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ABSTRACT 

 

 

 

 
     Data-driven decision making has become more popular in today’s businesses including 

logistics and vehicle routing. Leveraging historical data, companies can achieve goals such as 

customer satisfaction management, scalable and efficient operation, and higher overall revenue.  

      In the management of customer satisfaction, logistics companies use consistent assignment of 

their drivers to customers over time. Creating this consistency takes time and depends on the 

history experienced between the company and the customer. While pursuing this goal, companies 

trade off the cost of capacity with consistency because demand is unknown on a daily basis. We 

propose concepts and methods that enable a parcel delivery company to balance the trade-off 

between cost and customer satisfaction. We use clustering methods that use cumulative historical 

service data to generate better consistency using the information entropy measure. 

     Parcel delivery companies route many vehicles to serve customer requests on a daily basis. 

While clustering was important to the development of early routing algorithms, modern solution 

methods rely on metaheuristics, which are not easily deployable and often do not have open 

source code bases. We propose a two-stage, shape-based clustering approach that efficiently 

obtains a clustering of delivery request locations. Our solution technique is based on creating 

clusters that form certain shapes with respect to the depot. We obtain a routing solution by 

ordering all locations in every cluster separately. Our results are competitive with a state-of-the-

art vehicle routing solver in terms of quality. Moreover, the results show that the algorithm is 

more scalable and is robust to problem parameters in terms of runtime. 

     Fish trawling can be considered as a vehicle routing problem where the main objective is to 

maximize the amount of fish (revenue) facing uncertainty on catch. This uncertainty creates an 

embedded prediction problem before deciding where to harvest. Using previous catch data to 

iv



 

train prediction models, we solve the routing problem a fish trawler faces using dynamically 

updated routing decisions allowing for spatiotemporal correlation in the random catch. We 

investigate the relationship between the quality of predictions and the quality of revenue 

generated as a result. 
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PUBLIC ABSTRACT 

 

 

 

 
     Data-driven decision making has become more popular in today’s businesses including 

logistics and vehicle routing. Leveraging historical data, companies can achieve goals such as 

customer satisfaction management, scalable and efficient operation, and higher overall revenue.  

      In the management of customer satisfaction, logistics companies use consistent assignment of 

their drivers to customers over time. While doing so, companies trade off the cost of capacity 

with consistency because demand is unknown on a daily basis. We propose concepts and methods 

that enable a parcel delivery company to balance the trade-off between cost and customer 

satisfaction. 

     Parcel delivery companies route many vehicles to serve customer requests on a daily basis. 

Research has focused mainly on tailored heuristic approaches to generate routes. These 

approaches are not easily deployable and often do not have open source code bases. We propose a 

scalable clustering algorithm that efficiently obtains a clustering of delivery request locations. We 

show that our algorithm compares favorably to a state-of-the-art vehicle routing solver in terms of 

scalability and robustness.  

     Fish trawling can be considered as a vehicle routing problem where the main objective is to 

maximize the amount of fish (revenue) facing uncertainty on catch. This uncertainty creates an 

embedded prediction problem before deciding where to harvest. Using previous catch data to 

train prediction models, we solve the routing problem a fish trawler faces using dynamically 

updated routing decisions. We investigate the relationship between the quality of predictions and 

the quality of revenue generated as a result. 
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Chapter 1

Introduction

Recent years has seen a huge surge in collecting information and data while business operations are

carried out. This data-rich operating environment calls for data-centric approaches while conduct-

ing business operations. In this thesis, we propose data-driven solution methodologies for routing

problems that utilize historical data to make better business decisions in the areas of parcel delivery

and fish harvesting.

In the last decade, logistics companies have begun to consider the management of customer

satisfaction in addition to cost-related considerations such as fuel, time, capacity, and fleet. This

new focus is motivated in part by the success of the United Parcel Service (UPS) company. Some

attribute this success to UPS drivers who “. . . form a real bond with customers and take tremendous

ownership of their customers and routes” (UPS, 2007). Drivers are the first hand service provider

for logistics companies such as UPS and FedEx. Forming desired customer relationships involves

drivers consistently serving the same set of customers. Meeting these goals take time and depends on

the history experienced between the logistic company and the customer. While doing so, companies

trade off the cost of capacity with consistency because demand is unknown on a daily basis. The

trade-off of consistency versus routing efficiency has mainly been studied from a static perspective.

Effective policies for the management of customer satisfaction and traditional resource costs should

be responsive to fluctuations in service requirements in a dynamic fashion as opposed to current

approaches.

In order to increase customer retention, companies should consider developing a stable relation-

ship between customers and drivers who are first-hand service providers to customers. Researchers

have shown that companies that create satisfied, loyal customers have more repeat business (Smith,

2002, 2004). Customer relationship management is a way to express having the ability to organize

and maintain a connection with clients, customers, and service agents (Clinton, 2011; UPS, 2007).

Loyal customers develop expectations based on how they have received service in the past and what

they should expect in the future (Bowersox et al., 2002). These expectations can create a habitual

preference of the unique service provided by their drivers. This habitual preference is a function of

the unique history experienced by each customer.

Customers that do not receive service that they expect to receive can be left dissatisfied. See

1



Figures 1.0.1, 1.0.2 and 1.0.3 for three complaints posted to www.consumeraffairs.com1 describing

the kind of service or lack thereof, some customers have received. From these complaints and many

like them, we learn that it is not service time that influences customer satisfaction, but rather very

peculiar things that a driver needs to know about each and every customer.

I’ve expected packages to be
delivered, but I am working
during the day, so when the
driver left me a notice on the
door, I did sign on the back
and left an apartment num-
ber of my neighbors, so the
packages can be delivered
there. But when the driver

came again, he did not leave
packages with neighbors but
left me notice again. I called
UPS, spoke to 6 different
people and I was told that
they don’t care about what is
written on the back of a yel-
low UPS notice. It’s up to
the driver only if he wants to

leave packages with neigh-
bors or not and I was told
that I should go to UPS lo-
cation and get my packages
myself. I do not drive and
there is 4 packages for me to
pick up. UPS provides the
worst services ever.

Figure 1.0.1: UPS complaint 1.

I had an absolutely wonder-
ful experience with UPS a
few days ago. It was 4:30
on a Friday afternoon, and
a considerate account exec-
utive with UPS happened
to notice that something we
were having shipped, due to
the fact that we don’t have
an account with that specific
company, was going to cost
over $6000 for an item that
only cost $200! Instead of
just ignoring this, figuring
that it wasn’t her business,
she actually came to our of-

fice to let us know. And
since it just so happened
that no one with any knowl-
edge of this shipment was
there at the time, she left
her contact information, and
was happy to help once con-
tacted. Once it all was said
and done, we were thank-
fully able to rectify the sit-
uation. Not sure what we
would have done had she
not gone out of her way-
thanks, T.!!!
We also happen to have
the most wonderful deliv-

ery driver on the face of
this earth. The office that I
work in is a relatively small,
family-owned business, and
many of the shipments that
we get are quite time-
sensitive (items that need to
be kept cold, orders for cus-
tomers, etc.). John AL-
WAYS goes out of his way
to ensure that we get our or-
ders as early as possible, is
extremely friendly, and al-
ways considerate. Good job,
UPS!!

Figure 1.0.2: UPS complaint 2.

Customers see the face of the driver hired by a courier service company when they demand

service. This makes the driver-customer relationship important (UPS, 2007). Drivers learn customer

preferences by way of this unique relationship. Companies encourage their drivers to meet these

1www.consumeraffairs.com/delivery/united/parcel/service.htm accessed on 10.12.14 at 11:20 pm.
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My address is very clear
on my box straight across
from my house. Last Christ-
mas they delivered my pack-
age 4 houses down. The
neighbors brought me my
package then I watched the
driver drive past my house
and took my package to
someone else’s porch which
is far from my mailbox
and the numbers aren’t even

close. Friday they were
to deliver again and said
on the tracking that it was
left on my porch but no
package. Lucky me that
they delivered it to a porch
that the person brought it
and put it in my mail-
box. Now another pack-
age to be delivered on the
following Monday said on
the tracking that they gave

it to the woman customer
on the property. Must of
been a ghost because me
and my husband was work-
ing at 2:16pm when it sup-
posedly gave to me. I called
them and I am sitting here
waiting for a before 10am
phone call from UPS and no
call yet. From now on I will
steer away from orders that
will be delivered from UPS.

Figure 1.0.3: UPS complaint 3.

individual preferences for customer management purposes. For example, customers tend to have

preferences regarding contingencies such as missed delivery. These preferences can range from

leaving a package at a special location like the door or the porch, or even in the building’s office

or with a neighbor. As another example, packages might require the customer to be present at the

time of delivery. Drivers can learn customer availability over time. If a missed delivery occurs, this

means that the driver must revisit the customer again tomorrow, which consumes vehicle capacity

for the next day and multiple trips have to be made for successful completion of service.

Current approaches to customer management are characterized by their simplicity. Researchers

prefer to artificially impose constraints on assignments. Our research models the consistency prob-

lem in a “soft” way rather than imposing constraints (Groer et al., 2009), or exclusively assigning

regions to drivers beforehand (Zhong et al., 2007). Dividing a service region at the strategic level

necessitates making assumptions about relevant parameters including demand, customer location,

and fleet maintenance issues. The strategy of designing service regions at a certain point in time

is susceptible to daily variability. This is true for any type of constraints on assignments that in

turn make the initial design less effective than predicted. This a priori approach can lead to unde-

sirable situations for making day-to-day decisions in line with its long-term goals. By treating the

problem dynamically and without artificial constraints, we are more likely to mitigate the adverse

implications of such an a priori approach (imposing artificial constraints) caused by daily parameter

fluctuations or unforeseen circumstances.

Collecting data for business purposes has become a recent trend in all industries. A major

logistics provider such as UPS has invested heavily in technologies that accumulate information

about every aspect of business operations. For example, in the early 2000’s, UPS introduced the

package flow technology (PFT) that enabled them to streamline vehicle dispatching with less error,

higher cost savings and short term predictability of delay in package arrivals to distribution centers.

Recently, UPS started using ORION which can be thought of as automated decision making based

on data accumulated and provided by the PFT system (ORI, 2014). This new technology, whose

future version is planned to be made real-time, creates routes based on optimization procedures. In
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our case, to create stable driver-customer assignments in a dynamic fashion, we apply data mining

methodologies and concepts from the clustering literature on accumulated service data. We use a

dynamic model with no fixed routing or pre-clustering of customers and keep track of necessary

information to assist in daily decision making. We quantify the degree of consistency a logistics

company provides to their customers. In this light, our research can attract interest from logistics

companies.

The main reason for the existence of artificially imposed structures is the scale of the problems

facing parcel delivery companies. One method that can address the scale issue is the cluster-first,

route-second heuristic in the VRP literature. In this method, the original problem is decomposed

into smaller subproblems. Each subproblem turns into a traveling salesman problem (TSP). Existing

state-of-the-art TSP solvers can easily manage problems this size: 100-200 nodes. In addition,

the original problem turns into a generalized assignment problem (Fisher and Jaikumar, 1981).

This original problem can benefit from the use of better mathematical programming techniques

(Laporte, 2009). The benefit of such a formulation is that the clustering problem does not contain

any subtour elimination constraints that usually complicate the optimization procedure. For day-to-

day dispatching, we make use of such a benefit in a specific case, the 1-norm. 1-norm clustering

can be done quite efficiently and we can obtain high quality solutions to the clustering problem.

Another focus in this thesis is clustering methods for large scale capacitated vehicle routing

problems (VRP). Most effective approaches up-to-date have been to use metaheuristics. However,

these heuristics are not easily deployable as they often require tailored implementations that can-

not take advantage of or do not have available existing code bases. We propose scalable clustering

mechanisms hypothesizing that we may obtain a better trade-off between runtime and solution qual-

ity. We propose a system that can be assembled using publicly available solvers.

Improvements in technology has benefited data collection in the business of fish harvesting as

well. Catch and effort survey have been regularly conducted to properly assess fish stock abundance

in the oceans. Moreover, the abundance of fish tends to exhibit spatial and temporal correlation.

Routing a fishing vessel can be considered as an orienteering problem in which a vehicle tra-

verses a network to maximize its reward or expected reward. However, typically, an optimal solution

is too hard to obtain. One solution approach to these types of problems is using approximate dy-

namic programming (ADP).

Rollout methods are a particular set of techniques used in ADP, which can deliver good but

suboptimal solutions. Researchers have shown that it is beneficial to construct a routing solution in

a dynamic fashion as information arrives; sticking to a fixed routing solution generated at the be-

ginning of a decision horizon tends to be worse. The correct estimation of the information process,

amount of catch in our case, enables the correct evaluation of routing solutions. We propose using

spatiotemporal forecasting techniques to help the management of routing strategies for fishing ves-

sels. We shed light on the relationship between the quality of a forecasting method and the quality

of the routing solution obtained as a result.

In this thesis, we focus on scalable clustering techniques for vehicle routing, the multi-period
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problem facing a courier service company with consistency goals, and the routing problem facing a

fish trawler. We address the single period routing problem from a clustering perspective in Chapter

3. The consistency goal, which is essentially an assignment problem, links the routing solutions

of different periods together. We model the consistency problem as a dynamic clustering problem

in Chapter 4 focusing on the consistency issue where we do not treat the routing of customers.

Furthermore, we model the relevant parameters for everyday decision making in a state variable,

which we update at every decision epoch. Based on this state information, the courier service

company faces a vehicle routing problem for that period. In Chapter 5, we model the problem

that a fish trawler faces as a Markov decision problem. The state space in our model captures

observations made along a fishing trip. We assume observations can be correlated across regions;

therefore, keeping track of observations makes sense for rerouting strategies.

Our research makes several contributions to the literature:

• We propose a novel measure for customer relationship management that captures important

features regarding frequency with which drivers visit customers in a lexicographic fashion.

• Our approach does not make restrictive assumptions on the solution space under uncertainty.

As a result, this approach promises to be more effective.

• We propose a mathematical programming-based heuristic for the per-period routing decision

that is conceptually simpler to implement than metaheuristics, which is the main approach

used for practically-sized problems in the literature. Moreover, metaheuristics generally need

to be fine tuned to accommodate unforeseen data realizations or make good quality solutions

even better. For this reason, a mathematical programming approach can in general be more

robust.

• We combine forecasting methods with several approximate dynamic programming heuristics

in a rollout framework for routing fish trawlers. We take into account the possible correlation

of catch across fishing regions and we validate our approach using real data.

In Chapter 3, we focus on the routing aspect of the problem at every decision epoch. We

propose three different cluster-first, route-second algorithms and discuss strength and weakness of

each depending on customer distribution.

In Chapter 4, we focus on the policies that can be used to create stable customer-driver rela-

tionships. We explore the effectiveness of two methods. In the first, we model consistency as a

measure based on normalized mutual information from the data-mining literature. This measure

is used for comparing clusterings and their similarity. Second, we use a more refined approach to

consistency and model the consistency for every customer separately using information entropy. In

these analyses, we do not conduct any routing but only group customers into clusters.

In Chapter 5, we detail a Markov decision model for the fish trawling problem and discuss our

solution approach to our model.
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Chapter 2

Literature Review

Our research is comprised of several components. First, this research belongs to the dynamic routing

literature because information is revealed over time. Second, our approach uses a cluster-first,

route-second approach where we take into account customer locations. Such approaches have a rich

history in the literature. It is related to the partitioning or clustering techniques that are utilized in

areas ranging from data mining, bioinformatics, mathematical programming, and heuristics. Third,

routing (orienteering) and predictive modeling in the case of fish trawling.

The VRP literature has been extremely fruitful in terms of the number of published papers

over 50 years. Many different variants for the VRP have been considered that consider specific

characteristics of the problem such as: time windows, pickup and delivery services, heterogeneous

fleet, uncertainty and so on. I will review the VRP related literature in Section 2.1. First, I will

review one of the major themes of this research which is customer relationship management from

a consistency point of view in subsection 2.1.1. Consistency involves decisions over time, so we

review the dynamic vehicle routing literature in subsection 2.1.2. I will focus on large scale VRP in

subsection 2.1.3.

Clustering is a very popular form of unsupervised data analysis. It can be considered as an

overarching field that has applications in various fields of science and it is frequently used as a data

analysis tool in research fields such as machine learning, data mining, artificial intelligence, and bio-

informatics. I will review the clustering related literature in section 2.2. Consistency considerations

and clustering can be considered as genres in a bigger picture of incorporating knowledge discovery

into operations research.

2.1 Vehicle Routing Literature

2.1.1 Consistent Service to Customers

We summarize how the literature quantifies consistency in subsection 2.1.1.1. We compare and

contrast our model of consistency with how it is modeled in previous work. Then, we move on to

discuss related papers that have considered the consistency issue in subsection 2.1.1.2.
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2.1.1.1 Quantifying Consistency

2.1.1.1 Quantifying Consistency

Consistency can serve the purposes of driver learning and customer satisfaction. Zhong et al. (2007)

and Smilowitz et al. (2013) form their study focusing on driver learning which essentially affects

the traditional objective of travel time. Specifically, Zhong et al. (2007) model how much consistent

service decreases delivery completion time for vehicle drivers. This relationship exhibits diminish-

ing marginal returns for every additional visit made by a driver to the same location. This type of

a relationship is known as a learning curve (Hancock and Bayha, 1992). In a similar fashion, they

present a forgetting curve that can be thought of as the symmetric counterpart of learning.

Smilowitz et al. (2013) use a different approach and one similar to ours. They evaluate the

effect of various workforce management measures on traditional routing costs. These measures are

collectively termed workforce metrics. They use two forms of such metrics: customer familiarity

and regional familiarity. The functional properties they capture with these measures are based on

driver learning curves as in Zhong et al. (2007). The general property of these measures is that

visiting frequency increases driver learning at a diminishing rate.

We briefly describe their choice of modeling for creating consistency. Let T be the time horizon

for planning. Define customer access cost to be the time between arriving at a customer location

and successful completion of a delivery at that location. This cost is modeled as a convex function

of the frequency with which a customer is visited. Let αn denote the per visit customer access cost

when a driver visits this customer n times within the time horizon, T . They assume that

α
n > α

n+1 ∀n ∈ T.

Moreover, they assume the condition

nα
n ≤ (n+1)α

n+1 ∀n ∈ T.

Under these assumptions, solutions with fewer drivers visiting a customer are preferred. As a result,

this leads to consistency.

On the other hand, we interpret consistency in the manner of Groër et al. (2009). We see

consistency as a means with which customer satisfaction is provided. In this light, we propose

information-theoretic measures to quantify the degree of stable customer relationship management.

These measures can be seen as a ’soft’ version and an extension of the hard constraints applied in

Groër et al. (2009). These measures can be thought of as measuring how much more frequently

a driver or group of drivers have visited a customer over a multi-period time frame. One benefit

of these measures is that they capture the effect of the second most frequent driver and third most

frequent driver and so on, aside from the most frequent driver. This is akin to a lexicographic

ordering of the drivers assigned to customers. Such a lexicographic ordering may be beneficial

because it may be necessary for more than one driver to have visited a customer over a multi-period

time frame (this is the case at UPS). Allowing multiple drivers to visit a customer is related to paired

vehicle recourse strategies. In these strategies, pairs of vehicles (drivers) are assigned to customers.
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2.1.1.2 Literature on Consistency in Vehicle Routing

Our approach implicitly allows for such assignments where as in the literature the relationship

between two vehicles is fixed. See section 4.2.1 for details.

2.1.1.2 Literature on Consistency in Vehicle Routing

The consistency feature in logistics problems has been studied by several papers from several pe-

spectives. They can be characterized by whether or not these studies have explicitly modeled de-

mand uncertainty. We first discuss studies with perfect information regarding customer requests.

Lastly, we discuss those studies with stochasticity.

There has been work that studies consistency in a deterministic setting. One important study

that addresses consistency is Smilowitz et al. (2013). They study consistent service, or “effective

managerial decision making,” under the setting of the periodic vehicle routing problem (PVRP).

They quantify the value of consistency using two different metrics: customer familiarity and region

familiarity. They model the trade-off between the traditional VRP objective of travel cost and

consistency-enchanced driver productivity. It is important to note that their model corresponds to

perfect information regarding future requests for delivery. In this regard, they use a periodic vehicle

routing framework for their analysis. Perfect information is more likely to apply to short term

planning whereas customer satisfaction with regard to consistency should be more appropriately

interpreted as a long term benefit accrued by the customer. In contrast to their work, our work

assumes future demand is unknown, and we focus on the customer’s perspective for consistent

service. However, similar to their paper, we model the trade-off in the objective, but use information-

entropy related measures from the data mining literature.

Another study that deals with consistency in an environment with no uncertainty about customer

demand is Groer et al. (2009). The authors incorporate constraints that make routing solutions

consistent over driver-customer pairs and with respect to the time of service for each individual

customer over multiple visits. They present an algorithm for their mixed-integer formulation which

is used to solve large-scale simulated instances. Their algorithm is based on the record-to-record

(RTR) travel algorithm proposed by Golden et al. (1998) and improved by Li and Olafsson (2005).

Tarantilis et al. (2012) apply a template-based tabu search heuristic for the same problem. In these

studies, the authors evaluate consistency based on the time differential between arrival times for

service to a customer. Unlike these studies, our study does not incorporate consistency requirements

as hard constraints. In this way, we can model the trade-off explicitly and optimize over gross

consistency costs and gross travel costs.

The aforementioned studies are generalized by Kovacs et al. (2014). Under the setting of perfect

information on future demand, they allow customers to be visited by at most a certain number of

drivers instead of only one. They relax time-consistency constraints found in Groer et al. (2009)

by modeling customer time windows as only AM/PM windows. They penalize the maximal arrival

time difference in the objective to model the trade-off between time-consistency and travel cost.

They use a flexible neighborhood search method to solve their model.

Our research differs from previously mentioned work because we consider uncertainty in fu-
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2.1.1.2 Literature on Consistency in Vehicle Routing

ture demand, and we model customer preferences differently in a lexicographic fashion. Customer

satisfaction is a long process such that future knowledge of business parameters like demand and

customer location is not likely to be known beforehand. Therefore, a different consistency measure

is needed. We propose such a measure.

Among the studies that deal with uncertainty while creating consistency in their model is Zhong

et al. (2007) who obtain driver-customer consistency by assigning a set of customers exclusively to

only one driver (core areas) and having different drivers serve unassigned customers (flex zones)

across the planning horizon. See Figure 2.1.1 from their paper for illustrative purposes. Cus-

tomers in these areas belong to a “zone” that has an exclusive driver serving them. The second

goal of achieving routing efficiency is sought by having different drivers serve another set of cus-

tomers. For this set of customers, the drivers serving them can change over time because it might

be worthwile in terms of travel cost. Although this makes the trade-off partially rigid with respect

to driver-customer assignments, the authors argue that it is a good balance of driver familiarity and

optimization flexibility. Their model explicitly includes an analytical model for driver learning that

is incorporated in a multistage stochastic mathematical program. Additionally, their model takes

into account workload balancing considerations and models them as constraints. They evaluate how

the number of drivers and total service time is correlated while consistently assigning drivers to

customers. They compare their model against a method with no use of core areas, i.e. no customer

is assigned to a core area.

Zhong et al. (2007) show that the model with core areas is better than their model with no core

areas in terms of creating consistency. This result is counterintuitive in that a model with a restricted

solution space delivers better trade-off in terms of consistency and travel cost than a model with no

such restriction. If we analyze how they set up their experiments, we see that their solution approach

is simple for the no-core-area method. First, they compute routes without considering the effect of

driver learning, and second, they assign drivers to routes based on driver learning performance. The

driver learning effect guides the solution obtained at this second step, which is clearly suboptimal

because it was disregarded when constructing routes. Moreover, the initial construction of the routes

are carried out using insertion heuristics.

A more effective approach should optimize over both objectives together. Our framework is

flexible while keeping track of necessary information for consistency over time and uses this infor-

mation in day-to-day operational routing decisions. This should deliver a better trade-off between

flexibility and consistency requirements. Customer zones emerge implicitly from our methodology,

but at the same time, our method is flexible enough to allow the clustered customers to change over

time. In our case, these groups of customers are identified using historical data instead. In simplistic

terms, we allow for data to speak for itself as it is realized over time, rather than make probabilistic

assumptions about it during an initial strategic design phase. We refer the reader to section 2.1.1.1

where we compare and contrast our approach for modeling consistency to other work.

A second study that models consistency, although indirectly, is Carlsson (2011). He considers

a territory planning problem for uncapacitated vehicle routing problems. He presents an algorithm
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2.1.2 Dynamic Vehicle Routing with Uncertainty

Figure 2.1.1: Core areas in Zhong et al. (2007).

for dividing a region when customer distribution is independently and identically distributed. Ad-

ditionally, the partitions are devised such that wokload balance is maintained. His analysis is more

apt for strategic decision making in logistics companies.

2.1.2 Dynamic Vehicle Routing with Uncertainty

The classical vehicle routing problem has variants that take into account several features of our

problem. There is the capacitated VRP (CVRP), where vehicles have finite capacity; the VRP with

Time Windows (VRPTW), where requests for delivery need to be met within a specific period of

time; the VRP with Pick-up and Delivery (PDP) where customers request delivery and goods to be

picked-up, and many other variants. In contrast to the previously mentioned variants for the VRP,

uncertainty is an additional important feature for real-life applications of the VRP. Uncertainty is in-

escapable in today’s world with the rapid growth of e-commerce and the demand for courier services

in almost real time with same day delivery, and/or second day delivery promised by courier service

companies. Research has focused on analyzing the effect of uncertainty in three cases: stochastic

customers, stochastic service times, and stochastic demand. In our model, future customers have a

bearing on the consistency value of the routing decision we make today, so the dynamic nature of

the problem is important in this regard. The literature has addressed the dynamic dimension using

several approaches.

There are two main solution approaches to dynamic vehicle routing with uncertainty. Within

the a priori solution approach, fixed routing implies every customer will belong to a predetermined

route that is constant over the planning horizon. Semi-fixed routes is when vehicles do not visit

customers who do not request service, and this leads to a certain level of cost savings. Second, there

is the dynamic or variable solution approach where routing decisions are updated based information

that has been revealed thus far. Powell et al. (1995) and Thomas (2011) are reviews in this field. We

would like to emphasize that our problem is stochastic as well as dynamic.

