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ABSTRACT

In this dissertation, I study the performance of asset-pricing models in ex-

plaining the cross section of expected stock returns. The finance literature has

uncovered several potential failings of the Capital Asset Pricing Model (CAPM).

I investigate the ability of additional risk factors, which are not considered by the

CAPM, to explain these problems. In particular, I examine intertemporal risk and

long-run risk in the cross section of returns. In addition, I develop a firm-level test

to refine and reassess the cross-sectional evidence against the CAPM.

In the first chapter, I test the cross-sectional implications of the Intertem-

poral CAPM (ICAPM) of Merton (1973) and Campbell (1993, 1996) using a new

firm-level approach. I find that the ICAPM performs well in explaining returns.

Consistent with theoretical predictions, investors require a large positive premium

for taking on market risk and zero-beta assets earn the risk-free rate. Moreover,

investors accept lower returns on assets that hedge against adverse shifts in the in-

vestment opportunity set. The ICAPM explains more cross-sectional variation in

average returns than either the CAPM or Fama–French (1993) model. I also in-

vestigate whether the SMB and HML factors of the Fama–French model proxy for

intertemporal risk and find little evidence in favor of this conjecture.

In the second chapter, we propose an intertemporal asset-pricing model that

simultaneously resolves the puzzling negative relations between expected stock re-

turn and analysts’ forecast dispersion, idiosyncratic volatility, and credit risk. All

three effects emerge in a long-run risk economy accommodating a formal cross sec-
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tion of firms characterized by mean-reverting expected dividend growth. Higher cash

flow duration firms exhibit higher exposure to economic growth shocks while they are

less sensitive to firm-specific news. Such firms command higher risk premiums but

exhibit lower measures of idiosyncratic risk. Empirical evidence broadly supports

our model’s predictions, as higher dispersion, idiosyncratic volatility, and credit risk

firms display lower exposure to long-run risk along with higher firm-specific risk.

Lastly, in the third chapter, we examine asset-pricing anomalies at the firm

level. Portfolio-level tests linking CAPM alphas to a large number of firm character-

istics suggest that the CAPM fails across multiple dimensions. There are, however,

concerns that underlying firm-level associations may be distorted at the portfolio

level. In this paper we use a hierarchical Bayes approach to model conditional firm-

level alphas as a function of firm characteristics. Our empirical results indicate that

much of the portfolio-based evidence against the CAPM is overstated. Anomalies

are primarily confined to small stocks, few characteristics are robustly associated

with CAPM alphas out of sample, and most firm characteristics do not contain

unique information about abnormal returns.

Abstract Approved:

Thesis Supervisor

Title and Department

Date



ESSAYS IN CROSS-SECTIONAL ASSET PRICING

by

Scott Hogeland Cederburg

A thesis submitted in partial fulfillment of the
requirements for the Doctor of Philosophy

degree in Business Administration
in the Graduate College of
The University of Iowa

May 2011

Thesis Supervisor: Professor Paul A. Weller



Graduate College
The University of Iowa

Iowa City, Iowa

CERTIFICATE OF APPROVAL

PH.D. THESIS

This is to certify that the Ph.D. thesis of

Scott Hogeland Cederburg

has been approved by the Examining Committee for the thesis
requirement for the Doctor of Philosophy degree in Business
Administration at the May 2011 graduation.

Thesis Committee:

Paul A. Weller, Thesis Supervisor

David S. Bates

Matthew T. Billett

B. Ravikumar

Ashish Tiwari



ACKNOWLEDGEMENTS

I would like to thank my advisor, Paul A. Weller, for his support and guid-

ance. I also thank my other dissertation committee members: David S. Bates,

Matthew T. Billett, B. Ravikumar, and Ashish Tiwari. Each member provided

valuable help and insights while I prepared my dissertation.

In addition to my committee members, several other faculty members, fellow

PhD students, and coauthors were instrumental throughout the dissertation process.

In particular, I thank Doron Avramov, Phil Davies, Redouane Elkamhi, Satadru

Hore, Mike O’Doherty, and Tong Yao. Finally, I would like to thank Bev Berg and

Renea Jay for their outstanding help during my time at the University of Iowa.

ii



ABSTRACT

In this dissertation, I study the performance of asset-pricing models in ex-

plaining the cross section of expected stock returns. The finance literature has

uncovered several potential failings of the Capital Asset Pricing Model (CAPM).

I investigate the ability of additional risk factors, which are not considered by the

CAPM, to explain these problems. In particular, I examine intertemporal risk and

long-run risk in the cross section of returns. In addition, I develop a firm-level test

to refine and reassess the cross-sectional evidence against the CAPM.

In the first chapter, I test the cross-sectional implications of the Intertem-

poral CAPM (ICAPM) of Merton (1973) and Campbell (1993, 1996) using a new

firm-level approach. I find that the ICAPM performs well in explaining returns.

Consistent with theoretical predictions, investors require a large positive premium

for taking on market risk and zero-beta assets earn the risk-free rate. Moreover,

investors accept lower returns on assets that hedge against adverse shifts in the in-

vestment opportunity set. The ICAPM explains more cross-sectional variation in

average returns than either the CAPM or Fama–French (1993) model. I also in-

vestigate whether the SMB and HML factors of the Fama–French model proxy for

intertemporal risk and find little evidence in favor of this conjecture.

In the second chapter, we propose an intertemporal asset-pricing model that

simultaneously resolves the puzzling negative relations between expected stock re-

turn and analysts’ forecast dispersion, idiosyncratic volatility, and credit risk. All

three effects emerge in a long-run risk economy accommodating a formal cross sec-

iii



tion of firms characterized by mean-reverting expected dividend growth. Higher cash

flow duration firms exhibit higher exposure to economic growth shocks while they are

less sensitive to firm-specific news. Such firms command higher risk premiums but

exhibit lower measures of idiosyncratic risk. Empirical evidence broadly supports

our model’s predictions, as higher dispersion, idiosyncratic volatility, and credit risk

firms display lower exposure to long-run risk along with higher firm-specific risk.

Lastly, in the third chapter, we examine asset-pricing anomalies at the firm
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CHAPTER 1
INTERTEMPORAL RISK AND THE CROSS SECTION OF

EXPECTED STOCK RETURNS

1.1 Introduction

Empirical shortcomings of the Capital Asset Pricing Model (CAPM) of Sharpe

(1964) and Lintner (1965) have elicited both theoretical and empirical responses.

Theoretically, Merton (1973) and Campbell (1993, 1996) relax the strong assumption

of single-period or myopic investors to derive the Intertemporal CAPM (ICAPM),

wherein investors faced with time-varying investment opportunities may be willing

to pay a premium for assets which hedge exposure to adverse shifts in the invest-

ment opportunity set. Empirically, multifactor models such as the Fama–French

(1993) three-factor model have supplemented or even replaced the CAPM as tools

to forecast or explain the cross section of returns. The ICAPM is often used as a

theoretical justification for multifactor models with additional factors conjectured

to be related to intertemporal hedging motives.1 However, relatively little work has

directly investigated whether intertemporal risk is priced in the manner predicted

by the ICAPM.

The ICAPM has sharp implications for the cross section of returns. Sim-

ilar to the static CAPM, the ICAPM predicts that zero-beta assets should earn

the risk-free rate and that the market portfolio will carry a positive price of risk.

1For example, Fama and French (1995) state their results regarding the Fama–French
model “are consistent with a multifactor version of Merton’s (1973) intertemporal asset-
pricing model in which size and BE/ME proxy for sensitivity to risk factors in returns.” See
also Fama and French (1996), Liew and Vassalou (2000), Vassalou (2003), and Petkova
(2006) for discussions and tests of the links between the Fama–French model and the
ICAPM.
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Intertemporal risk may also be rewarded in equilibrium, so state variables that fore-

cast investment opportunities may be priced in the cross section. Past empirical

work motivates many additional factors on this basis, yet Campbell (1996) empha-

sizes that many studies do not enforce the ICAPM’s theoretical implication that

state variables can only be priced to the extent they forecast investment opportuni-

ties. The asset-pricing literature testing the ICAPM also often ignores the model’s

theoretical predictions about how intertemporal risk should be rewarded in equilib-

rium.2 Campbell (1993, 1996) develops an intertemporal asset-pricing model and

shows that a representative investor with a coefficient of relative risk aversion, γ,

greater than one should be willing to pay a premium for assets which hedge against a

decrease in expected future market returns. Campbell’s model therefore allows us to

investigate whether compensation for intertemporal risk is consistent with ICAPM

theory.

In this paper, I use a new approach to test the cross-sectional predictions

of the ICAPM. Specifically, I develop a Bayesian hierarchical model to test the

ICAPM in the spirit of Fama and MacBeth (1973), with the advantage that risk

factor loadings and prices of risk are simultaneously estimated. This approach,

similar to the test of the CAPM by Davies (2010), mitigates the measurement error

biases that typically plague cross-sectional tests. As a result, I can effectively test

the ICAPM at the firm level. I therefore base inferences on the full cross section of

2Black (1993) also raises this issue: “The people who use data often think of the
factors as rationally priced, because the factors represent risks that people care about, as
in Merton’s intertemporal asset pricing model. But they rarely tell us how the factors
should be priced; they usually don’t even predict the signs of the factor expected excess
returns” (Black (1993), p. 36, his emphasis).



3

returns, rather than testing among portfolios where results are known to be sensitive

to the choice of test assets (e.g., Ahn, Conrad, and Dittmar (2009) and Lewellen,

Nagel, and Shanken (2010)). Further, testing asset-pricing models among individual

firms generally achieves higher power (Litzenberger and Ramaswamy (1979) and

Ang, Liu, and Schwarz (2010a)) and avoids various problems that can occur when

aggregating firm returns into portfolios, such as wasting or distorting information

in firm returns.3

Perhaps more importantly, I directly include estimated innovations in the

market risk premium and real interest rate as additional factors while testing the

ICAPM. The ICAPM is commonly tested by specifying a multifactor model with

several macroeconomic variables as additional factors. Often, these variables are

shown to predict investment opportunities, either individually or in combination.

However, as noted by Campbell (1996), the ICAPM implies that the prices of risk

for these state variables depends on their ability to jointly forecast investment op-

portunities, while most studies leave the prices of risk unconstrained. This approach

does not satisfy Campbell’s (1996) critique since the components of the macroeco-

nomic variables that are orthogonal to investment opportunities are allowed to be

priced. Further, examining the ICAPM’s predictions about how intertemporal risks

should be priced in equilibrium is difficult using this approach. In contrast, by

directly including shifts in investment opportunities as additional factors, I explic-

itly enforce Campbell’s critique and can examine the theoretical implications of the

3See, for example, Roll (1977), Lo and MacKinlay (1990), Kandel and Stambaugh
(1995), Conrad, Cooper, and Kaul (2003), Kan (2004), Daniel and Titman (2006b), and
Fama and French (2008) for potential problems with portfolios.
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ICAPM by relating estimates from my approach to Campbell’s (1993, 1996) model.

Over the period 1963 to 2008, I find that the ICAPM performs well when

explaining firm returns. Zero-beta assets earn returns equal to the risk-free rate

and market risk is significantly positively rewarded, consistent with the predictions

of the ICAPM. The intertemporal risk factors based on innovations in the market

risk premium and real interest rate also help explain the cross section of returns, as

the ICAPM achieves a cross-sectional R2 of 35% compared to 20% for the CAPM.

Moreover, I examine whether risks are being priced in accordance with ICAPM

theory. I show that the compensation for intertemporal risk is consistent with

equilibrium asset pricing in an economy where the representative investor has γ > 1.

Specifically, investors require a positive premium to hold assets that perform poorly

when the market risk premium decreases, while they accept lower returns on assets

that hedge against these unfavorable shocks. Similarly, investors require a higher

premium for stocks that covary positively with changes in the real interest rate.

Overall, the ICAPM performs well in explaining firm returns and several theoretical

implications of the model are supported in the data.

While the results support the ICAPM and provide evidence about the eco-

nomic determinants of expected returns, predicting firm returns using the ICAPM

is challenging. The intertemporal risk factors have relatively low volatility and are

imperfectly measured, contributing to uncertainty in estimates of expected returns.

As Cochrane (2008b) notes, a factor model formed with mimicking portfolios may

perform better than the true model under these conditions. The prior literature

has proposed an intertemporal hedging explanation for the SMB and HML factors
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of the Fama–French (1993) model, suggesting these factors may serve as mimicking

portfolios for the underlying intertemporal risks. I investigate this conjecture by

examining the Fama–French model in the context of the ICAPM.

Perhaps surprisingly, the Fama–French model underperforms the ICAPM

when explaining firm returns. The SMB and HML factors are significantly priced in

the cross section, but the ICAPM explains more variation in average returns than

the Fama–French model. More importantly, the components of SMB and HML

that are orthogonal to investment opportunities are supplying the pricing ability of

the model. There is little relation between the SMB and HML factors and the in-

tertemporal risk factors. Additionally, alternative intertemporal risk factors formed

using state variables based on SMB and HML to forecast investment opportunities

perform relatively poorly and are dominated in pricing ability by the SMB and

HML factors themselves. Overall, the conjecture that SMB and HML proxy for

intertemporal risks is not supported in the empirical tests.

This paper contributes to the asset-pricing literature testing the ICAPM.

In contrast to many previous studies, I enforce Campbell’s critique and examine

whether risks are priced in accordance with ICAPM theory. While Campbell (1996),

Hodrick, Ng, and Sengmueller (1999), and Chen (2003) are notable exceptions to

these criticisms, they approach the ICAPM using a VAR approach that necessitates

the use of a small number of test assets. As such, their results may be sensitive to

using alternative sets of assets. In contrast, I develop a regression-based approach

that allows me to test the ICAPM across the full cross section of firm returns.

This paper also contributes to the literature searching for an economic explanation
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of the Fama–French model’s empirical success. Past studies supporting an ICAPM

explanation for the Fama–French model tend to fall subject to the criticisms outlined

above. While enforcing the theoretical implications of the ICAPM, I find little

evidence that SMB and HML are related to intertemporal risk.

The remainder of the paper is organized as follows. Section 1.2 discusses

the cross-sectional predictions of the ICAPM. Section 1.3 introduces the model and

estimation procedure. Section 1.4 contains a description of the data and estimates

of the determinants of the investment opportunity set. Section 1.5 tests the ICAPM

and examines the Fama–French model in the context of the ICAPM. Section 1.6

concludes.

1.2 ICAPM Theory and Related Literature

In this section, I discuss the theory of the ICAPM as it relates to cross-

sectional asset pricing and review the associated literature. Section 1.2.1 presents

the cross-sectional predictions of the ICAPM. Section 1.2.2 discusses the findings in

related research.

1.2.1 Cross-Sectional Implications of the ICAPM

Merton (1973) develops the ICAPM and draws several implications for the

cross section of returns. Most importantly, Merton shows that investors may wish to

hedge against shifts in the investment opportunity set. As a result, state variables

that forecast investment opportunities may appear as priced risk factors in the cross
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section.4 Extending this literature, Campbell (1993, 1996) develops an intertempo-

ral asset-pricing model in discrete time, relying on a log-linear approximation to

solve the model. Campbell’s framework is particularly helpful for understanding

the underlying intuition of the ICAPM and developing predictions about how fac-

tors should be priced in equilibrium, so I build on his model in this paper.

Following Campbell (1993, 1996), I consider an economy where every asset

is tradable (including human capital) and there exists a representative agent. The

representative investor has non-separable recursive utility proposed by Epstein and

Zin (1989, 1991) and Weil (1989),

Ut =
[
(1− β)C

(1−γ)/θ
t + β

(
EtU

1−γ
t+1

)1/θ]θ/(1−γ)
, (1.1)

where Ct is consumption, γ is the coefficient of relative risk aversion, β is a time-

preference parameter, σ is the elasticity of intertemporal substitution, and θ =

(1− γ)/[1− (1/σ)]. The investor optimizes utility subject to the budget constraint,

Wt+1 = Rm,t+1(Wt − Ct), (1.2)

where Wt is wealth and Rm,t is the gross return on the market portfolio.5

4While Merton (1969, 1971) and Fama (1970) show the CAPM holds in a multiperiod
setting if agents’ preferences and investment opportunities are not state dependent, there
is ample evidence that the investment opportunity set is stochastic. For example, several
variables forecast market returns, including the market dividend yield (Campbell and
Shiller (1988) and Fama and French (1988)), the term and default spreads (Fama and
French (1989)), book-to-market (Kothari and Shanken (1997)), and the consumption-to-
wealth ratio (Lettau and Ludvigson (2001b)).

5Campbell (1993, 1996) provides a log-linearized approximation to the solution of the
representative investor’s problem under the assumption of homoskedastic asset returns
and consumption growth. Within Campbell’s framework, Chen (2003) examines the im-
plications of heteroskedasticity on asset prices. Exposure to changes in market volatility
affects equilibrium expected returns in this case, but Chen finds that the quantitative
impact is small. I concentrate on the homoskedastic case for simplicity.
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Within this economy, Campbell (1996) develops an intertemporal asset-pricing

equation with no reference to consumption. Specifically,

Etr
e
i,t+1 +

Vii
2

= γVim + (γ − 1)Vih, (1.3)

where lower-case letters are logs, rei,t+1 denotes the excess return on stock i, Vii is

the variance of stock i’s returns and the Vii/2 term arises from Jensen’s Inequality

with log returns, the covariance between firm returns and market returns is

Vim = Covt
(
rei,t+1, r

e
m,t+1

)
, (1.4)

and Vih is a term related to intertemporal risk defined as

Vih = Covt

(
rei,t+1, (Et+1 − Et)

∞∑
j=1

ρjrm,t+1+j

)
. (1.5)

The Vih term is stock i’s covariance with expected discounted changes in future

market returns, which captures the stock’s exposure to changes in the investment

opportunity set.

Changes in expected market returns may be a priced risk factor according

to equation 1.3. The sign of the effect on expected returns depends on the level

of investor risk aversion. Investors face a tradeoff when considering the impact of

future market returns on their investment decisions. Suppose a particular stock

tends to earn high returns when investment opportunities improve and low returns

when opportunities worsen. On one hand, investors enjoy earning high returns and

having more wealth to invest during periods when wealth is most productive. On

the other hand, investors dislike experiencing low returns and being poorer when

investment opportunities are degrading. This tradeoff leads to some ambiguity about
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the premium investors require for owning a stock whose returns are correlated with

shocks to expected market returns.

Investor preferences determine the optimal response to intertemporal risk.

Fama (1970), Campbell (1993, 1996), and others note that investors behave myopi-

cally if γ = 1, so these investors ignore changes in the investment opportunity set.

Agents with a coefficient of relative risk aversion less than one, γ < 1, prefer to be

wealthy when they have the greatest opportunity to profit from their wealth. All

else equal, these investors are willing to pay a higher price for stocks that pay off

when investment opportunities are improving. Conversely, more risk averse investors

with γ > 1 wish to hedge their exposure to changes in investment opportunities.

Due to this hedging motive, these investors are willing to pay a premium for stocks

which earn high returns when investment opportunities worsen, which results in less

uncertainty about their consumption stream. Equilibrium risk premiums depend on

the risk aversion of the representative investor.

Campbell (1993, 1996) writes the asset-pricing equation 1.3 in terms of the

gross expected market return. As (Cochrane, 2005, Ch. 1) notes, however, “Our

economic understanding of interest rate variation turns out to have little to do with

our understanding of risk premia, so it is convenient to separate the two by looking

at interest rates and excess returns separately.” I take this approach by closely

approximating the covariance given by equation 1.5 as the sum of two covariances,

Vih ≈ Vim + Vir, (1.6)
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where

Vim = Covt

(
rei,t+1, (Et+1 − Et)

∞∑
j=1

ρjrem,t+1+j

)
, (1.7)

Vir = Covt

(
rei,t+1, (Et+1 − Et)

∞∑
j=1

ρjrf,t+j

)
, (1.8)

rf,t is the risk-free rate known at the end of period t and earned during period t+1,

and rem,t+1 is the excess market return earned during period t+ 1.6

Working with this approximation, the asset-pricing equation 1.3 becomes

Etr
e
i,t+1 +

Vii
2

= γVim + (γ − 1)Vim + (γ − 1)Vir. (1.9)

This equation has several immediate implications for the cross section of stock re-

turns. First, exposure to market risk should be positively priced in the cross section,

similar to the implication of the static CAPM. Second, exposures to changes in the

investment opportunity set proxied by the real risk-free rate and the market risk

premium may be priced. It is commonly assumed in the asset-pricing literature that

γ > 1, so the reward for Vir and Vim should likely be positive.7 Finally, after con-

trolling for exposures to market risk and changes in the investment opportunity set,

additional risk factors or characteristics should not be related to expected returns.

6See Appendix A.1.1 for further details.

7For example, Campbell and Cochrane (1999), Gomes, Kogan, and Zhang (2003),
Bansal and Yaron (2004), and Menzly, Santos, and Veronesi (2004) assume relative risk
aversion is greater than one. Relatively high risk aversion is likely needed to match
the observed level of the equity premium (e.g., Mehra and Prescott (1985)). Moreover,
Campbell and Cochrane (1999) contend that risk aversion needs to be relatively high to
simultaneously produce high Sharpe ratios with low consumption volatility at short and
long horizons.
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1.2.2 Literature Review

Several papers have investigated the pricing of macroeconomic state variables

in the cross section of stock returns, often citing the ICAPM for theoretical motiva-

tion. As Campbell (1996) points out, however, most of these papers do not impose

the theoretical restriction from the ICAPM that state variables only be priced to

the extent that they forecast investment opportunities.8 There are some notable ex-

ceptions to this criticism: Campbell (1996), Hodrick, Ng, and Sengmueller (1999),

Chen (2003), and Brennan, Wang, and Xia (2004).

As shown above, Campbell (1993, 1996) establishes an insightful framework

for exploring the effect of intertemporal hedging on asset prices. He develops a

model with time-varying expected market returns and labor income that is not fully

captured by the proxy for aggregate wealth. Campbell (1996) uses a VAR approach

to empirically implement his equilibrium multifactor model in the cross section using

10 size, 12, industry, and 3 bond portfolios. Generally, Campbell finds that the static

CAPM provides a good first-order approximation to the cross section of expected

returns. This occurs because innovations in both expected market returns and labor

income are highly negatively correlated with realized market returns in Campbell’s

model. As a result, the market factor picks up a large portion of the other two

sources of risk.

8Chen, Roll, and Ross (1986), Vassalou (2003), Hahn and Lee (2006), and Sohn (2009),
among others, measure the prices of risk for macroeconomic variables without restricting
parameters in accordance with their ability to forecast returns. Ferson and Harvey (1999)
do impose a constraint that state variables only be priced to the extent that they are
related to future returns. However, their focus is somewhat different and they include
levels of the state variables in the cross-sectional regression rather than the unanticipated
changes in these state variables which should be priced according to ICAPM theory.
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Hodrick, Ng, and Sengmueller (1999) extend Campbell’s (1993, 1996) model

to an international context. They find evidence in favor of several ICAPM predic-

tions, as the model explains the cross section of G7 country equity index returns

and the estimated coefficient of relative risk aversion is reasonable at around five.

However, the ICAPM is unable to explain the returns of international portfolios

based on book-to-market.

Chen (2003) incorporates stochastic market volatility into Campbell’s (1993,

1996) framework. In equilibrium, investors require compensation for taking on expo-

sure to changes in market volatility. Empirically, Chen finds that expected returns

for three long-short portfolios based on size, book-to-market, and momentum do not

appear to be fully explained by an intertemporal hedging motive. Further, expected

returns are not substantially affected by the introduction of volatility to the set of

state variables for investment opportunities.

The VAR approach implemented by Campbell (1996), Hodrick, Ng, and Sen-

gmueller (1999), and Chen (2003) has advantages and disadvantages. This method-

ology permits a researcher to ensure that state variables are only priced to the

extent they forecast investment opportunities. Further, the method allows for an

examination of the compensation for various risks to determine whether the esti-

mates are consistent with ICAPM theory. However, these positive features do not

come without a cost. The VAR approach must be implemented among a small

set of test assets. Since asset-pricing model tests are sensitive to the set of test

assets, we may have poor inferences about a model when the set of test assets is re-

stricted. An alternative and more common way to test asset-pricing models is to use
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a two-step regression approach (e.g., Fama and MacBeth (1973)). In Section 1.3, I

develop a Bayesian hierarchical model based on the asset-pricing equation (1.9) and

take a regression-based approach similar to Fama–MacBeth while avoiding several

problems associated with the two-step method. Using this approach, I can test the

ICAPM across the full cross section of firms while maintaining the advantages noted

above.

Brennan, Wang, and Xia (2004) take a regression-based approach to test the

ICAPM. They posit a stochastic discount factor that is linear in market returns as

well as innovations in the maximal Sharpe ratio and real interest rate. This model

implies that exposure to market risk and changes in the investment opportunity

set will be priced in the cross section. They filter the maximal Sharpe ratio from

government bond yield data according to the theoretical relation between duration

and risk premiums that arises in their model and estimate the real interest rate

using bond yield and expected inflation data. Brennan, Wang, and Xia then esti-

mate the ICAPM factor exposures of 25 size and book-to-market portfolios and 30

industry portfolios. Finally, they test whether the estimated exposures are priced in

the cross section and find significant prices of risk. Similar to my approach, Bren-

nan, Wang, and Xia implement a regression-based test of the ICAPM that enforces

Campbell’s (1996) critique. However, they do not examine whether rewards for risk

are consistent with ICAPM theory.

A related literature examines the Fama–French (1993) three-factor model in

the context of the ICAPM. Fama and French (1996) discuss the possibility that

the SMB and HML factors proxy for ICAPM state variables. They suggest that
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systematic distress risk may underly the empirical success of the factors. Liew and

Vassalou (2000) show that SMB and HML contain some information about future

GDP growth. Similar in spirit, Lettau and Ludvigson (2001a) and Vassalou (2003)

show that the pricing abilities of SMB and HML are at least partially shared with

macroeconomic variables. Petkova (2006) points out that these studies do not di-

rectly examine the Fama–French model in an ICAPM context, since they do not

consider Campbell’s (1996) critique that factors can only be priced to the extent

they forecast investment opportunities. Petkova includes unexpected changes in

macroeconomic variables that have been shown to forecast market returns as ad-

ditional factors in her specification. However, this approach does not fully satisfy

Campbell’s critique since components of the macroeconomic variables that are or-

thogonal to investment opportunities may account for the non-zero prices of risk. In

contrast, I strictly impose this restriction by directly including market risk premium

and real interest rate shocks as additional factors.

1.3 Model

In this section, I present my empirical framework for testing the cross-

sectional implications of the ICAPM. Section 1.3.1 introduces the model and Section

1.3.2 describes the estimation procedure. Section 1.3.3 discusses the advantages and

disadvantages of my methodology for testing the ICAPM.

1.3.1 Model Outline

Motivated by the asset-pricing equation (1.9), I develop a regression-based

approach to test the cross-sectional implications of the ICAPM. For each asset i in
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each three-year period y, I estimate

rei,t,y = αi,y + βmi,yr
e
m,t,y + βmi,yηm,t,y + βri,yηr,t,y + ϵi,t,y, ϵi,t,y ∼ N(0, σ2

i,y), (1.10)

where rei,t,y and rem,t,y are log real excess returns in month t for asset i and the

market, respectively, and ηm,t,y and ηr,t,y are the unexpected changes in the market

risk premium and real interest rate during month t. Factor loadings for each asset i

are estimated using 36 months of data and are allowed to change every three years,

so I am testing conditional versions of the factor models. The model can also be

easily extended to accommodate additional risk factors or characteristics.

In order to examine whether the risk factors are priced within each period, I

estimate

rei,y +
s2i,y
2

= λ0,y + λm,yβ
m
i,y + λm,yβ

m
i,y + λr,yβ

r
i,y + ϵi,y, ϵi,y ∼ N(0, σ2

y), (1.11)

where rei,y and s2i,y are the mean and variance of returns for asset i in period y.9

The s2i,y/2 term is a Jensen’s Inequality adjustment analogous to that in the asset-

pricing equation (1.9). Equations (1.10) and (1.11) measure the relation between

factor loadings and average returns in each three-year period. If a particular risk is

priced in the cross section, however, exposure to this risk should be systematically

rewarded over time. Therefore, I aggregate the price of risk estimates across the

entire sample period. In particular, I assume that λy is centered around the full-

9Since ηm,t,y and ηr,t,y are untraded factors, αi,y in equation (1.10) should take the
form αi,y = α∗

i,y + λm,yβ
m
i,y + λr,yβ

r
i,y ((Campbell, Lo, and MacKinlay, 1996, Ch. 6)),

where α∗
i,y is the stock’s abnormal return relative to the ICAPM and λm,yβ

m
i,y + λr,yβ

r
i,y

is the expected compensation in month t of period y for exposure to intertemporal risks.
I have explored setting the prior mean of αi,y to λm,yβ

m
i,y + λr,yβ

r
i,y, but I specify a large

prior variance on αi,y so the effect of this change is trivial.
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period price of risk λ,

λy = λ+ ϵy, ϵy ∼ N(0, Vλ). (1.12)

If a component of the vector λ is different from zero, there is evidence that the cor-

responding risk factor is systematically priced in the cross section. In the remainder

of the paper, I refer to λ when discussing a price of risk.

Given test asset and market returns, as well as time series of unexpected

changes in the market risk premium and real interest rate (ηm and ηr, respectively),

equations (1.10) to (1.12) examine whether ICAPM risk factors are priced in the

cross section. However, the market risk premium and real interest rate are unob-

servable, so ηm and ηr are not readily available. I now discuss the procedure for

estimating these factors.

I estimate ηm using the predictive systems framework of Pástor and Stam-

baugh (2009). Using this methodology, market returns, the market risk premium,

and a set of predictive variables x (typically macroeconomic variables) obey a VAR,

rem,t∗ = rem,t∗−1 + ηm,t∗ , (1.13.1)

rem,t∗ = (1− ϕm)Em + ϕmr
e
m,t∗−1 + ηm,t∗ , (1.13.2)

xt∗ = (I − ϕx)Ex + ϕxxt∗−1 + ηx,t∗ , (1.13.3)

ηt∗ ∼ N(0,Σ), (1.13.4)

where t∗ = (y−1)T +t re-indexes time for ease of notation. The parameters Em and

Ex denote the long-run means of the market risk premium and predictive variable

processes, while ϕm and ϕx are parameters for the speed of mean reversion of these
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processes. In contrast to commonly-used predictive regressions which specify the

market risk premium to be a perfect linear function of predictive variables, predictive

systems allow for imperfect prediction of the market risk premium. Information from

the predictive variables enters the estimate of the market risk premium through

(potentially) correlated errors in equations (1.13.2) and (1.13.3). Furthermore, if

the market risk premium is not perfectly predicted by the state variables, there may

be correlation between the errors in the market return and market risk premium

(equations (1.13.1) and (1.13.2)) which can be captured by the model.

The error in equation (1.13.2), ηm, is the unexpected change in the market

risk premium which enters into the regression equation (1.10). This term corre-

sponds to the Vim term in the asset-pricing equation (1.9), which can be written,10

Vim =
1

ϕm(1− ϕmρ)
Covt

(
rei,t+1, ηm,t+1

)
. (1.14)

ICAPM theory therefore implies that asset i’s risk premium may depend on the

covariance of its returns with ηm, which enters directly into the regression equation

(1.10) as an additional factor.

Finally, I estimate ηr using a Forward Filtering, Backward Sampling (FFBS)

technique.11 Specifically, I assume that the real interest rate and expected inflation

10See Appendix A.1.2 for derivation.

11FFBS was developed by Carter and Kohn (1994) and Frühwirth-Schnatter (1994).
Also see West and Harrison (1997) for additional information about FFBS.
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obey

rn,t∗ = rf,t∗ + Et∗ [πt∗+1] + ϵr,t∗+1, (1.15.1)

πt∗+1 = Et∗ [πt∗+1] + ϵπ,t∗+1, (1.15.2)

rf,t∗ = ϕrrf,t∗−1 + ηr,t∗ , (1.15.3)

Et∗ [πt∗+1] = ϕπEt∗−1[πt∗ ] + ηπ,t∗ , (1.15.4)

ϵt∗+1 ∼ N(0, V ), (1.15.5)

ηt∗ ∼ N(0,W ), (1.15.6)

where rn,t is the nominal interest rate known at the end of month t and earned during

month t + 1, rf,t is the real risk-free rate, and πt is realized inflation during month

t. In this system, the nominal interest rate is the sum of the real interest rate and

expected inflation plus a small measurement error. I further assume that expected

inflation is an unbiased estimate of realized inflation. Finally, the real interest

rate and expected inflation follow (potentially) correlated AR(1) processes. The

unexpected change in the real interest rate that enters into the regression equation

(1.10) is the error term from equation (1.15.3), ηr, since
12

Vir =
1

ϕr(1− ϕrρ)
Covt

(
rei,t+1, ηr,t+1

)
. (1.16)

The asset-pricing equation (1.9) implies that, assuming γ > 1, the expected

return on asset i should be positively related to the covariance of its returns with

changes in the risk-free rate and market risk premium. We can recover estimates of

the coefficients on Vim, Vim, and Vir from equation (1.12) of the regression approach.

