for a trading day scaled by the average trading
volume of that stock in the prior 30 days. The control variables include the following. Log
Market Cap is the logarithm of a stock’s daily market capitalization. Book-to-Market Ratio
is the quarterly book-to-market ratio. Stock Volatility is a stock’s annualized range based
daily volatility. Prior 1-day Return is a stock’s lagged daily return. Prior 1-month Return
is a stock’s lagged monthly return. Prior 12-month Return is a stock’s lagged 12 months
return. Amihud Illiquidity Ratio is the daily absolute return to the dollar trading volume
on that day. Dollar Turnover is a stock’s daily dollar trading volume scaled by the stock’s
total shares outstanding. Average Institutional Order Size is the average dollar volume of
all tickets placed on a stock, scaled by the average trading volume of that stock in prior
30 days. Absolute Institutional Imbalance is the absolute value of the daily total dollar
volume of all institutional buy tickets minus that of all sell tickets on a stock, scaled by
the average trading volume of that stock in the past 30 days. The first two columns report
the panel regression results with only day-fixed effects but no stock-fixed effects. The last
two columns report the panel regression results with both day- and stock-fixed effects. The
t-statistics are computed using two-way (by stock and by day) clustered standard errors.
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Table 2.4: HFT’s impact on execution shortfall across stock size

Dependent Variable Execution Shortfall

Large Stocks Mid Stocks Small Stocks

Coefficient t-value Coefficient t-value Coefficient t-value

Intercept -1.078 (-1.97) -1.101 (-1.32) -2.125 (-2.16)
HFT Intensity 0.188 (1.99) 0.152 (1.56) 0.622 (2.49)
Log Market Cap 0.063 (1.90) 0.059 (0.92) 0.145 (1.76)
Book-to-Market Ratio 114.861 (1.33) -46.562 (-0.97) 9.820 (1.75)
Prior 1-day Return -0.098 (-0.30) -0.402 (-1.23) -0.060 (-0.10)
Prior 1-month Return 0.083 (1.51) -0.105 (-1.33) -0.086 (-0.79)
Prior 12-month Return -0.012 (-0.41) 0.028 (1.06) -0.018 (-0.68)
Amihud Illiquidity Ratio 648.124 (4.25) 24.085 (4.19) 4.771 (3.32)
Daily Return Volatility -0.055 (-2.81) 0.203 (0.40) 0.157 (0.30)
Daily Dollar Turnover 0.004 (0.56) -0.002 (-0.07) -0.016 (-0.17)
Average Institutional Order Size 14.595 (2.26) 2.848 (1.86) 0.909 (1.72)
Absolute Institutional Imbalance 1.064 (5.26) 0.126 (0.81) 0.163 (1.05)
Average Trades Per Order -0.005 (-1.87) 0.007 (1.87) -0.007 (-1.39)

Day-fixed Effects Yes Yes Yes
Stock-fixed Effects Yes Yes Yes
Two-way Clustered Std. Yes Yes Yes
Adjusted R-squared (%) 4.54 4 5.79
Number of Observations 20119 18981 15863

Note: this table report the results of panel regressions that examine the differential impact
of HFT activity on execution shortfall for different stock size groups. The 120 stocks are
divided into three groups based on their market capitalizations. The baseline regression
model (as described in Table 3) is estimate within the three size groups, respectively. The
regression model is estimated with both day- and stock-fixed effects. The t-statistics are
computed using two-way (by stock and by day) clustered standard errors.
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Table 2.5: HFT’s impact on execution shortfall on event days and no-event days

Dependent Variable Execution Shortfall

Coefficient t-value

Intercept -1.129 -(1.74)
HFT Intensity × Event Dummy 0.155 (1.29)
HFT Intensity × No-Event Dummy 0.375 (3.88)
Event Dummy 0.058 (1.39)
Log Market Cap 0.041 (1.03)
Book-to-Market Ratio 6.284 (1.23)
Prior 1-day Return -0.181 -(0.65)
Prior 1-month Return -0.037 -(0.70)
Prior 12-month Return -0.005 -(0.31)
Amihud Illiquidity Ratio 4.711 (3.37)
Daily Return Volatility 0.039 (0.26)
Daily Dollar Turnover 0.002 (0.24)
Average Institutional Order Size 0.725 (1.40)
Absolute Institutional Imbalance 0.285 (2.69)
Average Trades Per Order 0.000 -(0.49)

Day-fixed Effects Yes
Stock-fixed Effects Yes
Two-way Clustered Standard Deviations Yes
Adjusted R-squared (%) 3.49
Number of Observations 54963

Note: this table reports the results of panel regressions that examine the dif-
ferential impact of HFT activity on the execution shortfall on days with and
without corporate events. Event Dummy is a dummy variable that equals one
for a stock within a 5-day corporate event window (earnings announcement or
M&A announcement), and zero otherwise. No-Event Dummy is a dummy vari-
able that equals zero for a stock not within a corporate event window, and zero
otherwise. All other variables are defined in Table 3. The regression model is
estimated with both day- and stock-fixed effects. The t-statistics are computed
using two-way (by stock and by day) clustered standard errors.
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Table 2.6: Granger causality

Panel A: Distribution of b12,i

Q1 Mean Median Q3

Sample Coefficients -0.215 0.317 0.117 0.486
Sample t-statistic (-0.456) (0.311) (0.265) (0.977)
Bootstraped p-value [0.043] [0.002] [0.010] [0.008]

Panel B: Distribution of b21,i

Q1 Mean Median Q3

Sample Coefficients -0.002 0.001 0.000 0.002
Sample t-statistic (-0.725) (0.039) (-0.031) (0.793)
Bootstraped p-value [0.695] [0.341] [0.583] [0.141]

Note: this table reports the result of the Granger-causality test on the relation
between HFT Intensity and Execution Shortfall. The following VAR(1) model
is estimated for each stock:(

ESi,t
HFTi,t

)
=
(
a1,i
a2,i

)
+
(
b11,i b12,i
b21,i b22,i

)(
ESi,t−1
HFTi,t−1

)
+
(
ε1,i,t
ε2,i,t

)
,

where ESi,t and HFTi,t are the Execution Shortfall and HFT Intensity for
stock i on day t, respectively. The table reports the cross-sectional distribution
(mean, median, the 1st and 3rd quartiles) of the coefficients b12,i and b21,i
across 120 stocks, and the cross-sectional distribution of the t-statistics for
these two coefficients. The p-values reported in the table are obtained via
a bootstrapping procedure to assess the statistical significance of these cross-
sectional statistics. The bootstraps are performed under the null of no causality
(i.e., b12,i = b21,i = 0) but retain the time-series persistence of each variables
in the sample, the correlations of the residuals ε1,i,t and ε2,i,t for a given stock,
as well as the cross-stock correlations of these residuals. The bootstrapped p-
values are calculated as the percentages of bootstrapped distributional statistics
(e.g., mean, median, Q1 and Q3) of the t-statistics for the estimated coefficients
exceed the corresponding sample distributional statistics.
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Table 2.7: HFT’s impact on timing delay costs

Dependent Variable Execution Shortfall

Coefficient t-value

Intercept -0.127 (-0.96)
HFT Intensity 0.115 (2.90)
Log Market Cap -0.005 (-1.35)
Book-to-Market Ratio -0.617 (-0.08)
Prior 1-day Return 0.165 (0.55)
Prior 1-month Return -0.020 (-0.28)
Prior 12-month Return 0.003 (0.27)
Amihud Illiquidity Ratio 2.543 (2.16)
Daily Return Volatility -0.073 (-0.60)
Daily Dollar Turnover -0.002 (-1.26)
Institutional Order Size 1.467 (6.58)
Absolute Institutional Imbalance 0.037 (0.57)
Trades Per Order 0.000 (0.01)

Month-fixed Effects Yes
Institution-fixed Effect Yes
Two-way Clustered Standard Deviations Yes
Adjusted R-squared (%) 1.13
Number of Observations 1689919

Note: this table reports the results of panel regressions that examine the im-
pact of HFT activity on the timing delay costs of institutional investors. The
dependent variable, Timing Delay Cost, is the volume-weighted average timing
delay costs of all institutional trades on a stock for a trading day. All the other
variables are defined in Table 3. The regression model is estimated with both
day- and stock-fixed effects. The t-statistics are computed using two-way (by
stock and by day) clustered standard errors.
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Table 2.8: Trade-level analysis of HFT’s impact on execution shortfall

Dependent Variable Execution Shortfall

Coefficient t-value

Intercept -0.127 (-0.96)
HFT Intensity 0.115 (2.90)
Log Market Cap -0.005 (-1.35)
Book-to-Market Ratio -0.617 (-0.08)
Prior 1-day Return 0.165 (0.55)
Prior 1-month Return -0.020 (-0.28)
Prior 12-month Return 0.003 (0.27)
Amihud Illiquidity Ratio 2.543 (2.16)
Daily Return Volatility -0.073 (-0.60)
Daily Dollar Turnover -0.002 (-1.26)
Institutional Order Size 1.467 (6.58)
Absolute Institutional Imbalance 0.037 (0.57)
Trades Per Order 0.000 (0.01)

Month-fixed Effects Yes
Institution-fixed Effect Yes
Two-way Clustered Standard Deviations Yes
Adjusted R-squared (%) 1.13
Number of Observations 1689919

Note: this table reports the results of trade-level panel regressions that examine
the impact of HFT activity on institutional execution shortfall. The dependent
variable, Execution Shortfall, is measured for each trade. Institutional Order
Size is the dollar volume of an institutional trading ticket, scaled by the average
trading volume of that stock in the past 30 days. Trades Per Order is number
of executions used to complete a ticket. All the other variables are the same
as described in Table 3. The linear regression model is estimated with both
month- and institution-fixed effects. The t-statistics are computed using two-
way clustered standard errors.
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Table 2.9: HFT and institutional buy-sell imbalances

Panel A: Distribution of HFT and institution buy-sell imbalance

Q1 Mean Median Q3

HFT Buy-Sell Imbalance -0.009 0.000 0.000 0.009
Institution Buy-Sell Imbalance -0.022 0.003 0.001 0.024

Panel B: Institutional buy-sell imbalance

Institutions net selling Institutions balanced Institutions net buying

Large Stocks -0.062 0.000 0.060
Mid Stocks -0.104 0.002 0.106
Small Stocks -0.116 0.002 0.138

Panel C: HFT Intensity

Institutions net selling Institutions balanced Institutions net buying

Large Stocks 0.246 0.226 0.255
Mid Stocks 0.171 0.151 0.166
Small Stocks 0.093 0.082 0.095

Panel D: HFT buy-sell imbalance

Institutions net selling Institutions balanced Institutions net buying

Large Stocks 0.001 0.000 -0.001
Mid Stocks 0.003 0.000 -0.002
Small Stocks 0.002 -0.001 -0.002

Note: this table reports the results of analysis on the relations among institutional
trade imbalances, HFT intensity, and HFT trade imbalances. Institutional (HFT)
trade imbalance is the buy volume minus sell volume of all institutions (HF traders)
normalized by the stock’s average daily trading volume over the prior 30 days. HFT
Intensity, is the total daily trading volume of HFT on a stock for a trading day scaled
by the average trading volume of that stock in the prior 30 days. Panel A reports
the sample distribution of institutional trade imbalances and HFT trade imbalances.
Panel B reports the institutional trade imbalances for nine groups of stocks classified
by size and institutional trade imbalances. Panel C report the HFT Intensity for the
same nine groups of stocks. Panel D reports the HFT trade imbalances for the same
nine groups of stocks.
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Table 2.11: Impact of HFT strategies on execution shortfall