Fixed routing was first studied by Christofides (1971). A variation to the classic savings algo-

rithm, which relies on the concept of savings gained by joining two routes into one, was applied

by Beasley (1984) to the fixed routing problem. As noted in these references, fixed routes can lead

to capacity-infeasible solutions or underutilized routes because of customer demand variation over
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2.1.2 Dynamic Vehicle Routing with Uncertainty

time. Other methods, like Zhong et al. (2007); Wong and Beasley (1984), construct fixed areas of

service rather than fixed routes. Waters (1989) studies uncertainty in the set of customers that need

to be visited in a delivery period. It compares the effectiveness of fixed routes, semi-fixed routes,

and totally variable routes in terms of the cost savings only. Waters (1989) concludes that the consid-

eration of variability in the routes depends on the number of customers omitted in a single delivery

period. While using a fixed-route strategy enables dispatchers to set time of delivery for customers

and driver familiarity, it can lead to delivery shortages because one vehicle always serves the same

group of customers who can sometimes have higher demand than vehicle capacity. Haughton and

Stenger (1998) and Haughton (1998) address this issue, estimate the expected shortage faced with

fixed routing and model fixed routing with stochastic customer demand. Haughton (2000) analyzes

the benefits of reroute optimization. In Savelsbergh et al. (1993), the authors compared the fixed-

routes scheme with a variable-routes scheme and under what conditions the former would be better

to use. Their model generates fixed route lengths within 10% of the routes generated by variable

routing. This result was true for coefficients of variation smaller than 30% of customer demand.

Beasley and Christofides (1997) looks at an an application of fixed routing. A mail order company

preferred having fixed routes. The graphical representation of the problem involves sparse customer

linkages. The authors analyze the problem using computational geometry concepts to develop an

effective heuristic.

Other closely related classes of problems are the Probabilistic Traveling Salesman problem

and the Stochastic Vehicle Routing problem which can be viewed as fixed routing strategies under

uncertainty. There are survey papers that treat these problems and the related literature (Psaraftis,

1988, 1995; Campbell and Thomas, 2008a).

Variable/Dynamic routing involves rescheduling as information is revealed. One important early

paper in the stochastic dynamic routing literature is Bertsimas and van Ryzin (1991) where the

authors analyze a variation of the VRP called the dynamic traveling repairman problem. Their

policies minimize the average time a requested demand spends waiting for service. They approach

the problem from a queuing theory point of view. In Bertsimas and Van Ryzin (1993), they extend

and improve their initial study to consider multiple vehicles with and without capacity restrictions.

Again, from a queuing theory perspective, their results show that system time is reduced by a factor

of the square of the number of vehicles in the system.

Powell (1996) is one of the first papers that treated a dynamic vehicle routing problem with

stochastic elements where the future impacts today’s decisions. Recent work in dynamic routing

with stochastic demand include Secomandi (2000) who investigates an approximate policy iteration

procedure that estimates the cost-to-go in period t using a parametric function. Secomandi (2000,

2001) proposes a single fixed-route policy and repeatedly uses it to approximate the cost-to-go for a

given action by computing the expected cost of cyclically following this fixed route. A more recent

study by Goodson et al. (2012) use a cyclic-order neighborhood structure to discover high qual-

ity a priori solutions. Their paper contains an up-to-date extensive review of the related literature

for VRP problems with stochastic demand. Another study where demand is stochastic is Meisel
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2.1.2 Dynamic Vehicle Routing with Uncertainty

et al. (2009), where the authors construct linear value function approximations for a dynamic and

stochastic routing problem with a single, uncapacitated vehicle. Bent and Van Hentenryck (2004)

employ a multiple scenario approach to solve a general dynamic VRP with stochastic requests.

Hvattum et al. (2007) present a branch-and-regret heuristic for problems with stochastic customers,

stochastic demand, or both. Hvattum et al. (2006) solve sample-based problems heuristically whose

solutions are combined to form a solution to an overall problem with stochastic demand and stochas-

tic customers. Mendoza and Villegas (2013) sample the solution space to find high quality solutions.

Sörensen and Sevaux (2009) develop a sampling-based approach that delivers robust and flexible so-

lutions to stochastic variants of the capacitated vehicle routing problem. Ichoua et al. (2006) present

a threshold-based tabu search heuristic that accounts for future customer requests. Gendreau et al.

(2006) propose neighborhood search heuristics where new requests for pickup and delivery occur

real-time. A recent survey of dynamic vehicle routing problems can be found in Pillac et al. (2013).

Another recent survey by Berbeglia et al. (2010) focuses on studies about dynamic pickup and

delivery problems.

Research focusing on real-life applications and other variants of the vehicle routing problem wih

uncertainy have also been considered. Mendoza et al. (2011) develop constructive heuristics for a

multicompartment vehicle routing problem with stochastic demand. Mendoza et al. (2010) model

the same problem as a stochastic optimization problem with recourse and use a memetic algorithm

to obtain solutions. Tirado et al. (2013) address a dynamic stochastic maritime problem where they

propose three different heuristics to test the hypothesis that the inclusion of stochastic information

within a dynamic planning process is beneficial. Agra et al. (2013) address the robust vehicle

routing problem with time windows. Essentially, they optimize a stochastic objective assuming the

worst-case scenario for stochastic time windows. Hvattum et al. (2008) develop heuristics based on

scenario trees for the stochastic inventory routing problem. Azi et al. (2012) propose adaptive large

neighborhood search for a dynamic vehicle routing problem where each vehicle performs delivery

over multiple routes in a week. Tagmouti et al. (2011) describe a dynamic arc routing problem

motivated by winter gritting applications where service time intervals are updated after weather

report updates.

Online algorithms are optimization routines whose data are revealed during algorithm execu-

tion. For instance, data can be new customer requests. Van Hentenryck et al. (2010) propose online

stochastic algorithms that incorporate knowledge of future requests. It does so by sampling future

requests from uncertainty models dependent on realized current data. Van Hentenryck et al. (2009)

adapt their framework to online stochastic reservation systems, in particular the online stochastic

multi-knapsack problem. Lorini et al. (2011) extend Potvin et al. (2006) to account for communi-

cation between drivers and depot when new customer requests are made.

Policies (solutions) that reflect the possibility of a customer request are said to anticipate a re-

quest from a customer. Thomas (2007) develops waiting strategies for anticipating future customer

requests while maximizing the expected number of customers served. He derives analytical results

on the structure of the optimal policy given a priori route selection. Thomas and White (2004)
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2.1.3 Very Large Scale Vehicle Routing

present optimal policy results in a single pickup and delivery vehicle routing problem where the

likelihood that each of the vehicle’s potential customers will make a pickup request is known. They

show the superiority of an optimal anticipatory policy relative to a reactive route design approach.

Ghiani et al. (2011) compare an anticipatory solution approach to sample-scenario planning, which

is a sampling based routing technique that is computationally expensive relative to the anticipatory

approach they propose.

Benson (2001) explores innovations enabled by package tracking technology. He developes a

dynamic load selection problem associated with the uncertainty involved in incoming packages to

a local UPS facility and the optimal way to allocate packages onto delivery trucks. He describes

a prototype decision support system developed for UPS that identifies improvements made possi-

ble with the tracking technology. Our methodology addresses customer management concerns of

companies like UPS, so it can be part of such a decision support system.

2.1.3 Very Large Scale Vehicle Routing

In our model, the dispatcher faces daily large-scale routing decisions. The parameters for this daily

problem are assumed to be fully known to the dispatcher. However, there is no straightforward

solution approach. The VRP is known to be a NP-hard problem as shown in Lenstra and Kan

(1981). This fact makes it difficult to solve the problem to optimality. Exact methods that find

optimal solutions can only tackle problems with at most 100 nodes, or customers. A recent survey

of exact methods can be found in Baldacci et al. (2010).

Given the large size problems of interest in this paper, practical methods have to be developed

that deliver efficient routes within a reasonable amount of time. Researchers have mainly focused on

using metaheuristics for this purpose. This approach can be categorized based on the type of method

used. These range from evolutionary/memetic algorithms to tabu search to various local search and

neighborhood search algorithms. Our work does not fall into the category of metaheuristics. We

review some of the important studies in this area for completeness.

Evolutionary algorithms are a class of nature-inspired intelligence used for hard decision prob-

lems. Within this domain, genetic algorithms have become the most popular. These type of algo-

rithms can be roughly broken down into an initialization phase, a selection phase, a crossover phase,

a mutation phase and a replacement phase. These phases represent operations on candidate solutions

to a problem inspired by their biological counterparts. If you consider combinatorial problems like

the VRP which is NP-hard, the solution space needs to be explored well enough in order to obtain

as effective a solution as possible. Memetic algorithms are designed for this purpose and combine

a local seach phase within a genetic algorithm to be more effective. One important contribution in

this field is Nagata and Braysy (2009). They present a memetic algorithm that includes a new local

search operator, the edge assembly crossover technique. Their experiments at the time obtained

best-known solutions for 28 benchmark problems and new best-known solutions to 12 instances.

Mester and Bräysy (2005) present an active-guided evolutionary algorithm where they combine the

strengths of guided local search with evolutionary strategies into an iterative two-stage metaheuris-
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tic. On a benchmark set comprised of 302 problems, they obtained best-known solutions for 86%

of the problem instances at the time within reasonable computation times. Marinakis and Marinaki

(2010) have obtained good results using a hybrid genetic-particle swarm optimization technique.

There are numerous ways in which researchers have designed genetic algorithms combining vari-

ous strategies used in other papers. Less recent work are Berger and Barkaoui (2003); Prins (2004);

Baker and Ayechew (2003). For a more detailed list of work, see Golden et al. (2008).

There are other techniques that search the neighborhood of a solution to a problem. Mari-

nakis (2012) propose a new multiple phase neighborhood search GRASP algorithm for the CVRP.

GRASP stands for Greedy Randomized Adaptive Search Procedure and it has been shown to be

quite efficient for the Traveling Salesman Problem. Chen et al. (2010) propose a hybrid heuristic

with variable neighborhood descent based optimization. They report competitive results compared

to state-of-the-art heuristics. Improvement heuristics are interative procedures that enhance a fea-

sible solution. Kytöjoki et al. (2007) use variable neighborhood search to guide a collection of

improvement heuristics which are iterative methods that enhance a feasible solution.

Tabu search is one of the most effective and well known tools to attack large-sized VRP. Cordeau

and Maischberger (2012) use a version of the tabu search heuristic for the VRPTW, SDVRP and

MDVRP. Their methodology gets very close to best known solutions in the literature. There has

been work on parallel algorithms that operate in a simultaneous fashion to find better routes. One

such work is Jin et al. (2012) where the authors present a parallel tabu search algorithm that utilizes

different neighborhood structures in tabu search threads which cooperate through a solution pool.

Their work is competitive with other studies that have obtained best solutions with an average devi-

ation of 0.22% from the literature’s best results. Relatively older studies in this area are Gendreau

et al. (1994); Xu and Kelly (1996); Barbarosoglu and Ozgur (1999).

The literature has focused on other heuristics such as simulated annealing and ant colony opti-

mization. For a review of methods before 2000, see surveys by Laporte et al. (2000a) and Cordeau

et al. (2002).

Our research approaches the difficulty caused by problem scale by using a clustering approach.

The clustering approach is a natural way to think of the consistency problem, which essentially de-

pends on which customer gets assigned to which driver. Additionally, this approach is conceptually

simpler to implement than metaheuristics in an industrial setting. Most of the metaheuristics are

developed for generic problems whereas our problem contains a multi-objective function that calls

for design decisions. In order to better optimize over the consistency decision, we model it as an

integer programming problem as opposed to using metaheuristical procedures to balance the trade-

off between traditional business goals and that of consistency. Moreover, metaheuristics generally

need to be fine tuned to accommodate unforeseen data realizations or make good quality solutions

even better.
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2.1.4 Stochastic Orienteering and Fish Trawling

Orienteering problems are class of problems closely related to vehicle routing problems. Roughly

speaking, routing is carried out to maximize total reward in orienteering as opposed to minimizing

cost in vehicle routing problems.

The closest study to the problem presented in Chapter 5 is Ilhan et al. (2008). The authors

consider the problem of finding a tour that visits a subset of nodes on a graph within a prespecified

time limit and maximizes the probability of collecting more than a certain threshold level of profit.

Each node is associated with a random profit (reward) that is normally distributed. The authors use a

bi-objective genetic algorithm to solve their model. In addition to the fact that our problem does not

make normality assumptions on the rewards, we make dynamic decision on a graph with correlated

rewards between nodes.

There are also other studies that consider orienteering problems with stochastic features. Camp-

bell et al. (2011) introduce a problem with stochastic travel and service times. The reward function

in their work is related to whether or not a node can be visited by a deadline. As a result, stochastic

travel and service times lead to uncertainty in the total reward that can be accrued. They present

computational results and characterize optimal solutions under certain assumptions. Zhang et al.

(2014b) present a problem with stochastic wait times that applies to the pharmaceutical industry.

They employ an a priori planning strategy with certain recourse actions and derive the expected

total expected reward analytically. With this analytical evaluation of the objective possible, they use

a variable neighborhood search heuristic to solve their problem. A more recent work by the same

authors focuses on dynamic orienteering on a network of queues (Zhang et al., 2014a). Evers et al.

(2014) approach a similar problem with stochastic weights on the arcs between nodes on a graph

using a two-stage stochastic model with recourse. In these studies, correlated rewards are not ex-

plicitly considered and they employ a priori solution approaches under independence assumptions

on the random variables.

Next, we focus on studies that develop decision models for the fishing industry specifically.

These studies use dynamic programming and Markov decision problems similar to our modeling

technique.

Various studies have proposed dynamic models of decision making. Babcock and Pikitch (2000)

present a model where bottom trawlers target different species under management-imposed limits

on landings for each species. The paper focuses on the effect of trip limits on the choice of fishing

strategy in terms of targeting bottom rockfish or deepwater Dover sole. Dorn (2001) focuses on

the sequential decision making process for a fleet of vessels based in Seattle, WA, operating in the

Pacific hake fishery. By modeling the dynamics for the Pacific hake fishery, the author develops

a dynamic sequential decision making model in terms of a Markov Decision Process. The author

models the sequence of decisions which include what threshold prey density should be used to

decide to leave an area, how observations can be combined into the decision to harvest an area, and

how much time should be spent searching an area before deciding to leave or not. It is assumed

that areas exhibit independent population dynamics unlike a correlated reward structure such as
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ours. Moreover, the author assumes the vessel moves only to adjacent areas if it decides to fish in a

different area. We do not have such restriction. In order to model the decision to move to a new area,

the author updates the mean catch rate of all areas according to a Kalman filter update process from

the observed catch rates. The Kalman filter is an update process that combines previous observations

with new ones. Since areas exhibit independent dynamics, the Kalman filter is applied to each area

independently, hence there is no correlation assumed to exist between mean catch rates between

areas. The author uses threshold based decision rules to move to a new area: if the abundance,

measured in mean catch rate, is lower than a threshold, the vessel leaves for the adjacent fishing area.

The same rule applies to start fishing in an area after searching produces an estimate for an area.

These decision rules are justified by way of the marginal value theorem in optimal foraging theory.

Dorn (2001) carries out numerical search over parameters that govern the decision rules previously

discussed to find the combination of parameters that maximize daily revenue using simulation. His

results suggest that the reward surface is flat in the parameter neighborhood of the maximum reward.

When new observations have a relatively lower weight than previous observations in updating the

state, then a high catch rate threshold is a poor strategy because the vessel is always seeking high

density areas, but never believes information (observations) that indicate a high mean catch rate.

When new observations have a relatively higher weight than previous observations in updating the

state, then a low catch rate threshold does not substantially reduce the average reward because the

vessel does not act upon information from fishing and searching until it indicates that fish density is

very low.

2.2 Knowledge Discovery and Clustering

There has been growing interest in incorporating data mining (knowledge discovery) techniques

into the Management Science/Operations Research field. Every operations research problem has an

underlying set of information that is valuable for secondary analysis and business decision support

for future planning (Meisel and Mattfeld, 2010). Each time information is updated, the decision

making process can account for it and update decisions if necessary. Furthermore, it is valuable to

analyze data for pattern extraction to support this process. Data mining has a collection of methods

to do just this. The application fields are very diverse, ranging from manufacturing to finance to

logistics to marketing. A good general approach is discussed in Meisel and Mattfeld (2010). In our

case, in order to be able to provide consistent service to customers, we use concepts for computing

similarity between clusterings based on the historical values of past assignments.

The concepts and methods of knowledge discovery have been applied in numerous fields. In

manufacturing, Li and Olafsson (2005) use decision tree induction, which is a supervised learning

algorithm, to create schedules for single machine production environments. Based on mined knowl-

edge, they derive rules for dispatching jobs. In Shao et al. (2006), the authors use an association rule

algorithm to determine alternatives for bicycle production given customer attributes. In Tseng et al.

(2006) and Lin (2009), the authors apply data mining to supply chain supplier selection based on
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supplier attributes. An application to fleet management maintenance was carried out in Sawicki and

Zak (2009) where they derive the minimum number of attributes to be able to assess the condition

of vehicles in a fleet. Cooper and Giuffrida (2000) study a decision problem on the amounts of

stock to hold for various products in a retail store setting. In Greco et al. (2002), decision rules for

company financing are developed. They suggest using a dominance-based rough set approach for

rule determination. In the area of health care management, Delesie and Croes (2000) apply data

visualization and present a similarity measure of insurance reimbursements for medical procedures.

The general idea in this line of work is to find relationships in the data that are not normally assumed

or are unknown, and make use of it in the business process.

2.2.1 Clustering in Data Mining

From the data mining perspective, clustering is a grouping of data objects based on a similarity mea-

sure. Data objects in the same group are deemed to be more similar than to other objects in different

groups. Clustering can group data objects in various ways. The most common categorization of

a clustering method is whether the clustering method is hierarchical or partitional. In hierarchical

clustering, clusters are nested within each other. However, in partitional clustering, clusters divide

the set of objects into non-overlapping mutually exclusive subsets. Our focus in our research is to

use partitional clustering techniques.

Clustering aims to find useful groups (clusters) of objects, where usefulness is defined by the

goals of the data analysis (Tan et al., 2005). Usefulness of a clustering depends on the specific

objective or goal for the data analysis. A researcher may be interested in finding prototype-based

clusters where each cluster is represented by a center. A researcher may be interested in graph-based

clusters for data represented as a graph or a researcher may look for densely populated regions of

objects in the dataset. In a vehicle routing setting, the type of clusterings to look for are more likely

to be prototype-based clusters akin to the clustering techniques in the VRP literature. We employ

such a perspective. There are other categories of clustering algorithms including density-based

clustering (Ester et al., 1996; Ankerst et al., 1999) and grid-based clustering (Wang et al., 1997).

2.2.1.1 Protoype-based Clustering

In prototype-based clustering, each cluster is represented by a prototype and all members of a cluster

are closer to their respective prototype than they are to prototypes of other clusters. Prototype-

based clustering contains center-based clustering techniques such as the k-means algorithm and its

variants. Other protototype-based clustering techniques include mixture model clustering and kernel

clustering. We review each type for completeness and talk about their relation to our research.

The most conventional prototype-based clustering technique is k-means clustering (MacQueen,

1967). The basic k-means algorithm alternates between assigning each point to its nearest center

and updating centers for each cluster. The key part of this method is the distance measure used

to compute the distances between a point and a center. Researchers have used various distance
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functions such as the Manhattan (1-norm), Euclidean, cosine, and Bregman distance functions. Each

of these functions produce a cluster with a different shape. From an optimization perspective, this

problem falls in the domain of mixed nonlinear integer programming. The basic k-means algorithm

can be considered as an iterative improvement scheme for this mixed nonlinear integer program.

We apply a similar iterative solution approach for our clustering problems in Chapter 3.

The type of clusters the k-means algorithm delivers, which would be a group of customers in a

VRP setting, tend to be biased towards having a convex shape. See Figure 2.2.1. In addition, the

natural number of clusters that exist in the data may or may not be equal to the parameter, k, that is

set by the user. Some important properties of k-means are: (i) it is efficient in clustering large data

sets, (ii) its performance depends on the initialization of centers, since it can converge to bad local

optima, and (iii) it works on numerical data. It is not suitable for categorical data. For such data,

there is a variant of k-means called the k-mode algorithm that can be used, but categorical data does

not apply to our study. The variants of the k-means algorithm such as the Sort-means algorithm,

k-modes algorithm, k-medians, and k-harmonic means algorithm are discussed in Gan et al. (2007).

Figure 2.2.1: Convex partitions: red dots as prototypes.

Prototypes of a cluster can be statistical distributions. This type of a clustering approach is

called mixture model clustering. Researchers use a dataset to estimate parameters of the statistical

distributions they try to fit the data into. For example, Gaussian mixture models generate data from

finitely many normal distributions that capture ellipsoidal clusters in the data. General introductions

to mixture model clustering can be found in Fraley and Raftery (1998) and Mitchell (1997).

Estimating parameters of each distribution within a mixture model (estimating parameters of

a cluster) is carried out using statistical procedures. Maximum Likelihood Estimation (MLE) is

a popular technique to use for this purpose. MLE chooses from a set of parameters those that

maximize the probability that the sampled data could have been generated from.

Consider a univariate model where data consists of observations of a scalar variable. So the

sample consists of scalar numbers that may have been generated from a mixture of models. Let us

hypothesize that the data comes from univariate normal distibutions and we know which point is
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generated from which distribution. This means that the parameters of concern are the means µi and

variances σ2
i that belong to a set Θ. Let there be m observations in the sample. Let xi be the $i$th

observation of the scalar variable that belongs to a set X . We can write the likelihood expression in

general as

likelihood (Θ|X) =
m

∏
i=1

1√
2πσ

e
−(xi−µi)

2

2σ2
i . (2.2.1)

By applying a logarithmic transformation, we obtain the log-likelihood as

log− likelihood (Θ|X) =−
m

∑
i=1

(xi−µi)
2

2σ2
i
−0.5mlog(2π)−mlog(σ) (2.2.2)

and we may view this as a function of Θ where the givens are {xi}m
i=1. By finding the parameters

that maximize this expression we find the maximum likelihood estimators.

Since in most cases we do not know which points are generated by which distribution, re-

searchers use the Expectation-Maximization (EM) algorithm. This algorithm is interesting also

because it can be regarded as a generalization of the k-means algorithm. See Algorithm 1 for an

outline of the method.

Algorithm 1 Expectation-Maximization (EM) algorithm
Guess initial parameters.
while (parameters change)

1. Expectation Step: For each sample point, compute the probability that it belongs to distribu-
tion k.

2. Maximization Step: Given probabilities from previous step, update the parameters that max-
imize the expected likelihood.

end

Mixture model clustering is not suitable for our purpose because points are assumed to belong

to more than one cluster. Additionally, in a vehicle routing context, a mixture model would entail

information regarding the probability of each customer belonging to a different route based on

a vehicle routing objective which is more complicated than relatively simpler objectives like the

maximum likelihood function.

It can be the case that the form of the distance function between data objects is not known. In

such a case, prototype-based clustering is not straightforward because a cluster prototype cannot be

evaluated without a distance function. Kernel and spectral clustering overcome this challenge. In

kernel clustering methods, the original input space of the data objects is mapped into a different

space which we may call the feature space (Schölkopf et al., 1998; Girolami, 2002). By application

of the kernel trick (Girolami, 2002), one can apply the iterative k-means like algorithm in this feature

space. In spectral clustering, pairwise distances (the similarity matrix) is known or computed. Based

on this similarity matrix, a special kind of matrix is computed. These are graph Laplacian matrices
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(Chung, 1997). One computes the first k eigenvectors of such a matrix. Clustering can be carried

out on the rows of the eigenvector matrix that induces a partition of the original data objects (Shi

and Malik, 2000). Dhillon et al. (2004) show that these two approaches can be unified under a single

framework.

Spectral clustering has one major drawback. The computational burden of finding eigenvectors

can be significant, especially for large-sized problems (Dhillon et al., 2004). When you consider

kernel clustering, the choice of the kernel function is a design decision. Moreover, the transformed

problem in the feature space is an assignment problem with a nonlinear objective. This nonlinear

objective is the summation of squared-Euclidean norms. It is equivalent to a series of inner norms.

Such an objective is hard to optimize compared to say the 1-norm. However, a kernel function

necessitates using an inner product norm in the objective and we cannot get around this. So, in our

case, optimizing over a clustering objective plus a consistency objective would be extra challenging.

The positive side of kernel clustering is that it allows one to look for clusters with various shapes

depending on the choice of the kernel.

2.2.1.2 Graph-based Clustering

A general vehicle routing problem can be viewed as a graph-based problem as well. We can view the

customers needing service as nodes on a graph and an arc between every pair of customers with arc

weight equal to the distance between the pair of customers. This corresponds to a complete graph.

The optimal routing solution is one of many feasible routing solutions in this complete graph. Such

an optimal routing solution results in grouping the nodes into several clusters, or in graph theory

terms, cliques. For this reason, graph-based clustering techniques can be relevant, in particular the

popular hierarchical clustering.

The pairwise distances between customers or any other similarity matrix can be used to carry

out graph-based clustering. Hierarchical clustering is one of the most widely used graph-based clus-

tering techniques. There are two basic approaches in hierarchical clustering. In the agglomerative

approach, in its most basic form, one assumes as a starting point that each individual point represents

a cluster and successively merges two clusters until one cluster remains. In the divisive approach,

one starts with an all-inclusive cluster and sucessively splits every cluster until only singletons re-

main. The clusters formed depend on how the similarity (proximity) matrix is defined. Some ways

of computing cluster proximity are using the single link, complete link, and group average method.

Single link computes the proximity between two closest points in different clusters. Complete link

computes the proximity between two farthest points in different clusters. Group average computes

the proximity of two clusters as the average pairwise proximities between two clusters. Figure 2.2.2

illustrates these three measures and a nested clustering. While being simple to implement, hierar-

chical clustering is not a global procedure for clustering. Clusters are formed in a greedy fashion

and are thus susceptible to lack of global optimization.

When working with a similarity (proximity) matrix, it can be beneficial to sparsify it. Sparsifica-

tion refers to setting low-similarity values to zero in a proximity matrix using a specified threshold.
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In this way, data size is reduced. Clustering can focus on stronger relationships, thus making the

clusters less susceptible to noise.

