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ABSTRACT

The hub location problem seeks to find the best location for hubs and the assign-

ment of non-hub nodes to hubs. The resulting structure is a hub-and-spoke network. In

this dissertation, we study the hub location problem within the context of three different

application areas.

We first consider the air travel industry, where many airline companies (especially

the legacy airlines) operate hub-and-spoke networks. Important considerations in designing

such a hub-and-spoke network are the cost of establishing the hubs, the cost of transporting

passengers through the network, and the operating costs and maximum flying ranges of the

different aircraft types in the fleet. We introduce the hub covering flow problem, which

accounts for all these design considerations.

We next look at time-definite delivery services in the small package delivery indus-

try, where a customer’s package is guaranteed to be delivered within a certain time-window.

With possible delays along the transportation route, a package may not be delivered on

time. We introduce the stochasticp-hub center problem, which seeks to design a network

where the longest origin-destination path in the network is minimized. The solution pro-

vides an upper bound on the delivery times, which can be used to design time-constrained

service offerings, or to ascertain if current service guarantees are feasible. A service-level

constraint is included into the model to ensure a high likelihood of on-time delivery.

In communication networks, two important service-level considerations are robust-

ness (the ability of the network to perform when components become unavailable) and
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response time (the time required to transfer information through the network). We propose

another version of the stochasticp-hub center problem, which employs a two-stage sto-

chastic programming formulation, that addresses the possibility of unavailable components

or transmission delays in the network.
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CHAPTER 1
INTRODUCTION

Hub-and-spoke systems are prevalent in many areas of everyday life from passen-

ger travel through an airline’s network of airports (Bryan and O’Kelly, 1999), to postal

delivery (Ernst and Krishnamoorthy, 1996), communication (Klincewicz, 1998), and pub-

lic transportation networks (Nickel et al., 2000). This has led to increased research on the

hub location problem, which finds the best configuration of a hub-and-spoke network by

locating hubs and assigning non-hub nodes to the hub nodes.

In the general form of the hub location problem on a network, a subset of the nodes

is chosen to be hubs. The hub nodes have two functions: they collect demand from the

non-hub nodes and transfer the demand to the other hubs in the network, or they receive

demand from other hub nodes in the network and distribute this demand to the non-hub

nodes that they serve. The hub nodes are assumed to be fully interconnected as shown in

Figure 1.1, where the squares and circles represent hub and non-hub nodes, respectively.

We will refer to this collection of hub nodes and the arcs connecting these nodes as the hub

network. The non-hub nodes are connected to the hub nodes following a single-assignment

or multiple-assignment rule. In a single-assignment network, each node is connected to

exactlyone hub node (Figure 1.1(a)), whereas in a multiple-assignment network, each node

is connected toat leastone hub node (Figure 1.1(b)). This network configuration creates at

least one path between each origin-destination node pair and thus requires fewer links than

a fully connected network.

Demand in a hub-and-spoke system is represented as a flow of demand units from an
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h1

h2 h3

h4

b

c

e

d

a

(a) Single-assignment network.

h1

h2 h3

h4

b

c

e

d

a

(b) Multiple-assignment network.

Figure 1.1: Hub-and-spoke network configurations. Squares and circles represent hub and
non-hub nodes, respectively. The hub network is assumed to be fully connected.

origin node to a destination node. Demand flows from its origin node to the node’s assigned

hub (collection phase), through the hub network if necessary (transfer phase), and finally

leaves the hub network arriving at the destination node (distribution phase). The unit cost

factors ($/distance) of the collection, transfer and distribution flow phases areχ, α andδ

respectively. The transfer cost factorα is usually less than the collection and distribution

cost factors (α < χ andα < δ) due to economies of scale from the bundling of flows at the

hubs and the transfer of these bundled flows through the hub network (O’Kelly and Bryan,

1998). These economies of scale are another benefit of the hub-and-spoke system.

1.1 Outline of Dissertation

In this dissertation, we study the hub location problem within the context of three

different application areas. In Chapter 2, we consider the air travel industry where many
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airline companies (especially the legacy airlines) operate hub-and-spoke networks. We

introduce the hub covering flow problem, which fills a gap in the existing hub location

literature. In brief, all aircraft have maximum flying ranges and the operating cost of one

aircraft may be different from another. The uncapacitated hub location problem addresses

the cost issue but not the maximum flying ranges. On the other hand, the hub covering

location problem addresses the maximum flying ranges issue but it ignores operating costs.

The hub covering flow problem addresses both issues.

The second application area is the small package delivery industry, which is dom-

inated by well-known companies such as DHL, FedEx, UPS, and the United States Postal

Service (USPS). A growing portion of this industry is the time-definite delivery service,

where a company guarantees that a package will be delivered by a particular time of day

(e.g., 8 a.m. next business day). In reality, the time to transport a package from its origin

to its destination can vary because of delays along the transportation routes due to weather

conditions (wind, inclement weather, and precipitation) and traffic congestion. Thus, it is

important to know whether an offered time-definite delivery service is even feasible and

if so, the reliability of the service. In Chapter 3, we model this problem as the chance-

constrained stochasticp-hub center problem.

Finally, we study hub-and-spoke communication networks in Chapter 4. In com-

munication networks, the transfer of information through a network may experience trans-

mission delays along the links between points in the network, or processing delays at the

hubs. Two important service level considerations for communication networks are robust-

ness (the ability of the network to perform when certain components become unavailable)
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and response time (the time required to transfer requested information through the net-

work). We propose another version of the stochasticp-hub center problem, which employs

a two-stage stochastic programming formulation.

In the remainder of this chapter, we provide a literature review of the hub location

problem (Section 1.2) and of stochastic programming (Section 1.3).

1.2 Hub Location Problems

There are four core hub location problems: the uncapacitated hub location problem,

thep-hub median problem, the hub covering location problem, and thep-hub center prob-

lem. We next review each of these four problems. The following is a list of the parameters

used in the formulations:

N = set of nodes in the network,

dij = travel distance between nodesi andj (or tij = travel time),

Wij = demand flow originating at nodei that is destined for nodej,

Oi =
∑
j∈N

Wij, the total demand flow originating from nodei,

Di =
∑
j∈N

Wji, the total demand flow destined for nodei,

Fk = the annualized cost of establishing and operating a hub at nodek,

α = unit cost factor for the transfer phase ($/distance unit),

χ = unit cost factor for the collection phase ($/distance unit), and

δ = unit cost factor for the distribution phase ($/distance unit).
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1.2.1 The Uncapacitated Hub Location Problem

In the uncapacitated hub location problem (UHLP), the objective is to minimize the

total cost of opening hubs and transporting demand flow through the network. Formulations

for the UHLP can be found in O’Kelly (1992), Campbell (1994), and Klincewicz (1996),

for example. Campbell et al. (2002) provide a multi-commodity flow formulation for the

UHLP using the multi-commodity flow variableY i
kl ≥ 0,∀i, k, l ∈ N , to represent the

amount of flow (or “commodity”) originating at nodei flowing through hubk first and then

hubl. Also, let the variableZik,∀i, k ∈ N , to be 1 if nodei is assigned to hub nodek, and

0 otherwise. WhenZkk = 1, this indicates that nodek is a hub. The UHLP formulation of

Campbell et al. (2002) is

UHLP : min
∑

k∈N

FkZkk + α
∑

i,k,l∈N

dklY
i
kl +

∑

i,k∈N

dik(χOi + δDi)Zik (1.1a)

s.t. Zik ≤ Zkk,∀i, k ∈ N, (1.1b)

∑

k∈N

Zik = 1,∀i ∈ N, (1.1c)

∑
j∈N

WijZjk +
∑

l∈N

Y i
kl =

∑

l∈N

Y i
lk + OiZik,∀i, k ∈ N, (1.1d)

Y i
kl ≥ 0, ∀i, k, l ∈ N, (1.1e)

Zik ∈ {0, 1}, ∀i, k ∈ N. (1.1f)

The terms in objective function (1.1a) are the total annualized fixed cost of opening hubs,

the cost of transporting demand through the hub network, and the cost of transporting

demand from a non-hub node to a hub, respectively. Constraints (1.1b) require that a node

be assigned to an open hub. Constraints (1.1c) and (1.1f) enforce the single-assignment

rule. Constraints (1.1d) represent the flow conservation constraint at hubk for each nodei.
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If the multiple-assignment rule is needed, we replace the binaryZik variables withZik ∈

[0, 1],∀i, k ∈ N . These continuousZik variables are interpreted as the fraction of demand

flowing from nodei to k.

Several works have incorporated capacity constraints on the hubs (Aykin, 1994;

Campbell, 1994; Bryan, 1998; Labbé et al., 2005; Rod́ıguez et al., 2007), capacity con-

straints on the links (Yaman, 2005; Yaman and Carello, 2005), or minimum flow thresh-

olds on the links (Campbell, 1994). Marianov and Serra (2003) take a different approach

in incorporating capacity-like constraints at the hub nodes. The authors model the hub

airports asM/D/c queues, and impose a constraint on the maximum number of airplanes

that can be in a queue. The capacity constraints are modeled using chance constraints. Re-

cent research on the hub location problem has focused on the polyhedral properties of the

single-assignment problem. Work in this area includes those by Labbé and Yaman (2004),

Labb́e et al. (2005), Yaman (2005), and Yaman and Carello (2005).

Solution approaches for the hub location problem include dual-ascent methods

(Klincewicz, 1996; Ćanovas et al., 2007), a genetic algorithm based branch-and-bound

method (Abdinnour-Helm and Venkataramanan, 1998), a branch-and-cut approach (Yaman

and Carello, 2005; Labbé et al., 2005), tabu search (Yaman and Carello, 2005), simulated

annealing (Ernst and Krishnamoorthy, 1999; Rodı́guez et al., 2007), genetic algorithms

(Topcuoglu et al., 2005; Cunha and Silva, 2007), and several hybrid heuristics (Abdinnour-

Helm, 1998; Chen, 2007). In general, the exact methods have been shown to be able to

solve small-sized problems (up to about 25 nodes) to optimality. The heuristic approaches

have been applied to much larger problem instances (up to 200 nodes).
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1.2.2 Thep-Hub Median Problem

In thep-hub median problem (pHMP), the objective is to optimally locatep hubs

in the network so that the total cost of transporting demand through the network is min-

imized. Unlike the UHLP, the number of hubs to be opened is given and is not a func-

tion of the the cost of opening the hubs. O’Kelly (1987) first formulated thepHMP as a

quadratic programming problem. An equivalent mixed-integer linear programming formu-

lation is obtained by replacing the quadratic variables with a four-index variable (Camp-

bell, 1994). Ernst and Krishnamoorthy (1996) later formulate thepHMP using a similar

multi-commodity formulation as with the UHLP presented in Section 1.2.1. ThepHMP

formulation of Ernst and Krishnamoorthy (1996) is

pHMP : min α
∑

i,k,l∈N

dklY
i
kl +

∑

i,k∈N

dik(χOi + δDi)Zik (1.2a)

s.t.
∑

k∈N

Zkk = p, (1.2b)

Zik ≤ Zkk,∀i, k ∈ N, (1.2c)

∑

k∈N

Zik = 1,∀i ∈ N, (1.2d)

∑
j∈N

WijZjk +
∑

l∈N

Y i
kl =

∑

l∈N

Y i
lk + OiZik, ∀i, k ∈ N, (1.2e)

Y i
kl ≥ 0,∀i, k, l ∈ N, (1.2f)

Zik ∈ {0, 1},∀i, k ∈ N. (1.2g)

The formulation of thepHMP is similar to that of the UHLP, with the only two differences

being the omission of the hub opening cost in the objective function (1.2a), and the addition

of constraint (1.2b), which requires that exactlyp hubs be opened. As in the UHLP, if a

multiple-assignment rule is required, the binary variablesZik should be replaced with their



8

continuous counterparts.

Solution approaches for thep-hub median problem include a LP-relaxation tech-

nique (Skorin-Kapov and Skorin-Kapov, 1994), branch-and-bound (Ernst and Krishnamoor-

thy, 1996), local neighborhood search heuristic (Klincewicz, 1991), GRASP (Klincewicz,

1992), tabu search (Klincewicz, 1992; Skorin-Kapov and Skorin-Kapov, 1994), simulated

annealing (Ernst and Krishnamoorthy, 1996), genetic algorithms (Kratica et al., 2007), a

path-relinking method (Ṕerez et al., 2004), and a neural network approach (Domı́nguez

et al., 2003). Computational experiments for the exact methods were conducted on small

data sets (up to 25 nodes), while the heuristics were tested on larger data sets (up to 200

nodes).

1.2.3 The Hub Covering Location Problem

In the hub covering location problem (HCLP), the objective is to find the best lo-

cation of hubs in the network and assignment of nodes to hubs (subject to certain covering

constraints) such that the total cost of opening the hubs is minimized. The HCLP includes

cover constraints, which have the effect of restricting certain assignments of nodes to hubs.

For example, in the facility location literature, a facility is said to be able to cover a node if

the node is within a pre-specified distance from the facility. If the facility covers the node,

then the node can be assigned to that facility.

In the HCLP, there are three definitions for coverage: an origin-destination pair

(i, j) is covered if (1) thetotal distance of the pathfrom nodei to nodej through hubk

first thenl does not exceed a specified value, (2) thedistance of each link in the pathfrom
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nodei to j through hubk first thenl does not exceed a specified value, and (3) thedistance

of each of the links between the hub and non-hub nodes in the path(i.e., excluding the

hub-to-hub link) from nodei to j does not exceed a specified value (Campbell, 1994).

The first published formulation for the HCLP is a path-based formulation by Camp-

bell (1994), where every possible path between each origin-destination node pair is enu-

merated. Campbell defines the path variableYijkl,∀i, j, k, l ∈ N , as the fraction of demand

flow from nodei to j through hubk first, then hubl (i.e., i → k → l → j). In addition,

let the variableXk,∀k ∈ N , be 1 if a hub is located at nodek, and 0 otherwise. Also, set

parameterAijkl, ∀i, j, k, l ∈ N , equal to 1 if hubsk andl cover the origin-destination pair

(i, j), and 0 otherwise. This binaryAijkl parameter can model any of the three coverage

definitions described in the previous paragraph. The path-based formulation of Campbell

(1994) is

HCLP-Path: min
∑

k∈N

FkXk (1.3a)

s.t. Yijkl ≤ Xk,∀i, j, k, l ∈ N, (1.3b)

Yijkl ≤ Xl,∀i, j, k, l ∈ N, (1.3c)

∑

k,l∈N

AijklYijkl ≥ 1,∀i, j ∈ N, (1.3d)

Xk ∈ {0, 1},∀k ∈ N, (1.3e)

Yijkl ∈ {0, 1},∀i, j, k, l ∈ N. (1.3f)

Objective function (1.3a) minimizes the cost of opening hubs. Constraints (1.3b) and (1.3c)

require that demand only flow through open hubs. Constraints (1.3d) enforce the coverage

criterion.
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Kara and Tansel (2003) propose several other mixed-integer linear programming

formulations for the HCLP based on the first definition of coverage. Wagner (2007) builds

upon the work of Kara and Tansel (2003) by proposing pre-processing methods to fix the

values of some of the decision variables and to reduce the size of the problem by remov-

ing redundant constraints. The resulting model is shown to achieve better computational

performance than those of Kara and Tansel (2003). Wagner (2007) also presents similar

pre-processing approaches for the multiple-allocation version of the problem, and extends

the single-assignment version to incorporate quantity-dependent discount factors, i.e., set-

ting the discount factorα to be dependent on the amount of flow between pairs of hubs.

Finally, Tan and Kara (2007) implement the covering version of the latest arrival hub prob-

lem of Kara and Tansel (2001).

1.2.4 Thep-Hub Center Problem

In the p-hub center problem (pHCP), the objective is to simultaneously find the

optimal location ofp hubs and the assignment of non-hub nodes to the hubs so as to mini-

mize the longest path in the network. O’Kelly and Miller (1991) first study the single

hub problem (i.e.,p = 1) in the plane, and propose several solution techniques. Campbell

(1994) provides the first integer programming formulation for thepHCP using path vari-

ables. Kara and Tansel (2000) provide several alternative formulations that perform better

computationally than that of Campbell (1994). The path-based formulation of Campbell

(1994) is

pHCP-Path: min max
i,j,k,l∈N

{CijklYijkl} (1.4a)
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s.t. Yijkl ≤ Xk,∀i, j, k, l ∈ N, (1.4b)

Yijkl ≤ Xl,∀i, j, k, l ∈ N, (1.4c)

∑

k,l∈N

Yijkl = 1, ∀i, j ∈ N, (1.4d)

∑

k∈N

Xk = p, (1.4e)

Xk ∈ {0, 1}, ∀k ∈ N, (1.4f)

Yijkl ∈ {0, 1},∀i, j, k, l ∈ N, (1.4g)

whereCijkl = dik + αdkl + djl is the length of the pathi → k → l → j. Objective

function (1.4a) minimizes the length of the longest path in the network. Other than con-

straints (1.4d), which together with constraints (1.4f) impose the single-assignment rule, all

other constraints are similar to that of the HCLP in Section 1.2.3. If a multiple-assignment

rule is required, we replace constraints (1.4d) with
∑

k,l∈N Yijkl ≥ 1,∀i, j ∈ N .

When introducing thepHCP at the beginning of this section, we stated that the

objective is to minimize the longest path in the network. Referring to the three coverage

definitions in Section 1.2.3, minimizing the longest path is based on the first coverage de-

finition. If it is required that the characteristics of the paths follow one of the other two

coverage definitions, the parameterCijkl can be appropriately defined to meet the require-

ments (e.g., settingCijkl = +∞ if the pathi → k → l → j does not meet the criteria of

the desired path). See Campbell (1994) for a further discussion on this issue.

Kara and Tansel (2001) extend thepHCP to incorporate an operational-level issue

where planes departing from a hub cannot leave until all planes arriving at the hub have

arrived. Wagner (2004), however, writes that the min-max version of this latest arrival hub
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location problem proposed by Kara and Tansel (2001) is no different than the basicp-hub

center problem because the route that determines the longest path in the network is one

where the transient or waiting times at the hubs are zero. Thus, the solution found by the

basicp-hub center problem is the same as that of the min-max version of the latest arrival

problem. A follow-up to the latest arrival hub network problem is that by Yaman et al.

(2007), where stopovers are allowed between the non-hub and hub nodes (i.e., the route

from a non-hub node to its hub may include a visit to another non-hub node).

Ernst et al. (2006b) propose a new mixed-integer linear programming formulation

for the single- and multiple-allocationp-hub center problem based on a concept they refer

to as the radius of hubs. The authors provide bounds on the objective function based on dif-

ferent heuristics, and propose a shortest-path branch-and-bound approach for the multiple-

allocation version of the problem. This branch-and-bound approach is similar to the one

proposed in Ernst and Krishnamoorthy (1998). The authors conducted computational tests

on problem sets with up to 200 nodes.

A stream of work related to thepHCP is thep-hub center assignment problem,

which is thepHCP with the hub locations given. Campbell et al. (2007) explore the single-

and multiple-allocation version of the problem, and show that several special cases of these

two problems can be solved in polynomial time. Ernst et al. (2006a) propose a new for-

mulation for the single-allocation problem based on the idea of the radius of a hub. The

authors show that the problem is NP-hard, provide bounds on the objective function value

found using different heuristics, and propose a population-based meta-heuristic solution

approach.
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1.3 Stochastic Programming

The mathematical programming models formulated in hub location studies are de-

terministic optimization models (with the lone exception being Marianov and Serra (2003)).

In the three application areas considered in this dissertation, there clearly exists some un-

certainty in travel times or processing times, for example. Thus, it is natural to model these

problems as stochastic programs.

In stochastic programming, the parameters of the mathematical programming prob-

lem are not fixed. These parameters are typically known to take on certain values with a

known probability function. There are two common approaches to modeling a stochastic

programming problem: the two-stage formulation and the chance constrained formulation.

We next briefly discuss these two stochastic programming formulation approaches, and di-

rect the reader to the texts by Kall and Wallace (1994) and Birge and Louveaux (1997),

and to the Stochastic Programming Community Home Page (http://www.stoprog.org) for

further discussion on stochastic programming.

1.3.1 Two-Stage Formulation

In the two-stage formulation, a decision is made in the first-stage. Following this

decision, some realization of a random event is observed and a second decision then is

made. This recourse decision made in the second-stage is typically based on finding the

optimal decision to mitigate against an undesirable outcome, or to improve upon a current

situation following the effect of the random events on the decisions made in the first-stage.
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Birge and Louveaux (1997) give the following general formulation for thetwo-stage

stochastic programming problem:

SP-2S: min cT x + EξξξQ(x, ξ(ω))

s.t. Ax = b,

x ∈ X,

where

Q(x, ξ(ω)) = min q(ω)T y(ω)

s.t. T (ω)x + W (ω)y(ω) = h(ω),

y(ω) ∈ Y.

Then1 × 1 vectorx represents the first-stage variables. Vectorc is n1 × 1, while matrix

A and vectorb arem1 × n1 andm1 × 1, respectively. Following a decision on the first-

stage problem, some random eventω ∈ Ω (whereΩ is the set of all random events) occurs.