12See Appendix A.1.2 for derivation.
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Rewriting equation (1.9) to allow these coefficients to be free parameters and allow

for a non-zero intercept, we have

Etr
e
i,t+1 +

Vii
2

= b0 + bmVim + bmVim + brVir. (1.17)

Estimates of the b coefficients in equation (1.17) can be made using λ from equation

(1.12). Specifically,13

b0 = λ0 (1.18)

and 
bm

bm

br

 = (ΣZZ ′)−1


λm

λm

λr

 , (1.19)

where Σ is the covariance matrix of the market excess returns and intertemporal

risk factors and Z is a scaling factor,

Z =


1√

ϕm(1− ϕmρ)√
ϕr(1− ϕrρ)

 . (1.20)

I set ρ = 0.9949 following Campbell (1996). In equilibrium, we expect b0 = 0,

bm > 1, bm > 0, and br > 0 when γ > 1.

1.3.2 Model Estimation

The model in equations (1.10) to (1.13) and equation (1.15) involves a high-

dimensional parameter space since firm-specific parameters must be estimated for

thousands of firms each period. As such, using maximum likelihood estimation is

13See Appendix A.1.3 for further details.
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computationally challenging. An alternative estimation strategy is the generalized

method of moments (GMM). An advantage of GMM is that it does not require

strong distributional assumptions on parameters. However, Ferson and Foerster

(1994) show that GMM has rather poor finite-sample properties, especially when

the number of parameters and test assets is large.

I adopt a Bayesian hierarchical approach to estimate the model.14,15 The

principle advantages of using a Bayesian framework are exact finite-sample inference

and a complete accounting of parameter uncertainty. For example, uncertainty

about ηm and ηr as well as assets’ loadings on these factors is fully reflected in the

posterior distribution of λ.

As a result of taking a Bayesian approach, I must specify explicit priors. I

specify proper and diffuse priors for all model parameters with the following excep-

tions. I adopt Pástor and Stambaugh’s (2009) approach by introducing some prior

information about the nature of the market risk premium, including information

regarding the long-run average market return, the speed of mean reversion, and the

correlation between shocks to the market risk premium and current market returns.

Further discussion on these prior parameter choices is included in Appendix A.2

14Several papers have used Bayesian techniques to examine asset-pricing models. Mc-
Culloch and Rossi (1991) and Geweke and Zhou (1996) develop Bayesian analyses of
the Arbitrage Pricing Theory (APT), while Shanken (1987), Harvey and Zhou (1990),
Kandel, McCulloch, and Stambaugh (1995), and Cremers (2006) propose Bayesian tests
for the mean-variance efficiency of a given portfolio. Ang and Chen (2007) use Bayesian
methods to examine whether the conditional CAPM can explain the value premium. Cose-
mans, Frehen, Schotman, and Bauer (2009), Davies (2010), and Cederburg, Davies, and
O’Doherty (2010) use Bayesian approaches to test the CAPM.

15See (Rossi, Allenby, and McCulloch, 2005a, Ch. 5) for a discussion of Bayesian hier-
archical models.
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and in Pástor and Stambaugh (2009). Inferences are not sensitive to reasonable

alterations to the prior parameters.

Within a Bayesian framework, I estimate my model using a Markov chain

Monte Carlo (MCMC) technique. Within each iteration, I first draw time series of

ηm and ηr from the systems of equations (1.13) and (1.15), respectively. Drawing

new time series of these factors in each iteration ensures that my posterior distri-

butions fully reflect the uncertainty about these unobserved sequences.16 I then use

these draws as factors in equation (1.10) when estimating equations (1.10) to (1.12).

In contrast to the traditional Fama–MacBeth approach which estimates these equa-

tions sequentially, I estimate this system of equations simultaneously as a Bayesian

hierarchical model. More specifically, equation (1.12) is a hierarchical prior for the

λy parameters in equation (1.11), while equation (1.11) acts as a hierarchical prior

for the βi,y parameters in equation (1.10). My approach to estimating equations

(1.10) to (1.12) is similar to that of Davies (2010), who tests the cross-sectional

implications of the CAPM using a one-step procedure.

1.3.3 Model Discussion

My approach to testing the ICAPM has several advantages. From an eco-

nomic perspective, I examine whether risks are priced in accordance with ICAPM

theory while imposing the theoretical restrictions implied by the model. From a

methodological perspective, I use a one-step procedure to estimate factor loadings

16In this paper, I assume that the cross section of returns contains no additional infor-
mation about ηm and ηr. I include details in Appendix A.2 about how to incorporate this
extra information.
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and prices of risk to mitigate biases from measurement error, test the ICAPM at

the firm level, and implement Pástor and Stambaugh’s (2009) predictive systems

approach to obtain better estimates of the market risk premium. Below, I discuss

these features of my methodology.

While testing the ICAPM, I directly include ηm and ηr as risk factors in the

regression equation (1.10). A common alternative for testing the ICAPM is to show

that a set of state variables has some ability to forecast investment opportunities

and then form a multifactor model using these state variables as additional factors.

However, this approach is susceptible to Campbell’s critique. The multifactor model

could describe the cross section of returns for reasons unrelated to intertemporal risk.

In particular, the components of the state variables that contain no incremental

information about investment opportunities may provide the pricing ability of the

model. By directly including ηm and ηr in equation (1.10), state variables are only

allowed to explain returns through the channel of the intertemporal risk factors

which satisfies Campbell’s critique. In addition, examining ηm and ηr simplifies

the task of determining whether intertemporal risks are priced in accordance with

the theoretical predictions of the ICAPM outlined in Section 1.3.1. In contrast,

determining the anticipated sign for several state variables that may or may not

predict investment opportunities is a more difficult task, and consequently often

ignored.

Regarding the estimation methodology, the first important aspect of my ap-

proach is the simultaneous estimation of equations (1.10) to (1.12). As Davies

(2010) notes, this one-step approach allows the researcher to retain several desirable
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features of the Fama–MacBeth (1973) methodology while reducing or eliminating

several issues with a two-step approach. Both methods allow firm factor loadings

to change over time, allowing the researcher to test conditional versions of factor

models. Further, the one-step approach implicitly reflects any heteroskedasticity

and cross-correlations in the cross section of firm returns, similar to this feature of

Fama–MacBeth shown by Shanken (1992). Therefore, I can test a model using a

large number of test assets without the need to estimate a large variance-covariance

matrix.

While maintaining the positive features of the Fama–MacBeth (1973) proce-

dure, the one-step approach makes important improvements. Notably, this method

mitigates the errors-in-variables (EIV) problem that commonly plagues cross-sectional

tests of asset-pricing models. The EIV problem arises during the second step of

Fama–MacBeth tests, a cross-sectional regression of average returns on estimated

factor loadings. This issue is avoided when the model is estimated in one step.

Davies (2010) shows that measurement errors produce strongly biased estimates of

prices of risk in tests of the CAPM, and inferences about the model change substan-

tially when the one-step approach is used. Measurement error is likely to be an even

larger problem when testing the ICAPM using the traditional approach. The rela-

tively low volatility of ηm and ηr reduces the precision of factor loading estimates,

which would result in an understatement of the importance of intertemporal risks.

The characteristics of the one-step approach lead to the second advantage of

my approach, which is the ability to effectively use individual firms as test assets. As

noted by Black, Jensen, and Scholes (1972) and Fama and MacBeth (1973), among



24

others, the EIV problem in two-step tests is exacerbated by the low precision of

firm factor loading estimates. In response, researchers typically turn to portfolios

in tests of asset-pricing models. However, several potential problems arise from

using portfolios. Litzenberger and Ramaswamy (1979) and Ang, Liu, and Schwarz

(2010a) argue that valuable information is lost when forming portfolios, leading to

lower power in asset-pricing tests. Further, information about firm-level returns

can be distorted when forming portfolios, potentially resulting in poor inferences

about a model (e.g., Roll (1977), Kandel and Stambaugh (1995), and Fama and

French (2008)).17 Consistent with these assertions about problems with portfolios,

inferences about asset-pricing models appear to be quite sensitive to the choice of

test assets (e.g., Daniel and Titman (2006b), Ahn, Conrad, and Dittmar (2009),

and Lewellen, Nagel, and Shanken (2010)). Directly using individual firms avoids

these issues, and the one-step approach is well suited for testing models using the

full cross section of firms.

The third key aspect of my approach lies in the estimation of the innovations

in the market risk premium. Estimates of the price of risk for ηm will generally be

more precise the better is the estimate of the premium. The market risk premium

can be estimated using a variety of techniques.18 I work within the predictive

systems framework of Pástor and Stambaugh (2009). Unlike predictive regressions

17For other concerns, see Lo and MacKinlay (1990), Conrad, Cooper, and Kaul (2003),
and Kan (2004).

18Methods for estimating the market risk premium include predictive regressions (e.g.,
Fama and Schwert (1977) and Campbell (1987)), valuation models (e.g., Fama and French
(2002)), and the implied cost of capital (Pástor, Sinha, and Swaminathan (2008)).
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that make the unrealistic assumption that the market risk premium is perfectly

predicted by a set of state variables, Pástor and Stambaugh’s methodology allows

for imperfect prediction. In this context, additional information about the market

risk premium can be taken from market returns through correlated errors.19 Pástor

and Stambaugh (2009) present evidence that the predictive systems outperform

predictive regressions when predicting market returns.

ICAPM investors may require compensation for taking on exposure to changes

in the investment opportunity set. In this paper, I take the market risk premium and

real interest rate as state variables that forecast investment opportunities. However,

investors may be interested in additional state variables, such as market volatility.

Chacko and Viceira (2005) develop a model with stochastic volatility in incomplete

markets and find that market volatility is negatively priced by investors. In prac-

tice, however, they contend that volatility is not variable and persistent enough to

generate large intertemporal hedging demands. Similarly, Chen (2003) finds that

hedging demand related to market volatility does not cause statistically or econom-

ically significant differences in expected returns. Therefore, I concentrate on the

market risk premium and real interest rate to test the ICAPM.

19The correlation between market return and market risk premium errors is likely nega-
tive. While negative correlation between current market returns and the market risk pre-
mium leads to a potential explanation of the excess volatility puzzle of LeRoy and Porter
(1981) and Shiller (1981) (e.g., Cochrane (1992)), positive correlation would deepen the
puzzle (Pástor and Stambaugh (2009)). For empirical evidence of negative correlation, see
Campbell (1991), Campbell and Ammer (1993), and van Binsbergen and Koijen (2010).



26

1.4 Data and Preliminary Estimation

In this section, I discuss the data used in testing the ICAPM and show

estimates of the market risk premium and real interest rate. Section 1.4.1 concen-

trates on ηm and ηr, while Section 1.4.2 examines the other risk factors included in

the asset-pricing tests. Section 1.4.3 discusses the test assets used for testing the

ICAPM.

1.4.1 Investment Opportunity Set

Changes in the investment opportunity set are proxied by unexpected shocks

to the market risk premium and real interest rate. I estimate ηm over the period

July 1963 to June 2008 using a predictive system. Following Petkova (2006), I use

the aggregate dividend-to-price ratio, term spread, risk-free rate, and the default

spread as macroeconomic state variables.

Figure 1.1 shows estimates of the market risk premium using both a predic-

tive system and a predictive regression. While the estimates from the two methods

appear to be closely related, there are several instances where the approaches dis-

agree about the level and changes in the market risk premium. Mean draws from the

posterior distribution of the predictive system parameters in equation (1.13) appear

in Panel A of Table 1.1. Consistent with the prior literature, the four state variables

appear to provide information about market returns. Additional information about

the market risk premium is provided through the correlated errors between expected

and realized market returns, while the predictive regression ignores this information.

Consistent with Pástor and Stambaugh (2009), I find that the predictive



27

system forecasts stock market returns more accurately than the predictive regression.

Market risk premium estimates from a predictive system have an adjusted R2 of 5.7%

in predicting the next month’s excess return on the value-weighted CRSP index,

while a predictive regression achieves an adjusted R2 of 5.4%. All else equal, a more

accurate market risk premium estimate should lead to a more precise estimate of

the price of risk for ηm.

To estimate the real interest rate, I use information about Treasury bill yields

and realized inflation. I use the one-month Treasury bill rate from Kenneth French’s

website as the nominal interest rate. The personal consumption expenditures (PCE)

price index serves as my proxy for realized inflation.20 PCE is a chained index

which adjusts for consumer substitution across goods in response to price changes,

in contrast to the consumer price index (CPI) which is a fixed-basket index. I use

core inflation data to eliminate the effects of transitory movements in food and

energy prices which are less likely to influence expected inflation.

Figure 1.2 graphs the estimates of the nominal interest rate and expected

inflation during the sample period. The difference between the nominal interest

rate and expected inflation is the real interest rate, shown in Figure 1.3. The

real interest rate tends to be fairly persistent during normal economic periods, and

is generally punctuated by increases prior to NBER recessions and sharp decreases

during recessionary periods. The mean parameter draws for the system of equations

(1.15) appear in Panel B of Table 1.1.

20PCE data is available at http://research.stlouisfed.org/fred2/.
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1.4.2 Risk Factors

In the previous section, I estimate time series of ηm and ηr, which may be

priced in the cross section according to ICAPM theory. I therefore include these

variables as factors in the cross-sectional tests. I annualize the ηm and ηr factors by

multiplying monthly estimates by 12. I assume the excess return on the aggregate

wealth portfolio is a linear function of the excess return on the value-weighted CRSP

stock market index. Factor return data for the Fama–French (1993) three-factor

model is from Kenneth French’s website.

Table 1.2 shows summary statistics of the risk factors. Panel A reports

averages and standard deviations. The series of ηm and ηr are less volatile than the

returns on the market, SMB, and HML portfolios. Panel B of Table 1.2 contains the

correlation matrix for the risk factors. The ηm factor is strongly negatively correlated

with market returns as expected, while it has lower correlations with SMB and HML.

The ηr factor, on the other hand, is nearly uncorrelated with market returns, SMB,

and HML.

1.4.3 Test Assets

I conduct tests of the ICAPM using individual firms as test assets. I include

all firm-periods on the NYSE, Amex, or NASDAQ exchanges with the required

data available on CRSP and Compustat. I exclude financial firms (SIC code 6000–

6999) from the sample. I use three-year periods and monthly subperiods. Since

the sample period is July 1963 to June 2008, there are 15 three-year periods in

the sample. I require that each firm has all monthly returns during the period for
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the firm-period to be included in the sample. The final sample includes 37, 648

firm-period observations. I use real returns in all tests.

Firm size and book-to-market are calculated for each firm year using data

from CRSP and Compustat. Let j denote the first year of period y. Size is the

natural log of price per share times the number of outstanding shares at the end of

June of year j. I calculate the natural log of the ratio of book value of equity to

market value of equity. Following Fama and French (2008), the book value of equity

is total assets (at), minus total liabilities (lt), plus balance sheet deferred taxes and

investment tax credits (txditc) if available, minus the book value of preferred stock

if available. Depending on availability, I use liquidating value (pstkl), redemption

value (pstkrv), or carrying value (upstk) for the book value of preferred stock. The

market value of equity is price per share times the number of shares outstanding at

the end of December of year j − 1. Firms with negative book equity are excluded

from the sample. Panel C of Table 1.2 reports summary statistics for the test assets

during the sample period.

1.5 Asset-Pricing Model Tests

In this section, I test the cross-sectional implications of the ICAPM and ex-

amine the Fama–French (1993) three-factor model in the context of the ICAPM.

Section 1.5.1 presents the results of testing the CAPM and ICAPM. Section 1.5.2

investigates whether the empirical success of the Fama–French model can be at-

tributed to the intertemporal hedging motives of the ICAPM.

To test the ICAPM, I examine the intercept and prices of risk for the market
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factor and intertemporal risk factors from equation (1.12). If the ICAPM holds, the

intercept should equal zero and the market factor should carry a positive price of

risk. The ηm and ηr factors may also have non-zero prices of risk according to the

ICAPM. I further estimate the elements of b in equation (1.17) to examine whether

the prices of risk are consistent with ICAPM theory.21

To help assess model performance, I report the R2 from the cross-sectional

regression in equation (1.11). I average the cross-sectional R2 across periods to mea-

sure performance over the full sample period. The cross-sectional R2 is based on

Gelman and Pardoe (2006), who describe a method to calculate explained variance

for each level of a hierarchical model. I concentrate on the cross-sectional R2 from

equation (1.11) as an informal measure of model performance to achieve compara-

bility with the previous literature (e.g., Jagannathan and Wang (1996), Lettau and

Ludvigson (2001a), Lustig and Van Nieuwerburgh (2005), and Li, Vassalou, and

Xing (2006)). Lewellen, Nagel, and Shanken (2010) caution against using cross-

sectional R2 as the sole measure of model performance among the 25 portfolios

sorted by size and book-to-market of Fama and French (1993), but I examine the

performance of models among individual firms which are not plagued by the same

problems as these portfolios. In this case, the cross-sectional R2 should provide

useful information about a model’s ability to explain returns.22

21Statistical significance in the empirical analysis is based upon Bayesian credible inter-
vals. I also refer to the mean of the draws from the posterior distribution as the parameter
estimate.

22In unreported results, also examined the Akaike Information Criterion–Monte Carlo
(AICM) and Bayesian Information Criterion–Monte Carlo (BICM) model fit measures
of Raftery, Newton, Satagopan, and Krivitsky (2007), which are Bayesian analogues to the
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1.5.1 Testing the ICAPM

Table 1.3 shows the results from testing the ICAPM, with the CAPM used as

a baseline model. Beginning with the CAPM, the model appears to work reasonably

well. As the CAPM predicts, market risk is strongly positively rewarded, as over

99% of the posterior distribution of λm lies above zero and the posterior mean is

0.73%. This evidence is consistent with the findings of Davies (2010) for individual

firms and Ahn, Conrad, and Dittmar (2009) using basis assets formed on desirable

statistical properties. Moreover, the posterior distribution of λ0 is centered very near

zero at 0.04%, so zero-beta assets are earning returns near the risk-free rate. The

evidence suggests the CAPM’s predictions about the intercept and price of market

risk hold reasonably well among individual firms.

Once intertemporal risk factors are included, I find that the ICAPM outper-

forms the CAPM when explaining the cross section of firm returns. The ICAPM

intercept estimate is near zero (0.14%) and market risk carries a large positive pre-

mium (0.69%), consistent with the predictions of the ICAPM. The intertemporal

risk factors also help explain average returns. The posterior distribution of λr is

centered at 0.06% and over 90% of the posterior lies above zero. The estimate of

λm is -0.14%. The precision on this estimate is relatively low and only about 73%

of the posterior distribution lies below zero. This result is partially explained by

the correlation of -0.55 between the market and ηm factors, which contributes to the

difficultly of estimating λm with a high degree of precision. However, the estimated

Akaike (1974) and Schwarz (1978) information criteria. Generally, the ICAPM provides
a worse fit than the CAPM among individual firms, which is unsurprising due to the
uncertainty surrounding loadings on intertemporal hedging factors.
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price of risk is economically large and ηm contributes to pricing the cross section

of returns. The cross-sectional R2 for the ICAPM specification is about 35%, com-

pared to only 20% for the CAPM. The improvement in pricing is reflected in Panels

A and B of Figure 1.4.23 Differences in fitted returns for the CAPM and ICAPM

are most pronounced for firms with more extreme values of average returns.

Perhaps more interesting than the prices of risk discussed above are the es-

timated coefficients of the asset-pricing equation (1.17). With these estimates, we

can investigate whether intertemporal risks are priced in accordance with ICAPM

theory. Consistent with ICAPM predictions, the intercept b0 is nearly zero at 0.14.

Further, covariance between firm and market returns is positively rewarded with

a bm estimate of 4.64. Finally, covariances between firm returns and both ηm and

ηr are positively related to average returns. The bm estimate associated with ηm

is 1.47, while br is estimated to be 0.89. The posterior probability that the three

coefficients are jointly positive is nearly 98%. Therefore, consistent with the theo-

retical implications of the ICAPM, investors appear to be requiring compensation

for taking on exposure to market risk as well as exposures to adverse shocks to the

investment opportunity set. More specifically, investors require higher returns for

stocks that do poorly when the market risk premium or real interest rate decrease,

while they accept lower returns on assets that provide a hedge against worsening

investment opportunities. This behavior is consistent with the equilibrium actions

23Figure 1.4 contains scatter plots of fitted versus average returns of firms, where the
returns of firms are aggregated by equally weighting firms within each of the 25 size and
book-to-market classifications. The size and book-to-market quintile breakpoints are from
Kenneth French’s website.
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of a representative agent with γ > 1. There are, however, some implications of

Campbell’s (1996) model that do not appear to hold perfectly. Equation (1.9) im-

plies that bm = bm+1 = br+1, while the posterior probability that bm > bm+1 and

bm > br + 1 is nearly 99%. Overall, however, there is substantial empirical support

for intertemporal risk as an important economic determinant of expected returns.

The firm-level results in this paper add to Campbell’s (1996) portfolio-level

inferences about the ICAPM. As noted by Campbell, the CAPMwill suffice for cross-

sectional asset-pricing under three conditions: (i) γ is exactly one, (ii) no stocks are

exposed to intertemporal risks, or (iii) the factor loadings on the market are perfectly

cross-sectionally correlated with loadings on the intertemporal risk factors. Similar

to Campbell, I find that the first two possibilities are not likely to hold. First, the

estimated bm coefficient, which translates to γ in Campbell’s model, for the CAPM

is 3.76 with over 99% of the posterior distribution lying above one. Therefore,

investors should not behave myopically and ignore intertemporal risks. Second,

there is strong evidence in this paper and in the preceding literature that investment

opportunities are time varying, and firms carry non-zero exposures to this risk. The

third possibility implies that the CAPM market factor perfectly captures exposure

to intertemporal risks because of the relation between the risk factors. Campbell

finds that this relation holds reasonably well among portfolios. In contrast, I find

that intertemporal risks contribute to cross-sectional asset pricing among individual

firms. While there is a fairly large negative correlation between market returns and

ηm (about -0.55), the intertemporal risk factors contain information about the cross

section of returns that is not captured by the static CAPM. Specifically, ηm and ηr
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are able to capture much of the variation in average returns left unexplained by the

CAPM and improve cross-sectional asset pricing.

I find substantial evidence in favor of the ICAPM’s predictions. As suggested

by Berk (1995) and Jagannathan and Wang (1998), however, including firm char-

acteristics in the model allows the researcher to detect model misspecification. I

therefore include firm size and book-to-market as characteristics in equation (1.11)

and rerun the asset-pricing model tests. Table 1.4 contains the results. Size and

book-to-market are related to returns even after controlling for exposure to the

CAPM and ICAPM factors. Over 99% of the posterior distribution of λB/M lies

above zero for both models, while over 90% of the posterior of λSize is below zero.

The two characteristics are strongly related to average returns.

After controlling for the ICAPM factors, no additional factors or characteris-

tics should be priced. Therefore, the non-zero relations between average returns and

the size and book-to-market characteristics does provide evidence that the ICAPM

is misspecified in some way. There are several potential explanations of this result.

First, important components of the investment opportunity set may be omitted

in my specification of the ICAPM. Second, similar to the Roll (1977) critique of

the CAPM, the market portfolio may not be a linear function of the CRSP value-

weighted stock index. Third, the ICAPMmay be an incomplete description of reality

and may omit important risk factors such as human capital (e.g., Mayers (1972)).

On the other hand, data mining may produce a large number of characteristics –

perhaps including size and book-to-market – that appear to be unexplained by an

asset-pricing model even when the model works well, leading to spurious relations
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between these variables and average returns when the same data is used to test the

model.

In sum, the main implications of the ICAPM hold reasonably well in the

cross section. Market risk and intertemporal risks are related to average returns

as predicted by ICAPM theory. Investors require higher returns for stocks that

do poorly when aggregate wealth declines and when investment opportunities are

degrading. Further, the ηm and ηr factors contribute to a substantially higher R2

for the ICAPM relative to the CAPM.

1.5.2 The ICAPM and the Fama–French Model

The ICAPM’s predictions are generally supported, suggesting that both mar-

ket risk and intertemporal risks are important economic determinants of the cross

section of expected returns. Despite its theoretical attractiveness and success in

cross-sectional tests, however, the ICAPM is difficult to apply in many applications.

For example, using the ICAPM may not be optimal for determining the expected

returns of individual firms for portfolio choice or cost of capital purposes, since the

uncertainty surrounding the intertemporal risk factor prices and loadings may lead

to substantial errors in predicting the returns of any single firm.

In this context, we may be able to improve performance by choosing a factor

model that augments the market portfolio with factor portfolios that mimic the

intertemporal risk factors. As Cochrane (2008b) notes, “if we have the perfect

model of the marginal utility of wealth, then a portfolio formed by its regression on

to asset returns will work just as well.” Further, this new factor model will have more
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frequently observed data which will improve performance in empirical applications

relative to the true model. In line with this argument, Campbell and Cochrane

(2000) demonstrate that the CAPM outperforms the consumption CAPM in asset-

pricing model tests even when the consumption CAPM is a perfect conditional

asset-pricing model. A similar argument applies to the ICAPM when intertemporal

risk factors are imperfectly or infrequently measured.

Motivated by the empirical advantages of mimicking portfolio models, I turn

to investigating the Fama–French (1993) three-factor model in the context of the

ICAPM. The ICAPM has often been suggested as an underlying theoretical moti-

vation for the Fama–French model. Fama and French (1996) discuss their model in

the context of the ICAPM and present some tests of whether the ICAPM or APT

explain the SMB and HML factors. Liew and Vassalou (2000), Vassalou (2003), and

Petkova (2006) find links between the SMB and HML factors and macroeconomic

variables, contending that the Fama–French factors are proxying for ICAPM state

variables. Identifying intertemporal risks as the economic cause of the empirical

success of the Fama–French model would suggest the additional factors are likely

to continue to help price the cross section of assets and provide evidence in favor

of using the Fama–French model in applications requiring predictions of expected

returns. I therefore examine the impact of jointly including the ηm and ηr factors

along with SMB and HML and investigate whether the pricing ability of SMB and

HML arises through an ICAPM channel.

Table 1.5 presents tests of several asset-pricing models. The results of the

CAPM and ICAPM tests in Table 1.3 are reprinted for ease of comparison. In
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addition, the table reports estimated prices of risk for the Fama–French three-factor

model and a model with both the ICAPM intertemporal risk factors and the Fama–

French factors.

The Fama–French model performs about as well as the ICAPM at explaining

firm returns. The estimate of λ0 is 0.18%, which is still indistinguishable from zero in

a statistical sense, and market risk is strongly positively rewarded with over 99% of

the posterior lying above zero. The SMB and HML factors also contribute to pricing

the cross section. The price of risk for HML is highly significant, while about 90%

of posterior for the corresponding estimate for SMB lies above zero. The cross-

sectional R2 for the Fama–French model is 34% compared to 21% for the CAPM, so

the SMB and HML factors are contributing to explaining firm returns. The ICAPM

does slightly outperform the Fama–French model, with the models achieving an R2

of 35% and 34%, respectively. There is some cause for concern, however, for the

Fama–French model as the estimate of λHML is negative. Since HML is a traded

portfolio, its price of risk should be equal to its average return (e.g., (Campbell, Lo,

and MacKinlay, 1996, Ch. 6)) which is strongly refuted by the data. The evidence

of a negative λHML is consistent with Ahn, Conrad, and Dittmar (2009) who also

test the Fama–French model using alternative test assets.

I now investigate whether the SMB and HML factors are related to intertem-

poral risk. The evidence does not support an ICAPM explanation for the additional

factors. When all factors are included in the model, λ estimates are similar to

those form the base models. Further, the cross-sectional R2 improves relative to

both the ICAPM and Fama–French model, suggesting that the ηm and ηr factors
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contain largely different information than SMB and HML. The non-zero prices of

risk for SMB and HML do provide some evidence against the ICAPM, since no

additional factors should be priced. Overall, the evidence suggests that the Fama–

French model and the ICAPM are working through different channels when pricing

individual stocks.24

Table 1.5 provides some evidence that intertemporal hedging motives may

not explain the empirical success of the Fama–French model. I now move to an

alternative test that allows SMB and HML to act as predictive variables. Suppose

an empirically constructed factor, such as SMB or HML, is a factor-mimicking port-

folio proxying for an unobserved state variable. Then the factor portfolio returns

have two components, one of which is perfectly correlated with the underlying state

variable and another orthogonal noise component. In the ICAPM, exposure to the

orthogonal component should be unpriced. In the following tests, I allow state vari-

ables related to SMB and HML to forecast investment opportunities by acting as

predictive variables for the market risk premium. Any remaining exposure to SMB

and HML after controlling for this predictive ability should not be priced.

I construct predictive variables using information from SMB and HML. As

Brennan, Wang, and Xia (2001) note, SMB and HML returns are technically inap-

propriate for use as state variables since the returns follow a geometric Brownian

motion in the limit. Discretely measured SMB and HML returns can be viewed

24In unreported results, I investigate whether the connection between the Fama–French
model and the ICAPM using 25 portfolios sorted by size and book-to-market as test assets.
While the Fama–French model performs well in explaining the returns of these portfolios,
the pricing ability of the model appears to be largely unrelated to the intertemporal risk
factors of the ICAPM.
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as noisy signals of the information underlying the expected returns of these factor

portfolios, but using state variables related to the relative prices of the SMB and

HML component portfolios is likely to lead to better return predictions. Briefly,

these price-based measures are constructed as the log of the book-to-market of a

portfolio with equal investments in the small-growth, small-neutral, and small-value

portfolios minus the log of the analogously constructed book-to-market for the big

portfolios. Therefore, the SMB-based state variable is large when big stocks are ex-

pensive relative to small stocks. Similarly, I construct an HML-based state variable

that is high when growth stocks are relatively expensive. See Appendix A.1.4 for

additional details on state variable construction.25

Table 1.6 contains the results of testing the ICAPM with the SMB and

HML price factors as predictive variables. The ICAPM using the Fama–French

factors as predictive variables underperforms the ICAPM in Table 1.5 that utilizes

macroeconomic variables, achieving a cross-sectional R2 of only 0.30 compared to

0.35 for the base ICAPM specification. There is some weak initial evidence that the

intertemporal risk factors may be priced as predicted by the ICAPM, since there is

a 77% chance that the b coefficients are positive. However, adding the raw SMB and

HML factors to the model degrades the performance of the intertemporal risk factors.

The ηm and ηr factors using SMB and HML state variables share explanatory power

25Portfolio rebalancing at the end of each June creates the potential for changes in the
state variables that are unrelated to underlying economic changes. I have explored several
methods of adjusting for rebalancing as described in Appendix A.1.4. For the base case, I
include the state variables described in the text as well as two additional variables which
capture the changes in the state variables resulting from rebalancing and take the value
of zero when no rebalancing occurs. Test results are nearly identical across specifications
so I show only results for the base case.
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with the SMB and HML factors. The increase in cross-sectional R2 from adding ηm

and ηr to the Fama–French model is small. The λm and λr estimates are influenced

by the inclusion of SMB and HML, while λSMB and λHML are nearly unchanged from

the base Fama–French model estimates. The evidence suggests that the components

of SMB and HML that are orthogonal to intertemporal risks may be driving the

explanatory power of these factors. Further, after including SMB and HML, the br

estimate is negative, inconsistent with the predictions of the ICAPM. Overall, the

evidence does not support an ICAPM explanation for the Fama–French model.

The results in this section suggest that the empirical successes of the Fama–

French model are not attributable to ICAPM hedging concerns. Several potential

alternative explanations for the SMB and HML factors exist, including additional

priced risks not captured by the ICAPM (e.g., Mayers (1972)), the APT (e.g., Fama

and French (1996)), and data snooping bias (e.g., Lo and MacKinlay (1990) and

Ferson, Sarkissian, and Simin (1999)). Determining the true economic explanation

of the additional factors is left for future research.

1.6 Conclusion

I develop a regression-based approach to test the cross-sectional implications

of the ICAPM with several advantages including (i) the strict enforcement of Camp-

bell’s (1996) critique of ICAPM tests, (ii) the mitigation of measurement error biases

by using a one-step approach similar to Davies (2010), (iii) the ability to test the

model across the full cross section of returns, and (iv) the use of Pástor and Stam-

baugh’s (2009) predictive systems framework. In addition to studying the results
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from the regression approach, I estimate the parameters of Campbell’s (1993, 1996)

intertemporal asset-pricing model to determine whether risks are being priced in

accordance with ICAPM theory.

I find that the ICAPM performs well in explaining the cross section of firm

returns. Investors require a premium for taking on market risk, while zero-beta

assets earn a return equal to the risk-free rate. In addition, investors accept lower

returns on assets that hedge against adverse changes in investment opportunities.

The ICAPM explains more of the variation in average firm returns than either the

CAPM or Fama–French model. Overall, the predictions of the ICAPM are largely

borne out in the data.