Another graph-based clustering technique is Minimum Spanning Tree (MST) clustering. It is a

divisive hierarchical clustering technique that is used to detect clusters with irregular boundaries. In

this technique, first a minimum spanning tree is computed from the similarity matrix. Clusters are

formed by breaking links with the largest dissimilarity in this minimum spanning tree and repeating

until all clusters are singletons. Wang et al. (2009) propose a divide-and-conquer approach to MST

clustering. Their method has a much better performance than standard algorithms with O
(
n2
)

com-

plexity where n is the number of nodes. Laszlo and Mukherjee (2005) provide an MST partitioning

algorithm with group size constraints for microaggregation. Microaggregation is a disclosure limi-

tation technique to protect individual records in datasets.

CHAMELEON is a popular agglomerative form of hierarchical clustering algorithm. It answers

several problems with regard to cluster proximity measures. First, the single-link like measures

may be misleading in terms of how close two clusters really are. The minimum distance between

points in different clusters can lead one to think that two clusters are close when infact they are

not so similar considering other points in these clusters are. Second, clusters in a clustering do not

necessarily have to have the same characteristics in terms of size, shape, and density (Karypis et al.,

1999). Li et al. (2009) develop a hybrid Chameleon clustering algorithm for faster execution and

better accuracy.

BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies) is another scalable hier-

archical clustering technique for data in an Euclidean space (Zhang et al., 1996). BIRCH was specif-

ically designed for computational efficiency and the authors show that it is superior to CLARANS,

which is another clustering method for large-scale data. BIRCH can deliver clusters in a single

scan of the dataset and improve the quality of the clustering in additional scans. BIRCH deals with

outliers effectively.

CURE (Clustering Using Representatives) is another algorithm that falls in the same group

as CHAMELEON. CURE combines protoype-based clustering and hierarchical clustering. Each

cluster is represented using multiple representative (prototype) points whose locations are shrunk

towards each other by a factor. CURE is designed to be scalable, more robust to outliers, able to

identify clusters with non-spherical shape, and clusters with wide variances (Guha et al., 1998).

Hierarchical clustering in the context of grouping customers for routing is not straighforward.

It is intuitive to think about customers that are close to a certain customer, i.e., its neighbors. The

information that hierarchical clustering can provide for every customer in terms of their neighbors

may likely be valuable, but it does not appear to us how such information can be used, especially for

large-scale problems where a clustering hierarchy is likely to be deeply nested. Although focusing

only on prototype-based clustering does not make use of such information, specialized local search

techniques for vehicle routing problems are likely to be more beneficial with regard to neighbor-

hoods of customers.

In our research, we explore suitable clustering methods that can be used to create efficient group

21



2.2.2 Clustering in Vehicle Routing

of customers in a cluster-first, route-second heuristic. We refer the reader to Chapter 3.

2.2.2 Clustering in Vehicle Routing

It is important to implement algorithms that obtain efficient solutions in a short period of time

especially for recent trends of same-day delivery. Vehicle dispatchers face large scale vehicle rout-

ing problems every day. They need to make decisions or test algorithms and receive feedback as

quickly as possible. The cluster first, route second heuristic is a well-known general approach for

practical-sized vehicle routing problems and variants. We use this approach in our research.

The initial paper that proposed the cluster first, route second approach to vehicle routing is Fisher

and Jaikumar (1981). Their heuristic breaks the CVRP problem into two stages. The first stage is

a nonlinear assignment problem whereas the second stage consists of separate traveling salesman

problems independent of each other once a solution from the initial stage is chosen. Fisher and

Jaikumar (1981) present an algorithm that depends on a choice of seed customers that need to be

chosen to obtain a solution for the initial stage. They note that the effectiveness of their method

is dependent on these initial seed customers. The seed customers can safely be interpreted as cen-

troids as described before. Bramel and Simchi-Levi (1995) use the same approach, but the choices

of seed customers are determined through the course of the algorithm. Their heuristic involves

solving a capacitated concentrator location problem (CCLP). The CCLP produces an assignment

decision in terms of which customer is assigned to which driver. Once the assignments are known,

routing customers within each ’cluster’ can be carried out separately. The authors solve the CCLP

using a Lagrangian relaxation technique by penalizing a set of constraints. Although asymptotically

optimal, their heuristic empirically cannot compete with other heuristics Laporte et al. (2000b).

Moreover, the Lagrangian relaxation-subgradient method can take a significant amount of time to

converge for large instances. The authors extend their approach to vehicle routing problems with

time windows in Bramel and Simchi-Levi (1997, 1996).

Our approach is in a similar vein. We are interested in creating solutions with an eye towards

customer satisfaction, i.e., consistency. The degree of consistency of a given solution is a matter

of the assignment decision. We therefore think a matheuristic is ideal to maximize consistency

while making routing as efficiently as possible. A matheuristic is a heuristic that incorporates math-

ematical optimization models for better optimization (Doerner and Schmid, 2010). Specifically,

we combine the consistency objective into a clustering problem that is a quadratic programming

problem.

The cluster first, route second heuristic has been applied in other types of problems, too. Guer-

rero et al. (2014) present a decomposition technique for a two-echelon inventory-location-routing

problem. Their heuristic decomposes the problem into a facility location, inventory decision, and

routing problem. Federgruen and Zipkin (1984) use the technique in a combined vehicle routing

and inventory allocation problem. Campbell and Savelsbergh (2004) present a inventory routing

problem solved by creating delivery schedules in the first stage, followed by routing heuristics in

the second stage. Prins et al. (2007) propose a cooperative metaheuristic that alternates between
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solving a facility location problem (first stage) and routing (second phase). The first stage uses a

Lagrangean relaxation technique whereas the second stage uses a granular tabu search heuristic.

In a forthcoming paper, Absi et al. (2015) propose a two-phase iterative method for a production

routing problem.

The sweep algorithm can be considered as one particular method for the cluster first, route

second approach. This algorithm is attributed to Gillett and Miller (1974). The generic version of

the sweep algorithm clusters a group of stops into a route based on the polar angle between the

stops and the depot. Renaud and Boctor (2002) propose a new sweep-based heuristic for the fleet

size and mixed vehicle routing problem. The proposed heuristic generates many candidate solutions

and then chooses those that satisfy constraints for the problem using a polynomial set partitioning

algorithm. Goodson et al. (2012) extend these work to vehicle routing problems with stochastic

demand. Liu and Shen (1999) make use of the sweep heuristic within a two-stage metaheuristic

procedure for the vehicle routing problem with time windows. Dondo and Cerdá (2013) formulate

a mathematical program in order to choose the starting ray for the sweep heuristic for a VRP with

cross-docking. It is also used to generate initial solutions to closely related problems (Imran et al.,

2009; Zhong and Cole, 2005; Franceschi et al., 2006; Crevier et al., 2007; Cordeau et al., 1997). We

do not use the sweep algorithm because it is not based on optimization. Methods that are superior

use it as only a initial solution generator as the sweep algorithm solutions tend to be poor.

The cluster first, route second heuristic can benefit from special mathematical programming

techniques for clustering (Laporte, 2009). We consider a clustering problem different from Bramel

and Simchi-Levi (1995) in that our seed customers do not necessarily have to be from among the

customers with a request. Mathematically, we allow the location of the seed customers (centroids)

to be continuous as opposed to being discrete in Bramel and Simchi-Levi (1995). Choosing seeds

in such a way makes the clustering problem easier. Additionally, we compute the assignment costs

using distance functions like the Manhattan distance. In the 1-norm (Manhattan distance), an ef-

fective bilinear programming technique can be used for this purpose. Bradley et al. (1997) propose

an effective clustering algorithm with well-founded theory from Bennett and Mangasarian (1993).

They use bilinear programming to solve for possible global solutions to 1-norm clustering problems.

We show how their algorithm is valid even with capacity restrictions and unit demand. The method

they propose involves solving a few linear programs to obtain solutions, from which routing can be

easily obtained using TSP solvers, eg. Concorde Applegate et al. (2006).

The formulation proposed by Bradley et al. (1997) corresponds to a nonlinear programming

problem with a special structure. There are two sets of constraints: one corresponding to centers

and distances of customers to centers, and one involving assigning customers to centers. Since these

two sets of constraints are uncoupled (i.e. independent of each other), special bilinear programming

methods are applicable, and the clustering problem can be solved by only a few iterations that

involve linear programs. We make use of this technique in a slightly different problem with capacity

restrictions and show that the technique is still valid in our case.
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2.2.3 Approximations for VRP

There has been interest in developing simple vehicle dispatching rules, especially before the ’90s

when there was not much computational power. One such consideration was the important work

in Daganzo (1984), and Newell and Daganzo (1986a,b). This line of study developed analytical

formulas of approximations to the optimal shortest path between points on a map and also developed

length formulas that apply to points that lie in zones of irregular shape. Under various assumptions

regarding density of customer points and capacity of vehicles, the author analyzes the shape a district

should take and suggests optimal slenderness factors for these districts in a rather loose way. At the

time, this line of thought suggested guidelines for dispatchers to follow while building routes day

to day. With large enough capacity, they approximate that the optimal slenderness factor, which is

defined to be the ratio of the sides of a rectangle covering a group of customers oriented towards

the depot, is a number either less, equal or greater than 6.7
capacity depending on how far the group of

customers are from the depot. Overall, the main point from this study is that ’well-shaped’ districts

for a group of customers can vary and this depends on density of customers dispersed on the map,

vehicle capacity and total number of customers that the depot will serve. The proposed formula for

the average length of a CVRP problem is estimated to be

CV RP≈ 2r̄n/C+0.57
√

nA

where n is the number of customers, r̄ is the average distance between the customers and the depot,

and C is vehicle capacity, the maximum number of stops a vehicle can make, and A is the area

covering the customers and the depot taken to be a rectangle or square.

Daganzo et al. (2012) discuss strong motivation for parsimonious models that can reduce com-

putational complexity with little sacrifice in solution quality. When consider large-scale problems,

exact methods are rendered useless by the size of data input, and therefore heuristic methods need

to be chosen.

Chien (1992) carried out statistical analysis of the formulas that estimate TSP routes. The

analysis was composed of estimating TSP routes on various data with different properties with

regard to the rectangular shape of the area to be served and the shape of the circular sectors that

can be formed within the area to be served. After fitting statistical parameters into his model, Chien

found with mean absolute percentage error 6.9% that a TSP route length had the following statistical

relationship on average:

T SP = 2.1r̄+0.67
√

nR,

where R is the area of the smallest rectangle covering customers and r̄ is same as above.

Kwon et al. (1995) looked at the same problem but also considered neural networks as an ap-

proximation to TSP route length. Their results extend Chien’s results:
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2.2.3 Approximations for VRP

T SP≈ [0.83−0.0011(n+1)+1.11S/(n+1)]
√

nA R2 = 0.99 error = 3.71,

T SP≈ 0.41r̄+[0.77−0.0008(n+1)+0.9S/(n+1)]
√

nA R2 = 0.99 error = 3.61.

Their main contribution that differs from Chien’s work is that accounting for shape of the area

improves accuracy. However, they do not find it to have a significant improvement over statistical

estimation.

One can consider the length of a VRP solution to be the sum of lengths of TSP routes. Figliozzi

(2008) proposes statistical models that estimate CVRP length in a Euclidean setting. Given n cus-

tomers and m routes, the author studies several models:

V RP≈ kl
√

nA+2r̄m,

V RP≈ kl
n−m

m

√
nA+2r̄m,

V RP≈ kl
√

nA+ kmm,

V RP≈ kl
n−m

m

√
nA+ kmm,

V RP≈ kl
√

nA+ kb

√
A
n
+ kmm,

V RP≈ kl
n−m

m

√
nA+ kb

√
A
n
+ kmm.

The parameters involved are kl , km, and kb, which are estimated using linear regression. One

important addition as compared to previous work is the term n−m
m which accounts for the following

behavior: first, when n = m the local distance traveled by a vehicle is zero; second, when n� m or

m = 1, the local tour distance tends to behave like as shown by Beardwood et al. (1959). The term

kb

√
A
n is included into the model to capture the results of Kwon et al. (1995). The term kmm exists

to capture the line-haul distance which increases as m increases or if the depot is farther away from

the customers. His results show that models with n−m
m have a superior performance in terms of error

and that the last two models were the ones with better performance. However, if model simplicity

is taken into account, model 2 is a good and robust model. These estimations are well founded,

statistically speaking, but there is no apparent way of approaching it in an optimization framework

because of the nonlinearity involved in these estimates which are not mathematically tractable.
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2.2.3 Approximations for VRP

Lei et al. (2011) study vehicle routing in the context of a districting problem. A districting prob-

lem is essentially designing service regions and assigning drivers to them. They study the problem

in a stochastic framework and, hence, use a two-stage approach, where in the first strategic stage

they design districts, and in the second stage, after demand requests have been revealed, routing is

done at the operational level. In this second operational phase, it is desirable to assign customers to

drivers in a consistent manner to improve service quality (Groër et al., 2009). Their objective is not

only to obtain districts which deliver low cost routes but they also require that districts be contigu-

ous. For this reason, they have a secondary objective that measures the compactness of a district

(Bozkaya et al., 2003). In this measure, the compactness of a region depends on the perimeter of

the region and the perimeter of the entire region that a depot is to serve. Specifically:

Fcomp (x) =

m
∑

k=1
Bk (x)−B

2Bm
.

Ouyang (2007a) proposes algorithms to design vehicle routing zones from analytical approxi-

mation guidelines. These guidelines involve the shape and size of the districts to be designed. The

design of these zones normally require human intervention, but with the guidelines in this work,

large-scale problems can automatically be dealt with. The author discusses the usefulness of this

approach in two-stage dynamic VRP settings where in the first stage strategic design decisions are

made and in the second phase day-to-day operational routing decisions are made. The basic idea is

to design zones that satisfy qualitative size and shape requirements for easy optimization later on

during day-to-day optimization. It is also mentioned that this technique is suitable for obtaining so-

lutions for operational decisions as well. Moreover, these clustering-based solutions can be further

improved by metaheuristic methods (Daganzo, 1984; Robust et al., 1990).

Clarens and Hurdle (1975) develop an analytical approximation to a similar problem about bus

transit design. (Robust et al., 1990) argue that ’idealized’ models can be used to obtain easy-to-

implement algorithms to large and complex logistics problems. The main idea in this paper is to use

previous studies of these authors to implement a cluster-first, route-second-like algorithm with fine

tuning using simulated annealing after having obtained an initial VRP solution.

Daganzo and Erera (1999) also address the issue of approximation methods to VRP. They ar-

gue that the motivation for approximation is strong when uncertainty is involved in the problems,

especially in dynamic settings. Large-scale problems cannot possibly be solved using traditional

stochastic programming approaches in an effective way because most of the time statistical as-

sumptions of the underlying distributions can be far from reality. The authors design districts with

customers that are known to require delivery a priori and those customers with unknown demand.

They use analytical approximation results to design districts. Their techniques are based on Da-

ganzo (1984).

Designing territories as a strategic decision involves uncertainty with regard to demand, cus-

tomer location and other unforeseen circumstances such as traffic, and road blockage. The works

cited before here simplifying assumptions about some of these features to be able to generate ideas
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that are mathematically tractable. That is, their results are true on average. On the other hand, if

clustering is carried out at every decision epoch as uncertainty is realized and become known, the

realized data could guide us towards making the best possible decision for that epoch. Therefore,

cumulative decisions would accumulate to the best possible history of decisions.

2.2.4 Fish Harvesting Strategy and Stock Assessment

We focus on the qualitative and quantitative studies of fishermen behavior and strategy. The study

of fishermen’s behaviour is important for ecological sustainability, as well as economic and fishery

management reasons. The nature of fishing activity depends on various factors including vessel

type, target species, gear configuration, skipper behavior and experience. We first review studies that

analyze fishing activity in various fisheries around the world. Then, we discuss how the uncertainty

in catch is modeled in empirical studies.

Prellezo et al. (2009) analyze the selection of fishing areas by Basque trawlers. In a qualitative

survey, they ask fishermen about the reason for a particular choice of fishing area on a fishing

trip. According to the survey, experience was the most important reason for selecting a particular

fishing area. Regulation came up as the second most important response. Expected harvest was the

response in 7% of the total responses. Communication with other fishermen accounted for 6% of the

responses and fuel consumption 2%. Holland and Sutinen (2000) report based on interviews with

fishermen that fishery and location choice is a multi-level process. The decision on what fishery to

visit is typically made before beginning a fishing trip. A fishermen may initially have a location

in mind. However, he or she may change her mind based on information received en route. This

information may come from other vessels or may depend on their observations of potential catch

along the way. Teh et al. (2012) investigate the preferences of small-scale fishers in Malaysia based

on their mental perceptions, and how this is influenced by imposing spatial regulations.

Bertrand et al. (2007) analyze the strategy employed by fishermen while searching for fish in

Peru. They use satellite vessel monitoring systems (VMS) to model the observed trajectories of

a large industrial fleet operating on the Peruvian anchovy fishery. Their approach is within the

context of a predator-prey relationship. Consequently, they model the movements of fishing vessels

as random walks (Turchin, 1998). They use a random walk model, the Levy motion, to describe the

motion of vessels. A trajectory is seen as a series of elementary behavioral events. These elementary

events are: move lengths, move durations, and move headings (direction). Their data consists of

210,530 trips at sea that correspond to 14,106,533 observations on point-geographical locations.

After preprocessing, they use 88,421 fishing trips with 1,600,705 moves. About 80− 96% of the

trajectories showed no correlation for move lengths and move durations. Moreover, 94% of the

fishing trips showed no correlation in move headings. Their statistical analysis agrees with the Levy

random walk hypothesis of vessel trajectories.

Powell et al. (2003) analyze vessel time allocation for the harvesting of Illex illecebrosus. Their

data contains position and time information on five commercial fishing trips off the east coast of

US for a total of 44 days at sea. They identified seven activities while harvesting: steaming to and
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2.2.4 Fish Harvesting Strategy and Stock Assessment

from port, searching, towing, set-up time between tows, steaming overnight and laying-to overnight.

Tows tended to average about three hours in duration, whereas searches tended to be about 1.5 hours

in duration. The authors suggest that more squid could have been caught had the vessels used less

time for searching and more time for towing.

Tuna purse seiners are more traditional kind of vessels used to harvest tuna. Bez et al. (2011)

estimate the tuna purse seiners in the Indian Ocean to spend 24%, 49%, and 27% of their time

to fishing, tracking, and cruising, respectively. Russo et al. (2011) identify different patterns in

trajectories of fishing vessels across different metiers where a metier is defined to be groups of

vessels with the same exploitation pattern (e.g. gear used, fishing ground, target species).

Log-normal likelihood is a common assumption in stock assessment models (Punt and Hilborn,

1997). Dorn (2001) models the catch process as a log-normal distribution whose mean is modeled

as a first-order autoregressive process with a time resolution of a single tow. Empirical studies also

assume a log-normal distribution for monthly catch-per-unit-effort (Winker et al., 2013; Nishida and

Chen, 2004; Bishop et al., 2004, 2008). We follow the literature and assume that catch follows a

log-normal distribution. Lane (1989) models the catch process as a negative binomial distribution

with a time resolution of a single trip.

Fishery management use bioeconomical models to assess the regenerative capability of a fishery

and its economic viability. A seminal work in bioeconomic models is Schaefer (1957) where the

author presents a surplus production model. Surplus production models are used to compute the

maximum sustainable yield of a resource. Many contributions have been made over the years. A

survey of these models can be found in Knowler (2002).
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(a) Single link

(b) Complete link

(c) Group average

(d) 2 nested clusters
Figure 2.2.2: Single link, Complete link, and Group average.
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Chapter 3

Clustering

3.1 Introduction

In this chapter, our goal is to explore various clustering techniques and apply it to vehicle routing

problems. We focus on the daily routing decision facing a vehicle dispatcher situated at a depot. We

are mainly interested in analyzing clustering techniques for customer distributions with different

properties. In this respect, we focus on problems with only unit demand, especially for large-scale

problems. The dispatcher has full knowledge of the customer requests for that day. We propose

cluster first, route second algorithms for this purpose.

Exact methods for capacitated vehicle routing problems (CVRP) are able to solve problems

with around 100 customers. Yet, there are many applications that require solving problems with

hundreds and thousands of customers. As a result, researchers have mainly approached large scale

vehicle routing problems using heuristics. This line of work has focused on heuristics such as

genetic/memetic algorithms, tabu search, and other neighborhood search algorithms (Nagata and

Braysy, 2009; Marinakis, 2012; Cordeau and Maischberger, 2012; Jin, Crainic, and Lø kketangen,

2012; Kytöjoki, Nuortio, Bräysy, and Gendreau, 2007; Mester and Bräysy, 2007).

One method that can address the scale issue is the cluster-first, route-second heuristic. In this

method, the original problem is decomposed into smaller subproblems. Each subproblem is a TSP

on its own. Existing state-of-the-art TSP solvers can easily manage problems of size up to 100

customers (Applegate et al., 2006). On the other hand, the main problem is a generalized assign-

ment problem (Fisher and Jaikumar, 1981). One important contribution is in Bramel et al. (1992),

where the authors modeled the CVRP as a capacitated discrete facility location problem. They

use a Lagrangian relaxation technique to tackle moderately-sized problems. The main challenge

is estimating the routing cost of adding a customer to a specific cluster by using assignment costs.

However, this first stage can benefit from the use of mathematical programming techniques for bet-

ter optimization (Laporte, 2009). We make use of such a benefit in a specific case, the 1-norm. In

the 1-norm, clustering can be done quite efficiently and we can obtain high quality and/or global so-

lutions to the clustering problem. It also makes sense using the cluster-first, route-second approach

for large scale problems. In this way, a feasible solution can be obtained efficiently from which
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local search heuristics can be used to improve the solution.

A vehicle routing solution consists of different group of customers ordered along a route. Seen

from a hierarchical point of view, an optimal solution is comprised of optimal groups of customers

and an optimal ordering of those customers within each group or cluster. Depending on the customer

distribution, the optimal or near optimal clustering of customers can vary. Knowing the customer

distribution can help choose a suitable clustering algorithm that can deliver better routing in terms

of a cluster-first, route-second approach. Depending on the clustering tendency of a customer distri-

bution, there can be specific clustering algorithms that stand out in terms of more efficient routing.

We study some clustering algorithms from the data mining literature and propose others for this

purpose.

In the following sections, we propose three cluster first, route second methods. We first focus

on a modified k-medians (1-norm) technique, but use a special solution method. The modified k-

medians problem has capacity restrictions for each cluster and the depot is assumed to be a member

of each cluster. Second, we talk about clustering based on polar angles between customers and

the depot to take advantage of specific customer distributions. Third, we talk about a clustering

method that incorporates the shape of the clusters formed to combine insights from the first two

methods. We present the results obtained from applying our cluster first, route second methods to

some benchmark instances and some modified benchmark instances. Finally, we discuss the results

of our experiments and conclude.

3.2 Formulation

Here, we give a standard formulation of a capacitated vehicle routing problem.

I is the index set for customers and depot where depot’s index is 0.

L is the index set for vehicles.

d is the number of vehicles, i.e. |L |.

m is the number of customers, i.e. |I |−1.

qi is the demand of customer i ∈I which is assumed to be one.

v is the capacity of each vehicle.

ci j is the cost of traveling from customer i to customer j, which is symmetric and equal to

the Euclidean distance.

xi jl =

1, if vehicle lvisits customer ifrom customer j

0, otherwise

yil =

1, if customer iis visited by driver l

0, otherwise
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The mathematical formulation as an integer programming problem is given below.

min ∑
i

∑
j
∑

l
ci jxi jl

subject to ∑
i

qiyil ≤ v ∀ l ∈ L

∑
l

yil =

d, i = 0

1, i = 1, ...,m

∑
i

xi jl = y jl j ∈ I, l ∈ L

∑
j

xi jl = y jl i ∈ I, l ∈ L

∑
i, j

xi jl ≤ |S|−1 S⊆ I \{0} , 2≤ |S| ≤ m−1

xi jl binary, yil binary

In our solution approach, this integer program is decomposed into an assignment problem and d

many traveling salesman problems. The heuristic by Fisher and Jaikumar (1981) is a decomposition

to the above formulation in the following way.

min ∑
l

f (yl)

∑
i

qiyil ≤ capac ∀ l ∈ L

∑
l

yil =

d, i = 0

1, i = 1, ...,m

yil binary

where f (yl) is the cost for the traveling salesman path for the group of customers Ml = {i ∈ I | yil = 1}.
Then, for a given solution to the above problem, for each subset Ml there corresponds a traveling

salesman problem. We do not write a mathematical formulation for it since it is standard and can be

found in the literature (Rego et al., 2011; Bektas, 2006; Laporte, 1992).

The important part of this decomposition is the objective in the assignment problem, f (yl).

Researchers have used linear functions of {yil} to act as a surrogate for f (yl). As discussed in the

following sections, our approach is in the same vein.
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3.3. CLUSTERING WITH MANHATTAN DISTANCE

3.3 Clustering with Manhattan Distance

Our method of clustering customers is different from previous work. The Fisher and Jaikumar

(1981) method begins by selecting a set of seed customers. Using this set of customers, they com-

pute the cost of inserting a customer to a specific cluster. This makes the quality of the routing

dependent on the chosen seed customers and the resulting estimation of route cost. Bramel et al.

(1992) allow for updating the choice of seed customers in the optimization procedure for better

routing quality. However, this requires a more extensive computational procedure. We use a special

technique that updates the seed customers during the algorithm and can obtain high quality clusters

within reasonable time.

We present a 1-norm (Manhattan or rectangular distance) clustering algorithm. In the 1-norm,

the clustering problem may also be called the k-medians clustering problem. Using 1-norm as a

distance measure is more suitable when a vehicle has to travel on a grid to get from point A to point

B. This is especially the case for a depot serving a region whose road network resembles a rectan-

gular grid, which is true for metropolitan areas. As typical of k-means clustering algorithms, this

algorithm delivers clusters with a convex shape. Moreover, the 1-norm enables the application of a

special type of mathematical optimization technique, namely bilinear programming. We formulate

the decision to assign drivers to customers that is a clustering problem as a bilinear programming

problem and solve it using the Uncoupled Bilinear Program Algorithm technique (Bradley et al.,

1997).

We illustrate the type of clusters 1-norm distance can deliver in Figure 3.3.1. In Figure 3.3.1a

we show two hypothetical centers for two clusters, (3,7) and (7,3). The contour lines in this figure

represent the distance of each point on the contour line to its nearest center. We see how the clusters

are in a grid shaped fashion and convex. In Figure 3.3.1a, we show how every point in the positive

quadrant would be assigned under the assumption that cluster sizes are not constrained. The points

in the quadrant are classified into two. Those with the dot symbol and those with the circle symbol.