For a particular realizationω, the values of the second-stage parametersq(ω), T (ω),W (ω),

andh(ω) are known, whereq(ω) is ann2 × 1 vector,T (ω) is anm2 × n1 matrix, W (ω)

is an m2 × n2 matrix, andh(ω) is a m2 × 1 vector. Once theq(ω), T (ω),W (ω), and

h(ω) values corresponding to a realizationω are known, the second-stage decisiony(ω)

is then made. The second-stage vectory(ω) has dimensionn2 × 1. Letting Ti· andWi·

represent thei-th row of T (ω) and W (ω), respectively, we define the vectorξT (ω) =

(q(ω)T , T1·(ω), . . . , Tm2·(ω),W1·(ω), . . . , Wm2·(ω), h(ω)T ). The random vectorξ(ω) is an

N × 1 vector, whereN = n2 + (m2 × n1) + (m2 × n2) + m2. Also, letΞ ∈ <N be the

support ofξξξ; that is, the smallest closed subset in< such thatP (ξξξ ∈ Ξ) = 1.
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MatricesW andT are called therecourseand technologymatrices, respectively.

If the recourse matrix is not random (i.e.,W (ω) = W ), the problem is said to havefixed

recourse. The problem is said to haverelatively complete recourseif for every solutionx

satisfying the first-stage constraintsAx = b, and for anyξ ∈ Ξ, there is a feasible solution

to the second-stage problem. If there is a feasible solution to the second-stage problem for

all x ∈ X andξ ∈ Ξ, then the problem hascomplete recourse. Finally, if W = [I,−I], we

havesimple recourse.

Problem SP-2S can also be written in the followingdeterministic equivalent pro-

gram(DEP):

SP-DEP: min cT x +Q(x)

s.t. Ax = b,

x ∈ X,

whereQ(x) = EξξξQ(x, ξ) is called thevalue functionor recourse function. We note that

this two-stage approach to modeling a stochastic programming problem can be extended to

modeling multi-stage stochastic programming problems in the obvious way if necessary.

A common approach for solving two-stage stochastic programming problems is via

a branch-and-cut technique similar to Benders decomposition (Benders, 1962), where a

master problem solves for the first-stage variables and a subproblem then addresses the

recourse function given the values of the first-stage variables. Van Slyke and Wets (1969)

introduce the L-shaped method for the two-stage stochastic linear programming problem

(continuous first- and second-stage variables). The L-shaped method generates cuts at each
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iteration to approximate the recourse function. Laporte et al. (1994) extend the L-shaped

method to solve stochastic integer programming problems with binary first- and second-

stage variables. Examples of the application of the integer L-shaped method include the

probabilistic traveling salesman problem (Laporte et al., 1994) and the stochastic vehicle

routing problem (Gendreau et al., 1995; Laporte et al., 2002).

Other solution approaches include variations on branch-and-bound by Norkin et al.

(1996, 1998), cutting plane algorithms (Carøe and Tind, 1997, 1998), and branch-and-

cut (Ahmed and Shapiro, 2002; Ahmed et al., 2004). For further discussion on solution

approaches for stochastic programming problems, see Klein Haneveld and van der Vlerk

(1999).

1.3.2 Chance-Constrained Formulation

In deterministic linear programming, the optimal solution to the problem has to

satisfy all the constraints; that is, none of the constraints can be violated. Due to the

presence of uncertainty in stochastic programming problems, it may not be possible to find

a feasible solution where none of the constraints are violated. Instead, one approach is to

allow violation of some or all of constraints up to a certain probability threshold. We refer

to these constraints asprobabilisticor chance constraints.

The chance-constrained formulation was first proposed by Charnes and Cooper

(1959, 1963). The stochastic programming problem with chance constraints can be written

as

SP-CC: min cT x (1.5a)
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s.t. P{A(ω)x ≤ b(ω)} ≥ γ, (1.5b)

x ∈ X, (1.5c)

where constraints (1.5b) are the probabilistic or chance constraints. When the vectorγ = e

(i.e., the vector of ones), then the chance constraints are said to holdalmost surely(i.e.,

with probability 1). In SP-CC, some constraints may be required to hold almost surely,

while others may only be required to be satisfied at a minimum probability value.
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CHAPTER 2
THE HUB COVERING FLOW PROBLEM

2.1 Introduction

The health of the North American airline industry has declined sharply in the past

decade beginning with a downturn in the domestic economy. This economic downturn,

together with advances in communications technology (for example, video-conferencing

and the Internet), has led to fewer business travelers, who constitute a profitable revenue

stream for airline companies. Other issues have exacerbated the problems of the airline

industry: the terrorist events of September 11, 2001; the installation of airport security

service fees following September 11, 2001; sky-rocketing fuel costs; high labor costs as a

result of long-standing union contracts for the legacy airlines; increased competition from

low-cost airline companies such as Southwest Airlines and JetBlue; and high gate prices at

the larger airports.

It is not surprising then that by the end of the third quarter of 2005, four of the

top seven US airline companies – United Airlines, Northwest Airlines, US Airways, and

Delta Air Lines – had filed for Chapter 11 bankruptcy protection, while American Airlines,

the largest airline company, had narrowly avoided filing for bankruptcy in 2003. Even Air

Canada, the national airline of Canada, had spent 18 months under bankruptcy protection

from April 2003 to September 2004 (CBC News Online, 2005).

One of the many ways that these legacy airlines have sought to address these prob-

lems under Chapter 11 bankruptcy protection is to re-organize the operations of their hub-
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and-spoke networks to improve efficiencies. In a hub-and-spoke network, low capacity

feeder aircraft transport passengers from the typically low demand, smaller-sized non-hub

airports to the larger hub airports where passengers are transported toward their final des-

tinations on larger capacity aircrafts. This hub-and-spoke network configuration allows for

the connection of smaller cities into the national air transportation system and thus, more

effective use of a company’s high-cost assets such as airports, aircraft, and equipment (Ott,

1993; CNN.com, 2004). Since the smaller cities do not generate high demand, airline com-

panies typically use smaller-sized aircraft to serve these cities. These aircraft are flown as

frequently as needed to meet demand while maximizing aircraft utilization rates (Toh and

Higgins, 1985; Butler and Huston, 1990).

Several airline companies have simplified their fleet by reducing the number of dif-

ferent aircraft types they operate. American Airlines, for example, has reduced the number

of aircraft types by half so as to lower maintenance, training, and inventory costs (Fiorino,

2002). Airline companies also have retired older, less efficient aircrafts and purchased more

fuel-efficient models in response to the recent record high fuel prices (CNNMoney.com,

2005). With lower demand for air travel, airline companies have reduced operating capac-

ity by mothballing planes in the desert regions of Southern California, New Mexico, and

Arizona (St. Louis Business Journal, 2002; The New York Times, 2003). To put all these

changes in fleet sizes and composition into perspective, CNNMoney.com (2005) reports

that the number of planes taken out of service and the number of people who have lost jobs

due to the reduction in flights is equivalent in size to a company such as American Airlines

going out of business.
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Airline companies have not focused solely on changes to their fleet, but also on

their hub infrastructure. For instance, in 2004, Spain’s Iberia Airlines shifted hubbing

services for their Central America market from their hub in Miami, Florida, to new hubs in

Guatemala and Panama. This permits Iberia to provide direct flights from its main hub in

Spain to their two priority Central American markets using the larger, more efficient Airbus

340 aircrafts (Iberia Airlines, 2004).

The decision as to where hub airports should be located is also dependent on the

company’s aircraft fleet. The short-haul feeder routes between the non-hub airports and hub

airports are typically non-stop routes and since aircrafts have a specified maximum flying

distance, this operational constraint must be considered when designing a hub-and-spoke

network. The limited flight ranges are similar to the coverage constraints in the location

theory literature (e.g., the set covering problem (Toregas et al., 1971)); that is, a facility is

said to cover a demand point if the distance between the facility and the demand point is

within a specified distance. With regards to the air travel industry, we say that a hub airport

covers a non-hub airport if the maximum flying range of the aircraft assigned to this route

is at least as long as the length of the route.

These decisions regarding mothballing, retiring and/or purchasing aircraft, as well

as the establishment or elimination of hubs, are all very important strategic choices. Once

made, a company must operate within this new environment for many years to come. Since

these decisions may dictate whether a company will emerge from bankruptcy protection as

an operationally efficient and financially sound business, these choices are not to be made

haphazardly.
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This network configuration problem is a form of the hub location problem. The two

hub location problems that closely resemble this network configuration problem are the hub

covering location problem (HCLP) and the uncapacitated hub location problem (UHLP).

First, the maximum flying ranges of the aircraft is the third definition of coverage described

in Section 1.2.3. We could then formulate this problem as a HCLP. Although the HCLP

ensures that all nodes are covered while minimizing the annual cost of maintaining hubs, it

does not account for the cost of transferring demand flows through the network. Air travel

providers are in the business of transporting passengers cost-effectively (and hopefully,

profitably too). Hence, transportation costs should not be ignored. The UHLP, on the other

hand, minimizes the total cost of opening hubs and transporting demand flow through the

network but it does not account for the coverage constraints on the assignment of nodes to

hubs.

It is clear then that neither the HCLP nor the UHLP simultaneously address the two

issues of (1) the coverage constraint (i.e., the maximum flying distance between hub and

non-hub airports), and (2) the cost of transporting passengers through the network. The

hub covering flow problem(HCFP), which we propose in this chapter, fills this gap in the

literature. Two mixed-integer linear programming formulations for the HCFP are provided

in Section 2.2. The HCFP essentially combines the HCP and UHLP, and thus, it possesses

some of the characteristics and assumptions of these two models. One assumption, which

will be discussed in greater detail in Section 2.2, is that all aircraft types have the same

per unit operating cost and maximum flying range. This assumption is limiting, and so

we extend one of the two HCFP formulations to account for aircraft-types with different
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operating costs and maximum flying distances.

The HCFP can be used as a tool by airline companies to help decide on the location

of hubs and the composition of an aircraft fleet to service geographically dispersed demand.

In Section 2.3, we give an example of how the HCFP can be used for doing so. Section 2.4

provides another numerical example showing the impact of not solving the hub location and

the network configuration problem simultaneously. Intuitively, one would expect the hubs

to be situated at locations with high concentration of demand flows. Thus, the omission

of demand flow in the design problem may lead to poor hub locations. We compare the

results from solving the HCFP against a sequential optimization procedure where the hub

locations are first determined by solving the HCLP, then solving the UHLP to incorporate

the cost of transporting demand flow through these set of hub locations.

2.2 The Hub Covering Flow Problem

The hub covering flow problem (HCFP) finds the best configuration of a hub-and-

spoke network that minimizes the total cost of opening hubs and transporting demand flow,

while satisfying a maximum flying distance constraint between the hub and non-hub air-

ports. We now provide two mixed-integer linear programming formulations for the HCFP

based on the UHLP formulation in Section 1.2.1.

For our first HCFP formulation, we replace constraint (1.1b) in UHLP with the

following coverage constraints

Zik ≤ AikZkk,∀i, k ∈ N,

where the parameterAik,∀i, k ∈ N, indicates if a hub at nodek can cover nodei; that is,
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Aik = 1 if the distance between hubk and nodei is within the maximum flight rangeR

of the aircraft, and 0 otherwise. To show that the above coverage constraints capture the

coverage constraint and provide a feasible solution to HCFP, recall that the third definition

of coverage states that the distance of each of the links between the hub and non-hub nodes

in the path from nodei to j should not exceed a specified value. By this coverage definition,

there is thus a feasible path between all origin-destination pairs(i, j) if and only if the

distance between each node and its assigned hub node is within the coverage distance.

This implies that a feasible solution to the HCFP is obtained when all the assignments of

nodes to hubs satisfy the coverage requirement. Thus, the constraints above ensure that

every node is only assigned to a hub that can cover it. The first HCFP formulation is

HCFP1: min
∑

k∈N

FkZkk + α
∑

i,k,l∈N

cklY
i
kl +

∑

i,k∈N

cik(χOi + δDi)Zik (2.1a)

s.t. Zik ≤ AikZkk,∀i, k ∈ N, (2.1b)

∑

k∈N

Zik = 1,∀i ∈ N, (2.1c)

∑
j∈N

WijZjk +
∑

l∈N

Y i
kl =

∑

l∈N

Y i
lk + OiZik,∀i, k ∈ N, (2.1d)

Y i
kl ≥ 0,∀i, k, l ∈ N, (2.1e)

Zik ∈ {0, 1},∀i, k ∈ N. (2.1f)

Formulation HCFP1 has|N |3 continuous variables,|N |2 binary variables, and2|N |2 + |N |

linear constraints.

Unlike objective function (1.1a) in UHLP, we have opted for the use ofckl and

cik parameters in objective function (2.1a) instead of thedkl anddik distance parameters.

This is to emphasize that the cost of transferring demand flow through the network is not
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necessarily a function of distance alone. A standard cost metric in the airline industry is the

cost per available seat-mile (CASM), which is calculated as total operating costs divided by

available seat miles. In other words, CASM considers aircraft capacity, fixed and variable

operating costs, and travel distance. Since we are working with a network of nodes where

the distances between nodes are known, we thus define thecost per seatcik as the product

of CASM anddik, i.e.,cik = CASM× dik.

For our second HCFP formulation, we use a penalty-function approach to imple-

ment the coverage requirement. Similar to the Big-M approach in linear programming,

we penalize the objective function value by a large valueM each time a non-hub node is

assigned to a hub that cannot cover it. We redefine the cost per seat (CPS) parametercik as

ĉik =





cik, if 0 ≤ dik ≤ R

M, if dik > R

. (2.2)

If node i is assigned to hubk and the distance between the two is within the coverage

radiusR, then the CPŜcik = cik as before. If the distance between the two nodes exceeds

R, then the CPŜcik = M . By setting a large enough value forM , all infeasible node to

hub assignments will be discouraged. Our second formulation for the HCFP is

HCFP2: min
∑

k∈N

FkZkk + α
∑

i,k,l∈N

cklY
i
kl +

∑

i,k∈N

ĉik(χOi + δDi)Zik (2.3)

s.t. (1.1b), (2.1c)− (2.1f)

Similar with HCFP1, HCFP2 has|N |3 continuous variables,|N |2 binary variables, and

2|N |2 + |N | linear constraints.

The CPS coefficients in the second and third terms in the objective function of

both HCFP1 and HCFP2 imply that regardless of which aircraft type is used to provide
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service, the operating costs are identical (due to the constant CASM value). Moreover, the

constant coverage radiusR, which is used to define the coverage indicator parameterAik

in constraints (2.1b) and̂cik in equation (2.2) implies that the maximum flying ranges are

the same for all aircraft types. These implications are unrealistic as, for example, the CPS

and maximum flying distance of an aircraft used for regional service are different from

those of an aircraft used for long-haul service (Swan and Adler, 2006). Also, it is quite

common for airline companies to use different aircraft types to operate the feeder routes

from a single hub: an aircraft of a particular size for some routes, while another type of

aircraft for another set of routes, and so on. Since both HCFP1 and HCFP2 assume that all

aircraft have the same CPS values and maximum flying distances, we shall refer to these

two formulations as theone aircraft-typecase.

We can account for multiple aircraft types in formulation HCFP2 via a redefinition

of the penalty-cost function (2.2). Suppose there are two types of aircraft at a hub. The

first aircraft has a maximum flying range ofR1 with a CPS ofc1
ik(dik), which is defined as

a function of the distance between nodesi andk. The ik subscripts inc1
ik allows the use

of different cost functions depending on which hub serves nodei. The second aircraft has

a longer maximum flying range (R2 > R1) but a larger CPS (i.e.,c2
ik > c1

ik). (See Swan

and Adler (2006) where they show that certain aircraft types have higher CPS values than

others over the same trip distance.) Any airport that is farther thanR2 distance units from

the hub cannot be served by that hub. We re-defineĉik to allow for thistwo aircraft-type
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case as follows:

ĉik =





c1
ik(dik), if 0 ≤ dik ≤ R1

c2
ik(dik), if R1 < dik ≤ R2

M, if dik > R2

. (2.4)

Equation (2.4) can be extended in the obvious way if there are more than two aircraft-types

operating out of a hub.

This modifiedĉik parameter (2.4) accounts for the different CPS and coverage radii

of the two aircraft. Furthermore, the optimal allocation of airports to hubs from HCFP2

indicates which type of aircraft to use to serve each airport; hence endogenously solving the

fleet assignment problem (see, for example, Subramanian et al. (1994) for a description of

the fleet assignment problem). Moreover, the objective function allows the model to weigh

the trade-off between opening hubs and using different combinations of aircraft types each

with a different coverage radius.

It is important to note that HCFP2 remains a mixed-integer linear program regard-

less of the nature of the cost functionsc1
ik andc2

ik in (2.4). These cost functions – be they

discrete or continuous, linear or non-linear – simply modify theĉik coefficients, which then

are used as input parameters when solving HCFP2. This added flexibility in parameterizing

the optimization model is useful in situations where, for example, a concave cost function

is required to further emphasize decreasing marginal transportation costs.

Finally, if a maximum distance constraint between hub nodes is required, this is

easily done by redefining theckl parameter in the second term of objective function (2.3)

with a ĉkl parameter similar to (2.2). Imposing coverage constraints between hub nodes,

in addition to those between hub and non-hub nodes, results in the second definition of
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coverage that thedistance of each link in the pathfrom nodei to j through hubk first

then l does not exceed a specified value (see Section 1.2.3). This coverage definition is

applicable in situations where transported items “require some preserving or rejuvenating

process, such as heating or cooling, which is available only at the hub locations,” or to

limit continuous driving by truck drivers, for example (Campbell, 1994). As with theĉik

parameter in (2.2),̂ckl neither alters the structure of HCFP2, nor does it introduce additional

complexities to the model.

2.3 Numerical Examples

We now provide some examples to illustrate how the HCFP can be used in decision

making. All the models were solved using the XPress-MP solver (Dash Optimization,

2004) via the NEOS Server for Optimization (Czyzyk et al., 1998; Dolan, 2001; Gropp and

Moré, 1997).

For our experiments, we use the 50-node Australia Post (AP) data set, which is

available from the OR-Library (Beasley, 1990, 2004). The AP data set contains information

on node coordinates; demand flow; collection, transfer and distribution cost factors; as

well as the fixed costs of opening hubs. (We note that another commonly used data set for

hub location model testing is the Civil Aeronautics Board (CAB) data set, but it only has

demand flow between nodes.) In the AP data set, distances between pairs of nodes are the

Euclidean distances calculated from the given node coordinates, and demand flow between

nodes is not symmetrical (Wij 6= Wji). The collection cost factorχ, transfer cost factorα,

and distribution cost factorδ are 3, 0.75 and 2, respectively. These values are commonly
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Figure 2.1: Distribution of the fixed cost values in the “tight” data set. The average fixed
cost value is 94343.

used for the AP data set in computational experiments reported in the hub location literature

(e.g., Ernst and Krishnamoorthy, 1996).

There are two sets of hub opening (fixed) costs: “tight” and “loose”. Figure 2.1

shows the tight fixed cost values for all 50 nodes. In the tight fixed cost set, it is generally

more expensive to open a hub at a node with large total demand flow, which is defined as the

sum of demand originating and terminating at a node (i.e.,DFi = Oi + Di). (A regression

analysis of the fixed cost of opening a hub with total demand flow shows a coefficient

of correlation of 0.998.) Even though nodes with large demand flow are intuitively good

locations for hubs, the high fixed cost values in the tight data set has a tendency to deter the

model from doing so. This correlation between total demand and fixed costs is not present

in the loose fixed cost set (Figure 2.2). The tight data set has fixed cost values ranging

from about 20,000 to 200,000 with an outlier at about 710,000, while the loose data set has

values ranging from 20,000 to 35,000.
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Figure 2.2: Distribution of the fixed cost values in the “loose” data set. The average fixed
cost value is 27404.
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In our experiments, we consider the case with two aircraft-types (see equation (2.4)).

Suppose the cost per seat (CPS) of the first aircraft isc1
ik = dik, with this aircraft having

a maximum flight distance ofR1. The CPS of the second aircraft isc2
ik = dik(1 + β),

whereβ > 0 is the cost premium of using the longer ranging aircraft. The maximum flight

distance of the second aircraft isR2 and is set to a multiple ofR1 (i.e., R2 = τR1). The

cost per seat (CPS) function is

ĉik =





c1
ik = d1

ik, if 0 ≤ dik ≤ R1

c2
ik = d1

ik(1 + β), if R1 < dik ≤ R2

M, if dik > R2

, (2.5)

which is shown in Figure 2.3. We solve problems withR1 = 10 and15, and experiment

with values ofτ = 1, 1.5, 2, . . . , 4. Each(R1, τ, β) combination can be interpreted as

operating parameters for a particular two aircraft-type fleet.

For comparison purposes, we consider options for developing a hub-and-spoke in-

frastructure that incurs a yearly cost of approximately 400,000 units. One such design

involves only one aircraft-type and where every hub serves demand points that are within

20 distance units (i.e.,R = 20). We use the tight fixed cost data set and find from HCFP that

four hubs are opened with a resulting cost close to 400,000. To investigate alternative de-

signs, the light grey regions in Figure 2.4 indicate different combinations of(R1, τ, β) that

have total cost values between 350,000 and 400,000. Table 2.1 shows the number of open

hubs for the corresponding(R1, τ, β) combinations. Since the(R1, τ, β) combinations rep-

resent fleets of different types of aircraft, a decision maker could use this information to

determine the best mix of aircraft types at the hubs depending on what aircraft types are
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Figure 2.4: Total cost values (in thousands) for different(R1, τ, β) combinations and the
tight fixed cost data set, whereR2 = τR1.

readily available to the firm, while maintaining a total cost close to 400,000.

