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1

CHAPTER 1
STRATEGIC PLACEMENT OF TELEMETRY TO REDUCE

ROUTING COSTS

1.1 Introduction

Our motivation for the study of the strategic placement of telemetry units

comes from a project with NuCO2. NuCO2 provides carbon dioxide and nitrogen gas

to more than 130,000 customers across the United States, primarily for use in bev-

erage carbonation [1]. These customers include national chain and local restaurants,

as well as convenience stores, sports venues, and theme parks. The scheduling of de-

liveries to these customers is not based on customer orders, but is based currently on

usage forecasts made by NuCO2. Product usage rates are estimated based on several

deliveries to a customer, and these rates are used to compute a delivery frequency for

each customer. NuCO2 schedules deliveries according to these frequencies and fills up

the customer’s tank when the delivery occurs. NuCO2 has observed a few problems

with this practice. If customers are using product at an unusually low rate, NuCO2

does not know this and will deliver to a customer more often than necessary. This

creates expensive routing costs that could potentially be avoided. Similarly, if cus-

tomers are using product at an unusually high rate, NuCO2 runs the risk of allowing

these customers to stock out of product if they receive a delivery according to their

defined frequency.

Due to the location of customer tanks, the types of gauges involved, and

customer preferences, it is hard to get accurate tank readings between deliveries.



2

Thus, NuCO2 wanted to explore the use of telemetry to remotely gather accurate tank

levels. NuCO2, though, only wants to purchase a very limited number of telemetry

units and approached us with the question of where to best place these units. To

the best of our knowledge, the strategic placement of telemetry units has not been

previously considered in the literature. Our goal is to identify where to place the

telemetry units to maximize the savings in routing costs while preserving a given

customer service level.

The use of telemetry can be beneficial to customers, distributors and suppliers

of many types of products besides carbon dioxide and nitrogen. For example, suppliers

of liquified petroleum gas also use telemetry to monitor levels at customer tanks [6].

Customer tanks are often located in inaccessible areas, and telemetry provides a means

of monitoring the inventory levels from a control facility [3]. Vending machines also

transmit inventory information to supply centers via telemetry units [8]. This helps

delivery people know what products are needed and in what volume.

In all of these applications, the use of telemetry represents a significant invest-

ment. Unit costs for the telemetry units can be high [5] especially when companies

consider installing them at all of their customers. Besides the cost of the units, there

are costs for installation and setup, including new IT infrastructure [32], and costs

to maintain and operate the units. Hence for many small and medium businesses

installing telemetry at all customer locations may not be viable and thus is not pur-

sued. If a business has the budget to install a limited number of telemetry units,

though, they may still be able to observe a significant amount of gain from telemetry,
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but it requires careful consideration of where to place these units. This is the issue

addressed in this paper.

In this paper, we present the related literature in Section 1.2. In Section 1.3,

we formally define the problem we solve, discuss how the given service level can be

maintained for both non-telemetry and telemetry customers, describe how we model

the stochastic nature of our problem via realizations, and present a full mathematical

model of the problem. The details of our solution methodology are presented in

Section 1.4. This involves a local search among different assignments of customers to

telemetry as well as heuristics for solving the resulting routing problems across each of

the realizations. We examine the performance of our approach as well as the impact

of different problem characteristics in Section 1.5. We provide our final conclusions

in Section 1.6.

1.2 Literature Review

Telemetry is a technology that allows remote measurement and reporting of

information by transferring data over wired or wireless networks [9]. We will first

discuss routing literature that specifically addresses the adoption of technology. We

will then describe related research problems and research that is related to our solution

approach.

Most of the literature that involves technology adoption in conjunction with

vehicle routing deals more with investments in Geographical Information Systems

(GIS). For example, Mbiydzenyuy [33] evaluates different information services by
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estimating the reduction in fuel costs, infrastructure costs, administrative costs, and

costs of missing and delayed goods. The combination of GIS with existing dynamic

routing algorithms creates the capability of making dynamic interventions such as

when customers experience shortages or customers require immediate service. Thus,

the use of real time location data is often combined with dynamic vehicle routing (see

Psaraftis [41] for a survey).

Other applications of related technology in the vehicle routing domain include

the use of a mobile reader. Shuttleworth et al. [43] design optimal routes for utility

companies who use mobile readers to read utility meters from a distance. Pacciarelli

et al. [40] assume that the item reading capability is not error free and use estimates

for the tag scanning error and the associated manpower cost for the manual correction

of reading error.

Our problem has connections with the location routing problem where the

goal is to choose one or many depots from a set of candidate sites and to construct

delivery routes from the selected depots to the customer sites such that the total cost

is minimized. Reviews of work in this area include Min et al. [34] and Nagy and

Salhi [35]. A variant of the location routing problem that includes periodic deliveries

to customers has also been examined in Prodhon [11].

Another closely related problem to ours is the Inventory Routing Problem

(IRP) (for a review, see Campbell and Savelsbergh [15] and Coelho et al. [20]).

The IRP is concerned with the distribution of a product from a facility to a set of

customers over a given planning horizon [15]. The objective is to minimize the routing
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costs during the planning horizon without causing stockouts at any of the customers.

The IRP often occurs when a vendor managed inventory replenishment policy is

adopted. In such a policy, a supplier manages the inventory of his customers and

decides how and when inventory should be replenished at each customer [16]. Such

vendors need access to accurate and timely information about the inventory status

of customers and often do so by adopting telemetry units. Much of the existing work

on the advantages of telemetry adoption in an IRP setting assumes that telemetry is

installed at all customer locations [15]. Our problem is more strategic in that we are

trying to establish where the limited number of telemetry units should be placed.

The stochastic nature of customer usage rates has also been captured in the

IRP literature. For example, Hemmelmayr et al. [27] plan routes for the supply of

blood products to hospitals incorporating stochasticity associated with blood product

usage at hospitals. The authors use an integer programming model and suggest several

recourse models involving the use of realizations. We modeled the stochastic usage

using realizations in a similar way.

Our solution technique involves transforming a subproblem into an instance of

the Periodic Vehicle Routing Problem (PVRP). Christofides and Beasley [19] present

several of the first heuristics for PVRP. The objective is to minimize distribution

costs while satisfying periodic delivery constraints. For a review of how this problem

has been modeled and solved, see Campbell and Hardin [17].

Our solution approach resembles the multiple scenario approach (MSA) of

Bent and Van Hentenryck [12]. We generate routes for non-telemetry customers using
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their computed delivery frequencies and telemetry customers using their expected

frequencies, but then remove the telemetry customers from these routes. This leaves

room to accommodate telemetry customers when deliveries are actually required,

which is very similar to the ideas employed in MSA. In MSA, routes are created that

accommodate potential future requests, but then the future requests are removed

from the plan. Bent and Van Hentenryck [12] show that MSA is a preferred method

to incorporate stochastic knowledge into route planning.

1.3 Model

1.3.1 Problem Definition

The problem we want to solve is where to install M telemetry units to minimize

the average routing costs across a set of R customer usage realizations over a given

time horizon T while maintaining a given customer service level for all n customers.

We assume there is a fleet of V capacitated vehicles available each day, and each

customer can be visited by at most one vehicle on a day (no split deliveries). The set

of arcs A includes directed edges between all customers, as well as edges between each

customer and the depot (indexed by 0 and n+ 1). For each edge (i, j) ∈ A, we assign

a distance tij and use a speed ρ to convert distance into travel time. The duration

of a vehicle’s tour has a given time limit D, and stops at customers require both

a fixed stop time and variable stop time depending on the quantity delivered. We

also assume that the daily usage rates of product for each customer follow a normal

distribution, and the rates are independent of each other. We use µi to represent the
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mean daily usage rate for customer i (i = 1 to n) and σi for the standard deviation

in daily usage rate for customer i (i = 1 to n). We also assume that M represents a

fairly small proportion of the customer set. We refer to this problem hereafter as the

Telemetry Location Problem (TLP).

1.3.2 Service Level

Next, we look at how to maintain a given service level at all customers and

understand how this differs for customers with and without telemetry. We show that

the savings from using telemetry is tied to the computation of safety stock.

In our equations, we use z to represent the z-statistic associated with the given

service level. For a customer i without telemetry, the delivery frequency fi (in work

days) should be such that average usage rate over fi days plus the safety stock will

be equal to the tank capacity Imax
i :

µifi + z
√
fiσi = Imax

i . (1.1)

The delivery frequency fi derived from Equation 1.1 would be such that, on average,

a truck would arrive at a customer just when the customer reaches its safety stock.

The safety stock involves
√
fi since the customer is vulnerable for runout for the

fi days between deliveries, and the standard deviation of demand over fi days is

√
fiσi. The safety stock also involves z, so that we can be confident at a service level

corresponding to z that the customer will not experience an outage during the fi days

between delivery.

The challenge with using a delivery frequency of fi in practice is that deliveries
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may not always occur at the same time. For example, consider a customer with

fi = 5. If delivery on day 1 is scheduled at 9 a.m, then the next delivery on day 6

must be scheduled by 9 a.m. to guarantee the service level is maintained. To allow

for flexibility in delivery time to promote good routing options, we suggest a delivery

frequency f
′
i = fi − 1 for customers without telemetry. With this change, equation

(1.1) becomes:

µi(f
′

i + 1) + z
√
f

′
i + 1σ = Imax

i . (1.2)

We can solve for f
′
i :

f
′

i =
z2σ2

i + 2µi(I
max
i − µi)− zσi

√
(z2σ2

i + 4µiI
max
i )

2µ2
i

. (1.3)

The value for f
′
i would be rounded down to the nearest day or the nearest week

depending on the level of customer usage.

With telemetry, the above changes. A customer is not vulnerable in the same

way since the vendor would now know the status of each customer’s inventory level

every night via a telemetry reading. Every night, the vendor can see if a customer’s

inventory is low and can decide to go there the next day (assuming capacity is avail-

able). Thus, a customer is vulnerable for a much shorter amount of time. This allows

safety stock to be greatly reduced without increasing the likelihood of stockout. A

delivery must occur the next day if:

µi + zσi ≥ most recent tank reading. (1.4)

Equation 1.4 says that if a day’s expected usage plus a safety stock buffer is more

than what is remaining in the tank, a delivery must occur. If the tank level is higher
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than this threshold, this formula implies that the delivery can be postponed while

preserving the service level. Like with non-telemetry customers, this may create chal-

lenges in delivery timing. For example, for a particular customer, this may indicate

a delivery is not needed on day 3, but will require a delivery early on day 4 to ensure

the service level is maintained. To allow delivery flexibility to promote good routing,

we also slightly modify Equation 1.4 to require a delivery the next day when:

2µi + z
√

2σi ≥ most recent tank reading. (1.5)

Thus, we are essentially forcing the delivery to occur one day earlier than necessary,

so that we have the whole day to make the delivery. We want to note that this is

not the only time a delivery can be made to a telemetry customer. We can make a

delivery even earlier if it leads to better routes, and we discuss this issue in detail in

Section 1.4.2. Here, we are just trying to understand exactly how telemetry can lead

to potential savings.

A customer with telemetry will not receive a delivery with a strict frequency,

but the use of telemetry and the reduction in safety stock translates to an increase

in the average time between deliveries. Based on Equation 1.5, the new average

frequency f̂i is computed as follows:

Imax
i − 2µi − z

√
2σi

µi

. (1.6)

The value f̂i value helps us understand what average cost savings may result over a

time horizon as a result of using telemetry. For most customers, f̂i is much larger than

f
′
i due to the reduction in safety stock. Over a time horizon T , a larger frequency
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translates to fewer visits, and thus we get savings in the routing costs. An expected

change in the number of visits over a horizon T as a result of telemetry would be

computed as follows:

(
T

f
′
i

− T

f̂i
). (1.7)

By manipulating the equations for f
′
i and f̂i, we can derive that, all other parameters

equal, the customers with the larger µi, larger σi, or smaller Imax
i values would yield

the larger expected reduction in visits over the time horizon due to the adoption of

telemetry. These observations guide the experiments in Section 1.5.3.

Our formulas for f
′
i and f̂i can help us precisely compute the M customers

where the visit reduction over the time horizon should be the largest, but this does

not necessarily determine which set of customers creates the biggest savings in routing

costs. The other big factor is where a customer is located. For example, a customer

that is expensive to serve can create a large cost reduction with only a small reduction

in the number of visits. Looking just at the distance from the depot is not sufficient

to derive the cost reduction associated with assigning a customer telemetry because

most routes involve multiple customers. A customer may be routed with different

customers on different days, making their cost contribution both dependent on the

location of other customers but also dependent on the frequency of visits to the other

customers. Thus, we must solve the problem defined by the mathematical model in

Section 1.3.4 which considers both the number of visits as well as how the customers

are routed on those visits.
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1.3.3 Realizations

In practice, for a customer with a highly variable usage rate who has telemetry,

the average number of days between deliveries may be f̂i, but it is very unlikely that

deliveries will occur precisely every f̂i days. Recall that for customers with telemetry,

deliveries now will occur based on tank readings. To model the stochasticity of

customer usage, we create a set of R realizations of daily usage at all customers over

T . The realizations reflect the type of information we would get from telemetry units

on a daily basis. These simulated usage values help us create realistic delivery dates

for telemetry customers for each realization which helps us create a better assessment

of the routing costs.

For each realization, for each customer, we simulate a daily usage value for

each day of the planning horizon based on the customer’s µi and σi values. Starting

from an initial inventory level, the inventory level is reduced each “night” by the

generated usage rate for that day for that realization, and it is set to tank capacity

when a delivery occurs. The delivery dates for telemetry customers are generated in

two different ways. In the first method, the vendor decides to deliver the next day

if the current inventory level is too low according to Equation 1.5. This corresponds

to delaying a delivery as far as possible in the planning horizon while preserving the

service level and a full day of delivery flexibility. We refer to this as the ‘last day’

rule, because the delivery is made on the last day possible. We also consider a ‘best

day’ rule, described in detail in Section 1.4.2, that allows telemetry customers to be

visited earlier if the routing costs are lower. These rules reflect the type of choices that
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companies, such as NuCO2, would use once telemetry is installed at the restricted set

of customers to decide when deliveries are required.

1.3.4 Mathematical Model

In the following mathematical model, telemetry customers are routed based

on the last day rule, while non-telemetry customers are routed based on their f
′
i

values. The model identifies routes for each vehicle for each day of the planning

horizon for each realization. For non-telemetry customers, their delivery days will

be the same across all realizations. The integer program essentially decides the start

date of delivery for each non-telemetry customer.

The model helps us make the strategic decision of where to place the M teleme-

try units. Because it is a strategic model rather than a model tied to a particular

point in time, we do not want to restrict the solutions based on a set of initial in-

ventory levels that would yield bad routes. Thus, customers without telemetry are

allowed to start their first delivery on any of the first f ′i days because initial inven-

tories could easily be manipulated in practice if certain levels would enable better

routes. Similarly, we strategically set the initial inventory levels for telemetry cus-

tomers to promote the creation of good routes. Details on the initial inventory levels

are provided in Section 1.4.3.