There exist some points with both symbols because they are of equal distance to each cluster center.

3.3.1 Formulation

Given a set of m customer locations in R2 represented by A ∈ Rm×2 that require delivery and a

number of drivers d, the clustering problem is to solve the following optimization problem:
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Figure 3.3.1: 1-norm distances to two different centers.
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minimize
Cl ,Dil ,Til

m

∑
i=1

d

∑
l=1

eT DilTil (3.3.1)

subject to −D j
il ≤

(
AT

i −Cl
) j ≤ D j

il ∀ i, l, j (3.3.2)
d

∑
l=1

Til = 1 ∀ i (3.3.3)

m

∑
i=1

qiTil ≤ v ∀ l (3.3.4)

Til ∈ {0,1} ∀ i, l (3.3.5)

D j
il ≥ 0 ∀ i, l, j (3.3.6)

Here, Dil is a dummy variable in R2 that represents the bounds on the 1-norm distances and e

is a vector of ones. D j
il is the jth component of vector Dil . So, the term inside the summation is

the summation of the bounds on the 1-norm distances. The choice variables are Cl and Dil for each

i ∈ {1, ..,m} and l ∈ {1, ...,d}. Cl is a 2× 1 vector representing the coordinates of cluster center

l. The binary assignment variables Til are equal to 1 if customer i is assigned to cluster l and 0

otherwise.

The above formulation is an uncoupled bilinear programming problem when the integer con-

straints are relaxed. The objective function is bilinear in the variables (Dil, Til). An important

property of such a function is that when one group of variables are fixed, the objective is linear in

the other set of variables. Moreover, the constraints can be separated into two independent groups

with no interaction between the variables from each group. The constraints (3.3.2) are those that

have to do with the distance of customers to every center. These are independent from the con-

straints (3.3.3) and (3.3.4), which say that every customer should be assigned to one cluster and

cluster size should not be more than its capacity.

Bradley et al. (1997) reformulate the k-medians clustering problem as an uncoupled bilinear

programming problem. It is noteworthy to mention that the clustering problem involves integer

variables whereas the bilinear programming problem relaxes these variables. They show that the

reformulation is equivalent and does not change the optimal solution. However, the implementation

of bilinear programming to 1-norm clustering in Bradley et al. (1997) does not have capacity re-

strictions. For the reformulation to work, we must show the equivalence of the clustering problem

to an equivalent bilinear programming problem. We show here that in the unit demand case the

transformation is still valid. That is, we show that relaxing the integer constraints on Til is possible

through Lemma 3.3.1. Consequently, the equivalence is satisfied with Proposition 3.3.2.

Assume ail = eT Dil . Given ail , the clustering problem is a decision problem in only Til subject

to (3.3.3), (3.3.4) and (3.3.5). Moreover, the objective function is linear in these variables. We have

the following:
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minimize
Til

m

∑
i=1

d

∑
l=1

ailTil

subject to
d

∑
l=1

Til = 1 ∀ i

m

∑
i=1

qiTil ≤ v ∀ l

Til ∈ {0,1} ∀ i, l

If you relax the integer constraints in the above problem, this is equivalent to the transportation

problem which is a class of minimum-cost network flow problems. As a result, we can relax the

integrality constraints without changing the optimum solution.

Lemma 3.3.1. (Nemhauser and Wolsey, 1988) Let V1 = I = {1,2, ...,m} and V2 = L = {1,2, ...,d}.
Let P = {(i, l) : i ∈V1 and l ∈V2} be a set of arcs connecting nodes in the customer set I to nodes

in the drivers set L . Then, G = (V1,V2, P) is a digraph. Moreover, the above problem corresponds

to the transportation problem in the relaxed variables Til ∈ R. In such a situation, the constraint

matrix is totally unimodular. Therefore, the integrality requirement is automatically satisfied.

Proposition 3.3.2. Let Til ∈ R1 be a continuous variable in (0,1) for all i ∈ {1, ..,m} and l ∈
{1, ...,d}. Under such a relaxation, the clustering problem is an instance of a bilinear program.

3.3.2 Algorithm

We can apply the Uncoupled Bilinear Program Algorithm in Bennett and Mangasarian (1993) to

our problem. Let us reexpress the problem in matrix form as follows and name it BP,

min
y,x

y ′Qx (3.3.7)

subject to A1x≤ b1, (3.3.8)

A2y≤ b2, (3.3.9)

A3y = b3, (3.3.10)

x≥ 0, y≥ 0. (3.3.11)

The decision variables in this form are grouped as follows: a vector of variables x=
({

D j
il

}
,{Cl}

)
containing the distance variables,

{
D j

il : i = 1, ...,m l = 1, ..,d j = 1,2
}

, and the center vari-

ables {Cl : l = 1, ..,d}. A vector of variables y = ({Til}) containing the assignment variables,
{Til : i = 1, ...,m l = 1, ..,d}.
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Let the constraint group (3.3.2) be expressed in matrix form as (3.3.8) and the constraint group

(3.3.3), (3.3.4) be expressed as (3.3.9) and (3.3.10). The resulting optimization problem belongs to

the class of bilinear programming problems.

Let the bilinear program BP be denoted by P(Q, A, b) where Q, A = (A1, A2, A3) and b =

(b1, b2, b3) are the givens in the problem. The Uncoupled Bilinear Program Algorithm alternates

between solving two different mathematical programs with respect to each group of constraints

while keeping the other variables (which are in the other group of constraints) fixed.

Algorithm 2 Uncoupled Bilinear Program Algorithm
Starting from an initial feasible point,

(
x0, y0

)
, determine

(
xr+1, yr+1

)
from (xr, yr) as follows:

1. Solve for xr+1 in problem P(Q, A, b; yr) only subject to (3.3.8) which is a linear programming
problem.

2. Solve for yr+1 in problem P
(
Q, A, b; xr+1

)
only subject to (3.3.9).

3. Stop when
(
yr+1

)′Qxr+1 ≥ (yr)′Qxr. That is, the objective does not improve in step r+1.

The bilinear program BP can be shown to have a vertex solution (Bennett and Mangasarian,

1993). Moreover, they show that Algorithm 2 has finite termination at either a global minimum or

a point satisfying the “minimum principle” (Mangasarian, 1994; Bennett and Mangasarian, 1993).

The algorithm involves solving linear programs throughout all iterations. We use a call to CPLEX’s

internal linear program solver, which is a primal-dual interior point method. These algorithms are

known to have polynomial time worst-case complexity. However, the number of iterations in the

worst-case can be exponential, for there exists an exponential number of vertices that the algorithm

can traverse before reaching the optimum. In practice, run-time is expected to be much better.

3.4 Spherical Clustering

We focused on a clustering problem using the 1-norm in the previous section. This same clustering

problem may be called the k-medians problem in other literature. 1-norm (k-medians) clustering

focuses on finding tightly packed cluster of customers and optimizes over such a clustering structure.

This is suitable for data realizations that have strong features like these. However, data realization

may be such that customers are dispersed in ways where the 1-norm solution structure is not that

effective. These cases are observed for some benchmark instances used in the literature. The group

of instances that correspond to randomly dispersed customers within the Gehring-Homberger-unit

benchmark are examples of these.

We borrow from the data mining literature, more specifically text mining, in order to cluster

based on the angles data points make with the location of the depot. In this way, we respect the even

radial distribution of the data. For this purpose, we first need to talk about similarity measures, and
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3.4. SPHERICAL CLUSTERING

in particular cosine similarity.

Consider two points in the plane x1 = (a, b) and x2 = (c, d). The cosine similarity between

these two points is given by a scalar

cos(θ) =
x1 · x2

‖x1‖‖x2‖
.

This scalar can be between −1 and 1. If the points lie on exactly opposite rays emanating from

the depot, then their similarity is −1. However, if they lie on the same ray, then this similarity will

be 1. If it turns out that they are orthogonal to each other, that is there is a 90 degree angle between

them, then their similarity score is zero. The intuition with respect to vehicle routing is that effective

routes take into account how customers are situated with respect to the depot.

We illustrate the type of clusters cosine distance can deliver in Figure 3.4.1. In Figure 3.4.1a

we show two hypothetical centers for two clusters, (3,7) and (7,3). The contour lines in this figure

represent the distance of each point on the contour line to its nearest center. We see how the clusters

are in radial form emanating from the origin representing the depot. In Figure 3.4.1b, we show how

every point in the positive quadrant would be assigned under the assumption that cluster sizes are

not constrained. The points in the quadrant are classified into two. Those with the dot symbol and

those with the circle symbol.
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(a) contour of minimum cosine distance to centers (3,7) and (7,3).
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Figure 3.4.1: Cosine distances to two different centers.

In the next section, we present the optimization problem for the clustering problem for spherical

k-means. Then, we present the algorithm we choose to obtain solutions. Finally, we talk about the

results from computations we carried out on benchmark instances.
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3.4.1 Mathematical Formulation

3.4.1 Mathematical Formulation

Here, we present the mathematical formulation for spherical clustering. Given a set of m points in

R2 represented by A ∈ Rm×2 and number of clusters, d (number of drivers), we wish to maximize

the similarity between all customers that belong to the same cluster. Define ai j as the ith row and jth

column of matrix A. It represents the jth coordinate of customer i in a given map. Let ai = (ai1, ai2)

denote coordinates of customer i. Define ãi =
ai
‖ai‖ as the normalized locations for customer i. In

other words, we translate the coordinates so that the customers lie on the unit circle around the depot

but still on the same ray from the depot. Let Til be binary assignment variables which are equal to

1, if customer i is assigned to cluster l; and 0 otherwise. The variable cl represents center for cluster

l on the unit sphere around the depot.

max
cl ,Til

m

∑
i=1

d

∑
l=1

ãi
T clTil (3.4.1)

subject to
m

∑
i=1

qiTil ≤ v, l = 1, ...,d, (3.4.2)

d

∑
l=1

Til = 1, i = 1, ..,m, (3.4.3)

‖cl‖= 1, l = 1, ...,d. (3.4.4)

Constraints (3.4.2) tell us that capacity of each cluster must be met. Constraints (3.4.3) make

sure that everyone is assigned to one cluster. The group of constraints (3.4.4) ensure that the chosen

centers lie on the unit circle around the depot. These constraints are nonlinear; however, we solve

for them analytically during the course of the algorithm which we present in the next section.

3.4.2 Algorithm

Finding an optimal solution to the above problem is NP-complete (Kleinberg et al., 1998). We

employ an iterative procedure used in Dhillon and Modha (2001) called the spherical k-means

algorithm. The worst-case complexity of this algorithm is exponential as there is a call to a branch-

and-bound CPLEX routine to solve for the integer programs within the while loop.
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3.5. CLUSTERING BASED ON SHAPE (SLENDER CLUSTERING)

Algorithm 3 Spherical K-means

Initialization. Initialize iteration counter, t← 0. Randomly pick
{

ct
l

}d
l=1 on the unit circle around

the depot.

while (centers change)

• Find new assignments of customers to centers such that similarity is maximized.

{
U t+1

il

}m,d
i=1,l=1 ∈ arg max

Uil

{
∑

m
i=1 ∑

d
l=1 ãi

T ct
lUil : subject to (3.4.2) and (3.4.3)

}

• Update centers
{

ct+1
l

}d
l=1 as

ct+1
l =

mt+1
l

‖mt+1
l ‖

where mt+1
l is the centroid of customers i such that U t+1

il = 1.

Stop when centers do not change.

The “update-centers” step in the algorithm 3 uses an analytical solution for the optimum set of

centers given the assignments from the previous step in the algorithm. Naturally, this shortens the

run-time. This analytical result is shown with the following lemma, Lemma 3.4.1, that is a result of

the Cauchy-Schwarz inequality.

Lemma 3.4.1. (Dhillon and Modha, 2001) Let X = {x1, x2, x3, ...,xk} be a subset of Rn. Let m ∈ Rn

be the centroid of the set X. Let c = m
‖m‖ be the normalized centroid. Then, for any vector z ∈ Rn,

we have the following as a result of the Cauchy-Schwarz inequality

∑
x∈X

xT z≤ ∑
x∈X

xT c

3.5 Clustering Based on Shape (Slender Clustering)

In this section we develop another model of clustering that mitigates some of the problems with

k-medians and spherical clustering. The k-medians algorithm focuses on finding clusters that are

tightly packed together. This bias becomes less effective when the customer distribution is more

radial and evenly spread out. For example, in Figure 3.5.1, we see how the k-medians algorithm

clusters customers versus how the spherical algorithm clusters them. It makes sense to cluster cus-

tomers based on radial distances in such a case as the distribution of customer locations enables a
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3.5. CLUSTERING BASED ON SHAPE (SLENDER CLUSTERING)

lower traveling cost. In this case, spherical clustering was more appropriate for routing. However,

there are problems clustering solely based on the objective for spherical clustering. In order to

generalize over the implications of the previous methods as discussed in Section 3.6.2 and Section

3.6.3, we propose another method that is parametric over the shape of the clusters. We were moti-

vated by the work of Daganzo (1984). The major contribution of his work is to provide analytical

guidelines for constructing near-optimal routes. At the time, these guidelines were geared towards

human dispatchers. The main idea behind these guidelines is that the optimal slenderness ( length

/ width ) of the rectangle covering the customers in a single cluster should be a ratio depending on

how far the group of customers are to the depot, the capacity of the vehicles and customer density

(Ouyang, 2007b). Specifically, they show that the near-optimum shape of a cluster far from the

depot should be elongated towards the depot reflecting a ’thin’ route, where as a cluster that is close

to the depot can have any shape under optimality.

We model these qualitative guidelines into an objective function whose parameters control the

shape of clusters. The modeling requires to translate the original customer locations (cartesian

coordinates) into polar coordinates so that clusters elongated towards the depot can be captured in

our model as Ouyang (2007b) suggests. The parameters for the model control the influence of the

distance between a customer and a cluster center. We measure the distance between a customer and

a cluster center by summing the weighted combination of the angular and radial distance between

them. It is these parameters that control the weight of each respective distance depending on how

far the customer is from the depot. If the weight given to the angular distances is zero, then we

do not care about the difference in angle between two customers. If the weight given to the radial

distances is zero, then we only care about the angle between two customers.
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(a) K-medians routing with VRP cost 3766.
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(b) Spherical routing with VRP cost 3501.
Figure 3.5.1: Randomly scattered customers.
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3.5.1 Mathematical Formulation

In the following section, we detail a mathematical formulation of clustering as an integer pro-

gram that takes into account the shape of clusters. We give the name slender for this method. We

refer to it in the following sections with this name interchangeably. When we use the term shape,

we mean the ratio of the radial and transversal length of a group of customers considered as a clus-

ter. Then, we discuss the solution methodology we use to tackle this problem. Finally we show

empirical results of its effectiveness as compared to the baseline state-of-the-art VRP solver.

3.5.1 Mathematical Formulation

We formulate an integer program that models the shape of clusters in a clustering problem. This

formulation can be seen as a discrete facility location problem with a modified objective. This

objective reflects the kind of clusters we want to see. We guide the solutions towards the desired

cluster shapes using the coefficients which are set a priori. We calibrate those parameters based on

experimentation.

We first do some preprocessing from the original data. We translate the location of each cus-

tomer as well as the location of the depot to polar coordinates, (θ , ρ). The depot is assumed to take

the value of (0, 0), corresponding to zero angle (θ) and zero distance (ρ). There is a set of customer

indices I = {1,2, ...,m} and a set of clusters L = {1,2, ..,d}.
There are three sets of binary variables:

1. Xil j ∈ {0, 1} to denote the condition that customer i ∈I is assigned to center l ∈L which

is chosen to be customer j ∈I . Since we choose cluster centers from among the customers,

there needs to be a third index running over all the customers allowing for the possibility of

each customer to be a cluster center.

2. Uil ∈ {0, 1} is equal to 1 if customer i is assigned to center l ∈L .

3. Pl j ∈ {0, 1} is equal to 1 if center l is chosen to be customer j ∈I .

We compute coefficients for the objective function whose parameters control the slenderness of

the clusters. They assure that we get thin and long clusters elongated towards the depot or fat and

wide clusters. The data given to the optimization problem is customer demand, {qi}i∈I and input

coefficients
{

δil j
}

i∈I , l∈L, j∈I that are precomputed as follows

δil j = α
1
ilθi j +α

2
ilρi j (3.5.1)

where

θi j = π−
∣∣∣π− ∣∣θi−θ j

∣∣∣∣∣ for all i, j ∈I . (3.5.2)

ρi j =
∣∣ρi−ρ j

∣∣ for all i, j ∈ I. (3.5.3)
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3.5.1 Mathematical Formulation

α
1
il +α

2
il = 1 for all i ∈ I, l ∈L . (3.5.4)

We control how each distance, angular (θi j) and radial (ρi j), influences the objective via the

weights
(
α1

il , α2
il

)
associated with each respectively. The δil j are the coefficients in 3.5.1 that belong

to the objective of the clustering. These coefficients weigh the cost of assigning customer i to center

l that is chosen to be customer j. They depend on the angular difference between customer i and

customer j, θi j; and they depend on the difference in the distances to the depot of customer i and

customer j, ρi j. The parameters ρi j are computed in the obvious way given by 3.5.3. On the other

hand, the paramaters θi j are computed as the acute angle between customer i and customer j, which

can be computed analytically by the expression in 3.5.2. These weights sum up to one as given in

3.5.4. If α1
il is relatively higher, then assigning customer i to center l cares more about the angular

difference in terms of increasing the objective. If α2
il is relatively higher, then it is more preferable

to have customer i and center l to be of similar distance to the depot.

We illustrate the type of clusters slender distance can deliver in Figure 3.5.2. In Figure 3.5.2a

we show two hypothetical centers for two clusters, (3,7) and (5,2) with differing distance from the

origin or depot. The contour lines in this figure represent the distance of each point on the contour

line to its nearest center. We see how the clusters are in near-circular form. This is due to the low

weight,
(
α1

il , α2
il

)
= (0.05, 0.95), assigned to angular distance between points. If the points in the

positive quadrant are assigned to their nearest center, we get the clusters in Figure 3.5.2b. On the

other hand, when there is high emphasis given to angular distance with
(
α1

il , α2
il

)
= (0.95, 0.05),

then we get contour lines as in Figure 3.5.2c that resembles contour lines we observe for cosine

distance used in spherical clustering. Hence, the resulting clusters look like in Figure 3.5.2d.
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(a) contour of minimum slender distance with weights(
α1

il , α2
il
)
= (0.05, 0.95) to centers (3,7) and (5,2).
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(b) points assigned to nearest center.
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(c) contour of minimum slender distance with weights(
α1

il , α2
il
)
= (0.95, 0.05) to centers (3,7) and (5,2).
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(d) points assigned to nearest center.

Figure 3.5.2: Slender distances to two different centers.

The integer program formulation, denoted by SL1, can be written as
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3.5.2 Solution Method

min
{Xil j},{Uil},{Pl j}

∑
j∈I

∑
l∈L

∑
i∈I

δil jXil j (3.5.5)

subject to ∑
i∈I

qiUil ≤ v ∀ l ∈L (3.5.6)

∑
l∈L

Uil = 1 ∀ i ∈I (3.5.7)

Uil +Pl j−1≤ Xil j ∀ i, j ∈I , ∀ l ∈L (3.5.8)

Xil j ≤Uil ∀ i, j ∈I , ∀ l ∈L (3.5.9)

Xil j ≤ Pl j ∀ i, j ∈I , ∀ l ∈L (3.5.10)

∑
j∈I

Pl j = 1 ∀ l ∈L (3.5.11)

∑
j∈I

∑
l∈L

Pl j = d (3.5.12)

In the above formulation, we have the usual capacity constraints (3.5.6) and the customer as-

signment constraints (3.5.7). The constraints (3.5.8), (3.5.9), (3.5.10) model the condition that if

Xil j = 1, then Uil = 1 and Pl j = 1. Constraints (3.5.11) only allow one customer to be chosen as a

center. Finally, constraints (3.5.12) force the customers representing centers to be uniquely chosen.

During the course of our solution method, the above integer program reduces to a simpler prob-

lem when the customer centers are fixed. In such a case, we solve for the following mathematical

program denoted by SL2:

min
{Uil}

∑
l∈L

∑
i∈I

δilUil (3.5.13)

subject to ∑
i∈I

qiUil ≤ v ∀ l ∈L (3.5.14)

∑
l∈L

Uil = 1 ∀ i ∈I (3.5.15)

3.5.2 Solution Method

In Section 3.5.1, we formulated an integer program that can be considered as a discrete capaci-

tated facility location problem with distances precomputed in a special way. We use the iterative
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3.6. COMPUTATIONAL EXPERIMENTS

improvement scheme to obtain solutions. The outline of the procedure is given in Algorithm 4.

This algorithm has an exponential worst-case complexity as it includes a branch-and-bound proce-

dure for the integer program within the while loop. In the course of the algorithm, some customers

represent centers of each cluster, which we call center-customers.

Algorithm 4 Slender Shape Clustering
Initialization. Initialize iteration counter, t← 0. Randomly pick k customers to be
center-customers.

• Compute δil induced by the initial choice of center-customers using equations 3.5.1, 3.5.2,
3.5.3, and 3.5.4.

while center-customers have changed

1. Find new assignments of customers to centers from integer program SL2.

2. Update centers
{

ct+1
l

}d
l=1 as

ct+1
l = mt+1

l where mt+1
l is the centroid of customers i such that U t+1

il = 1.

3. Find closest customers to every center. Let these be new center-customers.

end

3.6 Computational Experiments

We first discuss the computational results for each solution approach separately in each subsection.

Second, we make observations for comparing these methods in the last subsection. We applied the

algorithms presented in the previous sections to small-sized splittable demand and unsplit demand

cases. For large-scale problems, we only tested those instances where demand is allowed to be split,

i.e. unit demand is assumed.

3.6.1 Data Set and Implementation

We implemented our algorithms in MATLAB-R2012a on a 64-bit Intel (R) Core (TM) i7-3770 CPU

with 16GB RAM. At each iteration of the algorithm, an integer programming solver was called

using the CPLEX (12.04)-MATLAB interface. The number of drivers is a free paramater to choose

in our algorithms. We fix it at the minimum number of drivers to satisfy all delivery requests. We

applied each algorithm ten times and pick the best clustering. We compared this method against

a state-of-the-art vehicle routing solver in the VRPH library, the record-to-record vehicle routing
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3.6.2 Clustering with Manhattan Distance

heuristic (Groër et al., 2010). Its effectiveness is very close to the best results obtained for several

benchmarks thus far in the literature. The code for this metaheuristic is open source. We refer to it

as the RTR heuristic. It can be considered as a state of the art for vehicle routing problems.

We tested our algorithm on several benchmark instances. We were mainly interested in problems

with more realistic features regarding customer distribution and with a large number of stops. We

use the benchmark problems in Gehring and Homberger (1999), but remove the time window con-

straints and treat the problems as capacitated problems like Mester and Bräysy (2007). Moreover,

we assume all demand is equal to one. After such modifications, the benchmark can be categorized

into clustered (c), random-clustered (rc), and random (r) problems. Within each category, there are

problems that require many number of vehicles and less number of vehicles depending on the capac-

ity parameter in each problem. We analyze routing policies with respect to customer distribution.

We denote this testset as the Gehring-Homberger-unit testset.

Second, we use the benchmark of Augerat et al. (1995). These are smaller-sized problems,

however the location of the depot is more varied with respect to the center of the data in each test

instance. We hypothesize that the Slender algorithm objective parameters can be tuned to give better

results depending on how the depot is located. We denote the original testset with A. We also modify

the benchmark by assuming unit demand for all customers. We call this modified testset the A-unit

testset.

3.6.2 Clustering with Manhattan Distance

We summarize our results in tables. The first column in each table is the name of the specific

instance. The ’Cost’ columns contain the VRP length of the solution delivered by each algorithm,

RTR, k-medians, and ’k-medians + RTR’. The ’Gap’ columns are percentage difference in VRP

length of each algorithm with respect to the baseline (10 RTR). The tables contain the computation

time for solving each instance under ’Time’ as well as the number of vehicles used in the solutions

under ’# of vehicles’.

We ran Algorithm 2 on the benchmark instances. Table 3.6.1 contains results obtained from

the Gehring-Homberger-unit testset. The results for the testset A and A-unit are in Table 3.6.3 and

Table 3.6.2, respectively. On the small scale instances, the k-medians algorithm does 5% worse on

average than the RTR solver. On the large scale instances, its performance on average is 4% worse.

One group of experiments involved using the routing solutions obtained from the k-medians

algorithm as initial solutions provided to the RTR solver. We ran the RTR solver for 1 iteration

on this initial solution and compared it to running the RTR 10 times with different initial solutions

that it generates internally. We see that when the k-medians initial solution is used, its performance

increases but still does worse by 1.9%. The poor performance of the k-medians algorithm can be

attributed to several things. Considering the large scale random instances, the k-medians algorithm

finds poor solutions that cannot be easily explained because they are visually similar to the meta-

heuristic solutions. Essentially, the metaheuristic RTR was able to find better solutions because

of the neighborhood operations it uses to continuously improve a starting solution. Moreover, k-
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3.6.2 Clustering with Manhattan Distance

medians is not well suited for random instances because the clustering solution is very susceptible

to initial cluster centers. As the clustering tendency of the data increases as in “c1-2-unit” in Figure

3.6.1, it does a better job in finding the correct clusters. However, the metaheuristic has a compet-

itive edge in finding hard-to-find improvements in routing through neighborhood search where the

k-medians objective can be blind about. The north-south bound purple route on the left in the figure

seems like an odd choice for a route, while the metaheuristic did not choose such a route.