If a decision maker prefers having three instead of four hubs, she can use Figure 2.4

and Table 2.1 to find the many fleet combinations and network designs with three hubs at

approximately the same cost. For example, the optimal number of hubs for the instance

(R1, τ, β) = (10, 2.5, 0.5) is four hubs at a cost about 400,000. For an optimal network

configuration with only three hubs at a similar cost, one option is to use a fleet correspond-

ing to (R1, τ, β) = (15, 2, 1). Thus, the first aircraft-type has a maximum flight range of 15

distance units, and the second flying up to 30 distance units at twice the per unit distance

operating cost of the first. Another option is(R1, τ, β) = (10, 2.5, 0.25). For a two hub

configuration,(R1, τ, β) = (10, 4, 0.5) might be considered.

In summary, Figure 2.4 and Table 2.1 can be used to evaluate the interaction be-
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Table 2.1: Number of open hubs for different(R1, τ, β) combinations and the tight
fixed cost data set, whereR2 = τR1.

β

R1 τ 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

10 1.0 11 11 11 11 11 11 11 11 11

1.5 7 7 7 7 7 7 8 8 8

2.0 4 5 5 5 6 6 6 6 6

2.5 3 3 4 4 5 5 5 5 5

3.0 3 3 3 3 4 4 5 5 5

3.5 2 2 3 3 4 4 4 5 5

4.0 1 2 2 3 4 4 4 5 5

15 1.0 7 7 7 7 7 7 7 7 7

1.5 4 4 4 4 4 4 5 5 5

2.0 3 3 3 3 3 4 4 4 4

2.5 2 2 2 2 2 4 4 4 4

3.0 1 2 2 2 2 4 4 4 4

3.5 1 2 2 2 2 4 4 4 4

4.0 1 2 2 2 2 4 4 4 4
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tween total cost, number of open hubs, and fleet configuration. The decision maker can fix

one (or two) of the variables and obtain optimal values for the remaining variable(s).

Next, consider the area of the zone between the maximum flight ranges of the two

aircraft-types, i.e.,π((τR1)
2 − (R1)

2). It is not surprising that the number of open hubs

is non-increasing as the size of this zone increases (increasingτ while holdingβ constant

in Table 2.1), since increasingτ creates a larger coverage radius for a hub. Also from Ta-

ble 2.1, the number of open hubs is non-decreasing as the cost premiumβ increases (with

τ held constant). This is to be expected because as the longer ranging aircraft becomes

more costly to use, the shorter ranging aircraft becomes more appealing, which then re-

sults in more open hubs. When the cost premiumβ decreases (while holdingτ constant),

the total number of the longer ranging aircrafts employed at a hub may increase because

these aircrafts cost less to operate. This lower transportation cost may result in fewer open

hubs (see Table 2.1) while the number of airports served by the longer ranging aircraft is

(monotonically) increasing (see Table 2.2).

Although we had anticipated the number of airports served by the longer ranging

aircraft to increase as the size of the zone between the maximum flight ranges increases, the

results in Table 2.2 do not fully support our expectations. For example, considerR1 = 10

andβ = 1. As τ increases from 2 to 3, the corresponding number of airports served are

12, 10, and 14. The lack of empirical support for our hypothesis is partially attributed to

conducting the numerical experiments on a network instead of a continuous plane. Never-

theless, the results in Table 2.2 do exhibit an increasing trend, although not the anticipated

monotonic increase.
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Table 2.2: Number of airports served by the longer ranging aircraft for different
(R1, τ, β) combinations and the tight fixed cost data set, whereR2 = τR1.

β

R1 τ 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

10 1.5 12 12 12 12 12 12 9 9 9

2.0 29 17 17 17 12 12 12 12 12

2.5 26 26 19 19 10 10 10 10 10

3.0 22 22 22 22 14 14 10 10 10

3.5 27 26 22 20 14 14 14 10 10

4.0 33 26 26 20 14 14 14 10 10

15 1.5 10 9 8 8 7 7 4 4 4

2.0 13 10 10 10 10 5 5 5 5

2.5 16 16 12 12 12 5 5 5 5

3.0 18 16 12 12 12 5 5 5 5

3.5 18 16 12 12 12 5 5 5 5

4.0 18 16 12 12 12 5 5 5 5
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2.4 Impact of Demand Flow and Coverage Radius

on the Hub Network

At the beginning of this chapter, we mentioned that demand flow will likely dictate

the location of hub nodes in the network. In this section, we compare the optimal network

configurations via the hub covering location problem (HCLP) and the hub covering flow

problem (HCFP), and show that demand flow does influence the location and number of

hubs. The results using the 50-node AP data set with the “loose” fixed costs indicate a

preference for hub locations at nodes that are closer spatially to the center of the service

region, and at nodes that have high total demand flows.

We use the one aircraft-type HCFP formulation to demonstrate the impact of de-

mand flow, transportation costs and coverage radius on the design of the network. To

provide for a meaningful comparison between HCFP and HCLP, we first solve the HCLP

for the optimal hub locations and then, fixing the optimalZkk variables from HCLP, use

HCFP to find the optimal flows using this set of open hubs. This latter problem is basically

an assignment problem (see, for example, Campbell et al., 2007) since the hub nodes are

fixed. We refer to this two-stage optimization problem as HCLP+FLOW. For each problem

solved, theAik parameters were set using the sameR value.

For the HCLP, we use our arc-based formulation:

HCLP-Arc : min
∑

k∈N

FkZkk

s.t. Zik ≤ AikZkk,∀i, k ∈ N,

∑

k∈N

Zik = 1,∀i ∈ N,
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Table 2.3: Number of open hubs for
HCLP+FLOW and HCFP using the loose
fixed cost data set.

Radius,R HCLP+FLOW HCFP

5 22 22

10 10 10

15 5 6

20 4 5

Zik ∈ {0, 1}, ∀i, k ∈ N.

Notice that this formulation is similar to that of the set covering problem (Toregas et al.,

1971) and is more parsimonious than the path-based formulation HCLP-Path: formulation

HCLP-Arc has|N |2 variables and|N |2 + |N | constraints, while HCP-Path has|N |4 + |N |2

variables and2|N |4 + |N |2 constraints.

Table 2.3 shows the optimal number of open hubs for both HCLP+FLOW and

HCFP for different coverage radii and the loose fixed cost data set. In three instances,

HCFP opens one more hub than HCLP+FLOW because the total benefits of lower per unit

transportation cost (due toα) within the hub network and the reduction in the number of

costly links between hub and non-hub nodes more than offset the fixed cost of the addi-

tional hub. From Table 2.4, the cost savings from this trade-off may be as high as 15%

when an additional hub is used. With the tight fixed cost set, the cost savings between the

HCFP and HCLP+FLOW were nil except whenR = 15, where the results showed a cost
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Table 2.4: Total costs of HCFP and HCLP+FLOW for dif-
ferent coverage radii using the loose fixed cost data set.

Radius,R HCFP HCLP+FLOW % Difference

5 0.658 0.659 0.06%

10 0.379 0.379 0.17%

15 0.305 0.338 9.63%

20 0.282 0.334 15.41%

reduction of 0.13%. The lack of cost savings for the tight fixed cost set is attributable to the

wide ranging and higher fixed cost values (see Figure 2.1), which makes the interchanging

of hub locations rather prohibitive.

Table 2.5 lists the indices of the hubs opened by HCLP+FLOW but not by HCFP,

and vice versa. Figure 2.5 shows the locations of these hubs in relation to the 50 nodes

(black dots) in the network. The numbers next to the circles correspond to the hub indices

in Table 2.5. The shaded circles in Figure 2.5(a) are those hubs opened by HCLP+FLOW

but not by HCFP, while the unshaded circles in Figure 2.5(b) are those opened by HCFP

but not HCLP+FLOW. Also, the size of these circles are roughly proportional to the total

demand flowDFi = Oi + Di for the nodes. Figure 2.5 shows that with the loose fixed

cost set, HCFP favors locating hubs toward the center of the service region and at nodes

with high total demand values to reduce the costly transportation costs between the hubs

and non-hub nodes. This preference for interior hub locations emphasizes an important

practical consideration when locating hubs in that the ideal hub should have 360 degrees of
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Table 2.5: List of hubs opened in HCLP+FLOW but not in HCFP, and vice versa,
using the loose fixed cost data set.

Coverage radius,R

5 10 15 20

Hubs in HCLP+FLOW not in HCFP 12, 32 36 - 1, 21

Hubs in HCFP not in HCLP+FLOW 13,33 35 35 4, 22, 35

flow traffic (Ott, 1993).

Of course, HCP+FLOW is at an obvious disadvantage in terms of total costs be-

cause it solves the location problem separately from the allocation/flow problem. HCFP,

on the other hand, solves both problems concurrently and thus, it can evaluate the trade-

off between the cost of opening hubs and transportation costs. These results are meant

to emphasize the importance of including demand flows when designing a hub-and-spoke

network especially when demand flow and the cost of transferring it across the network are

important considerations in the design.

2.5 Conclusion

The hub covering flow problem (HCFP) finds the optimal design for a hub-and-

spoke network accounting for the costs of opening hubs, demand flow, and coverage con-

straints. With demand represented by flows from an origin to a destination, coverage is

defined on the path of these flows: an origin-destination pair(i, j) is considered covered if

the distance of each of the links between the hub and non-hub nodes in the path does not

exceed a specified value.
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(b) Hubs opened in HCFP but not in

HCLP+FLOW

Figure 2.5: Hubs opened by HCLP+FLOW but not HCFP, and vice versa, for the loose
fixed cost set.

The hub covering location problem (Campbell, 1994) solves for the optimal lo-

cation of hubs and allocation of nodes to hubs but it omits the cost of demand flow in

the optimization problem. For air travel service providers who are in the business of

cost-effectively transporting travelers, transportation cost is an important consideration and

should not be ignored. This omission may result in much higher operating costs and poor

choices for hub locations.

We provide two formulations for the HCFP. The first (HCFP1) includes the cov-

erage requirements in the one of the constraints – an approach that borrows from the tra-

ditional set covering problem of location theory. We also discuss a second formulation

(HCFP2) that models the coverage requirements in the objective function instead of in the

constraints. This is done via a modification of one of the transportation cost parameters.
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An assumption in these formulations of the coverage requirements is that only one aircraft-

type operates out of a hub. In reality, there are many different aircraft types with maximum

flying distances and operating costs. We show how formulation HCFP2 can be altered to

include this multiple aircraft-type issue, and further modifications to HCFP2 allows us to

include a second definition of coverage into the model.

HCFP2 has many benefits: it more closely reflects reality without requiring a more

complex model (it is of the same size as the HCFP1), it has an additional benefit of pro-

viding a solution to the fleet assignment problem via the optimal assignments of non-hub

nodes to hubs, and it aids in decision-making by quantifying the costs and listing the char-

acteristics of optimal network designs for different fleet combinations.

Real-life hub-and-spoke networks may contain thousands of nodes. For example,

The World Factbook states that there are over 5000 paved airports in the U.S. alone (Central

Intelligence Agency, 2006). We believe that solving the HCFP for such a large data set

using commercial solvers may be impractical, and alternative solution approaches for the

HCFP is needed.
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CHAPTER 3
STOCHASTIC P -HUB CENTER PROBLEM: CHANCE-CONSTRAINED

FORMULATION

3.1 Introduction

The small package delivery service market is a lucrative industry, generating bil-

lions of dollars in revenues annually. For instance, UPS, the largest package delivery com-

pany in the world reported total revenues of $47.5 billion in 2006 (United Parcel Services,

2006). Other primary players in the package delivery industry in the United States include

FedEx, DHL, and the United States Postal Service (USPS), with UPS and FedEx represent-

ing approximately 80% of this market (Hannon, 2005). A significant portion of the $47.5

billion revenue generated by UPS is through their Next Day Air service, which guarantees

the delivery of packages within a specified time period. This expedited delivery service,

which generated $6.8 billion in revenue in 2006 (a 6.2% increase from 2005) from delivery

of 1.27 million packages a day, accounts for 14% of UPS’ total revenues or 22% of its

domestic revenues.

With such large volumes of packages transported between many different origin-

destination points during a single year, it is paramount that the delivery networks operate

efficiently so as to be able to meet the service guarantees. The configuration of the network

has an important role in this regard. Package delivery companies operate complex hub-

and-spoke networks, which have many sorting hub centers and many more source and

destination local service centers. With a particular service network, a company may wish

to understand the ability of the network to support the service guarantees provided to its
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customers. The company may also be interested in what kind of service guarantee it could

provide its customers given design constraints on its service network.

In the hub location literature, thep-hub center problem addresses this latter ques-

tion. Thep-hub center problem (pHCP) looks to simultaneously find the optimal location

of p hubs and the assignment of non-hub nodes to thep hubs so as to minimize the longest

origin-destination path in the network. The solution to thepHCP in essence provides an

upper bound on the delivery times in the hub-and-spoke network. This information can

then be used to design time-constrained service offerings to customers, or to ascertain if

certain current service guarantees are feasible.

ThepHCP has received limited research attention in the hub location literature. The

first mathematical programming formulation for thepHCP is due to Campbell (1994), and

Kara and Tansel (2000) provide several alternative formulations that have better computa-

tional performance. Kara and Tansel (2001) extend thepHCP to incorporate an operational-

level issue where planes departing from a hub cannot leave until all planes arriving at the

hub have arrived. Pamuk and Sepil (2001) describe a single-reallocation heuristic with tabu

search to solve the weightedpHCP. Ernst et al. (2006b) propose a new mixed-integer lin-

ear programming formulation for the single- and multiple-allocationp-hub center problem

based on a concept they refer to as the radius of hubs, and also discuss several solution

approaches. A related stream of work is that by Campbell et al. (2007) and Ernst et al.

(2006a) who study thep-hub center assignment problem, which is thepHCP with the hub

locations given.

An assumption in all the works mentioned above is that travel time is deterministic.
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This is not the case in many real-life applications as weather or traffic issues could hasten or

prolong travel. With variability in the time required to transport a package to its destination,

there is the possibility that a package may not be delivered on time. A failure in on-time

delivery of a package may result in a company needing to appease an unhappy customer.

For example, FedEx and UPS refunds the delivery service charges in the event of a service

failure (FedEx, 2007; United Parcel Services, 2007). While this refund cost is known, it

is more difficult to quantify the cost of lost goodwill, and thus a company may insist on a

minimum service level instead.

In this chapter, we introduce the stochasticp-hub center problem (SpHCP), which

employs a chance-constrained formulation to model the minimum service level require-

ment. This model accounts for the uncertain travel times in designing the hub network

that minimizes the maximum travel time through the network. We will show that the pres-

ence of stochasticity in the problem affects the optimal configuration of the hub-and-spoke

network.

3.2 Model Formulation

In the stochasticp-hub center problem, the problem is to locatep hubs in the net-

work and assign each non-hub node to a hub node (i.e., the single-assignment rule) so that

the longest path duration in the network is minimized for a given service levelγ. It is

reasonable to assume that thatγ will be close to 1 (e.g.,γ = 0.95). Let tij(ω) represent

the travel time between nodesi andj for the random eventω, andtij(ω) = tji(ω). With

Zik = 1 indicating that nodei is assigned to hubk (0 otherwise), andp being the number
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of hubs to be opened in the network, the chance-constrained formulation for the SpHCP is

SpHCP-CC: min β (3.1a)

s.t. P

{∑

k∈N

(tik(ω) + αtkl(ω))Zik + tjl(ω)Zjl ≤ β

}
≥ γ,

∀i, j, l ∈ N, (3.1b)

∑

k∈N

Zkk = p, (3.1c)

Zik ≤ Zkk,∀i, k ∈ N, (3.1d)

∑

k∈N

Zik = 1,∀i ∈ N, (3.1e)

Zik ∈ {0, 1},∀i, k ∈ N. (3.1f)

3.2.1 SpHCP-CC: Certainty Equivalent Problem

Constraints (3.1b) can be expressed as a set of linear constraints if we assume that

we can enumerate all possible scenarios (or outcomes), i.e.,Ω = {ω1, . . . , ω|S|}, whereS

is the set of all scenarios. Each scenarioωs, s ∈ S, has a corresponding positive probability

ps. For notational convenience, let

Tijls(Z) =
∑

k∈N

(tsik + αtskl)Zik + tsjlZjl, (3.2)

which is the total travel time from nodei to nodej through a hubk first then hubl under

scenarios. The chance constraints (3.1b) can be written as

∑
s∈S

ps1[0,β](Tijls(Z)) ≥ γ, ∀i, j, l ∈ N, (3.3)

with the indicator function

1[0,β](Tijls(Z)) =





1, if 0 ≤ Tijls(Z) ≤ β

0, otherwise

.
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Subtracting 1 from both sides of (3.3) gives

∑
s∈S

ps1(β,∞)(Tijls(Z)) ≤ 1− γ,

where

1(β,∞)(Tijls(Z)) =





1, if Tijls(Z) > β

0, otherwise

.

The above indicator function can be expressed as the following set of linear-integer con-

straints:

Tijls(Z)− β ≤ YijlsM, (3.4)

Yijls ∈ {0, 1}, (3.5)

whereM is a large number. Constraint (3.4) setsYijls = 1 if the coverage constraint is not

satisfied. We can re-formulate the chance-constrained stochasticp-hub center problem as

the followingcertainty equivalent problem, which is an integer programming problem:

SpHCP-CEP: min β

s.t.
∑

k∈N

(tsik + αtskl)Zik + tsjlZjl − β ≤ YijlsM,

∀i, j, l ∈ N, s ∈ S, (3.6a)

∑
s∈S

psYijls ≤ 1− γ, ∀i, j, l ∈ N, (3.6b)

∑

k∈N

Zkk = p, (3.6c)

Zik ≤ Zkk,∀i, k ∈ N, (3.6d)

∑

k∈N

Zik = 1,∀i ∈ N, (3.6e)

Yijls ∈ {0, 1},∀i, j, l ∈ N, s ∈ S, (3.6f)

Zik ∈ {0, 1},∀i, k ∈ N. (3.6g)
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3.2.2 SpHCP-CC with Normally Distributed Travel Times

In problem SpHCP-CEP, complete enumeration of all possible scenarios leads to a

combinatorial explosion in the size of the integer programming problem. In this section, we

present a formulation for the SpHCP where the travel time on a link is normally distributed.

We will assume normally distributed travel times for the remainder of this chapter.

Consider a unit of demand originating at nodei destined for nodej traveling

through hubk first then hubl, i.e.,i → k → l → j. Suppose that the travel time on linkij,

represented by the random variableTij, is normally distributed with meantij and variance

σ2
ij. We make the assumption that the travel time on a link is independent of the travel time

on all other links in the network. The total travel time of the pathi → k → l → j is the ran-

dom variableTijkl = Tik +αTkl +Tjl, with Tijkl ∼ N
(
tik + αtkl + tjl, σ

2
ik + α2σ2

kl + σ2
jl

)
.

For pathi → k → l → j, its chance constraint isP (Tijkl ≤ β) ≥ γ, or equivalently,

β ≥ tik + αtkl + tjl + zγ

√
σ2

ik + α2σ2
kl + σ2

jl, (3.7)

wherezγ is thez-value corresponding to the100γ-th percentile from the standard normal

distribution. (Recall that, with the service level parameterγ assumed to be at least 0.5,zγ is

non-negative.) With normally distributed travel timesTij, constraints (3.1b) can be written

as:

β ≥
∑

k∈N

(
zγ

√
σ2

ik + α2σ2
kl + σ2

jl + (tik + αtkl)
)

Zik + tjlZjl − (1− Zjl)σjl

=
∑

k∈N

(
zγ

√
σ2

ik + α2σ2
kl + σ2

jl + (tik + αtkl)
)

Zik

+(tjl + σjl)Zjl − σjl,∀i, j, l ∈ N. (3.8)

To show the correctness of the above chance constraint, we need to show that for any given
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node-pair(i, j), the resulting chance constraint is non-binding whenZik or Zjl is zero.

Consider the following three scenarios:

• SupposeZik = Zjl = 0. Then, constraints (3.8) becomeβ ≥ −σjl. Sinceβ is

non-negative, this constraint is non-binding.

• SupposeZik = 1 andZjl = 0. From (3.8), we have

β ≥ zγ

√
σ2

ik + α2σ2
kl + σ2

jl + (tik + αtkl)− σjl. (3.9)

This constraint, however, is not necessarily binding, or more accurately, there exists

another path in the network that dominates this path. Note that there exists at least

one nodej′ such thatZj′l = 1. This follows since each possible location for a hub is

the location of a demand point, and a demand point at a hub location will be assigned

to that hub. Then, withZik = 1, we have from (3.8):

β ≥
(
zγ

√
σ2

ik + α2σ2
kl + σ2

j′l + (tik + αtkl)
)

+ (tj′l + σj′l)− σj′l

= zγ

√
σ2

ik + α2σ2
kl + σ2

j′l + (tik + αtkl + tj′l) (3.10)

We will show that constraint (3.10) is more binding than constraint (3.9); that is, the

right-hand side of (3.9) is less than or equal to the RHS of (3.10), or

√
σ2

ik + α2σ2
kl + σ2

jl − σjl ≤
√

σ2
ik + α2σ2

kl + σ2
j′l + tj′l.