The Fama–French (1993) three-factor model has often been conjectured to

be an ICAPM model. I test this explanation and find little evidence that SMB

and HML are related to intertemporal risks. Instead, the components of SMB and

HML that are orthogonal to intertemporal risk appear to provide most of the pricing

power of the factors. The economic interpretation of the Fama–French model is still

an open question.
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Table 1.1: Parameter Estimates

Panel A: Predictive System Parameter Estimates

Ex Em
DEF 0.786 0.378
TERM 0.897
DY 2.190 ϕm
RF 3.549 0.951

ϕx
DEF TERM DY RF

DEF 0.950 -0.007 0.003 0.005
TERM 0.162 0.942 -0.011 -0.013
DY -0.074 0.008 0.971 0.020
RF -0.214 0.035 0.028 1.009

Σ
rem DEF TERM DY RF r̄em

rem 18.167 -0.055 -0.064 -0.575 0.146 -0.674
DEF -0.055 0.010 0.006 0.002 -0.014 0.023
TERM -0.064 0.006 0.081 0.002 -0.116 0.036
DY -0.575 0.002 0.002 0.036 -0.004 0.022
RF 0.146 -0.014 -0.116 -0.004 0.229 -0.100
r̄em -0.674 0.023 0.036 0.022 -0.100 0.115

Panel B: Interest Rate/Inflation System Parameter Estimates

ϕr ϕπ
0.972 0.996

V W
rn π rf E[π]

rn 0.001 -0.000 rf 0.003 -0.001
π -0.000 0.009 E[π] -0.001 0.002

Note: This table presents parameter estimates for the market risk premium
predictive system in equation (1.13) and the interest rate/inflation system in
equation (1.15). Panel A shows parameters of the predictive system of Pástor
and Stambaugh (2009) using the dividend-to-price ratio, term spread, risk-free
rate, and default spread as predictor variables. Panel B reports parameters for
the system for the real interest rate and expected inflation. Mean draws from
the posterior distribution of each parameter are shown. The sample period is
July 1963 to June 2008.
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Table 1.2: Summary Statistics

Panel A: Factor Return Summary Statistics

Market SMB HML ηm ηr

Mean 0.349 0.184 0.389 0.009 0.043
Standard Deviation 4.407 3.166 2.869 2.723 0.648

Panel B: Factor Return Correlation Matrix

Market SMB HML ηm ηr

Market 1.000
SMB 0.308 1.000
HML -0.405 -0.277 1.000
ηm -0.547 -0.179 0.210 1.000
ηr -0.008 -0.005 -0.055 -0.025 1.000

Panel C: Test Asset Summary Statistics

Excess Average N
Return ln(Size) ln(B/M) per Period

Firms 0.940 18.421 -0.516 2509.867
(13.276) (2.076) (0.928)
(2.043)

Note: This table presents summary statistics for factors and test assets. Panel
A shows the average and standard deviation of monthly log real excess returns
of the factors, while Panel B shows a correlation matrix for these returns. The
value-weighted CRSP index is used to proxy for the market portfolio. Unex-
pected changes in the market risk premium are denoted by ηm and are estimated
using the predictive systems approach of Pástor and Stambaugh (2009) with the
dividend-to-price ratio, term spread, risk-free rate, and default spread as pre-
dictor variables in the system of equations (1.13). Unexpected changes in the
real interest rate, ηr, are estimated from the system of equations (1.15). For the
statistics involving ηm and ηr, I report the mean of the statistic across the 5,000
draws from the MCMC chain. Panel C reports summary statistics for the test
assets. Standard deviations are reported in parentheses below the means. For
excess returns, both the average time-series standard deviation of returns and
the average cross-sectional standard deviation of three-year averages of returns
are reported. The sample period is July 1963 to June 2008.
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Table 1.3: Estimated Prices of Risk for ICAPM Exposures

Panel A: Regression System Parameter Estimates

Etr
e
i +

Vii
2

= λ0 + λmβ
m
i + λmβ

m
i + λrβ

r
i

Model λ0 λm λm λr R2

CAPM 0.036 0.730 0.203
(0.197) (0.205)

ICAPM 0.141 0.686 -0.148 0.055 0.347
(0.186) (0.199) (0.248) (0.039)

Panel B: Asset-Pricing Equation Parameter Estimates

Etr
e
i +

Vii
2

= b0 + bmVim + bmVim + brVir

Model b0 bm bm br Pr(b0 > 0) Pr(b−0 > 0)

CAPM 0.036 3.760 0.575 0.999
(0.197) (1.053)

ICAPM 0.141 4.636 1.467 0.889 0.779 0.978
(0.186) (1.540) (0.873) (0.648)

Note: This table reports the prices of risk for exposures to market risk and
changes in the investment opportunity set. The value-weighted CRSP index
is used to proxy for the market portfolio. The ICAPM specifications use esti-
mated shocks to the market risk premium and real interest rate as additional
factors. Unexpected changes in the market risk premium are estimated us-
ing the predictive systems approach of Pástor and Stambaugh (2009) with the
dividend-to-price ratio, term spread, risk-free rate, and default spread as predic-
tor variables. Unexpected changes in the real interest rate are estimated using
FFBS. The ηm and ηr factors are annualized by multiplying monthly estimates
by 12. The reported R2 is the time-series average of cross-sectional R2. The
sample period is July 1963 to June 2008. The standard deviations of draws
from the posterior distribution are listed in parentheses.
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Table 1.4: Detecting Model Misspecification Using Firm Characteristics

Etr
e
i +

Vii
2

= λ0 + λ
′
fβi + λ

′
zZi

Model λ0 λm λm λr λSize λB/M R2

CAPM 0.036 0.730 0.203
(0.197) (0.205)

CAPM with Size & B/M -0.022 0.806 -0.130 0.285 0.268
(0.201) (0.189) (0.088) (0.100)

ICAPM 0.141 0.686 -0.148 0.055 0.347
(0.186) (0.199) (0.248) (0.039)

ICAPM with Size & B/M 0.088 0.788 0.013 0.041 -0.138 0.278 0.394
(0.204) (0.189) (0.234) (0.039) (0.101) (0.109)

Note: This table reports estimates of the relations between average returns and
the size and book-to-market characteristics after controlling for exposures to
market risk and changes in the investment opportunity set. The value-weighted
CRSP index is used to proxy for the market portfolio. The ICAPM specifications
use estimated shocks to the market risk premium and real interest rate as addi-
tional factors. Unexpected changes in the market risk premium are estimated
using the predictive systems approach of Pástor and Stambaugh (2009) with
the dividend-to-price ratio, term spread, risk-free rate, and default spread as
predictor variables. Unexpected changes in the real interest rate are estimated
using FFBS. Size and book-to-market are included in the cross-sectional regres-
sion to detect model misspecification. The ηm and ηr factors are annualized
by multiplying monthly estimates by 12. The reported R2 is the time-series
average of cross-sectional R2. The sample period is July 1963 to June 2008.
The standard deviations of draws from the posterior distribution are listed in
parentheses.
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Table 1.5: The ICAPM and Fama–French Model – Standard ICAPM Factors

Panel A: Regression System Parameter Estimates

Model λ0 λm λm λr λSMB λHML R2

CAPM 0.036 0.730 0.203
(0.197) (0.205)

ICAPM 0.141 0.686 -0.148 0.055 0.347
(0.186) (0.199) (0.248) (0.039)

Fama–French 0.177 0.594 0.251 -0.358 0.336
(0.167) (0.184) (0.205) (0.145)

All Factors 0.199 0.588 -0.063 0.023 0.251 -0.334 0.393
(0.179) (0.189) (0.245) (0.028) (0.212) (0.154)

Panel B: Asset-Pricing Equation Parameter Estimates

Model b0 bm bm br bSMB bHML Pr(b0 > 0) Pr(b−0 > 0)

CAPM 0.036 3.760 0.575 0.999
(0.197)(1.053)

ICAPM 0.141 4.636 1.467 0.889 0.779 0.978
(0.186)(1.540)(0.873)(0.648)

Fama–French 0.177 2.136 0.900 -2.743 0.860 0.088
(0.167)(1.324) (2.438) (2.301)

All Factors 0.199 3.186 1.348 0.586 1.213 -2.364 0.876 0.139
(0.179)(1.754)(0.885)(0.668)(2.538) (2.411)

Note: This table contains tests of the CAPM, ICAPM, and Fama–French (1993)
three-factor model. The value-weighted CRSP index is used to proxy for the
market portfolio. The ICAPM specifications use estimated shocks to the market
risk premium and real interest rate as additional factors. Unexpected changes
in the market risk premium are estimated using the predictive systems approach
of Pástor and Stambaugh (2009) with the dividend-to-price ratio, term spread,
risk-free rate, and default spread as predictor variables. Unexpected changes in
the real interest rate are estimated using FFBS. The SMB and HML factors of
the Fama–French model are also included in the model. The ηm and ηr factors
are annualized by multiplying monthly estimates by 12. The reported R2 is
the time-series average of cross-sectional R2. The sample period is July 1963
to June 2008. The standard deviations of draws from the posterior distribution
are listed in parentheses.
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Table 1.6: The ICAPM and Fama–French Model – ICAPM Factors Based on SMB
and HML

Panel A: Regression System Parameter Estimates

Model λ0 λm λm λr λSMB λHML R2

CAPM 0.036 0.730 0.203
(0.197) (0.205)

ICAPM 0.112 0.665 -0.565 0.034 0.295
(0.197) (0.203) (0.209) (0.045)

Fama–French 0.177 0.594 0.251 -0.358 0.336
(0.167) (0.184) (0.205) (0.145)

All Factors 0.207 0.579 -0.380 0.016 0.247 -0.369 0.366
(0.177) (0.192) (0.185) (0.031) (0.219) (0.155)

Panel B: Asset-Pricing Equation Parameter Estimates

Model b0 bm bm br bSMB bHML Pr(b0 > 0) Pr(b−0 > 0)

CAPM 0.036 3.760 0.575 0.999
(0.197)(1.053)

ICAPM 0.112 5.949 3.023 0.314 0.722 0.773
(0.197)(2.792)(2.091)(0.491)

Fama–French 0.177 2.136 0.900 -2.743 0.860 0.088
(0.167)(1.324) (2.438) (2.301)

All Factors 0.207 3.795 2.603 -0.009 1.074 -2.987 0.890 0.073
(0.177)(2.322)(1.633)(0.522)(2.628) (2.453)

Note: This table contains tests of the CAPM, ICAPM, and Fama–French (1993)
three-factor model, where the intertemporal risk factors of the ICAPM use vari-
ables based on SMB and HML as predictive variables. The value-weighted
CRSP index is used to proxy for the market portfolio. The ICAPM specifica-
tions use estimated shocks to the market risk premium and real interest rate
as additional factors. Unexpected changes in the market risk premium are esti-
mated using the predictive systems approach of Pástor and Stambaugh (2009)
with variables based on SMB and HML as predictor variables. Unexpected
changes in the real interest rate are estimated using FFBS. The SMB and HML
factors of the Fama–French model are also included in the model. The ηm and ηr
factors are annualized by multiplying monthly estimates by 12. The reported R2

is the time-series average of cross-sectional R2. The sample period is July 1963
to June 2008. The standard deviations of draws from the posterior distribution
are listed in parentheses.
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Figure 1.1: Market Risk Premium Estimate

Note: This figure shows estimates of the market risk premium using Pástor
and Stambaugh’s (2009) predictive systems approach given by equation (1.13)
and a predictive regression approach. The dividend-to-price ratio, term spread,
risk-free rate, and default spread are used jointly as predictive variables. The
predictive systems estimate is the solid line, and the dotted line is the estimate
from a predictive regression. The market risk premium is expressed in percent
per month. NBER recessions are shaded.
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Figure 1.2: Nominal Interest Rate and Expected Inflation

Note: This figure shows estimates of the nominal interest rate and expected
inflation. I use FFBS to estimate the system of equations (1.15). The nominal
interest rate is the solid line and the dotted line is expected inflation. The
nominal interest rate and expected inflation are expressed in percent per month.
NBER recessions are shaded.
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Figure 1.3: Real Interest Rate

Note: This figure shows an estimate of the real interest rate. The real interest
rate is estimated from the system of equations (1.15) using FFBS with nominal
interest rate and inflation data. The real interest rate is expressed in percent
per month. NBER recessions are shaded.
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(c) Fama-French Model

Figure 1.4: Fitted Returns versus Average Returns of Individual Firms

Note: This figure shows fitted returns and average returns for individual firms.
The CAPM, the ICAPM with the dividend-to-price ratio, term spread, risk-free
rate, and default spread as predictor variables, and the Fama–French (1993)
model are used to explain returns. Firms are grouped by equally weighting
returns of firms in each size and book-to-market category based on NYSE quin-
tiles. Returns are expressed in percent per month.
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CHAPTER 2
CROSS-SECTIONAL ASSET PRICING PUZZLES: AN

EQUILIBRIUM PERSPECTIVE

2.1 Introduction

Recent empirical works document counterintuitive relations in the cross sec-

tion of average stock returns. Specifically, Diether, Malloy, and Scherbina (2002)

demonstrate that firms with more uncertain earnings (higher forecast dispersion)

underperform lower dispersion firms. Ang, Hodrick, Xing, and Zhang (2006) doc-

ument a negative relation between average return and idiosyncratic volatility (IV).

Dichev (1998) and Campbell, Hilscher, and Szilagyi (2008) find evidence that finan-

cially distressed stocks deliver abnormally low returns, and Avramov, Cederburg,

and Hore (2009) show that high credit rating firms considerably outperform their

lower-rated counterparts. These three effects are anomalous because, while investors

are expected to discount uncertainty about firm fundamentals (e.g., Merton (1987)),

they appear to pay a premium for bearing such uncertainty. Indeed, all three ef-

fects are unexplained by traditional asset pricing models such as the Sharpe–Lintner

CAPM and the Fama–French (1993) three-factor model. Past work offers potential

explanations for the puzzling effects. Johnson (2004) interprets forecast dispersion

as a proxy for unpriced information risk, and shows that in the presence of leverage,

equity value rises (and expected return falls) as unpriced risk increases. Garlappi,

Shu, and Yan (2008) attribute the credit risk effect to shareholders’ ability to extract

rents through strategic renegotiation of debt obligations, while George and Hwang

(2010) propose that the endogenous choice of leverage explains the credit risk effect.
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This paper proposes a unified resolution of the three puzzling effects within a

long-run risk equilibrium. Two ingredients pertaining to the dynamics of aggregate

and firm fundamentals underly our paradigm. The aggregate economy is formulated

based on Bansal and Yaron (2004) in that long-run risk arises through the interaction

of the stochastic differential utility of Duffie and Epstein (1992) with persistent

consumption and dividend growth rates. In the cross section, we employ a tractable

mean-reverting process to formulate firm dividend share, which allows us to solve

for cross-sectional asset pricing quantities while ensuring that the cross section of

firms aggregate to form the economy. Ultimately, we successfully merge the long-run

risk literature with the shares-based cross section literature advocated by Menzly,

Santos, and Veronesi (2004) and Santos and Veronesi (2006). Moreover, we develop

an intertemporal asset pricing model in the spirit of Merton (1973), as a firm’s

expected return is affected by its beta with respect to an economic growth hedge

portfolio.

In a long-run risk economy, the cross section of expected returns is determined

by firms’ cash flow duration. Long-run cash flows have pronounced sensitivities

to the persistent economic growth rate and thus command large risk premiums.

Therefore, high duration firms have high expected returns due to their reliance on

long-run cash flows. The duration of a firm in the cross section is positively related

to its expected dividend growth, which is summarized by a characteristic labeled

relative share. Relative share – a term introduced by Menzly, Santos, and Veronesi

(2004) – is the long-run expected dividend share of a firm as a proportion of its

current dividend share, with dividend share being the fraction of the dividend paid
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by the firm relative to the aggregate dividend.

We show that the negative relations between expected return and dispersion,

IV, and credit risk are a manifestation of cross-sectional patterns in exposures to

idiosyncratic and systematic risks. Low relative share firms exhibit low duration as

they derive their values primarily from short-run cash flows. Whereas such firms

display low expected returns, they have high sensitivities to firm-specific shocks

leading to high dispersion, IV, and credit risk. In contrast, high relative share firms

display high duration and are particularly sensitive to aggregate shocks but less

susceptible to firm-specific dividend shocks.

Indeed, we establish theoretical links between the dispersion, IV, and credit

risk measures and expected stock returns. Low relative share firms deliver low

expected returns. These firms exhibit high levels of dispersion proxied by uncertainty

about firm cash flow growth. Moreover, the values of low relative share firms are

highly sensitive to firm-specific dividend shocks, which leads to high IV. Finally, the

majority of default events tend to occur among low relative share firms as a result

of negative idiosyncratic shocks, inducing high measures of financial distress for this

subset of firms.

The empirical evidence broadly supports our model predictions. First, we

do document mean reversion in dividend share as well as establish, based on model

selection criteria, the dominance of our formulation for firm-level dividend growth

relative to other specifications. Next, dispersion, IV, and credit risk measures exhibit

high cross-sectional correlation, and portfolios formed on each of these characteristics

display similar patterns in composition and behavior. More importantly, we find
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empirical support for a long-run risk explanation of these effects, as portfolios of

high (low) dispersion, IV, and credit risk firms have low (high) estimated relative

share as predicted by our model. Furthermore, the expected returns implied by our

model are highly correlated with realized average returns for these portfolios.

In sum, recent work utilizes the long-run risk framework to offer explanations

for aggregate and cross-sectional asset pricing puzzles including the equity premium,

risk-free rate, and excess volatility puzzles (Bansal and Yaron (2004)), as well as

the value premium (e.g., Bansal, Kiku, and Yaron (2007), Hansen, Heaton, and

Li (2008), and Ai and Kiku (2010)) and the momentum effect (Zurek (2007) and

Avramov and Hore (2008)). We enhance the long-run risk literature in both method-

ology and substantive findings. In particular, we derive formal cross-sectional asset

pricing restrictions and are able to express our model through an intuitive ICAPM

relationship. Moreover, our model simultaneously resolves three apparently coun-

terintuitive regularities – the dispersion, IV, and credit risk effects.

The remainder of the paper is organized as follows. In Section 2.2, we intro-

duce the aggregate economy, develop our formulation of the cross section of firms,

and establish asset pricing results. We examine the dispersion, IV, and credit risk

effects within our framework in Section 2.3 and provide empirical evidence about

these relations in Section 2.4. Section 2.5 concludes.

2.2 The Model

Two essential ingredients pertaining to the dynamics of aggregate and firm

fundamentals underly our equilibrium setup. The aggregate economy is based on
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a particularly simple version of Bansal and Yaron’s (2004) long-run risk framework

in which an economic agent with recursive preferences is exposed to persistent con-

sumption and dividend growth rates.1 This economy generates an equity premium,

market volatility, and a risk-free rate that match the data. Further, the interaction

between recursive preferences and persistent growth introduces additional volatility

into the pricing kernel, which is essential to satisfy the Hansen–Jagannathan (1991)

bound. Within the aggregate economy, we formulate a cross section of firms whose

dividends sum to the aggregate dividend. Firms are differentiated by expected cash

flow timing. In a long-run risk equilibrium, investors require larger risk premiums

to hold firms weighted toward long-run cash flows. Ultimately, firms with higher

dispersion, IV, and credit risk measures exhibit lower cash flow duration, thus they

deliver lower returns.

2.2.1 The Aggregate Economy

The representative investor is endowed with the stochastic differential utility

of Duffie and Epstein (1992), a continuous-time equivalent to Epstein–Zin (1989)

preferences, with

Jt = Et

[∫ ∞

t

f(Cs, Js)ds

]
, (2.1)

1Empirically, Bansal, Kiku, and Yaron (2009) find substantial evidence for a predictable
component in consumption growth (see also Bansal and Yaron (2004), Kiku (2006), and
Hansen, Heaton, and Li (2008)). Yang (2009) finds strong evidence of persistence in
durable consumption growth. Theoretically, Hansen and Sargent (2010) show that in-
vestors operate as if the economy has persistent consumption growth when faced with
uncertainty about the true nature of the consumption growth process, while Kaltenbrun-
ner and Lochstoer (2008) find that long-run risk in consumption naturally arises through
the optimal consumption smoothing of Epstein–Zin (1989) investors.
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where Jt is the value function and f(Cs, Js) is a normalized aggregator of current

consumption and continuation utility. Assuming that the elasticity of intertemporal

substitution (EIS) equals one, the normalized aggregator takes the form

f(C, J) = β(1− γ)J

[
logC − log((1− γ)J)

1− γ

]
, (2.2)

where γ is the coefficient of relative risk aversion and β is the time preference

parameter.2

Next, we formulate aggregate consumption and dividend growth rates as3

dCt
Ct

= (µC + λXt)dt+ σCdWC , (2.3)

dDt

Dt

= (µD +Xt)dt+ σDdWD, (2.4)

where Xt follows the mean-reverting dynamics

dXt = −κXtdt+ σXdWX . (2.5)

The time-varying component of economic growth, Xt, reverts to zero, with the

speed of reversion governed by κ. Shocks to Xt propagate through several periods of

2Empirically, there is a wide debate in the macroeconomics literature about the value
of EIS. Kandel and Stambaugh (1991) focus on EIS close to zero. Hansen and Singleton
(1982), Attanasio and Weber (1989), Vissing-Jorgensen (2002), and Guvenen (2006) argue
that EIS is greater than 1, while Hall (1988) and Campbell and Mankiw (1989) argue that
EIS is less than 1. Yogo (2004) estimates the EIS parameter in several countries and
cannot reject EIS=1 in 11 of 13 countries.

3Consumption and dividend growth are the continuous-time versions of the discrete-
time processes employed by Bansal and Yaron (2004). We adopt a model with homoskedas-
tic shocks to dividend growth, consumption growth, and the aggregate growth rate. Bansal
and Yaron (2004) investigate both homoskedastic and heteroskedastic cases. The ho-
moskedastic model is simpler and sufficient for our purposes. Without altering the spirit of
the model dynamics from the Bansal and Yaron (2004) economy, we multiply the stochas-
tic component of expected consumption growth by λ instead of scaling the time-varying
portion of expected dividend growth.
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consumption and dividend growth rates due to slow mean reversion, which combined

with recursive preferences gives rise to long-run risk. Since expected consumption

growth is less volatile than expected dividend growth we allow for a differential effect

of Xt on consumption and dividend growth rates, with λ controlling the relative

strength of shocks. In the data we find λ < 1, which is consistent with Bansal and

Yaron (2004) and Constantinides and Ghosh (2008), among others, and we impose

this restriction in our analysis. Thus consumption growth is smoother than dividend

growth, capturing the insight of Abel’s (1999) levered economy. Following Bansal

and Yaron (2004), we assume the processes dWC , dWD, and dWX are uncorrelated

for simplicity of presentation.4

We present asset pricing quantities for the aggregate setup in the proposition

below and refer the interested reader to Hore (2008) for complete derivation and

Appendix A.3.1 for additional details.5

Proposition 1. The price-dividend ratio is

Pt
Dt

= G(Xt) =

∫ ∞

t

S(Xt, τ)ds [τ = s− t], (2.6)

where the S(Xt, τ) function is described in Appendix A.3.1. The risk premium is

µt =
λ(γ − 1)

κ+ β
σ2
X

GX

G
. (2.7)

4Introducing correlation between the consumption and dividend processes leads to
an additional term in expected returns taking the form ρσCσDγ, which is the familiar
expected return in an i.i.d. growth economy with CRRA preferences. This term is eco-
nomically small for reasonable values of risk aversion (e.g. Mehra and Prescott (1985)).
We assume zero correlation to simplify the model and focus on the effects of long-run
risk. Further, firms in our economy share equal exposures to this source of risk, so our
cross-sectional inferences are ultimately unaffected by this assumption.

5We impose the following parameter restrictions: γ > 1, λ < 1, β > 0, σX > 0, and
κ > 0.
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The price-dividend ratio in equation (2.6) does not take an exponentially

affine form, which leads to stochastic volatility in the market return and thus a

time-varying risk premium. In discrete-time solutions, the price-dividend ratio is

typically posited to be exponentially affine, which produces constant risk premiums.

Hence, to generate time-varying risk premiums, a second risk channel – stochastic

volatility of consumption growth – is often employed.

The essential feature of our aggregate economy is the term structure of risk

premiums, which is formulated in the following theorem.

Theorem 1. Expected return is increasing in duration for any asset that pays a
non-negative portion of the aggregate dividend at all times.

Proof. See Appendix A.3.1.

Theorem 1 establishes that longer-run cash flows are riskier, thus command-

ing higher risk premiums. Figure 2.1 exhibits the representative investor’s required

discount rate on cash flows as a function of duration. Risk premiums on low du-

ration cash flows are negligible while high duration cash flows command large risk

premiums.

Why do agents require higher risk premiums on longer-run cash flows? In-

vestors endowed with Duffie–Epstein preferences prefer early resolution of uncer-

tainty if γ > 1 with unit EIS (ψ = 1), or if γ > 1
ψ
when ψ is unrestricted. Even with

persistent consumption and dividend growth dynamics, shocks to growth rates have

little effect on short-run cash flows. Short-run cash flows are thus relatively safe. On

the other hand, persistent growth heightens uncertainty about the magnitudes of

long-run dividends and consumption. Much of this uncertainty remains unresolved
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for a long period. Thus, investors discount long-run cash flows heavily giving rise

to a long-run risk premium.

Before we proceed, we note that related work examines equity duration im-

plications for asset pricing in a different context. Menzly, Santos, and Veronesi

(2004) and Wachter (2006) show a positive duration–expected return relation in an

economy with the external habit formation preferences of Campbell and Cochrane

(1999). Da (2009) develops a model based on cash flow covariance and duration

factors, exhibiting empirical results that are consistent with long-run risk predic-

tions. Lettau and Wachter (2007) and Croce, Lettau, and Ludvigson (2009) argue

that the positive duration–expected return relation is inconsistent with the value

premium. In contrast, Ai and Kiku (2010) show that the value premium does

emerge in a long-run risk economy accommodating growth options. Empirically,

Bansal, Dittmar, and Lundblad (2005) find that value firms have higher cash flow

betas and Bansal, Dittmar, and Kiku (2009) demonstrate that value firms display

higher exposures to long-run consumption risk, both consistent with a long-run risk

explanation.

2.2.2 The Cross Section of Firms

We consider a cross section of n firms that aggregates to the economy derived

above. Explicitly modeling the cross section ensures the reasonable long-term evolu-

tion of firm cash flows, which is particularly important in a long-run risk framework.

Our tractable framework facilitates drawing cross-sectional inferences by pricing a

single firm.
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In the cross section, firm i contributes a time-varying portion of the aggregate

dividend, defined as the firm’s dividend share θit. Thus, if the aggregate dividend is

Dt, firm i contributes Di
t = θitDt, whereas the remaining firms contribute a total of

(1−θit)Dt. The dividend share is formulated using the mean-reverting Wright–Fisher

(WF) process6

dθit = α(θ̄i − θit)dt+ δ
√
(1− θit)θ

i
tdWθi . (2.8)

Moreover, we parameterize long-run dividend shares such that
∑n

i=1 θ̄
i = 1 and

assume the covariance structure of the (n× 1) vector dWθ satisfies

ρt(dWθi , dWθj) = −

√
θitθ

j
t

(1− θit)(1− θjt )
for all i, j. (2.9)

The negative correlation between dividend share shocks naturally arises from the ag-

gregation identity
∑n

i=1D
i
t = Dt. Essentially, as one firm’s dividend share increases

through a firm-specific shock, dividend shares of all other firms are “crowded out”

to maintain proper aggregation. In a typical economy, dividend shares of all firms

are small so ρt(dWθi , dWθj) is negligible (e.g. correlation of −0.01 between firms

each paying 1% of the aggregate dividend).

Several features of the dividend share process are desirable. First, the divi-

dend share of all firms is bounded between zero and one.7 Second, as we formally

6A WF process for dividend share arises endogenously in an endowment economy with
two trees, as shown by Cochrane (2008b). WF processes originate in genetics literature by
Fisher (1930) and Wright (1931). See Crow and Kimura (1970) for examples and further
discussion of WF processes. We impose the parameter restrictions α > 0 and δ > 0.

7Assuming that the initial dividend share of firm i is between zero and one, i.e. θi0 ∈
(0, 1), then the boundary points zero and one are unattainable within finite time if 2αθ̄i >
δ2 (see Karlin and Taylor (1981), pp 239–241). If the restriction 2αθ̄i > δ2 is violated, we
propose a reflecting barrier at each of the boundaries. The cross section of firms continues
to aggregate properly given the assumption of reflecting barriers.
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show below,
∑n

i=1 θ
i
t = 1 for all t, so the cross section of firms does aggregate to

form the economy described above. Third, firm dividend shares revert towards

their long-run means. Indeed, mean reversion in dividend (or consumption) share

is a common assumption in the shares-based literature (e.g. Menzly, Santos, and

Veronesi (2004), Santos and Veronesi (2006), and Da (2009)). Da (2009) finds empir-

ical support for a similar mean-reverting cash flow share process for book-to-market,

size, and reversal portfolios. Also common are the assumptions of mean reversion

in expected dividend growth (e.g. Campbell and Shiller (1988)) as well as long-run

convergence to an economy-wide steady state dividend growth (e.g. Pástor, Sinha,

and Swaminathan (2008) and Da and Warachka (2009)). Mean reversion ensures

that no firm eventually dominates the economy, and it captures the intuitive notion

that expectations of future dividends are revised less than current dividends in the

presence of a contemporaneous shock to the firm’s dividend. Empirically, we find

support for our dividend share process. As shown in Section 2.4, the evidence from

portfolios formed based on dispersion, IV, and credit risk measures is supportive of

our specification, and our share process outperforms several reasonable alternative

specifications.

Following Menzly, Santos, and Veronesi (2004), we refer to θ̄i

θit
as the “relative

share” of the firm. The relative share is the long-run expected dividend share of the

firm as a proportion of its current dividend share. Some of our model implications

depend on dividend share θit through the relative share θ̄i

θit
. To briefly illustrate the

dividend share and relative share characteristics, suppose that a firm is currently

paying 1% of the total market dividend but is expected to exhibit high dividend
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growth so that it eventually pays 5% of the market dividend. The dividend share

of this firm is 0.01 and the relative share is 5
(
5%
1%

)
. Consider another firm that is

currently paying 1% of the market dividend but is expected to eventually pay only

0.2% of the market dividend. This firm has a dividend share of 0.01 and a relative

share of 0.2
(
0.2%
1%

)
.

We now turn to demonstrating how dividend shares and relative shares ag-

gregate at the portfolio level. Theorem 2 provides a convenient aggregation result

where the sum of any two dividend shares also follows a WF process.

Theorem 2. Assume that the dividend share of each firm i = 1, ..., n follows a WF
process, as in equation (2.8), with the correlation structure described in equation
(2.9). Then the dividend share of a portfolio of any two firms i and j follows a WF
process,

dθpt = α(θ̄p − θpt )dt+ δ
√
(1− θpt )θ

p
t dWθp , (2.10)

where θ̄p = θ̄i + θ̄j and θpt = θit + θjt .

Proof. See Appendix A.3.2.

Theorem 2 leads to proper aggregation of the cross section. Since the sum

of any two WF processes also follows a WF process under the correlation structure

in equation (2.9), it is trivial to show that the dividend shares of the n firms in

the economy sum to one. Hence, firm dividends also sum to the aggregate divi-

dend. Further, our model’s implications for firm-level asset pricing carry over to the

portfolio level. We can demonstrate how the exposure of portfolios to long-run risk

is determined from the exposures of firms held within the portfolios. Specifically,

a value-weighted portfolio’s relative share is the dividend-weighted average of firm

relative shares,

θ̄p

θpt
=
∑
i∈P

Di
t∑

i∈P D
i
t

θ̄i

θit
, (2.11)
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where P is the set of firms held in the portfolio. See Appendix A.3.2 for additional

details on aggregation.

We assume throughout that Cov
(
dθit,

dCt

Ct

)
= Cov (dθit, dXt) = 0, so the

dividend share does not covary with the pricing kernel. Hence, no asset in this

economy hedges against transient consumption shocks from dWC . In the parlance

of Menzly, Santos, and Veronesi (2004) and Santos and Veronesi (2006), cash flow

betas of all securities are zero. Even then, as we show below, firm relative shares

interact with the persistent component of consumption growth to play a powerful

role in determining time-varying exposures to systematic risk for each firm.

Next, firm dividend growth, obtained by applying Itô’s Lemma to Di
t = θitDt,

is given by

dDi
t

Di
t

=

(
α

(
θ̄i

θit
− 1

)
+ µD +Xt

)
dt+ δ

√
1− θit
θit

dW i
θ + σDdWD. (2.12)

Firm-level dividend growth absorbs the expected aggregate dividend growth drift

component µD + Xt as well as the aggregate dividend shock σDdWD. In better

economic conditions, when Xt is high, expected dividend growth is higher. Firm

relative share θ̄i

θit
also affects firm dividend growth. To illustrate, if θ̄i > θit, then the

dividend share is likely to increase towards θ̄i. In this case, θ̄i

θit
> 1 and expected

dividend growth is higher than aggregate dividend growth. On the other hand, if

θ̄i < θit, the dividend share is expected to decrease, leading to low expected dividend

growth relative to the aggregate dividend. Finally, if θ̄i = θit then the expected

dividend growth rate is equal to the expected aggregate dividend growth rate. Still,

firm dividend growth is more volatile due to the firm-specific shock dW i
θ .
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2.2.3 Cross-Sectional Asset Pricing

The cross section of returns is driven by the interaction between two prop-

erties of the economy: (i) long-run cash flows carry a higher risk premium than

short-run cash flows and (ii) firms have different expected cash flow timing, reflected

by the relative share characteristic. Firms with dividends that are concentrated in

the short-run primarily derive their value from relatively safe cash flows, while firms

with primarily long-run dividends are risky investments. Relative share is positively

related to expected dividend growth and cash flow duration. Hence, relative share

is positively related to systematic risk exposure and expected return.

Below, we formalize asset pricing properties at the firm level.