The number of vehicles k-medians algorithm uses is equal to the minimum number required to

satisfy total customer demand. For this reason, at times, the number of vehicles k-medians uses

is one less than the number of vehicles used in the RTR solutions. The runtime for the k-medians

algorithm is about twice as long as the RTR on average, 114.7 and 54.2 seconds respectively. When

you consider the k-medians + RTR routine, runtime is on average 130.4 seconds. The k-medians

algorithm is relatively slower because it spends time optimizing over the clustering objective with

ten repetitions of the clustering algorithm.
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10 RTR k-medians k-medians + RTR

Problem Cost # of vehicles Time Cost Gap Time # of vehicles Cost Gap # of vehicles Time

c1_10_unit 37623.35 84 76.78 38953.66 0.04 255.94 84 38090.78 0.01 84 283.60

c1_2_unit 2470.42 17 13.28 2615.99 0.06 27.84 17 2542.73 0.03 17 31.14

c1_4_unit 6524.06 34 26.45 6738.12 0.03 47.68 34 6613.51 0.01 34 54.66

c1_6_unit 13562.36 55 41.01 14138.95 0.04 106.03 55 13702.66 0.01 55 118.01

c1_8_unit 22817.89 69 60.47 23600.79 0.03 173.28 67 22942.52 0.01 67 192.66

c2_10_unit 12516.75 21 228.77 12992.33 0.04 66.87 20 12774.81 0.02 20 98.46

c2_2_unit 1431.92 5 33.82 1487.54 0.04 31.58 4 1478.25 0.03 4 37.20

c2_4_unit 3013.49 9 78.69 3179.83 0.06 42.31 8 3175.08 0.05 8 53.36

c2_6_unit 5909.05 13 108.93 5937.90 0.005 67.39 12 5916.13 0.001 12 85.35

c2_8_unit 8907.03 17 175.80 9128.28 0.02 107.71 16 9064.81 0.02 16 135.39

r1_10_unit 43272.54 92 85.50 44225.03 0.02 271.91 91 43810.75 0.01 91 300.43

r1_2_unit 2878.12 17 13.38 3066.35 0.07 33.17 17 2990.53 0.04 17 36.45

r1_4_unit 6999.61 34 27.02 7305.38 0.04 66.62 34 7106.70 0.02 34 73.61

r1_6_unit 14864.88 51 41.80 15336.28 0.03 96.18 50 15180.97 0.02 50 108.33

r1_8_unit 26720.35 67 58.43 27427.12 0.03 226.19 67 27070.71 0.01 67 249.07

r2_10_unit 16680.81 20 110.89 17338.53 0.04 152.28 19 16926.99 0.01 19 185.96

r2_2_unit 1732.04 4 18.86 1670.43 -0.04 36.79 4 1661.74 -0.04 4 41.05

r2_4_unit 3597.71 9 39.69 3766.70 0.05 46.55 8 3761.08 0.05 8 55.97

r2_6_unit 6703.80 11 65.45 7205.88 0.07 76.06 11 7005.11 0.04 11 92.95

r2_8_unit 11303.65 15 87.36 11801.40 0.04 119.53 15 11585.29 0.02 15 145.05

rc1_10_unit 39763.97 84 77.88 41565.90 0.05 325.51 84 40529.80 0.02 84 354.25

rc1_2_unit 2771.88 17 13.30 2944.68 0.06 36.40 17 2804.50 0.01 17 39.72

Table 3.6.1: K-medians on testset Gehring-Homberger-unit.
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10 RTR k-medians k-medians + RTR

Problem Cost # of vehicles Time Cost Gap Time # of vehicles Cost Gap # of vehicles Time

rc1_4_unit 7056.94 34 27.41 7256.68 0.03 59.84 34 7091.61 0.00 34 67.00

rc1_6_unit 14862.49 55 43.70 15506.99 0.04 126.28 55 15184.53 0.02 55 138.98

rc1_8_unit 27041.27 74 65.99 27687.52 0.02 203.90 73 27240.53 0.01 73 223.65

rc2_10_unit 14730.63 18 138.24 15526.64 0.05 118.62 18 15152.95 0.03 18 151.53

rc2_2_unit 1583.85 5 18.77 1594.23 0.01 29.54 4 1593.32 0.01 4 34.10

rc2_4_unit 3339.25 9 39.83 3465.22 0.04 55.14 8 3418.53 0.02 8 64.47

rc2_6_unit 6029.80 12 69.47 6366.02 0.06 69.47 11 6244.78 0.04 11 86.24

rc2_8_unit 9897.86 16 95.33 10652.80 0.08 106.86 15 10256.43 0.04 15 131.98

-/+ 1-, 0 , 24+ 1-, 0 , 24+

Ave. 54.25 0.0385 114.70 0.019 130.44

Table 3.6.1 continued.52
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Problem RTR # of vehicles Time K-medians Kmedians Gap Time # of vehicles Kmedians + RTR Kmedians + RTR Gap # of vehicles Time

An32k5_unit 824 5 1.35 910.73 0.11 4.62 5 830 0.01 5 4.81

An33k5_unit 688 5 1.33 702.57 0.02 3.97 5 661 -0.04 5 4.13

An33k6_unit 749 6 1.32 791.26 0.06 4.04 6 740 -0.01 6 4.21

An34k5_unit 780 5 1.40 765.63 -0.02 4.57 5 765 -0.02 5 4.75

An36k5_unit 891 5 1.59 888.20 0.00 4.35 5 886 -0.01 5 4.53

An37k5_unit 697 5 1.65 741.70 0.06 5.08 5 700 0.00 5 5.30

An38k5_unit 709 5 1.77 803.55 0.13 4.79 5 706 0.00 5 5.01

An39k5_unit 820 5 1.92 949.12 0.16 5.04 5 893 0.09 5 5.26

An39k6_unit 867 6 1.89 948.29 0.09 4.43 6 894 0.03 6 4.64

An44k6_unit 929 6 2.41 963.32 0.04 5.22 6 930 0.00 6 5.47

An45k6_unit 903 6 2.43 918.77 0.02 4.48 6 912 0.01 6 4.76

An45k7_unit 1094 7 2.44 1190.58 0.09 4.94 7 1128 0.03 7 5.48

An46k7_unit 948 7 2.60 1025.94 0.08 5.15 7 963 0.02 7 5.44

An48k7_unit 1155 7 2.95 1155.89 0.00 4.50 7 1153 0.00 7 4.82

An53k7_unit 1027 7 3.44 1122.09 0.09 5.29 7 1060 0.03 7 5.66

An54k7_unit 1130 7 3.61 1167.15 0.03 5.21 7 1123 -0.01 7 5.59

An55k9_unit 1082 9 3.35 1168.87 0.08 5.07 9 1126 0.04 9 5.43

An60k9_unit 1283 9 3.89 1382.30 0.08 5.16 9 1301 0.01 9 5.56

An61k9_unit 984 9 3.89 1128.29 0.15 5.06 9 1012 0.03 9 5.47

An62k8_unit 1292 8 3.98 1365.51 0.06 5.29 8 1319 0.02 8 5.73

An63k10_unit 1229 9 3.99 1353.33 0.10 5.25 9 1289 0.05 9 5.70

An63k9_unit 1650 9 4.09 1675.60 0.02 5.57 9 1628 -0.01 9 5.99

An64k9_unit 1511 9 4.10 1572.38 0.04 5.52 9 1526 0.01 9 5.93

An65k9_unit 1076 8 4.06 1172.01 0.09 4.73 8 1157 0.08 8 5.15

An69k9_unit 1165 9 4.49 1234.59 0.06 7.01 9 1213 0.04 9 7.52

An80k10_unit 1853 10 5.02 1943.38 0.05 5.99 10 1921 0.04 10 6.56

-/+ 2-, 0 , 24+ 8-, 0 , 18+

Ave. 2.883 0.065 5.012 0.017 5.342

Table 3.6.2: K-medians on testset A-unit.
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Problem RTR # of vehicles Time K-medians K-medians Gap Time # of vehicles K-medians + RTR K-medians + RTR Gap # of vehicles Time

An32k5 827 5 1.427 845.143 0.022 6.207 5 784 -0.052 5 6.377

An33k5 675 5 1.394 700.904 0.038 6.166 5 680 0.007 5 6.326

An33k6 743 6 1.353 811.191 0.092 5.391 6 743 0.000 6 5.555

An34k5 791 5 1.429 820.394 0.037 8.066 5 808 0.021 5 8.238

An36k5 805 5 1.610 877.203 0.090 7.282 5 805 0.000 5 7.508

An37k5 679 5 1.732 738.461 0.088 4.930 5 679 0.000 5 5.128

An37k6 960 6 1.702 1041.642 0.085 7.966 6 994 0.035 6 8.174

An38k5 736 5 1.818 734.683 -0.002 5.267 5 730 -0.008 5 5.470

An39k5 841 5 1.943 896.942 0.067 5.550 5 857 0.019 5 6.056

An39k6 855 6 1.930 872.781 0.021 5.932 6 834 -0.025 6 6.211

An44k6 957 7 2.388 1032.273 0.079 6.740 6 1029 0.075 6 7.020

An45k6 958 6 2.479 961.347 0.003 7.805 6 949 -0.009 6 8.112

An45k7 1194 7 2.653 1241.150 0.039 12.134 7 1203 0.008 7 12.487

An46k7 922 7 2.636 976.600 0.059 6.835 7 957 0.038 7 7.127

An48k7 1097 7 2.985 1143.703 0.043 8.405 7 1135 0.035 7 8.778

An53k7 1038 7 3.423 1131.947 0.091 8.068 7 1106 0.066 7 8.577

An54k7 1176 7 3.503 1288.568 0.096 8.768 7 1184 0.007 7 9.160

An55k9 1085 9 3.506 1174.356 0.082 8.750 9 1130 0.041 9 9.132

An60k9 1363 9 4.092 1444.983 0.060 8.918 9 1407 0.032 9 9.377

An61k9 1044 10 3.953 1144.257 0.096 16.235 9 1100 0.054 9 16.633

An62k8 1338 8 4.128 1392.653 0.041 8.935 8 1360 0.016 8 9.376

An63k10 1332 10 4.147 1404.603 0.055 9.225 10 1346 0.011 10 9.684

An63k9 1636 10 4.206 1666.067 0.018 10.426 9 1646 0.006 9 10.866

An64k9 1426 9 4.077 1486.082 0.042 9.790 9 1455 0.020 9 10.238

An65k9 1202 9 4.150 1246.687 0.037 10.029 9 1238 0.030 9 10.462

An69k9 1172 9 4.454 1258.295 0.074 10.660 9 1194 0.019 9 11.147

An80k10 1821 10 5.239 1872.799 0.028 11.525 10 1855 0.019 10 12.290

-/+ 1-, 0 , 26+ 4-, 3 , 20+

Ave. 2.902 0.055 8.371 0.017 8.723

Table 3.6.3: K-medians on testset A.
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3.6.3 Spherical Clustering
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(a) K-medians routing solution for highly clustered customers.
Figure 3.6.1: c1-2-unit.

3.6.3 Spherical Clustering

We summarize our results in tables. The first column in each table is the name of the specific

instance. The ’Cost’ columns contain the VRP length of the solution delivered by each algorithm,

RTR, spherical, and ’spherical+ RTR’. The ’Gap’ columns are percentage difference in VRP length

of each algorithm with respect to the baseline (10 RTR). The tables contain the computation time

for solving each instance under ’Time’ as well as the number of vehicles used in the solutions under

’# of vehicles’.

On the small size instances from Augerat et al. (1995), as shown in Table 3.6.5 and Table 3.6.6,

spherical k-means results in routes which are 8.8% and 6.1% worse than the baseline. It is 5.4%

worse than the baseline, on average, for the Gehring-Homberger-unit problems as can be seen in

Table 3.6.4. If you consider the “spherical k-means + RTR” algorithm, then these values all decrease

to 4.3%, 2.9% and 2.8% respectively.

Focusing on Gehring-Homberger-unit instances with prefix “c1”, i.e., clustered, the spherical

algorithm does particularly worse. This is because within those instances, there are “pockets” of

locations that lie on the same ray from the depot but are in fact far from each other. Nevertheless,

the spherical algorithm tends to cluster these locations together because they lie within a very narrow
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3.6.3 Spherical Clustering

interval of rays with respect to the depot. For those instances that start with “r”, i.e. random, the

random scatteredness of the customers makes it suitable for the solution structure of the spherical

algorithm to deliver better routes, and in some cases it even beats the RTR solver. For example,

Figure 3.6.2 is a good example. Overall, however, the spherical algorithm does better than RTR

solver in fewer cases for the Gehring-Homberger-unit.
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Problem RTR # of vehicles Time Spherical Spherical Gap Time # of vehicles Spherical + RTR Spherical + RTR Gap # of vehicles Time

c1_10_unit 37623.35 84 76.78 42963.95 0.142 51.46 84 41459.95 0.102 84 60.88

c1_2_unit 2470.41 17 13.28 2738.27 0.108 6.14 17 2669.95 0.081 17 7.47

c1_4_unit 6524.06 34 26.45 7184.92 0.101 12.13 34 6982.87 0.07 34 14.94

c1_6_unit 13562.36 55 41.01 15950.2 0.176 22.47 55 15245.3 0.124 55 26.96

c1_8_unit 22817.89 69 60.47 26467.54 0.16 33.46 67 25462.19 0.116 67 39.66

c2_10_unit 12516.75 21 228.77 12600.19 0.006 30.10 20 12556.07 0.003 20 56.22

c2_2_unit 1431.92 5 33.82 1451.54 0.01 5.80 4 1441.82 0.007 4 9.38

c2_4_unit 3013.49 9 78.69 2952.96 -0.02 8.15 8 2948.53 -0.02 8 16.37

c2_6_unit 5909.05 13 108.93 5662.57 -0.04 14.83 12 5640.28 -0.04 12 26.30

c2_8_unit 8907.03 17 175.80 8659.24 -0.02 16.55 16 8639.54 -0.03 16 16.12

r1_10_unit 43272.54 92 85.5 50553.6 0.168 41.33 91 47719.34 0.103 91 50.76

r1_2_unit 2878.12 17 13.38 3017.91 0.049 5.94 17 3001.23 0.043 17 7.37

r1_4_unit 6999.61 34 27.02 7640.79 0.092 11.39 34 7501.64 0.072 34 14.28

r1_6_unit 14864.88 51 41.8 16862.87 0.134 16.27 50 16134.34 0.085 50 20.84

r1_8_unit 26720.35 67 58.43 30470.61 0.14 25.1 67 29028.33 0.086 67 31.58

r2_10_unit 16680.81 20 110.89 15594.01 -0.065 16.88 19 15429.92 -0.075 19 28.89

r2_2_unit 1732.04 4 18.86 1710.02 -0.013 4.66 4 1705.16 -0.016 4 6.51

r2_4_unit 3597.71 9 39.69 3501.98 -0.027 6.52 8 3491.49 -0.03 8 10.41

r2_6_unit 6703.8 11 65.45 6423.5 -0.042 9.39 11 6413.78 -0.043 11 15.81

r2_8_unit 11303.65 15 87.36 10638.58 -0.059 14.02 15 10557.71 -0.066 15 22.82

rc1_10_unit 39763.97 84 77.88 46499.27 0.169 39.36 84 43060.32 0.083 84 48.35

rc1_2_unit 2771.88 17 13.3 2992.17 0.079 7.2 17 2838.38 0.024 17 8.58

rc1_4_unit 7056.94 34 27.41 7483.7 0.06 11.53 34 7444.01 0.055 34 14.34

Table 3.6.4: Spherical algorithm tested on benchmark Gehring-Homberger-unit.
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Problem RTR # of vehicles Time Spherical Spherical Gap Time # of vehicles Spherical + RTR Spherical + RTR Gap # of vehicles Time

rc1_6_unit 14862.49 55 43.7 17773.67 0.196 16.96 55 16386.83 0.103 55 21.63

rc1_8_unit 27041.27 74 65.99 31585.49 0.168 27.25 73 28948.9 0.071 73 33.52

rc2_10_unit 14730.63 18 138.24 14298.21 -0.029 18.69 18 14272.55 -0.031 18 30.2

rc2_2_unit 1583.85 5 18.77 1602.27 0.012 4.63 4 1599.23 0.01 4 6.47

rc2_4_unit 3339.25 9 39.83 3269.63 -0.021 6.15 8 3260.22 -0.024 8 10.06

rc2_6_unit 6029.8 12 69.47 6119.6 0.015 9.64 11 6110.05 0.013 11 16.22

rc2_8_unit 9897.86 16 95.33 9725.49 -0.017 14.66 15 9648.32 -0.025 15 23.11

-/+ 11-, 0 , 19+ 11-, 0 , 19+

Ave. 54.252 0.054 17.329 0.028 22.866

Table 3.6.4 continued.
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Problem RTR # of vehicles Time Spherical Spherical Gap Time # of vehicles Spherical + RTR Spherical + RTR Gap # of vehicles Time

An32k5 827 5 1.43 932.31 0.127 4.7 5 784 -0.052 5 4.93

An33k5 675 5 1.39 737.05 0.092 3.54 5 728 0.079 5 3.7

An33k6 743 6 1.35 785.63 0.057 4.99 6 784 0.055 6 5.29

An34k5 791 5 1.43 793.8 0.004 5 5 787 -0.005 5 5.23

An36k5 805 5 1.61 943.44 0.172 4.44 5 851 0.057 5 4.65

An37k5 679 5 1.73 736.44 0.085 4.63 5 670 -0.013 5 4.84

An37k6 960 6 1.7 1078.15 0.123 4.47 6 1054 0.098 6 4.67

An38k5 736 5 1.82 774.74 0.053 5.43 5 742 0.008 5 5.66

An39k5 841 5 1.94 870.87 0.036 6.37 5 842 0.001 5 6.6

An39k6 855 6 1.93 960.81 0.124 4.82 6 857 0.002 6 5.05

An44k6 957 7 2.39 1056.86 0.104 5.68 6 982 0.026 6 5.94

An45k6 958 6 2.48 1094.89 0.143 6.97 6 1062 0.109 6 7.25

An45k7 1194 7 2.65 1273.89 0.067 8.93 7 1274 0.067 7 9.23

An46k7 922 7 2.64 950.23 0.031 4.97 7 945 0.025 7 5.26

An48k7 1097 7 2.98 1174.16 0.07 4.94 7 1144 0.043 7 5.28

An53k7 1038 7 3.42 1067.08 0.028 6.95 7 1034 -0.004 7 7.3

An54k7 1176 7 3.5 1253.94 0.066 12.23 7 1246 0.06 7 12.61

An55k9 1085 9 3.51 1176.47 0.084 9.72 9 1144 0.054 9 10.12

An60k9 1363 9 4.09 1543.97 0.133 141.03 9 1518 0.114 9 141.46

An61k9 1044 10 3.95 1181.17 0.131 27.05 9 1129 0.081 9 27.49

An62k8 1338 8 4.13 1410.99 0.055 33.02 8 1349 0.008 8 33.45

An63k10 1332 10 4.15 1468.99 0.103 85.18 10 1440 0.081 10 85.63

An63k9 1636 10 4.21 1782.53 0.09 45.83 9 1760 0.076 9 46.29

An64k9 1426 9 4.08 1660.91 0.165 53.58 9 1488 0.043 9 54.05

An65k9 1202 9 4.15 1231.72 0.025 19.66 9 1222 0.017 9 20.09

An69k9 1172 9 4.45 1249.3 0.066 11.07 9 1227 0.047 9 11.55

An80k10 1821 10 5.24 2076.5 0.14 297.53 10 1961 0.077 10 298.1

-/+ 0-, 0 , 27+ 4-, 0 , 23+

Ave. 2.902 0.088 30.471 0.043 30.804

Table 3.6.5: Spherical algorithm tested on benchmark A.
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Problem RTR # of vehicles Time Spherical Spherical Gap Time # of vehicles Spherical + RTR Spherical + RTR Gap # of vehicles Time

An32k5_unit 824 5 1.35 920.14 0.117 2.64 5 847 0.028 5 2.81

An33k5_unit 688 5 1.33 676.32 -0.017 2.21 5 647 -0.06 5 2.37

An33k6_unit 749 6 1.32 771.33 0.03 2.38 6 749 0 6 2.53

An34k5_unit 780 5 1.4 808.76 0.037 2.25 5 785 0.006 5 2.42

An36k5_unit 891 5 1.59 887.15 -0.004 2.2 5 884 -0.008 5 2.41

An37k5_unit 697 5 1.65 703.31 0.009 2.52 5 701 0.006 5 2.72

An38k5_unit 709 5 1.77 737.09 0.04 2.84 5 691 -0.025 5 3.07

An39k5_unit 820 5 1.92 888.38 0.083 2.32 5 880 0.073 5 2.56

An39k6_unit 867 6 1.89 906.58 0.046 2.49 6 893 0.03 6 2.7

An44k6_unit 929 6 2.41 988.49 0.064 2.58 6 980 0.055 6 2.84

An45k6_unit 903 6 2.43 972.47 0.077 2.42 6 964 0.068 6 2.77

An45k7_unit 1094 7 2.44 1209.74 0.106 2.2 7 1134 0.037 7 2.5

An46k7_unit 948 7 2.6 1027.2 0.084 2.26 7 966 0.019 7 2.55

An48k7_unit 1155 7 2.95 1175.86 0.018 2.22 7 1162 0.006 7 2.53

An53k7_unit 1027 7 3.44 1082.69 0.054 2.29 7 1046 0.019 7 2.65

An54k7_unit 1130 7 3.61 1198.23 0.06 2.19 7 1193 0.056 7 2.56

An55k9_unit 1082 9 3.35 1174.28 0.085 2.18 9 1134 0.048 9 2.55

An60k9_unit 1283 9 3.89 1416.9 0.104 2.89 9 1354 0.055 9 3.29

An61k9_unit 984 9 3.89 1027.96 0.045 2.7 9 1019 0.036 9 3.15

An62k8_unit 1292 8 3.98 1494.63 0.157 2.82 8 1440 0.115 8 3.3

An63k10_unit 1229 9 3.99 1286.03 0.046 4 9 1268 0.032 9 4.52

An63k9_unit 1650 9 4.09 1785.93 0.082 2.55 9 1736 0.052 9 3.04

An64k9_unit 1511 9 4.1 1674.11 0.108 2.1 9 1549 0.025 9 2.57

An65k9_unit 1076 8 4.06 1100.55 0.023 2.47 8 1096 0.019 8 2.89

An69k9_unit 1165 9 4.49 1173.39 0.007 2.93 9 1164 -0.001 9 3.39

An80k10_unit 1853 10 5.02 2079.18 0.122 2.68 10 1974 0.065 10 3.29

-/+ 2-, 0 , 24+ 4-, 1 , 21+

Ave. 2.883 0.061 2.513 0.029 2.845

Table 3.6.6: Spherical algorithm tested on benchmark A-unit.
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Figure 3.6.2: Spherical routing with VRP cost 3501 for Gehring-Homberger-unit benchmark in-
stance r2-4-unit.

3.6.4 Slender-based Clustering

We first test the hypothesis that higher emphasis on angular distance delivers lower cost routing.

Then, we carry out experiments to see the effect of different α1
il , α2

il for i, l.

3.6.4.1 Uniform Bias for Slenderness

We conduct a group of experiments to see how various parameters in the objective affected the

routing solution. First, we test for a single coefficient of θil in equation (3.5.1), in other words, a

single scalar in (0, 1) for all i, l ( j = l). We do not expect to see that a small emphasis on θil would

deliver better results because we observed that routing solutions in which vehicles cover a large

angle tends to be more costly. We choose four distinct values for αil ∈ {0.4, 0.5, 0.7, 0.9}. Table

3.6.7 contains the average gap to the best RTR result from ten runs for each benchmark A-unit, A,

and Gehring-Homberger-unit. Additionally, it shows how many times the slender algorithm was

better and the run-time of the slender algorithm as well as the run-time for the baseline algorithm in

seconds.
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3.6.4.1 Uniform Bias for Slenderness

Across all instances from different benchmarks, a higher the emphasis on θil meant better rout-

ing. Moreover, it turns out that it is easier to solve the optimization problems within the slender

algorithm when θil takes a higher value. In Table 3.6.7, we see this as decreasing run-time as αil

increases. When there is unit demand (benchmark A-unit and Gehring-Homberger-unit), the slender

algorithm tends to do better than when there is heterogeneous demand (benchmark A). The slender

algorithm with αil = 0.9 does better than the baseline in nine instances for the Gehring-Homberger-

unit, in one instance for benchmark A and in one instance for benchmark A-unit. The “slender

+ RTR” algorithm with αil = 0.9 does better than the baseline in 11 instances for the Gehring-

Homberger-unit, in four instances for benchmark A and in six instances for benchmark A-unit. In

all cases, the slender algorithm and the “slender + RTR” does better in fewer cases than the baseline

algorithm (10 RTR).
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3.6.4.1
U

niform
B

ias
forSlenderness

RTR
αil = 0.4 αil = 0.5 αil = 0.7 αil = 0.9

Slender Slender + RTR Slender Slender + RTR Slender Slender + RTR Slender Slender + RTR

A-unit

ave. gap 0.13 0.033 0.106 0.027 0.056 0.013 0.044 0.017

better(-)/worse(+) 0-, 0 , 26+ 3-, 0 , 23+ 0-, 0 , 26+ 3-, 1 , 22+ 0-, 0 , 26+ 5-, 0 , 21+ 1-, 0 , 25+ 6-, 0 , 20+

time (sec.) 2.883 4.823 5.165 4.088 4.429 3.367 3.703 3.482 3.823

A

ave. gap 0.155 0.05 0.122 0.046 0.063 0.025 0.067 0.028

better(-)/worse(+) 0-, 0 , 27+ 2-, 0 , 25+ 0-, 0 , 27+ 3-, 1 , 23+ 0-, 0 , 27+ 5-, 1 , 21+ 1-, 0 , 26+ 4-, 0 , 23+

time (sec.) 2.902 20.502 20.841 12.901 13.245 8.582 8.917 8.055 8.391

Gehring-Homberger-unit

ave. gap 0.112 0.066 0.087 0.058 0.047 0.027 0.019 0.001

better(-)/worse(+) 0-, 0 , 30+ 0-, 0 , 30+ 0-, 0 , 30+ 0-, 0 , 30+ 1-, 0 , 29+ 2-, 0 , 28+ 9-, 0 , 21+ 11-, 1 , 17+

time (sec.) 54.252 40.746 48.234 38.517 45.979 35.078 42.414 34.787 42.265

Table 3.6.7: All benchmark results for uniform bias coefficients.
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3.6.4.2 Slenderness Based on Distance to Depot

3.6.4.2 Slenderness Based on Distance to Depot

In the previous section, it is evident that the emphasis on the angular distance needs to be high in

order to obtain better routings. In this section, we focus on this aspect and carry out computations

with high emphasis on angular distance, but with a finer set of parameters. In addition, we wanted to

see whether differentiation per customer for αil would improve the results. The intuition is that those

customers farther away from the depot should have a higher emphasis on their θil in the objective

function of the clustering problem so that the vehicle visiting them would not cover a large angle

far from the depot leading to a long distance route.