The following are the parameters and variables needed for our model:

Parameters
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M number of telemetry units

R number of realizations

T number of days in planning horizon

n number of customers; nodes 0 and n+ 1 represent the depot

N set of all customers

V number of vehicles

P capacity of vehicle

tij distance between customers i and j

ρ average speed of delivery vehicles

D maximum route duration

e fixed stop time at a customer

c service time per unit delivery quantity

µi average daily usage rate at customer i

σi standard deviation of usage rate at customer i

f
′

i delivery frequency of customer i without telemetry installation

qi estimated delivery quantity for non-telemetry customer i, computed as f ′iµi

utri the product usage at customer i on day t in realization r with telemetry

Imax
i tank capacity at customer i

I0i initial inventory at customer i
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Variables

zi 1 if telemetry is installed at customer i, 0 otherwise

ytvi 1 if customer i receives a delivery on day t by vehicle v, 0 otherwise

xtvijr 1 if vehicle v travels from customer i to customer j on day t in

realization r, 0 otherwise

I tir inventory at customer i in realization r at the end of the day t with telemetry;

dtvir a continuous variable indicating the quantity delivered to customer i on day t

in realization r by vehicle v

Next, we define the objective, constraints, and variable restrictions for the

problem we solve.

min
1

R

R∑
r=1

V∑
v=1

T∑
t=1

n∑
i=0

n+1∑
j=1,j 6=i

tijx
tv
ijr (1.8)

subject to
n∑

i=1

zi = M (1.9)

V∑
v=1

f
′
i∑

t=1

ytvi ≥ 1− zi , ∀i ∈ [1, n] (1.10)

V∑
v=1

ytvi ≤
V∑

v=1

y
t+f

′
i v

i + zi , ∀i ∈ [1, n], ∀t ∈ [1, T − f ′

i ] (1.11)
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dtvir ≥ qi(
n+1∑

j=1,j 6=i

xtvijr − zi) , ∀i ∈ [1, n], ∀t ∈ [1, T ], ∀v ∈ [1, V ], ∀r ∈ [1, R] (1.12)

Imax
i (

V∑
v=1

n+1∑
j=1,j 6=i

x1vijr + 1− zi) ≥ zi(2µi +
√

2zσi)− I0i ,∀i ∈ [1, n],∀r ∈ [1, R] (1.13)

Imax
i (

V∑
v=1

n+1∑
j=1,j 6=i

xtvijr+1−zi) ≥ zi(2µi+
√

2zσi)−I t−1i , ∀i ∈ [1, n],∀t ∈ [2, T ],∀r ∈ [1, R]

(1.14)

d1vir ≥ (y1vi + zi − 1)Imax
i − I0i , ∀i ∈ [1, n], ∀v ∈ [1, V ], ∀r ∈ [1, R] (1.15)

dtvir ≥ (ytvi + zi− 1)Imax
i − I tir , ∀i ∈ [1, n], ∀t ∈ [2, T ], ∀v ∈ [1, V ], ∀r ∈ [1, R] (1.16)

I1ir = I0i − u1 r
i zi +

V∑
v=1

d1 v
ir , ∀i ∈ [1, n] , ∀r ∈ [1, R] (1.17)

I t+1
ir = I tir − ut+1 r

i zi +
V∑

v=1

dt+1 v
ir , ∀i ∈ [1, n] ,∀t ∈ [2, T − 1] , ∀r ∈ [1, R] (1.18)

n∑
i=0

n+1∑
j=1,j 6=i

tijx
tv
ijr

ρ
+

n∑
i=1

cdtvir +
n∑

i=1

n+1∑
j=1,j 6=i

e xtvijr ≤ D ,∀r ∈ [1, R],∀t ∈ [1, T ],∀v ∈ [1, V ]

(1.19)

n∑
i=1

dtvir ≤ P , ∀t ∈ [1, T ] ,∀r ∈ [1, R], ∀v ∈ [1, V ] (1.20)
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ytvi =
n+1∑

j=1,j 6=i

xtvijr , ∀i ∈ [1, n], ∀t ∈ [1, T ], ∀v ∈ [1, V ] (1.21)

n+1∑
i=1

xtv0 ir = 1 , ∀t ∈ [1, T ], ∀v ∈ [1, V ], ∀r ∈ [1, R] (1.22)

n∑
i=0

xtvi n+1 r = 1 , ∀t ∈ [1, T ], ∀v ∈ [1, V ], ∀r ∈ [1, R] (1.23)

n+1∑
j=1,j 6=i

xtvijr =
n∑

k=0,k 6=i

xtvjir , ∀i ∈ [1, n] , ∀t ∈ [1, T ], ∀v ∈ [1, V ], ∀r ∈ [1, R] (1.24)

∑
i,j∈Q

xtvijr ≤ |Q| − 1 , ∀t ∈ [1, T ], ∀v ∈ [1, V ], ∀r ∈ [1, R], ∀Q ⊆ N (1.25)

dtvir , I
t
ir ≥ 0 , ∀i ∈ [1, n], ∀t ∈ [1, T ], ∀v ∈ [1, V ], ∀r ∈ [1, R] (1.26)

xtvijr ∈ {0, 1} , ∀i ∈ [0, n], ∀j ∈ [1, n+ 1], ∀t ∈ [1, T ], ∀v ∈ [1, V ], ∀r ∈ [1, R] (1.27)

zi ∈ {0, 1} , ∀i ∈ [1, n] (1.28)

The objective function in Equation (1.8) minimizes the average travel cost

over all realizations. Constraint (1.9) captures the restriction on the total number

of telemetry units. Constraints (1.10)-(1.12) focus on customers without telemetry.

Constraints (1.10) and (1.11) ensure the deliveries to non-telemetry customers occur

according to their computed frequencies. Non-telemetry customers are allowed to

start delivery on any of the first f
′
i days. Constraints (1.12) enforce the appropriate

delivery quantity for non-telemetry customers. Constraints (1.13)-(1.18) are focused

on telemetry customers. Constraints (1.13) and (1.14) require that a delivery is made

to a telemetry customer the day after the tank level falls below the level specified in

Equation 1.5. Constraints (1.15) and (1.16) set the delivery quantities for telemetry
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customers. We set the delivery volume equal to the amount possible before daily

usage occurs as that should always be a feasible quantity for customers to receive.

Constraints (1.17) and (1.18) ensure inventory balance from period to period for

customers with telemetry. The inventory level at the end of one period equals the in-

ventory level at the previous time period adjusted by usage and delivery. Constraints

(1.13), (1.15), and (1.17) involve initial inventory levels for telemetry customers. In

Section 1.4.3, we discuss how to set initial inventories for telemetry customers in a

way that promotes good routing. Constraints (1.19)-(1.25) reflect traditional routing

constraints involving all customers. Constraints (1.19) and (1.20) impose restrictions

on the time duration of a route and vehicle tank capacity. Constraints (1.21) connect

the x and y decision variables. Constraints (1.22) and (1.23) enforce the tours to

start and end at the depot. Constraints (1.24) and (1.25) are the standard flow con-

servation and subtour elimination constraints for vehicle routing problems. Finally,

Constraints (1.26) ensure that tank levels and delivery quantities are non-negative,

and constraints (1.27) and (1.28) define the other decision variables as binary.

1.4 Solution Methodology

The size of the proposed integer programming model for TLP is huge even for

moderate instances. The vehicle routing problem belongs to theNP hard domain [29],

and the vehicle routing problem can be viewed as a subproblem here. Hence finding

an exact solution to the proposed model is computationally intractable. Thus, we

propose a heuristic to solve this new problem. The heuristic starts with an initial
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assignment of customers to telemetry, estimates the routing cost of this assignment,

and iterates to a new assignment. We propose different ways to create the initial

assignment of customers to telemetry, different ways to assign the delivery dates

for telemetry customers, and different options for iterating the new assignments of

customers to telemetry. Since this is a strategic problem, the solution methodology

does not necessarily have to be fast, but finding options that yield high quality results

and reduce run time is definitely desirable. Thus, we consider the impact of these

choices not only on solution quality but also on run time in Section 1.5.

1.4.1 Routing Cost Algorithm

As mentioned above, our algorithm for solving the TLP involves evaluating

the routing costs for different assignments of customers to telemetry. The methods

we developed to initialize and create new assignments will be discussed in detail in

Section 1.4.4. First, we describe how we evaluate the routing costs associated with a

particular assignment. A summary of our approach is given in Algorithm 1.1.

As indicated in the discussion of the mathematical model, for non-telemetry

customers, their delivery dates will be the same across all realizations. For these non-

telemetry customers, their computed frequency f
′
i can be viewed as a strict periodic

frequency, as considered in periodic vehicle routing problems (PVRP). Thus, one

option is to solve a PVRP involving only non-telemetry customers and try to insert

the telemetry customers into this schedule in each realization. The reason why this

does not work well is that there are often very little available capacity to insert the
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telemetry customers into such a schedule. Thus, we need a way for the PVRP to

effectively “save some room” for the telemetry customers on the routes. We can

do this by solving a PVRP involving all customers, using the f
′
i values for the non-

telemetry customers and the f̂i values for the telemetry customers (the ’Initialization’

phase of Algorithm 1.1). The PVRP is known to be solved well using a tabu-search

algorithm, so we employ the successful tabu-search algorithm for the PVRP presented

by Cordeau et al. [21]. The parameter values used here follow from the paper.

Once we have the set of routes created by tabu search, we can remove the

telemetry customers from these routes and preserve the routing decisions for the non-

telemetry customers. These routes become the basis of the routes for each realization.

For each realization, the vehicle assignments for the non-telemetry customers are

allowed to be changed, but the scheduled dates for the deliveries to the non-telemetry

customers cannot be changed. For each of the telemetry customers, we obtain the

precise days of deliveries across the planning horizon for each realization according

to the last day or the best day delivery rule (discussed in Section 1.4.2). For each of

the telemetry customers, we compute the insertion cost for the delivery sequence and

sum this across all realizations. We insert the telemetry customer with the highest

total cost of insertion across all realizations. This customer is the most important

to serve well, as reflected by the high insertion cost. Once a telemetry customer is

inserted in the schedule, we recompute the insertion costs across the planning horizon

to determine the telemetry customer with the next highest insertion cost. The process

is repeated until all telemetry customers are inserted in the schedule. This procedure
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of transforming a PVRP solution into a solution for the TLP is summarized by the

’Construction’ phase of Algorithm 1.1.

Once the routes are constructed, three improvement routines are run. This is

indicated by the ’Improvement’ section of Algorithm 1.1. All of these routines are fo-

cused on improvements within a single day or a single vehicle’s tour. We do not allow

the transfer of any customers across different days of the planning horizon. These

limitations are made to ensure that all non-telemetry customers are visited on the

same days across all realizations and to reduce run time. These improvement ideas

were carefully chosen, after a series of computational experiments, to offer maximum

improvement in a limited amount of time. First, we run a one-shift improvement rou-

tine that improves the routes on each day of the planning horizon (Lin and Kernighan

[30]). Customers are potentially swapped to different locations on the same tour or to

other tours on the same day. All possible moves are considered for each customer be-

ing served on a given day, and the move that creates the best improvement is selected.

This process is repeated until no more improving moves are found on a given day,

and then the improvement process moves to the next day. This process is repeated

for each realization. Second, we run the standard 2-OPT improvement heuristic [30]

to improve individual routes. The best improvement move is chosen among all the

candidates at each step and the process is repeated until no improvement is found.

This process is repeated for each route on each day of each realization. Third, we

run VRP crossover improvement heuristics, allowing exchanges of portions of two

different same day routes with each other. For example, the last three positions on
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the first vehicle for day one of the planning horizon are swapped with the last three

positions on the second vehicle. The first move which achieves savings in routing

cost is performed. This heuristic is motivated by two point crossover ideas in genetic

algorithms (Gwiazda [26]).

Once the improvement process is completed, we can now compute the average

routing cost associated with a potential assignment of customers to telemetry. We

next consider a different assignment of customers to telemetry, as discussed in Section

1.4.4, and repeat the routing cost algorithm.

1.4.2 Last Day vs. Best Day

As previously mentioned, for telemetry customers, we use a set of usage real-

izations to reflect the type of information we would get from a telemetry unit. An

initial inventory level, these usage values, and a decision rule determine the dates

when telemetry customers are visited. It is important that we approximate how

telemetry would be used in practice so that we get a good estimate of the routing

costs of a particular assignment. The decision rule should be both cost-effective in

terms of routing costs, but also quick to evaluate since we want to evaluate many

potential assignments.

For the last day delivery rule, we use Equation 1.5 as the governing equation

to determine the exact delivery dates for telemetry customers for each realization.

On each delivery date selected by the last day rule, we evaluate the insertion cost of

the telemetry customer at all points in the current routes for that day. For example,

if customer i is served between i− 1 and i+ 1 on a particular day, the insertion cost
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for this delivery is

(ti−1,i + ti,i+1 − ti−1,i+1). (1.29)

We choose the location that creates the lowest insertion cost. Such an approach should

yield a savings in routing costs due to the reduction in the number of visits across the

planning horizon. However, fixing the day of delivery for a customer according to the

last day possible has a shortcoming. The total routing cost may be somewhat high

because the customer may not combine well with the other customers on the selected

days.

Another option is to allow more flexibility in the choice of delivery day for the

telemetry customer. We refer to this as the best day rule, where the delivery date

for a telemetry customer can occur earlier if it yields better routes. If the customer

is within one week of the projected last day, the best day rule evaluates the cost of

making the next delivery on each of the possible days within that week. In terms of

equations, a delivery is considered when

I tir − (w − 1)µi ≤ 2µi + z
√

2σi (1.30)

where w represents the number of days per week where usage and deliveries occur.

When the day is identified that creates the lowest insertion costs, the delivery is

tentatively scheduled on that date. In doing so, the method yields savings in routing

costs in the short term. For example, if customer x must receive a delivery by day 5

of the planning horizon but combines well with non-telemetry customers y and z on

day 4, it is a good choice to deliver to customer x on day 4 instead of day 5. For each

realization, our decision to schedule a delivery for a telemetry customer will adjust
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for the observed usage rates during the days leading to the tentative delivery date.

If we observe a significantly low usage rate for the next few days in one realization,

the projected last day will move further into the planning horizon. This would allow

us to postpone the delivery day for the customer with telemetry in that realization.

Thus, the realizations of daily amounts of usage for customers with telemetry allow

us to reevaluate our delivery decisions and potentially improve them. The downside

of the best day rule is the long term impact, in that it may create a few more visits

over the time horizon. We compare the value of a best day and last day approach in

our computational experiments in Section 1.5.