Theorem 3. The firm price-dividend ratio is

P i
t

Di
t

≡ Gi(Xt, θ
i
t; θ̄

i, α) =

∫ ∞

t

S(Xt, τ)Et[θ
i
s]ds [τ = s− t]

=
Pt
Dt

+

(
θ̄i

θit
− 1

)∫ ∞

t

S(Xt, τ)
(
1− e−ατ

)
ds, (2.13)

where S(Xt, τ) is defined in Proposition 1.8 The firm price-dividend ratio is increas-

ing in relative share θ̄i

θit
. Next, the firm-level risk premium is

µit =
λ(γ − 1)

κ+ β
σ2
X

Gi
X

Gi
, (2.14)

and µit is increasing in relative share. Finally, the firm-level instantaneous variance
is

σ2
i,t = σ2

D +

(
Gi
X

Gi

)2

σ2
X +

(
1 +

θitG
i
θ

Gi

)2

δ2
1− θit
θit

. (2.15)

Proof. See Appendix A.3.3.

The firm-level price-dividend ratio is affected by aggregate and firm-specific

conditions. In particular, all firms are affected by expected economic growth, and all

8Integrability of (2.13) is trivially satisfied due to the transversality condition of
S(Xt, τ) with α > 0.
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price-dividend ratios increase when Xt increases. If θ
i
t = θ̄i (i.e. the dividend share is

at its long-run mean), then the firm price-dividend ratio equals that of the market. If

θ̄i

θit
> 1 ( θ̄

i

θit
< 1), then firm expected dividend growth is higher (lower) than aggregate

expected dividend growth, which pushes the firm price-dividend ratio higher (lower)

than the aggregate price-dividend ratio. However, high relative share also implies

that firm dividends are weighted towards the long-run and agents exposed to long-

run risk discount these cash flows more heavily. The higher discount rate for these

cash flows moderates the increase in firm price-dividend ratio that arises from an

increase in relative share.

Finally, observe from equation (2.15) that firm return variance has both

systematic and idiosyncratic components. Shocks to the aggregate dividend and

growth rate are market-wide risks to which all firms are exposed. The systematic

portion of firm return volatility varies in the cross section only to the extent that

firms have differential exposures to systematic risk through
Gi

X

Gi . On the other hand,

the
(
1 +

θtGi
θ

Gi

)2
δ2

1−θit
θit

component arises solely from firm-specific shocks to dividend

share. Later, we discuss properties of IV as well as describe the cross-sectional

relation between expected return and IV.

2.2.3.1 A Parsimonious Beta Pricing Model

Comparing the aggregate and firm risk premiums in equations (2.7) and

(2.14), respectively, we are able to formulate a conditional single-factor model. The

firm expected return is related to an economic growth hedge portfolio through the
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beta pricing relation

µit = βitµt, (2.16)

where

βit

(
Xt,

θ̄i

θit

)
=
Gi
X

Gi

G

GX

(2.17)

is the firm (time-varying) beta with respect to the hedging portfolio. Here, the

hedging portfolio is constructed to be exposed solely to economic growth shocks

through dWX and to have expected return µt. Additional information about the

hedging portfolio is available in Appendix A.3.3. Firm beta is positively related to

relative share as illustrated in Figure 2.2. In fact, beta and duration are closely

linked in the cross section. Long-run cash flows are more sensitive to growth rate

shocks, leading to higher exposures to hedging portfolio returns for high duration

firms. Therefore, firms with higher (lower) than average duration have betas greater

(less) than one. The positive relative share–beta relation translates to a positive

relation between relative share and expected returns, shown by Figure 2.2. There is

an economically significant spread in expected returns in the cross section between

high and low relative share firms arising from differential exposures to long-run risk.

This convenient beta pricing model in the spirit of Merton’s (1973) ICAPM

is novel in the asset pricing literature studying recursive preferences. Exposure to a

single factor hedging against economic growth shocks exclusively determines cross-

sectional dispersion in expected returns. Typically, the ICAPM is expressed as a

multifactor model with the aggregate wealth portfolio and additional intertempo-

ral hedge portfolios. However, we zero out the correlation between dividend and
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consumption growth shocks to concentrate on long-run risk implications, thereby

eliminating exposure to the total wealth portfolio.

In the presence of correlation between consumption and dividend growth

shocks, the expected firm return takes the form

µit = γσCσDρ+
λ(γ − 1)

κ+ β
σ2
X

Gi
X

Gi
, (2.18)

= βiTWµ
TW + βitµt, (2.19)

where µTW = σ2
Cγ and βiTW = σDσCρ

σ2
C

are the expected return and firm beta on

the total wealth portfolio, while µt and β
i
t are the risk premium and firm beta on

the economic growth hedge portfolio. Notice that βiTW is common across all assets,

suggesting that reintroducing correlation between consumption and dividend growth

has no effect on cross-sectional results. Further relaxing assumptions to include non-

zero correlation between consumption and dividend shares would cause firms to have

differing exposures to this risk, but the effects would be rather small since µTW is

relatively small for reasonable parameter values. Meanwhile, long-run risk produces

considerable variation in the cross section of expected returns. Investors are willing

to realize lower returns on assets that hedge against unfavorable economic growth

shocks, while they require large premiums on assets whose returns strongly covary

with aggregate growth shocks.

2.2.3.2 Asset Pricing with Leverage

While the dispersion and IV effects can be analyzed whether or not firms

employ leverage, the credit risk effect is exclusively studied in the context of leverage.

We adopt a simple specification for firm debt fromMerton (1974). In this framework,
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a firm takes on zero-coupon debt with a face value of B payable at time T . The

firm defaults if its value at time T falls below the face value of debt. If the firm

does default, all its value is distributed to debtholders. Otherwise, shareholders

receive the residual firm value, the value remaining after the principal payment to

debtholders. Despite its simplicity, Merton’s (1974) framework achieves empirical

success in forecasting firm defaults. Duffie, Saita, and Wang (2007) establish that

distance to default, a key determinant of credit risk in the Merton model, is an

important predictor of bankruptcies and defaults.

To formalize, the value of levered equity is given by

V i
t = Et

∫ T

t

Λs
Λt
Di
sds+ Et

[
ΛT
Λt

max (P i
T −B, 0)

]
. (2.20)

The first component is the expected discounted dividend stream paid prior to bond

maturity, while the second is the expected discounted payoff at bond maturity.

Closed-form solutions for equity value, beta, and expected return are unavailable

in the presence of leverage. However, these quantities can be estimated through

simulation. Appendix A.4.4 describes the simulation details.

In the presence of leverage, equity and debt expected returns still follow

a conditional ICAPM.9 Simulations show that equity value is more sensitive to

economic growth shocks than debt value. Since the influence of economic growth

shocks on equity is amplified by leverage, levered equity beta is generally higher than

9Firm levered equity return follows the process dRVi
t = µVit dt+ϕiXdWX+O(

√
dt), where

ϕiX is the elasticity of firm equity value with respect to aggregate growth shocks. The
O(

√
dt) term contains all other diffusion terms (e.g. dWθ and dWD) that are uncorrelated

with growth shocks. Then µVit = (γ−1)λ
κ+β σXϕ

i
X = ϕiX

G
σXGX

µt ≡ βVit µt. We do not have an

analytical expression for ϕiX , which prevents us from deriving a closed-form solution for

βVit .
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unlevered beta. Figure 2.3 exhibits estimated conditional equity betas for firms with

one year to debt maturity and a market debt ratio of 0.5, confirming that levered

equity betas are indeed higher than their unlevered counterparts (Figure 2.3 versus

Figure 2.2). Therefore, expected excess equity returns for levered firms are higher

than for unlevered firms (Figure 2.3 versus Figure 2.2), while the positive expected

return–relative share relation persists among levered firms.

We are now ready to develop our model’s implications for the cross-sectional

associations between expected return and (i) dispersion, (ii) IV, and (iii) credit risk.

We ultimately confirm that our single-factor model provides a unified resolution of

these three apparently puzzling negative relations.

2.3 Three Cross-Sectional Effects

2.3.1 Dispersion

Based on the firm dividend growth process formulated in equation (2.12),

dispersion is proxied by

Dispersionit =

∣∣∣∣∣∣
√
δ2

1−θit
θit

+ σ2
D

α
(
θ̄i

θit
− 1
)
+ µD +Xt

∣∣∣∣∣∣ . (2.21)

Our dispersion proxy measures the uncertainty about future dividend growth, de-

fined as the standard deviation of future dividend growth normalized by expected

dividend growth. Diether, Malloy, and Scherbina (2002) empirically examine the

dispersion of analysts’ earnings forecasts, which can be viewed as an alternative

proxy for uncertainty about the underlying cash flow dynamics. Diether, Malloy,

and Scherbina (2002) show a positive relation between dispersion in earnings fore-

casts and cash flow variability but dismiss a risk-based explanation based on cash
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flow uncertainty due to the apparently puzzling negative relationship between ex-

pected return and dispersion. Instead, they attribute the dispersion effect to eq-

uity mispricing. However, Barron, Stanford, and Yu (2009) decompose dispersion

into earnings uncertainty and information asymmetry components using the model

of Barron, Kim, Lim, and Stevens (1998). Cash flow uncertainty is significantly

negatively associated with future returns, while information asymmetry carries a

significant positive relation with future returns. That the dispersion effect is driven

by earnings uncertainty is inconsistent with the mispricing explanation of Diether,

Malloy, and Scherbina (2002) but is consistent with our own rational explanation.

Finally, Zhang (2006) and Huang (2009) directly demonstrate negative empirical re-

lations between expected return and measures of cash flow variability closely related

to ours.

Theorem 4 establishes sufficient conditions for a negative relation between

relative share and dispersion.

Theorem 4. Dispersion decreases in relative share under the restrictions α
(
θ̄i

θit
− 1
)
+

µD +Xt > 0 and α
(
1− θ̄i

(
1− σ2

D

δ2

))
> µD +Xt.

Proof. See Appendix A.3.4.

In words, the first condition in Theorem 4 ensures that a firm has positive

expected dividend growth. The second condition holds quite generally, since the

term in parentheses is close to one and estimates of α are much larger than µD for

typical parameter estimates. Overall, the two conditions for the negative relation

between dispersion and relative share emerge quite generally for the large majority
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of firms in the cross section.10 Simulations show that dispersion and relative share

exhibit a negative relation across the full cross section under a wide variety of

conditions. Further discussion appears in Appendix A.3.4.

Theorem 4 establishes a negative cross-sectional relation between dispersion

and expected return. Since expected return is increasing in relative share, our model

implies a negative expected return–dispersion relation in the cross section. Figure

2.4 illustrates this negative relation among simulated firms.

2.3.2 Idiosyncratic Volatility

While the IV effect seems to be at odds with economic theory, it naturally

arises within our setup. We first note that the dispersion effect augments the IV ef-

fect. In particular, low relative share firms display higher cash flow risk, portending

larger idiosyncratic shocks among these firms. This is the first factor triggering the

IV effect. The second contributing factor is the cross-sectional pattern in price sensi-

tivity to dividend share shocks. Low relative share firms are particularly vulnerable

to firm-specific shocks due to their heavy dependence on short-run cash flows. In

contrast, the values of high relative share firms are closely tied to systematic shocks

to economic growth while they are more immune to cash flow shocks, leading to high

expected returns matched with low IV. This second mechanism is stronger than the

first, and a substantial IV effect would arise in our economy even in the absence of

a dispersion effect.

10The relation between dispersion and relative share is positive among firms with neg-
ative expected dividend growth. Since the large majority of firms have positive expected
dividend growth, the cross-sectional relation holds in general.
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To formalize, the idiosyncratic component of instantaneous return volatility

formulated in equation (2.15) is

IV i
t = δ

√
1− θit
θit

(
1 +

θitG
i
θ

Gi

)
. (2.22)

The elasticity of firm value with respect to dividend share,
θitP

i
θ

P i , can be written

θitP
i
θ

P i
= 1 +

θitG
i
θ

Gi

=

∫∞
t
S(Xt, τ)e

−ατds∫∞
t
S(Xt, τ)

(
e−ατ + θ̄i

θit
(1− e−ατ )

)
ds
, (2.23)

so the term in parentheses from equation (2.22) simply reflects firm value’s sensitivity

to firm-specific dividend share shocks. This elasticity is always between zero and one

and sharply decreases in relative share. Therefore, the value of any firm increases

with a positive shock to dividend share, but the increase is less than one-to-one.

More importantly, the values of low relative share firms have greater sensitivities

to firm-specific dividend share shocks. Meanwhile, the values of high relative share

firms are relatively inelastic with respect to changes in dividend share. This pattern

in price responses to firm-specific shocks implies that a negative relative share–

idiosyncratic volatility relation holds quite generally.

From a technical perspective, idiosyncratic volatility decreases in relative

share under the following sufficient condition.

Theorem 5. Idiosyncratic volatility decreases in relative share under the restriction

on the (θ̄, α)-plane
(
θ̄i

θit
− 2θ̄i

)
(
√
2αM − 1) > 1 where M = |S(Xt,τ)|1

|S(Xt,τ)|2 is independent

of α, and | · |i represents the i-th norm.

Proof. See Appendix A.3.4.

A condition for Theorem 5 to hold is that θit < 1/2, which occurs almost surely given

reasonable firm-level parameters and must obtain for at least n − 1 of the n firms
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in the cross section. For a given θit < 1/2, any (θ̄i, α) that satisfy the restriction

imposed by Theorem 5 will give rise to a negative relation between relative share

and IV. In fact, since S > 0, the 1-norm of S is much greater than the 2-norm and

M >> 1, such that the above condition flexibly holds under a wide set of parameter

values.

Theorem 5 establishes a negative relation between relative share and IV. This

relation in turn implies a negative relation between IV and expected return. Figure

2.4 provides simulation evidence of this negative relation.

In sum, the apparently puzzling dispersion and IV effects are attributable

to cross-sectional differences in exposure to systematic risk. Our resolution for the

dispersion and IV effects is substantially different from that of Johnson (2004). In

his option-pricing setup, increasing IV leads to higher current levered equity values,

which in turn leads to lower expected returns as future expected payoffs remain un-

changed. While Johnson’s explanation arises from exposure to idiosyncratic risk, our

explanation is rooted in exposure to time-varying priced as well as unpriced sources

of risk. Moreover, Johnson’s model relies on leverage to produce the dispersion and

IV effects. Our model produces the dispersion and idiosyncratic volatility effects for

both levered and unlevered firms, consistent with the empirical evidence of Diether,

Malloy, and Scherbina (2002) and Ang, Hodrick, Xing, and Zhang (2006).

2.3.3 Credit Risk

Empirical work has uncovered a negative relation between credit risk and

expected return (e.g., Dichev (1998), Campbell, Hilscher, and Szilagyi (2008), and
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Avramov, Cederburg, and Hore (2009)). This evidence initially seems quite surpris-

ing, as high credit risk firms are commonly perceived to be riskier. The literature has

typically offered non-risk-based explanations for the credit risk effect. However, we

show that the credit risk effect arises naturally in our model due to cross-sectional

differences in exposures to systematic and idiosyncratic risks.

From an intuitive perspective, the large majority of a firm’s return volatility is

idiosyncratic (e.g. Campbell, Lettau, Malkiel, and Xu (2001)). Therefore, one would

expect idiosyncratic shocks to be the primary cause of defaults.11 Low relative share

firms with high levels of idiosyncratic risk are most likely to experience this type of

default. Meanwhile, high relative share firms have low IV and do not often default

for firm-specific reasons. Default risk models designed to predict bankruptcies and

defaults on a year-to-year basis (e.g., Altman (1968), Ohlson (1980), and Campbell,

Hilscher, and Szilagyi (2008)) are likely to identify firms with high IV as high default

risk firms. However, in equilibrium these firms have low systematic risk exposures

leading to a negative relation between expected return and distress risk estimates.

In contrast to the relatively frequent idiosyncratic defaults, occasional large

negative shocks to expected economic growth influence all firms and may lead to

a “default wave” with many firms in the cross section simultaneously experienc-

ing financial distress. The default waves produced our model are consistent with

the empirical evidence of Chen (2009). When the economy experiences a negative

11Consistent with this intuition, Campbell and Taksler (2003) find that the IV of firm eq-
uity is as effective as credit rating in explaining cross-sectional variation in credit spreads.
Additionally, the time series of credit spreads generally matches up with average IV, fur-
ther suggesting IV plays an important role in defaults.
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systematic shock, high relative share firms with large economic growth betas are

most affected. As such, many of the firms caught in a default wave are those which

appeared to have high credit quality ex ante. Investors require additional compen-

sation for holding high relative share firms and taking on exposure to default waves

despite their low probability.

In the Merton (1974) framework, default occurs if the firm value drops below

the face value of bonds at maturity, that is, if PT < B. We do not have a closed-form

solution for the probability of default. Instead, we estimate the default probability

by simulating the firm value through the bond maturity date and then calculating

the percentage of simulations in which the firm defaults. In the simulation, we

assume each firm has zero-coupon debt with one year to maturity and a debt ratio

of 50%.12 The simulation procedure is explained in more detail in Appendix A.4.4.

Our model produces a robust negative relation between expected return and

credit risk in simulations. Low relative share firms tend to default more frequently

than high relative share firms. This effect translates to a negative credit risk–

expected return relation, illustrated by Figure 2.4. The default events among high

relative share firms in the simulation are infrequent but concentrated in times of

poor economic conditions, when the expected economic growth rate has experi-

enced a large negative shock. Meanwhile, low relative share firms default relatively

12For simplicity, we assume that all firms have a face value of debt equal to 50% of the
firm value at time 0. This assumption biases us against finding a negative relation relative
to the case where all firms have the same market debt ratio, since the debt of the high
credit risk firms has lower value so these firms have lower leverage. Additionally, George
and Hwang (2010) show that firms with potentially high distress costs (a close parallel to
the high relative share firms in our model) will optimally choose lower levels of leverage,
while in our simulation these firms have higher leverage.
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frequently and more uniformly across economic conditions. In general, our model

produces a robust negative relation between expected return and credit risk when

parameters are set to match the empirical regularity that idiosyncratic volatility is

higher than systematic volatility for most firms in the cross section.

In sum, we have demonstrated theoretical connections between the disper-

sion, IV, and credit risk effects. Cross-sectional differences in cash flow timing tend

to produce a negative relation between firm-specific risk and exposure to systematic

risk in the cross section. Expected returns are negatively related to each of the

three firm characteristics as a result. We next turn to empirical evidence on the

three anomalies.

2.4 Empirical Evidence

This section presents empirical evidence about the dispersion, IV, and credit

risk effects based the sample period July 1981 through June 2008. Our model

predicts that the dispersion, IV, and credit risk measures are related across firms,

as each measure is driven by the same relative share characteristic. Our model also

implies that all three puzzling effects are mutually related as they are all explained

by the same common factor, namely economic growth. The empirical evidence

broadly supports our model’s predictions. In particular, the three anomalies are

indeed tightly positively linked in the data. Moreover, higher dispersion, IV, and

credit risk firms display lower exposures to long run risk thereby commanding lower

risk premiums. Finally, the expected returns implied by our model generally match

the empirical patterns in average returns.
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2.4.1 Relating the Anomalies

Prior research suggests positive relations between dispersion and IV (e.g.,

Barron, Stanford, and Yu (2009)), dispersion and credit risk (e.g., Avramov, Chor-

dia, Jostova, and Philipov (2009)), and IV and credit risk (e.g., Campbell and

Taksler (2003)). Here, we simultaneously examine the relations between all three

measures. The analysis is based on the dispersion measure of Diether, Malloy, and

Scherbina (2002), the IV measure of Ang, Hodrick, Xing, and Zhang (2006), and

the financial distress measure of Campbell, Hilscher, and Szilagyi (2008). Additional

details about data construction are available in Appendix A.4.1.

Panel A of Table 2.1 exhibits the time-series average of the cross-sectional

Spearman rank correlations between dispersion, IV, and financial distress within

each month. The evidence shows that all three characteristics are positively related.

A firm with high IV is quite likely to have high distress risk as evidenced by the cor-

relation of 0.41 between the two measures. Similarly, the dispersion–IV correlation

is 0.31 and the dispersion–default probability correlation is also 0.31.

Panel B of Table 2.1 examines the characteristics of firms in three groups of

decile portfolios sorted on dispersion, IV, and distress risk. It displays the mean

dispersion, IV, and probability of default across firms in each portfolio. In the ten

dispersion portfolios, both IV and the probability of default are nearly monotonically

increasing as the dispersion ranking increases. Similar results hold for the IV and

credit risk portfolios, with all three characteristics having nearly monotonic patterns

across the portfolios.

More specifically, moving from the lowest to highest dispersion portfolio, the
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mean IV increases from 2.40% to 3.67%, and the mean default probability rises from

0.08% to 0.30%. Similarly, moving from the lowest to highest IV portfolio, the mean

dispersion rises from 0.07 to 0.49, and the mean default probability advances from

0.05% to 0.97%. Finally, moving from the lowest to highest distress risk portfolio,

the mean dispersion rises from 0.09 to 0.65, and the mean IV increases from 2.25%

to 5.80%.

Overall, the evidence exhibited in Table 2.1 illustrates that a strong empir-

ical link exists between the dispersion, IV, and credit risk measures. The positive

relations between these measures suggest that portfolios formed on the basis of each

characteristic will be similar. Indeed, we find that a stock in the top decile of the

IV and credit risk characteristics has a 39% chance of lying in the top dispersion

decile and 73% chance of being in the top three deciles of dispersion.

To establish the relation between the dispersion, IV, and credit risk anoma-

lies, we examine the properties of returns of value-weighted decile portfolios for each

characteristic. Portfolio formation details are in Appendix A.4.1. Table 2.2 exhibits

statistics summarizing portfolio returns.

Panel A merely displays evidence already documented in past work. In par-

ticular, there are statistically significant and economically large negative relations

between average returns and dispersion, IV, and credit risk. To illustrate, buying

low dispersion (IV) [default probability] firms and selling high dispersion (IV) [de-

fault probability] firms yields an investment payoff of 77 (190) [117] basis points per

month. All figures are highly significant.

In Panel B, we investigate the joint properties of extreme decile portfolio



80

returns for each of the anomalies. The correlation matrix shows that the returns of

the low dispersion, IV, and credit risk portfolios are highly correlated (all pairwise

correlations are at least 0.83). Similarly, the high dispersion, IV, and credit risk

portfolio returns have substantial comovement, with correlations of at least 0.81. In

contrast, cross correlations of low and high anomaly portfolios are relatively low,

with several correlations less than 0.50. In sum, portfolios formed on the three

anomaly variables behave similarly.

Indeed, we have established an empirical link between the dispersion, IV,

and credit risk anomalies. The three variables are related in the cross section of

stocks, and portfolios formed on the basis of these characteristics are similar. The

remaining task is to show that all three effects are explained by exposures to long

run risk. We establish this result below.

2.4.2 Model Estimation

We estimate aggregate economy parameters based on the processes in equa-

tions (2.3), (2.4), and (2.5). To estimate portfolio-level parameters, we construct

a quarterly dividend time series for each portfolio following Bansal, Dittmar, and

Lundblad (2005). Dividend share is calculated as the portfolio dividend divided by

the sum of dividends across all ten portfolios. Overall, we consider 30 portfolios

including ten dispersion, ten IV, and ten credit risk portfolios. Aggregate param-

eters as well as portfolio dividend share parameters are estimated in a Bayesian

framework. Full details of the estimation methodology are available in Appendix

A.4.2.
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We first examine the WF dividend share process formulated in equation (2.8).

The evidence supports mean reversion in dividend shares. In particular, we reject

the hypothesis of a unit root at a 5% level for 19 of 30 portfolios. We then compare

our dividend share process to several alternative specifications using the Akaike

Information Criterion–Monte Carlo (AICM) and Bayesian Information Criterion–

Monte Carlo (BICM) model selection criteria of Raftery, Newton, Satagopan, and

Krivitsky (2007), which are posterior simulation-based versions of the AIC and BIC

criteria. The alternative processes considered are

dθit = αi(θ̄i − θit)dt+ δi
√

(1− θit)θ
i
tdWθi , (2.24)

dθit = α(θ̄i − θit)dt+ σidWθi , (2.25)

dθit = µidt+ σidWθi . (2.26)

Specification (2.24) is a WF process which allows for firm-specific α and

δ parameters, specification (2.25) eliminates the dependence of the diffusion term

on θit, and specification (2.26) is a simple Brownian motion with firm-specific drift

and diffusion terms. Our dividend share process compares favorably, outperforming

all alternatives for the IV and credit risk portfolios. For dispersion portfolios, our

process dominates formulations (2.25) and (2.26), and is only slightly outperformed

by specification (2.24). Overall, our dividend share process is parsimonious and

provides a good fit to the data. Additional details of the dividend share process

tests appear in Appendix A.4.3.

Table 2.3 reports the annualized mean draws from the posterior distributions

of parameters underlying the aggregate economy as well as cross section of portfolios.
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Panel A exhibits the estimates for aggregate parameters. The table also reports our

choices for the risk aversion γ (7.5) and time preference β (0.01) parameters. Panel

B of Table 2.3 exhibits the mean draws of relative share and the long-run dividend

share for each portfolio, as well as the dividend share process parameters α and

δ. The evidence shows that, for each of the three sets of portfolios, there exists a

strong relation between relative share and portfolio rank. The lowest dispersion,

IV, and distress risk portfolios display the highest relative share estimates, given

by 5.81, 1.32, and 1.54, respectively. Meanwhile, high dispersion, IV, and distress

risk portfolios display quite low relative share estimates of 0.53, 0.02, and 0.03,

respectively. In each of the three cases, there is a substantial spread in relative

share across the decile portfolios.

Our estimates of relative share reflect differential dividend growth rates across

the decile portfolios. In fact, the average dividend growth of low dispersion, IV, and

distress risk portfolios is much higher than that of the corresponding high measure

portfolios. Indeed, relative share estimates of the portfolios imply that each of the

three characteristics should be negatively related to expected returns.

Table 2.4 reports the model-implied expected returns for the dispersion, IV,

and credit risk portfolios. The patterns in expected returns generally match those

of realized returns, suggesting that exposure to unexpected changes in economic

growth may explain much of the cross-sectional variation in expected returns of

these portfolios. The model generates large spreads in expected returns, with long-

short portfolios earning expected annual returns of 2.8% (dispersion), 4.7% (IV), and

5.0% (credit risk). Further, the model is able to capture this variation in returns
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despite forming expected return estimates that use only aggregate consumption,

aggregate dividend, and portfolio-level dividend data.

However, it should be noted that our expected return estimates tend to be

“too flat” relative to realized returns. There are at least two potential explanations

of the result that realized returns vary more than expected returns. First, in this

paper we make simplifying assumptions to achieve tractability and establish theoret-

ical results on the relations between expected return and dispersion, IV, and credit

risk. The magnitudes of cross-sectional spreads in expected returns may be matched

by relaxing such assumptions as zero correlations between dividend shares and ag-

gregate variables or unit EIS. In support of this explanation, the model-implied

expected returns achieve a high rank correlation with realized average returns, sug-

gesting the model may be capturing the underlying economic mechanism. Alterna-

tively, long-run risk may provide a reasonably good, albeit imperfect, explanation

of market anomalies, allowing our model to capture only a fraction of the variation

in expected returns across the portfolios. In general, however, long-run risk does

provide a qualitative and intuitive resolution of the dispersion, IV, and credit risk

effects.

2.5 Conclusion

This paper develops and applies an intertemporal asset pricing model in a

long-run risk economy with a formal cross section of firms. Expected returns in the

economy are positively related to cash flow duration, while firms in the cross section

are characterized by expected cash flow timing. Firms with high relative share,
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which corresponds to high expected dividend growth, are more sensitive to shocks

to the persistent economic growth rate and hence command higher risk premiums.

Our model suggests that the puzzling negative cross-sectional relations be-

tween expected stock returns and analysts’ forecast dispersion, idiosyncratic volatil-

ity, and credit risk emerge as an equilibrium response to long-run risk. While high

duration firms are highly exposed to systematic shocks, low duration firms are par-

ticularly sensitive to firm-specific dividend shocks. As a result, firms with high

measures of idiosyncratic risk tend to have low systematic risk and low expected

returns, which explains the observed patterns.

The model predictions are broadly supported in the data. For one, the ev-

idence shows that the dividend shares of dispersion, IV, and credit risk portfolios

mean revert, and our dividend share process dominates alternative specifications

based on model selection criteria. Moreover, dispersion, IV, and credit risk mea-

sures are highly positively related in the data, and portfolios formed based on these

three characteristics display similar attributes. More importantly, high dispersion,

IV, and credit risk firms exhibit low cash flow duration, thereby command relatively

low risk premiums.

This paper contributes to the growing long-run risk literature, which offers

explanations for a variety of aggregate and cross-sectional asset pricing puzzles,

including the equity premium, risk-free rate, and excess volatility puzzles, as well as

the momentum and value effects. Our contributions are in both methodology and

substantive findings. We are the first to derive formal cross-sectional asset pricing

restrictions in a long-run risk setting summarized by an intuitive conditional beta
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representation. Moreover, we demonstrate that the analysts’ forecast dispersion,

idiosyncratic volatility, and credit risk effects are inherently linked through cross-

sectional exposures to idiosyncratic and systematic sources of risk. Overall, our

model generates aggregate and firm-level return characteristics that largely match

the empirical evidence and offers risk-based explanations of puzzling cross-sectional

effects.
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Table 2.1: Relation between Dispersion, Idiosyncratic Volatility, and Distress Risk

Panel A: Spearman Rank Correlation
Dispersion Idiosyncratic Volatility Default Probability

Dispersion 1.00 0.31 0.31
Idiosyncratic Volatility 1.00 0.41
Default Probability 1.00

Panel B: Average Characteristics of Firms in Portfolios
Low 2 3 4 5 6 7 8 9 High

Dispersion Portfolios
Dispersion 0.00 0.01 0.02 0.03 0.04 0.06 0.08 0.12 0.23 1.53
IV 2.40 1.95 2.07 2.19 2.34 2.50 2.69 2.93 3.25 3.67
Default Probability 0.08 0.05 0.06 0.07 0.09 0.11 0.15 0.20 0.26 0.30

IV Portfolios
Dispersion 0.07 0.10 0.13 0.17 0.20 0.23 0.29 0.34 0.41 0.49
IV 0.77 1.27 1.63 1.98 2.36 2.80 3.32 4.01 5.07 8.43
Default Probability 0.05 0.05 0.06 0.08 0.10 0.15 0.22 0.32 0.52 0.97

Distress Risk Portfolios
Dispersion 0.09 0.09 0.10 0.13 0.18 0.20 0.27 0.40 0.57 0.65
IV 2.25 2.25 2.30 2.41 2.53 2.65 2.97 3.58 4.50 5.80
Default Probability 0.02 0.02 0.03 0.04 0.05 0.06 0.07 0.10 0.18 2.52

Note: This table reports statistics on the relation between dispersion, idiosyn-
cratic volatility (IV), and distress risk (Default Probability). Dispersion is the
standard deviation of earnings forecasts divided by the absolute value of the
mean forecast. IV is the standard deviation of the residual from a Fama–French
(1993) three-factor regression using daily returns from the month prior to port-
folio formation. The probability of default is based on the Campbell, Hilscher,
and Szilagyi (2008) measure. Panel A reports the correlations between dis-
persion, IV, and default probability. The reported correlations are time-series
averages of the monthly Spearman cross-sectional correlations between the three
measures. Panel B shows the average dispersion, IV, and default probability
for firms appearing in decile portfolios sorted on each of the three variables.
The dispersion and IV portfolios are rebalanced monthly, while the distress risk
portfolio is rebalanced annually in July. The sample period is July 1981 to June
2008.
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Table 2.3: Parameter Estimates

Panel A: Aggregate Parameters
γ β µC µD σC σD σX λ κ

7.500 0.010 0.009 0.041 0.010 0.061 0.025 0.253 0.051

Panel B: Portfolio Parameters
Dispersion Idiosyncratic Volatility Distress Risk

Relative Share
(
θ̄i

θi0

)
Low 5.811 1.322 1.540
2 0.620 1.180 0.998
3 0.468 0.964 1.261
4 0.679 0.996 1.114
5 0.340 0.855 0.964
6 1.584 0.951 0.718
7 0.420 0.374 0.653
8 0.772 0.169 0.140
9 0.287 0.040 0.167
High 0.528 0.017 0.034

Long-Run Mean Dividend Share
(
θ̄i
)

Low 0.390 0.172 0.213
2 0.101 0.276 0.220
3 0.071 0.224 0.148
4 0.073 0.144 0.141
5 0.062 0.105 0.127
6 0.195 0.061 0.089
7 0.031 0.013 0.053
8 0.048 0.003 0.006
9 0.010 0.001 0.003
High 0.019 0.000 0.000

Process Parameters (α and δ)
α 0.055 0.312 0.224
δ 0.057 0.076 0.061

Note: This table reports aggregate and portfolio parameter estimates. Panel
A shows our chosen preference parameters γ and β and estimates of the ag-
gregate parameters from equations (2.3), (2.4), and (2.5). The parameters are
estimated using annual US real per capita consumption and dividend data from
1948 to 2008. We use a Bayesian Markov chain Monte Carlo (MCMC) procedure
that appears in Appendix A.4.2.1 to estimate the parameters. Panel B reports
portfolio parameter estimates from equation (2.8) for portfolios sorted on dis-
persion, idiosyncratic volatility, and credit risk. Portfolios are value weighted
and the sample period is July 1981 to June 2008. We follow Bansal, Dittmar,
and Lundblad (2005) to calculate quarterly portfolio dividends to obtain a time
series of dividend share. The MCMC procedure used to estimate the portfolio
parameters is in Appendix A.4.2.2. All figures are the mean of the posterior
distribution of the parameter and are annualized.
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Figure 2.1: Cash Flow Duration and Expected Returns

Note: This figure shows the expected monthly excess return of an asset as a
function of its cash flow duration. The asset considered pays a non-negative
portion of the aggregate dividend at all times t. The dotted lines show the 90%
confidence band for expected excess returns given the posterior distribution of
aggregate parameters. See Appendix A.4.2.1 for details on aggregate parameter
estimation and Table 2.3 for the mean draws of aggregate parameters.
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(a) Relative Shares and Expected Returns
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(b) Relative Shares and Economic Growth Betas

Figure 2.2: Expected Excess Returns and Economic Growth Betas for Unlevered
Firms

Note: This figure shows expected excess returns and economic growth betas as
a function of firm relative share for an unlevered firm. The first figure graphs
the expected monthly excess return against relative share. The expected excess
return of firm i is given by equation (2.14). The second figure plots the firm’s
beta relative to an economic growth hedge portfolio, given by equation (2.16),
as a function of relative share. The dotted lines show the 90% confidence bands
given the posterior distribution of aggregate and portfolio parameters. See Ap-
pendix A.4.2.1 for details on aggregate parameter estimation, Appendix A.4.2.2
for portfolio parameter estimation, and Table 2.3 for the mean draws of param-
eters.
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(b) Relative Shares and Economic Growth Betas

Figure 2.3: Expected Excess Returns and Economic Growth Betas for Levered Firms

Note: This figure shows expected excess returns and economic growth betas
as a function of firm relative share for a levered firm. The firm is assumed
to have a market debt ratio of 0.5 with one year to debt maturity. Following
the Merton (1974) framework, a firm is assumed to default if its firm value at
debt maturity is less than the face value of its debt. The first figure graphs the
expected monthly excess return against relative share. The second figure plots
the firm’s beta relative to an economic growth hedge portfolio as a function of
relative share. The dotted lines show the 90% confidence bands of simulated
values from 5,000 iterations of the simulation, where the aggregate parameters
in each iteration are drawn from their posterior distribution. See Appendix A.4
for details on aggregate and portfolio parameter estimation and the simulation
procedure.
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(b) Idiosyncratic Volatility
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(c) Credit Risk

Figure 2.4: Expected Returns and Firm Characteristics

Note: This figure plots the cross-sectional relations between expected excess
return and each of dispersion, idiosyncratic volatility (IV), and credit risk. The
plots are based on a cross section of 100 simulated firms. For each firm, disper-
sion and IV are calculated based on equations (2.21) and (2.22), respectively.
Credit risk is estimated from the percentage of simulated draws in which the
firm defaults. The firm is assumed to have a market debt ratio of 0.5 with
one year to debt maturity. Following the Merton (1974) framework, a firm is
assumed to default if its value at debt maturity is less than the face value of its
debt. See Appendix A.4.4 for full details on the simulation procedure.
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CHAPTER 3
ASSET-PRICING ANOMALIES AT THE FIRM LEVEL

3.1 Introduction

An anomaly is a pattern in average stock returns that is inconsistent with the

predictions of the Capital Asset Pricing Model (CAPM) of Sharpe (1964) and Lint-

ner (1965). Anomalies are commonly identified using a portfolio-based approach.