The important part in this algorithm are the coefficients: (αilθil +(1−αil)ρil) for every i, l. The

parameter space we searched was:

αil =
ρi

max(ρi)
×b+a

a 0.3 0.3 0.5 0.5 0.5 0.6 0.6 0.7 0.7 0.8 0.8

b 0.6 0.65 0.3 0.4 0.45 0.3 0.35 0.2 0.25 0.15 0.19

If we look at Table 3.6.8, we see that, as compared to k-medians solutions, the range of pa-

rameters where we do marginally better is towards higher a and higher b. In other words, a good

value for a would be around 0.5 or 0.6. So, we may say, when there is heterogeneous demand the

angularity effect of good routes diminishes so that a = 0.5 turns out to be one of the best parameter

settings. Note, these are only comparing the clustering solutions (cluster-first, route-second, NO

RTR) to k-medians. The number of instances where slender does better than the k-medians solution

is less frequent than the same problems with unit demand which we can see in Figure 3.6.3. In the

figure, the x-axis measures how far the depot is from the center of the data, i.e., if the depot is closer

to the boundary of the data points, then the measure is closer to 1. As for the ’A-unit’ benchmark,

when we compare the routing obtained from the k-medians to each of the slender-clustering meth-

ods with different parameters, we can make several observations. First, the better parameters tend

to be the ones with higher values for a ∼ 0.7,0.8. Second, across all the parameter configurations

where the slender-clustering did relatively better, it tends to consistently do worse on the test in-

stances with the depot closer to the boundary of the dataset. So, there is a more clean relationship

between the parameter settings which do worse and the location of the depot. This is reflected by

the higher slope of the trend lines in Figure 3.6.4. In this case, the slender algorithm can be doing

something wrong systematically. We see in Table 3.6.8 for the Gehring-Homberger-unit dataset that

the parameters that do best have high values for a, {a,b}= {(0.7,0.2),(0.8,0.15)} . However, this

problem set has their depot centered very near the center of the data. The slender algorithm beats

k-medians solution 60% of the time and it delivers a routing cost that is, on average, 0.65% better.

Other parameter settings deliver very close results on average which are less than 1% better than

k-medians.

Our second group of experiments involved using our slender-based routing solutions as initial

solutions for the RTR solver and comparing this to the RTR solver rerun 10 times with different
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3.6.4.2 Slenderness Based on Distance to Depot

initial solutions which are internally found by the solver. The latter is the baseline for these compar-

isons. For the benchmark A, the slender algorithm beats the baseline, again, on a similar range of

parameter settings, where the best ones occur at a = {0.5,0.8}. This can be seen by looking at Table

3.6.9. If we analyze Table 3.6.9, we can observe that the slender algorithm did best for parameters

{a,b}= {(0.8,0.19),(0.8,0.15),(0.5,0.45)}; for a taking value 0.5, it tends to do better on problem

instances where the depot is closer to the boundary . The slender algorithm beats the baseline RTR

in about 1/4 of the cases, and on average has worse VRP cost by 2.5%. As for the A-unit instances,

the best parameters tend to lie towards high a. The slender algorithm beats the baseline in about 1/3

of the cases. In the best parameter configuration, {a,b} = {(0.7,0.25)}, slender-algorithm tends

to do worse on cases with depot closer to the boundary. The slender algorithm is worse than the

baseline on average by 1.35% in the best parameters, but only 1% worse for {a,b}= {(0.6,0.35)}.
Third, on the Gehring-Homberger-unit instances, the best results are obtained again for similar pa-

rameter values, {a,b}= {(0.7,0.2),(0.8,0.15),(0.8,0.19)}. For these parameters, the VRP cost is

on average less than 1% worse than the baseline.

a b - 0 +
0.3 0.6 4 0 23
0.3 0.65 4 0 23
0.5 0.3 12 0 15
0.5 0.4 8 1 18
0.5 0.45 12 0 15
0.6 0.3 12 0 15
0.6 0.35 9 0 18
0.7 0.2 9 0 18
0.7 0.25 9 0 18
0.8 0.15 8 0 19
0.8 0.19 8 0 19

(a) Benchmark A

a b - 0 +
0.3 0.6 8 0 18
0.3 0.65 7 0 19
0.5 0.3 12 0 14
0.5 0.4 15 0 11
0.5 0.45 12 1 13
0.6 0.3 15 1 10
0.6 0.35 16 0 10
0.7 0.2 18 1 7
0.7 0.25 16 0 10
0.8 0.15 14 0 12
0.8 0.19 13 0 13

(b) Benchmark A-unit

a b - 0 +
0.3 0.6 2 0 28
0.3 0.65 2 0 28
0.5 0.3 2 0 23
0.5 0.4 7 0 23
0.5 0.45 5 0 25
0.6 0.3 13 0 17
0.6 0.35 14 0 16
0.7 0.2 18 0 12
0.7 0.25 15 0 15
0.8 0.15 17 0 13
0.8 0.19 14 0 16

(c) Benchmark Gehring-
Homberger-unit

Table 3.6.8: Slender algorithm better(-) or worse(+) compared to k-medians.
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3.6.4.2 Slenderness Based on Distance to Depot

a b - 0 +
0.3 0.6 1 0 26
0.3 0.65 3 0 24
0.5 0.3 2 0 25
0.5 0.4 1 0 26
0.5 0.45 5 0 22
0.6 0.3 1 3 23
0.6 0.35 4 1 22
0.7 0.2 3 2 22
0.7 0.25 4 0 23
0.8 0.15 5 0 22
0.8 0.19 5 1 21

(a) Benchmark A

a b - 0 +
0.3 0.6 3 1 22
0.3 0.65 7 0 19
0.5 0.3 7 0 19
0.5 0.4 8 0 18
0.5 0.45 7 0 19
0.6 0.3 7 1 18
0.6 0.35 8 1 17
0.7 0.2 6 1 19
0.7 0.25 9 1 16
0.8 0.15 7 0 19
0.8 0.19 4 1 21

(b) Benchmark A-unit

a b - 0 +
0.3 0.6 1 0 29
0.3 0.65 1 0 29
0.5 0.3 1 0 24
0.5 0.4 1 0 29
0.5 0.45 3 0 27
0.6 0.3 2 0 28
0.6 0.35 3 0 27
0.7 0.2 3 0 27
0.7 0.25 12 0 18
0.8 0.15 13 0 17
0.8 0.19 14 0 16

(c) Benchmark Gehring-
Homberger-unit

Table 3.6.9: Slender algorithm better(-) or worse(+) compared to justRTR.
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3.6.4.2 Slenderness Based on Distance to Depot
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Figure 3.6.3: Slender algorithm % better than k-medians. Benchmark A.
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Figure 3.6.4: Slender algorithm % better than k-medians. Benchmark A-unit.

3.6.5 Results on Very Large Instances

In this section, we focus on the scalability of the SL method. SL and SL-RTR’s greatest value

comes when considering very large scale instances. To show this, we focus on the runtime of the

SL algorithm in which the best clustering out of 10 is chosen and then routed. We use test instances

composed of very large size instances. For instance, waste collection and mail and newspaper
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3.6.5 Results on Very Large Instances

delivery are some areas where very large instances can be found in practice (Kytöjoki et al., 2007).

We test the SL algorithm on these instances and compare its runtime to RTR to see if we can observe

a divergence in runtime.

We generate 18 very large problems, where customers are partially clustered and partially uni-

formly distributed. Then we test the SL and RTR heuristic on each instance. Each instance contains

a number of customers from the set {2000,3000,5000} and a minimum number of vehicles from

the set {20,50,100}. See Table 3.6.10 for specific customer size, number of vehicles, and instance

size for every test instance. The minimum number of vehicles is computed by dividing total demand

by vehicle capacity.

In Figure 3.6.5, we show the runtime of the Slender algorithm versus the RTR heuristic on these

instances as well as the GH-u instances. On the x-axis, we measure instance size by the number

of customers multiplied by the number of vehicles. The y-axis shows the computation time in

log(seconds). The squares represent runtime for an instance of the RTR. The stars represent the

same for the Slender algorithm.

The Slender algorithm is more scalable than RTR in runtime (in log seconds) because not only

does its runtime grow close to linearly, but is significantly less on these very large problems with

a minor loss in solution quality. To the contrary, the runtime for the RTR heuristic is instance de-

pendent and highly variable. The RTR spends much time on instances that have a higher number

of customers and fewer vehicles. These instances require more customers per route. Table 3.6.10

contains the relative solution quality (positive gap means RTR better) and runtime of the SL algo-

rithm for every instance. Instance size is measured by the number of customers times the number

of vehicles. The shape parameter chosen was α1
il = 0.9.

The value of the clustering approach is greatest when we consider its solutions as initial feasible

solutions for RTR. The SL-RTR algorithm does marginally better than the RTR on these very large

instances (Table 3.6.10) versus the GH-u instances (Table 3.6.7). Figure 3.6.5 reflects the disadvan-

tages of using a metaheuristic in that it requires tuning across the parameters (number of customers,

number of vehicles) representing the problem instances. Our approach mitigates this and is less

susceptible to variations in the number of customers and the number of vehicles.
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3.6.5
R

esults
on

V
ery

L
arge

Instances

Problem # of Size SL SL SL SL-RTR SL-RTR SL-RTR RTR
Customers gap # vehicles sec. gap # vehicles sec. sec.

vl-1 2000 40000 0.035 20 57.88 -0.002 20 107.79 502.49
vl-2 2000 40000 0.062 20 60.11 0.013 20 109.82 498.32
vl-3 3000 60000 0.051 20 94.61 0.001 20 246.52 1585.40
vl-4 2000 60000 0.033 20 101.14 -0.026 20 249.75 1488.34
vl-5 2000 100000 0.022 50 131.84 -0.006 50 152.31 231.87
vl-6 5000 100000 0.051 20 179.01 -0.012 20 828.89 6646.81
vl-7 5000 100000 0.057 50 133.24 0.005 50 152.92 206.15
vl-8 5000 100000 0.046 20 178.05 -0.020 20 840.18 6378.33
vl-9 3000 150000 0.025 50 222.93 -0.016 50 268.45 511.87

vl-10 3000 150000 0.030 50 221.24 -0.007 50 265.69 478.63
vl-11 2000 200000 0.030 100 287.71 0.000 100 304.35 183.30
vl-12 2000 200000 0.038 100 292.82 0.004 100 309.83 170.92
vl-13 5000 250000 0.029 50 455.20 -0.018 50 600.52 1532.73
vl-14 5000 250000 0.039 50 408.82 -0.011 50 555.07 1479.50
vl-15 3000 300000 0.028 100 480.67 -0.007 100 512.49 377.23
vl-16 3000 300000 0.035 100 470.73 -0.006 100 503.36 324.63
vl-17 5000 500000 0.030 100 1038.77 -0.007 100 1117.65 840.13
vl-18 5000 500000 0.017 100 879.33 -0.018 100 957.65 823.17

average 0.036 316.34 -0.007 449.07 1347.77
deviation 0.012 273.34 0.009 310.47 1943.55

Table 3.6.10: Very large instances.
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3.6.6 General Discussion

Figure 3.6.5: Runtime for Slender and RTR. Squares represent RTR and stars represent the Slender
algorithm.

3.6.6 General Discussion

There are three methods used in this chapter. Each has strengths and weaknesses in terms of captur-

ing clusters that should go together in a route. The k-medians algorithm in Section [[# does better on

average across the large-scale benchmark instances. When it does worse than RTR, it does not do as

worse as spherical clustering. Additionally, it tends to do more worse on instances with low number

of vehicles than instances with a high number of vehicles. In contrast, the spherical algorithm does

particularly well when the number of drivers is relatively low. Also, it performs better when cus-

tomers are randomly dispersed. We can see this when we compare it against the RTR solver for the

random instances (r1) and some random-clustered (rc1, rc2) instances. However, when the number

of drivers is relatively large then spherical clustering tends to deliver routes that are too thin with

respect to the depot, and hence does poorly. Nevertheless, k-medians clustering results tend to be

on average better than spherical clustering.

Analyzing the routing solutions that RTR delivers on its own, it is evident that there needs to be

some overlap of routes as the number of drivers increases in order to be efficient. For this reason,

the slender-based clustering algorithm tends to do better than spherical and marginally better than

k-medians for some choice of parameters. This is because the routings from the slender-based

algorithm respects the tendency for efficient routes to be thinner but occasionally overlap.

The implications of the above observations suggest that measuring how randomly customers are

scattered in a service region can help determine the correct clustering method to use. When cus-

tomers are highly clustered, methods like k-medians clustering possibly coupled with local search

heuristics is preferable. On the other hand, when there is more randomness in how customers are

dispersed, then a clustering algorithm that emphasizes the angularity of clusters tends to be prefer-

able. The measurement of randomness of customer dispersion can be automated on computers by
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3.6.6 General Discussion

using indexes like the Silhouette coefficient (Rousseeuw, 1987). Based on this index, the preferred

algorithm can be applied.

Additionally, the clustering solutions obtained are susceptible to the local optima trap. For this

reason, the vehicle routing solutions as a result of clustering are susceptible to variation also. We

tested the degree of this variation by routing each clustering obtained from the clustering algorithm

instead of choosing the best clustering and calculating the routing afterwards. We give the boxplot

of the variation for a choice of parameters that did the best for the slender-based algorithm in Figure

3.6.6a and the initial solution susceptibility of the RTR solver in Figure 3.6.6b.
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(a) Slender-based solution variation.
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Figure 3.6.6: VRP cost variation.

We see from the boxplots that the initial solution susceptibility is smaller for the slender-based
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3.7. CONCLUSION

clustering although the RTR solver performs better in terms of routing cost. However, there is sig-

nificant variation in the routing costs for the clustering method which suggests that paralellization

can be beneficial. For instance, the clustering method could be applied to the problem ten times

which outputs ten different clusterings. We can process each single clustering on a separate proces-

sor and apply TSP routing to those clusters on separate processors. This could further improve the

run-time of the algorithm.

3.7 Conclusion

Overall, the clustering techniques discussed in this paper are applicable in day-to-day routing. They

are capable of delivering zones within the service region for every business day given customer

demand for that day. The efficiency with which they do routing is slightly worse than a state-of-the-

art vehicle routing solver. Clustering methods can benefit parcel delivery companies with various

business goals other than minimum cost routing. For example, vehicle dispatchers carry out routing

subject to contiguity considerations for service regions in a dynamic setting. This is a recent trend

in big logistics companies such as the United Parcel Services (UPS) where they value contiguity

restrictions for routes served by their drivers. In this light, clustering is more likely to be beneficial

within this broader set of objectives.
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Chapter 4

Dynamic Consistency

4.1 Introduction

Our focus in this chapter is to consider the issue of consistency. Driver-customer consistency de-

pends on the history of the service provided to a customer by different drivers. We model the prob-

lem as a dynamic clustering (assignment) problem. We present clustering techniques that assign

customers to drivers in a consistent manner across time and deliver compact clusters. This dynamic

construction of consistent clusters would be useful for a cluster-first, route-second approach to vehi-

cle routing problems with multiple objectives such as routing cost and consistency. We use historical

information on driver services to find those drivers who have served each customer most of the time.

We propose two solution methods that assign drivers to customers that takes this information into

account in order to create consistency. The model we define in this paper is only partially solved.

Specifically, no routing is considered.

We do not know of any other study that has quantified the degree of consistency using entropy

related measures and studied it in a dynamic model with no fixed routing or pre-clustering of cus-

tomers. Our work is unique in that it models the consistency problem in a “soft” way rather than

imposing constraints (Groer et al., 2009) or exclusively assigning regions to drivers beforehand

(Zhong et al., 2007).

In Section 4.2, we introduce concepts for consistency and the dynamic vehicle routing problem

with stochastic customers who request delivery. We focus on creating consistency using clustering

techniques, but do not consider routing customers to obtain a full VRP solution. In Section 4.3,

we present two solution approaches that can create consistency over a period of time. Simulation

results will be delivered in Section 4.4. The final section, Section 4.5, will contain our thoughts on

possible future work and concluding remarks.
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4.2 Concepts and Model

4.2.1 Consistency

Customer preferences toward consistent service can depend on various things. Customers tend to

value the same or a small set of drivers delivering their packages over time (Campbell and Thomas,

2008b). Additionally, customers prefer to receive their packages when they are home and most

readily available. In the VRP literature, this preference is usually modeled as constraints on the

time window when a customer can accept his or her delivery. We think about these preferences as

a long-term utility that the customer accrues, so it is a function of the history of service a customer

receives. We summarize the history of driver assignments to a customer as a vector of the frequency

with which a driver has visited the customer.

Typically, customers are loyal to the logistics companies that they receive service from. This is

true unless customer preferences are not satisfied for a significant amount of time. The likelihood

for customers switching their preferred logistics provider should increase the more the service they

receive gives them incentive to search for other delivery options, holding all other factors constant.

Those logistics companies that do not want to lose their customer base need to provide as high

customer satisfaction as possible and in a consistent manner over a length of time as long as a

customer is a client (Bowersox et al., 2002; Smith, 2002, 2004; Clinton, 2011; UPS, 2007).

A measure that quantifies consistency should be characterized with certain properties. We ex-

plain the properties a measure should have in an example. Assume we are given a customer in

a region that is served by a logistics company that operates with 3 different drivers. Assume the

customer has been loyal for 7 periods with this company. Let us consider the following 3 different

ways in which this customer’s demand can be satisfied with the 3 drivers.

Solution 1: (1,1,1,1,1,1,1)

Solution 2: (1,2,1,2,1,2,1)

Solution 3: (1,1,2,1,2,3,1)

If you look at Solution 1, you see that only 1 driver has served the customer whenever the

customer requested delivery. This case should correspond to the most extreme score since the

logistics company cannot do any better in terms of driver consistency. It is also the case that it does

not matter if the driver who served this customer was driver 1, 2 or 3 as long as it is only a single

driver across the 7 time periods.

When you consider solution 2, the score this case should receive is less than the first solution.

This is because there is some variation of drivers serving the customer. Solution 3 is the case that

should receive the lowest score out of the 3 cases. The difference between solution 2 and solution 3

is that the number of times driver 2 serves this customer is one greater than in solution 3. However,
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4.2.1 Consistency

driver 2 is still the second most frequent driver who visits this customer. Driver 3 is the least frequent

driver visiting the customer.

Generally speaking, from a consistency point of view, it is not just the most frequent driver

that brings forward value for the customer, but also the second most frequent driver and third most

frequent driver can bring forward value in terms of consistency for the customer. A mathematical

function that can represent this property should be chosen.

We propose to use entropy related measures borrowing from the data-mining literature. There

are various sorts of entropy-based measures used in the clustering literature depending on the spe-

cific study in which it is applied. The similarity between clusterings can be modeled as mutual

information, normalized mutual information and other indices that researchers have come up with

for their domain of study. We have incorporated normalized mutual information and simple entropy

measures into our clustering algorithms.

Entropy related measures take probability vectors as input and output a scalar value. In our

model, from a given history of driver assignments for a single customer, we derive the percentage

of times that each driver has served this customer. We represent this information in a vector. This

vector has elements less than or equal to one and sums to one given any time period. Therefore, we

can treat it as a probability vector or as a vector that holds the frequencies with which each driver

has visited this customer. As a result, every customer has an associated level of entropy measuring

consistency. This embodies the properties discussed before. Mathematically, they measure the level

of uncertainty in a probability distribution (or frequency distribution). A uniform distribution would

correpsond to the worst case since each outcome (driver) has an equal probability or frequency. As

the probability distribution diverges from the uniform distribution, entropy level gets lower and

lower. They are represented as a convex combination of logarithms. The base of the logarithms

can be chosen so that it gives a number between 0 and 1. Given a history vector of assignments

represented as visiting frequencies, p = (p1, p2, ..., pd), the entropy of such a vector is

E =−∑ pilog(pi) .

For instance, if we consider the three solutions again, we can derive the consistency (entropy) level

of each as follows:

Solution 1: (1,1,1,1,1,1,1)−→ (100%,0%,0%)−→ entropy = 0

Solution 2: (1,2,1,2,1,2,1)−→ (57%,43%,0%)−→ entropy = 0.9852

Solution 3: (1,1,2,1,2,3,1)−→ (57%,28%,15%)−→ entropy = 1.3788

Looking at solution 2 and solution 3, we see the effect of the second most frequent driver, 43%

and 28% respectively. Solution 2 has a lower entropy because given the most frequent driver, driver

1 with 57%, this solution has more skewed frequencies over drivers 2 and 3 compared to solution 3.
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This entropy function has the nice property of being concave. It obtains the value zero when the

probability vector puts all the probability mass on a single entry like solution 1 above. Moreover,

the value of the function decreases as more probability mass is concentrated over fewer outcomes in

the probability vector. This captures consistency in terms of the most frequent second driver, third

driver and so on.

4.2.2 Model

We present a dynamic clustering model to give context to our solution approaches for creating

consistency. Creating consistency is an assignment type of problem. It depends on who was served

by which driver. Therefore, we can look at it as a type of clustering (assignment) problem. We are

mainly interested in clustering techniques that can create consistency across time.

Consider a spatially distributed set of locations (customers) who are served by a single depot in a

given geographic area. Customers generate service requests that are served by vehicles based at the

depot. The subset of customers who generate demand for a given day is stochastic. At the beginning

of every period demand and associated customers have become known before d trucks leave to serve

delivery requests. This situation applies to, for example local distribution networks like UPS and

FedEx. The dispatcher at the depot has information on the customers needing to be visited for that

day and the associated demand. The dispatcher does not know about the future requests that will

be made. His/her job is to assign customers with demand requests to drivers. We assume that each

location generates only one unit of demand per day. Each individual demand will be modeled as a

Bernoulli random variable with parameter pi, where demand is independently distributed.

The horizon begins at t = 0. The final period is denoted by T . Every period a set of customers

Qt generate demand. Observing this, the dispatcher makes driver assignments. We keep track of the

number of times a customer i has been assigned to driver j throughout all time periods, 0, ...,T . We

call such a variable a history or a history of assignments, Ht . Let M represent the map where the

geographic region is situated. We have location parameters for all customers as well as the depot’s

location. Let N be the set of customers in this map. Let n be the number of customers in this map.

Each coordinate of a customer is represented by L, which is a matrix of size (n×2) where each

row contains the x coordinate and y coordinate of a customer. For each customer i, the Bernoulli

parameter is pi. Further, pi and p j are independent for any i and j. Let m be the number of drivers

available every day at the depot. H0 is the matrix of size (n×d) representing initial history of driver

assignments made to each customer where entry H0 (i, j) is the number of times customer i has been

assigned to driver j up until period 0. The information flows as follows: We step into period t and

we know what Ht is. After, we observe Qt , i.e. which customers need service this period, we make

a decision based on these two variables, Ht and Qt .
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State Variables

State space consists of the information a decision maker needs to know to be able to make

a correct decision. In our problem, with the long-run consistency as the objective, this includes

keeping track of the history of assignments. Let Ht be the matrix of size (n×d) representing the

history of assignments up to period t. Qt is a binary vector (n×1) representing the set of customers

requesting service in period t. St is the state variable in period t (after Qt is realized), which is a

combination of Ht and Qt , i.e. St = [Ht Qt ].

To give an example, let us consider a situation when we are in period t = 5, and the number of

customers is n = 5, and drivers m = 3. Also, the set of customers that request service this period has

become known, hence we know Q5. Then, a state S5 = [H5 Q5] looks like the following:

H5 =


2 2 1

3 0 0

0 4 1

2 0 2

3 1 0

 , Q5 =


1

0

0

1

0

 .

These two variables are interpreted as follows. In matrix H5, Customer 1 (i.e. row 1) has been

assigned to Driver 1 (column 1) two times, to Driver 2 (column 2) two times and once to Driver 3

(column 3). In vector Q5, Customer 1 (row 1) has made a request for period 5, Customer 2 (row 2)

has not made a request.

Decision Variables

Given a state, St , the decision is to cluster the customers whose qi
t = 1, where qi

t is ith component

of Qt . Further, define Qt ⊆ Qt such that, if qi
t = 1, then i ∈ Q

t
. Let At (St) = {xi j} denote the set of

decision variables at St where xi j = 1 if customer i is assigned to driver j. Hence, the latter is an

assignment notation only. Now,

d

∑
j=1

xi j = 1 ∀ i ∈ Q
t
, (4.2.1)

n

∑
i=1

xi j ≤C ∀ j (4.2.2)

At (St) =
{{

xi j
}
∈ {0,1}N×m

∣∣∣ subject to (4.2.1) and (4.2.2).
}
. (4.2.3)

The admissible set of actions are all clusters such that every customer that has a request is

assigned to one driver only and each driver has at least one customer to serve.
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Transition function

The transition P(St+1|St , At (St)) from St = (Ht ,Qt) to St+1 = (Ht+1,Qt+1) works as follows:

• Qt+1 is an independent random variable of St since we assume independence of realizations

for demand across all time periods. Hence, it is governed by Ber(i) = pi for all i ∈ N. The

probability of Qt+1 is given by

P(Qt+1 = (yi)
n
i=1) =

n

∏
i=1

(1− pi)
1−yi pyi

i

where yi ∈ {0,1} ∀ i.

• Ht+1 depends deterministically on Ht , Qt and At (St). The transition is as follows: Given

Ht (i, :) =
(
ht

i1,h
t
i2, ...,h

t
id

)
, which is the ith row of Ht . If Qt (i, :) = 0, then Ht+1 (i, :) =(

ht
i1,h

t
i2, ...,h

t
id

)
. If Qt (i, :) = 1, then

Ht+1 (i, :) =
(
ht

i1 + xi1,ht
i2 + xi2, ...,ht

i j + xi j, ...,ht
id + xid

)
.

Contribution Function

The per-period contribution function is composed of two parts. The first component accounts

for the compactness of clusters formed in period t. The second component accounts for the value

of the consistency achieved in period t. We do not explicitly define how we measure consistency at

this point in the per-period contribution function, but we defer the reader to the next section where

we explicitly define how we account for consistency.We express the contribution function as

Ct
(
St ,
{

xi j
})

=
n

∑
i=1

d

∑
j=1

ci jxi j +β · consistency
({

xi j
})

where
{

xi j
}
∈ At (St) and ci j is the contribution to the clustering objective of assigning customer i

to cluster j. Note that there is a scalar β in front of the consistency term, which models the degree

of trade-off between the two objectives in the contribution function.