1.4.3 Initial Inventory

To be able to decide the precise delivery dates under any delivery rule, an

initial inventory level is required. As indicated in the model in Section 1.3.4, we want

to use the same initial inventory level for a customer across each realization. This is

so that the associated delivery dates will reflect the variety in dates that a particular

customer and their usage variation could create. At the same time, these initial values

should be chosen to provide the best chance at finding good routes, since this is a

strategic problem and initial levels could easily be modified in practice. It is also

important that the telemetry customers have different initial inventory levels (i.e., do

not set all customer’s inventory level at a full tank), so the telemetry customers will

not all need a delivery at the same time. After careful experimentation, we found that

the lowest cost solutions are found when the initial inventory levels are updated based
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on the set of customers currently assigned to telemetry. For each potential assignment

that is considered, we update the initial inventory values based on a PVRP solution,

again using the tabu-search algorithm presented by Cordeau et al. [21]. As in the

first part of the algorithm, the current set of telemetry customers are routed in a

PVRP with a frequency of f̂i and non-telemetry customers are routed with their f ′i

values. For each customer in the telemetry set, we look at the first delivery date for

that customer in the PVRP solution and calculate the time between this delivery

date and start of planning horizon e.g., gi days. We set the initial inventory level at

each telemetry customer equal to the mean usage plus safety stock, at a service level

corresponding to z, for this time duration or

I0i = giµi + z
√
giσi. (1.31)

The choice of this initial inventory level makes the solution to the PVRP feasible

for customers with low variation, but creates big changes for customers with high

variation in usage.

1.4.4 Initialization and Telemetry Set Improvement

Next, we consider ways to both initialize the set of customers that have teleme-

try and strategic ways to iteratively improve this set. These choices have a relatively

small impact on the final solution cost, but have a big impact on the run time. Most

improvements we consider replace one telemetry customer with one non-telemetry

customer at a time, evaluating the cost of this new assignment using the procedure

described in Section 1.4.1 and keeping the new assignment if an improvement in cost
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Algorithm 1.1 RoutingCost
Input: S the set of customers assigned to telemetry

Initialization:

x= 0

Solve PVRP using delivery frequency f̂i for i ∈ S and f
′
j for j ∈ N \ S to create set of routes ROUTES

Construction:

Extract telemetry customers from ROUTES and replicate for each realization

while S 6= ∅ do

for i ∈ S do

for r = 1 to R do

ICr
i = lowest insertion cost for i into ROUTESr based on best day or last day rule

end for

ICi =
∑

r IC
r
i

end for

k = customer i ∈ S with largest ICi value

for r = 1 to R do

Insert customer k into ROUTESr

end for

S = S \ k

end while

for r = 1 to R do

x = x+ cost of ROUTESr

end for

x = x
R

Improvement:

Update x and ROUTESr (r = 1 to R) using one-shift improvement heuristics

Update x and ROUTESr (r = 1 to R) using 2-OPT improvement heuristics

Update x and ROUTESr (r = 1 to R) using VRP crossover improvement heuristics

Return x



26

is found. Preliminary experiments show that a first-improving search is much faster

than a best-improving search while achieving similar quality solutions. This process

is repeated until no improvement can be found, as summarized in Algorithm 1.2.

The one-exchange methods we consider vary in how customers are ordered for the

one-exchange. We describe the different ordering methods for the initialization and

one-exchange here and evaluate them in Section 1.5.

1.4.4.1 Method 1

The first method, which we refer to as Method 1, uses f ′i and f̂i values to

estimate the impact of telemetry on each customer and is based on the same ideas

as found at the end of Section 1.3.2. The initialization values are created using the

tabu search heuristic from Cordeau et al. [21] to solve the PVRP with all customers

assigned to their original f
′
i values. With this solution, we compute Ci values for

each customer, where Ci reflects the total cost to serve customer i without telemetry

in the PVRP solution. The total cost for a customer is computed as follows. Each

time that customer i is served, we compute the insertion cost based on its location

relative to preceding and succeeding customers. The insertion cost represents the

extra cost required to add i to an existing route. These insertion costs are summed

over the planning horizon to create the total insertion cost Ci which is a reflection

of the cost to serve customer i without telemetry. The following expression captures

the estimated reduction in Ci associated with assigning a customer to telemetry and
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Algorithm 1.2 Pseudocode for Initial Allocation and Improvement
Initialization:

e(i) = COST (i,m), i = 1, . . . , n and m=1, 2, or 3.

Choose M largest e(i) values as S

x= RoutingCost(S)

Improvement:

e(i) = COST (i,m), i = 1, . . . , n and m=1, 2, or 3.

Sort i ∈ S from lowest to highest e(i) value

Sort j ∈ N \ S from highest to lowest e(i) value

for i = from lowest e(i) to highest e(i) value in S do

S′ = T \ i

for j= from highest e(j) to lowest e(j) value in N \ S do

S′ = S′ ∪ j

x′ = RoutingCost(S′)

if x′ < x then

S = S′

x = x′

Goto start of Improvement

end if

S′ = S′ \ j

end for

S′ = S′ ∪ i

end for

Return x
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is fairly simple to implement:

Ci

T

f
′
i

(
T

f
′
i

− T

f̂i
). (1.32)

The average cost per visit is captured by the first term in Equation 1.32, and the

expected reduction in number of visits is given by the second term. Thus, Equation

1.32 captures the estimated reduction in cost associated with adopting telemetry for

customer i.

We can evaluate Equation 1.32 for each customer and choose the M customers

that have the maximum value as our initial set of telemetry customers. This approach

has been shown to greatly reduce run times as compared with starting with a random

initial allocation.

Once we have an initial set of customers with telemetry, we need to identify

an ordering of how we consider alternative solutions. We want to order the non-

telemetry customers so that we consider adding customers who are likely to create

cost improvements with the addition of telemetry. For the telemetry customers, we

want to remove customers that are not creating much actual savings as a result of

telemetry. For both sets of customers, we simply adapt the above calculations based

on the current solution. For each customer, we compute its insertion cost Cr
i for

each realization and average these to create a new value C
′
i . This value represents

the current cost to serve customer i on average over the R realizations. For each

customer, we also compute the actual number of visits ari for each realization r and

average them over all realizations to create a value ai. For non-telemetry customers,
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the projected savings from telemetry can be computed by adapting Equation 1.32 as:

C
′
i

ai
(ai −

T

f̂i
). (1.33)

The first part represents the updated average cost per visit, and the second part

represents the updated projection of change in number of visits. The higher this

value is, the higher the projected savings from using telemetry. Thus, we consider

non-telemetry customers from highest to lowest value in our one-exchange. Similarly,

for telemetry customers, the projected cost increase from removing telemetry is:

C
′
i

ai
(
T

f
′
i

− ai). (1.34)

The higher this value is, the higher cost increases are expected from removing teleme-

try. Thus, we sort this list from low to high, so the customers with the lowest value

are considered first for removal of telemetry.

These cost estimates are used in Algorithm 1.2 as indicated with m = 1. Each

time an improvement is found, the telemetry set is changed, and the new solution is

used to recompute the above values.

1.4.4.2 Method 2

Method 2 is based on ideas from Ohlmann et al. [39] which determines delivery

frequencies for customers in a lean production system. Though our problem is much

different in terms of the more limited delivery options for customers, we can still use

some of their ideas on how to identify which customers are not being served efficiently.

Specifically, we look at which customers are being served on routes that do not use
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a full truck’s capacity, as these do not represent efficient use of vehicles. In terms

of initialization, we again look at the PVRP solution where all customers are routed

at their f
′
i values. For each customer, we look at each route where they are served,

compute the volume being delivered, and subtract it from the truck’s capacity to

compute a remainder value. We can average these over all routes where a customer

is being served to create a value remi. The higher the value of remi, the poorer

quality the routes used to serve customer i. We can choose the customers with the M

highest values of remi as those most needing a change, which here is the placement

of telemetry.

Once we have an initial set of customers with telemetry, we need to identify an

ordering of how we consider alternative solutions. As with Method 1, we want to order

the non-telemetry customers so that we consider adding customers who are likely to

create cost improvements with the addition of telemetry. For the telemetry customers,

we want to remove customers that are not creating much actual savings as a result

of telemetry. For both sets of customers, we simply update the above calculations

based on the current solution. For each customer, we compute the average remaining

volume on its deliveries remr
i for each realization and average these to create a new

value rem
′
i. This value represents the average volume remaining on routes visiting

customer i across all realizations. Again, if it is high, it reflects the customer needs

a change. For non-telemetry customers, we consider these values from highest to

lowest, and for telemetry customers, we consider this value from lowest to highest.

As with Method 1, these cost estimates are used in Algorithm 1.2 as indicated
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for m = 2. Each time an improvement is found, the telemetry set is changed, and the

new solution is used to recompute the above values.

1.4.4.3 Method 3

The obvious drawback of Method 2 is that it does not consider the cost of the

routes, but only the remaining volume. Our last method is based on a combination of

Methods 1 and 2. We want to consider customers for telemetry that are not currently

being served well in terms of truck volume, but we want to prioritize those where this

creates the highest costs. Our hybrid initialization combines the two methods above

as follows:

Ci(1−
f

′
i

f̂i
)
remi

P
. (1.35)

Our initialization method for Method 3 chooses the M customers with the largest

value defined by Equation 1.35.

Next, we again need a method to evaluate the candidates for the one-exchange.

For customers without telemetry, we evaluate them using Equation 1.36:

C
′
i

ai
(ai −

T

f̂i
)
rem

′
i

P
. (1.36)

This yields a large value for customers who are not currently being served well and

have a high projection of cost savings from adding telemetry. We consider non-

telemetry customers for the one-exchange based on the value defined by Equation

1.36 from highest to lowest. For telemetry customers, we use Equation 1.37:

C
′
i

ai
(
T

f
′
i

− ai)
rem

′
i

P
. (1.37)
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We consider telemetry customers for the one-exchange from lowest to highest values

based on Equation 1.37. These cost estimates are used in Algorithm 1.2 as indicated

for m = 3.

The downside of Method 3 is that the estimate we compute above does not

provide a particular translation in terms of units, where Method 1, for example, gives

an expected cost reduction. The advantage of Method 3 is how it performs compu-

tationally, as will be demonstrated in Section 1.5. Like the previous two methods,

the values for Method 3 are recomputed for each customer each time an improving

solution is found.

1.4.4.4 Pair-Exchange

Once the one-exchange is complete, a two-exchange can be performed to create

additional improvements in the telemetry set. For this improvement method, we

can order the customers in the telemetry set and the customers without telemetry

using the methods described above. To increase the speed of the two-exchange, we

simplify the process by grouping each customer set into pairs and only considering

the exchange of these pairs in a process similar to that described in Algorithm 1.2.

For example, for the customers in the telemetry set, we first consider removing the

pair with the two lowest e(i) values, then the next two lowest e(i) values, etc. For

the customers without telemetry, we first consider the pair with the two highest e(i)

values, then the two with the next two highest e(i) values, etc. The exchanges are

performed until no improvement can be found. Because this is not a full two-exchange
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procedure, we refer to it as a pair-exchange. We also implement this improvement

method in a first-improving manner for speed purposes.

1.5 Computational Study

A variety of computational experiments were performed to assess the impact

of the proposed solution strategies. We also wanted to assess the impact of different

problem characteristics on the solutions, including the number of telemetry units, the

customer tank capacities, average daily usage rates, and amount of variance in the

usage rates.

The algorithms were implemented and executed in MATLAB Version 7.8.0.347.

The experiments were performed on a 2.40 GHz Intel Core 2 Quad processor running

the LINUX operating system [4].

Our computational analysis uses eight datasets for the symmetric traveling

salesman problem from TSPLIB [7]. These include dantzig42, st70, eil101, tsp225,

gil262, rat783, dsj1000 and pr1002. The number associated with the name represents

the number of customers in the dataset. For example, dantzig42 has 42 customers.

The distances between customers for four datasets (dantzig42, st70, and gil262) were

computed directly from the location data in miles with no adjustments, while for

four others (tsp225, rat783, dsj1000 and pr1002), the distances were scaled so that no

two customers were more than eight hours travel time apart with the use of a travel

speed of 45 miles per hour. The depot was fixed at the mean latitude and mean

longitude position for each dataset. We chose these datasets because they represent
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a nice variety in terms of both the numbers of customers and how the customers are

distributed across the geographical area.

In our experiments, we examine the average costs across 100 usage realizations

over a period of 12 weeks. This time period is chosen so that every customer will

have at least one delivery given our choice of usage rates. For each dataset, we begin

with routing customers with no telemetry units to get a baseline cost. Because each

potential local search move involving a new assignment of customers to telemetry

involves a run of the routing algorithm described in Section 1.4.1, it can add up to a

significant computational time for a large set of customers. To reduce the run time for

larger sets of customers, we reduce the candidate set of customers that are considered

for possible telemetry placement to those with the top 50% (for 200-500 customers)

or 25% (for more than 500 customers) values for the selected initialization method

(described in Section 1.4.4).

The number of vehicles for each experiment is the minimum number required

to create a feasible solution to the PVRP with no telemetry units. This minimum is

largely driven by the restriction that routes are no more than eight hours long. We

set the fixed stop time to 2.67 minutes and a variable delivery time to .04 minutes per

unit. The time limit on routes is set to eight hours. We assume usage and deliveries

occur five days per week. These values are based on real values at NuCO2. For most

experiments, we solve for the best solution with 5, 10, and 20 telemetry units for each

dataset.

For the base case, we assumed a tank capacity of 350 units at every customer.
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The mean usage rate µi for each customer is randomly assigned a value between 10

units per day and 30 units per day. We fix the variance in usage rate as a fixed

proportion of the mean usage rate such that σ = 0.25µ. We assume all trucks have a

capacity of 6000 units and use a service level of 95%. Again, these values are based

on real data at NuCO2.

1.5.1 Rule Comparison

We begin with a comparison between the proposed last day and best day

delivery rules for telemetry customers. Both rules were used with Method 1 for

initialization and improvement of the telemetry set. We report the average cost

across all the realizations.

The results are found in Table 1.1. The columns “Dataset”, “Tele”, “Veh”,

“Last Day”, “% Imp 1” and “Time 1” represent the name of the dataset, number of

telemetry units used, number of vehicles used, best solution cost for the last day rule,

percentage change in cost with respect to the case without any telemetry units, and

CPU time taken for last day rule in seconds. “Best Day”, “% Imp 2” and “Time 2”

are the corresponding parameters for the best day rule. The “% Diff ” field represents

the difference in the objective value of the Best Day with respect to Last Day in terms

of average routing costs with the same number of telemetry units.

Looking at Table 1.1, we see that the best day rule leads to better solution

quality in all of our tests. The percentage improvement ranges from 0.12% to 2.15%

vs. the last day rule.



36

T
ab

le
1.

1:
B

as
e

C
as

e:
µ
i
∈

[1
0,

30
],
σ
i

=
0.

25
µ
,I

m
a
x

i
=

35
0

D
at

as
et

T
el

e
V

eh
L

as
t

d
ay

%
Im

p
1

T
im

e
1

B
es

t
D

ay
%

Im
p

2
T

im
e

2
%

D
iff

d
an

tz
ig

42
0

1
96

98
.1

0
96

98
.1

0
5

95
85

.2
4

1.
16

30
08

.5
3

95
39

.0
3

1.
64

36
22

.5
4

0.
48

10
95

36
.8

2
1.

66
52

85
.7

4
94

86
.9

2
2.

18
60

05
.2

8
0.

51
20

94
80

.9
2

2.
24

13
56

4.
93

93
82

.4
6

3.
25

14
73

5.
94

1.
02

st
70

0
1

89
30

.4
3

89
30

.4
3

5
87

95
.0

2
1.

52
44

36
.9

4
87

18
.3

4
2.

37
49

30
.6

2
0.

86
10

87
16

.1
4

2.
40

10
17

5.
25

86
37

.9
0

3.
28

11
00

6.
28

0.
88

20
85

54
.0

3
4.