Dependent Variable Execution Shortfall

Directional Market Making Random Walk

Coefficient t-value Coefficient t-value Coefficient t-value

Intercept 0.143 (0.14) 0.217 (-0.18) -1.371 (-1.44)
HFT Intensity 0.409 (2.60) 0.291 (1.94) 0.196 (1.64)
Log Market Cap -0.019 (-0.30) 0.054 (0.69) 0.093 (1.63)
Book-to-Market Ratio 10.538 (2.49) 2.742 (0.42) -2.678 (-0.15)
Prior 1-day Return 0.075 (0.21) -0.339 (-0.65) -0.316 (-0.66)
Prior 1-month Return -0.019 (-0.20) 0.046 (0.38) -0.130 (-1.48)
Prior 12-month Return 0.038 (1.38) 0.001 (0.03) -0.026 (-0.85)
Amihud Illiquidity Ratio 9.170 (4.61) 5.798 (2.43) 2.208 (1.09)
Daily Return Volatility -0.213 (-1.41) 0.172 (0.69) 0.223 (0.62)
Daily Dollar Turnover -0.024 (-1.70) 0.004 (0.43) 0.010 (0.92)
Average Institutional Order Size 1.275 (0.95) -0.903 (-1.45) 1.525 (2.95)
Absolute Institutional Imbalance 0.220 (1.18) 0.595 (3.83) 0.135 (0.88)
Average Trades Per Order 0.000 (-0.53) 0.000 (-0.20) -0.001 (-0.39)

Day-fixed Effects Yes Yes Yes
Stock-fixed Effects Yes Yes Yes
Two-way Clustered Std. Yes Yes Yes
Adjusted R-squared (%) 3.45 4.02 3.98
Number of Observations 18506 18195 18262

Note: this table reports the results of panel regressions that examine the differential
impact of HFT on execution shortfall when different types of HF strategies are in
detected. Stock-day observations are divided into three groups based on the non-
randomness of HF trades. The non-randomness of HF trades is measured by runs
tests on all HF trades on a stock on a given day. The regression model (as described
in Table 3) is estimate within each group, respectively, with both day- and stock-fixed
effects. The t-statistics are computed using two-way (by stock and by day) clustered
standard errors.
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Figure 2.1: Relation between HFT intensity and liquidity.
Note: this figure plots the HFT Intensity for different levels of liquidity in each of
the three size groups. Liquidity is measured by Amihud Illiquidity Ratio. HFT
Intensity is the total daily trading volume that HFT involves on a stock scaled
by the average trading volume of that stock in the prior 30 days. Each day,
I sort all stocks into three portfolios based on their size. Then each portfolio
is further divided into three groups based on Amihud Illiquidity Ratio. The
columns in the figure represent the average HFT Intensity in each group.
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Figure 2.2: Relation between liquidity and execution shortfall
Note: this figure plots the Execution Shortfall for different levels of liquidity
in each of the three size groups. Liquidity is measured by Amihud Illiquidity
Ratio. Execution Shortfall is the volume-weighted average execution shortfall
of all institutional trading tickets on a stock. Each day, I sort all stocks into
three portfolios based on their size. Then each portfolio is further divided into
three groups based on the Amihud Illiquidity Ratio. The columns in the figure
represent the average Execution Shortfall in each group.
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Figure 2.3: Relation between HFT intensity and execution shortfall
Note: this figure plots the Execution Shortfall for different levels of HFT Inten-
sity in each of the three size groups. Execution Shortfall and HFT Intensity are
defined in Figure 1 and 2. Each day, I sort all stocks into three portfolios based
on their size. Then each portfolio is further divided into three groups based
on HFT Intensity. The columns in the figure represent the average Execution
Shortfall in each group.
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Figure 2.4: Execution shortfall around the Short-selling Ban of September 18, 2008
Note: this figure plots the time-series of the average Execution Shortfall for
banned and unbanned stocks around the short selling ban period from Septem-
ber 18, 2008 to October 8, 2008. Execution Shortfall is the volume-weighted
average execution shortfall of all institutional trading tickets on a stock. There
are 13 stocks in my sample in the initial short selling ban list on 9/18/2008. On
9/22/2008, the list expanded to cover 16 stocks in the sample, and one more
stock was added to the list on 9/23/2008.
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Figure 2.5: HFT activity around the Short-selling Ban of the September 18, 2008
Note: this figure plots the time-series of the average HFT Intensity for banned
and unbanned stocks around the Short-selling Ban period from September 18,
2008 to October 8, 2008.
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CHAPTER 3
MUTUAL FUND TOURNAMENTS AND FUND ACTIVE SHARE

3.1 Introduction

The tendency to chase past performance is one of the best known facts re-

garding the behavior of mutual fund investors.1 Funds with superior relative perfor-

mance within a category attract the lion’s share of the cash inflows in the future.

Consequently, economists have often viewed the competition in the fund industry

as a tournament in which players are competing with each other for investor cash

flows. A number of papers provide empirical evidence on the incentive effects of this

tournament-like competition among funds. For example, Brown et al. (1996) find

that funds that trail at the half-year mark tend to subsequently increase the volatil-

ity of their portfolios. Similarly, Chevalier and Ellison (1997) study the relationship

between fund flows and past performance of mutual funds and conclude that the flow-

performance relationship provides incentives for the funds to alter the risk of their

portfolios at the interim stage.2

The more recent evidence on this issue, however, casts doubt on the earlier

findings with respect to the adverse risk-taking incentives in mutual funds. For ex-

ample, Busse (2001) analyzes daily returns for a sample of 230 equity funds over the

period 1985–1995, but fails to find support for the hypothesis that fund managers

1A number of studies have documented a strong positive relation between a fund’s past
performance and its future fund inflows. See, for example, Ippolito (1992), Chevalier and
Ellison (1997), Sirri and Tufano (1998), and Sapp and Tiwari (2004).

2See, also, Koski and Pontiff (1999).
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actively alter the risk of their portfolios in response to past performance. However,

he recognizes that “uncovering a more complex behavior pattern should be a fruitful

area for future research” (p. 73). In this paper we re-examine the incentive effects

created by the fund flow-performance relationship. We first analyze a simple model

which suggests that the trailing funds have an incentive to strategically deviate from

their relevant benchmark, while the leading funds have a similar incentive to closely

track their respective benchmarks’ allocation weights. The model suggests a direct

measure of the extent of risk-taking by a fund, namely, a fund’s Active Share.3 Unlike

the noisy measures of risk estimated from fund returns that are employed in earlier

studies, the Active Share is a direct measure constructed from portfolio holdings, of

the strategic (risk) choice of the fund manager. We find that consistent with our the-

oretical model, the empirical results confirm that the risk-taking incentives of fund

managers are a function of (a) the fund cash flow sensitivity to past performance,

i.e., the strength of the tournament effect, and (b) the magnitude of the interim

performance gap separating the funds.

As a first step, we develop a framework to analyze the risk-taking incentives

of fund managers. We consider a model in which two risk-neutral fund managers

with exogenously determined unequal performances at an interim stage, compete for

investor cash flows. Given the unequal performances of the managers at the interim

stage, we may think of one manager as the interim winner, and the other as the

3The Active Share measure, proposed by Cremers and Petajisto (2009) is discussed in
more detail in Section II.
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interim loser. Managers’ compensation is assumed to be a fixed proportion of the

assets under management. Each manager has the choice of investing in a market

index in addition to a security that represents pure idiosyncratic risk. Our focus is

on the portfolio choices made by the two managers after they observe their interim

performances.

We show that there exists an equilibrium in which it is optimal for the fund

manager who is trailing behind at the interim stage (i.e., the interim loser) to increase

the activeness of her portfolio by reducing the exposure to the market index. The

intuition for the portfolio choices made by the two managers after their interim perfor-

mance records become known is straightforward. The interim winner fund manager

has an incentive to try to “lock in” her gains by maintaining an indexed position

after it becomes known that she is ahead of her competitor. On the other hand,

the optimal policy for the interim loser manager is to hold a portfolio that differs

from that of the interim winner, as that is the only way she can hope to make up

the initial performance shortfall. Importantly, our result regarding the interim loser

manager’s incentive to increase her portfolio’s activeness differs from the previous

empirical studies (e.g., Brown et al. (1996)) whose primary focus is on the interim

loser’s incentives to increase the total volatility of her portfolio.

Our theoretical analysis yields a number of testable predictions. In particular,

it suggests that the increase in the activeness of the interim loser manager’s portfolio

is directly related to the magnitude of the performance gap at the interim stage, and to

the strength of the investor (cash flow) response to the relative performance rankings
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of the funds (i.e., the strength of the tournament effect). The analysis also suggests

that the incentive to increase active risk following poor performance is meaningful for

only those funds that are within striking distance of the winning fund(s) at the interim

evaluation stage, i.e., for funds for whom the performance deficit is not excessively

large.

We use quarterly data for a sample of domestic stock funds for the period

1990-2008 obtained from the CRSP Survivor-Bias Free US Mutual Fund Database

and the Active Share data 4 to test the key implications of our basic model. The

funds in the sample are grouped into five categories, namely, Aggressive Growth

(AGG), Growth (GRO), Growth and Income (GI), Income (I) and others. We use

the change in the funds’ Active Share measures during the last quarter of a particular

year to capture their risk shifting incentives. The empirical evidence suggests that,

consistent with the model, changes in the Active Share of the funds are negatively

related to their relative return performance at the interim evaluation stage. The

relationship is statistically significant for all funds and is more pronounced for funds

with the greatest cash flow sensitivity to performance, namely, Aggressive Growth

funds, as well as for the Growth funds. Our findings confirm that the incentives of

fund managers to strategically change their portfolio risk profiles are related to the

strength of the investor (cash flow) response to the relative performance rankings

of the funds (i.e., the strength of the tournament effect). These results are broadly

4The Active Share data is constructed by Cremers and Petajisto (2009) and updated by
Petajisto (2013). It can be downloaded at: http://www.petajisto.net/data.html.
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consistent with the implications of our theoretical analysis. They also suggest that

the failure to control for the performance gap at the interim evaluation stage, as well

the use of noisy risk measures, may help explain the conflicting results in the earlier

studies.

Our study contributes to a growing literature that examines managerial in-

centives and investor behavior in the mutual fund industry. On the theoretical front,

a number of recent studies analyze the incentives facing mutual fund managers in a

“tournament” framework (see, e.g., Bagnoli and Watts (2000), Goriaev et al. (2003),

and Taylor (2003)). Our basic model is closest in spirit to that of Taylor (2003) who

develops a model of a mutual fund tournament in which two fund managers with

unequal midyear performances compete for new cash inflows. Taylor derives a mixed-

strategy equilibrium for the case when both funds are actively managed. The pure

strategies that are the basis for the mixed-strategies are those of the extreme form,

i.e., they involve investing fully in risky assets or investing fully in the risk-free asset.

In contrast, we allow the fund managers the option to take on idiosyncratic risk in

addition to investing in the market portfolio and the risk free asset, and focus on the

pure strategies equilibrium.

The use of tournaments involving relative performance evaluation as incentive

devices has been studied by Lazear and Rosen (1981), Green and Stokey (1983),

Nalebuff and Stiglitz (1983) and Meyer and Vickers (1997), among others.5 Our study

5Lazear and Rosen (1981) examine the efficiency of three compensation schemes, namely,
a linear piece rate, comparison against a fixed benchmark, and a tournament, in the context
of labor contracts. In their modeling framework the output of each agent consists of the
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complements this literature by focusing on a setting that involves explicit incentives

for fund managers as well as the implicit incentives generated by the cash flow-

performance relationship.

Other relevant papers in this area include Chen and Pennacchi (1996), Hu

et al. (2011), and Basak et al. (2000). In the analytical framework of these papers,

managers performance is measured against a benchmark. In this sense, the modeling

framework of these papers does not involve a tournament structure within which

competition among the players is a key feature and relative performance among peers

is used in determining the reward. The model presented in this paper on the other

hand, is based on a tournament structure of competition among fund managers.

The rest of the paper proceeds as follows. Section II discusses the Active Share

measure employed in the study. Section III presents the theoretical model. Section

IV presents empirical evidence on the key implications of our model while Section V

offers concluding remarks.