Beginning with the left-hand side of the above inequality, first note that

√
σ2

ik + α2σ2
kl + σ2

jl − σjl ≤
√

σ2
ik + α2σ2

kl.
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The above inequality holds because if we addσjl to both sides, then taking the square

of both sides, we have

σ2
ik + α2σ2

kl + σ2
jl ≤ (

√
σ2

ik + α2σ2
kl + σjl)

2

= (σ2
ik + α2σ2

kl) + σ2
jl + 2σjl

√
σ2

ik + α2σ2
kl,

which is always true sinceσjl ≥ 0. Finally, we have that

√
σ2

ik + α2σ2
kl ≤

√
σ2

ik + α2σ2
kl + σ2

j′l

≤
√

σ2
ik + α2σ2

kl + σ2
j′l + tj′l

becausetj′l ≥ 0. This then gives
√

σ2
ik + α2σ2

kl + σ2
jl−σjl ≤

√
σ2

ik + α2σ2
kl + σ2

j′l +

tj′l as desired.

• SupposeZik = 0 and Zjl = 1. From (3.8), we haveβ ≥ tjl. This constraint,

however, is not necessarily binding. For nodei, there exists some hubk′ such that

Zik′ = 1. With Zjl = 1, we have from (3.8):

β ≥
(
zγ

√
σ2

ik′ + α2σ2
k′l + σ2

jl + (tik′ + αtk′l)
)

+ (tjl + σjl)− σjl

= zγ

√
σ2

ik′ + α2σ2
k′l + σ2

jl + (tik′ + αtk′l + tjl),

which dominates constraintβ ≥ tjl.

Thus, with the assumption that travel times on the links are independent normal random

variables, we have the following MILP formulation for the stochasticp-hub center problem
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with chance constraints:

min β

s.t. β ≥
∑

k∈N

(
zγ

√
σ2

ik + α2σ2
kl + σ2

jl + (tik + αtkl)
)

Zik

+(tjl + σjl)Zjl − σjl,∀i, j, l ∈ N,

∑

k∈N

Zkk = p,

Zik ≤ Zkk,∀i, k ∈ N,

∑

k∈N

Zik = 1,∀i ∈ N,

Zik ∈ {0, 1},∀i, k ∈ N.

The above formulation is similar in structure and size to that proposed by Kara and Tansel

(2000) for thepHCP (i.e., the deterministic version).

3.3 The SpHCP-CC on the Line

In this section, we present results for the special case of the chance-constrained

SpHCP with normally distributed travel times on the line. The motivation for considering

this special case is to extract insight from the model, and to characterize the optimal solu-

tions of the model. The characteristics of the optimal solution may provide suggestions for

solution approaches for the chance-constrained SpHCP.

Let the length of the line beN units with nodes located at the points0, 1, . . . , N ,

with a link connecting every pair of nodes. The mean travel timetij on the link connecting

nodesi andj is the straight line distance between the two nodes with varianceσ2
ij. We

assume thatσij = νtij, whereν is a common coefficient of variation. We further assume

that the travel time on any link between a pair of adjacent nodes is independent of that on
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any other link in the network.

We define theβ-pathas the path whose duration equals or exceeds that of all other

paths in the network. We use the notationP(ABC) to represent the path from nodeA to

nodeB then to nodeC, andLPγ(ABC) to represent the100γ-th percentile duration of

P(ABC), i.e., the “length” of pathP(ABC). For notational convenience, we will drop the

subscriptγ in LPγ(ABC) asγ is usually a given fixed value.

3.3.1 p = 1

Consider the 1-hub problem on the line. Let nodesA andB be located at points

0 andN , respectively, as shown in Figure 3.1. For any given location of the single hub

K ∈ {0, 1, . . . , N}, the only three candidates for theβ-path are:

• P(AKA) with LP(AKA) = 2K + zγ

√
2ν2K2 = 2K + zγν

√
2K2,

• P(AKB) with LP(AKB) = K + (N − K) + zγ

√
ν2K2 + ν2(N −K)2 = N +

zγν
√

K2 + (N −K)2, and

• P(BKB) with LP(BKB) = 2(N − K) + zγ

√
2ν2(N −K)2 = 2(N − K) +

zγν
√

2(N −K)2.

All paths linking any other origin-destination node-pairs are dominated by at least one of

these three paths.

Theorem 1 If N is even, the optimal location for the single hub is atK? = 1
2
N . If N is

odd,K? = b1
2
Nc or d1

2
Ne.
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NK0

Figure 3.1: Illustration of the 1-hub SpHCP-CC on the line.

Proof: We will prove this theorem for the case whereN is even. The proof for whenN

is odd follows in the same manner. Our approach for this proof is to show that for a given

configuration where the hub is not located at the center of the line, the length of theβ-path

does not increase as we shift the hub towards the center of the line.

Without loss of generality, suppose the hub is located at the pointK, with K <

1
2
N . Thus, we haveLP(AK) < LP(KN). Of the threeβ-path candidates listed above,

P(BKB) is theβ-path. Now, consider shifting the hub to the right towards the center of

the line by one unit. LetK ′ = K + 1 represent the new hub location, and assume that

LP(AK ′) ≤ LP(K ′N). For this new hub location, the path length of the threeβ-path

candidates are:

• LP(AK ′A) = 2(K + 1) + zγν
√

2(K + 1)2,

• LP(AK ′B) = (K + 1) + (N −K − 1) + zγν
√

(K + 1)2 + (N −K − 1)2, and

• LP(BK ′B) = 2(N −K − 1) + zγν
√

2(N −K − 1)2.

P(BK ′B) dominates the other two candidate paths. However,

LP(BK ′B) = 2(N −K − 1) + zγν
√

2(N −K − 1)2

< 2(N −K) + zγν
√

2(N −K)2

= LP(BKB).
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Thus, the length of theβ-path is non-increasing as we shift the hub towards the center of

the line. One, therefore, can simply shift the hub to the center of the line (or tob1
2
Nc or

d1
2
Ne in the case whereN is odd) without increasing the length of theβ-path.

We note that the optimal location of the hub at the center of the line is influenced

by neither the service level parameterγ (with the assumption thatγ ≥ 0.5), nor the value

of ν.

3.3.2 p = 2

In this section, we first present observations on the results from our numerical ex-

periments on the 2-hub problem, and then provide an explanation for these observations.

In our experiments, we setN = 20 andα = 0.75, and solved the following hub center

single-allocation problem (HCSAP) over all
(

20
2

)
2-hub configurationsH:

HCSAP: min β

s.t. β ≥
∑

k∈H

(
zγν

√
t2ik + α2t2kl + t2jl + (tik + αtkl)

)
Zik

+(tjl + νtjl)Zjl − νtjl,∀i, j ∈ N, l ∈ H,

∑

k∈H

Zik = 1,∀i ∈ N,

Zik ∈ {0, 1}, ∀i ∈ N, k ∈ H.

Figure 3.2 shows the results for different values of the service level parameterγ and

the coefficient of variationν. The optimal hub locations are identified by the larger icons,

and if there are multiple lines in a box (for example, the problem instances withν = 0),

this indicates multiple optima. The results show that there exist optimal solutions that have
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(a)γ = 0.8, ν = 0.
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(b) γ = 0.9, ν = 0.
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(c) γ = 0.99, ν = 0.
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(d) γ = 0.8, ν = 1.

0 2 4 6 8 10 12 14 16 18 20

(e)γ = 0.9, ν = 1.

0 2 4 6 8 10 12 14 16 18 20

(f) γ = 0.99, ν = 1.

0 2 4 6 8 10 12 14 16 18 20

(g) γ = 0.8, ν = 2.

0 2 4 6 8 10 12 14 16 18 20

(h) γ = 0.9, ν = 2.

0 2 4 6 8 10 12 14 16 18 20

(i) γ = 0.99, ν = 2.

Figure 3.2: Optimal hub locations for the 20-node, 2-hub SpHCP-CC on the line.
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Figure 3.3: Illustration of the 2-hub SpHCP-CC on the line.

a symmetric configuration; that is, the two hubs are located such that the distance along

the line from the left-most node (i.e., the node at point 0) to its closest hub is equal to the

distance from the right-most node (i.e., the node at point 20) to its closest hub. (This is

true for one of the multiple optimal solutions for the problem instances withν = 0.) Also,

notice that in the solution for the problem instances withν > 0, the optimal location of the

two hubs are the same regardless of the value ofγ and/orν. We next show why the optimal

location of the two hubs do not change asγ or ν varies.

We will assume that the symmetric configuration is an optimal solution for the

p = 2 problem, and present our analysis for the problem on the continuous line. LetA and

B represent the left-most and right-most nodes on the line, respectively, andK andL be

the two hubs as shown in Figure 3.3. With our assumption of a symmetric network, we

havetAK = tBL. Suppose we define the split pointX to be the point on the line between

hubsK andL where all points to the left ofX are assigned to hubK, and all points to the

right of X are assigned to hubL.

Theorem 2 The optimal position ofX is equidistant to both hubsK andL, i.e., tXK =

tXL.

Proof: Let X be the midpoint between hubsK andL, andY be the pointε > 0 units to

the left ofX as shown in Figure 3.3. As we are considering a continuous problem, we are
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Table 3.1: List of paths with splits at pointsX
andY .

Paths with split atY Paths with split atX

LP(AKA) = LP(AKA)

LP(AKY ) < LP(AKX)

LP(AKLY ) > LP(AKLX)

LP(AKLB) = LP(AKLB)

LP(Y KY ) < LP(XKX)

LP(Y KLY ) > LP(XKLX)

LP(Y KLB) < LP(XKLB)

LP(Y LY ) > LP(XLX)

LP(Y LB) > LP(XLB)

LP(BLB) = LP(BLB)

indifferent to which of the two hubsK andL the split pointsX andY are assigned. For

each of the two split points, we consider both cases where the point is assigned to hubsK

andL. For the midpointX to be optimal, it suffices to show that the length of theβ-path

with the split atY is greater than or equal to the length of theβ-path with the split atX.

Consider the lengths of theβ-path candidates with splits at pointsY andX shown

in Table 3.1. There are three instances where the length of the path with the split atX is

greater than that atY . Notice, however, that

• LP(AKY ) < LP(AKX) < LP(AKLY )
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• LP(Y KY ) < LP(XKX) < LP(Y LY )

• LP(Y KLB) < LP(XKLB) < LP(AKLY ).

Thus, theβ-path defined atY is greater than or equal to theβ-path defined atX. With Y

to the right of the pointX, a similar analysis follows.

With tAK = tBL and tXK = tXL, we now determine which of the 10 candidate

paths we only need to consider for theβ-path. Through a process of elimination due to

equivalence or dominance, we have

• LP(AKA) = LP(BLB)

• LP(AKLB) > LP(AKA)

• LP(XKX) = LP(XLX)

• LP(XKLX) > LP(XKX)

• LP(XKLB) > LP(AKX)

• LP(XKLB) > LP(XLB)

• LP(XKLB) = LP(AKLX)

• LP(AKLX) ≤ LP(AKLB) whentAK ≥ tXK , orLP(AKLX) < LP(XKLX)

whentAK < tXK .
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In the end, we are left with two candidates for theβ-path: P(AKLB) andP(XKLX).

The 2-hub SpHCP with normally distributed travel times reduces to

min β over all symmetric configurations

s.t. β ≥ 2AK + αKL + zγν
√

2AK2 + α2KL2

β ≥ 2XK + αKL + zγν
√

2XK2 + α2KL2

by locating hubsK andL.

The optimal solution to the above problem is to settAK = tXK ; that is, locate hubsK

andL at points1
4
N and 3

4
N , respectively. It is clear from the mathematical programming

formulation above that the optimal location of hubsK andL is not influenced byγ or ν.

Thus, the optimal locations of the hubsK andL do not change asγ or ν varies.

3.3.3 p = 3

Figure 3.4 shows the numerical results for the 3-hub case withN = 20 andα =

0.75. In each of the nine problem instances, an optimal solution to the problem instance

exhibits a symmetric configuration: a hub located in the middle between the two “bound-

ary” (or outer) hubs, and the distance between the left-most hub and node 0 is equal to

the distance between the right-most hub and nodeN (except for a slight difference with

theγ = 0.8 andν = 2 problem instance). We notice that the two boundary hubs tend to

shift towards the middle of the line as the service level parameterγ and/or the coefficient

of variationν increases. We will show why this is likely to occur using the problem on the

continuous line. We assume that the symmetric configuration is an optimal solution for this

set of problem instances. Considering symmetric configurations only, in our computational
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(a)γ = 0.8, ν = 0.
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(b) γ = 0.9, ν = 0.
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(c) γ = 0.99, ν = 0.
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(d) γ = 0.8, ν = 1.
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(e)γ = 0.9, ν = 1.
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(f) γ = 0.99, ν = 1.
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(g) γ = 0.8, ν = 2.
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(h) γ = 0.9, ν = 2.
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(i) γ = 0.99, ν = 2.

Figure 3.4: Optimal hub locations for the 20-node, 3-hub SpHCP-CC on the line.
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Figure 3.5: Illustration of the 3-hub SpHCP-CC on the line.

experiments withα = 0.75, the β-path has always been the path that begins at node 0

through the left-most hub, then the right-most hub, and finally to nodeN . Using the nota-

tion shown in Figure 3.5, pathP(AKLB) has been theβ-path. Since an increase inγ has

a similar effect as an increase inν, we will assume thatγ is constant and will explain why

the boundary hubs tend to shift towards the center of the line as the coefficient of variation

ν varies as long asP(AKLB) remains theβ-path.

The length of pathP(AKLB) is

LP(AKLB) = tAK + αtKL + tBL + zγν
√

t2AK + α2t2KL + t2BL.

Since we restrict this discussion to symmetric solutions only, it suffices to show that both

boundary hubs shift inward by some value∆ > 0 asν increases. The length ofP(AKLB)

following the shift of the hubs is

LP∆(AKLB) = (tAK + ∆) + α(tKL − 2∆) + (tBL + ∆)

+zγν
√

(tAK + ∆)2 + α2(tKL − 2∆)2 + (tBL + ∆)2.

We can expressLP∆(AKLB) asf(∆) + νg(∆), where

f(∆) = (tAK + ∆) + α(tKL − 2∆) + (tBL + ∆), and

g(∆) = zγν
√

(tAK + ∆)2 + α2(tKL − 2∆)2 + (tBL + ∆)2.

Lemma 1 The first-order derivative off(∆) is a positive constant value.
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Proof: The first-order derivative off(∆) is f ′(∆) = 2(1−α), which is a positive constant

value since0 < α < 1.

Lemma 2 g(∆) is a strictly convex function.

Proof: To show thatg(∆) is a convex function, it suffices to show that the second-order

derivative of the square root term ing(∆) is non-negative sincezγ is positive for the service

level parameterγ (assumingγ ≥ 0.5). Let h(∆) represent the square root term ing(∆).

h(∆) =
√

(tAK + ∆)2 + α2(tKL − 2∆)2 + (tBL + ∆)2

h′(∆) =
1

2

[
(tAK + ∆)2 + α2(tKL − 2∆)2 + (tBL + ∆)2

]− 1
2

× (
2tAK + 2∆− 4α2tKL + 8α2∆ + 2tBL + 2∆

)

=
∆(4α2 + 2) + (tAK + tBL − 2α2tKL)√

(tAK + ∆)2 + α2(tKL − 2∆)2 + (tBL + ∆)2
.

h′′(∆) =
[
(4α2 + 2)

√
(tAK + ∆)2 + α2(tKL − 2∆)2 + (tBL + ∆)2

− [
∆(4α2 + 2) + (tAK + tBL − 2α2tKL)

]2

× [
(tAK + ∆)2 + α2(tKL − 2∆)2 + (tBL + ∆)2

]− 1
2

]

× [
(tAK + ∆)2 + α2(tKL − 2∆)2 + (tBL + ∆)2

]−1
.

Since the denominator ofh′′(∆) (i.e.,(tAK +∆)2+α2(tKL−2∆)2+(tBL+∆)2) is positive,

it remains to show that the numerator is non-negative, i.e.,

(4α2 + 2)
√

(tAK + ∆)2 + α2(tKL − 2∆)2 + (tBL + ∆)2

− [∆(4α2 + 2) + (tAK + tBL − 2α2tKL)]2√
(tAK + ∆)2 + α2(tKL − 2∆)2 + (tBL + ∆)2

=
[
(tAK + ∆)2 + α2(tKL − 2∆)2 + (tBL + ∆)2

]− 1
2
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× [
(4α2 + 2)((tAK + ∆)2 + α2(tKL − 2∆)2 + (tBL + ∆)2)

−[∆(4α2 + 2) + (tAK + tBL − α2tKL)]2
]
.

The denominator of the above equation is again positive, so we focus on the numerator.

Expanding the expression in the numerator gives:

(4α2 + 2)t2AK + 2(4α2 + 2)∆tAK + (4α2 + 2)∆2 + α2(4α2 + 2)t2KL

−4α2(4α2 + 2)∆tKL + 4α2(4α2 + 2)∆2 + (4α2 + 2)t2BL + 2(4α2 + 2)∆tBL

+(4α2 + 2)∆2 − (4α2 + 2)2∆2 − t2AK − tAKtBL + 2α2tAKtKL − tAKtBL

−t2BL + 2α2tBLtKL + 2α2tAKtKL + 2α2tBLtKL − 4α4t2KL − 2(4α2 + 2)∆tAK

−2(4α2 + 2)∆tBL + 2α2(α2 + 1)∆tKL

= (4α2 + 1)t2AK + 2α2t2KL + (4α2 + 1)t2BL − 2tAKtBL + 4α2tAKtKL + 4α2tBLtKL

= 4α2t2AK + 4α2t2BL + (tAK − tBL)2 + 2α2t2KL + 4α2tAKtKL + 4α2tBLtKL,

which is a positive value. Therefore,g(∆) is a strictly convex function.

Figure 3.6 shows a plot of functionsf(∆) andg(∆) for different values of∆ with

γ = 0.8 and hubsK andL located at points 1 and 19 on the line. Let∆ν represent the

optimal ∆ value for a givenν value, and∆ν′ correspond to that forν ′ = ν + ε, ε > 0.

If our conjecture that the boundary hubs shift inward asν increases, then we must have

∆ν′ > ∆ν .

Theorem 3 Let ∆ν be the minimizer ofLP∆(AKLB) for coefficient of variationν. Let

∆ν′ be the minimizer ofLP∆(AKLB) for ν ′ = ν + ε, ε > 0. Then∆ν′ > ∆ν .
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Figure 3.6: Plot of functionsf(∆) andg(∆) for different values of∆ with γ = 0.8.

Proof: Since∆ν and∆ν′ are minimizers ofLP∆(AKLB) for ν andν ′, respectively, the

following two equations must hold:

f ′(∆ν) + νg′(∆ν) = 0 (3.13)

and

f ′(∆ν′) + ν ′g′(∆ν′) = 0. (3.14)

(Equations (3.13) and (3.14) have interior minimizers so long asν > 0 sinceLP∆(AKLB)

is a convex function.) From equations (3.13) and (3.14), we have

f ′(∆ν) + νg′(∆ν) = f ′(∆ν′) + ν ′g′(∆ν′). (3.15)

Sincef ′(∆) is a constant, we can eliminatef ′(∆ν) and f ′(∆ν′) from equation (3.15),
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giving:

νg′(∆ν) = (ν + ε)g′(∆ν′)

g′(∆ν′) =
ν

ν + ε
g′(∆ν).

From equation (3.13), we haveg′(∆ν) = −f ′(∆ν)/ν, which is negative-valued since

f ′(∆ν) > 0 (from Lemma 1), andν > 0. Therefore,

g′(∆ν′) > g′(∆ν). (3.16)

Finally, sinceg(∆) is a convex function, the functiong′(∆) is a monotonically increasing

function. Thus,g′(∆ν′) > g′(∆ν) implies that∆ν′ > ∆ν .

Theorem 3 shows that the primary driver for the shifting of the boundary hubs

towards the center of the line is due to the functiong(∆), which is the square root term in

the calculation of the path lengthLP∆(AKLB). An increase in the coefficient of variation

ν (or the service level parameterγ) increases the contribution of the square root term, and

thusg(∆), to the length of the path. Sinceg(∆) is a convex function, its impact is more

visible whenγ and/orν is large.

3.4 Computational Experiments

The results in the previous section indicate that there is often a centrally located

hub (p = 1 and3 cases), and that the boundary hubs tend to shift in towards the central

hub asγ or ν increases (p = 3 case). In this section, we demonstrate via computational

experiments that similar results are observed with more a general data set. We experiment

with the SpHCP-CC with normally distributed travel times using the standard CAB data
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set (Beasley, 2004), which consists of the 25 largest cities in the United States. The first

set of experiments assume that the coefficient of variation is the same for every link in the

network (i.e.,νij = ν). In the second set of experiments, we set different coefficient of

variation values for each link. We will continue to assume independence in the travel times

among the links in the network.

3.4.1 Homogeneous CV

For this set of experiments, we use the 10, 15, 20, and 25 node CAB data set. We

solve SpHCP-CC withp = 2, 3, 4, 5, coefficient of variationν = 0, 1, 2 (whereν = 0

represents the deterministic case), and service level parameterγ = 0.8, 0.9, 0.99. As seen

in Figures 3.2 and 3.4, a problem instance may have multiple optima. Thus, to ensure a

complete analysis of this model, we enumerated all possible hub configurations for each

problem instance(N, p, ν, γ). We solve the corresponding assignment problem HCSAP

using CPLEX, which solved the HCSAP within a few seconds.