21
20

54
1.

96
84

52
.6

2
5.

35
21

75
2.

70
1.

14
ei

l1
01

0
1

71
84

.7
8

71
84

.7
8

5
70

09
.2

5
2.

44
59

73
.4

3
70

00
.5

2
2.

56
67

12
.8

4
0.

12
10

66
87

.9
6

6.
91

13
38

5.
41

66
58

.9
3

7.
32

14
26

3.
27

0.
40

20
64

27
.7

3
10

.5
4

20
29

2.
67

63
24

.7
2

11
.9

7
21

54
5.

82
1.

43
ts

p
22

5
0

6
70

15
0.

21
70

15
0.

21
5

67
95

2.
35

3.
13

10
00

2.
53

67
81

7.
49

3.
33

11
10

4.
62

0.
19

10
67

15
8.

41
4.

26
18

56
2.

92
67

00
4.

96
4.

48
20

03
4.

84
0.

22
20

65
99

3.
36

5.
93

31
42

8.
58

65
79

1.
44

6.
21

33
75

2.
65

0.
29

gi
l2

62
0

4
43

85
4.

59
43

85
4.

59
5

43
17

2.
32

1.
56

92
77

.4
2

42
29

9.
52

3.
55

10
47

2.
02

1.
99

10
42

91
5.

21
2.

14
24

62
1.

15
41

97
3.

73
4.

29
26

91
1.

74
2.

15
20

41
26

2.
75

5.
91

48
02

7.
17

40
34

2.
84

8.
01

50
10

7.
21

2.
10

ra
t7

83
0

6
57

43
3.

95
57

43
3.

95
5

56
96

2.
93

0.
82

19
75

5.
93

56
28

5.
63

2.
00

21
66

2.
84

1.
18

10
55

97
5.

25
2.

54
35

18
2.

02
55

21
2.

57
3.

87
37

00
6.

29
1.

33
20

54
97

1.
46

4.
29

60
15

4.
55

54
18

2.
11

5.
66

63
41

8.
28

1.
37

d
sj

10
00

0
8

10
92

59
.2

8
10

92
59

.2
8

5
10

62
88

.3
5

2.
72

24
09

3.
42

10
52

97
.6

5
3.

63
25

93
5.

74
0.

91
10

10
38

72
.6

7
4.

93
37

54
8.

92
10

26
73

.5
2

6.
03

41
05

3.
63

1.
10

20
10

31
05

.7
0

5.
63

75
13

3.
05

10
13

87
.4

2
7.

20
78

20
9.

85
1.

57
p
r1

00
2

0
8

88
57

5.
32

88
57

5.
32

5
85

91
3.

62
3.

01
21

03
8.

04
85

59
5.

03
3.

36
23

69
4.

55
0.

36
10

84
77

8.
25

4.
29

36
62

8.
72

84
45

4.
94

4.
65

39
00

5.
02

0.
37

20
84

00
2.

94
5.

16
68

42
5.

56
83

24
7.

55
6.

01
72

22
1.

52
0.

85



37

This was predictable as the best day rule encompasses the last day rule. We notice

that there is also an increase in solution time associated with using the best day rule.

This comes from the fact that the last day rule is less computationally intensive than

the best day rule. Since the best day rule provides better solution quality with a

slight increase in computational time, we use it in the rest of the tests in this section.

In Table 1.1, it is very interesting to see the impact of different numbers of

telemetry units on the different datasets. One might expect that for a given number

of telemetry units we would see a larger percentage change on the smaller datasets

since the telemetry units would make up a larger proportion of the total customer set.

This definitely is not true. With 5 telemetry units, we see the smallest change with

the best day rule, 1.64% is actually with the smallest dataset we tested (dantzig42),

and the largest change, 3.63% is with one of the largest datasets (dsj1000). This

shows that it is hard to predict the impact of telemetry without a tool such as the

one presented here. For all datasets, we see a steady improvement in the percentage

savings with increasing number of telemetry units. For most datasets, the savings with

20 telemetry units is roughly double with 5 telemetry units. The notable exception,

though, is eil101 with a savings of 2.56% with 5 units and a remarkable 11.97%

with 20 telemetry units. Many of the customers in this dataset that require frequent

deliveries are located far from the depot. This translates to higher cost savings from

the adoption of telemetry units.

In terms of other observable trends, we notice that the run time increases as

the size of the dataset increases. This happens because the complexity of the VRP
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subproblem increases. This is depicted by solution times for dantzig42 compared to

dsj1000. The solution times can also depend on the distribution of customers.

1.5.2 Telemetry Set Initialization and Improvement Method Comparison

Next, we compare the proposed telemetry set initialization and improvement

methods. The results are summarized in Table 1.2. The columns “Dataset”, “Tele”,

“Method 1”, “Method 2”, “% Diff 2, “Method 3” , “% Diff3”, “Pair-Ex”, and “%

Diff” represent the name of the dataset, number of telemetry units used, best solu-

tions found using Method 1, best solutions found with Method 2, percent improve-

ment of Method 2 relative to Method 1, best solution found with Method 3, percent

improvement of Method 3 relative to Method 1, best solution with Method 3 and

pair-exchange, and percent improvement relative to Method 3.

Since all three methods are based on the same one-exchange idea, it is not

surprising that all three methods yield similar solution quality. We do observe that

the Method 3 rule is slightly better than the other methods in terms of solution quality.

It yields the same solutions as Method 1 for the smaller datasets, but it yields slightly

better results for bigger datasets like rat783,dsj1000 and pr1002. Method 2 also does

well for dsj1000 and pr1002 but is worse for st70 and eil101.

One key reason for developing different methods for the one-exchange process

was to see if different orderings yield a faster convergence. Thus, the run times for

these same tests are found in Table 1.3. The columns “Dataset”, “Tele”, “Method 1”,

“Method 2”, “% Diff 2, “Method 3” , “% Diff3”, “Pair-Ex”, and “% Diff” represent

the name of the dataset, number of telemetry units used, run time using Method
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1, run time with Method 2, percent improvement of Method 2 relative to Method

1, run time with Method 3, percent improvement of Method 3 relative to Method

1, run time with Method 3 and pair-exchange, and percent improvement relative to

Method 3. We see that Method 2 and Method 3 both offer an improvement in run

time relative to Method 1 for all tests, but Method 3 offers a larger improvement

across all tests. The run time improvements for Method 3 range from 4.32% for

gil262 with 10 telemetry units to 26.30% for dantzig42 with 20 telemetry units. The

large improvements found in run time with Method 3 do not seem to follow a pattern

in terms of dataset size or number of telemetry units.

Since Method 3 is the best in terms of solution quality and run time, we ran the

pair-exchange on the Method 3 solutions to see if additional improvements are possi-

ble. We see in Table 1.2 that the pair-exchange does improve solution quality slightly

for bigger datasets (≥ 200 customers) but the maximum is only an additional 1.18%.

As Table 1.3 reflects, these additional improvements come at a significant increase in

computational time. Based on our experiments, we recommend Method 3 for one-

exchange and the addition of a pair-exchange if time permits. All of the remaining

tests in this section will use the combination of Method 3 with pair-exchange.

We observed with Table 1.1 that all datasets show notable cost reductions from

the adoption of telemetry. With the choice of Method 3 for telemetry set initialization

and Method 3 plus pair-exchange for telemetry set improvement, we examine what

happens as the number of telemetry sets increases further with the larger datasets.
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Figure 1.1 plots the percentage savings from the use of telemetry vs. the number of

telemetry units for dsj1000 and pr1002. We ran additional experiments using 30 and

50 telemetry units for these two datasets. We can see from both datasets that most

of the benefit is from first 20 telemetry units with little improvement after that. This

shows the value of installing a very limited number of telemetry units. Small and

medium businesses can benefit from this insight.

1.5.3 Sensitivity Analysis

Based on Section 1.3.2, we were interested in varying the parameters µi, σi

and Imax
i to see how they alter the results. These tests are performed by changing

only one parameter value at a time. There is not much to be learned from comparing

the costs of the final solutions, but it is interesting to analyze the changes in the set

of customers chosen for telemetry placement. Based on Section 1.3.2, customers with

high σi or µi should have a higher chance of being picked as telemetry candidates. We

changed these parameters for a random 25% of the customers. For the first test, µi is

selected between 30 units per day and 50 units per day for the selected customers. In

the second test, σi is increased at 25% customer sites such that σi = 0.75µi. We also

expect customers with a smaller tank size to be preferred for telemetry. Thus, in our

third test, we wanted to reduce the tank capacity for selected customers. Reducing

tank capacity below the 350 value in our base case creates feasibility issues, so the

tank capacity at 25% of the customer sites will be 350 units, while the rest of the

customers will have a larger tank capacity of 500 units.

In our experiments, we examine how many of the customers with a different
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(a) Savings for dsj1000

(b) Savings for pr1002

Figure 1.1: Savings vs. Number of Telemetry Units
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parameter value are selected for telemetry. We look at all datasets but restrict our

test to involve 20 telemetry units. The results are shown in Table 1.4. The columns

“Dataset”, ”Impacted Customers” and “Selected” represent the name of the dataset,

the number of customers whose control parameters are changed, and the total number

of customers among the control set that are picked in the final 20 customer telemetry

set.

Table 1.4: Sensitivity Analysis

Selected
Dataset Impacted Customers σ µ Imax

dantzig42 11 7 6 6
st70 18 12 12 12

eil101 26 13 12 12
tsp225 57 17 16 16
gil262 66 15 16 15
rat783 196 18 16 17

dsj1000 250 18 17 17
pr1002 251 19 18 19

As we can observe from Table 1.4, the impacted customers are more likely to

be selected for telemetry. At least 12 out of 20 customers picked to have telemetry

are from the independent control sets for all datasets except dantzig42. These results

support our claim that high µi or σi values or low Imax
i values tend to be good candi-

dates for telemetry. It is also interesting that this pattern becomes more pronounced

with larger customers. With smaller datasets, the location of individual customers

plays a bigger part in the telemetry selection.
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1.5.4 Graphical Example

Last, we examine the customers that are selected for telemetry in more detail

for one dataset. We analyze the results for pr1002. Figure 1.2 depicts the location of

the 5, 10 and 20 customers selected for telemetry. We observe that as the number

of telemetry units increases, more parts of the graph include customers assigned to

telemetry. For example with 5 telemetry units, there are no telemetry customers

in the lower right of the graph, but there are many there with 20 telemetry units.

There is also, though, a noticeable clustering of telemetry units as the numbers gets

bigger, so that the customers with the telemetry can be served on the same routes.

Thus, it appears that the interaction between telemetry customers becomes more

important in the selection process as more are added. The result is that the customers

selected to receive 5 telemetry units are not necessarily included within the set picked

with 10 telemetry units. Here, two customers (4 and 936) picked in the set of 5 do

not get picked in the set of 10. Similarly, four customers among the 10 customers

selected for telemetry do not appear in the 20 customers selected for telemetry. This

is important because it suggests that we cannot simply add customers to the optimal

set of telemetry customers to yield a new optimal set of telemetry customers for a

larger number of telemetry units.

1.6 Conclusions

In this paper we have presented the TLP where we decide the best allocation

of telemetry units to minimize routing costs, while preserving a given service level for

customers. We have developed the following insights:
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(a) 5 Telemetry Units

(b) 10 Telemetry Units

(c) 20 Telemetry Units

Figure 1.2: Distribution of Telemetry Units
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• Our results demonstrate that there can be significant savings from a small

number of telemetry units.

• The best day rule for visiting telemetry customers creates a lower average rout-

ing cost while meeting or exceeding customer service levels.

• The choice of initialization and ordering of customers in the one-exchange im-

provement can impact both solution quality and run time. The improvement in

solution quality is rather small and limited to larger datasets, but the savings

in run time is significant for all dataset sizes.

• The savings from telemetry tends to level off at a certain number of datasets.

Running a decision support tool such as ours can be helpful in deciding the

number of telemetry units to install as well as the locations.

• Customers with a higher than average daily usage rate, a higher than average

variance in usage, or a smaller tank capacity are more likely to be chosen for

telemetry adoption.

• The number of telemetry units has an impact on the customers selected due to

potential interactions on routes.

The TLP offers many potential areas for future research. Beside alternative

solution methods, it may also be useful to consider different objective functions. We

are concerned here with routing costs only. Even if we observe that the telemetry

units quit creating big savings in routing costs at some point, they can still reduce

the number of stops due to reduced number of visits, which may also translate to big

savings for the company. In the future, we also plan to examine the impact that
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customer usage correlation can have on the choice of where to place telemetry units.

For example, if two customers in our set both represent fast food restaurants of a

given brand, a spike in demand at one location may mean that there is also a spike

in demand at the other, such as a result of a popular new product. If we place a

telemetry unit at one of these two customers, it will give us information about the

other if the demand is highly correlated.
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CHAPTER 2
STRATEGIC PLACEMENT OF TELEMETRY UNITS CONSIDERING

CUSTOMER USAGE CORRELATION

2.1 Introduction

Telemetry units relay daily customer demand information to the supplier. This

information can be used to create good estimates of future delivery dates, which

is useful for route planning. Our interest in telemetry stems from a project with

NuCO2. NuCO2 provides carbon dioxide and nitrogen gas to more than 130,000

customers across the United States, mostly for use in beverage carbonation [1]. These

customers include national chains and local restaurants, as well as convenience stores,

sports venues, and theme parks. The company was considering the use of telemetry

units to track inventory levels to get a better idea of when customers needed to be

visited instead of using precomputed delivery frequencies. However, telemetry units

are expensive. The company approached us with the problem of where to place a

limited number of these units. We found that significant savings in routing costs can

be achieved with a careful choice of the location of telemetry units [45].

Our algorithm in [45] did not explicitly capitalize on the demand correlation

that may be present among customer locations. In our analysis of company data, we

observed that more than half of the customers in the cities we studied were part of

a chain of stores or restaurants. Some of these chains included 20 or more locations.

The usage rates among the stores belonging to the same chain were found to be highly

correlated as defined by ([23]). This means that if, for example, the sales were high

one day at a restaurant because of a popular new product, the sales were likely to be
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high at the other restaurants belonging to the same chain on the same day.

This practical observation suggested that we should carefully explore the effect

of correlation on the strategic choice of where to place telemetry units. For example,

if the algorithm in [45] suggested we place telemetry units on customers 1 and 2,

the extra knowledge of perfect positive correlation between the two customers would

render one of these telemetry units redundant. To the best of our knowledge, the

impact of correlation on the strategic placement of telemetry units has not been

previously studied in the literature. Our goal is to identify where to place a limited

number of telemetry units incorporating usage correlation that exists between some

customers to minimize expected routing costs while preserving a given service level.

The use of telemetry is common. For example, industrial gas suppliers, soil

monitoring systems, and vending machines use telemetry for real time information

tracking ([6],[3],[8]). The costs of telemetry units in all of these industries can be

high. For some small and medium businesses, installing telemetry at all customers

may not be financially viable. However, our research has shown that significant

savings in routing costs can be realized by using a limited number of telemetry units.

Knowledge of customer usage correlation can be useful in further reducing expected

routing costs via strategic placement of telemetry units in all of these applications.