3.2 Active Share

The Active Share measure, originally proposed by Cremers and Petajisto

(2009), captures the degree of active stock selection by a fund manager. In essence,

Active Share is the difference in the portfolio weights between a fund’s portfolio

holdings and its benchmark index. Thus, when a fund manager overweights (or un-

derweights) a particular stock compared with the benchmark index, she is taking an

agent specific effort and an additive common shock. They show that the tournament scheme
is the most efficient contracting arrangement when the variance of the common shock is
relatively high.
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active long (or short) position on the stock. Active Share is formally defined as:

Active Sharei,t =
1

2

N∑
j=1

∣∣ωj,i,t − ωj,indexi,t∣∣, (3.1)

where ωj,i,t and ωj,indexi,t are the portfolio weights of asset j in fund i and in the index

of fund i in quarter t, and the sum is taken over all assets. A fund’s benchmark

index is defined as the index that produces the lowest Active Share. In total, there

are 19 indices considered: the S&P 500, S&P 400, S&P 600, S&P 500/Barra Value,

S&P 500/Barra Growth, Russell 1000, Russell 2000, Russell 3000, Russell Midcap,

the value and growth components of the four Russell indexes (i.e., eight Russell style

indexes), Wilshire 5000, and Wilshire 4500.

A fund’s Tracking Error is traditionally used to capture the activeness of fund

management. Unlike Active Share which measures active stock picking, Tracking

Error captures the activeness in factor timing. It is defined as the volatility of the

difference between a fund’s return and its benchmark index return. For example, a

portfolio that concentrates on a particular industry or sector is associated with high

Tracking Error. Following Cremers and Petajisto (2009), Tracking Error is defined as

the standard deviation of the residual, εi,t, estimated from the following regression:

Ri,t −Rf,t = αi + βi(Rindexi,t −Rf,t) + εi,t, (3.2)

where Ri,t, Rf,t, and Rindexi,t are daily fund, risk-free, and index returns, respectively,

for fund i over a six-month period before each quarterly portfolio holdings are re-

ported. Quarterly Tracking Error is the annualized standard deviation of the error

term.
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Active Share and Tracking Error measure different aspects of active manage-

ment. These two measures capture two different types of deviation from the passive

benchmark index. For example, a fund that actively picks individual stocks within

each industry but also has a highly diversified portfolio across industries would have a

high Active Share but a low Tracking Error. However, a fund that focuses on actively

rotating across sectors or industries while holding diversified (or passive) positions

within those sectors or industries would typically have a high Tracking Error but a

low Active Share.

3.3 The Model

Consistent with theoretical studies in the area, we begin our analysis by con-

sidering a one-period model in which we explore the nature of managerial risk-taking

incentives and the implications for portfolio performance when portfolio managers are

faced with investors who chase recent performance. We further assume that there is

no asymmetric information.

3.3.1 Model Structure

Consider two risk neutral managers who manage a pool of assets for a single

period. Let the single period be divided into two (not necessarily equal) sub-periods

(indexed by dates t = 0 to t = 1, and t = 1 to t = 2), with the end of the first

sub-period marking an interim evaluation stage at which managers observe their

performances to date, and make portfolio choices for the second sub-period. Figure 1

contains a timeline representing the sequence of events. Let mg and mb be the year-

to-date cumulative return performances of the two managers at the end of the first
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sub-period (i.e., at the interim evaluation stage), with the assumption that mg > mb.

Based on their relative performances in the first sub-period, we denote manager g (b)

a “winning” (“losing”) manager. Let the performance gap between manager g and

manager b at the interim stage (date t = l) be denoted by mδ, where mδ = mg −mb.

We assume that both managers begin with an asset base of size s at date t = 0.

At date t = 2, the manager with the higher average return over the two sub-periods

realizes additional fund inflows. We use notation λ, to denote the relative size of this

additional fund inflow with respect to the original asset base, s. In other words, we

assume that there is a group of investors, with aggregate wealth λs, who chase the

winner fund. We further assume that managers are paid a fixed percentage k of the

assets under their management at date t = 2.6 Hence, each manager’s objective is to

enlarge the size of their asset base which can be achieved by earning a higher return

over the single period and by attracting the performance chasing investors at the end

of the period.

Each manager faces an identical structure of investment opportunity that con-

sists of a risk-free asset with return Rf > 0, and a market index portfolio with re-

turn Rm, which represents the manager’s passive strategy. Furthermore, we model

the manager’s active investment by assuming that she can invest in a fund-specific

6This assumption appears reasonable even though until the SEC rule changed in the
sense that the terms of the employment contract of the fund portfolio managers were not
required to be publicly disclosed. However, it is well known that the vast majority of
Investment Advisory firm fee contracts are based solely on assets under management (see,
for example, Deli (2002)). It is reasonable to expect that a fund manager’s compensation
will have a positive correlation with the profits of the Investment Advisory firm that employs
her.
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active-managed portfolio. Let Rg denote the random return realized by the active

portfolio chosen by the winning manager and let Rb be the random return realized

by the active portfolio chosen by the losing manager. We assume Rm, Rg, and Rb are

mutually independent normal random variables, where Rm ∼ N (µ, σm) with µ > Rf ,

and Rg, Rb ∼ N (Rf , σi). The properties of the asset returns are public knowledge,

so neither manager possesses superior knowledge.7

3.3.2 Analysis of the Model

We now focus on the portfolio choices made by each manager at the start of

the second sub-period. Manager g’s portfolio allocation decision is characterized by

αg =

[
αg1
αg2

]
≥ 0, with αg1 + αg2 ≤ 1, where αg1 is the proportion of the total assets

she decides to invest in the market index portfolio, αg2 is the proportion invested in

the actively managed portfolio, and 1 − (αg1 + αg2) is the proportion invested in the

risk-free asset. Similarly manager b’s decision is characterized by αb =

[
αb1
αb2

]
≥ 0,

with αb1 + αb2 ≤ 1.8 Since the portfolio allocation to the actively managed portfolio

represents the deviation from the passive strategy for a fund, it can be naturally

interpreted as the fund’s Active Share.

At the end of the single period, one of the two funds will end up with a higher

average return measured over the two sub-periods, and become the ultimate “winner”

7While the assumption that managers do not possess superior information, is certainly
consistent with empirical evidence on the performance of actively managed funds (see,
for example Jensen (1968), Gruber (1996), Grinblatt and Titman (1992), Carhart (1997),
among others), it is not critical for our analysis. Our results hold as long as the two
managers do not differ in their abilities.

8Consistent with the restrictions facing the typical mutual fund, we disallow short sales.
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of the tournament. For the “winner” of the tournament, the end-of-period asset base

under management will grow not only by the rate of the portfolio return, but also by

an additional amount of λs. The “loser” fund will not get any additional cash inflow.

We use an indicator variable, 1[αg, αb], to indicate the event that manager g wins

the tournament. That is, the indicator variable equals 1 when manager g ends up as

the ultimate winner and it equals 0 when manager b ends up as the ultimate winner.

Formally, we have

1[αg, αb] = 1 iff
mg + αg1(Rm −Rf ) + αg2(Rg −Rf )

2
>
mb + αb1(Rm −Rf ) + αb2(Rb −Rf )

2

1[αg, αb] = 0 otherwise.

The managers’ end-of-period compensation is k times the end-of-period asset

base:

Cg = ks
(
(1 +mg) (1 +Rf + αg1(Rm −Rf ) + αg2(Rg −Rf )) + λ1[αg, αb]

)
, (3.3)

and

Cb = ks
(
(1 +mb)

(
1 +Rf + αb1(Rm −Rf ) + αb2(Rb −Rf )

)
+ λ

(
1− 1[αg, αb]

))
.

(3.4)

It is straightforward to note that

E[1] = Φ

 mδ + (αg1 − αb1)(µ−Rf )√
(αg2

2 + αb2
2
)σ2

i + (αg1 − αb1)2σ2
m

 , (3.5)

where Φ(·) denotes the cumulative distribution function of the standard normal vari-

able. We note that the above expression represents the probability of manager g
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finishing the game as the ultimate winner. In the subsequent discussion we use the

notation φ(·) to denote the standard normal probability density function.

Since the constant k (proportional management fee charged by the managers)

and s (the initial size of each fund) have no bearing on a manager’s strategy, we

will assume in this section, for brevity, that ks = 1. We now consider the expected

utility of the two managers for a strategies pair {αg, αb} =

{[
αg1
αg2

]
,

[
αb1
αb2

]}
. The

winning manager’s expected utility is given by

Ug(α
g, αb) = (1+mg) (1 +Rf + αg1(µ−Rf ))+λΦ

 mδ + (αg1 − αb1)(µ−Rf )√
(αg2

2 + αb2
2
)σ2

i + (αg1 − αb1)2σ2
m

 ,

(3.6)

and the losing manager’s expected utility is

Ub(α
g, αb) = (1+mb)(1+Rf+α

b
1(µ−Rf ))+λ−λΦ

 mδ + (αg1 − αb1)(µ−Rf )√
(αg2

2 + αb2
2
)σ2

i + (αg1 − αb1)2σ2
m

 .

(3.7)

Manager b chooses αb to maximize her expected utility given by Equation (3.7). The

following result characterizes the portfolio choices made by the two managers at date

t = 1, in equilibrium.

Proposition 3. In equilibrium, αg1 > αb1, where the equality holds only when αg1 =
αb1 = 1. Moreover, αg2 = 0 and αb1 + αb2 = 1.

Proof. See Appendix B.

Proposition 1 establishes that, in equilibrium, (a) manager g (i.e., the winning

manager at the interim stage) will invest a proportion of her portfolio in the market

index that is at least as large as the corresponding proportion chosen by manager b,

(b) manager g’s portfolio will be completely passive, i.e., her portfolio’s Active Share
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would be zero, and (c) manager b will choose to not invest in the risk free asset. We

also note that the manager g will always desire a portfolio allocation to the market

index that is strictly greater than the manager b’s allocation to the market index when

the short sale constraint is not binding. Intuitively, the manager who is ahead at the

interim stage (date t = 1) would like to “lock in” her gains while the interim loser

attempts to increase her portfolio’s activeness in an attempt to take on some side bet

by increasing the Active Share in her portfolio. Note that in our setting the interim

loser fund has no incentive to increase her portfolio’s systematic risk. The intuition

for this result is that the only way for the loser fund to catch up to (and possibly

surpass) the winner fund is to hold a portfolio that is different from that held by the

winner fund. Given the winner fund manager’s incentive to hold an indexed position,

the loser fund manager attempts to take on risk that is fund-specific, and the natural

way to do so is by increasing Active Share. Our result that the interim loser fund

manager has an incentive to increase Active Shares is different from earlier studies

(e.g., Taylor (2003)) that focus primarily on the losing fund manager’s incentive to

affect the total volatility of her portfolio. In our model, the total volatility of the

loser fund may be either higher or lower than the winner fund.
The following lemma further describes the equilibrium in terms of the optimal

portfolio allocations, α∗g, and α∗b .

Lemma 1. In equilibrium either αg∗ =
[

1
0

]
, or αb

∗
=
[

0
1

]
, or both.

Proof. See Appendix B.

We focus on the equilibrium with αg∗ =

[
1
0

]
. Later, we provide a sufficient
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condition for this to be the case. We make the following assumption that

(1 +mb)(µ−Rf ) ≥ λφ

(
mδ√
σ2
i + σ2

m

+
µ−Rf√
σ2
i + σ2

m

)
mδ√
σ2
i + σ2

m

. (3.8)

The left hand side of the above inequality is the expected rate of increase of manager

b’s assets if the manager chooses to increase her allocation to the market index port-

folio, and the right hand side represents the additional reward the manager expects to

get for having a larger chance of winning the tournament by lowering the allocation

to the market index. Intuitively, the above assumption states that the tournament

effect is not so overwhelming that manager b would want to go to the extreme of

allocating 100% of her portfolio to the idiosyncratic risky asset in order to win the

tournament. Inequality (8) is equivalent to

∂

∂αb1
Ub

αg =

[
1
0

]
, αb =

[
αb1

1− αb1

] ∣∣∣∣∣
αb1=0+


= (1 +ml)(µ−Rf )− λΦ

(
mδ√
σ2
i + σ2

m

+
µ−Rf√
σ2
i + σ2

m

)
mδ√
σ2
i + σ2

m

> 0. (3.9)

Thus, the assumption represented by inequality (8) ensures that the interim loser

fund has a non-zero allocation to the market index (i.e., αb1
∗
> 0 ) in the equilibrium.