The researcher sorts stocks on a firm characteristic and constructs a zero-cost hedge

portfolio by taking long and short positions in the extreme groups. If the hedge

portfolio earns abnormal returns relative to the CAPM, the sorting characteristic

is classified as an anomaly. Over the past three decades, a large number of anoma-

lies have been uncovered, suggesting the CAPM is unable to explain much of the

cross-sectional variation in average stock returns.

There are, however, growing concerns in the literature about the use of port-

folios to identify anomalies and, more generally, to test asset-pricing models. These

arguments are centered around the idea that grouping firms into portfolios and ag-

gregating returns wastes and potentially distorts valuable information about cross-

sectional patterns in abnormal returns.1 One way to avoid the concerns with port-

folios is to use firm-level data. To examine anomalies at the firm level, however, the

1For example, Litzenberger and Ramaswamy (1979) and Ang, Liu, and Schwarz (2010b)
consider the loss in efficiency from using portfolios rather than individual firms in asset-
pricing tests, while Roll (1977), Kandel and Stambaugh (1995), and Fama and French
(2008) discuss how patterns in firm-level pricing errors can be distorted at the portfolio
level. Lo and MacKinlay (1990) highlight the data-snooping biases inherent in portfolio-
based asset-pricing tests. Ahn, Conrad, and Dittmar (2009) and Lewellen, Nagel, and
Shanken (2010) show inferences in asset-pricing tests are remarkably sensitive to the choice
of test portfolios. For other issues, see Conrad, Cooper, and Kaul (2003), Kan (2004), and
Daniel and Titman (2006b).
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researcher has to relate firm characteristics to abnormal returns. Abnormal returns

are not directly observable, so the researcher must model and estimate the evolution

of betas – a challenging problem, especially at the firm-level.

Two recent firm-level studies adopt contrasting approaches to control for mar-

ket risk. Avramov and Chordia (2006) model market risk as an exact linear function

of firm size, book-to-market, and macroeconomic variables, while Fama and French

(2008) argue that market risk should not be related to firm characteristics removing

the need to examine abnormal returns. Both approaches are problematic. Speci-

fying betas as an exact linear function of covariates is only valid if the researcher

knows the full set of variables associated with variation in betas, while tests exam-

ining the relation between firm characteristics and raw returns will overstate the

CAPM’s failings if firm-level betas are associated with firm characteristics.

In this paper, we develop a hierarchical Bayes approach to explore anomalies

at the firm level. Specifically, we simultaneously estimate (1) conditional CAPM

model parameters for each firm using an approach similar to Lewellen and Nagel

(2006) which specifies short time periods and avoids the need for conditioning infor-

mation, (2) the cross-sectional relation between conditional alphas and firm char-

acteristics in each time period, and (3) the systematic association between alphas

and firm characteristics across the entire sample period. Our approach has several

desirable features relative to the prior literature. We put little structure on the dy-

namics of conditional betas, thereby minimizing potential model mis-specification.

Our one-step methodology eliminates a measurement error problem encountered in

traditional two-step approaches (e.g., Brennan, Chordia, and Subrahmanyam (1998)
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and Avramov and Chordia (2006)). We also implicitly control for cross-sectional

heteroskedasticity and cross-correlations among stocks.

We use this approach to examine nine anomalies over the period 1963 to

2008: size, book-to-market, momentum, reversal, profitability, asset growth, net

stock issues, accruals, and financial distress.2 Studying each anomaly separately, we

find that firm-level associations are distorted at the portfolio level for four of the

nine anomalies. For example, the traditional portfolio approach suggests size and

reversal are associated with abnormal returns, but using information from the entire

cross section of stocks there is no evidence of a robust relation between either of

these variables and firm alphas. Further analysis suggests the portfolio-level results

for size and reversal are driven by a small subset of stocks with extreme values for

these characteristics. Nevertheless, the initial firm-level evidence still paints a bleak

picture for the CAPM. Seven of the nine characteristics are significantly associated

with alphas, suggesting that the CAPM does indeed fail across multiple dimensions.

These results, however, may be misleading for three reasons.

First, a disadvantage of using the entire cross section of firms to study anoma-

2Previous papers show a positive relation between average returns and book-to-market
equity (Rosenberg, Reid, and Lanstein (1985), Chan, Hamao, and Lakonishok (1991), and
Fama and French (1992)), stock return momentum (Jegadeesh (1990) and Jegadeesh and
Titman (1993, 2001)), and profitability (Haugen and Baker (1996) and Cohen, Gompers,
and Vuolteenaho (2002)). There is a negative relation between average returns and size
(Banz (1981) and Fama and French (1992)), stock return reversal (DeBondt and Thaler
(1985) and Chopra, Lakonishok, and Ritter (1992)), asset growth (Fairfield, Whisenant,
and Yohn (2003), Titman, Wei, and Xie (2004), and Cooper, Gulen, and Schill (2008)), net
stock issues (Loughran and Ritter (1995), Ikenberry, Lakonishok, and Vermaelen (1995),
Daniel and Titman (2006a), and Pontiff and Woodgate (2008)), accruals (Sloan (1996),
Collins and Hribar (2000), and Xie (2001)), and financial distress (Dichev (1998) and
Campbell, Hilscher, and Szilagyi (2008)).
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lies is that inferences may be heavily influenced by small, illiquid stocks. It is possi-

ble that the anomalous patterns are being driven primarily by firms which represent

only a tiny fraction of the total market capitalization. We investigate this issue by

allowing associations between alphas and firm characteristics to vary across micro,

small, and big stocks.3 We find the associations are strongest in terms of statistical

and economic magnitude for micro and small stocks. For big stocks, alphas are

significantly associated with only three of the nine characteristics - asset growth,

net stock issues, and accruals.

Second, anomalies could be the result of the temporary market mis-pricing

or data snooping by researchers. These explanations suggest established deviations

from the CAPM should weaken over time. To examine this issue, we consider

whether the relation between alphas and each firm characteristic attenuates or per-

sists after the anomaly is established in the asset-pricing literature. Anomalies

that persist post publication are more likely to reflect a fundamental failure of the

CAPM. Of the seven anomaly variables with sufficient post-publication sample peri-

ods only two – book-to-market and accruals – are significantly related to abnormal

returns after publication. Further, these relations are driven by micro stocks for

which transaction costs and liquidity concerns diminish investors’ ability to exploit

anomalies and correct mis-pricings (e.g., Jensen (1978)). Among big stocks, no firm

characteristic is significantly associated with abnormal returns post publication.

Third, firm characteristics could be correlated with each other and offer lit-

3Following Fama and French (2008), we classify stocks into three size groups - micro,
small, and big. The breakpoints are based on the 20th and 50th percentiles of market
capitalization for NYSE stocks at the end of June each year.
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tle unique information about abnormal returns. Asset-pricing tests that consider

each firm characteristic in isolation are likely to suffer from an omitted variable

bias that will result in the importance of an anomaly being overstated. Traditional

portfolio approaches are unable to adequately address this omitted variable prob-

lem. Researchers typically rely on multi-dimensional sorts to isolate the effects of

a particular characteristic, but controlling for more than one or two characteristics

simultaneously is infeasible. In contrast, our approach is particularly well suited

to assess which anomalies contain unique information; we simply specify condi-

tional alphas as a function of multiple firm characteristics. Our results suggest that

univariate tests do indeed suffer from a pronounced omitted variable bias. Consid-

ering all characteristics simultaneously we find that size, momentum, reversal, asset

growth, and financial distress do not contain significant incremental information

about abnormal returns, in contrast to the corresponding portfolio-level results.

Taken together, the results suggest that while the CAPM does not perfectly

explain firm returns, the anomaly-based evidence against the CAPM is generally

overstated. Relations between firm characteristics and conditional firm-level alphas

are primarily focused among micro and small stocks and tend not to persist after

the anomalies are first documented. Furthermore, few of the firm characteristics

associated with alphas actually contain unique information.

The paper is organized as follows. Section 3.2 develops our econometric model

for testing asset-pricing anomalies and discusses the advantages and disadvantages

of the proposed approach. Section 3.3 describes the data. Section 3.4 presents the

empirical results. Section 3.5 concludes.



99

3.2 Methodology

This section develops our firm-level approach for identifying anomalies rela-

tive to the CAPM. The Sharpe–Lintner version of the CAPM states that

E [ri,t] = βiE [rm,t] , (3.1)

where E [ri,t] denotes the expected excess return on stock i at time t, E [rm,t] is the

market risk premium, and βi =
Cov(ri,t,rm,t)

V ar(rm,t)
captures stock i’s exposure to market

risk. The Sharpe–Lintner CAPM relates the unconditional expectations of firm and

market returns. In reality, as a firm grows and evolves, its exposure to market

risk will change. Similarly, the market risk premium is likely to vary depending

on the state of the economy and the risk tolerance of investors. In the presence of

time-varying risk exposures and risk premiums, a conditional version of the CAPM,

Et−1 [ri,t] = βi,tEt−1 [rm,t] , (3.2)

may hold even if the unconditional CAPM does not (Jagannathan andWang (1996)).

The conditional CAPM implies that the expected conditional alpha, defined

as

Et−1[αi,t] = Et−1 [ri,t]− βi,tEt−1 [rm,t] , (3.3)

should equal zero for all stocks. A common way of testing this prediction is to

examine whether alphas can be forecasted by firm characteristics. Many existing

tests in the literature rely on portfolio-based approaches. However, grouping firms

into portfolios and aggregating returns has adverse effects. Specifically, valuable

information is discarded while averaging across firms and cross-sectional patterns
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in firm returns may be distorted as a result of the portfolio formation procedure.

An alternative approach involves testing the CAPM’s prediction that alphas are

not forecastable using the full cross section of firm returns by examining the cross-

sectional relation,

αi,t = δ0 + δxxi,t−1 + ϵi,t, (3.4)

where xi,t−1 is a firm characteristic that is observable at time t− 1. The conditional

CAPM implies that δx = 0 in a cross-sectional regression based on equation (3.4).

Analysis of this cross-sectional regression is complicated by the fact that the

dependent variable, αi,t, is a latent variable. As such, a model for the latent alphas

is necessary to examine the relation in equation (3.4). A test using such a model

would ideally have two features. First, the specification should not introduce a

spurious relation between αi,t and xi,t−1 through the model for the latent alphas.

Second, given the structure of the problem, the posterior precision of δx should be

maximized.

With these considerations in mind, we develop a firm-level test of the CAPM’s

implication that alphas are not predictable. Specifically, we estimate a system of

simultaneous equations,

ri,t,y = αi,y + βi,yrm,t,y + ϵi,t,y, ϵi,t,y ∼ N
(
0, σ2

i,y

)
, (3.5)

αi,y = Xi,yδy + ηi,y, ηi,y ∼ N
(
0, σ2

α,y

)
, (3.6)

δy = δ + νy, νy ∼MVN (0,V) , (3.7)

where ri,t,y denotes the excess return on stock i in subperiod t of time period y,

rm,t,y is the excess market return, and Xi,y is a matrix including a constant and firm
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characteristics observable at the beginning of period y. In the primary model speci-

fication, we use monthly subperiods (t) and annual periods (y). We therefore allow

firm alphas and betas to change each year, utilizing the short-window regression

approach of Lewellen and Nagel (2006) to test the conditional CAPM. In equation

(3.6), δy measures the year-by-year relations between alphas and firm characteris-

tics. In a given year, however, abnormal returns may be related to characteristics

purely by chance. To examine whether there is a systematic relation between firm

characteristics and alphas throughout the entire sample period, we assume that the

parameter vectors, {δy}Yy=1, in equation (3.6) are drawn from the multivariate nor-

mal distribution specified in equation (3.7). If an element of δ is focused away from

zero, there is evidence of an anomaly that persists through time. In our empiri-

cal analysis, we analyze δ when assessing the importance of firm characteristics in

forecasting alphas.

We estimate the system of equations (3.5) to (3.7) simultaneously as a hi-

erarchical Bayes model.4,5 The model structure and estimation technique provides

important benefits when examining the relations between alphas and characteristics.

In particular, we minimize the potential for specification issues while modeling the

4Several papers have used Bayesian techniques to examine asset-pricing models. Mc-
Culloch and Rossi (1991) and Geweke and Zhou (1996) develop Bayesian analyses of the
Arbitrage Pricing Theory (APT), while Shanken (1987), Harvey and Zhou (1990), Kandel,
McCulloch, and Stambaugh (1995), and Cremers (2006) propose Bayesian tests for the
mean-variance efficiency of a given portfolio. Ang and Chen (2007) use Bayesian meth-
ods to examine whether the conditional CAPM can explain the value premium. Davies
(2010) and Cederburg, Davies, and O’Doherty (2010) test the CAPM and the ICAPM,
respectively, using Bayesian approaches.

5See (Rossi, Allenby, and McCulloch, 2005a, Ch. 5) for a discussion of hierarchical
Bayes models.
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latent alphas and maximize the precision of δ.

Relative to existing approaches, our methodology is unlikely to find spurious

relations between alphas and characteristics. We make limited assumptions about

the evolution of betas over time, only assuming that betas are relatively stable within

each year. In contrast, the conditional CAPM is often tested by allowing betas to

vary as a function of state variables. Avramov and Chordia (2006) take this ap-

proach and model firm betas as an exact linear function of size, book-to-market, and

macroeconomic variables. However, such an approach requires the econometrician to

know the “right” state variables (e.g., Harvey (1989), Shanken (1990), Jagannathan

and Wang (1996), and Lettau and Ludvigson (2001b)). Further, misspecification

of the process for betas may introduce spurious relations between measured alphas

and firm characteristics. If betas are related to other firm characteristics, such as

profitability or leverage, that are not included in the model, firm betas will be sys-

tematically mismeasured and a researcher may generate incorrect inferences about

δx.

Rather than taking an approach which relies on conditioning information, we

directly examine firm alphas and betas within each year, which Fama and French

(2006) note is less vulnerable to specification issues. Fama and French (2008) also

avoid complex dynamics for betas by regressing raw returns on firm characteristics

to examine anomalies, implicitly assuming that all stocks have betas of one. How-

ever, even in the absence of a relation between alphas and firm characteristics, this

approach will find δx ̸= 0 if Corr(βi,t, xi,t−1) ̸= 0. There is ample theoretical and

empirical evidence that betas are related to firm characteristics (e.g., Karolyi (1992),
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Gomes, Kogan, and Zhang (2003), and Avramov and Chordia (2006)), so properly

adjusting for market risk is important while testing whether alphas are forecastable.

Given that our model design is unlikely to produce spurious relations be-

tween alphas and characteristics, we turn to developing estimates of δ which are as

precise as possible conditional on the data. Our approach of simultaneously esti-

mating equations (3.5) to (3.7) maximizes the precision of δ. In contrast, a common

approach in the literature is to estimate the relations between alphas and character-

istics in two steps (e.g., Brennan, Chordia, and Subrahmanyam (1998) and Avramov

and Chordia (2006)). In the first step, the latent alphas are estimated for each firm.

The second step involves a cross-sectional regression of estimated alphas on the firm

characteristics,

α̂i,t = δ0 + δxxi,t−1 + ϵi,t. (3.8)

However, a two-step approach introduces a measurement error problem which leads

to an understatement of the evidence against the conditional CAPM. Alphas are

measured with error in the first step, and the variance of each firm’s estimated al-

pha is greater than the posterior variance of the firm alpha. The variance of δ is

increasing in the variance of the alphas used as dependent variables, so the mea-

surement error problem decreases the precision of δ. As a result, δx may not be

different from zero and alphas may appear to be unforecastable even when a sig-

nificant relation exists in the data. Our methodology eliminates this measurement

error problem by simultaneously estimating equations (3.5) to (3.7) to maximize the

precision of δ. In particular, while a two-step approach uses only time-series infor-

mation about the latent alphas, the simultaneous estimation methodology utilizes
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both time-series and cross-sectional information to make inferences about alphas.

An additional feature of the model specified in equations (3.5) to (3.7) is

that cross-sectional heteroskedasticity and cross-correlations among firms are im-

plicitly taken into account. Cross-sectional heteroskedasticity and cross-correlations

will influence the precision of δy in each period. By allowing the relation between

firm characteristics and alphas to vary over time, these features of the cross sec-

tion of returns will be reflected in the posteriors of δ and V (Shanken and Zhou

(2007)). Thus, a large number of test assets can be considered without requiring

the estimation of a variance-covariance matrix.

Estimating equations (3.5) to (3.7) simultaneously is, however, a challenging

problem. The model involves a high-dimensional parameter space since firm-specific

parameters must be estimated for thousands of firms in each year. Moreover estima-

tion is further complicated by the fact that the latent variables αi,y and δy appear

in multiple equations within the system. Fortunately, the problem can be greatly

simplified by recognizing the hierarchical structure of the model. Equation (3.7) is

a hierarchical prior for δy in equation (3.6), while equation (3.6) is a hierarchical

prior for αi,y in equation (3.5). Thus, we adopt a hierarchical Bayes approach to

estimate equations (3.5) to (3.7) simultaneously. In addition to greatly reducing the

computational burden relative to using maximum likelihood estimation or the gen-

eralized method of moments, the Bayesian approach provides a complete accounting

of parameter uncertainty and exact finite sample inference.

The Bayesian approach does require the researcher to specify explicit pri-

ors and hyperparameters for all model parameters. We specify the prior for the
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parameter vector of interest, δ, to be

δ ∼MVN (0, 100I) . (3.9)

The prior mean of zero implies that firm-level alphas are not associated with firm

characteristics, which is not consistent with the considerable empirical evidence

to the contrary. However, the informativeness of the prior depends on the prior

variance. We specify a large prior variance indicating that we have little prior

information about δ, so our prior has little effect on the posterior distribution of δ.

In unreported results, we considered non-zero prior means for each firm characteristic

based on the evidence in the asset-pricing literature, but the impact on the posterior

distributions was minimal due to the large prior variance.

We specify the prior for firm-level betas as

βi,y ∼ N (1, 10) . (3.10)

We use a prior mean equal to one because the average beta of firms in the market

must equal one. We set the prior variance at 10, so the prior mean should have

little impact on the posterior distribution of betas for most firms. For comparison,

Vasicek (1973) recommends a prior variance of 0.25, which has a much stronger

effect of shrinking firm betas toward one.6

It is also necessary to specify priors for
{
σ2
i,y

}
,
{
σ2
α,y

}
, and V. We model{

σ2
i,y

}
and

{
σ2
α,y

}
using the Inverse Gamma distribution and V with the Inverse

6We also considered a hierarchical model structure for firm betas, similar to the model
specified in equations (3.6) to (3.7) for firm-level alphas. However, we found that the pos-
terior distributions for the parameter vector of interest, δ, are almost identical using either
the hierarchical prior or the prior specified above so we opt for the more parsimonious
specification.
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Wishart distribution. The hyperparameters for these distributions are chosen to

ensure that they have minimal influence on the posterior distributions. Our results

are not sensitive to either doubling or halving the hyperparameter values.

We estimate the model specified in equations (3.5) to (3.7) using standard

Markov chain Monte Carlo (MCMC) techniques. We draw directly from the condi-

tional posterior distributions for all model parameters using a Gibbs sampler. The

algorithm converges quickly. For our empirical applications, we run the chain for

5,000 iterations and discard the first 2,500 as a burn-in period. To test whether the

algorithm has converged, we initially ran the chain for 20,000 iterations and found

that the posterior distributions characterized using iterations 2,500 to 5,000 were

nearly identical to those based on iterations 17,500 to 20,000.

A detailed description of the estimation algorithm and the prior distributions

and associated hyperparameters is provided in Appendix A.5.1. We also conduct

a series of simulation experiments to demonstrate the validity of the estimation

approach as well as the robustness of inferences to various features of the cross

section of firm returns. A summary of these results is provided in Appendix A.5.2.

3.3 Data

This section outlines the sample construction and data requirements for esti-

mating the model described in equations (3.5) to (3.7). We obtain accounting data

from the Compustat Fundamentals Annual files and stock return data from CRSP.

The sample includes all NYSE, Amex, and NASDAQ ordinary common stocks with

the data required to compute at least one of the following firm characteristics: size
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(M), book-to-market (BM), momentum (MOM), reversal (REV ), profitability

(ROA), asset growth (AG), net stock issues (NS), accruals (ACC), and financial

distress (OS).

Following Fama and French (1992), year y runs from July of calendar year y

through June of calendar year y+1. The characteristics are measured at the end of

June in each calendar year y. The variables are matched to monthly returns from

July of calendar year y to June of calendar year y + 1. We exclude financial firms

(SIC codes between 6000 and 6999) and firms with negative book equity. Based

on Fama and French (2008), we classify firms into micro, small, and big categories

using the 20th and 50th percentiles of market capitalization for NYSE stocks at the

end of June of calendar year y.

The model described in Section 3.2 requires alphas and betas to be estimated

for each firm-year observation. For a firm to be included in the estimation sample in

a given year, we require 12 months of return data during that year. The final sample

includes 163,603 firm-years of data from July 1963 to June 2008. We use the CRSP

value-weighted stock market index as the proxy for the unobserved market portfolio.

Monthly excess returns on the CRSP value-weighted stock market index, the risk-

free rate, and size breakpoints are from Kenneth French’s website.7 See Appendix

A.6 for a detailed description of variable definitions and data construction.

7http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/. We thank Kenneth
French for making this data available.
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3.4 Results

This section applies the methodology developed in Section 3.2 to explore

cross-sectional anomalies. Section 3.4.1 presents the main firm-level results from

the estimation of the model described in equations (3.5) to (3.7) and contrasts these

results with those from traditional portfolio-level tests. Section 3.4.2 takes a more

detailed look at CAPM anomalies at the firm level.

3.4.1 Firm-Level Tests

Panel A of Table 1.1 summarizes the posterior distribution of δ in equation

(3.7), which measures the systematic relation between alphas and firm characteris-

tics over the entire sample period. Initially we examine each firm characteristic in

isolation. Following Avramov and Chordia (2006) and Fama and French (2008) we

assume a linear relation between conditional alphas and firm characteristics.

Panel A shows that seven of the nine firm characteristics are significantly

associated with firm-level alphas. Alphas are positively associated with book-to-

market, momentum, and profitability and negatively associated with asset growth,

net stock issues, accruals, and financial distress. In terms of economic significance,

a one-standard-deviation change in any of the seven variables is associated with a

change in alpha ranging in magnitude from 16 basis points (bps) per month for

momentum (0.51 x 0.32) to in excess of 20 bps per month for book-to-market,

profitability, asset growth, and net stock issues.

For comparison, in Panel B of Table 1.1 we report results based on the tradi-

tional portfolio approach that is commonly used to identify anomalies. For each firm
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characteristic, we sort stocks into deciles each year at the end of June and then form

hedge portfolios that are long the highest decile and short the lowest decile of stocks.

The portfolios are equally weighted and rebalanced annually. Panel B presents the

average conditional CAPM alphas. The conditional alphas are computed following

the short-window regression methodology in Lewellen and Nagel (2006). Specifi-

cally, we estimate a separate CAPM regression each year using monthly data to

obtain a time series of non-overlapping conditional portfolio alphas. The standard

errors reported in Panel B are based on the time-series variability of the estimated

conditional alphas.

The hedge portfolios formed from sorts on size, book-to-market, momentum,

reversal, asset growth, net stock issues, and accruals have CAPM alphas that are

significantly different from zero at the 1% level. We find no evidence of signifi-

cant abnormal returns for the hedge portfolios formed on profitability and financial

distress.8 The results in Table 1.1 provide evidence that underlying firm-level asso-

ciations can be obscured at the portfolio level. Comparing the firm-level results in

Panel A to the portfolio-based tests in Panel B, we find that inferences differ for four

of the nine firm characteristics: size, reversal, profitability, and financial distress.

One clear difference between the firm-level and portfolio-level tests is that the

portfolio approach only considers firms in deciles one and ten, ignoring information

contained in the remaining 80% of stocks. The firm-level approach, on the other

8The results for profitability are consistent with those of Fama and French (2008)
for portfolio sorts. Chava and Purnanandam (2010) document that the financial distress
anomaly is specific to the post-1980 period used by Dichev (1998) and Campbell, Hilscher,
and Szilagyi (2008).
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hand, utilizes information from the entire cross section. Thus, the portfolio-level

analysis could be unduly influenced by a small number of outlier observations in

the extreme deciles. To investigate this possibility, in Panel A of Table 1.2 we

specify alphas as a function of a constant, the firm characteristic, and two dummy

variables identifying whether a particular firm lies in the top or bottom decile for

that characteristic. The results suggest that the portfolio-level associations for size

and reversal are driven primarily by the extremes. For example, there is no linear

relation between alphas and size, but firms in the smallest decile earn alphas that

are nearly 0.4% per month higher than firms in the largest decile. For all other

firm characteristics, inferences are not substantially altered by the introduction of

dummy variables.9

When conducting firm-level tests of the CAPM it is also important to consider

the potential impact of non-synchronous returns. Our initial model specification

uses monthly returns and assumes that all stocks are traded frequently. If trading

is infrequent, betas measured by relating firm returns to contemporaneous market

returns will tend to understate exposure to market risk. This issue is particularly

relevant for our analysis if the extent to which a firm has non-synchronous returns

is associated with a given firm characteristic. To control for non-synchronicities we

follow Dimson (1979) and include the lagged excess market return as an additional

factor in equation (3.5) to correct for any downward bias in measured betas. Panel

B of Table 1.2 shows that allowing for non-synchronicities has little impact on the

9In results not reported, we considered other non-linear specifications, including the
addition of squared and cubed terms for each characteristic, but our inferences were un-
changed.
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relations between alphas and firm characteristics.

Although there is evidence in Tables 1.1 and 1.2 that firm-level associations

between alphas and firm characteristics are distorted at the portfolio level for four

out of nine characteristics, the firm-level analysis nonetheless finds substantial ev-

idence against the conditional CAPM. Seven of the nine firm characteristics are

significantly associated with conditional CAPM alphas even after allowing for the

possibility of non-linearities and non-synchronous returns. In the next section we

take a more detailed look at the empirical shortcomings of the conditional CAPM.

3.4.2 A Closer Look at CAPM Anomalies

Given our main results in Panel A of Table 1.1, it is tempting to conclude that

the CAPM provides a poor characterization of stock returns. However, in order to

properly evaluate the performance of the CAPM we must consider the performance

of the model across three dimensions. First, from an economic perspective, it is im-

portant to know whether anomalous patterns in returns are market-wide or limited

to illiquid stocks that represent a small portion of the total market capitalization.

Second, anomalies could arise due to temporary mis-pricing or data snooping by

researchers and, as such, would be unlikely to persist over time. Third, it is impor-

tant to examine to what extent firm characteristics identified as anomalies contain

unique information about abnormal returns. If multiple firm characteristics contain

the same information then tests that consider each firm characteristic in isolation

are likely to suffer from an omitted variable bias that will result in the importance

of an anomaly being overstated.
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To examine whether anomalies are pervasive across size groups, we repeat

the firm-level analysis from Table 1.1, but allow δ to vary across micro, small, and

big stocks.10 The posterior distributions are presented in Figure 1 for each firm

characteristic. Of the nine characteristics considered, seven are significantly related

to the conditional CAPM alphas of micro stocks based on 95% credible intervals. In

contrast, only three anomaly variables – asset growth, net stock issues, and accruals

– are significantly associated with the abnormal returns of big stocks. Moreover, the

economic magnitude of the relations is greatly reduced among big stocks relative to

micro stocks. For example, a one-standard-deviation shock in asset growth has a

32 bps per month impact on micro stocks compared to just 12 bps for big stocks.

The results in Figure 1 suggest that the CAPM provides a much more effective

characterization of the returns of big stocks, which constitute over 90% of the total

market capitalization.

In Table 1.3 we examine the extent to which firm-level relations between firm

characteristics and alphas persist after each firm characteristic is first documented

as an anomaly.11 We re-estimate the model in equations (3.5) to (3.7), but unlike

10The robustness of anomalies across size subgroups is an active area of interest. For
example, Loughran (1997) argues that the value effect is restricted to small stocks, while
Fama and French (2006) show Loughran’s (1997) results are specific to the value/growth
indicator, the sample period, and US stocks. Several other papers documenting individual
anomalies conduct double sorts on size and a particular anomaly variable, with mixed
results. Fama and French (2008) take a more comprehensive approach by analyzing the
relations between returns and several firm characteristics within size subgroups.

11In prior research regarding the persistence of anomalies, Schwert (2003) finds that
the size and book-to-market effects appear to have attenuated after the anomalies were
documented, while the momentum anomaly has persisted. Jegadeesh and Titman (2001)
also find that the momentum anomaly appears to have persisted throughout the 1990s.
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Panel A of Table 1.1, in which δ is constant across the whole sample period, we

allow δ to vary across the pre- and post-publication periods.12 In pre-publication

periods the results in Table 1.3 show that alphas are positively related to book-

to-market, momentum, and profitability, and negatively related to accruals and

financial distress. In the post-publication periods, only book-to-market and accruals

remain significantly associated with firm alphas. Moreover, the results for book-to-

market and accruals are driven by micro stocks. Among big stocks, there is no

evidence of any robust relations between firm characteristics and conditional alphas

post publication.

In Figure 2 we highlight the relation between accruals and firm alphas before

and after the initial publication by Sloan in 1996. Pre-publication there is a robust

relation between accruals and alphas across stocks of all sizes. Post-publication, the

negative relation persists among micro stocks, diminishes for small stocks, and disap-

pears in big stocks. This pattern is consistent with market participants attempting

to exploit the anomaly to earn abnormal returns. Among big stocks, where trans-

action costs are lowest and there are few, if any, short selling constraints, deviations

from CAPM pricing are quickly eliminated. In contrast, investors appear to be un-

able to trade away the anomaly among micro stocks, where transaction costs are

high, liquidity is low, and short selling is often difficult to implement (e.g., Jensen

12We use publication dates based on the following papers: Banz (1981) (size), Rosen-
berg, Reid, and Lanstein (1985) (book-to-market), Jegadeesh (1990) (momentum),
DeBondt and Thaler (1985) (reversal), Haugen and Baker (1996) (profitability), Sloan
(1996) (accruals), and Dichev (1998) (financial distress). The asset growth (Cooper,
Gulen, and Schill (2008)) and net stock issues (Daniel and Titman (2006a)) anomalies
were only recently uncovered so we do not include these characteristics in our analysis.
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(1978)).