This is the issue addressed in this paper.

In this article, we present the related literature in Section 2.2. In Section 2.3,

we formally define the problem we solve. In Section 2.4, we discuss how the given

service level can be preserved for non-telemetry, telemetry and correlated customers.



51

The details of our solution method are presented in Section 2.5. This involves a local

search among different assignments of customers to telemetry as well as heuristics for

solving the resulting routing problems in each of the realizations. We examine the

performance of our approach as well as the impact of different problem characteristics

in Section 2.6. We provide our final conclusions in Section 2.7.

2.2 Literature Review

The related literature can be divided into three major categories: (1) studies of

information sharing in inventory management involving demand correlation among

multiple products, multiple customers, or time (2) studies concerned with use of

correlation specifically for the Vehicle Routing Problem (VRP) (3) studies on how to

generate correlation coefficients.

Demand correlation among different inventory items is studied in the litera-

ture (see [37], [31] and [24]). For example, Liu and Yuan [31] consider a two-item

inventory system with correlated Poisson demands. They model the two-item inven-

tory system involving correlation using a bivariate Markov process. The coordinated

replenishment of the two correlated products leads to savings in ordering or setup

costs and transportation costs. The analytical results show that as demand correla-

tion increases, the overall demand uncertainty decreases, and the total holding cost

reduces.

Correlation among demands of different customers is also investigated in the

literature (see [42], [47] and [36]). For example, Zhu and Thonemann [47] consider

a supply chain with a single retailer and multiple customers, where customer de-
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mands are normally distributed and correlated. Each pair of customer demands are

correlated with the same correlation coefficient. A customer’s demand forecast for

the following period is available to the retailer if the customer and the retailer share

Future Demand Information (FDI). Sharing FDI incurs a cost. The degree of imper-

fection in FDI is captured by a parameter which ranges between 0 and 1. The authors

consider two decisions for the retailer: (1) the optimal number of customers sharing

FDI with the retailer (2) the optimal order quantity for the retailer. They develop an

optimal solution through a two-stage dynamic program. The objective is to minimize

the expected sum of information, ordering, shortage penalty, and inventory holding

costs for the retailer. The authors derive equations for the expected total cost and

the optimal reordering policy that involve the correlation coefficient. They infer that

FDI is crucial when the information cost is low, the demand correlation is high, or

the demand uncertainty is high.

Erkip et al. [25] consider a depot-warehouse system where demands are cor-

related both between warehouses and over time. They create a newsvendor model to

make ordering decisions for the warehouses to minimize the total expected inventory

holding and backorder penalty costs across the network. Experiments suggest that

a high level of correlation among both warehouses and time increases the standard

deviation in total demand resulting in larger amounts of safety stock compared with

the uncorrelated case.

The VRP has been examined in conjunction with demand correlation among

customers in Chiang [18]. The author studies a variant of the VRP where the objec-
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tives are to minimize the total travel distance and the number of vehicles while the

demands are correlated. Also, the total demand is satisfied with a given service level.

The authors develop a genetic algorithm to solve practical instances. In the solutions,

customers with negatively correlated demands are assigned to the same route, and

customers with positively correlated demands are assigned to different routes.

Another related research area deals with the generation of correlation coeffi-

cients. A correlation coefficient matrix is a symmetric positive semidefinite matrix

with a unit diagonal. Xu and Evers [46] study the generation of valid correlation

matrices where the correlations between all pairs of variables can be different. The

authors postulate that, given correlation coefficients between X1 and X2 and between

X2 and X3, the correlation coefficient between X1 and X3 is bounded by a func-

tion of the known correlation coefficients. Bucci et al. [13] solve this problem for a

practical instance by creating a statistically valid correlation matrix whose terms are

proportional to the distance between customer locations. They first group customers

based on geographical location. A customer pair is assigned a correlation coefficient

depending on the assigned groups. The degree of correlation between the customer

pair decreases as the distance between a customer pair increases.

2.3 Problem Definition

The problem we want to solve is where to install M telemetry units to minimize

the average routing costs across a set of R customer usage realizations over a given

time horizon T while maintaining a given customer service level for all n customers.

We assume that the daily usage rates of product for each customer follow a normal
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distribution. We use µi to represent the mean daily usage rate and σi for the standard

deviation in daily usage rate for customer i (i = 1 to n). For each realization, the

daily usage value is based on the µi and σi values.

A given number u of these n customers are divided into K groups of size

g1, g2, ..., gK . Every customer pair in each of these groups has demand correlated

with a uniform correlation coefficient ρk, k = 1, 2, ..., K. We model correlation in

this way to capture the correlation among stores of the same chain. We allow ρk

to potentially vary across k to consider the effect that there may be more or less

correlation among different kinds of stores.

We assume there is a fleet of V capacitated vehicles available each day, and

each customer can be visited by at most one vehicle on a day (no split deliveries). We

also assume that a vehicle fills up the customer’s tank when a delivery occurs. The

set of arcs A includes directed edges between all customers, as well as edges between

each customer and the depot (indexed by 0 and n + 1). For each edge (i, j) ∈ A,

we assign a distance tij and use a speed s to convert distance into travel time. The

duration of a vehicle’s tour has a given time limit l, and stops at customers require

both a fixed stop time and variable stop time depending on the quantity delivered.

We refer to this problem hereafter as the Correlated Telemetry Location Problem

(CTLP).

2.4 Model

We will first look at how deliveries can be planned for different categories of

customers in the CTLP. The first category consists of customers who do not have
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telemetry and are not correlated with any of the customers currently selected for

telemetry installation. We will refer to these as non-correlated non-telemetry cus-

tomers. The second category comprises the customers that are currently chosen for

the installation of telemetry units. We refer to these as telemetry customers. The

third category consists of non-telemetry customers that are correlated with a teleme-

try customer. We refer to these as correlated customers. The level of correlation will

impact the delivery planning for only these customers.

To model the stochasticity of customer usage, we create a set of realizations of

daily usage at telemetry customers over the entire planning horizon. The realizations

reflect the type of information we would get from telemetry units on a daily basis.

These simulated usage values help us create realistic delivery dates for telemetry and

correlated customers for each realization, which helps us create a good assessment of

the routing costs associated with a particular telemetry assignment. In each realiza-

tion, the inventory level is reduced each night by the generated usage rate for that day

and set to tank capacity when a delivery occurs. The following subsections discuss

how we can use these updated inventory levels as well as other customer information

to determine when deliveries are needed by each type of customer.

The service level is maintained by holding sufficient safety stock. In traditional

inventory theory ([44]), safety stock at a customer location is given by:

z
√
Lσi (2.1)

where z is the z-statistic that corresponds to a particular in-stock probability (service

level) , σi is the standard deviation of daily demand for a customer i, and L represents
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the lead time in days for a delivery once an order is placed. A longer lead time

increases the size of safety stock. Here, lead time will be replaced by the number of

days until the customer demand level is known since the customer will be vulnerable

during those days.

2.4.1 Non-correlated Non-telemetry Customers

For customers without telemetry, we do not have the daily tank readings but

only know the mean and standard deviation of usage. We can compute a value fi

for each customer that is the longest a customer can go between deliveries while

preserving the service level. The value fi replaces L in Equation 2.1. A customer i

has a fi (in days) when:

µifi + z
√
fiσi = Imax

i (2.2)

where µi, σi and Imax
i denote the mean daily usage rate, standard deviation in daily

usage and the tank capacity. Equation 2.2 says that a delivery every fi days would

allow a service level corresponding to z. The challenge with using a delivery frequency

of fi in practice is that deliveries may not always occur at the same time. For example,

consider a customer with fi = 5. If delivery on day 1 is scheduled at 9 a.m, then the

next delivery on day 6 must be scheduled by 9 a.m. to guarantee the service level is

maintained. To allow for flexibility in delivery time to promote good routing options,

we suggest a adjusted maximum time between deliveries f
′
i = fi − 1 for customers

without telemetry as in Equation 2.3:

µ(f
′

i + 1) + z
√
f

′
i + 1σ = Imax

i . (2.3)
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We can solve for f
′
i :

f
′

i =
z2σ2

i + 2µ(Imax
i − µi)− zσ

√
(z2σ2

i + 4µImax
i )

2µ2
i

. (2.4)

Next, we will discuss how we will use f
′
i to decide which day a customer i

should receive their next delivery. For customer i with di days since the last delivery,

a delivery must occur the next day if:

f
′

i − di = 1. (2.5)

This is postponing the delivery as much as possible while preserving the service level.

A better option from a routing perspective is to allow more flexibility in the choice of

delivery day. For this purpose, we compute the delivery deadline Di for customer i.

This represents the number of days until the customer will need a delivery in order

to preserve the service level. For these non-telemetry customers, Di is given as:

Di = f
′

i − di. (2.6)

For example, if the deadline is 1, the delivery must happen by the next day. In

this case, Equation 2.6 reduces to Equation 2.5. If we want to consider customers

who require deliveries within the next 5 days in our routing plan, we consider those

customers with Di ≤ 5.

All deliveries can be planned in this way except the first delivery. Assuming

that we start with the tank at I0i at the beginning of the planning horizon, the first

delivery deadline D0
i is determined by replacing Imax

i with I0i in Equation 2.3:

µi(D
0
i + 1) + z

√
D0

i + 1σi = I0i . (2.7)
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If D0
i ≤ 1, the delivery must happen by the next day. If we want to consider customers

with delivery flexibility of 5 days in our routing, we will consider those customers with

D0
i ≤ 5. The value of D0

i is reduced by one each day until the first delivery occurs.

2.4.2 Telemetry Customers

With telemetry, this situation changes. A customer is not vulnerable in the

same way since the vendor knows the status of each customer’s inventory level every

night. Every night, the vendor can see if a customer’s tank level is very low and can

decide to go there the next day assuming capacity is available. Thus, a customer is

only vulnerable for runout for a single day, since each day their inventory is viewed.

This allows their safety stock to be greatly reduced while preserving the same service

level. Now a delivery must occur the next day if :

µi + zσi ≥ I ti . (2.8)

where I ti represents the tank level of customer i at the end of day t in that realization.

Equation 2.8 says that if tomorrow’s expected usage plus a safety stock buffer appears

to more than what is remaining in the tank, it is time to make a delivery. If the tank

level is higher than that, this formula implies the delivery can be postponed while

preserving the service level. Like with non-telemetry customers, this may create chal-

lenges in delivery timing. For example, for a particular customer, this may indicate

a delivery is not needed on day 3, but will require a delivery early on day 4 to ensure

the service level is maintained. Thus, we slightly modify Equation 2.8 to require a

delivery the next day, i.e. Di = 1, when:

2µi + z
√

2σi ≥ I ti . (2.9)
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Thus, we are essentially forcing the delivery to occur one day earlier than necessary,

so that we have the whole day to make the delivery.

We want to note that Equation 2.9 is not the only way a delivery can be made

to a telemetry customer. We again can make a delivery earlier if it is more cost

effective. For telemetry customers, the value for Di = w, where w ≥ 1, if w is the

lowest integer where the following holds:

(w + 1)µi + z
√
w + 1σi ≥ I ti . (2.10)

The value for D0
i = w is obtained using Equation 2.10 by replacing I ti with I0i ,

assuming that we start with tank at I0i at the beginning of the planning horizon.

The use of telemetry and the reduction in safety stock translates to an increase

in the average time between deliveries relative to customers without telemetry. The

average value for f̂i, the longest a telemetry customer can go between deliveries while

preserving the service level, is computed as follows:

f̂i =
Imax
i − 2µi − z

√
2σi

µi

. (2.11)

The value f̂i value helps us understand what average cost savings may result over a

time horizon as a result of using telemetry and is used in evaluating which customers

make good telemetry candidates in Section 2.6.

2.4.3 Correlated Customers

If a non-telemetry customer is correlated with a customer that has telemetry,

the telemetry reading will yield an updated mean and variance in usage for the cor-

related customer. In this way, the vendor can better estimate the daily usage at a
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customer correlated with a telemetry customer. This new estimate also depends on

the degree of correlation between the two customers. However, if a telemetry cus-

tomer is correlated with another telemetry customer, the best usage information is

still received daily by the telemetry units. Thus, the correlation will not be considered

in this case.

We will consider a customer y correlated with a set X of customers, all belong-

ing to group j. The set X represents those customers in group j that have telemetry

units. The customer y does not have telemetry. Assuming gTj represents the number

of customers in group j that have telemetry units, according to the properties of

conditional multivariate normal distributions in ([22]), if mean µ and covariance Σ

are partitioned as follows:

µ =

[
µy

µX

]
with sizes

[
1× 1
gTj × 1

]
(2.12)

Σ =

[
Σyy ΣyX

ΣXy ΣXX

]
with sizes

[
1× 1 1× gTj
gTj × 1 gTj × gTj

]
(2.13)

then, the distribution of y conditional on X = a is multivariate normal N(µ̄y, σ̄2
y)

with mean

µ̄y = µy + ΣyXΣ−1XX (a− µX) (2.14)

and variance

σ̄2
y = σ2

y − ΣyXΣ−1XXΣXy. (2.15)

Here a is a vector of observed values for customers in X representing the daily observed

usage values at the correlated telemetry customers. Note that Σxy = ρxyσxσy for a
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customer x ∈ X. The dimension of the matrix ΣyXΣ−1XXΣXy will be 1 x 1, so, the

computation for σ̄2
y will yield a scalar.

Let µd
y and (σd

y)2 represent the updated forecasts for mean usage values and

variance in usage rates for the customer y on day d based on the observed values

for telemetry customers. The values for µd
y and (σd

y)2 are computed daily from the

expressions for µ̄y and σ̄2
y provided in Equations 2.14 and 2.15. Since the updated

usage mean and variance for the correlated customer are dependent on the observed

values, the updates will happen at the end of each day d when daily telemetry readings

are received.

A correlated customer should receive a delivery when the updated estimate of

the tank level indicates that a customer needs a delivery to ensure the service level

is maintained. A delivery must occur the next day, when:

t∑
d=1

µd
y + µy + z

√√√√ t∑
d=1

(σd
y)2 + σ2

y ≥ I ty (2.16)

where I ty denotes the tank level at end of day t for the customer y. Like with other

customers, this may create challenges in delivery timing. Hence we will add an extra

day for delivery flexibility. Now we should deliver by day t+ 1 when:

t∑
d=1

µd
y + 2µy + z

√√√√ t∑
d=1

(σd
y)2 + 2σ2

y ≥ I ty. (2.17)

Equation 2.17 corresponds to the scenario where delivery deadline Dy = 1. Similar

to telemetry customers, the delivery deadline Dy for the customer y will be equal to
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w, ∀w ≥ 1 if w is the lowest integer where the following holds:

t∑
i=1

µi
y + (w + 1)µy + z

√√√√ t∑
i=1

(σi
y)

2 + (w + 1)σ2
y ≥ I ty. (2.18)

As with telemetry customers, the first delivery deadlineD0
i is determined based

on Equations 2.18 by replacing I ty with I0y , assuming that we start with tank at I0y at

the beginning of the planning horizon.