We next have the following statement regarding the existence of an equilib-
rium.

Proposition 4. In the case that mδ√
σ2
i+σ

2
m

≥ C1, the pair

{
αg∗ =

[
1
0

]
, αb
∗

=
[

1
0

]}
constitutes a Nash equilibrium where C1 ∝ λ (see Appendix B for the definition of
C1).

Proof. See Appendix B.

Proposition 2 states that if the interim performance gap, mδ, is larger than

C1

√
σ2
i + σ2

m, it will be optimal for manager b to choose strategy αb =

[
1
0

]
. As a
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result, her chance of winning the tournament is exactly zero. Essentially this means

that manager b withdraws from the tournament. The intuition for this outcome is

as follows. When the performance gap is large, the chance for manager b to make

up such a large gap before the end of the game is so slim that she simply gives up

and decides instead to focus on the reward from the linear employment contract.

Moreover, the bound on the size of the performance gap is proportional to λ, the

reward from winning the tournament in the form of the end-of-period cash inflow.

Intuitively, the higher the potential reward for winning the tournament, the stronger

the desire for manager b to stay on and compete in the tournament. Given a large

enough value of λ, she might still consider participating in the tournament even when

she is lagging behind significantly at the interim stage.
The following proposition establishes a link between manager b’s allocation to

the idiosyncratic risky asset and the strength of the tournament effect captured by
λ, and the interim performance gap, mδ.

Proposition 5. In case that αg
∗ =

[
1
0

]
, and αb1

∗
< 1, we have ∂

∂λ
(1 − αb1

∗
) > 0,

and ∂
∂mδ

Φ

(
mδ√
σ2
i+σ

2
m

1
1−αb1

∗ +
(µ−Rf )√
σ2
i+σ

2
m

)
> 0.

Proof. See Appendix B.

Proposition 3 implies that when αb
∗

=

[
αb1
∗

1− αb1
∗

]
is manager b’s optimal

response with αb1
∗
< 1, the higher the stakes in the tournament (i.e. the larger value

of λ), the greater the Active Share in manager b’s portfolio (i.e. higher αb2). Hence,

the interim loser manager’s propensity to increase Active Share is directly related to

the strength of the tournament effect. The above proposition also points out that in

the equilibrium, everything else equal, the larger the lead enjoyed by manager g at

the interim stage of the game (date t = 1), the greater the probability of manager g
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finishing the game as the ultimate winner, after taking into consideration the losing

manager’s incentive of increasing Active Share.

Thus far, our discussion of the equilibrium is based on the assumption that it

exists. The following theorem establishes the existence of the equilibrium under the

condition that the interim performance gap (i.e. mδ) between the two managers is

not too large.

Theorem 1. There is a positive value C that depends on other parameters except

mδ, such that if mδ < C
√
σ2
i + σ2

m, the pair
{
αg∗ =

[
1
0

]
, αb
∗

=

[
αb1
∗

1− αb1
∗

]}
will

be an equilibrium, where αb1
∗

= 1 − 1
x1

. Furthermore, 0 < αb1
∗
< 1,

∂(1−αb1
∗
)

∂mδ
> 0 and

limmδ→0+(1− αb1
∗
) = 0. To be exact, we have that 1− αb1

∗
= O(

√
mδ).

Proof. See Appendix B for a more precise version of the theorem and the proof. Also

notice that under the condition of the theorem, the claims made in Proposition 1 and

3 are true.

Corollary 2. The Sharpe Ratio of fund b is lower than that of fund g, and it is
decreasing with respect to mδ and λ.

Proof. See Appendix B.

In addition to assuring the existence of the equilibrium, this theorem also

points out that manager b’s Active Share is an increasing function of the interim

performance gap, mδ. That is, the larger the gap, the more the aggressive is manager

b’s Active Share. As the performance gap approaches zero, manager b’s Active Share

also approaches zero. Furthermore, the corollary to the theorem shows that the

interim loser fund has a lower Sharpe ratio compared to the interim winner fund.

That is, the tournament-driven Active Share is not beneficial to the fund investors in

our model.
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3.4 Empirical Evidence

Our analysis provides a number of testable predictions relating to the risk-

taking incentives of fund managers. In particular, our results suggest that the increase

in the Active Share of the interim loser manager’s portfolio is directly related to the

magnitude of the performance gap at the interim stage, and to the strength of the

investor (cash flow) response to the relative performance rankings of the funds (i.e.,

the strength of the tournament effect). We now examine the empirical evidence on

these issues.

3.4.1 Data and Sample Description

To test the key implications of our basic model, we use quarterly data for a

sample of domestic stock funds for the period 1990-2008 constructed by Cremers and

Petajisto (2009) and updated by Petajisto (2013), which includes information on the

funds’ Active Share, self-reported Active Share, Tracking Error, etc.9 The dataset is

available from 1980 to the third quarter of 2009. Since our tests require data to be

available for an entire year, and the Active Share for all funds was very high in the

1980s (see Cremers and Petajisto (2009)), we restrict our sample period to be 1990-

2008. We use data from the Center for Research in Security Prices (CRSP) Survivor-

ship Bias Free Mutual Fund Database, which includes information on the funds’ total

net assets (TNA), returns and characteristics. During the 1990s, mutual funds started

to offer different share classes that represent claims to the same underlying portfolios

9The dataset can be downloaded at: http://www.petajisto.net/data.html. See Petajisto
(2013) for details of the data construction.
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but with different fee structures. The Active Share database reports data for each

fund. As noted in the CRSP mutual fund manual, however, CRSP treats each share

class as a stand-alone fund and assigns it a separate fund identification number. To

merge these two databases, we aggregate across all share classes for each fund: the net

returns and expenses of the funds are calculated as TNA-weighted averages across

all share classes; the TNA are calculated as the sum across all share classes; the

age of the oldest share class of a fund represents the fund’s age; the category of the

largest share class is the category of the fund. We classify funds into five categories

based on their objective codes:10 aggressive growth (AGG), growth (GRO), growth

and income, income and others. From this group of funds we exclude all stock index

funds as the incentives of their fund managers and investors are quite different from

that of the participants in active funds. Our final sample contains 2,202 fund-entities

comprising 15,641 fund-years. Of them, 1,104 funds fall into the category of AGG

and GRO.

Table 3.1 presents the characteristics of the funds in the sample. In an average

quarter, the sample includes 813 funds with average total net assets (TNA) of $1037.46

10We categorize funds according to the following criteria. First, funds with Lipper objec-
tive codes G, LCGE, MCGE, MLGE, SCGE, with Wiesenberger objective codes G, G-S,
S-G, GRO, LTG, SCG, or with Strategic Insight objective codes GRO, SCG are classified
as growth funds. Second, funds with Wiesenberger objective code AGG or with Strategic
Insight objective code AGG are classified as aggressive growth. Third, funds with Lipper
objective code GI, with Wiesenberger objective codes G-I-S, G-S-I, I-G, I-G-S, GCI, G-I,
I-S-G, S-G-I, S-I-G, GRI, or with Strategic Insight objective code GRI are classified as
growth and income funds. Fourth, funds with Lipper objective codes EI, EIEI, I, with
Wiesenberger objective codes I, I-S, IEQ, ING, or with Strategic Insight objective codes
ING are classified as income funds. Fifth, all the other actively managed equity funds in
our sample are classified as others.
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million. Among them, there are 423 funds that fall into the category of AGG and

GRO. The average Active Share for the entire sample is 79.7% and it is 82.1% for

AGG and GRO funds.

3.4.2 Evidence of Performance Chasing Behavior by Investors

A number of previous studies have documented evidence of performance chas-

ing behavior by fund investors. We begin our analysis by confirming this behavior

in our sample using a cross-sectional regression framework. We examine quarterly

cross-sectional regressions of the normalized cash flow experienced by a fund on sev-

eral factors known to influence fund flows. The net cash flow to fund i during quarter

t is measured as follows:

Flowi,t =
TNAi,t − TNAi,t−1(1 +Ri,t)

TNAi,t−1
, (3.10)

where Ri,t denotes fund i′s return during quarter t, and TNAi,t is the fund’s total net

asset value at the end of quarter t. Thus, our definition of flows reflects the percentage

growth of the fund’s assets in quarter t. The independent variables used in the

regressions include the one quarter lagged flow, the fund’s total return in the previous

quarter (net of the average return for the fund’s category), the logarithm of lagged

total net assets (TNA), the logarithm of one plus age, previous quarter’s total expense,

and category flow. Total expense is estimated as expense ratio plus 1/7 of maximum

front-end load. Category flow is the aggregate flow to the fund’ objective category.

These variables are suggested by previous studies of the determinants of fund flows

(see, for example, Ippolito (1992), Chevalier and Ellison (1997), Sirri and Tufano

(1998), and Sapp and Tiwari (2004)). Table 3.2 presents the estimated coefficients
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from these regressions. The reported coefficient estimates are time-series averages of

76 quarterly cross-sectional regression estimates over the period from January 1990

to December 2008. We present results for the entire sample as well as for funds that

fall into the category of AGG and GRO.

It can be seen from the overall results that fund flows are significantly positively

related to the previous quarter performance of the fund, confirming the results of

previous studies. Additionally, fund flows are significantly negatively related to fund

size reflecting the fact that smaller funds attract proportionately larger percentage

flows compared to bigger funds. Comparing the results between the entire sample and

the AGG and GRO funds, it is interesting to note that the fund flows experienced by

the AGG and GRO funds have greater sensitivity to past relative performance, which

presumably reflects the active nature of the investor clientele that is drawn to such

funds. For example, the results suggest that in the case of AGG and GRO funds,

outperforming the category average by one percent translates into an incremental

flow equal to 0.41 percent of a fund’s assets. The corresponding figures representing

the incremental quarterly flow from beating the category average by one percent are

0.36 percent in the case of the entire sample. In this sense the implicit incentives

created by the existence of the positive flow-performance relationship appear to be

quite meaningful for the funds.

In summary, the results presented in Table 3.2 confirm that the recent relative

performance of a fund has significant explanatory power for its future flows, even after

controlling for a number of other fund characteristics. In particular, the “winner”
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funds attract significant future inflows. In the next sub-section we explore the risk-

taking behavior of the funds in the context of the above incentives.

3.4.3 Do Funds Alter their Active Share
in Response to Above Incentives?

We now examine the key question, namely, whether funds increase their Active

Share following poor performance at an interim evaluation stage. To assess this issue,

we divide each calendar year in the sample period into two sub-periods of three

quarters and one quarter each. The quarterly Active Share is defined in Equation

(3.1). It is the percentage of a fund’s portfolio holdings that differ from the fund’s

benchmark index (the index that produces the lowest Active Share). We define the

change in Active Share as the fund i’s Active Share in the last quarter of year T

subtract the average Active Share of fund i in the first three quarters of year T :

∆Active Sharei,T = Active Sharei,4,T −
1

3

3∑
t=1

Active Sharei,t,T (3.11)

Thus, for each fund we have a time series of the yearly changes in the Active Share

from sub-period 1 to sub-period 2. We then conduct annual cross-sectional regressions

of the change in Active Share of a fund on the return performance of the fund during

the first sub-period of the year:

∆Active Sharei,T = aT + bTRi,1,T + εT , (3.12)

In the above equation Ri,1,T denotes the average of raw returns for fund i during

the first sub-period (first three quarters) of calendar year T , net of the mean return

earned by all funds in its peer group (category) for the sub-period. We next compute

the time series averages of the yearly cross-sectional regression coefficients aT and bT .
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Table 3.3 reports the estimated intercept and slope coefficients from Equation

(3.12). The table reports coefficients for two groups of funds: funds with interim

return (the average returns during the first three quarters of each year) above the

median return of their categories and funds with interim return below the category

median. Within each group, the table also reports coefficients for all funds in the

group as well as aggressive growth (AGG) and growth (GRO) funds only.