The pre-post analysis in Table 1.3 and Figure 2 provides little evidence that

anomalies persist after they are first documented, especially among big firms. As

such, our evidence is more consistent with the hypothesis that anomalies arise in the

data either due to market participants making a mistake which they later correct

or due to data snooping by researchers.

Thus far our analysis has focused on the relation between conditional al-

phas and each firm characteristic in isolation. If firm characteristics are correlated

with each other and offer little unique information about alphas then studying each

characteristic in isolation will overstate the failings of the conditional CAPM. The

traditional portfolio approach is unable to adequately address this omitted variable

problem. Researchers typically rely on two- or possibly three-dimensional sorts to

isolate the effects of a particular characteristic. Controlling for more than one or

two characteristics simultaneously, however, is infeasible and inferences are sensi-

tive to both the sorting technique and the sorting sequence (e.g., Conrad, Cooper,

and Kaul (2003)). In contrast, our approach is particularly well suited to assess

which anomalies contain unique information; we simply specify firm-year alphas in

equation (3.6) as a function of all nine firm characteristics in Table 1.1.

In Figure 3 we compare the posterior distributions from two analyses – one

in which each firm characteristic is considered in isolation and one in which all

characteristics are considered simultaneously.13 Momentum, asset growth, and fi-

13In results not reported we also considered a model specification in which conditional
alphas were modeled as a function of multiple firm characteristics and the relations were
allowed to vary across micro, small, and big stocks. As in Figure 1 the relations between
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nancial distress are significantly associated with CAPM alphas when considered in

isolation, but as Figure 3 highlights, none of these characteristics contain significant

incremental information when all characteristics are considered simultaneously. The

only firm characteristics that are significantly related to firm-level alphas when mul-

tiple characteristics are considered simultaneously are book-to-market, profitability,

net stock issues, and accruals. Our analysis therefore suggests that univariate tests

provide a low hurdle for firm characteristics to be classified as anomalies.

3.5 Conclusion

In this paper, we use a hierarchical Bayes framework to examine asset-pricing

anomalies, modeling firm-year alphas as a function of one or more firm character-

istics. We investigate nine anomalies – size, book-to-market, momentum, reversal,

profitability, asset growth, net stock issues, accruals, and financial distress – over

the period 1963 to 2008. Studying each anomaly separately we find robust evidence

that CAPM alphas are positively associated with book-to-market, momentum, and

profitability. Alphas are negatively associated with asset growth, net stock issues,

accruals, and financial distress.

These initial results imply the failings of the CAPM are widespread. A

deeper investigation of anomalies, however, suggests that while the CAPM may

not perfectly explain firm returns, the anomaly-based evidence against the CAPM

is greatly overstated. Relationships between firm characteristics and conditional

firm-level alphas are primarily focused among micro and small stocks and tend not

characteristics and alphas are generally driven by micro and small stocks.
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to persist after the anomaly is first documented. Among large firms there is no

evidence of any persistent anomalies. Furthermore, few of the firm characteristics

associated with alphas actually contain unique information.
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Table 3.1: Firm Characteristics and CAPM Alphas, 1963-2008

M BM MOM REV ROA AG NS ACC OS

Panel A: Base Specification

Posterior Mean for the Aggregate-Level Parameters, δ
0.05 0.24∗∗ 0.51∗∗ -0.06 1.79∗∗ -0.45∗∗ -1.36∗∗ -1.27∗∗ -1.20∗

(0.06) (0.08) (0.19) (0.08) (0.51) (0.09) (0.21) (0.22) (0.46)
Average Cross-Sectional Standard Deviation of Firm Characteristics

1.89 0.86 0.32 0.78 0.15 0.58 0.16 0.13 0.14

Panel B: Performance of Hedge Portfolios

Average Conditional CAPM Alpha, α̂CAPM

-1.08∗∗ 1.37∗∗ 0.61∗∗ -0.78∗∗ 0.17 -1.23∗∗ -1.14∗∗ -0.54∗∗ -0.18
(0.33) (0.20) (0.20) (0.23) (0.29) (0.17) (0.16) (0.12) (0.27)

Note: Panel A presents the results from the estimation of the model described
in equations (3.5) to (3.7) examining the cross-sectional relation between firm
alphas and each firm characteristic separately. We report the posterior mean
and standard deviation for the aggregate-level parameters, δ, which provide
information about the relation between alphas and firm characteristics across
the entire sample period. An ∗ (∗∗) indicates that the 95% (99%) credible interval
of the posterior distribution does not include zero. Panel B reports average
conditional alphas for hedge portfolios that are long the highest decile of stocks
and short the lowest decile for each variable. Following Lewellen and Nagel
(2006), the conditional CAPM alphas are estimated annually using monthly
data. Standard errors are in parentheses. An ∗ (∗∗) indicates significance at the
5% (1%) level using a two-tailed test. The firm characteristics are described in
Appendix A.6.
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Table 3.2: Alternative Model Specifications, 1963-2008

M BM MOM REV ROA AG NS ACC OS

Panel A: Nonlinear Specification

Posterior Mean for the Aggregate-Level Parameters, δ

δ, Linear 0.08 0.23∗∗ 0.50∗ -0.01 1.74∗∗ -0.42∗∗ -0.91∗∗ -1.44∗∗ -0.79∗

(0.07)(0.09) (0.24) (0.09) (0.51) (0.10) (0.23) (0.28) (0.33)

δ, Decile 1 0.19 -0.07 -0.42∗∗ -0.15 -0.15 -0.20 0.17∗ -0.46∗∗ -0.01
(0.12)(0.11) (0.14) (0.15) (0.17) (0.14) (0.08) (0.13) (0.09)

δ, Decile 10 -0.18∗ -0.02 -0.31∗ -0.27∗ -0.15 -0.08 -0.16 -0.21∗ -0.33∗

(0.08)(0.11) (0.13) (0.11) (0.10) (0.12) (0.11) (0.10) (0.16)

Panel B: Sum Betas

Posterior Mean for the Aggregate-Level Parameters, δ

δ 0.09 0.23∗∗ 0.48∗ -0.07 2.03∗∗ -0.47∗∗ -1.49∗∗ -1.42∗∗ -1.48∗∗

(0.06)(0.08) (0.22) (0.09) (0.54) (0.09) (0.24) (0.23) (0.47)

Note: The table presents the results from the estimation of the model described
in equations (3.5) to (3.7) examining the cross-sectional relation between firm
alphas and each firm characteristic separately. We report the posterior mean
and standard deviation for the aggregate-level parameters, δ, which provide in-
formation about the relation between alphas and firm characteristics across the
entire sample period. Panel A shows estimates from a nonlinear specification
including a linear component and dummy variables for firms with characteristic
values in the top or bottom deciles. Panel B shows estimates using sum be-
tas. An ∗ (∗∗) indicates that the 95% (99%) credible interval of the posterior
distribution does not include zero.
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Table 3.3: Firm Characteristics and CAPM Alphas Pre- and Post-Publication, 1963-
2008

M BM MOM REV ROA ACC OS

Publication Date 1981 1985 1990 1985 1996 1996 1998

Pre-Publication – Posterior Means for the Aggregate-Level Parameters, δ

All -0.00 0.24∗ 0.64∗∗ -0.19 1.91∗∗ -1.32∗∗ -1.18∗

(0.09) (0.11) (0.24) (0.11) (0.58) (0.25) (0.52)

Micro -0.03 0.31∗ 0.52∗ -0.17 1.48∗∗ -1.31∗∗ -1.18∗∗

(0.12) (0.13) (0.20) (0.13) (0.46) (0.22) (0.40)
Small 0.12 0.24 0.53 -0.19 2.53∗∗ -1.35∗∗ -2.25∗∗

(0.13) (0.15) (0.29) (0.14) (0.60) (0.38) (0.60)
Big -0.08 0.09 0.57 -0.12 1.16 -1.31∗∗ 0.39

(0.11) (0.14) (0.37) (0.15) (0.93) (0.39) (0.84)

Post-Publication – Posterior Means for the Aggregate-Level Parameters, δ

All 0.08 0.23∗ 0.33 0.07 1.29 -0.97∗ -1.19
(0.08) (0.11) (0.33) (0.11) (0.98) (0.43) (0.94)

Micro 0.01 0.41∗∗ 0.22 -0.02 0.99 -1.35∗∗ -0.92
(0.10) (0.13) (0.26) (0.13) (0.75) (0.40) (0.72)

Small 0.11 0.24 0.39 0.04 1.67 -0.50 -1.91∗∗

(0.11) (0.15) (0.37) (0.14) (0.95) (0.64) (0.74)
Big -0.01 0.12 0.36 -0.01 0.49 0.11 -1.80

(0.09) (0.14) (0.47) (0.16) (1.58) (0.70) (1.05)

Note: The table presents the results from the estimation of the model described
in equations (3.5) to (3.7) examining the cross-sectional relation between firm
alphas and each firm characteristic separately. We report the posterior mean
and standard deviation for the aggregate level parameters, δ, which provide
information about the relation between alphas and firm characteristics across
time. We allow for different aggregate-level parameters in the pre- and post-
publication periods. We estimate two models for each anomaly, one in which
δ is restricted to be the same across all firms (All) and one in which δ varies
across micro, small, and big stocks. An ∗ (∗∗) indicates that the 95% (99%)
credible interval of the posterior distribution does not include zero.
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Figure 3.1: Firm Characteristics and CAPM Alphas by Size Group

Note: The figure presents the results from the estimation of the model described
in equations (3.5) to (3.7) examining the cross-sectional relation between firm
alphas and each firm characteristic separately. We report the posterior distribu-
tions for the aggregate-level parameters, δ, which provide information about the
relation between alphas and firm characteristics across the entire sample period.
We estimate a model for each anomaly in which the aggregate-level parameters
(δ) vary across micro (dotted), small (dashed), and big (line) stocks.
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Figure 3.2: The Accruals Anomaly Pre- and Post-Publication

Note: The figure presents the results from the estimation of the model described
in equations (3.5) to (3.7) examining the cross-sectional relation between firm al-
phas and accruals. We report the posterior distributions for the aggregate-level
parameters, δ, which provide information about the relation between alphas and
firm characteristics across time. We allow for different aggregate-level parame-
ters in the pre- and post-publication periods and also allow the aggregate-level
parameters to vary across micro (dotted), small (dashed), and big (line) stocks.
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Figure 3.3: Individual and Multiple Anomaly Variables

Note: The figure presents the results from the estimation of the model described
in equations (3.5) to (3.7) examining the cross-sectional relation between firm
alphas and multiple firm characteristics simultaneously. We report the pos-
terior distributions (line) for the aggregate-level parameters, δ, which provide
information about the relation between alphas and firm characteristics across
the entire sample period. For comparison, for each anomaly variable we also
present the posterior distribution (dashed) of δ from estimation of the model
described in equations (3.5) to (3.7) for each characteristic in isolation using the
same data sample.
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APPENDIX
MODEL DEVELOPMENT AND METHODOLOGY

A.1 ICAPM Model Development

A.1.1 Equations (1.6) to (1.8)

Equations (1.6) to (1.8) are derived as follows,

Vih =Covt

(
rei,t+1, (Et+1 − Et)

∞∑
j=1

ρjrm,t+1+j

)
(A.1)

≈Covt

(
rei,t+1, (Et+1 − Et)

∞∑
j=1

ρj(rf,t+j + rem,t+1+j)

)
(A.2)

≡Vim + Vir. (A.3)

Simulations show that the approximation from line (A.1) to line (A.2) is close under

reasonable parameter values for generating returns.

A.1.2 Equations (1.14) and (1.16)

Equation (1.14) is derived as

Vim ≡ Covt

(
rei,t+1, (Et+1 − Et)

∞∑
j=1

ρjrem,t+1+j

)
(A.4)

= Covt

(
rei,t+1,

∞∑
j=1

ρj(Et+1 − Et)r̄
e
m,t+j

)
(A.5)

= Covt

(
rei,t+1,

∞∑
j=1

ρjϕj−1
m (r̄em,t+1 − (1− ϕm)Em − ϕmr̄

e
m,t)

)
(A.6)

=
1

ϕm(1− ϕmρ)
Covt

(
rei,t+1, ηm,t+1

)
, (A.7)

where the first equality reflects the expectation of the market return in equation

(1.13.1), the second equality comes from the AR(1) structure of the market risk

premium in equation (1.13.2), and the last equality is from the definition of ηm,t+1 in
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equation (1.13.2). Similarly, equation (1.16) can be derived using equation (1.15.3),

Vir ≡ Covt

(
rei,t+1, (Et+1 − Et)

∞∑
j=1

ρjrf,t+j

)
(A.8)

= Covt

(
rei,t+1,

∞∑
j=1

ρjϕj−1
r (rf,t+1 − ϕrrf,t)

)
(A.9)

=
1

ϕr(1− ϕrρ)
Covt

(
rei,t+1, ηr,t+1

)
. (A.10)

A.1.3 Relating Equations (1.9) and (1.12)

We can relate the λ coefficients from equation (1.12) to the coefficients on Vim,

Vim, and Vir from equation (1.9). Rewriting equation (1.9) to allow these coefficients

to be free parameters and allow for a non-zero intercept, we have equation (1.17)

which is rewritten here,

Etr
e
i,t+1 +

Vii
2

= b0 + bmVim + bmVim + brVir.

We can transform the covariances into betas and adjust for scaling from equations

(1.14) and (1.16). Defining Σ as the covariance matrix of the market and intertem-

poral risk factors and a vector Z as in equation (1.20),

Z =


1√

ϕm(1− ϕmρ)√
ϕr(1− ϕrρ)

 ,

we can rewrite the right-hand side of equation (A.1.3),

b0 + bmVim + bmVim + brVir = b0 +


bm

bm

br



′

ΣZZ ′βi, (A.11)
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where βi is the vector of coefficients from a regression of excess stock returns of firm

i on a constant and the risk factors. Equations (1.11) and (1.12) imply

Etr
e
i,t+1 +

Vii
2

= λ0 + λmβ
m
i + λmβ

m
i + λrβ

r
i , (A.12)

and we can rewrite the right-hand side of equation (A.12),

λ0 + λmβ
m
i + λmβ

m
i + λrβ

r
i = λ0 +


λm

λm

λr



′

βi. (A.13)

Equating the right-hand sides of equations (A.1.3) and (A.12), we have

b0 +


bm

bm

br



′

ΣZZ ′βi = λ0 +


λm

λm

λr



′

βi (A.14)

for all βi. Therefore, we arrive at equation (1.18),

b0 = λ0,

and equation (1.19), 
bm

bm

br

 = (ΣZZ ′)−1


λm

λm

λr

 .

A.1.4 SMB and HML State Variables

I form state variables based on SMB and HML to use in a predictive system.

The state variables are ratios of the book-to-markets of component portfolios, similar
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to Brennan, Wang, and Xia (2001). The state variable for SMB is

zSMB,t = log

(
BS,t/MS,t

BB,t/MB,t

)
. (A.15)

In equation (A.15), BS,t and MS,t are the book and market values for the small

firm portfolio. When constructing the SMB factor portfolio, the small-growth,

small-neutral, and small-value portfolios are equally weighted. Therefore, I cal-

culate BS,t/MS,t as the book-to-market of the equally weighted portfolio of these

three component portfolios by adjusting the book and market values of each port-

folio prior to summing values across portfolios.14 Book-to-market for the big firm

portfolio is constructed in the same way. The state variable for HML is

zHML,t = log

(
BH,t/MH,t

BL,t/ML,t

)
, (A.16)

which is calculated with a portfolio that equally weights the small-value and big-

value portfolios and a portfolio that holds the small-growth and big-growth portfo-

lios.

Notice that the state variables in equations (A.15) and (A.16) are logs of the

ratio of book-to-markets. The state variables can be rewritten as

zSMB,t = (mB,t − bB,t)− (mS,t − bS,t) (A.17)

and

zHML,t = (mL,t − bL,t)− (mH,t − bH,t), (A.18)

where m and b are log market and book values. The state variable for SMB (HML)

14Data on the book and market values of each portfolio is from Kenneth French’s website.
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is therefore high when big (growth) stocks are expensive relative to small (value)

stocks.

The component portfolios of SMB and HML are rebalanced annually, which

may lead to jumps in the state variables that do not reflect economically important

information. For example, in June of year y, the portfolios are based on the weights

from the end of June of year y − 1 determined from book values from the end of

December of year y − 2 and market values from the end of June of year y − 1. In

July of year y, however, the portfolios are rebalanced based on book values from

December of year y− 1 and market values from June of year y. Therefore, the state

variable has potential for rebalancing errors when transitioning from June to July.

I check several alternative specifications to ensure that portfolio rebalancing does

not affect inferences. For the primary specification, I form June book-to-market for

the portfolios after they have been rebalanced at the end of June. June book-to-

market is based on the December book value and the June market value found by

discounting the July market value by the realized return from July. I then include

an additional state variable defined in June as the difference between the book-

to-markets of the original portfolio and the rebalanced portfolio, with the state

variable taking a value of zero in all other months. The model can therefore take

information from both the original and rebalanced portfolios when predicting July

returns. Inferences are robust to using the state variables in equations (A.15) and

(A.16) with no adjustment or using modified versions of these state variables that

replace the June book-to-market of the original portfolio with the book-to-market

of the rebalanced portfolio.
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A.2 ICAPM Model Estimation

Draws from the posterior distribution of the parameters can be obtained

using Markov chain Monte Carlo (MCMC) techniques. Steps 1 to 6 are designed to

draw from the posterior distribution of the price of risk, and are a Gibbs sampler

equivalent to the Metropolis–Hastings approach of Davies (2010). Steps 7 to 10

draw from the posterior distribution of the market risk premium and are closely

related to the approach of Pástor and Stambaugh (2009). Steps 11 to 14 draw from

the posterior distribution of the real interest rate using Forward Filtering, Backward

Sampling (FFBS).

1. Draw βi,y|σ2
i,y, {ηm,t,y}Tt=1, {ηr,t,y}Tt=1, λy, σ

2
y , β,Vβ ∼ N(βi,y,Vβ,i,y) for

i = 1, ..., Ny and y = 1, ..., Y , where Ny is the number of assets in period y,

βi,y = [αi,y βmi,y βmi,y βri,y]
′,

βi,y = Vβ,i,y

(
V−1
β β + σ−2

i,yX
′
1,yR

e
i,y + σ−2

y X ′
2,y(R

e

i,y − λ0,y)
)
, (A.19)

Vβ,i,y =
(
V−1
β + σ−2

i,yX
′
1,yX1,y + σ−2

y X ′
2,yX2,y

)−1
, (A.20)

X1,y =
[
ιT {rem,t,y}Tt=1 {ηm,t,y}Tt=1 {ηr,t,y}Tt=1

]
, Re

i,y = {rei,t,y}Tt=1, and

X2,y = [0 λm,y λm,y λr,y]. I set the prior parameters of βi,y to β =



0

1

0

0


and
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Vβ =



100 0 0 0

0 10 0 0

0 0 10 0

0 0 0 10


to specify proper but diffuse priors.

2. Draw σ2
i,y|βi,y, {ηm,t,y}Tt=1, {ηr,t,y}Tt=1, ν, s

2 ∼ Inverse Gamma( s
2

2
, ν
2
) for

i = 1, ..., Ny and y = 1, ..., Y , where ν = ν + T , s2 = νs2 + s2, and

s2 =
T∑
t=1

(
rei,t,y − αi,y − βmi,yr

e
m,t,y − βmi,yηm,t,y − βri,yηr,t,y

)2
. (A.21)

The prior parameters are set to ν = 1 and s2 = 100.

3. Draw λy|{βi,y}Ny

i=1, σ
2
y , λ,Vλ ∼ N(λ̂y, V̂λy) for y = 1, ..., Y , where

λ̂y = V̂λy(V
−1
λ λ+ σ−2

y X ′
1,yr

e
y), (A.22)

V̂λy = (V−1
λ + σ−2

y X ′
1,yX1,y)

−1, (A.23)

λy = [λy,0 λy,m λy,m λy,r]
′, X1,y =

[
ιNy {βmi,y}

Ny

i=1 {βmi,y}
Ny

i=1 {βri,y}
Ny

i=1

]
,

rey = {rei,y +
s2i,y
2
}Ny

i=1, and s
2
i,y is the sample return variance for firm i in period

y.

4. Draw σ2
λy|λy, {βi,y}

Ny

i=1, νλ, s
2
λ ∼ Inverse Gamma(

s2λ
2
, νλ

2
) for y = 1, ..., Y , where

νλ = νλ + Ny, s2λ = νλs
2
λ + s2λ, and

s2λ =
∑Ny

i=1

(
rei,y +

s2i,y
2

− λ0,y − λm,yβ
m
i,y − λm,yβ

m
i,y − λr,yβ

r
i,y

)2
. The prior pa-

rameters are set to νλ = 1 and s2λ = 1.

5. DrawVλ|λ, {λy}Yy=1, g, G ∼ Inverse Wishart(Y +g,
∑Y

y=1(λy−λ)(λy−λ)′+G),

where g = 3 and G = gI.



130

6. Draw λ|{λy}Yy=1,Vλ, V , λ ∼ N(λ̃, Ṽλ), where

λ̃ = Ṽλ

(
(Vλ/Y )−1

Y∑
y=1

λy
Y

+ V −1λ

)
, (A.24)

Ṽλ =
(
(Vλ/Y )−1 + V −1

)−1
, (A.25)

V = 0.25I, and λ = [0 0 0 0]′.

The following four steps draw a sequence of the market risk risk premium and

related parameters from the system of equations (1.13). These steps are closely

related to those of Pástor and Stambaugh (2009) with an extra lag of the market

risk premium built into the system. The following steps are generalized to the case

where information from the cross section of returns is incorporated into the estimates

of the market risk premium. For the base case in the current version of the paper,

this source of information is omitted while estimating the market risk premium.

Adjustments for the base case are noted below. For notational convenience, define

t∗ ≡ 12(y − 1) + t and T ∗ = TY . For simplicity, I also refer to parameters that are

constant throughout each period y (e.g., βi,y and σ2
i,y) using the t∗ notation.

7. Draw {r̄em,t∗}T
∗

t∗=1, {ηm,t∗}T
∗

t∗=1 |{{βi,t∗}Nt∗
i }T ∗

t∗=1, {{σ2
i,t∗}

Nt∗
i=1}T

∗
t∗=1, Em, Ex, ϕm,

ϕx, Σ using a FFBS step. All parameter distributions in this step are con-

ditioned on the previous draws of {{βi,t∗}Nt∗
i }T ∗

t∗=1, {{σ2
i,t∗}

Nt∗
i=1}T

∗
t∗=1, Em, Ex,

ϕm, ϕx, and Σ, but the conditioning is suppressed in the notation for simplic-

ity. The set of historical and current market returns, state variables, and firm

returns observable at time t∗ is denoted by Dt∗ . Equation (1.10) in period

t∗ contains the market risk premium from times t∗ − 1 and t∗. In order to
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incorporate the information from this equation into draws of the time series

of r̄em, I include the lagged value of r̄em in the vector autoregression (VAR):

rm,t∗ − Em

xt∗ − Ex

r̄em,t∗ − Em

r̄em,t∗−1 − Em


=



0 0 1 0

0 ϕx 0 0

0 0 ϕm 0

0 0 1 0





rem,t∗−1 − Em

xt∗−1 − Ex

r̄em,t∗−1 − Em

r̄em,t∗−2 − Em



+



ut∗

vt∗

wt∗

0


,


ut∗

vt∗

wt∗

 ∼ N(0,Σ). (A.26)

The structure of the evolution matrix ensures that the current period mar-

ket risk premium becomes next period’s lagged premium in this VAR. Define

r̃em,t∗ = [r̄em,t∗ r̄em,t∗−1]
′, ϕ̃m =

 ϕm 0

1 0

, and ϕ̃x =



0 0 1 0

0 ϕx 0 0

0 0 ϕm 0

0 0 1 0


. Also

define

Σ̃ =

 Σ 0

0 0

 ≡



Σuu Σuv Σuw 0

Σvu Σvv Σvw 0

Σwu Σwv Σww 0

0 0 0 0


, (A.27)

so Σ̃ww =

 Σww 0

0 0

, Σ̃uw =

[
Σuw 0

]
, and Σ̃vw =

[
Σvw 0

]
.



132

(a) Forward Filtering : The filtering step is used to find sequences for time

t∗ = 1, ..., T ∗ of the parameters of the distributions

r̃em,t∗|Dt∗−1 ∼ N(at∗ , Pt∗) (A.28)

and

r̃em,t∗ |Dt∗ ∼ N(bt∗ , Qt∗). (A.29)

The prior distribution of r̃em,t∗ before observing data from time t∗ is given

by equation (A.28). There are two additional sources of information

about r̃em,t∗ available at time t∗. First, realizations of the market return

and state variables give information about the market risk premium. Sec-

ond, there is information about r̃em,t∗ from the pricing errors in equation

(1.10). For example, if firms with high sensitivity to changes in the mar-

ket risk premium (large βmi,t∗) perform abnormally well in time t∗, there

is evidence of a positive shock to r̄em,t∗ , leading to an upward revision

of beliefs about r̄em,t∗ and a downward revision of beliefs about r̄em,t∗−1.

After observing these two sources of information, the distribution of r̄em,t∗

is updated to equation (A.29). Define zt∗ = [rem,t∗ x′t∗ ]
′, Ez = [Em E ′

x]
′,

and

at∗ = E(r̃em,t∗|Dt∗−1), bt∗ = E(r̃em,t∗ |Dt∗),

Pt∗ = V ar(r̃em,t∗ |Dt∗−1), Qt∗ = V ar(r̃em,t∗ |Dt∗),

ft∗ = E(zt∗ |Dt∗−1), Rt∗ = V ar(zt∗|r̃em,t∗ , Dt∗−1)

St∗ = V ar(zt∗|Dt∗−1), Gt∗ = Cov(zt∗ , r̃
e
m,t∗|Dt∗−1).

(A.30)
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Also define V as the unconditional variance of [z r̃em]
′. Then

V =


Vrr Vrx Vrm

Vxr Vxx Vxm

Vmr Vmx Vmm

 (A.31)

can be calculated as vec(V ) = [I − (ϕ̃x ⊗ ϕ̃x)]
−1vec(Σ̃). Let

Vzz =

 Vrr Vrx

Vxr Vxx

.
To begin drawing the time series of rem, first note that b0 = [Em Em]

′

and Q0 = Vmm. Also,

r̃em,1|D0 ∼ N(a1, P1), (A.32)

where a1 = [Em Em]
′ and P1 = Vmm. Then note that

z1|D0 ∼ N(f1, S1), (A.33)

where f1 = Ez and S1 = Vzz. Further, G1 = Vzm. Then information

about r̃em,1 is derived from the observation of z1 since

z1|r̃em,1, D0 ∼ N(e1, R1), (A.34)

where e1 = f1 +G1P
−1
1 (r̃em,1 − a1) and R1 = S1 −G1P

−1
1 G′

1. Additional

information about R̃e
m,1 comes from the cross section of stock returns

through equation (1.10). Combining this information using Bayes’ rule,

r̃em,1|D1 ∼ N(b1, Q1), (A.35)
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where

b1 =Q1

(
P−1
1 a1 + P−1

1 G′
1R

−1
1 (G1P

−1
1 a1 + (z1 − f1))

+

N1∑
i=1

 1

−ϕm

 (βmi,1)
2

σ2
i,1

(
(1− ϕm)Em

+
rei,1 − αi,1 − βmi,1r

e
m,1 − βri,1ηr,1

βmi,1

))
, (A.36)

and

Q1 =

P−1
1 + P−1

1 G′
1R

−1
1 G1P

−1
1 +

N1∑
i=1

 1 −ϕm

−ϕm ϕ2
m

 (βmi,1)
2

σ2
i,1


−1

.

(A.37)

Continuing for t∗ = 2, ..., T ∗, we have

at∗ =(I − ϕ̃m)Emι+ ϕ̃mbt∗−1,1, (A.38)

Pt∗ =ϕ̃mQt∗−1ϕ̃
′
m + Σ̃ww, (A.39)

ft∗ =

 bt∗−1,1

(I − ϕx)Ex + ϕxxt∗−1

 , (A.40)

St∗ =

 Qt∗−1,1,1 + Σ̃uu Σ̃uv

Σ̃vu Σ̃vv

 , (A.41)

Gt∗ =

 ϕmQt∗−1,1,1 Qt∗−1,1,1

0 0

+

 Σ̃uw

Σ̃vw

 , (A.42)

Rt∗ =St∗ −Gt∗P
−1
t∗ G

′
t∗ , (A.43)
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bt∗ =Qt∗

(
P−1
t∗ at∗ + P−1

t∗ G
′
t∗R

−1
t∗ (Gt∗P

−1
t∗ at∗ + (zt∗ − ft∗))

+

Nt∗∑
i=1

 1

−ϕm

 (βmi,t∗)
2

σ2
i,t∗

(
(1− ϕm)Em

+
rei,t∗ − αi,t∗ − βmi,t∗r

e
m,t∗ − βri,t∗ηr,t∗

βmi,t∗

))
, (A.44)

Qt∗ =

P−1
t∗ + P−1

t∗ G
′
t∗R

−1
t∗ Gt∗P

−1
t∗ +

Nt∗∑
i=1

 1 −ϕm

−ϕm ϕ2
m

 (βmi,t∗)
2

σ2
i,t∗


−1

.

(A.45)

If cross-sectional information is ignored while estimating the market risk

premium, the summations in N are omitted from the specifications of bt

and Qt for t = 1, ..., T . The sequences of at∗ , bt∗ , ft∗ , Gt∗ , Pt∗ , Qt∗ , and

St∗ are retained for the backward sampling step.

(b) Backward Sampling : Draw r̄em,t∗ , ηm,t∗ |at∗ , bt∗ , ft∗ , Gt∗ , Qt∗ , Pt∗ , St∗ for t
∗ =

0, ..., T ∗. First, draw

r̃em,T ∗ ∼ N(bT ∗ , QT ∗). (A.46)

The draw of r̃em,T ∗ defines r̄em,T ∗ and r̄em,T ∗−1. Then draw r̃em,t∗ for t∗ =

T ∗ − 1, ..., 0, where r̃em,t∗ is the last two elements of the vector

ζt∗ |ζt∗+1, Dt∗ ∼ N(ht∗ , Ht∗), (A.47)
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where

ht∗ =


rem,t∗

xt∗

bt∗

+ ϕ̃x

 St∗+1 Gt∗+1

G′
t∗+1 Pt∗+1


−1  zt∗+1 − ft∗+1

r̄em,t∗+1 − at∗+1

 , (A.48)

Ht∗ =


0 0 0

0 0 0

0 0 Qt∗

− ϕ̃x

 St∗+1 Gt∗+1

G′
t∗+1 Pt∗+1


−1

ϕ̃′
x, (A.49)

(A.50)

where

A =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

Qt∗,1,1 0 0 ϕmQt∗,1,1 Qt∗,1,1

Qt∗,2,1 0 0 ϕmQt∗,2,1 Qt∗,2,1


, (A.51)

and Qt∗,i,j denotes the (i, j) element of Qt∗ . The draw of r̄em,t∗−1 is the

k+3 element of ζt∗ . Finally, denote the unanticipated change in r̄em,t∗ by

ηm,t∗ = r̄em,t∗ − ((1− ϕm)Em + ϕmr̄
e
m,t∗−1).

8. Draw [E ′
x Em]

′|{r̄em,t∗}T
∗

t∗=1, ϕm, ϕx,Σ ∼ N(Exm, V xm). Let Exm = [E ′
x Em]

′.

The prior for Exm is

Exm ∼ N(Exm0 , Vxm0), (A.52)
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where

Exm0 =

 0

r̄em

 , (A.53)

Vxm0 =

 σ2
Ex
IK 0

0 σ2
Em

 . (A.54)

Information about Exm is obtained from the dynamics of the time series of

[x′t∗ r̄em,t∗ ]
′ and the cross section of stock returns through the pricing errors

in equation (1.10). Defining

L1 =

 ϕx 0

0 ϕm

 (A.55)

and L2 = I−L1, the posterior distribution ofExm is (conditioning is suppressed

for ease of notation),

Exm|· ∼ N(Ẽxm, Ṽxm), (A.56)

where

Ẽxm =Ṽxm

V −1
xm0

Exm0 + L′
2Σ

−1
(vw)

T ∗∑
t∗=1


 xt∗

r̄em,t∗

− L1

 xt∗−1

r̄em,t∗−1




+
T ∗∑
t∗=1

Nt∗∑
i=1 0

(βm
i,t∗ (1−ϕm))2

σ2
i,t∗

βm
i,t∗ (r̄

e
m,t∗−ϕmr̄

e
m,t∗−1

)−(re
i,t∗−αi,t∗−βm

i,t∗r
e
m,t∗−β

r
i,t∗ηr,t∗ )

(1−ϕm)βm
i,t∗


 .

(A.57)
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and

Ṽxm =

V −1
xm0

+ T ∗L′
2Σ

−1
(vw)L2 +

 0 0

0
∑T ∗

t∗=1

∑Nt∗
i=1

(βm
i,t∗ (1−ϕm))2

σ2
i,t∗




−1

.