The expected maximum time between deliveries f̄ can be computed based on

Equation 2.17 by substituting Imax
y for I ty. It will help us understand the potential

impact of correlation on average savings in routing costs. Because the observations

from telemetry units are independent across days, the sum
∑t

d=1 µ
d
y reduces to addi-

tion of t independent µd
y terms. The law of large numbers states that the sample mean

of n observations i.e.
∑n

i=1 a
n
i

n
approaches the mean µx as n approaches ∞. Hence for

sufficiently large t measured in days,
∑t

d=1(ai − µx) → 0. Similarly
∑y

d=1(σ
d
y)2 also

reduces to sum of t independent (σd
y)2 terms. Thus, the value for f̄ is determined by:

(f̄ + 2)µy + z
√
f̄(σi

y)
2 + 2σ2

y = Imax
y . (2.19)

2.5 Solution Methodology

The VRP is a subproblem of the CTLP. Since the VRP is an NP-Hard problem

([29]), the CTLP is also NP-Hard, so finding an exact solution to the proposed model

is computationally intractable. We propose a heuristic to address this new problem.

The heuristic starts with an initial assignment of customers to telemetry, estimates

the cost of routes corresponding to this assignment across all realizations, and iterates

to a new assignment. We propose a way to create the initial assignment of customers
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to telemetry and different choices for iterating through the assignments of customers

to telemetry. We will examine the impact of these choices not only on solution quality

but also on run time in Section 2.6. Next, we describe how we evaluate the routing

costs associated with a particular assignment across the planning horizon. Note that

every assignment of customers to telemetry units will influence the set of customers

correlated with telemetry customers as well as the set of customers who are not

correlated with telemetry customers.

2.5.1 Rolling Horizon Framework

First, we will discuss the rolling horizon approach used to estimate the routing

cost associated with a particular assignment of telemetry units for each realization.

We use a rolling horizon since we want to allow customers to receive deliveries slightly

earlier than necessary if it creates good routes. Thus, we make routing decisions for

several days (p) at once and repeat this process over the planning horizon. If we use

a strict p period plan, the customers having a deadline of p + 1 days will be served

on the first day of the next p days and have no delivery flexibility. We would want to

avoid such instances for good route planning, so that the deliveries are spread evenly

across the planning horizon. A customer with a delivery deadline of p+ 1 days might

also combine well with customers having deadlines on an earlier day which helps to

reduce the overall routing costs. Thus, we use a planning period of p+ f days. Even

though our algorithm makes a routing plan for p + f days, it only uses the first p

days of the plan before creating a new plan. Here f is a parameter that specifies the

additional days of delivery flexibility in the rolling horizon.
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For each realization, we use equations from Section 2.4 to identify the cus-

tomers whose delivery deadlines fall within the upcoming p + f days. For route

planning, we will only consider these customers and allow them to receive a delivery

up to p days early. For example, on Sunday a business may make a route plan for

5(p) + 3(f) delivery days. This means customers whose Di ≤ 8 will be routed on day

max(1, Di − 4) to day Di of the 8 day plan.

In executing the p day plan, each night the feasibility of the next day’s plan is

checked based on simulated readings for the realization. If this dictates that a change

needs to be made in order to satisfy the service level, a change is made. After p days,

the process is repeated, until the end of horizon T is reached.

2.5.2 Routing Cost Algorithm

We use the well known Variable Neighborhood Search (VNS) algorithm pre-

sented in [28] to generate the routes for each p+f day period. The order for insertion

of customers for route planning is determined by the delivery deadlines. We first in-

sert the customer with the earliest deadline. This customer is most important to serve

well. Each customer is inserted in the cheapest point in the routes over the p+f days.

Once the routes are constructed, two improvement routines are run. These routines

are focused on improvements within a single day or a single vehicle’s tour. We do

not allow the transfer of any customers across different days of the planning horizon.

These limitations are made to reduce run time since we need to compute a routing

cost across the whole planning horizon for each realization for each assignment of

customers to telemetry. These improvement ideas were carefully chosen, after a series
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of computational experiments, to offer maximum improvement in a limited amount

of run time.

First, we run a one-shift improvement routine that improves the routes on

each day of the planning horizon as in [30]. Customers are potentially swapped to

different locations on the same tour or to other tours on the same day. All possible

moves are considered for each customer being served on a given day, and the move

that creates the best improvement is selected. This process is iterated until no more

improving moves are found on a given day, and then the improvement process moves

to the next day.

Second, we run the standard 2-OPT improvement heuristic ([30]) to improve

individual routes on each day. The best improving move is chosen among all the

candidates on each route, and the process is repeated until no more improvements

are found. This process is repeated for each route on each day of the planning period.

Once the improvement process is completed, we now have the total routing cost

associated with a potential assignment of customers to telemetry over the p+ f days

for each realization. For each realization, we keep a running sum of the values for

the first p days over the whole horizon. We report the average routing cost across all

realizations over the whole horizon as the cost associated with a particular assignment

of customers to telemetry.

2.5.3 Initialization of Telemetry Set

Next, we will present a method to initialize the set of customers that have

telemetry that has a big impact on the run time. We use the f ′i and f̂i values
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discussed in Section 2.4 to estimate the impact of telemetry on each customer. We

first use the VNS heuristic from Section 2.5.1 and Section 2.5.2 with no customers

assigned to telemetry. From this solution, we compute Cr
i values for each customer

for each realization r, where Cr
i reflects the total cost to serve customer i without

telemetry over the planning horizon. The total cost Cr
i for a customer is computed

as follows. Each time that customer i is served, we compute the insertion cost based

on its location relative to preceding and succeeding customers. The insertion cost

represents the extra cost required to add i to an existing route. These insertion costs

are summed over the planning horizon to create the total insertion cost Cr
i which is

a reflection of the cost to serve customer i without telemetry in realization r. We

average the Cr
i values over the realizations to create a value C

′
i . This value represents

the current cost to serve customer i on average over the R realizations.

The expected reduction Ei in routing costs by telemetry installation for a

customer i is useful for determining the value of placing telemetry at customer i. The

following expression captures the estimated reduction in routing costs:

Ei =
C

′
i

T

f
′
i

(
T

f
′
i

− T

f̂i
). (2.20)

The average cost per visit is captured by the first term in Equation 2.20, and the

expected reduction in number of visits is given by the second term. Thus, Equation

2.20 captures the estimated reduction in cost associated with adopting telemetry at

customer i. We can evaluate Equation 2.20 for each customer and choose the M

customers that have the maximum value as our initial set of telemetry customers.

This approach has been shown to greatly reduce run times as compared with starting
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with a random initial allocation.

2.5.4 Telemetry Set Improvement

Next, we consider strategic ways to iteratively improve the telemetry set. In

our local search, we replace one telemetry customer with one non-telemetry customer

at a time, evaluating the cost of this new assignment using the procedure described

in Section 2.5.2 and keeping the new assignment if an improvement in cost is found.

Computational experiments show that a first-improving search is much faster than a

best improving search while achieving similar quality solutions.

Once we have an initial set of telemetry customers, the expected gain by adding

a telemetry unit to a customer varies depending on one of the three possible scenarios.

First, the customer i is not correlated with any telemetry customers. This expected

gain is similar to the initialization phase discussed in Section 2.5.3. Hence, Equation

2.20 is used to compute the expected gain from the adoption of a telemetry unit.

The second case is when customer i is the first representative of a correlated

group of customers gk in the telemetry set. In such a case, we should also consider the

contribution from the expected savings in routing costs from the correlated customers.

Therefore, we modify Equation 2.20 to:

Ei =
C

′
i

T

f
′
i

(
T

f
′
i

− T

f̂i
) +

∑
j∈gk

C
′
j

T

f
′
j

(
T

f
′
j

− T

f̄j
). (2.21)

The second term in the right hand side captures the contribution in savings due to

the correlated customers.

Third, customer i is correlated with a customer in the telemetry set. Here, cus-

tomer i already has a representative from its own correlated group gk in the telemetry
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set. In such a case, we should not consider the additional contribution in expected

savings in routing costs from the correlated customers. So, we modify Equation 2.20

as:

Ei =
C

′
i

T

f
′
i

(
T

f̄i
− T

f̂i
). (2.22)

This equation says that the reduction in routing costs is because of the transition of

customer i from the category of a correlated customer to a telemetry customer.

We use these estimates to identify an ordering of how we consider alternative

solutions. We want to order non-telemetry and correlated customers so that we

consider adding customers who are likely to create more cost improvements with the

addition of telemetry. For non-telemetry and correlated customers, the higher values

of expected gain correspond to higher cost improvement from adding telemetry. Thus,

we consider non-telemetry and correlated customers from highest to lowest values of

expected gain in our one-exchange. For the telemetry customers, we want to remove

customers that are not creating much actual savings as a result of telemetry. For

telemetry customers, we can easily adapt the above calculations to yield the expected

cost of removing telemetry units. For telemetry customers, the higher the value of

the expected gain is, the higher cost increases are expected from removing telemetry.

Thus, we sort this list from low to high, so the customers with the lowest value are

considered first for removal of telemetry. This ordering is used in our local search

algorithm. Specifically, we remove a customer from the telemetry set one at a time

in increasing order of expected cost. Each time a customer is removed from the
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telemetry set, we consider swapping in a non-telemetry or correlated customer in

decreasing order of expected gain. Each time an improvement is found, the telemetry

set is changed, and the new solution is used to recompute the Ei values.

2.6 Computational Experiments

Computational experiments were carried out to assess the impact of the pro-

posed solution strategy. We also wanted to evaluate the impact of different problem

characteristics on the solutions, including the level of correlation, the number of

telemetry units, and size of correlated groups.

The algorithms were implemented and executed in MATLAB Version 7.8.0.347.

The experiments were performed on a 2.40 GHz Intel Core 2 Quad processor running

the LINUX operating system [4].

Our computational analysis uses eight datasets for the symmetric traveling

salesman problem from TSPLIB [7]. These include dantzig42, st70, eil101, tsp225,

gil262, rat783, dsj1000 and pr1002. The number associated with the name is the

number of customers in the dataset. For example, eil101 has 101 customers. We chose

these datasets because they represent a nice variety in terms of both the numbers

of customers and how the customers are distributed across the geographical area.

The distances between customers for four datasets (dantzig42, st70, and gil262) were

computed directly from the location data in miles with no adjustments, while for four

others (tsp225, rat783, dsj1000 and pr1002), the distances were scaled so that no two

customers were more than eight hours travel time apart with the use of a travel speed

of 45 miles per hour. The depot was fixed at the mean latitude and mean longitude
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position for each dataset.

In our experiments, we examine the average costs across 100 usage realizations

over a period of 12 weeks. This time period is chosen so that every customer will

have at least one delivery given our choice of usage rates. The number of vehicles

for each experiment is the minimum number required to create a feasible routing

solution with no telemetry units. This minimum is largely driven by the restriction

that routes are no more than eight hours long. We set the fixed stop time to 2.67

minutes and a variable delivery time to .04 minutes per unit. We assume usage and

deliveries occur five days per week. We assume all trucks have a capacity of 6000

units and use a service level of 95%. For the base case, we assumed a tank capacity of

350 units at every customer. The mean usage rate µi for each customer is randomly

assigned a value between 10 units per day and 30 units per day. We fix the variance

in usage rate as a fixed proportion of the mean usage rate such that σ = 0.25µ. These

values are based on real values at NuCO2. We use a random initial tank level for each

telemetry customer for each realization like [14] and [10]. Half of the customers are

chosen at random to be divided into three groups of equal size. Each pair of customers

belonging to the same group is correlated with a uniform level of correlation ρ. The

rest of the customers are uncorrelated. In the base case, ρ = 0.5, p = 5, and f = 3.

For all datasets, we solve for the best solution with 5, 10, and 20 telemetry units.

2.6.1 Evaluation of Estimates

The estimates described in Section 2.5.4 are used for the initialization and

improvement of the telemetry set. The reason for developing these estimates is to
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yield a faster convergence than a random ordering of customers both in and out of

the telemetry set. In order to evaluate the efficacy of the estimate list using a first-

improving routine, we compare the solution quality and solution time with a best

improving routine. The best improving routine chooses the best exchange move in

the neighborhood and thus ordering does not matter. We also compare with first

improving routine based on an arbitrary customer ordering. Table 2.1 summarizes

these results for all datasets. The columns “Dataset”, “Tele”, “Veh”, “Soln 1”, “Time

1”, “Soln 2”, “Time 2”, “Soln 3”, “Time 3” and “% Diff” represent the name of

the dataset, number of telemetry units used, number of vehicles used, solution and

run time using best improvement, solution and run time improvement using first

improvement with arbitrary customer ordering, solution and run time improvement

using first improvement with our estimates, and percent improvement of run time

with first improvement using estimates relative to best improvement.

Looking at Table 2.1, we notice that, with the choice of a first improving

routine, use of our estimates outperforms the arbitrary customer ordering both in

terms of solution quality and run time. We also observe that our estimates lead to

the same solution quality as the best improving routine in all of our tests. However,

the solution time decreases. The percentage reduction in run time ranges from 2.93%

to 14.16%. This is because unnecessary one exchange swaps are assigned lower priority

using the estimates. Since the estimate list provides the same solution quality with

a significant decrease in computational time, we use it in the rest of the tests in this

section.
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In terms of other observable trends, we notice that the run time increases as

the size of the dataset increases. This happens because the complexity of the VRP

subproblem increases. This is depicted by solution times for dantzig42 compared

to dsj1000. The solution times can also depend on the distribution of customers.

However, large improvements found in run time do not seem to follow a pattern in

terms of the different datasets or the number of telemetry units.

To reduce the run time for larger sets of customers, we reduce the candidate

set of customers that are considered for possible telemetry placement to those with

the top 50% (for 200-500 customers) or 25% (for more than 500 customers) values for

expected gain from the adoption of telemetry.

2.6.2 Solution Characteristics

Next, we will examine the impact of considering correlation on routing costs.

For this purpose, we report the routing cost with and without capitalizing on corre-

lation in the generation of delivery deadlines. We will compare it with the routing

cost corresponding to the case where we consider all three categories of customers.

The results are shown in Table 2.2. The columns “Dataset” and “Tele” represent the

dataset name and the number of telemetry units used. The columns “Soln 1-1”, “Soln

2-1” and “Soln 3-1” represent the routing cost without capitalizing on correlation with

ρ = 0.3, 0.5 and 0.7. The columns “Soln 1-2”, “Soln 2-2” and “Soln 3-2” represent

the routing cost for different levels of correlation. The columns “% Imp 1”,“% Imp

2” and “% Imp 3” represent the percent improvement in “Soln 1-2” relative to “Soln

1-1”, “Soln 2-2” relative to “Soln 2-1”, and “Soln 3-2” relative to “Soln 3-1”.
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We can observe from Table 2.2 that the impact of capitalizing on correlation

translates to savings in routing costs. The percentage savings range from 0.42 % to

10.95 %. Also, the savings increase as the level of correlation increases. However,

there is no observable trend as we increase the number of telemetry units. For bigger

datasets and higher level of correlation, the savings of dsj1000 is bigger compared to

pr1002. This is because the distribution of customers in dsj1000 is non-uniform with

clusters situated far from the depot. Here the placement of telemetry units translates

to savings of bigger magnitude. On the other hand, the customers in pr1002 are

distributed uniformly.