We note that for funds with interim return above their category median, there

is a negative relation between fund relative performance during the first three quarters

of the year and the subsequent change in the fund’s Active Share. Funds appear to

increase their Active Share following poor performance at the interim stage. Equally

striking is the fact that the relationship appears to be stronger, in both economic and

statistical term, for funds in the aggressive growth (AGG) and growth (GRO) cate-

gories. Interestingly, it was these two categories for which the tournament effect (i.e.,

the sensitivity of flow to past relative performance) was found to be the most intense

based on our earlier results in Table 3.2. These results are broadly consistent with

our theoretical framework that suggests that the changes in Active Share are related

to the performance gap at the interim stage, and to the strength of the tournament

effect.

Recall that in our theoretical analysis, Theorem 1 places a restriction on the

magnitude of the performance gap, mδ , between the winning and losing managers

(see also the discussion following Proposition 2). Intuitively, managers who trail too

far behind at the interim stage and who do not have a realistic chance of making
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up the shortfall may exit the “tournament”, i.e., they may choose to not increase

their Active Share in the last quarter of the year. This suggests that the risk-taking

incentives would be stronger for those fund managers who feel they are still “in the

game” and have a chance of making up the performance deficit in the second half

of the evaluation period. Consistent with this analysis, the last four columns of

Table 3.3 show that when we restrict our sample to funds with interim return below

their category median, the relationship between change in Active Share and the first

sub-period return is insignificant.

3.4.4 Evidence Using Other Activeness Measures

Tracking Error is a traditional measure for active management. Unlike Active

Share which measures active stock picking, Tracking Error captures the activeness

in factor timing. However, under the tournament frame work, if the interim losing

manager hopes to catch up in the last quarter, factor timing is a less efficient approach

which involves shifting her portfolio towards a different industry or sector. Consistent

with this analysis, we next provide evidence that there is no significant relationship

between a fund’s Tracking Error and its interim performance.

We follow Cremers and Petajisto (2009) and define Tracking Error as in Equa-

tion (3.2). Similar to the analysis using Active Share, we examine changes in fund

Tracking Error across two sub-periods within each year. For each fund we have a time

series of the yearly changes in the Tracking Error from sub-period 1 to sub-period 2.

We then conduct annual cross-sectional regressions of the change in Tracking Error

of a fund on the return performance of the fund during the first sub-period of the
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year (net of the mean return earned by all funds in its category). We next compute

the time series averages of the yearly cross-sectional regression coefficients.

Table 3.4 reports the estimated intercept and slope coefficients for this analysis.

The table reports coefficients for funds with interim return (Ri,1,T ) above the median

return of their categories only. It reports coefficients for all funds as well as aggressive

growth (AGG) and growth (GRO) funds only. We note that for funds with interim

return above their category median, there is a negative relation between fund relative

performance during the first three quarters of the year and the subsequent change in

the fund’s Tracking Error. However, in contrast with the analysis with Active Share,

the negative coefficient for Interim Return is not statistically significant. The results

indicate that funds do not appear to increase their Tracking Error following poor

performance at the interim stage.

We define a fund’s Active Share as the deviation of a fund’s portfolio holdings

from the fund’s benchmark index which is the index that produces the lowest Active

Share. Alternatively, as proposed by Petajisto (2013), the benchmark index can

also be chosen as the self-reported benchmark by a manager in the fund prospectus,

rather than assigning the index that produces the lowest Active Share. We repeat

our analysis with Active Share using this alternative measure. Table 3.5 reports

the estimated intercept and slope coefficients for this analysis. The table reports

coefficients for funds with interim return (Ri,1,T ) above the median return of their

categories only. It reports coefficients for all funds as well as aggressive growth (AGG)

and growth (GRO) funds only. We note that for funds with interim return above
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their category median, there is a negative relation between fund relative performance

during the first three quarters of the year and the subsequent change in the fund’s

self-reported Active Share. However, in contrast with the analysis with Active Share,

the negative coefficient for Interim Return is not statistically significant. The results

indicate that funds do not appear to increase their self-reported Active Share following

poor performance at the interim stage.

3.5 Discussion and Conclusion

This paper provides a framework for the incentive effects created by the fund

flow-performance relationship. As a first step we analyze a model in which two risk-

neutral fund managers with unequal performances at an interim stage, compete for

investor cash flows. Neither manager possesses superior information. Our focus is

on the portfolio choices made by the two managers after they observe their interim

performances. We show that there exists an equilibrium in which it is optimal for the

fund manager whose performance lags behind at the interim stage (i.e., the interim

loser) to increase the activeness of her portfolio. The model suggests a direct measure

of the extent of risk-taking by a fund, namely, a fund’s Active Share.

Our theoretical analysis affords a number of testable predictions. Specifically,

our results suggest that the increase in the Active Share of the interim loser man-

ager’s portfolio is directly related to the magnitude of the performance gap at the

interim stage, and to the strength of the investor (cash flow) response to the relative

performance rankings of the funds (i.e., the strength of the tournament effect). Our

empirical analysis of a sample of stock funds provides support for these implications.



143

Table 3.1: Summary Statistics of the Equity Mutual Fund Sample

All funds AGG and GRO funds

Number of funds 813 423
TNA (in millions) 1037.46 1076.09
Age (in years) 16.00 15.61
Quarterly Active Share (in %) 0.797 0.821
Quarterly self-reported Active Share (in %) 0.816 0.841
Quarterly raw return (in %) 2.190 2.213

Note: This table reports the time-series averages of quarterly cross-sectional
averages of fund characteristics for the period 1990-2008. TNA is the total
net assets. Age is the fund’s age. Quarterly Active Share is defined following
Cremers and Petajisto (2009) as the percentage of a fund’s portfolio holdings
that differ from the fund’s benchmark index which is the index that produces
the lowest Active Share:

Active Share =
1

2

N∑
i=1

|ωfund,i − ωindex,i|,

where ωfund,i and ωindex,i are the portfolio weights of asset i in the fund and
in the index, and the sum is taken over all assets. It is computed based on
Spectrum mutual fund holdings data and index composition data for nineteen
common benchmark indexes from S&P, Russell, and Wilshire. Quarterly self-
reported Active Share is defined following Petajisto (2013) as the percentage of
a fund’s portfolio holdings that differ from the fund’s self-reported benchmark
index. Quarterly raw return is the fund’s quarterly raw return. The statistics
are reported for all funds and funds that fall into the categories of aggressive
growth (AGG) and growth (GRO).
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Table 3.2: Determinants of Quarterly Fund Cash Flows

All Funds AGG and GRO

Coefficient t-value Coefficient t-value

Intercept 0.055 (5.290) 0.064 (4.750)
Previous quarter’s flow 0.358 (14.210) 0.390 (11.520)
Previous quarter’s return 0.357 (2.540) 0.413 (9.260)
Logarithm of total net assets -0.003 (-4.380) -0.004 (-4.130)
Logarithm of one plus age -0.019 (-2.650) -0.012 (-8.380)
Previous quarter’s total expense 1.450 (1.280) 0.281 (1.320)
Category flow 0.784 (3.010) -0.428 (-1.010)

Note: This table presents the coefficients from regressions of realized quarterly
flow for a fund against the fund’s lagged quarterly flow, the fund’s total return
in the previous quarter (net of the average return for the fund’s category), the
logarithm of lagged total net assets (TNA), the logarithm of one plus age, pre-
vious quarter’s total expense, and category flow. The flow for a fund during a
quarter is computed as the quarterly cash flow for the fund divided by the total
net assets (TNA) at the beginning of the quarter. Total expense is estimated as
expense ratio plus 1/7 of maximum front-end load. Category flow is the aggre-
gate flow to the fund’ objective category. The coefficients reported below are
time-series averages of the quarterly cross-sectional regression coefficients from
1990 to 2008. The table reports coefficients for all funds as well as aggressive
growth (AGG) and growth funds (GRO) only. Also shown are the t-statistics
(in parentheses) based on the Fama Macbeth regression.
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Table 3.3: Changes in Fund Active Share and Past Performance

Rank above median Rank below median

All Funds AGG and GRO All Funds AGG and GRO

Coefficient t-value Coefficient t-value Coefficient t-value Coefficient t-value

Intercept -0.003 (-1.443) -0.003 (-1.342) -0.003 (-0.984) -0.004 (-1.726)
Interim Return -0.076 (-2.409) -0.089 (-3.121) 0.056 (1.417) -0.005 (-0.103)

Note: We divide each year in the sample period into two three and one quarterly
sub-periods. We compute the change in the Active Share of a fund from the
first three quarters of the year to the last quarter of the year. The Quarterly
Active Share is described in detail in Cremers and Petajisto (2009). It is the
percentage of a fund’s portfolio holdings that differ from the fund’s benchmark
index which is the index that produces the lowest Active Share:

Active Share =
1

2

N∑
i=1

|ωfund,i − ωindex,i|,

where ωfund,i and ωindex,i are the portfolio weights of asset i in the fund and
in the index, and the sum is taken over all assets. For each fund, the change
in Active Share from the first three quarters of the year to the last quarter is
regressed on the fund’s Interim Return which is defined as the average quar-
terly raw return in the first three quarters adjusted for the mean return of all
funds within the category during the first three quarters. The coefficients re-
ported below are time-series averages of the 19 yearly cross-sectional regression
coefficients from 1990 to 2008. The table reports coefficients for two groups
of funds: funds with return (in the first three quarters of the year) above the
median return of the category and funds with return below the median return.
Within each group, it also reports coefficients for all funds in the group as well
as aggressive growth (AGG) and growth funds (GRO) only. Also shown are the
t-statistics (in parentheses) based on the Fama Macbeth regression.
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Table 3.4: Changes in Fund Tracking Error and Past Performance

All Funds AGG and GRO

Coefficient t-value Coefficient t-value

Intercept 0.002 (0.618) 0.002 (0.706)
Interim Return 0.023 (0.718) 0.009 (0.329)

Note: We divide each year in the sample period into two three and one quarterly
sub-periods. We compute the change in the Tracking Error of a fund from the
first three quarters of the year to the last quarter of the year. The Quarterly
Tracking Error is described in detail in Cremers and Petajisto (2009). It is the
annualized standard deviation of the error term when the excess return on a
fund i is regressed on the excess return on its benchmark index (the index that
produces the lowest Active Share). It is computed based on daily fund returns
and daily index returns over a six-month period before the corresponding port-
folio holdings are reported. For each fund, the change in average Quarterly
Tracking Error from the first three quarters of the year to the last quarter is
regressed on the fund’s Interim Return which is defined as the average quarterly
raw return in the first three quarters adjusted for the mean return of all funds
within the category during the first three quarters. The coefficients reported
below are time-series averages of the 19 yearly cross-sectional regression coeffi-
cients from 1990 to 2008. The table reports coefficients for funds with interim
return (during the first three quarters of the year) above the median return
of the category only. It reports coefficients for all funds as well as aggressive
growth (AGG) and growth funds (GRO) only. Also shown are the t-statistics
(in parentheses) based on the Fama Macbeth regression.
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Table 3.5: Changes in Fund Self-reported Active Share and Past Performance

All Funds AGG and GRO

Coefficient t-value Coefficient t-value

Intercept -0.003 (-1.733) -0.004 (-1.615)
Interim Return -0.049 (-1.793) -0.055 (-1.744)

Note: We divide each year in the sample period into two three and one quarterly
sub-periods. We compute the change in the Self-reported Active Share of a
fund from the first three quarters of the year to the last quarter of the year.
The Quarterly Self-reported Active Share is defined in Petajisto (2013) as the
percentage of a fund’s portfolio holdings that differ from the fund’s self-reported
benchmark index. For each fund, the change in Self-reported Active Share from
the first three quarters of the year to the last quarter is regressed on the fund’s
Interim Return which is defined as the average quarterly raw return in the first
three quarters adjusted for the mean return of all funds within the category
during the first three quarters. The coefficients reported below are time-series
averages of the 19 yearly cross-sectional regression coefficients from 1990 to
2008. The table reports coefficients for funds with interim return (during the
first three quarters of the year) above the median return of the category only. It
reports coefficients for all funds as well as aggressive growth (AGG) and growth
funds (GRO) only. Also shown are the t-statistics (in parentheses) based on
the Fama Macbeth regression.
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Figure 3.1: One Period Model
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A. Numerical Analysis of Bayesian Benchmark Case with Signal
Precision Uncertainty

In this appendix, we provide details for the numerical analysis for the Bayesian

benchmark case with signal precision uncertainty discussed in Section B.2. We assume

the investors are risk averse with the exponential utility function U(c) = −eac and

are uncertain about the precision of the realized signals, s1 and s2. Specifically, the

precision of each signal may take on one of two values: h and l. This gives rise to

the following four potential models: M1: both s1 and s2 have high precision h, i.e.,

H1 = H2 = h; M2: both s1 and s2 have low precision l, i.e., H1 = H2 = l; M3: the

worst signal s1 has high precision and s2 has low precision, i.e., H1 = h,H2 = l; M4:

the worst signal s1 has low precision and s2 has high precision, i.e., H1 = l, H2 = h.