Figure 3.7 shows the graphical results for the 25-node, 4-hub problems withγ =

0.9. Similar to the results observed for the SpHCP-CC problem on the line, there is typically

a central hub in the service region and the remaining hubs scattered around this central hub.

In Figure 3.7(a), three of the four hubs are located on the west coast of the country with

a hub in the center of the country at St. Louis. For problem instanceν = 1, there were

multiple optimal solutions. Each of these five optimal solutions share three common hubs:

Denver, Memphis, and Seattle. These common hubs are represented by the dark square

icons in Figure 3.7(b). The optimal hub locations in each of these five optimal solutions
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  Phoenix

  St. Louis
  San Francisco

  Seattle

(a) ν = 0. The optimal hub locations

are Phoenix, San Francisco, Seattle, and
St. Louis.

  Denver

  Memphis

  Seattle

(b) ν = 1. There are multiple optimal

solutions for this problem instance. Den-
ver, Memphis and Seattle (indicated by
the shaded square icons) appear as hubs in
all optimal solutions, while the fourth hub
in an optimal solution is one of the many
unshaded square icons.

  Denver

  Detroit

  New Orleans

(c) ν = 2. Denver, Detroit and New Or-

leans appear as hubs in all optimal so-
lutions, while the fourth hub in an opti-
mal solution is one of the many unshaded
square icons.

Figure 3.7: Optimal hub locations for the 25-node, 4-hub SpHCP-CC.
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is a combination of the three common hubs and one of the “uncommon” hubs, which are

represented by the light square icons. Notice that there is still a central hub, which is now

located in Memphis, and that the hubs in San Francisco and Phoenix have now shifted to

one in Denver and the other around the Great Lakes region. This relocation of the hubs

show a weak shift of the boundary hubs towards the center of the service region with an

increase in the coefficient of variationν. Problem instanceν = 2 also had multiple optimal

solutions. Figure 3.7(c) shows that there are three common hubs: Denver, Detroit, and

New Orleans. These three common hubs alone show a more pronounced shift in the hub

locations towards the center of the service region with a further increase inν.

The clustering of the hubs towards the center of the service region asγ or ν in-

creases can be shown by calculating the diameter of the hub network. The hub network

diameter is the length of the longest link (based on the mean length of the link) connect-

ing any two pairs of hubs in the network. The diameter acts as a proxy for how clustered

the hub nodes are in the network. Tables 3.2 and 3.3 provide the hub network diameter

for all problem instances. For those problem instances where there are multiple optima,

we report the smallest diameter value over all the optimal solutions. In general, the di-

ameter of the hub network decreases asγ or ν increases. The only exceptions are for

(N, p, ν) = (25, 4, 0.80) and(25, 4, 0.9). These exceptions are likely due to the spread of

the cities across the country.
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Table 3.2: Minimum diameter of the hub network using the CAB data
set withp = 2 and 3, and the number of multiple optimal solutions for
each problem instance.

Diameter # of optimal solutions

p γ ν N = 10 15 20 25 N = 10 15 20 25

2 0.80 0 1080 1608 1266 781 1 1 1 1

1 1080 1608 1266 781 1 1 1 1

2 1080 1080 1266 781 1 1 1 1

0.90 0 1080 1608 1266 781 1 1 1 1

1 1080 1608 1266 781 1 1 1 1

2 1010 1080 1266 781 1 1 1 1

0.99 0 1080 1608 1266 781 1 1 1 1

1 1010 1080 1080 781 1 1 1 1

2 1010 1080 1080 781 1 1 1 1

3 0.80 0 1217 2600 2144 1217 1 1 1 2

1 1217 1979 1217 1217 1 1 1 1

2 1144 1144 1144 1144 1 2 1 1

0.90 0 1217 2600 2144 1217 1 1 1 2

1 1217 1144 1217 1217 1 2 1 1

2 1144 1144 1144 1144 1 2 1 1

0.99 0 1217 2600 2144 1217 1 1 1 2

1 1144 1144 1144 1144 2 2 1 1

2 1010 1144 1144 1144 3 1 1 1



68

Table 3.3: Minimum diameter of the hub network using the CAB data
set withp = 4 and 5, and the number of multiple optimal solutions for
each problem instance.

Diameter # of optimal solutions

p γ ν N = 10 15 20 25 N = 10 15 20 25

4 0.80 0 1765 2600 2397 1736 1 1 2 1

1 1217 1715 1217 2090 3 4 19 3

2 1144 1208 1144 1144 6 8 14 24

0.90 0 1765 2600 2397 1736 1 1 2 1

1 1144 1715 1217 1873 1 8 14 5

2 1144 1208 1144 1144 6 8 13 17

0.99 0 1765 2600 2397 1736 1 1 2 1

1 1144 1208 1144 1144 11 8 9 11

2 1010 1208 1144 1144 12 4 8 8

5 0.80 0 1765 2600 2453 2087 2 6 4 8

1 1217 1715 1217 1873 13 30 151 3

2 1144 1208 1144 1144 15 48 91 234

0.90 0 1765 2600 2453 2087 2 6 4 8

1 1144 1715 1217 1873 5 56 91 91

2 1144 1208 1144 1144 15 48 78 136

0.99 0 1765 2600 2453 2087 2 6 4 8

1 1144 1208 1144 1144 25 40 36 55

2 1010 1208 1144 1144 19 18 28 28
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3.4.2 Non-Homogeneous Coefficient of Variation

In the previous section, we observed a clustering of the hub nodes towards the

center of the service region as the common coefficient of variationν increased. A follow-

up question, then, is whether this phenomenon is also seen when the coefficient of variation

among all links is different. We use the 25-node CAB data set withp = 4 hubs and the

service level parameterγ = 0.95. We set the mean coefficient of variationν to 1 and 2, and

generated 10 random scenarios for each ofν = 1 andν = 2 with the coefficient of variation

νij for link ij sampled from the uniform distributionU(0.8ν, 1.2ν). We again enumerated

all possible hub configurations and solve the assignment problem HCSAP using CPLEX.

Table 3.4 shows the (smallest) diameter of the hub network for each of the 10 differ-

ent scenarios forν = 1, 2. We also provide the hub network diameter for the deterministic

case (ν = 0) for comparison. In general, we see that the diameter of the hub network is

non-increasing asν increases – indicating a clustering of the hub nodes. Thus, empirical

evidence shows that as the mean coefficient of variation increases (and similarly, as the

service level parameterγ increases), the hub nodes tend to cluster around the center of the

service region, regardless of whether these two parameters are the same or different across

all the links in the network.

3.5 Solution Methodology

Our observations of the optimal locations for thep hubs in the chance-constrained

SpHCP for the problem on the line (Section 3.3) and for the CAB dataset (Section 3.4)

lead us to believe that we could exploit the structure of the optimal hub configuration for
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Table 3.4: Minimum diameter of the hub network for the 25-node, 4-
hub problem using the CAB data set withγ = 0.95 for each of the 10
different non-homogeneous coefficient of variation scenarios.

Diameter # of opt. solutions

Scenario ν = 0 ν = 1 ν = 2 ν = 1 ν = 2

1 1736 1715 1715 1 1

2 1736 1967 1967 4 5

3 1736 1765 1765 5 5

4 1736 2090 2090 1 1

5 1736 1873 1873 3 1

6 1736 2090 1626 3 9

7 1736 1217 1217 15 13

8 1736 2027 1208 1 43

9 1736 1715 1302 3 14

10 1736 1217 1217 17 15

Average 1736 1217 1208
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use in a solution heuristic. In particular, an optimal solution to the SpHCP typically has a

hub located in the center of the service region with the remainingp − 1 hubs surrounding

the central hub. We next describe our radial heuristic, which finds the best hub network

configuration with this particular structure.

3.5.1 Radial Heuristic

Our radial heuristic is similar to the heuristic proposed by Dyer and Frieze (1985)

for thep-center problem except in how the the first center is chosen. In Dyer and Frieze

(1985), the heuristic arbitrarily chooses the first center, while we solve the vertex 1-center

problem on the network (using the mean link lengths) for the first center. The procedure to

locate the remainingp−1 hubs is similar to Dyer and Frieze (1985). Recall that depending

on the value ofγ andν, the outerp − 1 hubs may be closer to the central hub than to the

boundary of the service region. Thus, to find the best hub configuration, we replicate this

process of generating a hub configuration several times. At each iteration, we restrict the

set of candidate locations for thep− 1 hubs.

Figure 3.8 shows the steps in the radial heuristic. In step 1, we allow thep hubs

to be located at any of the nodes in the network; thus, we initialize the set of candidate

locationsC with the set of nodesN . In step 2, we generate a hub configurationH(C)

based on the setC (see Figure 3.10). The last operation in step 3 removes the hub node

farthest away from the 1-center hubH1 from the setC; thus, eliminating that node as a

candidate hub location in the next iteration. This has the effect of reducing the diameter of

the hub network in the subsequent iteration of the heuristic. The radial heuristic stops when
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Step 1: SetC ← N , and setβ? to be some large number.

Step 2: If|C| ≥ p, generate a hub configurationH(C) based on the setC

(see Figure 3.10). Else, go to step 4.

Step 3: Solve HCSAP for̂β using configurationH(C).

If β̂ < β?, setH? ← H(C) andβ? ← β̂.

SetC ← C \ arg maxi∈C{tiH1}, and go to step 2. (H1 is the 1-center hub.)

Step 4: ReturnH? andβ?.

Figure 3.8: Radial heuristic.

the number of candidate nodes in the setC is less thanp. Figure 3.9 shows the locations of

the hubs for the first 9 iterations of the radial heuristic using the 20-node AP data set (Ernst

and Krishnamoorthy, 1996) withp = 3 hubs.

The process to generate a hub configuration in step 2 is to first find the 1-center in

the network. This can be done inO(|C|) time using the algorithm shown in Figure 3.10

(Daskin, 1995). Next, we use a construction heuristic based on the heuristic of Dyer and

Frieze (1985) to locate the remainingp − 1 hubs. The construction heuristic to generate a

hub configuration is given in Figure 3.10. The radial heuristic is coded in MATLAB (The

Mathworks Inc., 1997), and the assignment problem HCSAP is solved using CPLEX via

CPLEX-MEX (Musicant, 2000).

We test the radial heuristic using the 10-, 15-, 20-, and 25-node CAB data set, as

well as the 10-, 20-, and 25-node AP data set. We setp = 2, 3, 4, 5, ν = 0, 1, 2, and

γ = 0.8, 0.9, 0.99. For each problem instance, we calculate the percentage gap, which
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(i) Iteration 9.

Figure 3.9: Locations of the hub nodes generated in the first 9 iterations of the radial
heuristic based on the 20-node AP data set withp = 3.
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% Find central hub

Set the incumbent travel time valueT ? to some large number.

Let H1 represent the index of the optimal central hub.

For each nodeh ∈ C

Let T = maxi∈C{tih}.

If T < T ?, setT ? ← T andH1 ← h.

% Locate remainingp− 1 hubs

SetHS ← H1.

While |HS| ≤ p

For each nodei ∈ C \ {HS}, setTi ← minj∈HS
{tij}.

Seti? ← arg maxi∈C\{HS}{Ti}.

SetHS ← HS ∪ {i?}.

ReturnHS as the hub configuration.

Figure 3.10: Construction heuristic to generate a hub configuration.
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Figure 3.11: Plot of the optimal hub locations versus the hub locations found by the radial
heuristic for the 25-node AP data set withp = 4, ν = 1 andγ = 0.9.

measures how far the objective function value of the best solution found from the radial

heuristic is from that of the optimal solution. Despite the identified solution structure, the

radial heuristic had limited success. The average percentage gaps were 6.4% and 4.8% for

the CAB and AP data sets, respectively. Some problem instances had percentage gaps of

over 20%. Visual inspection of the solutions show that the radial heuristic finds all but one

or two of the optimal hubs (see, for example, Figure 3.11). We see from this plot that a

local search heuristic beginning with the hub configuration found by the radial heuristic

will likely find the optimal solution. In the next section, we propose one such local search

heuristic.
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Step 1: Generate an initial (feasible) hub configurationH.

Let H be the incumbent hub configuration.

Solve HCSAP forβ using configurationH.

Step 2: LetNC ← N \H be the set of non-hub nodes to be candidate hub nodes.

Randomly choose a non-hub nodei ∈ NC .

Step 3: For each hubh ∈ H, swap nodei with hubh.

Let Hh represent this new hub configuration.

Solve HCSAP forβh using configurationHh.

Step 4: Letβ̂ = minh∈H{βh } andĥ = arg minh∈H{βh }.

If β̂ < β, setH ← Hĥ, β ← βĥ, and go to step 2; else, go to step 5.

Step 5: Choose another nodei ∈ NC not tried previously. Go to step 3.

If all nodes inNC have been evaluated without any improvement to the incumbent

solution, then stop.

Figure 3.12: Teitz-Bart heuristic.

3.5.2 The Teitz-Bart Heuristic

For the local search heuristic, we use a well-known heuristic from the facility loca-

tion literature proposed by Teitz and Bart (1968) for thep-median problem in the network

(Hakimi, 1964, 1965). The Teitz-Bart heuristic is essentially a best-improving, single-

swap heuristic. A general outline of the heuristic to solve the chance-constrained SpHCP

is shown in Figure 3.12. The heuristic is coded in MATLAB (The Mathworks Inc., 1997).

Step 1 of the Teitz-Bart heuristic requires an initial feasible solution. We use the
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Table 3.5: Computational results for the small CAB and AP data sets (up to 25 nodes).

CAB data set AP data set

TB+Radial TB+Random TB+Radial TB+Random

Average % optimality gap 0.636% 0.894% 0.675% 0.823%

Averageσβ/β̄ 0.0004 0.0102 0.0001 0.0119

best hub configuration found from our radial heuristic for the initial feasible solution. An

approach that is commonly used to initialize the heuristic is to generate a random feasible

solution. We compare both initialization methods, and show that there is a benefit to initial-

izing the heuristic with the best radial heuristic solution. As there is a random component

to the Teitz-Bart heuristic in step 2, we run the heuristic 10 times for each initial hub con-

figuration. When initializing with a random configuration, we generated 10 random hub

configurations for each problem instance of(N, p, γ, ν) and report the averageβ valueβ̄

found.

Table 3.5 summarizes the results of the computational experiments using the CAB

and AP data sets. For each problem instance(N, p, γ, ν), we calculated the averagēβ of

the 10 computational runs. The “Average % optimality gap” is the average of100(β̄/β?)%

over all problem instances, whereβ? is the optimal objective function value for a problem

instance. We first note that that the Teitz-Bart heuristic improves upon the best hub config-

uration found from the radial heuristic – reducing the average percentage gap from 6.4% to

0.636% for the CAB data set, and from 4.8% to 0.675% for the AP data set. Additionally,

initializing the Teitz-Bart heuristic with the best hub configuration found from the radial
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heuristic results in a lower optimality gap than if we randomly initialized the heuristic.

Even though there is a random component to the Teitz-Bart heuristic in step 2, the heuristic

consistently found the same final objective function valueβ when initialized with the radial

heuristic, as shown by the average standard-deviation-to-mean ratioσβ/β̄. In comparison,

initializing with random hub configurations resulted in some variation in the finalβ value

found. While the run-time for the Teitz-Bart heuristic is similar for the two different initial-

ization schemes (see Table 3.6), these results show that there is a benefit to using the radial

heuristic as an initialization procedure because it leads to more consistent results and lower

β values on average.

In this set of computational experiments, the Teitz-Bart heuristic initialized by the

radial heuristic was not able to find the optimal solution in some of the problem instances.

If such a suboptimal hub network is used, the service level provided by this network will

be lower than the optimal network. The implied service level is calculated by

Φ−1(β?, µβ-path, σβ-path),

whereΦ−1 is the inverse normal cumulative distribution function,β? is the optimal ob-

jective function value, andµβ-path andσβ-path are the mean and standard deviation of the

β-path, respectively, of the suboptimal network. (Recall, theβ-path is the “longest” path

in the network.) Tables 3.7 and 3.8 provide the difference between the desired service level

parameterγ and the implied service level value for the different problem instances. (We

note that the implied service level value can be calculated only for those problem instances

where the coefficient of variation is positive; i.e.,ν = 1, 2.) The average reduction in ser-

vice level is 0.10% and 0.15% for the CAB and AP data sets, respectively, with the largest
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Table 3.6: Average run-times in seconds for the small CAB and AP
data sets (up to 25 nodes).

CAB data set AP data set

|N | p TB+Radial TB+Random TB+Radial TB+Random

10 2 2.3 2.7 2.2 2.7

3 4.9 6.9 5.4 6.9

4 6.9 9.9 8.9 9.9

5 8.2 12.5 9.3 12.5

15 2 5.3 17.8

3 16.9 84

4 29.3 184.5

5 42.1 314.7

20 2 13.2 17.8 13 17.8

3 54.3 84 53.7 84.0

4 97.3 184.5 111.6 184.5

5 143.8 314.7 202 314.7

25 2 25.7 36.7 25.9 36.7

3 121.9 191 117.1 191.0

4 235.7 395.3 248.6 395.3

5 354.4 555 418.7 555.0
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service level reduction being 2.6%. Thus, even when the heuristic does not find the optimal

solution, the final hub configuration returned by the heuristic provides a service level that

is close to the desired service level.

We next applied the Teitz-Bart heuristic using the two different initialization pro-

cedures on the larger 40-node AP data set. Tables 3.9 and 3.10 show that initializing with

the radial heuristic also resulted in the Teitz-Bart heuristic consistently finding the same

final solution for this large data set. In 10 of the 36 problem instances, both initialization

procedures resulted in the same final solution (indicated by equalβ̄ values and zeroσβ/β̄

values). In the remaining 26 problem instances, the radial initialization heuristic found

a better averageβ value than the random initialization procedure in 19 of these problem

instances. This leads us to suggest that when faced with solving problems with a large num-

ber of nodes, by using the radial heuristic to find an initializing set of hubs, one only needs

to run the Teitz-Bart heuristic a handful of times (so as to account for the random compo-

nent in the heuristic) to obtain a relatively good final solution. Moreover, if we consider

the magnitude increase in run times when increasing the number of hubsp or the number

of nodesN (e.g., from the 20-node to 40-node data set), we can further appreciate having

a consistent solution approach that provides good solutions without having to perform a

lot of computational runs. Sensitivity analysis of the problem, if needed, can then also be

performed as it is not prohibitive to do so.

We do acknowledge, however, that the random initialization resulted in betterβ̄

values in 7 of the 36 problem instances. Recall that when running the Teitz-Bart heuristic

with the random initialization method, we generated 10 random initial hub configurations
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Table 3.7: Difference between the desired service levelγ and the implied service
level from the best hub configuration found using the Teitz-Bart heuristic initialized
with the radial heuristic for the CAB and AP data sets withp = 2 and 3.

CAB data set AP data set

(p, ν, γ) N = 10 N = 15 N = 20 N = 25 N = 10 N = 20 N = 25

(2, 1, 0.80) 2.0% 2.4% 0.0% 0.0% 0.0% 0.0% 0.0%

(2, 1, 0.90) 1.5% 0.7% 0.0% 0.0% 0.0% 0.0% 0.0%

(2, 1, 0.99) 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1%

(2, 2, 0.80) 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

(2, 2, 0.90) 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.5%

(2, 2, 0.99) 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

(3, 1, 0.80) 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

(3, 1, 0.90) 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.4%

(3, 1, 0.99) 0.0% 0.0% 0.0% 0.0% 0.0% 0.3% 0.0%

(3, 2, 0.80) 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

(3, 2, 0.90) 0.0% 0.0% 0.0% 0.0% 0.0% 1.0% 0.0%

(3, 2, 0.99) 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.3%
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Table 3.8: Difference between the desired service levelγ and the implied service
level from the best hub configuration found using the Teitz-Bart heuristic initialized
with the radial heuristic for the CAB and AP data sets withp = 4 and 5.

CAB data set AP data set

(p, ν, γ) N = 10 N = 15 N = 20 N = 25 N = 10 N = 20 N = 25

(4, 1, 0.80) 0.0% 0.0% 1.2% 1.1% 2.6% 0.0% 0.0%

(4, 1, 0.90) 0.0% 0.0% 0.0% 0.2% 0.0% 0.0% 0.0%

(4, 1, 0.99) 0.0% 0.0% 0.0% 0.0% 0.0% 0.6% 0.0%

(4, 2, 0.80) 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

(4, 2, 0.90) 0.0% 0.0% 0.0% 0.0% 0.0% 2.0% 0.0%

(4, 2, 0.99) 0.0% 0.0% 0.0% 0.0% 0.0% 0.5% 0.0%

(5, 1, 0.80) 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

(5, 1, 0.90) 0.0% 0.0% 0.0% 0.2% 0.0% 0.0% 0.0%

(5, 1, 0.99) 0.0% 0.0% 0.0% 0.0% 0.0% 0.6% 0.0%

(5, 2, 0.80) 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

(5, 2, 0.90) 0.0% 0.0% 0.0% 0.0% 0.0% 2.0% 0.0%

(5, 2, 0.99) 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
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Table 3.9: Results for the 40-node AP data set withp = 2 and 3.