Next, we will further examine the impact of different levels of correlation over

different number of telemetry units. Savings in routing costs are measured relative

to the case without telemetry units. The units of percentage savings provide a fair

comparison between varying levels of correlation for the same dataset. Table 2.3

summarizes the results. The columns “Dataset”, “Tele”, “Soln 1” and“% Imp 1”

represent the name of the dataset, number of telemetry units used, solution using ρ

= 0.3, and percent improvement in solution relative to the correlated case without

telemetry units. The columns with suffix 2 and 3 represent the similar quantities for

ρ = 0.5 and ρ = 0.7 respectively. The column “Rel 2vs1” represents the difference

between “% Imp 2” and “% Imp 1”. Similarly, the column “Rel 3vs2” represents the

difference between “% Imp 3” and “% Imp 2”.



75

T
ab

le
2.

2:
Im

p
ac

t
of

C
ap

it
al

iz
in

g
on

C
or

re
la

ti
on

on
R

ou
ti

n
g

C
os

ts

D
at

as
et

T
el

e
S
ol

n
1-

1
S
ol

n
1-

2
%

Im
p

1
S
ol

n
2-

1
S
ol

n
2-

2
%

Im
p

2
S
ol

n
3-

1
S
ol

n
3-

2
%

Im
p

3
d
an

tz
ig

42
0

92
67

.2
6

91
95

.2
5

90
35

.2
7

5
90

78
.5

5
89

17
.7

3
1.

77
89

32
.1

7
87

65
.2

7
1.

87
88

56
.3

9
85

90
.2

7
3.

00
10

88
52

.1
7

87
86

.2
2

0.
75

87
15

.2
1

86
39

.6
8

0.
87

86
92

.1
4

82
15

.1
8

5.
49

20
86

25
.9

3
85

37
.1

2
1.

03
85

09
.2

3
84

01
.9

6
1.

26
85

24
.0

4
81

69
.3

9
4.

16
st

70
0

82
86

.0
4

82
03

.8
9

81
00

.6
2

5
82

30
.6

3
81

35
.1

9
1.

16
81

40
.5

7
80

07
.5

9
1.

63
79

57
.1

9
78

57
.9

2
1.

25
10

81
45

.1
7

80
56

.9
1

1.
08

80
64

.8
2

79
13

.9
0

1.
87

79
01

.8
7

75
25

.1
9

4.
77

20
79

70
.7

3
78

96
.0

2
0.

94
79

02
.9

8
77

46
.2

3
1.

98
78

73
.1

5
73

12
.0

3
7.

13
ei

l1
01

0
72

46
.6

4
71

59
.0

3
69

02
.2

8
5

70
52

.1
5

69
82

.2
9

0.
99

69
53

.2
4

65
19

.8
5

6.
23

68
55

.4
0

62
15

.5
5

9.
33

10
67

59
.1

7
66

41
.1

0
1.

75
66

98
.2

7
62

37
.9

3
6.

87
66

39
.2

7
59

12
.0

3
10

.9
5

20
64

99
.7

5
63

83
.0

5
1.

80
63

95
.1

6
60

25
.2

9
5.

78
63

92
.3

1
57

52
.6

4
10

.0
1

ts
p
22

5
0

70
57

8.
81

69
88

4.
39

69
01

4.
29

5
70

11
4.

17
69

00
2.

75
1.

59
69

50
1.

75
67

91
5.

38
2.

28
68

68
2.

38
66

32
6.

38
3.

43
10

69
57

2.
83

68
13

5.
38

2.
07

69
11

8.
27

66
79

5.
11

3.
36

68
15

2.
65

65
00

7.
34

4.
62

20
67

98
4.

36
67

28
3.

87
1.

03
68

37
6.

38
65

51
6.

24
4.

18
67

73
2.

35
63

85
5.

14
5.

72
gi

l2
62

0
44

65
6.

03
43

95
7.

27
43

48
4.

95
5

43
11

9.
05

42
58

8.
64

1.
23

42
99

1.
88

41
77

8.
65

2.
82

42
73

6.
27

40
00

9.
37

6.
38

10
42

58
1.

89
41

83
5.

30
1.

75
42

60
2.

93
41

00
3.

56
3.

75
42

39
5.

92
38

95
6.

46
8.

11
20

40
81

6.
92

39
93

7.
06

2.
16

41
38

7.
32

39
10

2.
48

5.
52

41
55

7.
16

37
41

2.
11

9.
97

ra
t7

83
0

57
29

6.
73

56
97

6.
34

56
10

2.
86

5
56

85
0.

60
55

10
7.

29
3.

07
55

67
2.

19
54

25
6.

16
2.

54
55

00
6.

28
52

03
6.

82
5.

40
10

55
12

5.
23

54
68

2.
02

0.
80

54
60

3.
17

53
58

2.
71

1.
87

54
26

7.
54

51
26

1.
73

5.
54

20
52

87
3.

83
51

94
0.

30
1.

77
52

73
6.

28
50

16
3.

29
4.

88
52

57
7.

13
48

14
9.

46
8.

42
d
sj

10
00

0
10

85
82

.3
0

10
68

62
.3

6
10

59
27

.7
3

5
10

61
96

.3
0

10
57

02
.4

0
0.

47
10

49
36

.4
2

10
35

03
.4

0
1.

37
10

45
86

.4
7

97
37

8.
98

6.
89

10
10

49
72

.7
0

10
42

89
.4

0
0.

65
10

36
23

.2
1

10
22

38
.2

0
1.

34
10

35
15

.0
4

96
10

6.
90

7.
16

20
10

13
65

.0
0

10
09

36
.6

0
0.

42
10

24
11

.0
9

98
90

0.
17

3.
43

10
25

07
.5

2
92

13
7.

94
10

.1
2

p
r1

00
2

0
88

63
6.

42
87

63
5.

11
87

01
0.

25
5

86
98

3.
76

86
18

9.
23

0.
91

86
38

4.
35

85
14

7.
12

1.
43

86
00

2.
37

83
59

5.
26

2.
80

10
86

11
0.

25
85

71
9.

06
0.

45
85

72
5.

24
84

68
5.

27
1.

21
85

43
8.

92
83

02
8.

02
2.

82
20

85
47

2.
14

84
72

2.
15

0.
88

85
29

6.
79

82
95

7.
21

2.
74

83
88

4.
05

81
29

2.
11

3.
09



76

T
ab

le
2.

3:
E

ff
ec

t
of

C
or

re
la

ti
on

on
R

ou
ti

n
g

C
os

ts

D
at

as
et

T
el

e
S
ol

n
1

%
Im

p
1

S
ol

n
2

%
Im

p
2

S
ol

n
3

%
Im

p
3

R
el

2v
s1

R
el

3v
s2

d
an

tz
ig

42
0

91
56

.2
4

90
11

.3
6

88
37

.2
1

5
89

17
.7

3
2.

60
87

65
.2

7
2.

73
85

90
.2

7
2.

79
0.

13
0.

06
10

87
86

.2
2

4.
04

86
39

.6
8

4.
12

82
15

.1
8

7.
04

0.
08

2.
91

20
85

37
.1

2
6.

76
84

01
.9

6
6.

76
81

69
.3

9
7.

56
0.

00
0.

79
st

70
0

81
99

.0
6

81
29

.8
8

80
05

.7
8

5
81

35
.1

9
0.

78
80

07
.5

9
1.

50
78

57
.9

2
1.

85
0.

73
0.

34
10

80
56

.9
1

1.
73

79
13

.9
0

2.
66

75
25

.1
9

6.
00

0.
92

3.
35

20
78

96
.0

2
3.

70
77

46
.2

3
4.

72
73

12
.0

3
8.

67
1.

02
3.

95
ei

l1
01

0
71

57
.8

2
68

12
.2

9
65

28
.3

6
5

69
82

.2
9

2.
45

65
19

.8
5

4.
29

62
15

.5
5

4.
79

1.
84

0.
50

10
66

41
.1

0
7.

22
62

37
.9

3
8.

43
59

12
.0

3
9.

44
1.

21
1.

01
20

63
83

.0
5

10
.8

2
60

25
.2

9
11

.5
5

57
52

.6
4

11
.8

8
0.

73
0.

33
ts

p
22

5
0

69
75

2.
15

68
83

4.
70

67
27

8.
92

5
69

00
2.

75
1.

07
67

91
5.

38
1.

34
66

32
6.

38
1.

42
0.

26
0.

08
10

68
13

5.
38

2.
32

66
79

5.
11

2.
96

65
00

7.
34

3.
38

0.
65

0.
41

20
67

28
3.

87
3.

54
65

51
6.

24
4.

82
63

85
5.

14
5.

09
1.

28
0.

27
gi

l2
62

0
43

78
2.

29
43

00
3.

62
41

18
6.

28
5

42
58

8.
64

2.
73

41
77

8.
65

2.
85

40
00

9.
37

2.
86

0.
12

0.
01

10
41

83
5.

30
4.

45
41

00
3.

56
4.

65
38

95
6.

46
5.

41
0.

20
0.

76
20

39
93

7.
06

8.
78

39
10

2.
48

9.
07

37
41

2.
11

9.
16

0.
29

0.
09

ra
t7

83
0

56
37

2.
05

55
81

9.
02

53
73

8.
26

5
55

10
7.

29
2.

24
54

25
6.

16
2.

80
52

03
6.

82
3.

17
0.

56
0.

37
10

54
68

2.
02

3.
00

53
58

2.
71

4.
01

51
26

1.
73

4.
61

1.
01

0.
60

20
51

94
0.

30
7.

86
50

16
3.

29
10

.1
3

48
14

9.
46

10
.4

0
2.

27
0.

27
d
sj

10
00

0
10

75
71

.7
10

55
17

.6
99

37
8.

39
5

10
57

02
.4

1.
74

10
35

03
.4

0
1.

91
98

55
6.

18
2.

01
0.

17
0.

10
10

10
42

89
.4

3.
05

10
22

38
.2

0
3.

11
96

22
7.

29
3.

29
0.

06
0.

18
20

10
09

36
.6

6.
17

98
90

0.
17

6.
27

94
50

1.
35

7.
29

0.
10

1.
02

p
r1

00
2

0
87

75
6.

81
86

73
4.

38
85

18
4.

19
5

86
18

9.
23

1.
79

85
14

7.
12

1.
83

83
59

5.
26

1.
87

0.
04

0.
04

10
85

71
9.

06
2.

32
84

68
5.

27
2.

36
83

02
8.

02
2.

53
0.

04
0.

17
20

84
72

2.
15

3.
46

82
95

7.
21

4.
35

81
29

2.
11

4.
57

0.
90

0.
21



77

One might expect that for a given number of telemetry units we would see

a larger percentage savings on the smaller datasets since the number of customers

impacted by correlation would make up a larger proportion of the dataset. This is

somewhat true. For instance, with 20 telemetry units, we see the largest percentage

improvement, 11.88 %, in one of the smaller datasets, eil101. However, we also achieve

larger savings with bigger datasets, for example, 10.13 % with rat783 dataset. This

shows that it is hard to quantify the impact of both telemetry units and correlation

on routing cost without using a complete model, such as the one presented here.

For all datasets and all levels of correlation, we observe a steady improve-

ment in the percentage savings with increasing number of telemetry units. For most

datasets, the savings with 10 telemetry units is roughly double the savings with 5

telemetry units. The notable exception are the smaller datasets, where the effect is

more pronounced. For example, the increase in savings of dantzig42 from 2.79 % with

5 units to 7.04 % with 10 units and ρ = 0.7 is remarkable. The higher savings are

attributed to the larger proportion of customers impacted by the high correlation.

We also see a steady improvement in the percentage savings from telemetry

with increasing level of correlation. The changes are especially significant in smaller

datasets, for example, the increase from 3.70 % to 8.67 % with an increase of ρ from

0.3 to 0.7 for st70 and 20 telemetry units. The effect of correlation becomes more

prominent as the level of correlation increases. The percentage savings in routing cost

show a definite increase with an increase of ρ but there is definitely less improvement

with the largest two datasets.
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One more observation that is interesting is that in some datasets, the benefits

of a higher correlation level outweigh the benefits attained by installing additional

telemetry units. For example, in rat783, 3.00 % savings in routing costs is attained

with 10 telemetry units for ρ = 0.3. However, for the same dataset, we can achieve

slightly more savings of 3.17 % with only 5 telemetry units for ρ = 0.7. This indicates

that knowledge of correlation can be as valuable as 5 telemetry units in this case. This

insight is beneficial for small companies with a fixed budget who want to extract the

maximum benefits from a limited number of telemetry units.

2.6.3 In-depth Example

We observe from Table 2.3 that all datasets show considerable savings from

the adoption of telemetry. We wanted to examine what happens as the number of

telemetry units increases further with ρ = 0.7 for dsj1000. We compare the per-

centage savings compared with the case of zero telemetry units. We ran additional

experiments using 30 and 50 telemetry units for dsj1000. We can see from Figure 2.1

that in presence of correlation most of the benefit is from 30 telemetry units with only

marginal increments after that. There is little value in installing additional telemetry

units after the threshold of 30 units, and we conjecture such thresholds exist for all

datasets.

We also observe from Table 2.3 that the savings from adoption of telemetry

units increases as the level of correlation increases. We wanted to examine this be-

havior for additional levels of correlation for a particular dataset. We ran additional

experiments for dsj1000 for 20 telemetry units with ρ as 0.1, 0.2 , 0.4, 0.6 and 0.8 to
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Figure 2.1: Savings vs. Number of Telemetry Units

examine this behavior. As we can observe from Figure 2.2, low levels of correlation

do not add much value in the route planning. However, for higher levels of correlation

the savings in routing costs are considerable with a careful choice of telemetry units.

Last, we examine the customers that are selected for telemetry in more detail

for one dataset. We again analyze the results of dsj1000. Table 2.4 summarizes the

distribution of telemetry across the different correlated groups for ρ = 0.3 and ρ =

0.7. The columns “Tele”,“Group1”, “Group2”, “Group3”, represent the number of

telemetry units, the number of customers in the telemetry set belonging to the first,

second and third correlated group. The column “Uncorr” represents the number

of customers picked in the telemetry set which are not correlated with any of the
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Figure 2.2: Savings vs. Level of Correlation

customers.

Table 2.4: Distribution of Telemetry Customers among Groups

ρ=0.3 ρ=0.7
Tele Group1 Group2 Group3 Uncorr Group1 Group2 Group3 Uncorr

5 1 0 0 4 2 2 0 1
10 3 2 1 4 5 3 1 1
20 7 3 3 7 9 5 4 2

As we can observe from Table 2.4, the presence of Group 1 members are

prominent in the telemetry set. Group 1 consists of more customers with the high

estimated gains from telemetry and thus there are higher chances that customers

from this group will be picked for telemetry installation. We also notice that as
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the level of correlation increases the number of uncorrelated customers picked for

telemetry installation decreases. In other words, the impact of correlation becomes

more pronounced as the level of correlation increases. For example, the number of

uncorrelated customers who are picked reduce significantly from 7 to 2 for 20 telemetry

units as we increase the level of correlation from 0.3 to 0.7. The two uncorrelated

customers that were present in the telemetry set of 20 units for ρ = 0.7 were far from

the depot and were crucial for forming good routes. In total, 18 out of 20 customers

belonged to one of the three correlated groups for ρ = 0.7.