According to Bayes’ rule, the posterior probabilities of the four models, denoted

as P1 − P4, are as follows: P1 = A
A+B+C+D

, P2 = B
A+B+C+D

, P3 = C
A+B+C+D

, P4 =

D
A+B+C+D

, where

A =
h√

1 + 2h
exp

{
− 1

2σ2
α

[
h(s21 + s22)−

h2

1 + 2h
(s1 + s2)

2

]}
,

B =
l√

1 + 2l
exp

{
− 1

2σ2
α

[
l(s21 + s22)−

l2

1 + 2l
(s1 + s2)

2

]}
,

C =

√
hl√

1 + h+ l
exp

{
− 1

2σ2
α

[
hs21 + ls22 −

1

1 + h+ l
(hs1 + ls2)

2

]}
,

D =

√
hl√

1 + h+ l
exp

{
− 1

2σ2
α

[
ls21 + hs22 −

1

1 + h+ l
(ls1 + hs2)

2

]}
.

The investor’s expected utility is thus:

Eπ(U(c)) = P1 ∗ E(U(c)|M1) + P2 ∗ E(U(c)|M2) + P3 ∗ E(U(c)|M3) + P4 ∗ E(U(c)|M4)

= P1 ∗ (−eY1) + P2 ∗ (−eY2) + P3 ∗ (−eY3) + P4 ∗ (−eY4),
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where

Y1 = −a
[
µ+ µα +

h

1 + 2h
(s1 + s2)

]
+

1

2
a2
(
σ2
ε +

σ2
α

1 + 2H

)
,

Y2 = −a
[
µ+ µα +

l

1 + 2l
(s1 + s2)

]
+

1

2
a2
(
σ2
ε +

σ2
α

1 + 2H

)
,

Y3 = −a
[
µ+ µα +

1

1 + h+ l
(hs1 + ls2)

]
+

1

2
a2
(
σ2
ε +

σ2
α

1 + 2H

)
,

Y4 = −a
[
µ+ µα +

1

1 + h+ l
(ls1 + hs2)

]
+

1

2
a2
(
σ2
ε +

σ2
α

1 + 2H

)
.

As in Equation (1.10), we have

k∗ =
1

a

[
log(A+B + C +D)− log(AeY1 +BeY2 + CeY3 +DeY4)

]
. (1)

The difference in the flow-performance sensitivity to the signal s1 relative to signal

s2 is:

dF (k?)

ds1
− dF (k?)

ds2

= F ′ ×
(
dk?

ds1
− dk?

ds2

)
=
F ′

a
×
{
P1

σ2
α

(hs2 − hs1) +
P2

σ2
α

(ls2 − ls1) +
P3

σ2
α

[
(h− l)(hs1 + ls2)

1 + h+ l
+ ls2 − hs1

]
+
P4

σ2
α

[
(l − h)(ls1 + hs2)

1 + h+ l
+ hs2 − ls1

]
+
Q1

σ2
α

(hs1 − hs2) +
Q2

σ2
α

(ls1 − ls2)

+
Q3

σ2
α

[
(l − h)(hs1 + ls2)

1 + h+ l
+
aσ2

α(h− l)
1 + h+ l

+ hs1 − ls2
]

+
Q4

σ2
α

[
(h− l)(ls1 + hs2)

1 + h+ l

+
aσ2

α(l − h)

1 + h+ l
+ ls1 − hs2

]}
where Q1 = AeY1/(AeY1 + BeY2 + CeY3 + DeY4), Q2 = BeY2/(AeY1 + BeY2 + CeY3 +

DeY4), Q3 = CeY3/(AeY1 + BeY2 + CeY3 + DeY4), and Q4 = DeY4/(AeY1 + BeY2 +

CeY3 +DeY4). We denote

dF (k?)

ds1
− dF (k?)

ds2
≡ F ′

a
×G. (2)
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Since both F ′ and the degree of risk aversion a are positive, the sign of dF (k?)/ds1−

dF (k?)/ds2 is determined by the sign of the term G.

We next calibrate the key parameters in the term G based on the sample of

mutual funds described in detail in Section IV. In particular, the investor’s prior re-

garding the average fund managers skill, µα, is set equal to zero. The prior variance,

σ2
α, is set equal to the cross-sectional variance of the Carhart 4-factor alphas across

all funds. We use the cross-sectional average of the Carhart 4-factor model error

variance across all funds as a measure of the noise in the performance-related sig-

nal.We compute this measure for two non-overlapping, equal sub-periods: 1991–2000

and 2001–2010. We set the high signal noise (σ2
h) equal to the value of the measure

computed over the period over the period 1991–2000. Similarly σ2
l is set equal to the

value of the above measure obtained using data for 2001–2010. Thus, the high signal-

to-noise ratio, h = σ2
α/σ

2
l , and the low signal-to-noise ratio, l = σ2

α/σ
2
h. Moreover,

σ2
ε is computed as the cross-sectional average of the Carhart 4-factor model error

variance across all funds from 1983 to 2011. The degree of risk aversion a is set equal

to 2. The market risk premium, µ, is the average market access return from 1983 to

2011. Finally, the range of the signal realizations, i.e., s1 and s2, is set equal to one

standard deviation, σε, around zero. All parameters are chosen on a monthly basis.

Based on the above discussion, we obtain the following values for the key parameters:

σ2
α = 0.0007%, σ2

l = 0.0282%, σ2
h = 0.0845%, σ2

ε = 0.0467%, and µ = 0.5702%.

Figure 1 shows the results of this numerical analysis.



152

B. Technical Details in Chapter 3

Proof of Proposition 1: We prove the proposition in 4 steps.

1. For any losing manager’s feasible strategy, αb =

[
θ1
θ2

]
, the winning manager’s

strategy

[
θ1
0

]
strictly dominates any one of her feasible strategies

[
αg1
αg2

]
with

αg1 < θ1, and any one of her feasible strategies

[
θ1
αg2

]
with αg2 > 0.

For αg1 ≤ θ1, we have

mδ + (αg1 − θ1)(µ−Rf )√
(αg2

2 + θ2
2)σ2

i + (αg1 − θ1)2σ2
m

≤ mδ√
(αg2

2 + θ2
2)σ2

i + (αg1 − θ1)2σ2
m

≤ mδ

θ2σi

and therefore,

Φ

 mδ + (αg1 − θ1)(µ−Rf )√
(αg2

2 + θ2
2)σ2

i + (αg1 − θ1)2σ2
m

 ≤ Φ

(
mδ

θ2σi

)
,

where the equality holds only if αg1 = θ1 and αg2 = 0. We thus have αg1 ≤ θ1,

Ug

(
αg =

[
αg1
αg2

]
;αb =

[
θ1
θ2

])

= (1 +mg)(1 +Rf + αg1(µ−Rf )) + λΦ

 mδ + (αg1 − θ1)(µ−Rf )√
(αg2

2 + θ2
2)σ2

i + (αg1 − θ1)2σ2
m


≤ (1 +mg)(1 +Rf + αg1(µ−Rf )) + λΦ

(
mδ

θ2σi

)
≤ (1 +mg)(1 +Rf + θ1(µ−Rf )) + λΦ

(
mδ

θ2σi

)
= Ug

(
αg =

[
θ1
0

]
;αb =

[
θ1
θ2

])
where the equality holds only if αg1 = θ1 and αg2 = 0.

2. For any losing manager’s feasible strategy, αb =

[
θ1
θ2

]
, the winning manager’s

strategy

[
αg1
0

]
, if αg1 > θ1, strictly dominates any one of her feasible strategies[

αg1
αg2

]
with αg2 > 0.
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For αg1 > θ1, we have:

mδ + (αg1 − θ1)(µ−Rf )√
(αg2

2 + θ2
2)σ2

i + (αg1 − θ1)2σ2
m

≤ mδ + (αg1 − θ1)(µ−Rf )√
θ22σ

2
i + (αg1 − θ1)2σ2

m

and therefore,

Φ

 mδ + (αg1 − θ1)(µ−Rf )√
(αg2

2 + θ2
2)σ2

i + (αg1 − θ1)2σ2
m

 ≤ Φ

(
mδ + (αg1 − θ1)(µ−Rf )√
θ22σ

2
i + (αg1 − θ1)2σ2

m

)
,

where the equality holds only if αg2 = 0. We thus have αg1 > θ1,

Ug

(
αg =

[
αg1
αg2

]
;αl =

[
θ1
θ2

])
≤ Ug

(
αg =

[
αg1
0

]
;αb =

[
θ1
θ2

])
,

where the equality holds only if αg2 = 0.

3. We have

∂

∂αg1
Ug

(
αg =

[
αg1
αg2

]
;αl =

[
θ1
θ2

]) ∣∣∣∣∣
αg=

 θ1
0

 > 0

Uw

(
αw =

[
αw1
0

]
;αl =

[
θ1
θ2

])
= (1 +mw)(1 +Rf + αw1 (µ−Rf )) + λΦ

(
mδ + (αw1 − θ1)(µ−Rf )√
θ22σ

2
i + (αw1 − θ1)2σ2

m

)
.

We then have

∂

∂αg1
Ug

(
αg =

[
αg1
αg2

]
;αb =

[
θ1
θ2

]) ∣∣∣∣∣
αg=

 θ1
0



= (1 +mg)(µ−Rf ) + λ
µ−Rf

θ2σi
φ

(
mδ

θ2σi

)
> 0,

where φ. denotes the standard normal density function.

4. For any winning manager’s feasible strategy,

[
αg1
αg2

]
, if αg1 > αb1 − mδ

µ−Rf
(es-

pecially if αg1 > αb1), then the losing manager’s strategy

[
αb1

1− αb1

]
strictly

dominates any one of her feasible strategies with

[
αb1
αb2

]
with αb1 + αb2 < 1.
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If αb1 + αb2 < 1, in the presence of the short sale constraint, we have αb2
2
<

(1− αb1)2, and therefore

(αg2
2 + αb2

2
)σ2

i + (αg1 − αb1)2σ2
m <

√
(αg2

2 + (1− αb1)2)σ2
i + (αg1 − αb1)2σ2

m

. In the case that αg1 ≥ αb1 − mδ
µ−Rf

, we have ∆ + (αg1 − αb1)(µ − Rf ) > 0, and

therefore

mδ + (αg1 − αb1)(µ−Rf )√
(αg2

2 + αb2
2
)σ2

i + (αg1 − αb1)2σ2
m

>
mδ + (αg1 − αb1)(µ−Rf )√

(αg2
2 + (1− αb1)2)σ2

i + (αg1 − αb1)2σ2
m

Thus

Ub

(
αg =

[
αg1
αg2

]
;αb =

[
αb1
αb2

])

= (1 +mb)(1 +Rf + αb1(µ−Rf )) + λ− λΦ

 mδ + (αg1 − αb1)(µ−Rf )√
(αg2

2 + αb2
2
)σ2

i + (αg1 − αb1)2σ2
m


< (1 +mb)(1 +Rf + αb1(µ−Rf )) + λ−

λΦ

 mδ + (αg1 − αb1)(µ−Rf )√
(αg2

2 + (1− αb1)2)σ2
i + (αg1 − αb1)2σ2

m


= Ub

(
αg =

[
αg1
αg2

]
;αb =

[
αb1

1− αb1

])
To finish the proof, we derive the claim of the proposition from the above

four proved statements. From Statement 1, we have that in the equilibrium

αg1 ≥ αb1. From Statement 2, we have αg2 = 0. Then from Statement 3, we have

that αg1 ≥ αb1 with the equation holding only if αg1 = αb1 = 1. From Statement

4, we have that αb1 + αb2 = 1. Thus, the proposition is proved.