β̄ σβ/β̄ Run-time (sec.)

(p, ν, γ) Radial Random Radial Random Radial Random

(2, 0, 0.80) 65435 65060 0.0000 0.0182 173 189

(2, 0, 0.90) 65435 63559 0.0000 0.0311 184 168

(2, 0, 0.99) 65435 64309 0.0000 0.0282 179 179

(2, 1, 0.80) 98877 98488 0.0000 0.0021 176 182

(2, 1, 0.90) 117020 117230 0.0000 0.0103 174 171

(2, 1, 0.99) 158440 161380 0.0000 0.0064 171 147

(2, 2, 0.80) 132940 133620 0.0000 0.0035 177 189

(2, 2, 0.90) 168400 168400 0.0000 0.0000 157 158

(2, 2, 0.99) 256860 256860 0.0000 0.0000 134 138

(3, 0, 0.80) 59558 60337 0.0000 0.0190 1032 1338

(3, 0, 0.90) 59558 59591 0.0000 0.0228 1094 1098

(3, 0, 0.99) 59558 58850 0.0000 0.0110 2035 1075

(3, 1, 0.80) 95001 93223 0.0000 0.0187 1035 1957

(3, 1, 0.90) 113530 109150 0.0000 0.0212 1507 1213

(3, 1, 0.99) 145550 145990 0.0000 0.0040 1497 987

(3, 2, 0.80) 122400 122690 0.0000 0.0025 1072 1664

(3, 2, 0.90) 154080 159600 0.0000 0.0399 931 1186

(3, 2, 0.99) 229300 229890 0.0000 0.0042 959 830
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Table 3.10: Results for the 40-node AP data set withp = 4 and 5.

β̄ σβ/β̄ Run-time (sec.)

(p, ν, γ) Radial Random Radial Random Radial Random

(4, 0, 0.80) 52266 52880 0.0000 0.0262 2137 2380

(4, 0, 0.90) 52266 53899 0.0000 0.0300 4124 3772

(4, 0, 0.99) 52266 52445 0.0000 0.0108 3344 2992

(4, 1, 0.80) 86545 87271 0.0000 0.0175 2134 4977

(4, 1, 0.90) 101800 103190 0.0000 0.0313 5404 3832

(4, 1, 0.99) 138020 138530 0.0000 0.0116 4051 3001

(4, 2, 0.80) 115720 115720 0.0000 0.0000 2796 4807

(4, 2, 0.90) 146230 146870 0.0000 0.0114 3196 4409

(4, 2, 0.99) 219210 219210 0.0000 0.0000 2998 2445

(5, 0, 0.80) 49741 50349 0.0000 0.0120 8092 5325

(5, 0, 0.90) 49741 50280 0.0000 0.0126 8067 4181

(5, 0, 0.99) 49741 50774 0.0000 0.0276 7201 9097

(5, 1, 0.80) 86545 86545 0.0000 0.0000 4074 9321

(5, 1, 0.90) 101800 101800 0.0000 0.0000 7180 5809

(5, 1, 0.99) 138020 138020 0.0000 0.0000 7147 5111

(5, 2, 0.80) 115720 115720 0.0000 0.0000 4114 6530

(5, 2, 0.90) 146230 146230 0.0000 0.0000 4655 5022

(5, 2, 0.99) 219210 219210 0.0000 0.0000 3660 3962
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for each problem instance. For each problem instance, we take the best solution (i.e., the

one with the lowest̄β value) from the 10 final solutions and compared that to the solution

found using the radial initialization. Over the 36 problem instances, theβ̄ value from the

best solution is better than that of the radial solution in 10 problem instances. As seen in

Table 3.11, the relative difference (i.e., radialβ̄ divided by best random̄β) ranged from

0.4% to 6.1%. Notice that the radial initialization approach was outperformed only for the

problem instances wherep is small. Although the best solution found by using the random

initialization betters that of the radial in 10 of the 36 problem instances, we emphasize

again the difference in theσβ/β̄ values of the two initialization procedures.

3.6 Conclusion

In this chapter, we introduce the chance-constrained stochasticp-hub center prob-

lem, which can be used as a strategic planning tool to design a hub-and-spoke network for

a small package delivery company. Chance constraints are included in the model to specify

a minimum service level required of the network’s ability to transport packages from their

origins to destinations within a period of time.

We observed that the optimal network configuration typically has a hub located in

the center of the service region with the remaining hubs surrounding this central hub. The

surrounding hubs tend to be located closer to the center of the service region when the

level of uncertainty is high. We exploit this structure as an initial starting configuration in

a single-swap, best-improvement heuristic proposed by Teitz and Bart (1968). Our compu-

tational results show that this solution approach consistently finds the same final solution,
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Table 3.11: Percentage gap between the ra-
dial β̄ value and the best̄β value found by the
random heuristic for the problem instances
where the best random̄β value is lower than
the radialβ̄ value.

(p, ν, γ) Radialβ̄ Best Random̄β % gap

(2,0,0.80) 65435 61682 6.1%

(2,0,0.90) 65435 61682 6.1%

(2,0,0.99) 65435 61682 6.1%

(2,1,0.80) 98877 98391 0.5%

(2,1,0.90) 117020 116550 0.4%

(3,0,0.80) 59558 58748 1.4%

(3,0,0.90) 59558 58192 2.3%

(3,0,0.99) 59558 58192 2.3%

(3,1,0.80) 95001 92101 3.1%

(3,1,0.90) 113530 107940 5.2%
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and in many cases, the final objective function value found by this approach is better than

that from using a randomized initialization procedure for the Teitz-Bart heuristic.
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CHAPTER 4
STOCHASTIC P -HUB CENTER PROBLEM: TWO-STAGE FORMULATION

4.1 Introduction

Many real-life communication networks are two-level hierarchical networks that

have a hub-and-spoke configuration (Kim et al., 1995). The first level, called the back-

bone network, is the network consisting of the hub nodes (switches, concentrators, gates,

control/transfer points, etc.). The backbone network can take on many configurations, in-

cluding ring, tree, star, and fully-meshed (or fully-connected) networks. The second level –

the access (or tributary or local) network – consists of the network formed from the connec-

tion of the user (or terminal) nodes to the hub nodes. As with backbone networks, access

networks can be ring, tree, star, or fully-connected networks. For a survey of the litera-

ture on these different types of two-level networks, the reader is directed to the paper by

Klincewicz (1998). In this chapter, we shall only focus on networks with fully-connected

backbone networks (where all the hub nodes are connected to each other) and star access

networks (where a terminal or non-hub node is connected to only one hub node).

Due to the dependence on communication services for work and/or leisure activi-

ties, there is a constant concern about the dependability or robustness of the communication

networks. Borrowing from the definition of survivability by Brush and Marlow (1990), Kim

et al. (1995) define robustness as the ability of the network to perform required functions

after a specified set of components become unavailable. A common approach to ensure the

robustness of the network is to configure the network so that there are multiple paths be-
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tween every pair of nodes in the network. Since the hub network is fully-connected, there

are indeed several paths from one hub node to another. As for the access network, one

could require multiple homing for every access node; that is, each access node is connected

to more than one hub node. In Kim et al. (1995), the authors discuss a hub-and-spoke

network where each user node is connected to exactly two hub nodes. This is the multiple-

assignment version of the hub location problem. The solution to their optimization problem

indicates which of the two hub nodes are the primary or secondary homing nodes for a user

node.

In addition to the dependability of the network, another important performance

measure is response time. The response time is the time required to transfer requested

information through the network. There may often be congestion at a hub node due to

processing times by switches at the hubs or repeaters and/or signal amplifiers along the

links. These delays increase the latencies in the transfer of data through the network. Thus,

it is desirable to minimize these as much as possible.

Research on the problem of minimizing the maximum eccentricity (i.e., the longest

transmission time between any two pairs of nodes in a network) with fixed transmission

times between nodes include Farley et al. (2000), McMahan and Proskurowski (2004), Wu

(2004), and Chen et al. (2007). These works, however, assume that the transmission times

are fixed and do not consider the possibility of delays in transmission due to congestion.

When incorporating this uncertainty in transmission times into the mathematical program-

ming model, the result is a stochastic programming problem.

In this chapter, we present the two-stage stochasticp-hub center problem (SpHCP),
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which looks at constructing a fully-connected/star communication network with the ob-

jective of minimizing the expected maximum eccentricity (i.e., the longest path) in the

network. The first-stage problem of this two-stage stochastic programming problem is to

find the best location forp hubs in the network. Given the location of the hubs, and a real-

ization of congestion in the network, the second-stage problem then is to assign each node

to a single hub (i.e., single-assignment) so as to minimize the longest connection path in

the network.

Given a realization of delay within the network, traffic originating from a user node

destined for another will choose the path that minimizes the total transfer time. Thus, a

node may be connected to a particular hub for some realizations of delay, while the same

node may be connected to another hub for a different set of delay realizations, and so on.

Unlike Kim et al. (1995), who explicitly require dual homing local connections, we do not

specify the total number of hubs to which a node can be assigned. The solution to the

SpHCP will indicate which hub will serve as the primary hub for the user node, which will

be the secondary hub, and so on.

4.2 The Stochasticp-Hub Center Problem (SpHCP)

We formulate the SpHCP as a two-stage stochastic integer programming (SIP) prob-

lem. LetN be the set of all nodes in the network. The first-stage problem is to choosep

nodes from the set of nodesN to be hubs. Once a realization of the uncertainties has been

observed, the second-stage problem then is to assign nodes to hubs so as to minimize the

longest path in the network.



91

Suppose that a unit of information (e.g., a packet) being transmitted along a link

may or may not experience a transmission delay. Using the notation described in Sec-

tion 1.3.1, we letω ∈ Ω represent a realization of a random event from the set of ran-

dom eventsΩ. For our two-stage SpHCP, ω is an |N | × |N | matrix, where theij-th

entry in the matrixωij indicates whether there is indeed a delay or not. For example,

ωij = {Delay, No Delay}, or ωij = {Available, Unavailable}). Let tij(ωij) be the trans-

mission time between nodesi andj, which is dependent onωij. (For notational simplicity,

we will simply write tij(ωij) as tij(ω).) The two-stage stochasticp-hub center problem

with time delays on the links is

SpHCP : min EξξξQ(XXX, ξ(ω)) (4.1a)

s.t.
∑

k∈N

Xk = p, (4.1b)

Xk ∈ {0, 1},∀k ∈ N, (4.1c)

whereXXX is the column vector[X1 . . . XN ]T and the second-stage problemQ(XXX, ξ) is

Q(XXX, ξ(ω)) = min β (4.2a)

s.t. β ≥
∑

k∈N

(tik(ω) + αtkl(ω))Zik + tjl(ω)Zjl,∀i, j, l ∈ N,(4.2b)

Zik ≤ Xk,∀i, k ∈ N, (4.2c)

∑

k∈N

Zik = 1,∀i ∈ N, (4.2d)

Zik ∈ {0, 1},∀i, k ∈ N. (4.2e)

Objective function (4.1a) minimizes the expected longest path (in terms of transmission

time) in the network, with constraint (4.1b) requiring thatp hubs be located. The right-

hand-side of constraints (4.2b) calculates the length of the path from nodei to nodej,
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while constraints (4.2c) and (4.2d) ensure that each node is connected to exactly one open

hub. Problem SpHCP is a stochastic integer programming problem with binary first- and

second-stage decision variables.

Now, suppose instead that the transmission delays are observed only at the hubs.

Let dk(ωk) represent the delay incurred at hubk due to eventωk (for example,ωk =

{Low congestion, High congestion}). Again, for simplicity, we simply writedk(ωk) as

dk(ω). Notice that the random eventω here is an|N | × 1 vector. We then replace con-

straints (4.2b) with

β ≥
∑

k∈N

(tik + αtkl + dk(ω))Zik + (tjl + dl(ω))Zjl − dl(ω)Zil,∀i, j, l ∈ N. (4.3)

To show the correctness of constraints (4.3), we first note that any path in the network can

be stated as a path from an origin nodei to a destination nodej that first visits hubk, then

followed by hubl, i.e.,i → k → l → j. Next, consider the following five possible paths in

the hub-and-spoke network:

• Case 1:All the nodes in the path are different, i.e.,i 6= k 6= l 6= j. With nodesi and

j assigned to hubsk andl, respectively (i.e.,Zik = Zjl = 1 and thusZil = 0), we

have

tik + αtkl + tjl + dk(ω) + dl(ω).

• Case 2: The path contains only a single hub node withi 6= j, i.e., k = l and

i → k → j. With both nodesi andj assigned to hubk, and assuming that travel time

from a node to itself is zero, we have

(tik + αtkk + dk(ω)) + (tjk + dk(ω))− dk(ω) = tik + tjk + dk(ω).
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• Case 3:Similar to Case 2 but with the origin and destination nodes being the same

node, i.e.,i = j and i → k → i. This scenario occurs when a customer sends a

package to a recipient who is situated in the same service area (or zip code), but the

parcel first has to be processed at the sorting hub before delivery to the recipient. We

have

(tik + αtkk + dk(ω)) + (tik + dk(ω))− dk(ω) = tik + tik + dk(ω).

• Case 4: The originating node is a non-hub node but the destination node is a hub

node, i.e.,k = l = j andi → k. We have

(tik + αtkk + dk(ω)) + (tkk + dk(ω))− dk(ω) = tik + dk(ω).

• Case 5: The originating node is a hub node but the destination node is a non-hub

node, i.e.,i = k = l andk → j. We have

(tkk + αtkk + dk(ω)) + (tjk + dk(ω))− dk(ω) = tjk + dk(ω).

Finally, if delay is observed both at the hubs and on the links, we would use

β ≥
∑

k∈H

(tik(ω)+αtkl(ω)+dk(ω))Zik +(tjl(ω)+dl(ω))Zjl−dl(ω)Zil, ∀i, j, l ∈ N, (4.4)

in place of constraints (4.2b).

4.3 Solution Methodology

Any two-stage stochastic programming problem can be written in the following

general form:

SP: min
x∈X

cT x +Q(x).
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There are several approaches for solving a two-stage stochastic programming problem, with

the most common being the (continuous) L-shaped method first introduced by Van Slyke

and Wets (1969), or the integer L-shaped method of Laporte et al. (1994) for stochastic

integer programming (SIP) problems. In the integer L-shaped method and other existing

solution methods for SIP problems, the cost vectorc of the first-stage variablesx in problem

SP is used to direct the optimization procedure in the search for the optimal values of the

first-stage variables. In objective function (4.1a) of the SpHCP, however, the cost vectorc

is a zero vector. One could setc = e, wheree is the vector of 1’s, so thatc is non-zero

but this does little to the original problem SpHCP sincecT x will always have a value of

p in any feasible solution due to constraint (4.1b). Moreover, settingc = e still does not

provide any guidance to the solution procedure on how or where to search for the optimal

solutionx?. Thus, existing SIP solution methods are not particularly useful for the SpHCP,

and a novel approach is required.

The remainder of this section is organized as follows: in Section 4.3.1, we take

a further look at the second-stage problem. An oft-encountered difficulty in stochastic

programming problems is the calculation of the recourse function due to the potentially

numerous scenarios to be evaluated. Instead of calculating the recourse function exactly,

we describe a Monte Carlo sampling method to approximate the recourse function in Sec-

tion 4.3.2. Finally, the role of the master problem in the SpHCP can be thought of as

a process of generating feasible hub configurationsXXX with which the recourse function

Q(XXX) is calculated. In Section 4.3.3, we discuss our observations of the optimal hub lo-

cations for several problem instances. We then propose a heuristic to generate good hub
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configurations based on our observations.

4.3.1 The Second-Stage Problem: Thep-Hub Center

Single-Allocation Problem

Consider formulation (4.2) for the second-stage problemQ(XXX, ξ(ω)) of SpHCP

with uncertain travel times. In this problem, it is assumed that the hub locations are known.

Let H represent the set of hubs determined from the first-stage problem, i.e.,H = {i ∈

N : Xi = 1}. We eliminate constraints (4.2c) as they are now redundant. For a given

realization ofξ, the second-stage problem

Q(XXX, ξ(ω)) = min β

s.t. β ≥
∑

k∈H

(tik(ω) + αtkl(ω))Zik + tjl(ω)Zjl, ∀i, j ∈ N, l ∈ H,

∑

k∈H

Zik = 1,∀i ∈ N,

Zik ∈ {0, 1}, ∀i ∈ N, k ∈ H,

is thep-hub center single-allocation problem(HCSAP). The second-stage problem incor-

porating delays at the hubs also reduces to the HCSAP for fixed first-stage variables and a

given realization ofξ, as does the SpHCP with delays at the hubs and on the links. Ernst

et al. (2006a) show that the HCSAP is NP-hard, while Campbell et al. (2007) show that

several special cases of HCSAP can be solved in polynomial time.

For anyH 6= ∅, there are finitely many ways to assign nodes to hubs. The longest

path can then be determined from these assignments. With positive bounded transmission

times and a fully-connected hub network, the path lengths are necessarily finite. Thus,

problem SpHCP has complete recourse.
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4.3.2 Evaluating the Recourse Function

Recall that the recourse functionQ(XXX) is the expectation function ofQ(XXX, ξ) for

a given hub configurationXXX. In statistical terms,Q(XXX) is the population mean with the

population consisting of manyQ(XXX, ξ) values.

Consider the recourse function (4.1a). Suppose that the number of scenarios (or

realizations) for the SpHCP is finite, i.e., supportΞ = {ξ1, . . . , ξS}. Each realization

ξs, s = 1, . . . , S, has positive probabilityps, i.e., P (ξξξ = ξs) = ps > 0. The recourse

function for a particular hub configurationXXX is calculated as

Q(XXX) = EξξξQ(XXX,ξξξ) =
S∑

s=1

psQ(XXX, ξs). (4.5)

Notice that for every feasible hub configurationXXX, we have to solveS instances of the

HCSAP to obtainQ(XXX). If the number of scenariosS is large, solving forQ(XXX) may

be intractable even for just a single hub configurationXXX. Instead of evaluatingQ(XXX, ξ)

for all possible values ofξ, we evaluateQ(XXX, ξ) on a sample ofM ξ values; that is, we

approximate the population meanQ(XXX) with its sample mean̂QM(XXX). This is called the

sample average approximation(SAA) approach. Shapiro (2003) discusses several theoret-

ical properties of SAA, and how one could use the SAA to make statistical inferences. An

overview of the use of Monte Carlo sampling methods for solving stochastic programming

problems within the L-shaped method is covered in Birge and Louveaux (1997, Chapter

10), and a branch-and-bound scheme utilizing sample average approximations is discussed

in Ahmed and Shapiro (2002). Further details of the SAA can be found in Kleywegt et al.

(2001), with computational results provided in Verweij et al. (2003) and Linderoth et al.

(2006).
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For any realizationξ of the random variableξξξ, and for a given hub configurationXXX,

there is a correspondingQ(XXX, ξ). Thus, it can be seen thatQ(XXX,ξξξ) is also a random vari-

able because ofξξξ. Next, suppose we generate a random sampleQ(XXX, ξ1), . . . , Q(XXX, ξM)

from the distribution ofQ(XXX,ξξξ). The mean of this sample is

Q̂M(XXX) =
1

M

M∑
m=1

Q(XXX, ξm).

In the statistics literature, it is commonly assumed that the statisticQ̂M(XXX) is a function

of a random sampleξξξ1, . . . , ξξξM of random variables. So, we express the sample average

Q̂M(XXX) as a function of the independent and identically distributed random variablesξξξm:

Q̂M(XXX) =
1

M

M∑
m=1

Q(XXX,ξξξm). (4.6)

Each random variableξξξm,m = 1, . . . , M , has the same distribution asξξξ.

The sample averagêQM(XXX) is an unbiased and consistent estimator ofQ(XXX)

(Shapiro, 2003). Thus, we have a means of approximatingQ(XXX) without resorting to eval-

uatingQ(XXX, ξs) for all possible scenariosξs ∈ Ξ, s = 1, . . . , S. The estimatorQ̂M(XXX) is

thesample average approximationfor Q(XXX), and the recourse (or expectation) function is

calculated based on an empirical distribution instead of the actual distribution ofQ(XXX,ξξξ).

Finally, there is the question about the size of the sample that should be used to

calculate the approximate recourse functionQ̂M(XXX). Ideally, the sample sizeM should be

large enough such that the sample average estimatorQ̂M(XXX) and the sample error are “sta-

ble” (Kleywegt et al., 2001). As an example, we randomly generated a hub configuration

using the 25-node CAB data set withp = 5. Figure 4.1 plots the sample average estima-

tor Q̂M(XXX) against the number of samplesM used to calculatêQM(XXX), while Figure 4.2
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Figure 4.1: Plot of the sample averagêQM(XXX) as a function of the number of scenarios
M = 1, . . . , 100.

is a similar plot with the vertical axis representing the standard deciation of the sample

for different sample sizesM . One notices that the sample averageQ̂M(XXX) stabilizes at

approximatelyM = 50, while the standard error stabilizes when 30 to 40 scenarios are

used. Therefore, a reasonable sample size forM is 50 scenarios for this hub configuration.

Further tests with different problem instances support our choice ofM = 50.