Figure 2.3: Distribution of Telemetry Units, ρ=0.3

Figures 2.3 and 2.4 depict the location of telemetry units for ρ = 0.3 and

ρ = 0.7 respectively. Almost all parts of the graph include customers assigned to
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Figure 2.4: Distribution of Telemetry Units, ρ=0.7

telemetry. The customers selected to receive 20 telemetry units with ρ = 0.3 are not

necessarily included within the set picked with 20 telemetry units with ρ = 0.7. Here,

10 customers among the 20 customers selected for telemetry are not identical. As the

level of correlation increases, different customers are picked. This indicates that the

level of correlation should be considered carefully while route planning with telemetry

units, especially for higher levels of correlation.

2.7 Conclusions

Incorporating the impact of correlation can increase the value of a limited

number of telemetry units. We have shown savings in routing costs ranging from 0.42

% to 10.95 % over different levels of correlation. We have seen that capitalizing on

correlation is especially important when the degree of correlation is high. The choice

of initialization and ordering routines for the local search algorithm impacts both
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solution quality and run time. We present a method which achieves improvement in

both these aspects.
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CHAPTER 3
LOCOMOTIVE FUEL PLANNING

3.1 Problem definition

The Railway Applications Section (RAS) of INFORMS presented the follow-

ing problem for their 2010 Problem Solving Competition [2]: “Fuel expenses are a

significant part of any railroad’s operating costs. Fuel delivery costs differ from loca-

tion to location because of the differences in distribution, marketing costs and other

factors; e.g., as of August 1, 2006, one gallon of diesel costs one of the Class-I railroad

company $ 2.2057 in Atlanta, GA, but $ 2.2823 at Augusta, GA. A railroad faces

the problem of identifying a cost effective plan to fuel the locomotives that power its

trains.

A train schedule defines, among several other attributes, the sequence of yards

in which a train stops on its route from origin to destination. It also defines its

train-starts or days of operation. If a train operates 3 days per week, say Monday,

Wednesday and Friday, then the train-starts for that train at its origination yard are

Monday, Wednesday and Friday. This is usually represented by a string notation

(M-W-F OR YNYNYNN). The sequence of yards in which a train stops is identical

on any train-start. Further, a train-start may run over one or more days, for example,

a Monday train-start may run for two days, starting on Monday from its origin and

arriving at its destination yard on Tuesday. For this competition it is assumed that

all trains are started everyday (train start-MTWTFSS OR YYYYYYY) and that the

schedule of each train repeats every week.
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Trains are powered by locomotives, and although the number of locomotives

might differ from train to train, for this competition it is assumed that each train

requires exactly one locomotive and that all locomotives are identical. A locomotive

plan assigns engines to train start sequences. This plan dictates the train-starts that

each locomotive will power. The plan is setup in such a way that for each locomotive

the sequence of train-starts repeats over one or more weeks constituting what is called

a locomotive train assignment cycle. The duration of these cycles determine the

planning horizon. For this competition we assume that this duration is the same for

all locomotives and therefore the planning horizon under consideration corresponds

to the duration of any locomotive train assignment cycle.

Locomotives consume fuel at a per mile rate and there is a limit to the maxi-

mum amount that can be dispensed into a locomotive determined by the locomotive

tank-capacity. Locomotives can only be refueled at yards. For this competition it is

assumed that there is only one source of fuel: fueling trucks. Fueling truck contracts

are annual, and it is further assumed that currently there are no active contracts. Fu-

eling trucks have a weekly operating cost and a fuel price per gallon that can change

from yard to yard. Each truck has a capacity that determines the maximum amount

of fuel that it can dispense in one day. A locomotive may be refueled at the train’s

origin or intermediate yards where the train stops; however, a locomotive may not

be refueled at the train’s destination yard. Assume instantaneous refueling time, and

that a train incurs a fixed cost if it is refueled. Additionally, there is a restriction on

the maximum number of times a train can stop to be refueled (excluding the origin).
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The railroad needs to identify a fueling plan that minimizes total fuel-related

expenses over the planning horizon. This includes truck operating costs as well as

fuel purchasing costs. This plan must specify the number of trucks that should be

contracted at each yard, and the quantity of fuel that must be dispensed into each

locomotive at every yard on every train-start in the locomotive train assignment cycle.

The plan must ensure that all locomotives have enough fuel to run all trains according

to the schedule (i.e., no locomotive can run out of fuel on its route between yards).”

3.2 Our Approach

The fueling decisions associated with operating a railroad are complex and, as

in our test problem, can also be of a large scale. This makes it challenging to find

good quality solutions in a relatively short amount of time. After careful thought

and experimentation, we decided to pursue a mathematical programming approach

because of the solution quality guarantees and the ease of implementation it offers

the user.

3.2.1 Notation

We will first describe the notation used throughout this section. Many of the

parameters and variables are based on the notation used in [38].

Parameters
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N set of yards

J set of locomotives

nj number of stops for locomotive j,j ∈ J

qijs 1 if yard i is the sth stop for locomotive j; 0 otherwise, i ∈ N, j ∈ J, s = 1 . . . nj

d number of days in planning horizon

Hk set of locomotive and stop combinations falling on horizon day k, k = 1..d

Cjk set of stops at intermediate yards in the train sequence

falling on day k for locomotive j, j ∈ J, k = 1 . . . d

Uj set of unique yards visited by locomotive j, j ∈ J

Z set of yards that should not be visited

Bjs set of stops beginning with stop s on locomotive j and going forward that it is

feasible to travel to within a locomotive tank’s capacity, j ∈ J, s = 1 . . . nj

ci fuel price at yard i, i ∈ N

α fixed refueling cost per stop

F weekly operating cost per truck

b tank capacity of a locomotive

r fuel consumption rate per mile

ljs distance between the stops s and s+ 1 for the locomotive j, j ∈ J, s = 1 . . . nj

p permitted number of stops per train run

t truck capacity

Mi total number of visits at yard i by all of the locomotives, i ∈ N



88

ejs the last possible stop belonging to the same yard as s such that the mileage required to

traverse from s is within the tank capacity for locomotive j, j ∈ J, s = 1 . . . nj

Decision Variables

gj initial fuel estimate for locomotive j, j ∈ J

wjs amount of fuel acquired at stop s for locomotive j, j ∈ J, s ∈ 1 . . . nj

zi integer number of trucks contracted at yard i, i ∈ N

xjs =

{
1 if locomotive j uses stop s for refueling, j ∈ J, s = 1 . . . nj

0 otherwise

3.2.2 Initial Model

Because of the similarity in problem definition and the quality of the model in

[38], our initial integer programming (IP) model contains many of the same constraints

as [38]. Key differences are the fact that [38] allows the use of emergency fuel, where

our model does not. We also do not use the frequency fj values found in [38]. In

terms of additional constraints, our model must reflect a daily maximum number of

stops per locomotive and refueling truck capacity. These additional constraints are

noted below.

min 2F
∑
i∈N

zi +
∑
j∈J

nj∑
s=1

(
∑
i∈N

(ciqijswjs) + αxjs) (3.1)
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subject to

wjs ≤ bxjs ∀j ∈ J,∀s = 1 . . . nj (3.2)

gj +
k−1∑
s=1

(wjs − rljs) + wjk ≤ b ∀j ∈ J , ∀k = 1 . . . nj (3.3)

gj +
k∑

s=1

(wjs − rljs) ≥ 0 ∀j ∈ J , ∀k = 1 . . . (nj − 1) (3.4)

nj∑
s=1

(wjs − rljs) = 0 ∀j ∈ J (3.5)

∑
j∈J

nj∑
s=1

(qijsxjs) ≤ Mizi ∀i ∈ N (3.6)∑
(j,s)∈Hk

(qijswjs) ≤ tzi ∀i ∈ N , ∀k = 1 . . . d (3.7)

∑
s∈Cjk

(xjs) ≤ p ∀j ∈ J , ∀k = 1 . . . d (3.8)

gj ≥ 0 ∀j ∈ J (3.9)

wjs ≥ 0 ∀j ∈ J,∀s = 1 . . . nj (3.10)

zi ∈ Z+ ∀i ∈ N (3.11)

xjs ∈ {0, 1} ∀j ∈ J,∀s = 1 . . . nj (3.12)

The objective function (3.1) minimizes the sum of truck contracting costs, fuel pur-

chasing costs and stop costs. Note that unlike [38], emergency stop costs and fre-

quency parameters are removed, and the truck contracting cost is modified to reflect

a two week contracting period. Constraint (3.2) ensures that a locomotive must stop

at a yard to be able to purchase fuel there, like constraint (2b) in [38]. Constraint (3.3)

stipulates that the total fuel in the locomotive can never exceed the truck capacity,

as constraint (2d) does in [38]. Constraint (3.4) ensures that no locomotive runs out

of fuel before arriving at the next stop, like constraint (2e) in [38]. Constraint (3.5)
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guarantees that the total fuel purchased is equal to the total fuel consumed. The

constraint (2f) in [38] uses an inequality for this constraint, but we have modified

this constraint to be an equality constraint to help speed up convergence. Constraint

(3.6) ensures that a truck must be contracted before any fueling stops can occur at a

yard, as in constraint (2g) in [38].

Constraint (3.7) ensures that the total fuel purchased at a yard does not exceed

a contracted truck’s capacity. Constraint (3.8) limits the total number of stops,

excluding the source yard, for a train run. Note that both of these constraints must

be enforced for each day in the planning horizon. Finally, constraints (3.9-3.12) define

the variables.

3.2.3 Improved Model

Next, we will introduce the constraints that we have found that tighten the

above formulation. These constraints increase the value of the linear programming

(LP) relaxation of the problem, enabling better bounds to be used in the branch

and bound algorithm used to solve the IP. As noted below, some of the constraints

here replace constraints in Section 3.2.2, where others are added to the formulation.

Experiments in Section 3.3 will demonstrate the improvements that occur as a result

of these new constraints.

qijsxjs ≤ zi ∀i ∈ N , ∀j ∈ J,∀s = 1 . . . nj (3.13)

nj∑
s=1

xjs ≥ d(r/b)
nj∑
s=1

(ljs)e ∀j ∈ J (3.14)
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∑
(j′,s′)∈Bjs

xj′s′ ≥ 1 ∀j ∈ J,∀s = 1 . . . nj (3.15)

∑
u∈Uj

zu ≥ 1 ∀j ∈ J (3.16)

zi = 0 ∀i ∈ Z (3.17)

xj1 + xj2 = 1 ∀j ∈ J : | Uj |= 2 (3.18)

qijs′xjs′ ≤ 1− qijsxjs∀i ∈ N,∀j ∈ J,∀s = 1..nj,∀s′ = s+ 1..ejs − 1(3.19)

Constraint (3.13) performs the same job as (3.6) but does so in a way that is stronger

in terms of the LP because the sum in (3.6) is separated into individual constraints.

Thus, (3.13) will replace (3.6) in the revised formulation of the problem. Constraint

(3.14) provides a lower bound on the number of stops a locomotive will make. The

next type of strengthening constraints are based on the idea that a locomotive must

make at least one stop during each block of distance that equates to a full locomotive

tank capacity. Constraint (3.15) states that there should be at least one stop in each

of the blocks proceeding from each stop. For each locomotive, the first block reflects

that the largest amount of fuel at the first stop before any refueling is equal to b−rljnj
.

For the later stops in each locomotive’s sequence, the Bjs set will contain stops from

the beginning of the train sequence to reflect the repeating nature of a sequence.

Constraint (3.16) ensures that a truck should be contracted at least one of the unique

yards visited by a locomotive. We can eliminate some yards from consideration and

set the associated zi values to zero. We can eliminate those yards that do not provide

the minimum cost fueling option to any of the locomotives, as these will never be

selected in the optimal solution. This idea is reflected in (3.17), but in the model file,
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we modify the set N to be N − Z.

In our preliminary computational experiments, we found that many alternate

optima exist for this problem, as with many location problems. Here, many different

combination of stops for refueling a locomotive can yield the same total cost which

makes it difficult for an IP solver to converge in a reasonable amount of time. Thus,

the next set of constraints were created to reduce the symmetry and enforce a struc-

ture on the solution to reduce the number of nodes in the branch and bound tree.

Some of these constraints also strengthen the model and increase the LP value. In

the example problem, many locomotives visit only two yards, and many different stop

combinations yield the same cost solution. We restrict the first stop to occur during

the first visit to one of these two yards in constraint (3.18). This will not create

additional stops, as it will simply prevent stops later in the locomotive’s sequence.

The second idea is to force that if a locomotive stops at a particular yard for refu-

elling, the locomotive cannot stop at the same yard again if there is another stop

at that yard before a locomotive runs out of fuel. Constraint (3.19) eliminates such

alternate solutions in which intermediate stops are allowed. The final model consists

of constraints (3.1)-(3.5), (3.7)-(3.19).

3.3 Computational Experiments

For our experiments, the Excel file provided in the competition was converted

to a file that could be read by a program in Matlab. The Matlab program creates

the Hk, Cjk, Uj, Z, and Bjs sets and computes the ejs value. It outputs these sets

and the other parameters in one data file read by AMPL. The model and data file
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Table 3.1: LP Results

Model LP Value
(1)-(12) 11174178.51

(1)-(5), (7)-(12) + (13) 11214860.66
(1)-(12) + (14) 111204475.60
(1)-(12) + (15) 11220847.56
(1)-(12) + (16) 11258207.11
(1)-(12) + (17) 11174265.31
(1)-(12) + (18) 11187839.31
(1)-(12) + (19) 11174178.51

(1)-(5) + (7)-(19) 11339248.69

Table 3.2: IP Results

Model Best IP Value Solution Gap LP Value
(1)-(12) 11442372.92 1.45% 11276000

(1)-(5) + (7)-(19) 11404774.56 0.15% 11388000

are solved by AMPL with a CPLEX solver (version 9.0). The experiments were run

on a Intel Core 2 Quad CPU Q6600 @ 2.40GHz (x4).

Table 3.1 demonstrates the impact of each of the new constraints on the LP

relaxation with a combined increase in the LP value of $165,070.18. Table 3.2 demon-

strates how well we can solve the IP with our initial model and with modifications.

It show that with a run time of 90 minutes, our model yields a solution with an

optimality gap of only 0.15% and our improvements yield a cost savings of $37,598.36

from our initial model. Running this same model for 8 hours reduces this gap to

0.04%, representing a savings of $41,393.40 from the initial model.

3.4 Conclusions

Through the addition of constraints that strengthen the original model as

well as reduce the symmetry in the solutions, we are able to save $37,598.36 (with
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an optimality gap of 0.15%) in 90 minutes and save $41,393.40 (with an optimality

gap of only .04%) in 8 hours. The use of a math programming model allows our

approach to be described in a very concise and readable way, and it avoids much of

the overhead involved with implementing many types of approaches. A practitioner

can easily change the parameters and/or the run time options and do repeated runs

or “what if” types of analysis. The combination of AMPL and CPLEX used here

offers a high quality means of solving our model, and if another solver is selected

by the practitioner, the changes required are simple syntax changes in the data file

generator and model file.
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