Proof of Lemma 1: Given the assumption that the equilibrium exists, we

can denote the equilibrium to be

{[
αg1
∗

0

]
,

[
αb1
∗

1− αb1
∗

]}
because of the result in
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Proposition 1. We have,

Ug

(
αg =

[
αg1
0

]
, αb =

[
αb1

1− αb1

])
= (1 +mg)(1 +Rf + αg1(µ−Rf )) + λΦ

(
mδ + (αg1 − αb1)(µ−Rf )√
(1− αb1)2σ2

i + (αg1 − αb1)2σ2
m

)

Ub

(
αg =

[
αg1
0

]
, αb =

[
αb1

1− αb1

])
= (1 +mg)(1 +Rf + αb1(µ−Rf )) + λ− λΦ

(
mδ + (αg1 − αb1)(µ−Rf )√
(1− αb1)2σ2

i + (αg1 − αb1)2σ2
m

)
Combining the derivatives of the above two functions, we get

∂

∂αg1
Ug

(
αg =

[
αg1
0

]
, αb =

[
αb1

1− αb1

])
− ∂

∂αb1
Ub

(
αg =

[
αg1
0

]
, αb =

[
αb1

1− αb1

])
= mδ(µ−Rf ) + λφ

(
mδ + (αg1 − αb1)(µ−Rf )√
(1− αb1)2σ2

i + (αg1 − αb1)2σ2
m

)

· (mδ + (αg1 − αb1)(µ−Rf ))(1− αb1)σ2
i

((1− αb1)2σ2
i + (αg1 − αb1)2σ2

m)3/2

> 0.

This shows that the first order optimality condition for the portfolio allocation

of manager g and the first order condition for manager b will not be satisfied at the

same time. As a consequence, in the equilibrium, the short sale constraint is binding

for at least one of the two managers. If the short sale constraint is binding for manager

g, we have, by Proposition 1, αg∗ =

[
1
0

]
. If the short sale constraint is binding for

manager b, we have either αb
∗

=

[
1
0

]
or αb

∗
=

[
0
1

]
. In the case that αb

∗
=

[
1
0

]
,

we have, again by Proposition 1, αg∗ =

[
1
0

]
. Therefore, in equilibrium, either

αg∗ =

[
1
0

]
, or αb

∗
=

[
0
1

]
, or both.

Discussion of the first order condition for the portfolio allocation

of manager b: In general, the first order optimality condition for the portfolio
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allocation of manager b is

0 =
∂

∂αb1
Ub

(
αg =

[
1
0

]
, αb =

[
αb1

1− αb1

])
= (1 +ml)(µ−Rf )− λφ

(
mδ√
σ2
i + σ2

m

1

1− αb1
+

µ−Rf√
σ2
i + σ2

m

)
mδ√
σ2
i + σ2

m

1

(1− αb1)2

In the equilibrium, either the above first order condition is satisfied, or αb
∗

=

[
1
0

]
.

The first order condition is equivalent to

(1 +mb)(µ−Rf ) = λφ

(
mδ√
σ2
i + σ2

m

x+
µ−Rf√
σ2
i + σ2

m

)
mδ√
σ2
i + σ2

m

x2,

where x = 1
1−αb1

. Notice that both sides are positive. We can therefore take natural

log of both sides, which yields the equivalent condition:

h(x) ≡ log

(
(1 +ml)(µ−Rf )

√
σ2
i + σ2

m

√
2π

λmδ

)
+

1

2

(
mδ√
σ2
i + σ2

m

x+
µ−Rf√
σ2
i + σ2

m

)2

− 2 log x = 0

It is straightforward to see that h(x) and ∂
∂αb1

Ub

(
αg =

[
1
0

]
, αb =

[
αb1

1− αb1

])
have

the same sign. Taking derivatives of h(x), we have:

h′(x) = λφ

(
mδ√
σ2
i + σ2

m

x+
µ−Rf√
σ2
i + σ2

m

)
mδ√
σ2
i + σ2

m

− 2

x

h′′(x) =

(
mδ√
σ2
i + σ2

m

)2

+
2

x2
> 0.

Therefore, h(x) is a strictly convex function and thus has at most two roots. It is

clear that limx→0+ h(x) = limx→∞ h(x) = +∞. In the case that h(x) has only one

root or no root, by the middle value theorem of continuous function, we have h(x) ≥ 0

for x ∈ [1,∞). Therefore Ub will be a strictly increasing function with respect to the
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variable αb1. We can then conclude that, in this case, αb
∗

=

[
1
0

]
will be manager b’s

optimal response.

In the case that function h(x) has two roots, we denote the roots by x1 and

x2 with 1 < x1 < x2. Because h(x) is a convex function, we have h(x) > 0 for

x ∈ [1, x1) ∪ (x2,∞), and h(x) < 0 for x ∈ [1− 1/x1, 1− 1/x2]. Therefore,

arg max
αb1

Ub

(
αg =

[
1
0

]
, αb =

[
αb1

1− αb1

])
= 1 or 1− 1

x1
.

We derive some properties regarding the equation h(x) = 0, especially regard-
ing x1, and record the results in the following several lemmas. The existence of roots
for h(x) is given by the following lemma:

Lemma 2. : h(x) has two roots in (0,+∞) if and only if the following condition
holds:

mδ√
σ2
i + σ2

m

< C1, (1)

where

C1 =
λ

4(1 +ml)(µ−Rf )
φ

[
1

2

(√
(µ−Rf )2

σ2
i + σ2

m

+ 8 +
(µ−Rf )√
σ2
i + σ2

m

)]

·

(√
(µ−Rf )2

σ2
i + σ2

m

+ 8− (µ−Rf )√
σ2
i + σ2

m

)2

.

In addition, h(x) has one root if and only if mδ√
σ2
i+σ

2
m

< C1.

Proof. The only critical point of h(x), located by the first order condition h′(x) = 0,
is at

x∗ =
1

2

(
mδ√
σ2
i + σ2

m

)−1√
(µ−Rf )2

σ2
i + σ2

m

+ 8− (µ−Rf )√
σ2
i + σ2

m

. (2)

Therefore, h(x∗) = minh(x). The ending behavior of h(x) is given by:

lim
x→∞

h(x) ≥ lim
x→∞

m2
δ

2(σ2
i + σ2

m)
x2 − 2x = +∞,

lim
x→0

h(x) ≥ −2 lim
x→∞

log x = +∞.

Since h(x) is convex, we then have that h(x) has one root in (0,+∞) if and only
if h(x∗) = 0, and it has two distinct roots in (0,+∞) if and only if h(x∗) < 0. By
substituting x∗ into h(x), we get the proof the lemma.
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The above Lemma 2 imposes a restriction on the performance gap between the win-

ning manager and the losing manager. The gap, mδ, can not be too large in order for

h(x) to have roots. If the condition of the lemma does not hold, h(x) will always be

positive. It will then lead to the conclusion that it is optimal for the losing manager

to choose αl
∗

=

[
1
0

]
as her optimal strategy. Notice that the bound for the gap in

the above condition is proportional to λ, the reward from winning the tournament.

Another way to express the bound in the above lemma is to say that there is

at least one feasible portfolio holding for the losing manager at which this manager

would prefer to increase her exposure to idiosyncratic risk. Increasing the exposure

to idiosyncratic risk affects the losing manager’s utility in two ways. First, increasing

the portfolio allocation to idiosyncratic risk will increase the variance of the difference

between her portfolio and the winning manager’s portfolio. This, in turn, will intro-

duce more noise in the outcome of the tournament, and therefore has the potential of

increasing the chance for the losing manager to make up the gap and win the tour-

nament. Second, an increase in the idiosyncratic risk exposure implies a reduction

in the allocation to the market index and hence, a reduction in the expected return.

The lower expected return has two consequences for the losing manager’s utility. It

will lower the losing manager’s expected reward from the explicit linear contract, and

it will lower her chance of winning the tournament. The losing manager has to take

all these three factors into consideration when making the portfolio decision.

For the rest of the section, we will maintain the assumption that the condition

of Lemma 2 holds. That is, we assume that h(x) has two roots. It will be sufficient
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for that condition to hold if we assume that the tournament has some effect on at

least one of the managers’ portfolio decision. We will maintain the notation x1 to

denote the smaller one of the two roots of h(x).
Proof of Proposition 2: It follows immediately from Lemma 2 that, under

the conditions of the proposition, αb
∗

=

[
1
0

]
is optimal for manager b given αg∗ =[

1
0

]
. The optimality of αg∗ =

[
1
0

]
for manager g is assured by Proposition 1.

Thus

{
αw∗ =

[
1
0

]
, αb
∗

=

[
1
0

]}
is a Nash equilibrium.

Lemma 3.
∂x1
∂λ

=
1

h′(x1)λ
< 0.

Proof. Since x1 is the smaller of the two roots of the convex function h(x), therefore,
h(x1) = 0 and h′(x1) < 0. From h(x1) = 0, we have

log

(
(1 +ml)(µ−Rf )

√
σ2
i + σ2

m

√
2π

)
− log λ− logmδ

+
1

2

(
mδ√
σ2
i + σ2

m

x1 +
µ−Rf√
σ2
i + σ2

m

)2

− 2 log x1 = 0.

Differentiating the above equation, we get ∂x1
∂λ

= 1
h′(x1)λ

< 0. Thus the lemma is
proved.

Lemma 4. ∂[mδx1]
∂mδ

> 0 and limmδ→0+ mδx1 = 0. Moreover, we have limmδ→0+ x1 =

+∞ , and to be more precise, we have x1 = O(m
−1/2
δ ).11

Proof. By h′(x1) < 0, we have(
mδ√
σ2
i + σ2

m

x1 +
µ−Rf√
σ2
i + σ2

m

)
mδ√
σ2
i + σ2

m

− 2

x1
< 0.

Differentiate equation h(x1) = 0, we get that

∂x1
∂mδ

=

[
1
mδ
−
(

mδ√
σ2
i+σ

2
m

x1 +
µ−Rf√
σ2
i+σ

2
m

)
x1√
σ2
i+σ

2
m

]
(

mδ√
σ2
i+σ

2
m

x1 +
µ−Rf√
σ2
i+σ

2
m

)
mδ√
σ2
i+σ

2
m

− 2
x1

.

11The notation O means that both x1 and m
−1/2
δ approach infinity with the same order

of speed when mδ → 0+.
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Therefore,

∂[mδx1]

∂mδ

= x1 +mδ
∂x1
∂mδ

= −

[(
mδ√
σ2
i + σ2

m

x1 +
µ−Rf√
σ2
i + σ2

m

)
mδ√
σ2
i + σ2

m

− 2

x1

]−1
= − 1

h′(x1)
> 0

We thus have that mδx1 is a increasing function of mδ. Moreover, mδx1 > 0. There-

fore, (1+ml)(µ−Rf ) = λφ

(
mδ√
σ2
i+σ

2
m

x1 +
µ−Rf√
σ2
i+σ

2
m

)
mδ√
σ2
i+σ

2
m

x21, limmδ→0+ mδx1 exists,

is bounded and non-negative. An equivalent equation of h(x1) = 0 is:

(1 +ml)(µ−Rf )mδ = λφ

(
mδ√
σ2
i + σ2

m

x1 +
µ−Rf√
σ2
i + σ2

m

)
(mδx1)

2√
σ2
i + σ2

m

(3)

Take the limit of both sides of the above equality by letting mδ → 0+, we have:

0 = λφ

(
limmδ→0+ mδx1√

σ2
i + σ2

m

+
µ−Rf√
σ2
i + σ2

m

)
(limmδ→0+ mδx1)

2√
σ2
i + σ2

m

,

which implies that limmδ→0+ mδx1 = 0. From equation (3) we have

lim
mδ→0+

mδx
2
1 =

1

λ
(1 +ml)(µ−Rf )

√
σ2
i + σ2

m

[
φ

(
limmδ→0+ mδx1√

σ2
i + σ2

m

+
µ−Rf√
σ2
i + σ2

m

)]−1

=
1

λ
(1 +ml)(µ−Rf )

√
σ2
i + σ2

m

[
φ

(
µ−Rf√
σ2
i + σ2

m

)]−1

The right hand side of the above identity is positive. Therefore, we have that
limmδ→0+ x1 = +∞, and to be more precise, x1 = O(m

−1/2
δ ). Thus the lemma is

proved.