4.3.3 The First-Stage Problem

The role of the first-stage problem in the SpHCP can be considered as generating

feasible hub configurationsXXX from which the recourse functionQ(XXX) is calculated. For

a |N | node problem withp hubs, there are
(
|N |
p

)
possible feasible hub configurations.
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Figure 4.2: Plot of the sample standard deviation for sample sizesM = 1, . . . , 100.

The task of finding the best hub configuration from among all these possible options is

intractable, especially when one has to solve the NP-hard second-stage problemM times

just to obtain a good approximation of the quality for a particular hub configuration. While

there are many solution approaches that can be used for the first-stage problem (local search

methods, tabu search, simulated annealing, genetic algorithms, etc.), we instead study the

optimal solutions for small problems to see if there is a particular structure in the locations

of thep hubs that we can use to design a heuristic to solve the problem.

We first consider the problem where the nodes (and thus, the candidate hub loca-

tions) are on a rectangular lattice. The problem has 20 nodes with 5 nodes along the hori-

zontal axis and 4 nodes along the vertical axis. Using the same setup as described in Sec-
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tion 4.2, the transmission time on a linktij(ω) is dependent on the random eventωij, where

ωij = {Delay, No Delay}. Delay on a link occurs with probability0 < P (Delay) ≤ 1, and

thusP (No Delay) = 1−P (Delay). When there is no delay on a link, the transmission time

tij(No Delay) = tij, wheretij is the straight-line distance between nodesi andj. However,

if a delay is experienced on a link, the transmission time istij(Delay) = (1 + d)tij, where

d > 0 is the relative increase in transmission time due to the delay. We thus calld the delay

factor. We assume that the probability of experiencing a delay on a link is independent of

that on all other links.

We generated problem instances using different combinations of the number of

hubsp, the probability of delayP (Delay), and the delay factord. We setp = 2, 3, 4,

P (Delay) = 0.25, 0.50, 0.75, andd = 0.25, 0.50, 0.75, 1.00. For each problem instance

(p, P (Delay), d), we enumerated all possible hub configurations and for each hub configu-

rationXXX, solve the second-stage problem overM = 50 scenarios using CPLEX. The best

hub configuration for a problem instance is the one that returns the lowestQ̂M(XXX) value.

Figures 4.3 to 4.5 are representative of the results from our computational experiments for

the problem on the lattice. The hubs are generally spread out evenly around the lattice. In

some problem instances, there is also a hub located in the center of the lattice.

We also carried out the same test using the CAB and AP data sets, which are avail-

able from the OR-Library (Beasley, 2004). The results from these experiments also show

the hubs spread evenly around the service region, and in some problem instances, there is a

hub located close to the center of the service region. These observations of the optimal hub

locations for the lattice, CAB, and AP data sets suggest that the radial heuristic solution
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Figure 4.3: Best hub configurations for the 20-node two-stage SpHCP on the lattice with
p = 2 hubs, probability of delayP (Delay) = 0.25, and varying values of the delay factor
d.
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Figure 4.4: Best hub configurations for the 20-node two-stage SpHCP on the lattice with
p = 3 hubs, probability of delayP (Delay) = 0.75, and varying values of the delay factor
d.
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Figure 4.5: Best hub configurations for the 20-node two-stage SpHCP on the lattice with
p = 4 hubs, probability of delayP (Delay) = 0.25, and varying values of the delay factor
d.
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approach first introduced in Chapter 3 will find good solutions for the two-stage SpHCP as

it generates hub configurations with similar structures.

4.4 Computational Experiments

We use the CAB and AP data sets for the computational experiments of the two-

stage SpHCP with random transmission times in this section. The random eventωij =

{Delay, No Delay} is independent of other links in the network, and delay on a link occurs

with probabilityP (Delay). A delay on a link increases the transmission time on that link

by the delay factord > 0, i.e., tij(Delay) = (1 + d)tij. For each node-hub(|N |, p)

combination, we setP (Delay) = 0.2, 0.4, 0.6, andd = 0.25, 0.50, 0.75, 1.00.

In Section 4.4.1, we present our radial heuristic, and discuss its performance. The

heuristic is coded in MATLAB (The Mathworks Inc., 1997) using the CPLEX-MEX in-

terface (Musicant, 2000) to call CPLEX to solve the second-stage problem. Section 4.4.2

discusses the benefits of solving the stochastic programming problem, which accounts for

the stochastic nature of the problem, instead of simply solving the deterministic version

of the problem using the expected values of the stochastic parameters in the optimization

problem.

4.4.1 Radial Heuristic

Our radial heuristic is an iterative heuristic. At each iteration of the heuristic, we

first locate a central hub, and then locate the remainingp− 1 hubs around the central hub.

The outline of the radial heuristic is provided in Figure 4.6, and Figure 4.7 shows the steps

to construct a hub configuration for the radial heuristic.
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Step 1: SetC ← N , and setQ̂M(XXX) to be some large number.

Step 2: If|C| ≥ p, generate a hub configurationXXX(C) based on the setC

(see Figure 4.7). Else, go to step 4.

Step 3: CalculatêQM(XXX(C)).

If Q̂M(XXX(C)) < Q̂M(XXX), setXXX? ←XXX(C) andQ̂M(XXX) ← Q̂M(XXX(C)).

SetC ← C \ arg maxi∈C{tiH1}, and go to step 2. (H1 is the 1-center hub.)

Step 4: ReturnXXX? andQ̂M(XXX).

Figure 4.6: Radial heuristic.

% Find the central hub

Set the incumbent travel time valueT ? to some large number.

Let H1 represent the index of the optimal central hub.

For each nodeh ∈ C

Let T = maxi∈C{tih}.

If T < T ?, setT ? ← T andH1 ← h.

% Locate remainingp− 1 hubs

SetXXX ← H1.

While |XXX| ≤ p

For each nodei ∈ C \ {XXX}, setTi ← minj∈XXX{tij}.

Seti? ← arg maxi∈C\{XXX}{Ti}, andXXX ←XXX ∪ {i?}.

ReturnXXX as the initial hub configuration.

Figure 4.7: Construction heuristic to generate a hub configuration.
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We compare the best̂QM(XXX) value found using the radial heuristic against the best

Q̂M(XXX) value found by enumerating all possible hub configurations. (We will refer to the

solution obtained from the complete enumeration as simply the optimal solution.) At-test

on the null hypothesis of whether the sample meansQ̂M(XXX) of the two samples are equal

will be used. Table 4.1 shows the number of problem instances for each(|N |, p) combi-

nation where thet-test results in the rejection of the null hypothesis at a 5% significance

level. (Note that there are 12 problem instances for each(|N |, p) combination because we

setP (Delay) = 0.2, 0.4, 0.6, andd = 0.25, 0.50, 0.75, 1.00.) The radial heuristic performs

well for the CAB data set, but its performance for the AP data set leaves much to be desired.

When we compare the hub locations between the optimal solution and that found by the

radial heuristic, we noticed that in many problem instances, if we were to swap a hub with

its closest non-hub node, we would arrive at the same hub locations as the optimal solution.

An example of this result is shown in Figure 4.8. In Figure 4.8(a), the radial heuristic lo-

cates one of the two hubs at the optimal hub location. If we swapped the second hub located

by the radial heuristic with its closest non-hub node, we end up with the optimal solution

for this problem instance. In Figure 4.8(b), a hub may need to be swapped with its second

closest non-hub node to obtain the optimal hub configuration. These two examples indicate

that incorporating a simple improvement heuristic into the radial heuristic is a reasonable

approach towards finding the optimal solution.

We implement the improvement heuristic as follows: at each iteration of the radial

heuristic, the improvement heuristic swaps the hub nodes with their closest non-hub nodes

one at a time to generate new hub configurations. For example, suppose the hub configu-
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Table 4.1: Total number of problem instances
where the null hypothesis (the sample mean
of the optimal solution is equal to the best
sample mean found using the radial heuristic)
is rejected (5% significance level).

|N | p CAB data set AP data set

10 2 1 out of 12 0 out of 12

3 8 out of 12 3 out of 12

4 10 out of 12 3 out of 12

5 5 out of 12 4 out of 12

15 2 4 out of 12

3 7 out of 12

20 2 4 out of 12 3 out of 12

3 6 out of 12 9 out of 12

25 2 0 out of 12 2 out of 12

3 12 out of 12 3 out of 12

Total 57 out of 120 29 out of 96
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0.75.

Figure 4.8: Plot of the hub locations of the optimal solution (indicated by the larger circles)
and that found by the radial heuristic (indicated by the square icons) using the AP data set.

ration generated at the current iteration for a 3-hub problem has hubs located at nodes 2, 8,

and 12. Let non-hub nodes 3, 9, and 13 be the closest non-hub nodes for the three hubs,

respectively. The improvement heuristic will then create three new hub configurations:

(3,8,12), (2,9,12), and (2,8,13). We also extended this improvement heuristic to swap a hub

node with its two closest non-hub nodes, thus generating six new hub configurations at each

iteration of the radial heuristic. We refer to the first improvement heuristic as Improve1,

and the second as Improve2.

We see from Table 4.2 that using the Improve1 heuristic together with the radial

heuristic resulted in a significant reduction in the total number of rejections of the null

hypothesis for the AP data set, while it only had a minimal affect on the CAB data set.

However, when the Improve2 heuristic is used, we see a significant reduction in the total
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Table 4.2: Total number of problem instances where the null hypoth-
esis (the sample mean of the optimal solution is equal to the best sam-
ple mean found using a combination of the radial and improvement
heuristics) is rejected (5% significance level).

CAB data set AP data set

|N | p Improve1 Improve2 Improve1 Improve2

10 2 0 out of 12 0 out of 12 0 out of 12 0 out of 12

3 6 out of 12 0 out of 12 3 out of 12 1 out of 12

4 4 out of 12 0 out of 12 3 out of 12 3 out of 12

5 2 out of 12 2 out of 12 0 out of 12 0 out of 12

15 2 0 out of 12 0 out of 12

3 3 out of 12 1 out of 12

20 2 0 out of 12 0 out of 12 0 out of 12 0 out of 12

3 0 out of 12 0 out of 12 2 out of 12 1 out of 12

25 2 0 out of 12 0 out of 12 2 out of 12 0 out of 12

3 12 out of 12 5 out of 12 1 out of 12 1 out of 12

Total 27 out of 120 8 out of 120 11 out of 96 6 out of 96
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number of rejects for both data sets.

4.4.2 Value of the Stochastic Solution

A stochastic programming problem, compared to a deterministic linear program-

ming problem, is usually more difficult to solve. Thus, it is common to question whether it

is worth the considerable effort to model and solve a stochastic programming problem. An

answer to this question is to consider thevalue of the stochastic solution. For our two-stage

SpHCP, this involves comparing the optimal SpHCP solution against theexpected result of

using the expected value solution(EEV). The EEV is obtained by first solving theexpected

(or mean) value problem, which is the problem obtained by setting the random variables to

their expected values. From the solution to this deterministic optimization problem, we fix

the values of the first-stage variables and solve the second-stage problem over all possible

scenarios. However, we will solve the second-stage problem using a sample ofM = 50

scenarios to keep the process tractable. The objective function values from the 50 expected

value solutions are then averaged to obtain the EEV. The difference between the EEV and

the solution to the stochastic programming problem SpHCP is called thevalue of the sto-

chastic solution(VSS = EEV - SpHCP). The VSS measures how good (or bad) a decision

based on the solution to the expected value problem is when compared to the decision based

on solving the stochastic programming problem (Birge and Louveaux, 1997).

For each(|N |, p) combination, we still have 12 different problem instances as de-

scribed in Section 4.4.1. Table 4.3 shows the average, minimum, and maximum VSS/EEV

values over the 12 problem instances for each(|N |, p) combination. The VSS/EEV value
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provides an indication of the relative improvement in the sample average valueQ̂M(XXX) if

we use the stochastic programming approach instead of the deterministic expected value

approach. We see that in some instances, the expected value approach obtains similar re-

sults to the stochastic programming approach (i.e., 0% values in the ‘Minimum’ columns

in Table 4.3). However, there are some instances where there is a huge benefit to using the

stochastic programming approach, with a possible improvement of over 15% and 20% for

the CAB and AP data sets, respectively. Hence, there is certainly some benefit to using a

stochastic programming approach for this problem.

Finally, we notice that the minimum VSS/EEV values for some(|N |, p) combina-

tions in Table 4.3 are 0%. This indicates that the EEV solution is equal to the SpHCP

solution for some problem instances. Then there are those(|N |, p) combinations that have

minimum VSS/EEV values close to 0% – indicating that the EEV solution is close to the

SpHCP solution. This observation suggests that an improvement heuristic applied to the

EEV hub configuration may be able to find the SpHCP solution. We explore this possi-

bility using the Improve2 heuristic described in the previous section on the EEV solution.

Using the Improve2 heuristic also allows us to compare the performance of this EEV and

Improve2 solution approach to that of the radial and Improve2 heuristic.

Table 4.4 shows the number of problem instances for each(|N |, p) combination

where thet-test results in the rejection of the null hypothesis that the sample mean of the

optimal solution is equal to that found by the EEV+Improve2 solution at the 5% signif-

icance level. The EEV+Improve2 approach works well for the CAB data set (low reject

counts), but not as well for the AP data set. However, the EEV+Improve2 is not as good as
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the radial with Improve2 heuristic as it has more rejects.

4.5 Large-Scale Stochasticp-Hub Center Problems:

A Simulated Annealing Solution Approach

The size of the problem instances used in our experiments in Section 4.4 are consid-

ered to be small (up to 25 nodes). Many realistic hub-and-spoke networks have hundreds or

thousands of nodes. From computational experience, CPLEX is able to solve the second-

stage problem (i.e., the hub center single-allocation problem or HCSAP) for the largest AP

data set (200 nodes). We do note, however, that the computer memory requirements to load

this problem size as well as to maintain the branch-and-bound tree is significant (close to

exhausting the 4GB of available memory in the test computer). Thus, to solve much larger

problems, other solution methods are required. In this section, we propose a simulated

annealing (SA) approach for solving large-scale instances of the HCSAP.

Annealing is the process where molten material is cooled slowly in a heat bath into

a solid with minimal energy (Pirlot, 1996). When applied to an optimization problem, the

simulated annealing algorithm takes a proposed feasible solution obtained from the neigh-

borhood of the current solution and calculates its objective function value. If the proposed

solution improves the objective function value, the proposed solution is accepted. If, how-

ever, the proposed solution degrades the objective function value, the proposed solution is

accepted with a probability value inversely proportional to the degradation of the objective

function value. The aim of the algorithm is to converge to the globally optimum solution

when the process reaches the “cooled state.” Metropolis et al. (1953) first introduced the
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Table 4.4: Total number of problem in-
stances where the null hypothesis (the
sample mean of the optimal solution is
equal to the best sample mean found using
the EEV+ Improve2 solution approach) is
rejected (5% significance level).

|N | p CAB data set AP data set

10 2 0 out of 12 0 out of 12

3 1 out of 12 0 out of 12

4 0 out of 12 3 out of 12

5 0 out of 12 0 out of 12

15 2 3 out of 12

3 1 out of 12

20 2 2 out of 12 3 out of 12

3 0 out of 12 12 out of 12

25 2 0 out of 12 6 out of 12

3 4 out of 12 8 out of 12

Total 11 out of 120 32 out of 96
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concept behind simulated annealing, and Kirkpatrick et al. (1983) andČerńy (1985) inde-

pendently implemented this idea for solving combinatorial optimization problems such as

the traveling salesman problem.

Implementing the SA algorithm requires, at a minimum, a specification of the ob-

jective (or evaluation) function and the neighborhood of the current solution. In the HC-

SAP, the objective function is simply the longest transmission path in the network. A

neighbor for the current solution (i.e., the allocation of nodes to hubs) can be obtained by

swapping the assignment of a node from its current hub to another hub. The evaluation of

a proposed solution can be straightforwardly performed inO(|N |2log|N |) time (Fredman

and Tarjan, 1987). A more efficient approach with better worst-case complexity can be

devised by simply keeping track of the farthest node connected to each hub. Consider a

current solution to the HCSAP. For each hubHk, let imax
k be the node connected to hubk

that is farthest away from it, i.e.,

imax
k = arg max

i∈N
{tik : Zik = 1}.

Suppose we re-assign nodej from hubH1 to hubH2. If nodej 6= imax
1 andj ≤ imax

2 , then

such a swap will not affect the objective function valueβ. If j = imax
1 or j > imax

2 , then

we first need to update the values ofimax
1 or imax

2 . Once the updating is completed, we then

need to evaluate

max
k∈H

{
timax

1 ,H1 + αtH1,Hk
+ timax

k ,Hk

}
and max

k∈H

{
tj,H2 + αtH2,Hk

+ timax
k ,Hk

}

to obtain the length of the longest pathβ̂ in the proposed network. Each of the two equa-

tions requires|H| = p evaluations. This step dominates the entire evaluation process, and
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thus, the evaluation of a proposed feasible solution takesO(p) time.

The SA algorithm also requires an initial solution, an initial temperature valueT0,

the loop lengthL, and the temperature reduction rateτ . There is much literature on how

to set these parameter values such as Johnson et al. (1989), Kirkpatrick et al. (1983), Pirlot

(1996), and van Laarhoven and Aarts (1987). In our implementation of the SA algorithm,

we construct an initial solution to the assignment problem by simply assigning each node

to its closest hub. We then use this initial solution to derive the initial temperatureT0

as follows: from this initial solution, we randomly generate a neighbor using the process

described in the previous paragraph. If the objective function valueβ̂ of this neighbor is

greater than that of the initial solution (i.e., the neighbor is a worse solution), we keep track

of the differenceε between the objective function values. If the neighbor is an improving

solution (i.e., lower̂β value), we toss it out. We repeat this process of finding bad neighbors

of the initial solution until we have 50 of these neighbors. The initial temperatureT0 is then

calculated by

T0 =
ε̂

ln (χ−1)
,

where ε̂ is the average deterioration from the initial starting solution (i.e., the difference

in objective function values), andχ is the probability of accepting deteriorating moves

at the start of the simulated annealing algorithm (van Laarhoven and Aarts, 1987). In

our experiments, we setχ = 0.8. At each temperature levelT , we evaluateL = 25000

neighbors to the current solution, and we reduce the temperature by100(1−τ)% following

the completion of the loop withτ set at 0.95. We terminate the SA process when the

best solution found has not changed in 100 temperature reductions. Figure 4.9 gives the
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Generate an initial solutionZ0 by assigning all nodes to its closest hub.

Calculateβ from Z0, and set current solutionZ ← Z0.

Calculate initial temperatureT0 usingZ0, and initialize temperatureT ← T0.

While not yet converged, For 1 to loop sizeL

Generate a random neighborẐ.

Let ∆ = β̂ − β.

If ∆ ≤ 0, setZ ← Ẑ, else setZ ← Ẑ with probability e−∆/T .

SetT ← τT .

Return the best solution found.

Figure 4.9: Simulated Annealing.

pseudocode for our implementation of the simulated annealing algorithm.

We tested the SA algorithm using both the CAB and AP data sets. For each(|N |, p)

combination, we first generate 10 different hub configurations. For each of these 10 hub

configurations, we run the algorithm 10 times. Table 4.5 shows the performance of the

SA algorithm for the 200-node AP data set withp = 5. (Similar tables of results for the

smaller-sized CAB and AP data sets are provided in Appendix A.) The column headings

in the tables are:

• Config.: Configuration number (1 to 10)

• Opt.: The optimal objective function value from CPLEX

• Min.: The minimum objective function value found by the simulated annealing algo-
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rithm over the 10 runs

• Min. % gap: The percentage optimality gap between the minimum objective function

value found by the simulated annealing algorithm over the 10 runs and the optimal

objective function value

• Avg.: The average objective function value over the 10 runs of the simulated anneal-

ing algorithm

• Avg. % gap: The percentage optimality gap between the average objective function

value and the optimal objective function value, and

• St. Dev: The standard deviation of the objective function value over the 10 runs of

the simulated annealing algorithm.

• Run-time (CPLEX): Run-time for CPLEX in seconds

• Run-time (SA): Total run-time of the SA algorithm in seconds (10 runs)

The results show that the SA algorithm was able to find the optimal solution for 2 out of

the 10 different hub configurations, with varying degrees of success on the remaining 8 hub

configurations. We have not been able to identify a systematic reason for why the SA works

well for some problem instances but not for others. As stated earlier, CPLEX requires a

significant amount of memory to solve this 200-node problem. The SA algorithm, on the

other hand, uses only 2% to 3% of available memory.
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4.6 Conclusion

In this chapter, we introduce the two-stage stochasticp-hub center problem moti-

vated by the communications industry. The SpHCP seeks to find the best hub locations

such that the expected value of the longest transmission time in the network is minimized.

From observations of the optimal solution to the SpHCP, we notice that the optimal config-

uration of thep hubs tends to have a hub located centrally with the remainingp − 1 hubs

scattered around this central hub. We thus considered using the radial heuristic, which

generates solutions that exhibit this particular structure, to direct the search for the optimal

hub locations. Our implementation of the radial heuristic in this chapter includes a simple

improvement heuristic. Computational results show that our radial heuristic performs well

in that it provides solutions that are not significantly different from the optimal solutions.