Bellman Equation

The full horizon objective we wish to maximize in period 0 is

max
π∈∏

{
E

(
T

∑
t=0

Ct (St , Aπ
t (St))

∣∣∣∣s0

)}

where Aπ
t (St) is a particular decision/policy rule that is admissible, i.e. a collection of particular
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decisions at every state that can be visited in t = 1,2, , , ,T starting from s0. ∏ is the set of all of

these policy rules.

We are ready to write the Bellman equation of this formulation:

V t (St) = max
a∈At(St)

{Ct (St , At )+E(Vt+1 (St+1) |St)} ,

P(St+1|St , At (St)) .

4.3 Solution Methods

Creating consistency in a multi-period setting depends only on how customers are assigned. We

solve for assignment policies using a clustering approach. We present two clustering approaches

that create consistency dynamically. First, we use normalized mutual information as a consistency

measure that clusters customers based on consistency at the cluster level. Second, we measure con-

sistency at the customer level, and do clustering using customer level consistency information. We

will employ a clustering scheme whose objective balances the trade-off between compact clusters

and consistency.

4.3.1 Normalized Mutual Information Approach

4.3.1.1 NMI

First, we propose a measure of consistency that is based on the notion of normalized mutual in-

formation. This index is generally used as a similarity measure to compare two clusterings within

the data-mining literature. We leverage the idea of the similarity between clusterings and apply this

notion to multi-period vehicle routing as measuring consistency over time. See Wagner and Wagner

(2007) for a discussion of different methods the data mining literature uses to compare clusterings.

This can be seen as an aggregate measure of consistent service where as in the next subsection we

focus on a more refined measure of consistency based on customer level consistency. We can inter-

pret the value of the normalized mutual information measure between clusterings as the degree of

consistency between them. The higher this value, the higher the consistency. Unfortunately, NMI

is a nonlinear combinatoric function of the decision variable. Instead, we make the optimization in-

directly, and we include a measure of distance in the clustering objective to encourage consistency

that in turn leads to high NMI. The details of the procedure will be explained below.

Assuming current period t, we summarize the service customers receive in a matrix. Assume

we know the set of customers needing service for period t and they are indexed by the set Q. Let

m denote the number of these customers. Let HQ
t be the matrix with history of assignments made

to each customer that needs to serviced right now, i.e. superscript Q and subscript t. Let XQ
t be the

0− 1 matrix where if X(i, j) = 1, then customer i ∈ Q is assigned to driver j. Then, a decision to

allocate customers to drivers leads to a new history at t +1, given by HQ
t +XQ

t . In order to compute
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4.3.1.1 NMI

the NMI value of such a decision we manipulate this matrix and get a new matrix for period t which

we call Con ft .

We compute several numbers using the entries in this Con ft matrix. Let W = |Con ft | be the

summation of all the entries. Let P(i) be the sum of row i divided by W , and P( j) be the sum of

column j divided by W . We compute the entropy associated with the rows in this matrix by

HR =−∑P(i)log(P(i)). (4.3.1)

We compute the entropy associated with columns in this matrix by

HC =−∑P( j)log(P( j)). (4.3.2)

Again, the base for the logarithms can be chosen so that these give values between 0 and 1.

The Con f matrix is a (d×d) matrix whose $i-j$th entry is given by

Con f t
i j =

[
HQ
•i

]ᵀ
X• j. (4.3.3)

The entry Con f t (i, j) is equal to the total number of times all the customers that have been assigned

to driver i until period t that are assigned to driver j. Each row corresponds to the summation of the

rows of Ht that have been assigned to driver r ∈ {1,2, ..,m}. The mutual information between the

rows and columns of Con ft is given by

I =
m

∑
i=1

m

∑
j=1

P(i, j) log2

(
P(i, j)

P(i)P( j)

)
(4.3.4)

where P(i, j) =Con ft (i, j)/W . Finally, the normalized mutual information is given by

NMI =
I√

HR×HC
. (4.3.5)

We illustrate how to obtain the Con f matrix in the following example:

H5 =


2 2 1

3 0 0

0 4 1

2 0 2

3 1 0

 , Q5 =


1

1

1

1

1

 .

Assume we are given the state S5 = (H5,Q5) above. Let the decision variable take a value such that
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4.3.1.2 Clustering

the assignments are {x11,x23,x32,x41,x52}= (1,1,1,1,1), so we get [xi j] = X as follows:

X =


1 0 0

0 0 1

0 1 0

1 0 0

0 1 0

 .

Con f5 (2,2) will be equal to

Con f t
2,2 =

[
HQ
•2

]ᵀ
X•2 =

[
2 0 4 0 1

]
·


0

0

1

0

1

 .

Con f5 =

 2+2 2+0 1+2

0+3 4+1 1+0

3 0 0

=

 4 2 3

3 5 1

3 0 0

 .
In this example, W = 21. HR = 0.91, HC = 0.94, and I = 0.16. Therefore, the normalized mutual

information turns out to be 0.17. This value is close to zero telling us that there is not much mutual

information between the rows and columns in the Con f matrix, which means that our cumulative

decisions have lead to relatively low consistency in the driver-customer assignments.

In general, NMI is a number in the range [0,1]. It is a measure of the agreement between

two clusterings. By appropriately summarizing history, we compare today’s assignments with our

summary of the history for the service region, i.e. the Con f matrix. If this agreement is in line with

history, then there is more consistency in our solutions across time.

4.3.1.2 Clustering

We do not directly optimize over the NMI measure, which is a complicated expression as previously

shown. Our strategy is to cluster customers in such a way that customers with similar history profile

end up in the same cluster provided that they are not very far apart. Then, we assign drivers to each

cluster so that consistency is maximized.

We use well-known distance functions used in data mining to measure dissimilarity between

data objects to derive a heuristic. We use cosine distance to measure the distance between the

histroy profile of two different customers. The histroy profiles are represented as frequency vectors

and we are interested if whether or not two history profiles are aligned or not. Cosine distance

measures the degree of this alignment. We briefly define the cosine distance here, which is equal

to 1 minus the cosine similarity. Given two vectors x, y ∈ Rn, the cosine distance between these
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vectors is defined to be

1− cos(x,y) = 1− 〈x,y〉
‖ x ‖‖ y ‖

,

where the numerator is the dot product between x and y, and the denominator is the product of the

Euclidean norm of each vector. Cosine similarity measures the angle between two vectors in a real

space. In general, the cosine similarity is a number between −1 and 1.

Consider the following example to see why it is useful for our model: Let h1 = (3,4,0,0)

and h2 = (1,1,4,5). If we compute the cosine distance between these vectors we get a cosine

distance of 0.78. When we make h2 = (0,0,4,5), the cosine distance obtains its maximum value of

1. However, since we do not have vectors of history with negative values we will never compute

a cosine similarity of −1. Cosine distance will always be between 0 and 1 for all the possible

realizations of history in our model.

Given a state in our model, our strategy is to first cluster customers and then assign drivers.

Each step involves an optimization. The clustering step is described below.

The presentation of the objective requires the notation deuc(.) for Euclidean distance, dcos(.)

for cosine distance. Say we are given a state St = (Ht ,Qt). Let HQ
t denote the rows of Ht where

Q(i) = 1. These are the histories of those customers that have made a request in period t. Given

this HQ matrix and L, we can a write clustering problem with the following minimization objective:

m

∑
i=1

∑
x∈Ci

d (x, µ (Ci)) =
m

∑
i=1

∑
x∈Ci

deuc (xloc, µloc (Ci))+βdcos (xhist , µhist (Ci)) ,

where xloc represents a customers location obtained from matrix L, and µloc (Ci) is the location

component of the seed point for cluster i which is also called the centroid of cluster Ci. Likewise,

xhist comes from HQ and µhist is the history component of the centroid of Ci. The history component

of a centroid is the mean of the history profiles of all customers in a cluster.

deuc (xloc, µloc (Ci)) is the standard Euclidean distance squared between location of customer x and

the location of the centroid of Ci.

dcos (xhist , µhist (Ci)) is the cosine distance between history of customer x and the history component

of the centroid of Ci.

β is a balancing parameter which we use to bias the clustering solution to be more history oriented,

hence more consistency or to be more location oriented, hence lower traveling cost, at least

approximately.

The constraints of this problem are standard; every customer with a request must be assigned to one

and only one cluster.

The motivation of the above formulation comes from the idea that if we can leverage the his-

torical data of assignments and include this into our objective as a second component of distance

between customers, then customers that have been assigned to the same driver more or less in the

past should be made to group in the same cluster. This is done using a second distance function that
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measures the distance between two customers in terms of their history of assignments. If we are

not able to put similar customers into same clusters, then making a driver assignment would entail a

loss of consistency in service since at least one group would have to be served by a different driver

than the one mainly observed in their history, which is an unwanted situation.

4.3.1.3 Assignment of Drivers

Now, once we compute a clustering solution, we are ready to assign drivers to clusters in light of

the NMI consistency measure described in the previous section.

In order to write the optimization problem, we need to compute a Con f matrix similar to the one

in the previous section. The only difference is that the columns represent clusters and not individual

drivers. We denote Con f as follows:

Con f =


c11 c12 . . c1m

c21 c22 . . c2m

. . . . .

. . . . .

cm1 cm2 . . cmm

 .

The interpretation of ci j is the total number of times customers in cluster j have been assigned

to driver i up to period t. What we do is to find a matching function between drivers and clusters.

This is done by solving the following integer programming formulation:

max
m

∑
i=1

m

∑
j=1

ci jzi j

subject to
m
∑

i=1
zi j = 1 ∀ j

m
∑
j=1

zi j = 1 ∀ i

We call the greedy solution to this problem as greedy and the optimal one optimal. Also, we note

that the constraint matrix of this problem is totally unimodular.

This problem formulation is motivated by the idea that, if we are to match drivers with clusters,

we should obtain a high trace from the resulting matrix when we order the columns from driver 1 to

driver m. A high trace value would be associated with a high NMI value in the future since in this

way we create more unevenness in the future possible realizations of this matrix. To illustrate this

point, consider the following 3 (3×3) matrices.

Matrix1 =

 32 2 24

34 29 0

4 27 30

 Matrix2 =

 15 0 0

0 13 0

0 0 14


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Matrix3 =

 1 0 0

1 1 0

0 0 1


The first matrix has an NMI value of 0.27. In contrast to the large numbers in this matrix, the

dispersion of the numbers is somewhat more even compared to the other two extreme examples.

This matrix tells us that we have not done a good job of assigning driver 1 customers since when

we try to match driver one with one of the columns, we are stuck between column 1 and column

2 and we would have to give up on some consistency. So in order to determine the best possible

matching we solve the formulated problem above that would direct us to higher consistency. The

second example has NMI of 1 which is the highest possible value that can be obtained. This matrix

has done perfectly in assigning all the customers served by driver 1 to only one cluster, similarly

for the other clusters. This makes our job easier in terms obtaining higher consistency. Moreover,

matrix 3 has done a good job for Driver 1 and Driver 3’s customers in terms of history but not in

terms of Driver 2’s customers. The NMI value obtained in this case is 0.67.

4.3.2 Individual Entropy Approach

In the previous section, we used a consistency measure that is computed from an aggregation of

individual assignments. This is done because we want to evaluate today’s clustering in terms of

consistency. However, fundamentally we are interested in consistency at a finer level, from an indi-

vidual perspective. Also, the question is how to combine all these individual consistency measures

(NMI is one particular option). We propose to use entropy at an individual level (computed from

an assignment vector for each customer) to measure the degree of certainty in that vector, and call

this measurement the consistency for this customer. In order to get the consistency level for a group

of customers, we can simply add their individual consistency measures. It can be seen as a finer

way of measuring the same thing. However, the aggregate consistency measure will not belong

to the [0,1] interval anymore, but will be a sum of such numbers. NMI is advantegous because it

shrinks the size of the problem for the consistency decision. Additionally, NMI is nonlinear in our

decision variables (see below) where as the newer measure is simpler. NMI is highly nonlinear and

nonconvex.

Say we have a vector of assignments in period t for customer i, h(i) = (h1,h2, ...,hn). So we

have n drivers at our disposal. Then, the entropy of this vector can be used to represent the consistent

service this customer has received up to now:

Ht(h(i)) = Entropyt(i) =−∑ p(k)log2(p(k))

where p(k) = hk/{∑n
r=1 hr}. So this p(k) is the percentage of time that customer i has been served

by driver k.

This measure has some useful properties:

1. Ht(i)(p(1) , p(2) , ..., p(n)) = Ht(i)(p(n) , p(1) , ..., p(2)). It is symmetric with respect to
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permutation of probabilities, hence, with respect to permutation of elements of vector hi.

2. It is continuous in p.

3. Hn (p(1) , p(2) , ..., p(n)) ≤ Hn
(1

n ,
1
n , ...,

1
n

)
. The measure is maximal if all outcomes have

equal percentages.

4.3.2.1 Examples

Say we have n = 4 drivers.

1. h1 = (x,x,x,x). Entropy of this vector is 2, no matter what x variable takes on as long as x 6= 0.

2. h2 = (y,y,y,0). Entropy of this vector is 1.585, no matter what y values take, as long as y 6= 0.

In terms of the idea of consistency, h2 is always going to have a better consistency measure than h1,

independent of x,y, and, n ≥ 2. This makes sense because h2 has made equal assignments to only

3 drivers where as h1 has made the same to all the drivers available. Also, since entropy obtains

its maximum value when all percentages are equal (bullet 3 in previous section), then it can be

normalized with this maximum value so that the measure takes on a value between 0 and 1.

4.3.2.2 Individual Measure

Within the context of making decisions over time, creating consistency with this new measure is

possible. Let H and X be as before. So, a decision gives the new history of H +X at time t +1. So

from an individual customer i perspective the new level of entropy in its assignments is

Entropyt+1(i) =−∑ p(k)log2(p(k))

where

p(k) =
Hik +Xik

∑k (Hik +Xik)

So, given a period t, say customer i has a history vector of assignments of ht(i) = (h1,h2, ...,hn).

A history of this individual can change only to n-different values depending on who serves this

customer this period, namely ht+1(i) = (h1 +1,h2, ...,hn) or ht+1(i) = (h1,h2 +1, ...,hn) or . . . , or

ht+1(i) = (h1,h2, ...,hn +1). So we can compute each of these vector’s entropy level, and denote it

by cik, meaning that for customer i, if Xik = 1, cik will be obtained for entropy, hence consistency.

Finally, the ’Individual’ objective makes the problem linear. It also is a good measure, maybe better

measure than NMI because it is at a finer level. We can tie the labeling and clustering into one

optimization (as opposed to cluster first and then assign labels, section 4.3.1.1) in a simpler way.

4.3.2.3 Clustering

Assume we are in period t. Given a set of m customer locations in R2 represented by A ∈ Rm×2 that

require delivery and a given number of clusters, d (number of drivers), the clustering problem is to
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4.3.2.3 Clustering

solve the following optimization problem:

minimize
Cl ,Dil ,Til

m

∑
i=1

d

∑
l=1

[1−α 1−α α]T DilTil (4.3.6)

subject to −D j
il ≤

((
At

i
)T −Cl

) j
≤ D j

il, i = 1, ..,m & l = 1, ...,d, j = 1,2 (4.3.7)

λ
t
il ≤ D3

il, i = 1, ..,m & l = 1, ...,d (4.3.8)

d

∑
l=1

Til = 1, Til ≥ 0, i = 1, ..,m & l = 1, ...,d (4.3.9)

Here, Dil is a dummy variable in R2+1 where the first two components represent the bounds

on the 1-norm distances and last component is the bound on the entropy term (our consistency

measure). e is a vector [1−α 1−α α]T of size 3× 1. α is the weight given to the objective of

the entropy (consistency) term. D j
il is the jth component of vector Dil . So, the term inside the

minimum in the summation is the summation of the bounds on the 1-norm distances and the bound

on the entropy of assigning point i to cluster/driver l. λ t
il is the entropy obtained by assigning

point i to driver l which is precomputed and is given for the clustering problem above. These sets

of constraints guide the objective towards being highly consistent and depend on the history of

assignments made until period t. The choice variables are Cl and Dil for each i ∈ {1, ..,m} and

l ∈ {1, ...,k}.
The way in which historical data is incorporated is through the set of constraints 4.3.8. They

depend on the matrix H from the previous section. From this matrix, we compute the bounds on the

constraints 4.3.8 as follows. Given the ith row of matrix H, Ht
i =

(
ht

i1,h
t
i2, ...,h

t
id

)
,

λ
t
il = IE

(
ht

i1, ..,h
t
il +1, ...,ht

id
)

where IE is the information entropy function

IE =−
d

∑
l=1

pllog(pl)

where pl is the lth entry of the normalized Ht
i vector. Clustering is applied for all periods up to

period T , representing the length of the operation horizon.

We apply the iterative k-medians like solution method where we make customer assignments

to cluster centers and adjust cluster centers until cluster centers do not change. The difference to

a standard k-medians method is in the objective minimized that contains a consistency component

weighed by α .
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4.4. SIMULATION RESULTS

4.4 Simulation Results

4.4.1 Normalized Mutual Information

We provide simulation results and show the effectiveness of our approximation in creating consistent

behavior in driver-to-customer assignments. We have not fully solved the problem in Section 3, but

gained insight in what kind of policies would generate consistent behaviour.

The parameter configurations involved are the size of the map, the number of customers, the

Bernoulli parameter vector, Ber and the initial history, H0. One important observation is that the

range of the Euclidean distance and the range of the distance for the history component should be

similar, hence a square grid on [0,1] is considered. The cosine distance also has a range of [0,1]

but the Euclidean distance does not necessarily. In order to balance this bias, we consider such

dimensions for the hypothetical geographic region.

4.4.1.1 Experiment 1

In this simulation, we study if the way we model the objective affects our ability to obtain higher

consistency by changing the parameter, β . Intuitively, the greater β , the greater consistency should

be observed. The beta parameter is used to bias the objective towards history, like in experiment

1, however we do not require it to be a convex combination of location component and the history

component. We call the objective with β = 0, a Kmeans objective. It is solely aimed at traveling

cost efficiency. When β > 0, we call this objective an improved objective since it balances traveling

cost efficiency with consistent service.

The simulation experiment is carried out with 80 potential customers at various locations in the

square [0,1]× [0,1]. They are chosen to be situated with a uniform probability on this grid. Their

demand probability vector Bern consists of success parameters chosen uniformly between 0 and 1

for each customer. Each period m = 5 drivers serve the region. There are 30 periods. The parameter

β takes on 4 discrete values of {0.5,1,2,4}. These results are dependent on the initilization of H0,

which here is a uniform matrix with 10 assignments to each driver for each customer.
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(a) β = 0.5.
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(b) β = 1.
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(c) β = 2.
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(d) β = 4.
Figure 4.4.1: NMI series with β varied.

In Figure 4.4.1, which shows consistency results versus a range of parameter values for β , the

first thing to note is that the Improved scheme always does better than the Kmeans scheme across

all parameter values. It is important to note that the scale of the Euclidean distance and cosine

distance should be the same for this to occur. Otherwise, the biasing parameter β has to be rescaled

accordingly in order to see cases where the improved scheme does better in terms of consistent

assignment of customers to drivers. There is no clear improvement in the difference between the

improved scheme and the Kmeans scheme with respect to the β values, on the other hand.
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(a) β = 0.5.

1 2 3 4 5 6 7 8 9 10
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

Run number

D
is

ta
n

ce
 O

b
je

ct
iv

e

 

 

Kmeans
Improved

(b) β = 1.
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(c) β = 2.
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(d) β = 4.
Figure 4.4.2: Routing efficiency k-means vs. Improved

In Figure 4.4.2, the lines represent average traveling cost observed in each of the runs. The

difference seems to be constant around 7−8 %, for all the β values. As we had expected according

to our intuition, there is a trade-off between gaining consistency and lowering routing cost. We

can interpret the following: the NMI series for the Improved scheme builds up quicker than the

Kmeans scheme at a cost of about 7−8 % routing efficiency. The NMI series will keep on building

consistency value and increase almost monotonically with respect to the number of periods.

4.4.1.2 Individual Customer Assignments

Since we demonstrated that the improved scheme does better in terms of NMI on average, we can

look into how consistent the assignments have been on a more granular level based on individual

customers. The following table compares an optimal-Kmeans with an optimal-Improved scheme.

There exist 80 customers who have received service for 30 days by 5 drivers. Figure 4.4.3 shows

first 22 customers from the output. We can see that the assignments are very close to each other in
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4.4.1.3 Service Zones

general but there are major differences for some. For instance, customer 16 has been assigned to

Driver 1 35 times in the Improved scheme where as the same customer has been assigned between

Driver 1 and Driver 3, 24 and 21 times respectively. There are also other customers that have a

significant difference in the assigment distribution.

Figure 4.4.3: Individual assignments at the end of 30 periods.

Overall, we see that the optimal-Improved scheme does as well as or better than the optimal-

Kmeans scheme. We compare the maximum number in each row to come to this conclusion. As an

example, Customer 18 has been assigned to a single driver 30 times and 35 times the most, under

Kmeans and Improved respectively.

4.4.1.3 Service Zones

We are also interested in seeing how the service zones of each driver evolve over time. How stable

are they? We give results that indicate qualitative answers to these questions. In the figures, the

points represent customer locations and the attached numbers are the drivers who have served that

customer the most times. A point is black if this driver has served the customer 100%-90% of the

time, red if 90%-75% of the time, blue for 75%-50%, green for 50%-25%.
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(a) Improved.
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Figure 4.4.4: Service areas by service rate, H0 non-random.

In Figure 4.4.4, the service regions are based on H0 being a constant matrix whose elements

are all equal to 10. So, customers start with a uniform prior in terms of assignment distributions

in period 0. In Figure 4.4.4a, we see that the Improved scheme has done perfectly at 90% level of

assigning customers consistently to a single driver. In Figure 4.4.4b, we see that Kmeans did not do

as well in terms of creating consistency. We can see that Driver 5, 4 and 2 have served customers

in a more consistent way, since their region encompasses more “black” customers than other kinds.

Drivers 3 and 1 on the other hand have been less stable in serving customers. We see such a sharp

difference in terms of service regions between each scheme mainly because of the initial prior and

possibly because of the demand realization over the course of 30 periods.

Figure 4.4.5 is based on the optimal-Improved scheme where the initilization of H0 is a random

matrix with elements chosen between 0 and 10 as initial customer-driver history. There exist 80

customers, 30 periods and 5 drivers.
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Figure 4.4.5: Service areas by service rate, H0 random.

If you look into the figure closely, between the regions of “black” customers are the customers

that are of other types. These customers seem to lie on the boundary between core groups of

customers (“black”) and have more variable assignment of drivers. Also, this figure suggests that

the effectiveness of the Improved scheme depends on the initial history although this figure is based

on a different map.

4.4.2 Individual Entropy Approach

We carried out simulations to see how responsive this approach was to modeling consistency in this

way. For an operation horizon of 20 periods and a customer base of 80 locations, we generated

random request for delivery every period according to a different bernoulli distibution for evey

customer.

In Figure 4.4.6, we see how consistency levels at the end of 20 periods are distributed with

respect to the demand each location generated. For those customers with higher demand, i.e. those

that request delivery more frequently, the consistency level is greater or in other words degree of

entropy is lower. Additionally, this effect is stronger for higher number of customers as the emphasis

on the consistency term in the clustering objective is gradually increased from 0.2 to 0.9.
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4.4.2 Individual Entropy Approach

(a) α = 0.2. (b) α = 0.7.

(c) α = 0.5. (d) α = 0.9.
Figure 4.4.6: Consistency by demand.

Figure 4.4.7: Maximum service rate by drivers.
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4.5. CONCLUSION

The trade-off the α parameter controls in the clustering objective turned out to be on average

3.42 as can be seen in figure 4.4.8. For every one unit improvement in the consistency objective,

the solution methodology forgoes 3.42 units in the clustering (compactness) objective.

Figure 4.4.8: Pareto curve.

4.5 Conclusion

We have proposed and provided results of two policies that would create consistent behaviour in

routing while balancing this with a surrogate cost efficiency. Unlike Zhong et al. (2007), we build

on consistent service in an unrestricted way. Furthermore, our results suggest that the policy we

have proposed is successful in creating consistency. Our future work would entail combining the

methodology proposed here with a cluster-first, route-second VRP heuristic. We consider solving

the actual daily routing problem with a fast local search heuristic and be able to compute more

accurate route costs this way. Moreover, we would like to consider fast clustering algorithms that

do a good job in obtaining good solutions within reasonable computation time.
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Chapter 5

Stochastic Orienteering with An
Application to Fish Trawling

5.1 Introduction

In this chapter, we address the problem of how to route a fishing vessel as it trawls for fish over

a number of fishing areas. In this problem, we incorporate data by using forecasting models built

using historical catch data. We integrate previous observations made during a fishing trip into the

decision of where to harvest for fish.

A fishing trawler departs from an origin port, visits several fishing grounds, and lands its catch

at a destination port. At each period, the fishing trawler needs to decide whether to keep fishing

in the current fishing area or move onto a new one. We assume the fishing trawler harvests one or

more species over several fishing grounds. The harvest is uncertain but we have historical data with

which to estimate it. The per unit value of each species is known, pl . The objective of the fishing

trawler is to maximize the expected total value of catch over all species by traversing between the

fishing grounds starting from an origin port to a destination port, while respecting time and capacity

constraints.

A common solution approach to handle uncertainty is to use an a priori solution approach (fixed-

route policy). This approach produces a routing solution that is easier to compute for large scale

routing problems. See (Campbell and Thomas, 2008a) for a review. While an a priori solution

approach has its benefits, a dynamic solution approach would constitute an improvement over fixed-

route policies because it enables modification of the routing plan as observations (catches) are made.

There has been recent work (Goodson et al., 2013b) that develop dynamic solutions based on fixed-

route policies in a rollout framework. Rollout procedures are heuristic solution approaches that

select the next best action at a current state using an estimate of the rewards-to-go for the set of

states approachable from this current state. We employ their solution methodology and apply it to

our stochastic orienteering problem.

Rollout algorithms rely on the valuation of the future at every step of the decision process.
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Further, this valuation depends on how uncertainty is quantified. Using raw data, various statistical

and data mining (data science) methods can be employed to aid the rollout algorithm. We explore

several data analysis methods suitable for our data and validate the correct approach that creates

higher value.