(A.58)

If cross-sectional information is ignored while estimating the market risk pre-

mium, the summations in N are omitted from the specifications of Ẽxm and

Ṽxm.

9. Draw ϕm, ϕx|{r̄em,t∗}T
∗

t∗=1, Ex, Em,Σ. Let x
k ≡ (xk2, ..., x

k
T ∗)′ be the (T ∗ − 1)× 1

vector of predictor k in periods t∗ = 2, ..., T ∗. Let x(l) be the (T
∗−1)×K matrix

of the K vectors of realizations of the predictors in periods t∗ = 1, ..., T ∗ − 1.

Also let r̄em ≡ (r̄em,2, ..., r̄
e
m,T ∗)′, r̄em,(l) ≡ (r̄em,1, ..., r̄

e
m,T ∗−1)

′, and Exk be the k-th

element of Ex. Define

z =



x1 − ιT ∗−1Ex1

...

xK − ιT ∗−1ExK

r̄em − ιT ∗−1Em


(A.59)

and

Z =



x(l) − ιT ∗−1E
′
x 0 0 0

0
. . . 0 0

0 0 x(l) − ιT ∗−1E
′
x 0

0 0 0 r̄em,(l) − ιT ∗−1Em


. (A.60)

Then z is a [(T ∗−1)(K+1)]×1] vector and Z is a [(T ∗−1)(K+1)]×(K2+1)
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matrix. Further define b ≡ (vec(ϕ′
x)

′ ϕm)
′. The prior distribution of b is

b ∼ N(b0, Vb0)× 1b∈S, (A.61)

where 1b∈S is equal to one if b is in the space S and S is the space such that

the eigenvalues of A lie inside the unit circle and B ∈ (−1, 1). When b is in

S, xt∗ and r̄em,t∗ are stationary. Information about b arises from the dynamics

of the state variables and market risk premium as well as the cross section

of stock returns through the pricing errors in equation (1.10). The posterior

distribution of b is (conditioning is suppressed for notational convenience),

b|· ∼ N(b̃, Ṽb), (A.62)

where

b̃ =Ṽb

(
V −1
b0
b0 + Z ′(Σ−1

(vw) ⊗ IT ∗−1)z

+
T ∗∑
t∗=1

Nt∗∑
i=1 0

(βm
i,t∗ (r̄

e
m,t∗−1

−Em))2

σ2
i,t∗

βm
i,t∗ (r̄

e
m,t∗−Em)−(re

i,t∗−αi,t∗−βm
i,t∗r

e
m,t∗−β

r
i,t∗ηr,t∗ )

βm
i,t∗ (r̄

e
m,t∗−1

−Em)


 ,

(A.63)

and

Ṽb =

V −1
b0

+ Z ′(Σ−1
(vw) ⊗ IT ∗−1)Z +

 0 0

0
∑T ∗

t∗=1

∑Nt∗
i=1

(βm
i,t∗ (r̄

e
m,t∗−1

−Em))2

σ2
i,t∗




−1

.

(A.64)

If cross-sectional information is ignored while estimating the market risk pre-

mium, the summations in N are omitted from the specifications of b̃ and Ṽb.
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Draws of b can be obtained by drawing from N(b̃, Ṽb) and accepting the draw

if b ∈ S. The parameters ϕm and ϕx can be found using the definition of b,

b = (vec(ϕ′
x)

′ ϕm)
′.

10. Draw Σ|{r̄em,t∗}T
∗

t∗=1, Ex, Em, ϕx, ϕm,Σ
(p),M11,M22, where Σ

(p) denotes the pre-

vious draw of Σ. Given

Σ ≡


σ2
u Σuv σuw

Σvu Σvv Σvw

σwu Σwv σ2
w

 , (A.65)

define

Σ11 ≡

 σ2
u σuw

σwu σ2
w

 , (A.66)

and

Σ̂11,0 ≡

 M11 M12

M12 M22

 , (A.67)

where M11,M12, and M22 are prior parameters and M12 is a hyperparameter

for Σ. A posterior draw of Σ can be obtained using the following two-step

process.

(a) Draw M12|Σ(p),M11,M12 ∼ p(M12|Σ11), where

p(M12|Σ11) =|Σ̂11,0|
T0−K

2 exp

(
−T0

2
tr(Σ−1

11 Σ̂11,0)

)
, (A.68)

M12 ∈ (c
√
M11M22, c

√
M11M12),

and the prior parameter values are T0 = T ∗/5, c = −0.90, and c = −0.35.

See the Technical Appendix of Pástor and Stambaugh (2009) for details
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on drawing M12 from this distribution. The draw of M12 defines a new

draw of Σ̂11,0.

(b) Draw Σ|{r̄em,t∗}T
∗

t∗=1, Ex, Em, ϕx, ϕm, Σ̂11,0. First compute the time series

of residuals (ut∗ , vt∗ , wt∗) for t
∗ = 1, ..., T ∗ by

ut∗

vt∗

wt∗

 =


rem,t∗

xt∗

r̄em,t∗

−


0 0 1

0 ϕx 0

0 0 ϕm




rem,t∗−1

xt∗−1

r̄em,t∗−1



−


0 0 0

0 IK − ϕx 0

0 0 1− ϕm




0

Ex

Em

 . (A.69)

Let X denote the T ∗ × 2 matrix of [ut∗ wt∗ ] and Y2,T ∗ be the T ∗ × K

matrix of vt∗ . The posterior distribution of Σ11 is inverse Wishart,

Σ11|· ∼ Inverse Wishart(T0Σ̂11,0 + T ∗Σ̂11, T
∗ + T0 −K), (A.70)

where Σ̂11 = X ′X/T ∗. Further, let Ĉ = (X ′X)−1X ′Y2,T ∗ , Ω̂ = (Y2,T ∗ −

XĈ)′(Y2,T ∗ − XĈ)/T ∗, VC = (X ′
0X0 + X ′X)−1,

C̃ = VC

[
(X ′

0X0)Ĉ0 + (X ′X)Ĉ
]
, and D = Ĉ ′

0X
′
0X0Ĉ0 + Ĉ ′X ′XĈ −

C̃ ′V −1
C C̃. Then the posterior distribution of Ω is

Ω|· ∼ Inverse Wishart(S0Ω̂0 + T ∗Ω̂ +D,T ∗ + S0). (A.71)

Then letting c̃ = vec(C̃), the posterior distribution of c = vec(C) is

c|Ω, · ∼ N(c̃,Ω⊗ VC). (A.72)
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Finally, given (Σ11, C,Ω), construct a posterior draw of Σ using Σ11 ≡ σ2
u σuw

σwu σ2
w

, [Σvu Σvw] = CΣ11, and Σvv = Ω+ CΣ11C
′.

Steps 11 to 14 draw the real interest rate and expected inflation along with related

parameters from the system of equations (1.15) in a dynamic linear model framework

using FFBS.

11. Draw V |{rf,t∗}T
∗

t∗=1, {Et∗ [πt∗+1]}T
∗

t∗=1. Let

y = [{rn,t∗}T
∗

t∗=1 {πt∗+1}T
∗

t∗=1]
′ (A.73)

and

X = [{rf,t∗}T
∗

t∗=1 {Et∗ [πt∗+1]}T
∗

t∗=1]
′. (A.74)

Then let

S =

y −
 1 1

0 1

X

y −

 1 1

0 1

X


′

. (A.75)

Then V is drawn from an inverse Wishart distribution,

V |· ∼ Inverse Wishart(S + νV SV , νV + T ∗), (A.76)

where νV and SV are prior parameters.

12. Draw W |{rf,t∗}T
∗

t∗=1, {Et∗ [πt∗+1]}T
∗

t∗=1, ϕr, ϕπ. Let

X = [{rf,t∗}T
∗

t∗=2 {Et∗ [πt∗+1]}T
∗

t∗=2]
′ andX−1 = [{rf,t∗}T

∗−1
t∗=1 {Et∗ [πt∗+1]}T

∗−1
t∗=1 ]

′.

Then let

S =

X −

 ϕr 0

0 ϕπ

X−1


X −

 ϕr 0

0 ϕπ

X−1


′

. (A.77)
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Then W is drawn from an inverse Wishart distribution,

W |· ∼ Inverse Wishart(S + νWSW , νW + T ∗ − 1), (A.78)

where νW and SW are prior parameters.

13. Draw ϕr, ϕπ|{rf,t∗}T
∗

t∗=1, {Et∗ [πt∗+1]}T
∗

t∗=1,W using a Metropolis–Hastings algo-

rithm. Candidate draws are drawn from a normal distribution with standard

deviation of 0.01 centered at the values of ϕ = [ϕr ϕπ] from the previous

iteration. The new draw ϕ∗ is accepted with probability

min

(
1,
p({rf,t∗}T

∗
t∗=1, {Et∗ [πt∗+1]}T

∗
t∗=1;W,ϕ

∗)

p({rf,t∗}T
∗

t∗=1, {Et∗ [πt∗+1]}T
∗

t∗=1;W,ϕ)

)
, (A.79)

where the density is from equations (1.15.3) to (1.15.4). Additionally, if cross-

sectional information is being used to provide information about the processes

for the market risk premium and real interest rate, the density in equation

(A.79) also includes the product of densities from equation (1.10) for firms

i = 1, ..., Nt∗ .

14. Draw {rf,t∗}T
∗

t∗=1, {Et∗ [πt∗+1]}T
∗

t∗=1|ϕr, ϕπ, V,W using FFBS.

(a) Forward Filtering : Let G be a diagonal matrix with elements ϕr and ϕπ,

F =

 1 1

0 1

, and y = [{rn,t∗}T
∗

t∗=1 {πt∗+1}T
∗

t∗=1]
′. For t∗ = 1, we start

with prior parameters a1 and R1 for a and R rather than the equations

below. The following equations are stepped through sequentially for t∗ =
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1, ..., T ∗.

at∗ = Gmt∗−1 (A.80)

Rt∗ = GCt∗−1G
′ +W (A.81)

Qt∗ = F ′Rt∗F + V (A.82)

At∗ = Rt∗FQ
−1
t∗ (A.83)

ft∗ = F ′at∗ (A.84)

et∗ = yt∗ − ft∗ (A.85)

mt∗ = at∗ + At∗et∗ (A.86)

Ct∗ = Rt∗ − At∗Qt∗A
′
t∗ (A.87)

The sequences of m and C are kept for the backward sampling step.

(b) Backward Sampling : For time T ∗, the last element of

θ = [{rf,t∗}T
∗

t∗=1 {Et∗ [πt∗+1]}T
∗

t∗=1]
′ is drawn from

θT ∗ ∼ N(mT ∗ , CT ∗). (A.88)

Then θ is drawn sequentially for t∗ = T ∗ − 1, ..., 1. Let G be a diagonal

matrix with elements ϕr and ϕπ. At each time t∗,

θt∗ ∼ N(m∗
t∗ , C

∗
t∗), (A.89)

where

C∗
t∗ =

(
C−1
t∗ +G′W−1G

)−1
(A.90)

and

m∗
t∗ = C∗

t∗

(
G′W−1θt∗+1 + C−1

t∗ mt∗
)
. (A.91)
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The first element of θt∗ is rf,t∗ , so the ηr,t∗ factor in equation (1.10) is

calculated as ηr,t∗ = rf,t∗ − ϕrrf,t∗−1.

A.3 Long-Run Risk Model

A.3.1 Aggregate Asset Pricing

Expanding on Proposition 1, we have the following aggregate asset pricing

results.

• The value function is given by

J(Ct, Xt) =
C1−γ
t

1− γ
exp

(
λ(1− γ)

κ+ β
Xt +

1− γ

β

[
µC − 1

2
γσ2

C +
λ2(1− γ)σ2

x

2(κ+ β)2

])
.

(A.92)

• The pricing kernel is given by

dΛ

Λ
= −rft dt− γσCdWC − (γ − 1)λ

κ+ β
σXdWX , (A.93)

rft = β + µC + λXt − γσ2
C , (A.94)

where rft is the risk-free rate.

• The price-dividend ratio is

Pt
Dt

= G(Xt) =

∫ ∞

t

S(Xt, τ)ds [τ = s− t], (A.95)

where

S(Xt, τ) = exp(P1(τ)Xt + P2(τ)), (A.96)
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with P1 and P2 given by

P1(τ) =
1− λ

κ

(
1− e−κτ

)
(A.97)

P2(τ) = aτ + b(e−κτ − 1) + c(1− e−2κτ ) (A.98)

a =

(
µD − µC + γσ2

C − β +
1− λ

κ
σ2
X

(
1− λ

2κ
− (γ − 1)λ

κ+ β

))
(A.99)

b =
(1− λ)σ2

X

κ2

(
1− λ

κ
− (γ − 1)λ

κ+ β

)
(A.100)

c =
(1− λ)2σ2

X

4κ3
. (A.101)

• The instantaneous risk premium and variance of return are given by

µt =
λ(γ − 1)σ2

X

κ+ β

GX

G
, (A.102)

σ2
t = σ2

D +

(
GX

G
σX

)2

, (A.103)

with µt and σ
2
t increasing in Xt.

Proof of Theorem 1:

Proof. Consider an asset that pays a single cash flow equal to the aggregate dividend
at time T , DT . The value of this asset at time t is given by

pt(τ,Dt, Xt) = Et

[
ΛT
Λt
DT

]
=

1

Λt
Et [ΛTDT ]

= DtS(Xt, τ) [τ = T − t], (A.104)

where the final step includes the equivalence Et[ΛTDT ] = ΛtDtS(Xt, τ) where
S(Xt, τ) is defined above. Then the risk premium on this asset is

−Cov
(
dΛt
Λt

,
dpt
pt

)
=

(γ − 1)λ

κ+ β
σ2
X

SX(Xt, τ)

S(Xt, τ)

=
(γ − 1)λ

κ+ β
σ2
X

S(Xt, τ)P1(τ)

S(Xt, τ)

=
(γ − 1)λ

κ+ β
σ2
X

1− λ

κ
(1− e−κτ ), (A.105)
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which is increasing in τ since γ > 1, λ < 1, κ > 0, and β > 0. Since the asset
is paying a single cash flow, notice that its duration is equal to τ . The duration
and expected return of a portfolio of cash flows are value-weighted averages of the
duration and expected returns of its cash flows, respectively. Therefore, it is straight-
forward to show that the positive duration–expected return relation generalizes to
any portfolio whose payoffs are non-negative fractions of the aggregate dividend.

A.3.2 Cross Section of Dividends

Proof of Theorem 2:

Proof. The sum of two dividend shares θpt = θit+ θ
j
t follows a WF process. Applying

Itô’s Lemma with ρt(dWθi , dWθj) = −
√

θitθ
j
t

(1−θit)(1−θ
j
t )
,

dθpt = dθit + dθjt

= α(θ̄i + θ̄j − θit − θjt )dt+ δ
√

(1− θit)θ
i
tdWθi + δ

√
(1− θjt )θ

j
tdWθj

= α(θ̄p − θpt )dt

+δ

√√√√(1− θit)θ
i
t + (1− θjt )θ

j
t − 2

√
(1− θit)θ

i
t(1− θjt )θ

j
t

θitθ
j
t

(1− θit)(1− θjt )
dWθp

= α(θ̄p − θpt )dt+ δ
√
(1− θpt )θ

p
t dWθp , (A.106)

where θ̄p ≡ θ̄i + θ̄j.

Additional Aggregation Results:

We now show that the portfolio relative share is given by equation (2.11) and

that the cross section of firms aggregates properly. From Theorem 2, the dividend

share of a portfolio p∗ holding the full value of all firms in P follows the WF process,

dθp
∗

t = α(θ̄p
∗ − θp

∗

t )dt+ δ

√
(1− θp

∗

t )θp
∗

t dWθp
∗ , (A.107)

where θ̄p
∗
=
∑

i∈P θ̄
i and θp

∗

t =
∑

i∈P θ
i
t. Then consider a portfolio p which holds

the proportion of firm value ω of each firm in P . By Itô’s lemma, the process for

the portfolio’s dividend share is

dθpt = α(θ̄p − θpt )dt+ δ
√
(ω − θpt )θ

p
t dWθp , (A.108)
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where θ̄p =
∑

i∈P ωθ̄
i and θpt =

∑
i∈P ωθ

i
t. Asset pricing results must be equivalent

for ω < 1 and ω = 1 to prevent the existence of arbitrage opportunities. Equation

(2.11) is derived by

θ̄p

θpt
=

∑
i∈P ωθ̄

i∑
i∈P ωθ

i
t

=
∑
i∈P

θit∑
i∈P θ

i
t

θ̄i

θit
. (A.109)

To establish the aggregation result, let all firms i = 1, ..., n be included in P and let

ω = 1 so all firms are held in their entirety within the portfolio. Then
∑

i∈P θ
i
0 = 1 at

time 0 and d(
∑

i∈P θ
i
t) = 0 by equation (A.108). Therefore, 1 =

∑
i∈P θ

i
t =

∑n
i=1 θ

i
t

for all t, hence Dt =
∑n

i=1 θ
i
tDt.

A.3.3 Cross-Sectional Asset Pricing

Proof of Theorem 3:

Proof. The value of a firm is the expected discounted value of firm dividends,

P i
t = Et

∫ ∞

t

Λs
Λt
Di
sds

= Et

∫ ∞

t

Λs
Λt
Dsθ

i
sds. (A.110)

In order to value future dividends, we need to compute Et[θ
i
s] = f(θit, τ), where

τ = s− t. Applying Itô’s Lemma and Feynman–Kac,

α(θ̄i − θit)fθ +
1

2
δ2θit(1− θit)fθθ − fτ = 0, (A.111)

which has a solution

f(θit, τ) = Et[θ
i
s] = θite

−ατ + θ̄i(1− e−ατ ). (A.112)

Notice that this expectation is simply a weighted average of the current dividend
share θit and the long-run dividend share θ̄i, with f(θit, τ) = θit at τ = 0 and
limτ→∞ f(θit, τ) = θ̄i as our expectation of θi converges to the long-run dividend
share as τ grows large.
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The price of security i is

P i
t =

1

Λt
Et

∫ ∞

t

Λsθ
i
sDsds

=
1

Λt

∫ ∞

t

Et[Λsθ
i
sDs]ds

=
1

Λt

∫ ∞

t

Et[ΛsDs]Et[θ
i
s]ds [independence]

=
1

Λt

∫ ∞

t

ΛtDtS(Xt, τ)[θ
i
te

−ατ + θ̄i(1− e−ατ )]ds [τ = s− t], (A.113)

where S(Xt, τ) is defined in Proposition 1. The price-dividend ratio of firm i follows
by dividing both sides by Di

t = θitDt

P i
t

Di
t

≡ Gi(Xt, θ
i
t; θ̄

i, α) =

∫ ∞

t

S(Xt, τ)

[
e−ατ +

θ̄i

θit
(1− e−ατ )

]
ds. (A.114)

Firm i’s price-dividend ratio is increasing in relative share given α > 0 since (1 −
e−ατ ) > 0 and S(Xt, τ) > 0 for all Xt and τ .

Individual firm excess return obeys

dRi
t =

dP i
t +Di

tdt

P i
t

− rft dt

= µitdt+ σDdWD +
Gi
X

Gi
σXdWX + δ

√
1− θit
θit

(
1 +

θitG
i
θ

Gi

)
dWθi , (A.115)

where µit is the expected excess return given by

µit = −Cov
(
dP i

P i
,
dΛ

Λ

)
=
λ(γ − 1)

κ+ β
σ2
X

Gi
X

Gi
. (A.116)

We now establish conditions under which µit is increasing in relative share. First,
define relative share rit =

θ̄i

θit
. Assuming γ > 1, µit is increasing in relative share if

Gi
X

Gi is increasing in relative share, where

Gi
X = rit

∫ ∞

t

S(Xt, τ)P1(τ)(1− e−ατ )ds+

∫ ∞

t

S(Xt, τ)P1(τ)e
−ατds (A.117)

Gi = rit

∫ ∞

t

S(Xt, τ)(1− e−ατ )ds+

∫ ∞

t

S(Xt, τ)e
−ατds. (A.118)

Since Gi and Gi
X are both linear in rit, the sign of ∂PVt

∂rit
depends on the sign of

c(rit) =

∫ ∞

t

S(Xt, τ)P1(τ)ds

∫ ∞

t

S(Xt, τ)e
−ατds

−
∫ ∞

t

S(Xt, τ)P1(τ)e
−ατds

∫ ∞

t

S(Xt, τ)ds. (A.119)
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Substituting in P1(τ) =
1−λ
κ

(1− e−κτ ) the sign of c is determined by15

sgn(c(rit)) = sgn

(∫ ∞

t
S(Xt, τ)ds

∫ ∞

t
S(Xt, τ)e

−(α+κ)τds

−
∫ ∞

t
S(Xt, τ)e

−ατds

∫ ∞

t
S(Xt, τ)e

−κτds

)
. (A.120)

In order to show sgn(c(rit)) > 0, we need to show that∫ ∞

t

S(Xt, τ)ds

∫ ∞

t

S(Xt, τ)e
−(α+κ)τds >

∫ ∞

t

S(Xt, τ)e
−ατds

∫ ∞

t

S(Xt, τ)e
−κτds,

(A.121)
which follows by Chebyshev’s algebraic inequality since e−ατ and e−κτ are monotonic
functions of τ ((Mitrinović, Pečarić, and Fink, 1993, p. 239)).

Firm i’s expected return µit has a beta pricing relation with an economic
growth hedge portfolio,

µit = βitµt, (A.122)

where βit

(
Xt,

θ̄i

θit

)
is firm i’s beta on an economic growth hedge portfolio with ex-

pected return µt. The economic growth hedge portfolio is constructed to have re-
turns that follow

dRt = µtdt+
GX

G
σXdWX , (A.123)

where µt is defined in Proposition 1. Notice that

µt = −Cov
(
dRt,

dΛ

Λ

)
=
λ(γ − 1)

κ+ β
σ2
X

GX

G
, (A.124)

so the economic growth hedge portfolio is correctly priced. Firm i’s beta is

βit

(
Xt,

θ̄i

θit

)
=

Cov(dRi
t, dRt)

V ar(dRt)

=
σ2
X
Gi

X

Gi
GX

G

σ2
X

(
GX

G

)2
=

Gi
X

Gi

G

GX

. (A.125)

Then substituting for
Gi

X

Gi in the equation of µit gives

µit =
λ(γ − 1)

κ+ β
σ2
X

Gi
X

Gi

= βit
λ(γ − 1)

κ+ β
σ2
X

GX

G

= βitµt. (A.126)

15Hore (2008) and Bansal and Yaron (2004) show that λ < 1 in the post-war US
economy.
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Finally, given the process for firm i’s return in equation (A.115), the instan-
taneous variance of the firm return is

σ2
i,t = σ2

D +

(
Gi
X

Gi
σX

)2

+ δ2
1− θt
θt

(
1 +

θtG
i
θ

Gi

)2

, (A.127)

since all covariance terms equal zero
(i.e. Cov(dWX , dWD) = Cov(dWθi , dWD) = Cov(dWθi , dWX) = 0).

A.3.4 Dispersion and Idiosyncratic Volatility

Proof of Theorem 4:

Proof. Dispersion is defined by

Dispersionit =

∣∣∣∣∣∣∣∣
√
δ2
(
rit
θ̄i
− 1
)
+ σ2

D

α(rit − 1) + µD +Xt

∣∣∣∣∣∣∣∣ , (A.128)

where rit =
θ̄i

θit
. Assume

α(rit − 1) + µD +Xt > 0, (A.129)

so expected dividend growth for firm i is positive. The direction of the relation
between rit and Dispersionit will be the same as between rit and (Dispersionit)

2

since expected dividend growth is positive. The partial derivative is

∂(Dispersionit)
2

∂rit
=

δ2

θ̄i
(−αrit + α(2θ̄i − 1) + µD +Xt)− 2ασ2

D

(α(rit − 1) + µD +Xt)3
. (A.130)

From equation (A.129), the denominator is positive. Therefore, the sign of
∂(Dispersioni

t)
2

∂rit
depends on the sign of

f(rit) = −αrit + α(2θ̄i − 1) + µD +Xt − 2
θ̄i

δ2
ασ2

D. (A.131)

From equation (A.129), −αrit < (µD +Xt)− α, so

f(rit) = −αrit + α(2θ̄i − 1) + µD +Xt − 2
θ̄i

δ2
ασ2

D (A.132)

< 2

(
−α
(
1− θ̄i

(
1− σ2

D

δ2

))
+ µD +Xt

)
(A.133)

provides an upper bound for f(rit). A sufficient (but not necessary) condition for a
negative relation between rit and Dispersion

i
t is

α

(
1− θ̄i

(
1− σ2

D

δ2

))
> µD +Xt, (A.134)
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which holds quite generally since the term in parentheses is close to one for rea-
sonable parameters and α estimates are much larger than estimates of µD (the
unconditional mean of Xt is zero).

When expected dividend growth of firm i is negative, the relation between

dispersion and relative share is generally positive. However, during normal economic

conditions (i.e. Xt reasonably close to zero), relatively few firms in the cross section

will have negative expected dividend growth. Furthermore, dispersion for firms with

negative expected dividend growth that is close to zero will have higher dispersion

than firms with expected dividend growth equal to that of the aggregate dividend,

preserving the negative cross-sectional relation. Simulations show that a negative

cross-sectional relation between relative share and dispersion arises quite generally

under a variety of economic conditions and specifications of the cross section of firms.

Proof of Theorem 5:

Proof. Idiosyncratic volatility of asset i is given by

IV i
t = δ

√(
1

θit
− 1

)(
1 +

θitG
i
θ

Gi

)

= δ

√(
1

θit
− 1

) ∫∞
t
S(Xt, τ)e

−ατds

G+
∫∞
t
S(Xt, τ)

(
θ̄i

θit
− 1
)
(1− eατ )ds


= δ

(∫ ∞

t

S(Xt, τ)e
ατds

) √
rit
θ̄i
− 1

G+ (rit − 1)
∫∞
t
S(Xt, τ)(1− e−ατ )ds

. (A.135)

Notice the change of variable θ̄i

θit
= rit which implies that 1

θit
=

rit
θ̄i
. By construction,

rit
θ̄i
> 1.

The sign of the derivative
∂IV i

t

∂rit
depends on whether the quantity

c(rit) =

√
rit
θ̄i
− 1

G+ (rit − 1)
∫∞
t
S(Xt, τ)(1− e−ατ )ds

(A.136)
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is increasing or decreasing in rit. By taking the derivative of c(rit) with respect to rit,

sgn
(
∂IV i

t

∂rit

)
is determined by the sign of the quantity

c̄ = (2θ̄i − rit)

∫ ∞

t

S(Xt, τ)(1− e−ατ )ds+

∫ ∞

t

S(Xt, τ)e
−ατds. (A.137)

Rewrite c̄ as

c̄ = (2θ̄i − rit)

∫ ∞

t

S(Xt, τ)ds+ (rit − 2θ̄i + 1)

∫ ∞

t

S(Xt, τ)e
−ατds (A.138)

≤ (2θ̄i − rit)|S(Xt, τ)|1 +
(rit − 2θ̄i + 1)√

2α
|S(Xt, τ)|2, (A.139)

where the last inequality is due to the Cauchy–Schwarz inequality and | · |i is the i-th
norm. The success of equation (A.139) is to separate α from inside the integral, thus
disentangling any non-linear dependence from other variables inside the integral.
Now, we can enforce a condition for the idiosyncratic volatility result in the (θ̄i, α)-
plane that is independent from the other variables in the system. Since, S(Xt, τ)
is positive ∀τ , the first norm is much greater than the second norm because the
cross-terms are all positive. Thus, for c̄ < 0 in (A.139), all we need is to pick α such
that

(rit − 2θ̄i)(
√
2αM − 1) > 1, (A.140)

where M = |S(Xt,τ)|1
|S(Xt,τ)|2 >> 1 for reasonable parameter values that we consider here.

The first term rit−2θ̄i > 0 for θit < 1/2. In fact, rit−2θ̄i is increasing as θit decreases.
Fix θit < 1/2 and pick a θ̄i. Then, one can pick α according to the above condition
to ensure that c̄ < 0.16 Simulations show that this bound can be easily achieved.

A.4 Long-Run Risk Model Estimation

A.4.1 Data

Analyst earnings forecast data is from I/B/E/S. Dispersion is calculated

following Avramov, Chordia, Jostova, and Philipov (2009) as the standard deviation

of analyst fiscal year one earnings estimates divided by the absolute value of the

mean estimate. Firms must have at least two analyst forecasts in a month to be

included in the sample. Data for calculating IV and credit risk is from Compustat

16Notice, this holds true for the upper bound. It is possible that c̄ < 0 under looser
restrictions.
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and CRSP. Following Ang, Hodrick, Xing, and Zhang (2006), IV is defined as the

standard deviation of pricing errors relative to the Fama–French (1993) three-factor

model in a regression using daily returns and a one-month period.17 Firms with fewer

than 18 daily return observations in the month are omitted from the sample.18 Our

proxy for credit risk is calculated following Campbell, Hilscher, and Szilagyi (2008)

who model the probability of corporate failure over the next year as a function of

accounting and market variables. See Campbell, Hilscher, and Szilagyi (2008) for

details on this measure.

Our sample period is July 1981 to June 2008. We choose this period since

the credit risk anomaly has been demonstrated for the post-1980 period and the

number of firms with valid dispersion data increases sharply in the early 1980s.

We form value-weighted decile portfolios based on the dispersion, IV, and credit

risk measures. Dispersion and IV portfolios are rebalanced monthly following the

related literature, while credit risk portfolios is rebalanced annually at the beginning

of July. All firms with a price less than $1 at the time of portfolio formation are

excluded from the portfolios. Stock return data is from CRSP, and all returns are

adjusted for inflation. After imposing all data requirements, there are an average of

2,761 firms per month that are eligible for inclusion in dispersion portfolios, 5,456

firms in IV portfolios, and 4,355 firms in credit risk portfolios.

Our aggregate dividend and consumption data sample is annual, post-war

17We thank Kenneth French for making factor returns available through his website at
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html.

18In September 2001, the stock market was closed for four unscheduled days. We there-
fore require at least 14 daily returns for each firm in September 2001.
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US data from 1948 to 2008. Aggregate dividends are calculated for the CRSP

value-weighted index following Cochrane (2008a).19 Aggregate consumption is non-

durable goods plus services from the NIPA tables of the Bureau of Economic Anal-

ysis. We convert the data to a real, per capita basis by adjusting for CPI inflation

and the US population.

A.4.2 Estimation

A.4.2.1 Aggregate Parameter Estimation

We estimate the aggregate parameters of the Euler approximations of equa-

tions (2.3), (2.4), and (2.5),

Ct+1 − Ct
Ct

= µC + λXt + σCϵC , (A.141)

Dt+1 −Dt

Dt

= µD +Xt + σDϵD, (A.142)

Xt+1 = (1− κ)Xt + σXϵX , (A.143)

using a Bayesian approach. We use a Markov chain Monte Carlo (MCMC) tech-

nique to draw from the posterior distribution of the aggregate parameters. To draw

from the posterior, we iterate through the following steps with the draws for each

parameter being conditioned on the most recent draws of the other parameters.

1. Draw {Xt}Tt=1|µD, µC , κ, σD, σC , σX using a forward filtering–backward sam-

pling algorithm (FFBS).20 This step produces a draw from the posterior dis-

19Cochrane (2008a) points out that CRSP dividends capture all payments to investors
including cash mergers, liquidations, and repurchases.

20FFBS was developed by Carter and Kohn (1994) and Frühwirth-Schnatter (1994).
Also see West and Harrison (1997) for details on FFBS.
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tribution of the unobservable sequence {Xt}Tt=1 conditional on the remaining

parameters. Define F = [1 λ] and W =

 σ2
D 0

0 σ2
C

. FFBS is performed in

two steps:

(a) Forward filtering : Calculate {mt}Tt=1, {Ct}Tt=1|µD, µC , κ, σD, σC , σX , a1, R1,

where a1 and R1 are prior parameters. The time series of mt and Ct,

which are intermediate parameters in the FFBS procedure, are found by

iterating through t = 1 to T with the following equations (with at and

Rt being set to the prior parameters a1 and R1 when t = 1):

at = (1− κ)mt−1, (A.144)

Rt = (1− κ)2Ct−1 + σ2
X , (A.145)

Q = F ′RtF +W, (A.146)

A = RtFQ
−1, (A.147)

mt = at + A


 Dt+1−Dt

Dt
− µD,

Ct+1−Ct

Ct
− µC

− F ′at

 , (A.148)

Ct = Rt − AQA′. (A.149)

(b) Backward sampling : Draw the sequence {Xt}Tt=1|{mt}Tt=1, {Ct}Tt=1, κ, σX

by first drawing

XT ∼ N(mT , CT ), (A.150)
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and then iterating from t = T − 1 to 1 drawing from

Xt ∼ N
((

(1− κ)2W−1 + C−1
t

)−1 (
(1− κ)W−1Xt+1 + C−1

t mt

)
(A.151)

,
(
(1− κ)2W−1 + C−1

t

)−1
)
, (A.152)

to draw a full sequence {Xt}Tt=1 from the posterior distribution of possible

sequences.