We use the sample average approximation approach to evaluate the recourse function. The

second-stage problem is solved via CPLEX, and we propose a simulated annealing ap-

proach for solving large problem instances.
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CHAPTER 5
CONCLUSIONS

In this dissertation, we study three hub location problems motivated by their use in

different application areas: the air travel, small package delivery, and communication net-

works. The hub location problem we study assumes that the hub nodes are fully connected,

and that the non-hub nodes are connected to exactly one hub (single-assignment rule) or to

at least one hub (multiple-assignment rule).

In Chapter 2, we introduce the hub covering flow problem (HCFP), which is moti-

vated by the air travel industry. We observe that travel on the spokes (i.e., the link between

the hub and non-hub nodes) are often performed using small-sized aircrafts, which have

limited maximum flying ranges. These maximum flying ranges are commonly referred to

as coverage constraints in the location literature. Furthermore, there are often many differ-

ent aircraft types operating out of a hub, each with different operating costs and maximum

flying ranges. The choice of which aircraft type to use on a link is an important consider-

ation when planning or designing an airline’s hub-and-spoke network. The hub covering

flow problem looks at finding the best location of hubs and the assignment of non-hub

nodes to hubs while satisfying the coverage constraints so as to minimize the total cost of

opening hubs and transferring demand through the network.

We propose two different formulations for the HCFP. The first formulation models

the coverage requirement as a constraint – a similar approach to the set covering prob-

lem in the location theory literature. The second formulation incorporates the coverage

requirement as a penalty function in the objective function. This second formulation is
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then extended to include the multiple aircraft type issue, which makes the model more

closely reflect reality. It also has an additional benefit of providing a solution to the fleet

assignment problem via the optimal assignments of non-hub nodes to hubs, and it aids in

decision-making by quantifying the costs and listing the characteristics of optimal network

designs for different fleet combinations.

Chapter 3 considers hub-and-spoke networks in the small package delivery industry.

Expedited delivery services form a significant revenue stream for many companies in this

industry. These time-definite delivery service requires companies to ensure delivery of a

package within a specified time-frame. With possible delays in transporting a package

from its origin to destination, a company must ensure that their delivery network accounts

for this possibility. We introduce the chance-constrained stochasticp-hub center problem,

which seeks to configure a network that minimizes the longest transportation time in the

network for a specified service level in delivery time.

We find that the optimal location of thep-hubs tend to form a certain structure,

where one hub is located in the center of the service region with the remaining hubs lo-

cated around this central hub. Also, when the level of uncertainty in the network increases

(e.g., an increase in the variability in the transportation times), the surrounding hubs exhibit

a clustering effect where they tend to be located closer to the central hub. We propose our

radial heuristic that seeks to exploit this particular structure, and use the best hub configu-

ration found by this heuristic as a starting point for the one-opt best-improvement heuristic

proposed by Teitz and Bart (1968). We compare the performance of this solution approach

to the optimal solution where possible, and our computational results show that this solu-
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tion methodology returns hub configurations that are optimal or close to optimal. We then

use this heuristic to solve larger problem instances.

The final application area that we study in this dissertation is communication net-

works. Two service quality metrics used in the communications industry are robustness

and response time. Robustness relates to the ability of the network to continue functioning

when a portion of the network is unavailable due to failure. Response time refers to the

amount of time required to transfer information through the network to the final destina-

tion. Chapter 4 discusses the two-stage stochasticp-hub center problem, which accounts

for the possible unavailability of network components or delays experienced during data

transmission.

We found that the optimal hub locations often exhibit a structure where there is a

central hub with the remainingp − 1 hubs surrounding the central hub. This is similar to

what was observed in the chance-constrained stochasticp-hub center problem. We use the

same radial heuristic to guide the search for the optimal hub locations. We approximate

the recourse function using a Monte Carlo technique called sample average approximation

(Shapiro, 2003). We solve the second stage assignment problem using CPLEX, and we

propose a simulated annealing algorithm for large data sets.

There are several possible avenues for future work arising from this dissertation.

With regards to the hub covering flow problem, we envision using it to study current trends

in the airline industry; in particular, competition between the legacy airlines and low-cost

carriers. Examples of this are the works of Adler (2005) and Adler and Smilowitz (2007).

For the chance-constrained stochasticp-hub center problem, an interesting corre-
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sponding problem is that of what maximum service level can be achieved for a given max-

imum path length valueβ for theβ-path. This can be stated as the following optimization

problem:

max γ (5.1a)

s.t. P

(∑

k∈N

(tik(ω) + αtkl(ω))Zik + tjl(ω)Zjl ≤ β

)
≥ γ, ∀i, j, l ∈ N, (5.1b)

∑

k∈N

Zkk = p, (5.1c)

Zik ≤ Zkk,∀i, k ∈ N, (5.1d)

∑

k∈N

Zik = 1,∀i ∈ N, (5.1e)

Zik ∈ {0, 1},∀i, k ∈ N. (5.1f)

Problem (5.1) is basically the stochasticp-hub covering problem with chance constraints.

Another research project closely related to the chance-constrained stochasticp-hub

center problem is the (absolute) robustp-hub center problem, which finds the best location

of the p hubs and assignment of nodes to hubs so that the length of the longest pathβ

is minimal overall scenarios. By settingγ = 1 in the SpHCP-CC (problem (3.1)), con-

straints (3.1b) must hold almost surely. In problem SpHCP-CEP, constraints (3.6b) are now

redundant and constraints (3.6a) become

∑

k∈N

(tsik + αtskl)Zik + tsjlZjl ≤ β, ∀i, j, l ∈ N, s ∈ S.

Problem SpHCP-CEP then simplifies to

min β

s.t.
∑

k∈N

(tsik + αtskl)Zik + tsjlZjl ≤ β, ∀i, j, l ∈ N, s ∈ S, (5.2a)
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∑

k∈N

Zkk = p, (5.2b)

Zik ≤ Zkk, ∀i, k ∈ N, (5.2c)

∑

k∈N

Zik = 1,∀i ∈ N, (5.2d)

Zik ∈ {0, 1}, ∀i, k ∈ N. (5.2e)

Problem (5.2) is essentially thep-hub center problem with additional constraints on the

paths in the network generated by the different scenarioss ∈ S. Therefore, if we can solve

pHCP, we can solve problem (5.2). Further discussion on robust optimization problems

can be found in Kouvelis and Yu (1996), including the two variants of the minimax regret

problems: therobust deviationproblem and therelative robustproblem.

Finally, further work is required on the simulated annealing algorithm, which we

proposed for the hub center single-assignment problem. In particular, robust parameter

settings should be derived so that the algorithm will perform well for any problem instance.

We will use the design of experiments approach suggested by Coy et al. (2000).
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APPENDIX A
SIMULATED ANNEALING RESULTS

The tables on the next few pages show the computational results from the simulated

annealing experiments using the CAB and AP data sets. For each(|N |, p) problem instance,

where |N | are the number of nodes and hubs, respectively, we randomly generated 10

different hub configurations. For each of the 10 hub configurations, we implement 10 runs

of the simulated annealing heuristic. The column headings in the tables that follow are:

• Config.: Configuration number (1 to 10)

• Opt.: The optimal objective function value from CPLEX

• Min.: The minimum objective function value found by the simulated annealing algo-

rithm over the 10 runs

• Min. % gap: The percentage optimality gap between the minimum objective function

value found by the simulated annealing algorithm over the 10 runs and the optimal

objective function value

• Avg.: The average objective function value over the 10 runs of the simulated anneal-

ing algorithm

• Avg. % gap: The percentage optimality gap between the average objective function

value and the optimal objective function value, and

• St. Dev: The standard deviation of the objective function value over the 10 runs of

the simulated annealing algorithm.
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Table A.1: Simulated annealing results for the 10-node CAB data set.

p Config. Opt. Min. Min. % gap Avg. Avg. % gap St. Dev.

4 1 1864.4 1864 0.0% 1864 0.0% 0

2 1819.8 1820 0.0% 1820 0.0% 0

3 2287.6 2288 0.0% 2288 0.0% 0

4 1814.9 1815 0.0% 1815 0.0% 0

5 2160.7 2161 0.0% 2161 0.0% 0

6 1579.8 1580 0.0% 1580 0.0% 0

7 1814.9 1815 0.0% 1815 0.0% 0

8 1496.1 1496 0.0% 1496 0.0% 0

9 1739.6 1740 0.0% 1740 0.0% 0

10 1377.4 1377 0.0% 1401 1.7% 74

5 1 1814.9 1815 0.0% 1815 0.0% 0

2 1814.9 1815 0.0% 1815 0.0% 0

3 2160.7 2161 0.0% 2161 0.0% 0

4 1864.4 1864 0.0% 1864 0.0% 0

5 1814.9 1815 0.0% 1815 0.0% 0

6 1479.2 1479 0.0% 1479 0.0% 0

7 1496.1 1496 0.0% 1496 0.0% 0

8 1496.1 1496 0.0% 1499 0.2% 8

9 1522.4 1522 0.0% 1522 0.0% 0

10 1323.6 1324 0.0% 1555 17.5% 180
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Table A.2: Simulated annealing results for the 15-node CAB data set.

p Config. Opt. Min. Min. % gap Avg. Avg. % gap St. Dev.

4 1 3483.7 3484 0.0% 3484 0.0% 0

2 3061.1 3061 0.0% 3061 0.0% 0

3 2628 2628 0.0% 2628 0.0% 0

4 2716.4 2716 0.0% 2716 0.0% 0

5 2461.2 2461 0.0% 2461 0.0% 0

6 2499.5 2500 0.0% 2500 0.0% 0

7 2086.1 2086 0.0% 2154 3.3% 78

8 2461.2 2461 0.0% 2461 0.0% 0

9 2348.2 2348 0.0% 2392 1.9% 25

10 2456 2456 0.0% 2456 0.0% 0

5 1 2516.7 2517 0.0% 2517 0.0% 0

2 2716.4 2716 0.0% 2716 0.0% 0

3 2563.1 2563 0.0% 2563 0.0% 0

4 2628 2628 0.0% 2628 0.0% 0

5 2437.1 2437 0.0% 2437 0.0% 0

6 2499.5 2500 0.0% 2500 0.0% 0

7 2064.3 2212 7.2% 2367 14.7% 102

8 2461.2 2461 0.0% 2461 0.0% 0

9 2348.2 2352 0.2% 2394 1.9% 30

10 2456 2456 0.0% 2456 0.0% 0
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Table A.3: Simulated annealing results for the 20-node CAB data set.

p Config. Opt. Min. Min. % gap Avg. Avg. % gap St. Dev.

4 1 2716.4 2716 0.0% 2716 0.0% 0

2 2444.9 2445 0.0% 2563 4.8% 91

3 2716.4 2716 0.0% 2731 0.5% 31

4 2716.4 2716 0.0% 2716 0.0% 0

5 2337.8 2397 2.5% 2397 2.5% 0

6 2716.4 2716 0.0% 2716 0.0% 0

7 2364.5 2365 0.0% 2365 0.0% 0

8 2716.4 2716 0.0% 2716 0.0% 0

9 2456 2464 0.3% 2464 0.3% 0

10 2343.4 2606 11.2% 2655 13.3% 32

5 1 2595 2595 0.0% 2595 0.0% 0

2 2194.4 2286 4.2% 2562 16.7% 101

3 2716.4 2716 0.0% 2716 0.0% 0

4 2716.4 2716 0.0% 2716 0.0% 0

5 2227.6 2287 2.7% 2287 2.7% 0

6 2716.4 2716 0.0% 2716 0.0% 0

7 2716.4 2716 0.0% 2716 0.0% 0

8 2166.7 2167 0.0% 2167 0.0% 0

9 2456 2464 0.3% 2464 0.3% 0

10 2077.9 2473 19.0% 2588 24.6% 46
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Table A.4: Simulated annealing results for the 25-node CAB data set.

p Config. Opt. Min. Min. % gap Avg. Avg. % gap St. Dev.

4 1 4072.3 4072 0.0% 4072 0.0% 0

2 4329.7 4330 0.0% 4330 0.0% 0

3 3179.7 3180 0.0% 3180 0.0% 1

4 3051.1 3211 5.2% 3297 8.1% 30

5 3471.9 3472 0.0% 3472 0.0% 0

6 3064 3275 6.9% 3275 6.9% 0

7 2620.1 2620 0.0% 2638 0.7% 19

8 2537 2660 4.9% 2660 4.9% 0

9 3782.3 3782 0.0% 3782 0.0% 0

10 3012.9 3013 0.0% 3013 0.0% 0

5 1 3270.6 3271 0.0% 3271 0.0% 0

2 4072.3 4072 0.0% 4072 0.0% 0

3 3179.7 3180 0.0% 3180 0.0% 0

4 3051.1 3306 8.4% 3306 8.4% 0

5 3012.9 3013 0.0% 3013 0.0% 0

6 3471.9 3472 0.0% 3472 0.0% 0

7 2923.9 3040 4.0% 3040 4.0% 0

8 2542.9 2543 0.0% 2543 0.0% 0

9 2537 2660 4.9% 2660 4.9% 0

10 3017.4 3309 9.7% 3408 12.9% 62
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Table A.5: Simulated annealing results for the 10-node AP data set.

p Config. Opt. Min. Min. % gap Avg. Avg. % gap St. Dev.

4 1 38063 38063 0.0% 38063 0.0% 0

2 40382 40382 0.0% 40382 0.0% 0

3 41478 41478 0.0% 41478 0.0% 0

4 35537 35537 0.0% 35537 0.0% 0

5 41591 41591 0.0% 41591 0.0% 0

6 50850 50850 0.0% 50850 0.0% 0

7 46494 46494 0.0% 46494 0.0% 0

8 46094 46094 0.0% 46094 0.0% 0

9 52206 52206 0.0% 52206 0.0% 0

10 40382 40382 0.0% 40382 0.0% 0

5 1 34567 34567 0.0% 35554 2.9% 525

2 35537 35537 0.0% 35537 0.0% 0

3 40382 40382 0.0% 40382 0.0% 0

4 36024 36024 0.0% 36024 0.0% 0

5 35537 35537 0.0% 35537 0.0% 0

6 50850 50850 0.0% 50850 0.0% 0

7 46094 46094 0.0% 46094 0.0% 0

8 46494 46494 0.0% 46494 0.0% 0

9 46494 46494 0.0% 46494 0.0% 0

10 40382 40382 0.0% 40382 0.0% 0
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Table A.6: Simulated annealing results for the 20-node AP data set.

p Config. Opt. Min. Min. % gap Avg. Avg. % gap St. Dev.

4 1 45592 51864 13.8% 51864 13.8% 0

2 72214 72214 0.0% 72214 0.0% 0

3 53346 53824 0.9% 53824 0.9% 0

4 51390 52537 2.2% 52537 2.2% 0

5 56443 56443 0.0% 56443 0.0% 0

6 54646 54646 0.0% 54646 0.0% 0

7 56059 56059 0.0% 56059 0.0% 0

8 52010 52010 0.0% 52010 0.0% 0

9 49206 49206 0.0% 49206 0.0% 0

10 65608 65608 0.0% 65608 0.0% 0

5 1 45591 49014 7.5% 50250 10.2% 452

2 72214 72214 0.0% 72214 0.0% 0

3 52010 52010 0.0% 53577 3.0% 598

4 45868 45952 0.2% 45952 0.2% 0

5 56443 56443 0.0% 56771 0.6% 375

6 54646 54646 0.0% 54646 0.0% 0

7 46174 46174 0.0% 46174 0.0% 0

8 56059 56059 0.0% 56059 0.0% 0

9 49206 49206 0.0% 49206 0.0% 0

10 65608 65608 0.0% 65608 0.0% 0
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Table A.7: Simulated annealing results for the 25-node AP data set.

p Config. Opt. Min. Min. % gap Avg. Avg. % gap St. Dev.

4 1 57338 65964 15.0% 65964 15.0% 0

2 66058 66058 0.0% 68304 3.4% 1092

3 58921 58921 0.0% 58921 0.0% 0

4 51954 55856 7.5% 55856 7.5% 0

5 71358 71358 0.0% 73769 3.4% 904

6 75416 75416 0.0% 75416 0.0% 0

7 58384 58384 0.0% 59592 2.1% 1314

8 58384 58795 0.7% 58795 0.7% 0

9 69749 69749 0.0% 69985 0.3% 316

10 75154 75154 0.0% 75154 0.0% 0

5 1 57338 63039 9.9% 63039 9.9% 0

2 57893 57958 0.1% 57958 0.1% 0

3 57631 57631 0.0% 57631 0.0% 0

4 51954 54470 4.8% 55717 7.2% 438

5 71358 71358 0.0% 71480 0.2% 172

6 64350 64350 0.0% 65549 1.9% 1186

7 75416 75416 0.0% 75416 0.0% 0

8 58384 58384 0.0% 58384 0.0% 0

9 58384 58919 0.9% 59113 1.2% 68

10 66828 66828 0.0% 66828 0.0% 0
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Table A.8: Simulated annealing results for the 40-node AP data set.

p Config. Opt. Min. Min. % gap Avg. Avg. % gap St. Dev.

4 1 65459 73261 11.9% 75436 15.2% 1688

2 63050 71150 12.8% 78050 23.8% 3181

3 66275 66275 0.0% 66553 0.4% 359

4 62383 67402 8.0% 67402 8.0% 0

5 82966 82966 0.0% 85036 2.5% 1989

6 88568 90639 2.3% 90639 2.3% 0

7 79094 80954 2.4% 80954 2.4% 0

8 84502 85596 1.3% 88870 5.2% 1893

9 73884 73884 0.0% 73884 0.0% 0

10 67592 67592 0.0% 70172 3.8% 1851

5 1 62582 71455 14.2% 71455 14.2% 0

2 53590 71357 33.2% 71747 33.9% 137

3 66270 66270 0.0% 66476 0.3% 327

4 62383 67402 8.0% 67402 8.0% 0

5 82966 82966 0.0% 83061 0.1% 153

6 80697 87940 9.0% 87940 9.0% 0

7 79094 79094 0.0% 80582 1.9% 784

8 84502 85596 1.3% 86560 2.4% 1085

9 67058 67058 0.0% 67385 0.5% 315

10 68080 68080 0.0% 68080 0.0% 0
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Table A.9: Simulated annealing results for the 50-node AP data set.

p Config. Opt. Min. Min. % gap Avg. Avg. % gap St. Dev.

4 1 86990 91906 5.7% 95193 9.4% 1550

2 67429 76052 12.8% 76052 12.8% 0

3 70876 72249 1.9% 72249 1.9% 0

4 68870 68870 0.0% 68870 0.0% 0

5 69120 69120 0.0% 69120 0.0% 0

6 70968 70968 0.0% 70968 0.0% 0

7 70968 70968 0.0% 70968 0.0% 0

8 80692 80692 0.0% 80692 0.0% 0

9 90013 90013 0.0% 90013 0.0% 0

10 85742 93234 8.7% 93234 8.7% 0

5 1 72177 79099 9.6% 84365 16.9% 3187

2 65649 65649 0.0% 65649 0.0% 0

3 72153 72153 0.0% 72666 0.7% 630

4 66354 73039 10.1% 75381 13.6% 1521

5 78369 78369 0.0% 78369 0.0% 0

6 78754 78847 0.1% 78847 0.1% 0

7 59894 69894 16.7% 70124 17.1% 600

8 77729 77729 0.0% 77729 0.0% 0

9 86642 86642 0.0% 88069 1.6% 1527

10 90854 90854 0.0% 90854 0.0% 0
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Table A.10: Simulated annealing results for the 100-node AP data set.

p Config. Opt. Min. Min. % gap Avg. Avg. % gap St. Dev.

4 1 85814 90870 5.9% 91828 7.0% 336

2 89678 92886 3.6% 92886 3.6% 0

3 73366 89858 22.5% 89858 22.5% 0

4 76726 93535 21.9% 93535 21.9% 0

5 70146 79083 12.7% 79083 12.7% 0

6 70146 80359 14.6% 82785 18.0% 1162

7 87581 87581 0.0% 87581 0.0% 0

8 84456 84456 0.0% 84456 0.0% 0

9 97784 97784 0.0% 97784 0.0% 0

10 92719 92719 0.0% 92719 0.0% 0

5 1 74364 82396 10.8% 82396 10.8% 0

2 72360 72360 0.0% 72360 0.0% 0

3 71508 73172 2.3% 73172 2.3% 0

4 75929 76639 0.9% 76639 0.9% 0

5 70146 70146 0.0% 70146 0.0% 0

6 70846 87037 22.9% 87742 23.8% 248

7 94016 106460 13.2% 107159 14.0% 509

8 101030 112270 11.1% 116064 14.9% 1664

9 77108 83864 8.8% 83864 8.8% 0

10 87604 87604 0.0% 87604 0.0% 0
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Cánovas, L., S. Garcı́a, and A. Maŕın (2007). Solving the uncapacitated multiple alloca-
tion hub location problem by means of a dual-ascent technique.European Journal of
Operational Research 179, 990–1007.

Carøe, C. C. and J. Tind (1997). A cutting-plane approach to mixed 0-1 stochastic integer
programs.European Journal of Operational Research 101, 306–316.

Carøe, C. C. and J. Tind (1998). L-shaped decomposition of two-stage stochastic programs
with integer recourse.Mathematical Programming 83, 451–464.

CBC News Online (2005, June 20). Air canada timeline. http://www.cbc.ca/news/
background/aircanada/timeline.html. Accessed on March 14, 2006.

Central Intelligence Agency (2006). The World Factbook. http://www.cia.gov/cia/
publications/factbook. Accessed on June 20, 2006.
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