Lemma 5. ∂x1
∂mδ

< 0 for sufficiently small mδ. In fact, it is true for any

mδ ∈ (0,
√
σ2
i + σ2

m ·min(C1, C2)), (4)

where C1 is given as in Lemma 2, and

C2 =
λ

4(1 +ml)(µ−Rf )
· φ

[
1

2

(√
(µ−Rf )2

σ2
i + σ2

m

+ 4 +
µ−Rf√
σ2
i + σ2

m

)]

·

(√
(µ−Rf )2

σ2
i + σ2

m

+ 4− µ−Rf√
σ2
i + σ2

m

)2
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Proof. In the derivation of Lemma 3, we see

∂x1
∂mδ

=

[
1
mδ
−
(

mδ√
σ2
i+σ

2
m

x1 +
µ−Rf√
σ2
i+σ

2
m

)
x1√
σ2
i+σ

2
m

]
h′(x1)

.

Since h′(x1) < 0, we have ∂x1
∂mδ

< 0 if and only if,

1 >

(
mδ√
σ2
i + σ2

m

x1 +
µ−Rf√
σ2
i + σ2

m

)
mδx1√
σ2
i + σ2

m

.

The right hand side is a quadratic form of mδx1√
σ2
i+σ

2
m

. It is straightforward to solve the

above inequality. Given mδx1√
σ2
i+σ

2
m

> 0, we have ∂x1
∂mδ

< 0 if and only if

0 <
mδx1√
σ2
i + σ2

m

<
1

2

(√
(µ−Rf )2

σ2
i + σ2

m

+ 4− µ−Rf√
σ2
i + σ2

m

)
. (5)

By Lemma 3, we have limmδ→0+ mδx1 = 0. Therefore, the above inequalities will be
satisfied for sufficiently small mδ. To answer the question of how small is sufficiently
small, we evoke the equality h(x1) = 0. With this equation, we can see that the
necessary condition for

mδx1√
σ2
i + σ2

m

=
1

2

(√
(µ−Rf )2

σ2
i + σ2

m

+ 4− µ−Rf√
σ2
i + σ2

m

)
is mδx1√

σ2
i+σ

2
m

= C2. Therefore, for any mδ ∈ (0, C2

√
σ2
i + σ2

m) , we always have

mδx1√
σ2
i + σ2

m

6= 1

2

(√
(µ−Rf )2

σ2
i + σ2

m

+ 4− µ−Rf√
σ2
i + σ2

m

)
.

This together with the fact that inequality (6) is satisfied by sufficiently small mδ,
implies that inequality (6) is satisfied by any mδ ∈ (0, C2

√
σ2
i + σ2

m), where we use
the fact that mδx1√

σ2
i+σ

2
m

is a continuous function of mδ. Thus the lemma is proved.

Proof of Proposition 3: In case that αg∗ =
[

1
0

]
, and αb1

∗
< 1, the condition

in Lemma 2 is satisfied. Therefore, Lemma 3 and Lemma 4 imply that αb1
∗

= 1−1/x1

, and therefore,
∂(1−αb1

∗
)

∂λ
= ∂

∂λ
(1/x1) = − 1

x21

∂x1
∂λ

> 0, because of Lemma 3. This proves

the first part of the proposition. Taking the derivative and using Lemma 4, we have

∂

∂mδ

Φ

(
mδ√
σ2
i + σ2

m

1

1− αb1
∗ +

(µ−Rf )√
σ2
i + σ2

m

)

= φ

(
mδ√
σ2
i + σ2

m

1

1− αb1
∗ +

(µ−Rf )√
σ2
i + σ2

m

)
× ∂(mδx1)

mδ

> 0

Thus the proposition is proved.
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Lemma 6. If αg∗ =
[

1
0

]
, then for sufficiently small mδ we have αb1

∗
< 1. In fact,

it is true for any mδ ∈ (0,
√
σ2
i + σ2

m · min(C1, C2, C3)), where C3 = m̃δ/
√
σ2
i + σ2

m

with m̃δ being a root in (0,
√
σ2
i + σ2

m ·min(C1, C2)). Further,

(1 +mb)(µ−Rf ) = λ

(
1− Φ

[
mδx1√
σ2
i + σ2

m

+
µ−Rf√
σ2
i + σ2

m

])
x1 (6)

if there is such a root, and C3 = +∞ otherwise.

Proof. Notice that

∂

∂mδ

(
1− Φ

[
mδx1√
σ2
i + σ2

m

+
µ−Rf√
σ2
i + σ2

m

])
x1

= −φ

[
mδx1√
σ2
i + σ2

m

+
µ−Rf√
σ2
i + σ2

m

]
x21√

σ2
i + σ2

m

+

(
1− Φ

[
mδx1√
σ2
i + σ2

m

+
µ−Rf√
σ2
i + σ2

m

])
∂x1
∂mδ

< 0

for mδ in (0,
√
σ2
i + σ2

m ·min(C1, C2)), because the first term is clearly less than zero,
and the second term is less than zero because of Lemma 4. Therefore, the right hand
side expression of Equation (6) as a function of mδ is decreasing in (0,

√
σ2
i + σ2

m ·
min(C1, C2)). Thus equation (6) has at most one root in the interval. And if there is
a root, any mδ less than the root will satisfied the inequality with left hand side of
(6) strictly less than the right hand side. Furthermore, we note the fact that

lim
mδ→0+

λ

(
1− Φ

[
mδx1√
σ2
i + σ2

m

+
µ−Rf√
σ2
i + σ2

m

])
x1

= λ

(
1− Φ

[
limmδ→0+ mδx1√

σ2
i + σ2

m

+
µ−Rf√
σ2
i + σ2

m

])
lim

mδ→0+
x1 = +∞

Therefore, in the case that Equation (6) has no root in the interval, we will always
have the left hand side of (6) being strictly less than the right hand side. Here the
continuity of the right hand side of (4) as a function of mδ is used.

In summary, we have that the left hand side of Equation (6) is strictly less than
the right hand side if mδ ∈ (0,

√
σ2
i + σ2

m · min(C1, C2, C3)). The earlier discussion
about the first order condition of the losing manager’s optimization problem leads

us to conclude that arg maxαb1 Ub

(
αg =

[
1
0

]
, αb =

[
αb1

1− αb1

])
= 1 or 1 − 1

x1
. By

comparing the value of Ub at αb1 = 1 with the value of Ub at αb1 = 1−1/x1, we have the
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necessary and sufficient condition for αb1
∗
< 1 to be that the condition (1) in Lemma

2 holds and that at the same time the left hand side of Equation (6) is strictly less
than the right hand side. For each mδ ∈ (0,

√
σ2
i + σ2

m · min(C1, C2, C3)), both the
above conditions are satisfied. Thus the lemma is proved.

Based on the earlier lemmas, we derive the following sufficient condition for

the existence of the equilibrium.

THEOREM 1: Let αb1
∗

= 1−1/x1. The pair

{
αg∗ =

[
1
0

]
, αb
∗

=

[
αb1
∗

1− αb1
∗

]}
will be an equilibrium for any mδ ∈ (0,

√
σ2
i + σ2

m ·min(C1, C2, C3, C4)), where

C4 =
λ(µ−Rf )σ

2
i

(1 +ml)σ2
m

· n

[
(µ−Rf )

√
σ2
i + σ2

m

σ2
m

]
.

Furthermore,
∂(1−αb1

∗
)

∂mδ
> 0 and limmδ→0+(1 − αb1

∗
) = 0.To be more precise, we have

that 1− αb1
∗

= O(
√
mδ).

Proof. The optimality of the losing manager’s strategy αb
∗

=

[
1− 1/x1

1/x1

]
has al-

ready been established in Lemma 6. We now prove the optimality of the winning

manager’s strategy αg∗ =
[

1
0

]
under the condition of the theorem. We evoke the

equation h(x1) = 0, which is equivalent to

mδ√
σ2
i + σ2

m

= (1 +ml)(µ−Rf )λφ

(
mδx1√
σ2
i + σ2

m

+
µ−Rf√
σ2
i + σ2

m

)(
mδx1√
σ2
i + σ2

m

)2

.

With this equation, we can see that the necessary condition for (µ−Rf )σ
2
i−mδx1σ

2
m =

0 is mδ√
σ2
i+σ

2
m

= C4. Therefore, there is no root for (µ − Rf )σ
2
i − mδx1σ

2
m = 0 with

mδ ∈ (0, C4

√
σ2
i + σ2

m). This coupled with the fact that limmδ→0+(mδx1) = 0, implies

that (µ − Rf )σ
2
i − mδx1σ

2
m > 0 for mδ ∈ (0, C4

√
σ2
i + σ2

m). We next compute the
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derivative of Ug with respect to αg1.

∂

∂αg1
Ug

(
αg =

[
αg1
0

]
;αb =

[
1− 1/x1

1/x1

])
= (1 +mb +mδ)(µ−Rf ) + λφ

(
mδx1 + (x1α

g
1 − x1 + 1)(µ−Rf )√

σ2
i + (x1α

g
1 − x1 + 1)2σ2

m

)
x1(µ−Rf )(σ

2
i + (x1α

g
1 − x1 + 1)2σ2

m)− x1(mδx1 + (x1α
g
1 − x1 + 1)(µ−Rf ))

(σ2
i + (x1α

g
1 − x1 + 1)2σ2

m)3/2

· (x1α
g
1 − x1 + 1)σ2

m

(σ2
i + (x1α

g
1 − x1 + 1)2σ2

m)3/2

= (1 +mb +mδ)(µ−Rf ) + λφ

(
mδx1 + (x1α

g
1 − x1 + 1)(µ−Rf )√

σ2
i + (x1α

g
1 − x1 + 1)2σ2

m

)
x1[(µ−Rf )σ

2
i −mδx

2
1(α

g
1 − 1 + 1/x1)σ

2
m]

(σ2
i + (x1α

g
1 − x1 + 1)2σ2

m)3/2)

> 0

The last inequality is true for all αg1 ∈ [αl1, 1], and for mδ ∈ (0, C4

√
σ2
i + σ2

m). There-

fore, αg∗ =
[

1
0

]
is optimal for the winning manager. Furthermore,

∂(1−αb1
∗
)

∂mδ
=

− 1
x21

∂x1
∂mδ

< 0 by lemma 5, and limmδ→0+(1 − αb1
∗
) = limmδ→0+

1
x1

= 0 by lemma 4.

Also by lemma 4, 1− αb1
∗

= O(
√
mδ). Thus we have proved the theorem.

Proof of Corollary 1: The Sharpe Ratio of fund i, denoted by SRi is:

SRi =
αi1(µ−Rf )√

(αi1σm)2 + ((1− αi1)σi)2
.

Taking the derivative of SRi with respect to variable αi1 and after simplification, we

have

∂

∂αi1
(SRi) =

(µ−Rf )σ
2
i

(
√

(αi1σm)2 + ((1− αi1)σi)2)3
(1− αi1)

Therefore, ∂
∂αi1

(SRi) > 0 for αi1 < 1. From Theorem 1, in the equilibrium, we have

αg1
∗ = 1 and αb1

∗
< 1, and thus SRb < SRg. Moreover, we have that ∂

∂mδ
(SRb) =

∂
∂αb1

(SRb)
∂αb1
∗

∂mδ
< 0 from Theorem 1, and ∂

∂λ
(SRb) = ∂

∂αb1
(SRb)

∂αb1
∗

∂λ
< 0 from proposi-

tion.
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