2. Draw µD, σD|{Xt}Tt=1. Define yt =
Dt+1−Dt

Dt
−Xt to be the sequence of observed

dividend growth minus the current draw of {Xt}Tt=1. Calculate ȳ = 1
T

∑T
t=1 yt

and s2 =
∑T

t=1 y
2
t . Then calculate µD = (H + T )−1(HµD + T ȳ) and H =

(H + T ). The parameter σD is calculated from the draw

s̄2

σ2
D

∼ χ2(ν̄), (A.153)

where s̄2 = s2+Q∗, ν̄ = ν+T , and Q∗ = s2+T (µD− ȳ)2+(µD−µD)′H(µD−

µD). Finally, the draw of µD conditional on σ2
D is from the univariate normal

distribution

µD ∼ N(µD, σ
2
DH

−1
). (A.154)

3. Draw µC , λ, σC |{Xt}Tt=1 using a Bayesian regression.21 Define X = [1 Xt]

as the T × 2 matrix containing a constant and the sequence {Xt}Tt=1 and

y =
[
Ct+1−Ct

Ct

]
as a T×1 vector with the sequence of consumption growth. Also

define β = [µC λ]′. Calculate b = (X′X)−1X′y and s2 = (y −Xb)′(y −Xb).

Then calculate β̄ = (H + X′X)−1(Hβ + X′Xb) and H = (H + X′X). The

21See Rossi, Allenby, and McCulloch (2005b) and Geweke (2005) for further discussions
of Bayesian regressions.
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parameter σC is calculated from the draw

s̄2

σ2
C

∼ χ2(ν̄), (A.155)

where s̄2 = s2 + Q∗, ν̄ = ν + T , and Q∗ = s2 + (β̄ − b)′X′X(β̄ − b) + (β̄ −

β)′H(β̄ − β). Finally, the draw of β = [µC λ]′ conditional on σ2
C is from the

multivariate normal distribution

β ∼ N(β̄, σ2
CH

−1
). (A.156)

4. Draw κ, σX |{Xt}Tt=1 using a Bayesian AR(1) regression. Define XT to be a T−

1×1 vector containing the sequence {Xt}Tt=2 and XT−1 to be a T−1×1 vector

containing the sequence {Xt}T−1
t=1 . Calculate b = (XT−1

′XT−1)
−1XT−1

′XT and

s2 = (XT−XT−1b)
′(XT−XT−1b). Then calculate β̄ = (H+XT−1

′XT−1)
−1(Hβ+

XT−1
′XT−1b) and H = (H + XT−1

′XT−1). The parameter σX is calculated

from the draw

s̄2

σ2
X

∼ χ2(ν̄), (A.157)

where s̄2 = s2 + Q∗, ν̄ = ν + T − 1, and Q∗ = s2 + (β̄ − b)′XT−1
′XT−1(β̄ −

b) + (β̄ − β)′H(β̄ − β). Finally, the draw of κ conditional on σ2
X is calculated

from the draw of (1− κ) from the univariate normal distribution

(1− κ) ∼ N(β̄, σ2
XH

−1
). (A.158)

We draw 6,000 times from the posterior distribution of the parameters and

discard the initial 1,000 draws as a burn-in period. The mean draws from the

posterior distribution appear in Panel A of Table 1.3.
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A.4.2.2 Portfolio Parameter Estimation

We calculate portfolio dividends following Bansal, Dittmar, and Lundblad

(2005).22 Specifically, portfolio value evolves according to

H i
t+1 = H i

tR
ix
t , (A.159)

where H i
t is the value of the portfolio at month t and Rix

t is the ex-dividend portfolio

return. Since the relative size of portfolio dividends in the cross section is important

to our empirical analysis, we set the initial portfolio values at the beginning of July

1981, H i
0, to the aggregate market value of the firms in each portfolio. The portfolio

dividend, Di
t, is therefore

Di
t = H i

t(R
i
t −Rix

t ), (A.160)

where Ri
t is the portfolio return. We sum monthly dividends within each quarter to

obtain quarterly dividends. Quarterly dividends continue to exhibit strong season-

ality. In response, we use a trailing four-quarter average of the portfolio dividend

as the portfolio cash flow following Bansal, Dittmar, and Lundblad (2005). Port-

folio cash flows are adjusted for inflation. Given the cash flows for each of the ten

portfolios, the portfolio dividend share is

θit =
Di
t∑10

j=1D
j
t

. (A.161)

We therefore have a quarterly time series of dividend share for each portfolio from

Q2 1982 to Q2 2008 (after allowing for three lags of quarterly dividends for a four-

quarter average) while ensuring that the sum of portfolio dividend shares is always

equal to one.

22See also Menzly, Santos, and Veronesi (2004) and Hansen, Heaton, and Li (2008).
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For each of the three sets of decile portfolios, we estimate the parameter θ̄i for

each portfolio and the parameters α and δ using a Bayesian MCMC approach. Using

the Euler approximation of equation (2.8) along with the instantaneous correlation

in equation (2.9), we have a system of ten equations with one equation for each

portfolio i of the form,

θit+1 = θit + α(θ̄i − θit) + δϵit+1, i = 1, ..., n, ϵt+1 ∼ N(0,Σt), (A.162)

where

Σt =



θ1t (1− θ1t ) · · · −θ1t θit · · · −θ1t θnt
...

. . .
...

−θitθ1t · · · θit(1− θit) · · · −θitθnt
...

. . .
...

−θnt θ1t · · · −θnt θit · · · θnt (1− θnt )


. (A.163)

Further, we have the parameter restrictions that θ̄j > 0 for all portfolios j, α > 0,

δ > 0, and
∑n

j=1 θ̄
j = 1. Note that the full variance-covariance matrix Σ is not

invertible. To see this, consider the variance of θnt+1 given {θit+1}n−1
i=1 , which is

δ2θnt (1− θnt )− δ2Σ(n,1:n−1)Σ
−1
(1:n−1,1:n−1)Σ(1:n−1,n) = 0, (A.164)

while the mean of θnt+1 is 1−
∑n−1

i=1 θ
i
t+1. Therefore, the variance-covariance matrix Σ

automatically enforces the constraint
∑n

j=1 θ̄
j = 1. In practice, a combination of the

variance-covariance matrix of the first n−1 dividend shares, Σ(1:n−1,1:n−1), combined

with the constraint
∑n

j=1 θ̄
j = 1 are used to simulate or estimate the system.

The parameters in equation (A.162) do not have a convenient posterior dis-

tribution, so we employ a Metropolis–Hastings algorithm to draw from the posterior
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distribution. The Metropolis–Hastings algorithm can be used to draw from an un-

known posterior distribution by initially drawing a candidate set of parameters from

an arbitrary transition distribution and then accepting the candidate draw or re-

jecting the draw in favor of the previous draw based on the likelihoods of the two

draws.

Below, we outline the MCMC chain for estimating parameters for a single

set of test assets. Defining the vector of parameters Ω = [θ̄, α, δ], the draw of Ω in

iteration m of the MCMC chain is as follows:

1. Draw a vector θ̂ ∼ N[0,∞)(θ̄
(m−1), A), where A is a diagonal matrix scaled

to provide for sufficient mixing and the multivariate normal distribution is

truncated at zero in all n dimensions because of the restrictions θ̄j > 0 for

j = 1, ..., n. The candidate vector is then normalized to sum to one, θ̄∗ = θ̂

θ̂′ι
,

to satisfy the restriction
∑n

j=1 θ̄
j = 1. Finally, Ω∗ = [θ̄∗, α(m−1), δ(m−1)] is

accepted with probability

min

{
p(Ω∗)/q(Ω∗|Ω(m−1))

p(Ω(m−1))/q(Ω(m−1)|Ω∗)
, 1

}
, (A.165)

where

p(Ω) ∝
T∏
t=1

exp

(
−
(
θ−nt+1 − (1− α)θ−nt − αθ̄−n

)′
Σ−1
t,−n

(
θ−nt+1 − (1− α)θ−nt − αθ̄−n

)
2δ2

)
,

(A.166)

is the kernel of a multivariate normal distribution, θ−nt+1 and θ̄
−n are vectors of

dividend shares and long-run means of dividend shares of the first n− 1 firms,
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Σ−n is the (n− 1× n− 1) block of the variance-covariance matrix defined in

equation (A.163) formed by dropping the nth row and column, and q(Ωa|Ωb)

can be replaced by the probability that all elements of a draw θ̄b ∼ N(θ̄a, A)

are greater than zero.23 If the transition density was not truncated, this step

would be a random-walk Metropolis–Hastings step and the q(Ω∗|Ω(m−1)) and

q(Ω(m−1)|Ω∗) terms would cancel. Scaling the likelihoods of Ω∗ and Ω(m−1) by

the probabilities of positive draws adjusts for the differences in transition prob-

abilities arising from the truncation. Transition probabilities are unaffected

by the rescaling of θ̂ to θ̄∗ since A is diagonal. If the draw θ̄∗ is accepted then

θ̄(m) = θ̄∗. Otherwise, θ̄(m) = θ̄(m−1).

2. Draw a candidate α∗ ∼ N[0,∞)(α
(m−1), σα). The normal distribution is trun-

cated at zero because of the restriction α > 0. Then the draw Ω∗ = [θ̄(m), α∗, δ(m−1)]

is accepted with probability

min

{
p(Ω∗)/q(Ω∗|Ω(m−1))

p(Ω(m−1))/q(Ω(m−1)|Ω∗)
, 1

}
, (A.167)

where

p(Ω) ∝
T∏
t=1

exp

(
−
(
θ−nt+1 − (1− α)θ−nt − αθ̄−n)

)′
Σ−1
t,−n

(
θ−nt+1 − (1− α)θ−nt − αθ̄−n)

)
2δ2

)
,

(A.168)

and q(Ωa|Ωb) can be replaced by the probability that a draw αb ∼ N(αa, σα)

23Note that the constants multiplying the kernels to arrive at likelihoods are the same
for p(Ω∗) and p(Ω(m−1)) so they can safely be ignored.
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is greater than zero. If the draw α∗ is accepted then α(m) = α∗, else α(m) =

α(m−1).

3. Draw a candidate δ∗ ∼ N[0,∞)(δ
(m−1), σδ). Then the draw Ω∗ = [θ̄(m), α(m), δ∗]

is accepted with probability

min

{
p(Ω∗)/q(Ω∗|Ω(m−1))

p(Ω(m−1))/q(Ω(m−1)|Ω∗)
, 1

}
, (A.169)

where

p(Ω) ∝ 1

δn−1
×

T∏
t=1

exp

(
−
(
θ−nt+1 − (1− α)θ−nt − αθ̄−n

)′
Σ−1
t,−n

(
θ−nt+1 − (1− α)θ−nt − αθ̄−n)

)
2δ2

)
,

(A.170)

and q(Ωa|Ωb) can be replaced by the probability that a draw δb ∼ N(δa, σδ) is

greater than zero. If the draw δ∗ is accepted then δ(m) = δ∗, else δ(m) = δ(m−1).

We draw 250,000 parameter vectors from the posterior distribution and discard the

first 50,000 as a burn-in period. Due to the relatively strong autocorrelation in draws

that can arise when using a Metropolis–Hastings algorithm, we use every fortieth

draw from the posterior as the 5,000 draws that are used in the simulation below.

The resulting draws are nearly serially uncorrelated.

A.4.3 Dividend Share Process Tests

We perform two types of specification tests for our dividend share process.

First, we follow Da (2009), who performs tests on a similar consumption share

process for book-to-market, size, and reversal portfolios, by testing various aspects
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of the AR(1) process for dividend share implied by our specification. The most

important feature of our dividend share process is mean reversion. We test this

assumption for portfolios formed on dispersion, IV, and credit risk by implementing

an Augmented Dickey–Fuller test. The Dickey–Fuller test examines the stationarity

of dividend share (i.e. the existence of mean reversion) versus the hypothesis of

a unit root. We assume a non-zero mean and a single lag for the dividend share

process. Table A.1 of this document contains the p-values from this test. The

hypothesis of a unit root is rejected at the 5% level for 19 of the 30 portfolios. This

hypothesis is rejected at the 10% level for three additional portfolios. Overall, the

assumption of mean reversion in dividend share appears to be supported among

the anomaly portfolios. In addition for testing for mean reversion, we also test the

residuals from the AR(1) process as a test of the AR(1) assumption. The Ljung–Box

Q test examines whether the AR(1) residuals are white noise. The p-values from

this test appear in Table A.1. The AR(1) assumption can not be rejected for 28

of the 30 portfolios, providing further support for our specification as a model for

portfolio dividend shares.

Second, we compare our dividend share process to several alternative specifi-

cations. We compare models using the AICM and BICM criteria of Raftery, Newton,

Satagopan, and Krivitsky (2007). AICM and BICM are posterior simulation-based

versions of the Akaike Information Criterion (AIC) and Bayesian Information Cri-

terion (BIC) model selection criteria. Hence, the measures select models based on

the likelihood of the data given the model, with a penalty for additional parame-

ters. More detail on these model selection criteria is available in Raftery, Newton,
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Satagopan, and Krivitsky (2007).

For each set of portfolios, we compare our dividend share specification, given

by equation (2.8) with correlation described by equation (2.9), to alternative pro-

cesses using AICM and BICM. We compare our specification to several alternatives.

We investigate reasonable alternatives with differing assumptions than our own. Al-

ternative 1 is a Wright–Fisher process analogous to the base specification, but with

α and δ allowed to vary across firms,

dθit = αi(θ̄i − θit)dt+ δi
√
(1− θit)θ

i
tdWθi . (A.171)

For Alternative 2, we specify a constant, firm-specific diffusion term,

dθit = α(θ̄i − θit)dt+ σidWθi . (A.172)

This setup is similar to the share process used by Da (2009) without consumption

shocks. Finally, Alternative 3 is a simple specification with firm-specific drift and

diffusion terms which remain constant through the sample period,

dθit = µidt+ σidWθi . (A.173)

Note that none of the alternatives is able to satisfy the constraint that firm dividends

add to the aggregate dividend. However, each alternative alters the assumptions of

our dividend share process, so the model comparisons can be viewed as a test of our

specification. For each model, we run the MCMC chain for 60,000 iterations and

discard the first 10,000 draws as a burn-in period. The AICM and BICM model

selection criteria are reported in Table A.2. Our base specification performs well

in the model comparisons. For IV and credit risk portfolios, the base specification
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substantially outperforms all three alternatives whether the model selection criterion

is AICM or BICM. For dispersion portfolios, the base specification substantially

outperforms Alternatives 2 and 3, while Alternative 1 provides a slightly better fit

to the data. In general, our dividend share process is a parsimonious specification

which provides a good fit to the data.

A.4.4 Simulation

In each iteration of the simulation, we use a draw from the posterior dis-

tributions of the aggregate and portfolio parameters obtained from the estimation

procedures in Appendix A.4.2.1 and Appendix A.4.2.2. We have closed-form so-

lutions for several quantities in the unlevered case, such as firm value, expected

returns, betas, dispersion, idiosyncratic volatility, and expected dividend growth.

For the levered case we use simulations to estimate expected returns, betas, and the

probability of bankruptcy. We run the simulation for 5,000 iterations.

We work within the Merton (1974) framework, where firms default if the

value of the firm at debt maturity is less than the face value of the debt. In each

iteration, we simulate one year of the time series of aggregate dividends Dt, the

economic growth variable Xt, the pricing kernel Λt, and dividend share θt from

the Euler approximations of equations (2.3), (2.4), (2.5), and (2.8), respectively,

using 250 subperiods during the year while simulating the diffusions. Using these

simulated time series, we can calculate the firm value at the end of the year at time

T ,

PT = DT θT

∫ ∞

T

S(XT , τ)ds [τ = s− t], (A.174)
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using numerical integration. We can then estimate bankruptcy probabilities by

comparing the firm value, PT , with the face value of debt, B. The proportion of

iterations in which B > PT provides a proxy for distress risk.

Expected returns on levered equity can be estimated by calculating the av-

erage return to levered equity across iterations. The (one-year) return from time t

to time T in each iteration is

RT =
VT +

∫ T
t
Dsθsds

Vt
, (A.175)

with Vt representing the value of levered equity and
∫ T
t
Dsθsds providing the cu-

mulative firm dividend paid over the period. Given the series of Dt, Xt, Λt, and θt

simulated above for this iteration,

VT = max {PT −B, 0}, (A.176)

which can be explicitly calculated and
∫ T
t
Dsθsds is estimated using the discrete

approximation
∑250

s=1Ds/250θs/250
1

250
. Finally, the value of levered equity at time t,

Vt, must be estimated. Within each iteration in the simulation, we run a second loop

for 500 iterations to estimate Vt. In each subiteration, we simulate paths for Dt, Xt,

Λt, and θt using the same posterior draws of aggregate and portfolio parameters as

in the main iteration. The estimate for Vt is the average across the 500 subiterations

of

Vt =

∫ T

t

DsθsΛsds+ ΛT max {PT −B, 0}, (A.177)

where the integral is again estimated using a discrete approximation. The expected

levered return is estimated using these quantities. In the last step, we estimate
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the levered equity beta by dividing the estimated expected levered return by the

expected return on the economic growth hedge portfolio.

To examine the cross-sectional relation between relative share and dispersion,

IV, and credit risk in Figure 2.4, we first develop a cross section of 100 firms. For

each firm, we draw a random number from a χ2 distribution with two degrees of

freedom, then scale this number by the sum of the 100 random draws to create

the firm’s long-run dividend share θ̄i. This procedure creates a cross section with

more small firms than large firms while ensuring proper aggregation of the cross

section. Each firm’s dividend share at time 0, θi0, is initially set to its long-run

dividend share before simulating each dividend share process for a period of 50

years. This procedure creates a cross section of firms which is close to its steady-

state distribution in terms of dividend share θit and relative share θ̄i/θit, with minimal

dependence on our initial assumptions about θi0. We then calculate dispersion, IV,

and credit risk as discussed above.

A.5 CAPM Model and Estimation

Section A.5.1 provides details about the MCMC estimation algorithm, and

Section A.5.2 presents a simulation study that demonstrates the ability of the algo-

rithm to accurately recover parameters.

A.5.1 Estimation Methodology

The model outlined in equations (3.5) to (3.7) can be estimated by repeatedly

cycling through steps 1 to 6 below. As discussed in the text, we place a hierarchical

structure on alphas, but not on betas. Instead we impose a proper, but diffuse,
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prior directly on betas in the base specification, βi,y ∼ N
(
µ = 1, σ2

β = 10
)
. Let rei,t,y

denote the excess return on stock i in month t of year y and rem,t,y the excess return

on the market portfolio. Further, let Z denote a matrix in which the first column is a

vector of ones and the second column is the excess returns on the market portfolio,

and let X denote a matrix of a constant and firm-year characteristics associated

with anomalies.

1. Draw αi,y, βi,y|σ2
i,y, δy, σ

2
α,y for each stock i = 1, ..., N , in each year y = 1, ..., Y .

We obtain a draw from the marginal posterior distribution of αi,y and βi,y as

follows:  αi,y

βi,y

 ∼ N
(
λi, (σ

−2
i,yZ

′
i,yZi,y +V−1

λ )−1
)
, (A.178)

where

λi = (σ−2
i,yZ

′
i,yZi,y +V−1

λ )−1(σ−2
i,yZ

′
i,yZi,yλ̂i +V−1

λ λi,y), (A.179)

λ̂i =
(
Z ′
i,yZi,y

)−1
Z ′
i,yr

e
i,y, (A.180)

λi,y =

 Xi,yδy

1

 , (A.181)

and

Vλ =

 σ2
α,y 0

0 10

 . (A.182)

2. Draw σ2
i,y |αi,y, βi,y for each stock i = 1, ..., N , in each year y = 1, ..., Y . We

obtain a draw from the marginal posterior distribution of σ2
i,y as follows:

σ2
i,y ∼ Inverse Gamma

(
v1s

2
1

2
,
v1
2

)
, (A.183)
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v1 = v0 +M, (A.184)

and

s21 =
v0s

2
0 + s2

v0 +M
, (A.185)

where s2 is the sample sum of squared errors and M denotes the number of

observations. The priors, v0 and s
2
0, are determined by the researcher. We set

v0 equal to 3 and s20 equal to the variance of the monthly returns for stock i

in year y.

3. Draw δy| {αi,y} , σ2
α,y, δ,V for each year y = 1, ..., Y . Let α denote a column

vector composed of draws of αi,y for all firms i in the dataset in year y. We

obtain a draw from the marginal posterior distribution of δy as follows:

δy ∼ N
(
δy, (σ

−2
α,yX

′
yXy +V−1)−1

)
, (A.186)

where

δy = (σ−2
α,yX

′
yXy +V−1)−1(σ−2

α,yX
′
yXy δ̂y +V−1δ), (A.187)

and

δ̂y =
(
X ′
yXy

)−1
X ′
yα. (A.188)

4. Draw σ2
α,y | {αi,y} , δy for each year y = 1, ..., Y . We obtain a draw from the

marginal posterior distribution of σ2
α,y as follows:

σ2
α,y ∼ Inverse Gamma

(
v1s

2
1

2
,
v1
2

)
, (A.189)

v1 = v0 +M, (A.190)
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and

s21 =
v0s

2
0 + s2

v0 +M
, (A.191)

where s2 is the sample sum of squared errors and M denotes the number of

observations. The priors, v0 and s
2
0, are determined by the researcher. We set

v0 equal to 3. We elicit priors for s20 in the following manner. For each stock

in year y we estimate equation (3.5) using OLS and store α̂. We set s20 equal

to the variance of α̂ across all firms in year y.

Having drawn the firm- and year-level coefficients we proceed to draw the

aggregate-level parameters. Let P denote a Y × nvar matrix comprised of a draw

of {δy}Yy=1 , where nvar denotes the number of columns in X, and let H be a ma-

trix of covariates the researcher believes to be associated with the evolution of the

parameter vector δy over time. In our specification, H is a column vector of ones,

but could easily be extended, for example, to include macroeconomic variables.

5. Draw V| {δy}. We obtain a draw from the marginal posterior distribution of

V as follows:

V ∼ Inverse Wishart (nvar +Nu+ Y,V0 + S) , (A.192)

where

S =
(
P −HΓ̃

)′ (
P −HΓ̃

)
+
(
Γ̃− Γ

)′
A
(
Γ̃− Γ

)
, (A.193)

Γ̃ =
(
(H ′H +A)

−1
(
H ′HΓ̂+AΓ

))
, (A.194)

and

Γ̂ = (H ′H)
−1

(H ′P ) . (A.195)
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A, Γ, Nu and V0 are priors specified by the researcher. We set A−1 = 100I

and define Γ to be an nH × nvar matrix of zeros, where nH denotes the

number of columns in H. Nu is set to nvar+ 3, and V0 = NuI. I denotes an

appropriately dimensioned identity matrix.

6. Draw γ| {δy} ,V. We obtain a draw from the marginal posterior distribution

of γ as follows:

γ ∼ N
(
γ̃,V ⊗ (H ′H +A)

−1
)
, (A.196)

where γ̃ = vec
(
Γ̃
)
. Given that H is a vector of ones, δ = γ.

A.5.2 Model Simulation

In this section, we conduct a simulation exercise and show our estimation

algorithm successfully recovers the parameters of interest. Data are created for

1,000 firms over a 45-year period. The length of each time period, y, is set to 12

months. We assume there are two firm characteristics associated with firm-level

alphas, x1 and x2, which are both uniformly distributed over the range -0.5 to +0.5.

The parameters in the simulation are set to ensure that the simulated firm-level

returns, alphas, betas, and market returns are consistent with the actual values

observed using the CRSP return data.

1. Draw δy ∼ MVN
(
µ = δ, σ2 = V

)
for each 12-month time period, y. We set

δ =


δ0 = 0

δ1 = 1

δ2 = 1

 , and V =


1.5 0.5 0.5

0.5 1.5 0.5

0.5 0.5 1.5

 .
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2. Draw αy ∼ MVN(µ = δ0,y + δ1,yx1 + δ2,yx2, σ
2 = Σα), where αy is a column

vectors of firm-specific alphas in time period y. We consider two specifications

for the variance-covariance matrix, Σα, one in which the error terms are inde-

pendent across firms, and one in which the error terms are correlated across

firms. We examine two different levels of correlations, low to medium with

correlations ranging from −0.5 to +0.5, and medium to high with correlations

ranging from −0.9 to +0.9. The diagonal elements of Σα are set equal to

σ2
α = 2.24

3. Draw βi,y ∼ N(µ = 1, σ2 = 4) for each firm i in each time period y.

4. Generate excess monthly returns on the market: rem,t,y ∼ N(µ = 0.5, σ2 = 25).

5. Generate monthly excess returns for each firm in each month of each time

period: ret,y = αy + βyr
e
m,t,y + ϵt,y, where ϵt,y ∼ MVN(µ = 0, σ2 = Σret) and

ret,y denotes a column vector of excess returns for all firms in month t of time

period y. αy and βy are column vectors of firm-specific alphas and betas.

The specifications for the variance-covariance matrix, Σret, are constructed in

a similar manner to those for Σα. The only difference is that the diagonal

elements of Σret, σ
2
ret, are set equal to 169.

24We use the following procedure to create a 1,000 × 1,000 variance-covariance matrix.
First, create a column vector, u, with 1,000 draws from the Uniform(-1,1) distribution.
Second, calculate κuu′ where κ = pσ2

α. The parameter, p is a scaling factor, between 0
and 1, for the maximum level of correlation in the error terms across firms. If p = 0,
firm-level alphas are independent. If p = 1, κuu′ correlations range from −1 to +1. For
low to medium correlations we set p = 0.5, while for medium to high correlations we set
p = 0.9. Finally, set Σα = κuu′ and replace the diagonal elements with σ2

α = 2.
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We examine seven different scenarios to investigate the sensitivity of our

model to different correlation structures in the error terms of equations (3.5) and

(3.6). The MCMC algorithm is run for 1,000 iterations for each scenario. The

algorithm converges quickly. The posterior distributions are characterized using the

final 500 iterations. We use the same seed for the random number generator for each

scenario. Table A.3 reports the results from the simulation study. Regardless of the

correlation structure in the error terms of equations (3.5) and (3.6), the estimation

algorithm is able to accurately recover the aggregate-level model parameters, δ and

V, indicating that the approach is not sensitive to the possibility of cross-correlations

across firms.

A.6 Data Formation

We obtain accounting data from the Compustat Fundamentals Annual files

and stock return data from the CRSP monthly return files. Each of the anomaly

variables is measured once a year at the end of June in calendar year j. The variables

are matched to returns from July of calendar year j to June of calendar year j + 1.

To ensure that the accounting data are known prior to the returns they are used

to forecast, we lag all accounting variables by six months. The sample includes all

NYSE, Amex, and NASDAQ ordinary common stocks with the data required to

compute at least one of the following anomaly variables:

1. M (Size): The natural log of price per share times the number of shares out-

standing at the end of June of year j.

2. BM (Book-to-market): The natural log of the ratio of book value of equity
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to market value of equity. Following Fama and French (2008), we define the

book value of equity as total assets (at), minus total liabilities (lt), plus balance

sheet deferred taxes and investment tax credits (txditc) if available, minus the

book value of preferred stock if available. Depending on availability, we use

liquidating value (pstkl), redemption value (pstkrv), or carrying value (upstk)

for the the book value of preferred stock. The market value of equity is price

per share times the number of shares outstanding at the end of December of

year j − 1.

3. MOM (Momentum): The continuously compounded stock return from Jan-

uary to June of year j. We require a firm to have a price for the end of

December of year j − 1 and a good return for June of year j.

4. REV (Reversal): The continuously compounded stock return from July of

year j − 5 to June of year j − 1. We require a firm to have a price for the end

of June of year j − 5 and a good return for June of year j − 1.

5. ROA (Profitability): Income before extraordinary items (ib), minus dividends

on preferred (dvp) if available, plus income statement deferred taxes (txdi) if

available divided by total assets (at).

6. AG (Asset growth): Total assets (at) at the fiscal year end in year j−1, minus

total assets at the fiscal year end in year j − 2 divided by total assets at the

fiscal year end in year j − 2. We also require a firm to have non-zero total

assets in both year j − 1 and j − 2.
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7. NS (Net stock issues): The natural log of the ratio of split-adjusted shares

at the fiscal year end in year j − 1 divided by split-adjusted shares at the

fiscal year end in year j− 2. The number of split-adjusted shares outstanding

is common shares outstanding from Compustat (csho) times the cumulative

adjustment factor by ex-date (adjex f).

8. ACC (Accruals): The change in current assets (act) from the fiscal year end

in year j − 2 to j − 1, minus the change in current liabilities (lct), minus the

change in cash and short-term investments (che), plus the change in debt in

current liabilities (dlc), minus depreciation (dp) in fiscal year j− 1 divided by

total assets (at) from the fiscal year end in year j − 2.

9. OS (Financial distress): Ohlson’s (1980) O-score:

O-score =
1

1 + exp(−x)
,

where

x =− 1.32− 0.407 (SIZE) + 6.03 (TLTA)− 1.43 (WCTA)

+ 0.076 (CLCA)− 1.72 (OENEG)− 2.37 (NITA)− 1.83 (FUTL)

+ 0.285 (INTWO)− 0.521 (CHIN) ,

where SIZE is the log of the ratio of total assets (at) to the GNP price-level

index, TLTA is the ratio of total liabilities (lt) to total assets, WCTA is

the ratio of working capital (act – lct) to total assets, CLCA is the ratio of

current liabilities (lct) to current assets (act), OENEG is a dummy variable

equal to one if total liabilities exceeds total assets and zero otherwise, NITA
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is the ratio of net income (ni) to total assets, FUTL is the ratio of funds from

operations (pi) to total liabilities, INTWO is a dummy variable equal to one

if total net income was negative for the past two years and zero otherwise, and

CHIN is the change in net income from fiscal year j − 2 to j − 1 divided by

the sum of the absolute values of net income in fiscal years j − 2 and j − 1.

Data on the GNP price-level index are from the Federal Reserve Bank of St.

Louis website.25 Following Ohlson (1980), we assign the index a value of 100

in 1968, and the index year is as of the year prior to the year of the balance

sheet date.

We exclude financial firms (SIC codes between 6000 and 6999) and firms with

negative book equity. The sample period is July 1963 to June 2008. To alleviate

the influence of outliers, we winsorize ROA, AG, NS, and ACC at the 1st and 99th

percentiles. For cases in which a firm is delisted from an exchange during a given

month, we replace any missing returns with the delisting returns provided by CRSP.

25http://research.stlouisfed.org/fred2/.
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Table A.1: Dividend Share Process Specification Tests

Portfolio Dickey–Fuller p-value Ljung–Box p-value
D1 0.90 0.07
D2 0.10 0.96
D3 0.42 0.81
D4 0.00 0.32
D5 0.48 0.18
D6 0.00 0.09
D7 0.30 0.52
D8 0.09 0.14
D9 0.63 0.35
D10 0.01 0.37
I1 0.03 0.22
I2 0.07 0.49
I3 0.01 0.94
I4 0.00 0.27
I5 0.03 0.77
I6 0.00 0.78
I7 0.05 0.36
I8 0.47 0.11
I9 0.01 0.76
I10 0.00 0.99
C1 0.00 0.04
C2 0.05 0.64
C3 0.00 0.05
C4 0.00 0.30
C5 0.01 0.81
C6 0.01 0.48
C7 0.02 0.19
C8 0.36 0.06
C9 0.01 0.63
C10 0.01 0.09

Note: This table reports the results of an Augmented Dickey–Fuller test and
a Ljung–Box Q test for each portfolio. Dividend shares are assumed to follow
an AR(1) process as implied by our model. The Dickey–Fuller test assumes a
constant and a single lag, and tests for the existence of a unit root. The Ljung–
Box Q test examines the residuals from the AR(1) process and tests whether
these errors are white noise. Portfolios are named using D for dispersion, I
for idiosyncratic volatility, and C for credit risk, along with the portfolio decile
rank. The table reports p-values for both tests.
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Table A.2: Dividend Share Model Comparison

Idiosyncratic Default
Model Dispersion Volatility Probability

Panel A: AICM Criterion
Base Specification 6625.7 7319.9 7198.4

(0.6) (1.6) (1.2)
Alternative 1 6657.8 6362.7 7152.8

(0.7) (16.6) (2.2)
Alternative 2 5239.1 5365.5 5255.2

(12.9) (16.0) (16.8)
Alternative 3 5067.0 5239.0 4887.8

(15.3) (17.7) (22.7)
Panel B: BICM Criterion

Base Specification 6545.4 7066.6 7020.2
(1.9) (5.5) (4.0)

Alternative 1 6558.6 3659.3 6808.5
(2.3) (56.9) (7.4)

Alternative 2 3139.5 2758.8 2527.1
(44.2) (54.9) (57.4)

Alternative 3 2574.4 2363.5 1198.1
(52.5) (60.5) (77.6)

Note: This table compares the performance of our dividend share process with
several alternative specifications. The base specification is given by equations
(2.8) and (2.9). Alternatives 1, 2, and 3 are given by equations (A.171), (A.172),
and (A.173), respectively. We compare models using AICM and BICM model
comparison criteria of Raftery, Newton, Satagopan, and Krivitsky (2007), for
which a larger value indicates better model fit. The criteria are based on 50,000
iterations of the MCMC procedure following 10,000 burn-in iterations. Standard
errors appear in parentheses.
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Mitrinović, D. S., J. E. Pečarić, andA. M. Fink (1993): Classical and new inequalities
in analysis. Kluwer Academic Publishers, Dordrecht, The Netherlands.

Ohlson, J. A. (1980): “Financial ratios and the probabilistic prediction of
bankruptcy,” Journal of Accounting Research, 18, 109–131.
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