This work makes several contributions including taking into account correlation of rewards in

the field of stochastic orienteering problems. We model the correlation into an MDP formulation by

incorporating previous observations as a state variable. We propose short term forecasting models

for South Baltic sea cod harvesting. We provide a prescription of a forecasting method combined

with a routing strategy to use for cod harvesting specifically for the South Baltic sea. We shed light

on the relationship between the quality of a prediction model and quality of routing obtained as a

result.

In the following sections, we formulate the fishing vessel routing problem as a Markov Decision

Problem (MDP). The MDP formulation can be found in Section 5.2. We use a rollout solution

method coupled with variable neighborhood search to solve the MDP, which is explained in Section

5.3. We present predictive methods and the results of our solution approach applied to real cod-catch

data for the Baltic region in Section 5.4.

5.2 Model Formulation

Let G = (N ,E ) be a given complete graph. The nodes are represented by the set N = {u} ∪
{1,2, ...,n} ∪ {w}, where u represents the origin port and w represents the destination port. Let

i ∈ {1,2, ..,n} represent a fishing ground. Fishing grounds are understood to be regions in the sea.

However, we use the center point of a rectangular region to represent an area for harvesting. Let

E = {(i, j) |i, j ∈N } represent the set of arcs between any pair of nodes. A fishing trawler starts a

trip from node u, visits a subset of nodes in N \{u,w}= {1,2, ...,n}, and arrives at the destination

port w. There is an associated travel time t (i, j) with every arc (i, j) ∈ E . Let T denote the travel

time duration limit that the fishing trawler is facing for a fishing expedition. This duration limit can

be something set managerially in a company. We assume a vessel contains enough fuel and does not

need to refill before this limit is reached. Let G be the finite available capacity in the fishing trawler

in terms of the amount of fish it can hold after which it must travel to the destination port.

The catch between nodes for the same species or between species may be correlated. After

arriving at a fishing ground, one unit of time is spent searching and towing (fishing) the current

fishing ground. A catch is sampled for the first unit of time, and then a decision of whether or not

to harvest the area is made. The process is repeated after each tow.

Time is assumed to be continuous. A decision epoch is triggered at the beginning of a new

fishing cycle, which can correpsond to an arrival to a fishing ground and having sampled the area

once or a continuation of fishing at the current fishing ground. The random time of decision epoch

k, Tk, marks the end of period k− 1 and the beginning of period k. While a trawler is in a fishing

ground, time is incremented in equal discrete amounts (a fishing cycle) for each decision epoch
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associated with the decision to whether or not keep harvesting the same area.

5.2.1 States

Each period has an associated pre-decision state sk and a post-decision state sa
k . There is a deter-

ministic transition between sk and sa
k as a result of decision a. Time is updated depending on a

either by upon arrival and completing the first tow/sample at the new area marking the beginning of

period k+ 1 or at the end of the fishing cycle at the current fishing ground marking the beginning

of period k + 1. The post-decision state sa
k corresponds to the state of the system after we have

made a decision but before any new information (observations, which are catches in our case) has

arrived. The transition between post-decision state sa
k to pre-decision state sk+1 is random and as-

sociated with a random reward equal to minimum of remaining vessel capacity and current catch,

min{Rk (sk,a) , gk}. The process repeats until the pre-decision state is in the set of absorbing states,

SK . These states correspond to the vessel’s current location being the destination port.

The state of the system captures all relevant information that is needed to determine the avail-

able actions and associated rewards (catches) as well as to compute the expected future value of

being at that state. There are two possible ways to compute this value: either through the tran-

sition probabilities or by having access to a simulation process. The state needs to capture the

current node of the fishing trawler. This is represented as variable q ∈ {{u}∪{1,2, ...,n}∪{w}}.
The remaining available capacity at decision epoch k in the fishing trawler needs to be known as

well. Let g ∈ [0,G] denote the scalar for the left-over capacity. The arrival time t ∈ [0, T ] to a

node needs to be captured by the state variable as well. Moreover, the history of observed and

unobserved catches need to be captured for every species. Let cl
i =?, if catch rate at fishery i for

species l is not observed yet. If the catch rate has been observed, possibly several times, then

cl
i ∈ {[0,∞)}hi where hi is the number of observations made. The set of possibilities is represented

by
{
{?}∪{[0,∞)}h

}n×l
. At decision epoch k, a state sk in state space S = {{1,2, ...,n}∪{w}}×

[0,G]× [0, T ]×
{
{?}∪{[0,∞)}h

}n×l
takes the form [q,g, t,c], where q is an integer, g is a scalar, t is

a non-negative scalar, and c =
[
cl

i
]n,m,hi

i=1,l=1,o=1. The initial state is given by s0 =
[
u,G,0,(?)n×l

]
. The

set of absorbing states are those that correspond to when the trawler has arrived to the destination

port, SK =

{
[q = w,g, t,c]

∣∣∣∣ g≤ G, t ≤ T, c ∈
{
{?}∪{[0,∞)}hi

}n×l
, hi ∈ Z+ ∀ i

}
.

5.2.2 Actions

An action, taken at each decision epoch, is to either stay or go to a new region, a. Let I {x = qk} be

an indicator function such that

I {x = qk}=

1 , if x = qk

0 , otherwise
.

The set of admissible actions allowed at state sk are
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A (sk) =

{
a ∈ {N \{u}} : a /∈

{
x ∈ {N \{u}} : tk + I {x = qk}∆t+

(1− I {x = qk})(t (qk, x)+∆t + t (x, w))> T
}}

, (5.2.1)

where condition (5.2.1) disallows staying or going to new areas if it is going to violate the time

duration limit. In such a case, the vessel is forced to travel to destination port. Although not

explicitly modeled in the action space, if capacity is met at the end of a fishing cycle, we assume

the vessel is forced to travel to destination port even though the duration limit may not be reached.

From that point on, the sample path corresponds to zero value, hence this assumption does not

change anything. We incorporate this implicit constraint into our solution approach directly.

5.2.3 Transition to Post-Decision State

Given that pre-decision state is currently sk = [qk,gk, tk,ck] and action a ∈ A (sk) is selected, the

deterministic transition to post-decision state sa
k entails updating the current node and time:

qa
k = a, (5.2.2)

ta
k = tk +

(
1− I {a = qk}

)(
t (qk,a)+∆t

)
+ I {a = qk}∆t. (5.2.3)

5.2.4 Rewards

A transition from pre-decision state sk to post-decision state sa
k results in a reward for species l

Rk,l (sk,a).

The total reward can be expressed as

Rk (sk,a) = min
{ m

∑
l=1

plcl
a, gk

}
. (5.2.4)

Let Yk = ∑
m
l=1 plcl

a. The expected reward from taking action a is

E
[
min
{ m

∑
l=1

plcl
a, gk

}∣∣∣ck
]
=
∫ gk

0
Y ×P(Y |ck)dY +gk

[∫
∞

gk

P(Y |ck)dY
]
. (5.2.5)

5.2.5 Transition to Pre-Decision State

At decision epoch k+1, a random transition from sa
k to pre-decision state sk+1 is made. Let sk+1 =

([qk+1,gk+1, tk+1,ck+1]) and sa
k =

([
qa

k ,g
a
k , t

a
k ,c

a
k

])
. Then,
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gk+1 =
{

ga
k−min

(
∑

m
l=1 {c}

l
qk
, ga

k

)}
, (5.2.6)

∀ i ∈ {1,2, ...,n} , ∀ l ∈M {ck+1}l
i =


{

ca
k

}l
i , i 6= qa

k[
{c}l

i ,
{

ca
k

}l
i

]
, i = qa

k

, (5.2.7)

P(c|ck) = f (c|ck) . (5.2.8)

where c is a new observation vector given observations up to decision epoch k. The conditional

probability of observing c given observations up to period k, ca
k is dependent on the probability

distribution f which in turn is dependent on the underlying probability of catch in each fishing

ground.

5.2.6 Criterion and Objective

We seek a deterministic Markovian policy that maximizes the total expected reward. A policy π ∈∏

is a function δ π (s) : s−→A (s) that maps each state to an action. Let ∏ be the set of all Markovian

deterministic policies. The decision criterion for a policy is given by

V π
0 = E

{
K

∑
k=0

Rk (sk,δ
π (sk))

∣∣∣∣s0

}
. (5.2.9)

We seek a policy π? such V π?

0 ≥V π
0 for all π ∈∏.

5.3 Solution Method

In this section, we describe the solution approach for the Markov decision problem presented in

the previous section. An optimal solution, which is a function, to the MDP is characterized by

the Bellman optimality equation 5.3.1. This function, π (sk), is said to be optimal if it maximizes

the right hand side of equation 5.3.1 for all states sk. The Bellman equation relates the value of

being in state sk, Vk (Sk), with the value of being in all the possible future states (optimal rewards-

to-go) if an optimal policy (function) is followed. However, typically, this entails solving for a

function that can have an exponentially large domain which is not computationally feasible. One

suboptimal methodology to address this challenge is to use rollout. In a rollout technique, one

constructs a suboptimal solution sequentially by searching through feasible actions to take in the

current state based on approximate rewards-to-go at the current state. One evaluates a feasible

action by generating and evaluating many policies to follow from the current state in order to gauge

the value of taking this action at this state.

We use the rollout algorithm framework as it is used in Goodson et al. (2013b). This particular

rollout framework includes methods that make use of the difference between pre- and post-decision

state variables in order to overcome the dimensionality brought forward by an exponentially large
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state space.

Vk (Sk) = max
π(sk)
{Rk (sk, a)+Vk+1 (Sk+1 (Sk, a))} (5.3.1)

Here, we give a high level description of the solution approach we use. We refer the reader to

Goodson et al. (2013b) and the manuscript Goodson et al. (2014) for details.

We repeat some definitions from Section 5.2 here for convenience. Let Π be the set of all

deterministic Markovian policies. A deterministic Markov policy π is a sequence of decision rules:

π =
(
δ π

0 , δ π
1 , δ π

2 , ..., δ π
K

)
where each δ π

k : sk −→ A (sk) is a function that maps a state, sk, to an

action choice a in A (sk). So, a policy tells us what action is to be chosen at each decision epoch k.

A restricted policy class is a subset of all the deterministic markovian policies, Π⊂Π. A heuristic is

any method to select decision rules for all subsequent decision epochs starting from state s denoted

by H (s). Note, s can be a pre- or post-decision state as defined in Section 5.2. A heuristic policy

for a given heuristic H (s) is πH (s) =
(

δ
H (s)
k , δ

H (s)
k+1 , ...,δ

H (s)
K

)
. We search for a routing policy

within a space of restricted heuristic policies for the fish trawler.

A rollout algorithm returns a rollout policy that is constructed sequentially (Algorithm 5). Start-

ing from an initial state s0, the rollout algorithm iterates until a terminal state is reached. At each

iteration, the rollout decision rule chosen delivers a current action to take (Line 6). Then, system

dynamics lead to a new state for this chosen action (Line 7). The action is chosen (Line 5) based on

suboptimal heuristic policies generated by a heuristic routine for states reachable from the current

state, sk (Lines 3, 4). In our case, an action is a fishing ground to harvest, where we allow for the

current fishing ground to be in the action space, i.e. to stay at the current fishing ground for another

period. The system dynamics govern how much catch, ck+1, is made after each fishing cycle at a

fishing ground (Line 7).

Algorithm 5 Rollout Algorithm
1: Initialize k← 0, sk← s0.
2: while sk is not a terminal state
3: for all states reachable from sk t steps into the future
4: Apply HeuristicRoutine(·) to generate fixed-route policy πsk (ν).
5: Select action a according to respective decision rule.
6: δ rollout

k (sk)← a.
7: sk+1← transition(sk, a, ck+1).
8: k← k+1.

We consider the class of a priori policies as the restricted policy class. In our context, an a

priori policy means that the fishing vessel will harvest a fixed sequence of fishing grounds. The

corresponding decision rules can be expressed in the following way using the notation we introduced

before. Given a fixed sequence of fishing grounds v, we have:

δ
π(v)
k (sk) =

vk , if gk > 0 & Tk + t (qk,vk)+∆t + t (vk,w)≤ T max.

w , otherwise.
(5.3.2)
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According to equation 5.3.2, a fixed sequence of fishing areas v = (v1, v2, ..., vn) is visited as

long as current capacity (gk) and the trip duration limit (T max) are not violated.

We employ two types of decision rules (Line 5) to generate a rollout policy. First, a pre-decision

state decision rule, which is when t = 0 in Line 3. This corresponds to applying the heuristic routine

once for the current state. Whichever action the heuristic routine delivers becomes our next action

to take. Second, a post-decision state decision rule that corresponds to applying the heuristic routine

from every post-decision state reachable by following a feasible action in the current state. A post-

decision state is reached by taking a half-step, that is, we have not observed catch for decision epoch

k+ 1 but we have moved to a new fishing ground. The action that delivers the best approximate

rewards-to-go becomes the next action to take in the rollout policy. See Figure 5.3.1 for a summary

of the discussion so far.

While searching from among candidate policies, each policy needs to be evaluated. One method

to evaluate a policy is to use a certainty equivalence approach where we make a point-estimate for

the value of the future state variables. We use survey data to make these predictions for the Baltic

cod in Section 5.4.

Figure 5.3.1: Rollout algorithm and state space evolution.

The rollout algorithm makes use of a heuristic routine that searches for locally-optimal a priori

policies at a given state. The dimension of the problems we consider can be large enough that

complete enumeration of all feasible routing policies is computationally prohibitive. We, therefore,

make use of a variable neighborhood search method (Thomas and Manni, 2014) that explores the
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space of all feasible routing policies. Goodson et al. (2013b) employ a local search procedure that

uses a relocation neighborhood and a first-improving acceptance criterion.

A useful conceptualization of the solution approach is to consider a matrix whose rows represent

nodes on a graph and whose columns represent time points. See Figure 5.3.2 for a representation.

Based on previous observations (represented as stars in the figure), the rollout algorithm evaluates

future feasible paths that traverses the cells of this matrix where a visit to a matrix cell accrues a

random reward at a particular time point at a particular node. The evaluation of these cells hinges

on the forecast used to evaluate future time periods.

Figure 5.3.2: Path evaluation.

We next discuss the application of our solution method to the Baltic Sea cod case.

5.4 Data Analysis for Baltic Sea Cod

In this section, we discuss the data and prediction algorithms used to predict the efficacy of future

fishing locations. Our methods incorporate the spatial and temporal correlation of catch between

fishing locations in the South Baltic sea.

The Baltic International Trawl Survey (BITS) is conducted by the International Council for the

Exploration of the Sea (ICES). The survey is aimed at accurately assessing the stock abundance

for target species of cod and flounder. The survey reflects the variability of the pattern distribution

of target species based on ICES areas and depth layers. Traditionally, the survey is conducted

twice annually, first in spring (15 February - 31 March) and second in November (1 November - 30

November). However, additional surveys have been conducted for other time periods since 2001.

The survey data is collected by 23 different vessels. One of the main focuses of the survey is the

evaluation of fishing efficiency (catch per unit effort, i.e. cpue).

The data set we use can be obtained from the ICES data portal website (http://www.ices.

dk/marine-data/data-portals/Pages/DATRAS.aspx). It contains a total of 400,647 records

spanning trawls from 1991 to 2014. The records contain information about catch per haul per length
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of species including other information. See Table 5.4.1 for details. Out target variable is the CPUE

index (in number of fish). There are 261 records with missing depth field values. There are 279

records with missing Subarea field values. Sex values do not exist in this data set. The data set

is created after an extensive data screening process, so outliers are not likely to be due to noise or

mismeasurement. About ten percent of the samples are zero catches.

Field Name Field Description Field Type

Survey BITS categorical
Year years 1991 to 2014 integer

Quarter 1,2,3,4 categorical
Ship Ship codes at http://vocab.ices.dk/?ref=3. categorical
Gear Gear codes at http://vocab.ices.dk/?ref=2. categorical

HaulNo Number identifying a unique haul integer
ShootLat Latitude where fishing haul began numerical
ShootLon Longitude where fishing haul began numerical
DateTime Date and time of haul numerical

Depth Depth at which the trawl sampled numerical
Area ICES subdivision (statistical region) categorical

Subarea Depth stratum code categorical
DayNight Day or Night during haul categorical
AphiaID http://www.marinespecies.org/ categorical
Species Latin Name for species caught categorical

Sex Sex codes at http://vocab.ices.dk/?ref=17. categorical
LngtCls millimetres numerical

CPUE-number-per-hour Catch in numbers per hour of hauling numerical

Table 5.4.1: CPUE data set information.

One important characteristic of the target variable (cpue) is that there is a drastic difference of

the cpue index based on day or night. Figures 5.4.1 and 5.4.2 show the effect of daylight on the

cpue index. Figure 5.4.1 shows that there is more opportunity during the day to make larger catches

where central south Baltic sea is a hot spot in terms of cod abundance. Figure 5.4.2 shows that

harvesting during the night is associated with a higher probability of less catch.

In Figure 5.4.3, we see the dispersion of the trawl locations in the South Baltic sea over the

years. It includes ICES areas 25 and 26 where most trawls have been carried out. As can be seen

from the figure, not all regions are equally sampled. More observations are made where cod species

is believed to be in more abundance. These observations are made using a stratified sampling

approach where each strata is a combination of a statistical rectangle and sea depth level. The

survey has taken into account the distribution pattern of these species when planning where to carry

out trawling operations.1

5.4.1 Prediction

In this section, we present spatio-temporal methods for catch prediction. We first discuss three

simple forecasting methods. Then, we consider an exponential smoothing method. After, we discuss

1https://datras.ices.dk/Documents/Manuals/Manuals.aspx
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Figure 5.4.1: Cpue during the day.

Figure 5.4.2: Cpue during the night.
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Figure 5.4.3: South Baltic Sea haul locations.

kriging methods, which are geostatistical methods for spatial and temporal prediction. Finally, we

consider a neural network approach that predicts catch using a different model for every ICES

rectangle. This model is intended to model different catch probability based on specific location

information as opposed to kriging models, which model catch prediction based only on geographical

distance between locations. Here, we focus on a general model with all the relevant statistical

rectangles included.

We use catch data from 2000 to 2012 for training and testing purposes. As our problem involves

making future predictions, we train a forecasting method using a sliding window data partitioning

approach. More specifically, we sort data points from oldest to most recent. A single training set is

created using N observations starting from the first observation in this sorted data. The testing set is

composed of the next M observations. This gives us a single training/testing partition. The second

partition (training/testing pair) is created by selecting N observations starting from the second ob-

servation in the sorted data set, and selecting the next M observations for testing. We take N = 100

and M = 15. For some of the methods, we use all cumulative observations associated with a test set

instead of the previous N as described before. We assess the generalization error of the forecasting

method using the training/testing folds created in this manner.

Some of the training/testing partitions created contain observations that belong to different quar-

ters in a year. For instance, training observations can fall into quarter 1 of 2011, and the testing

observations fall into quarter 3 of 2011. This is because cod harvesting seasons are in quarter 1 and

quarter 3 of the year. We remove such cases from our folds as this does not correspond to a real-life
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fishing trip that starts and finishes in a single season.

We use three types of simple forecasting (SF) methods. First, we use a moving average type of

simple forecasting in which a prediction is made using previous observations (SF-MA) by taking

the average of the observations associated with the ICES rectangle of the test point in the training

partition. Second, we make a prediction for a test point by taking the average of all cumulative

previous observations (SF-Global). Third, we make a prediction for a test point by assigning the

historical cumulative average of the ICES rectangle to which the test point is associated with (SF-

Spatial).

We next present exponential smoothing, kriging, and a neural network model for prediction.

After, we provide the prediction performance of each model.

5.4.1.1 Exponential Smoothing

We use the date-time, latitude, and longitude features for prediction. We first rescale these values to

[0,1]. To make a prediction for a test point, we compute its distance to each training point. To come

up with a smoothed prediction, we use the nearest 5, 10, and 20 observations. Starting from the

oldest observation, we iteratively smooth observations according to formula 5.4.1. The prediction

for the test point is obtained by computing the final value using this recursive formula.

ŷt = αxt +(1−α) ŷt−1 (5.4.1)

where α = eµ and µ is the normalized euclidean distance between two nearest observations.

5.4.1.2 Kriging

Kriging is a well-known method for spatial (and temporal) interpolation that uses previous obser-

vations to predict unsampled (future) observations. An important function used in Kriging is the

variogram function. The variogram function models the structure of the correlation over spatial and

temporal distances between observations. One typically employs a parametric form for the vari-

ogram function. It is generally assumed that nearby observations are more highly correlated than

distant observations and this assumption is reflected in the parametric functions that have been pro-

posed in the literature (Cressie and Wikle, 2015). We use three different parametric forms for the

spatiotemporal variogram (De Cesare et al., 2001). These are the separable, metric, and product-

sum form. Each of these forms combine simpler one-dimensional variogram functions. We use the

exponential one-dimensional variogram for this purpose. To estimate a variogram model numeri-

cally, we use the gstat package in the CRAN repository (Pebesma, 2004). Using data from 2007 to

2012, we first compute a sample variogram function and then fit a parametric variogram model to

this sample variogram. A sample variogram is estimated by discretizing the distances in the tempo-

ral and spatial coordinates. We use time lags of 3 hours with a temporal depth of 24 hours. For the

spatial dimension, we use a maximum distance of 100 km binned by 20 km.

There are three main parameters that control the goodness of the fit. These are the range, sill,

107



5.4.1.3 Neural Network Prediction Model

and the nugget parameter of the variogram. The range controls the distance at which the variogram

surface becomes flat. The sill parameter controls the height of the variogram. The nugget parameter

controls where the variogram cuts through the vertical axis. We present the fitted values for these

parameters in Table 5.4.2. The fit error is close in all three cases; however, it is marginally better

with the metric variogram. Figure 5.4.4 shows the sample variogram and the three fitted variograms

over spatial and temporal lags. The metric variogram is zoomed in on in Figure 5.4.4b.

(a) Sample variogram versus fitted variograms. (b) Fitted metric variogram (zoomed in).
Figure 5.4.4: Fitted variograms.

Separable ProductSum Metric

Sill 1.55E+06 5.00E-01 1.01E+06
5.00E-01

Range 1.50E+02 3.91E+01 2.00E+02
3.00E+01 4.27E+01

Nugget 3.07E-01 1.10E+01 9.58E+05
3.07E-01 5.50E-01

MSE 1.25E+12 1.25E+12 1.25E+12
Table 5.4.2: Fitted variogram parameters.

5.4.1.3 Neural Network Prediction Model

In contrast to kriging prediction that models correlation based only on pairwise spatial and temporal

distance between observations, we use separate neural networks to take into account potentially

different dependency for different locations. Our modeling strategy is to use previous observations

at one region and other regions to forecast catch at this region for every period. We take a period to

be of length 3 hours.
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Although the survey covers a wide area, a great portion of the sea is unsurveyed for various time

periods during a season. In order to be able to make forecasts for unsurveyed areas for every period,

we build a predictive model in two stages.

In the first stage, we use a model that can impute values for unsurveyed locations at a particular

time point. We use data before 2000 to train models for imputation. The predictive models are

trained with data after 2000. Based on this, we form a hybrid dataset that contains real observations

and imputed observations for particular space-time pairs. The forecasting model that uses previous

observations will be based on this hybrid dataset. We discuss each stage next.

5.4.1.4 Filling Missing Values for Unsurveyed Space-time

We use two different methods to fill in missing unsurveyed space-time values. First, we use a stan-

dard a two layer feed-forward neural network whose first layer uses a radial basis transfer function

and the second layer (output layer) uses a linear transfer function. This neural network is trained

using features such as latitude, longitude, and temporal features. Second, we use kernel regression

that uses nearby sample points weighted by a kernel function.

We vary the number of hidden nodes from 50 to 1000 for the neural network. We create 10 folds

of training and testing partitions for cross validation. The observations are allocated into each set

randomly. We present the performance of each imputation method in Table 5.4.3.

Model (hidden neurons) Cross Validation MSE
50 4.92E+06
100 4.88E+06
250 4.87E+06
500 4.87E+06
750 4.85E+06
1000 4.88E+06

Kernel Regression 4.84E+06
Table 5.4.3: Average MSE.

According to performance results in Table 5.4.3, the kernel regression method obtained the

lowest mean squared error. We choose this model for our second stage learning.

5.4.1.5 Neural Network for Cod Forecasts

In the second stage, we train a separate feedforward network for every region. Let us focus on the

network associated with a single region to describe the architecture of the networks. The input layer

is composed of nodes representing previous lagged observations for every region, while the output

layer consists of a single node representing current catch at this region. Each hidden node in the

hidden layer represents a radial basis transfer fuction that processes the input it receives from the

input layer and forwards its output to the output layer. The output layer processes the input received

from the hidden layer using a linear transfer function. We use such a function in the output layer to

predict a continuous variable that can take arbitrary values from 0 to infinity.
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The data used to train the network is a hybrid dataset that uses both real observations as well as

imputed values for various space-time lags. We employ backpropagation algorithms implemented

in the Matlab neural toolbox for training. We use rolling-time horizon validation.

We carry out experiments to determine the neural network structure that performs best. We

include as input previous catch from all regions in the prediction for region i. The number of lagged

observations included for each region is most recent 8 periods (lags 1-8, previous 24 hours). All

other regions have previous day lags (lags 9-16, between 24-48 hours ago) included as input. Since

there are 84 ICES rectangles in the dataset, the input layer is of dimension 672 (84*8) as a result.

Each period corresponds to a 3 hour length of time. We use the mean squared error measure to

evaluate the models in each experiment.

We present the performance measure of correlation and root mean squared error (RMSE) for

each predictive model in Table 5.4.4. Kriging interpolation with the metric covariance function

form does best. Moreover, simple forecasting performs relatively well. The hybridNeural technique

we propose does not do as well. However, neither of these methods obtain high correlation with

the cpue observations. This can be due to model selection as well as lack of more fine-grained data

with a higher frequency of sampling over spatial and temporal coordinates.

Model RMSE R2 (correlation) RMSE std. dev R2 std. dev

Kriging: Metric 1007.60 0.45 871.90 0.20
Kriging: Separable 1026.10 0.39 857.90 0.18
SF-Spatial 1048.00 0.50 792.00 0.20
Kriging: Product-Sum 1058.70 0.39 852.20 0.17
SF-Global 1164.40 - 834.00 -
SF-MA 1212.50 0.44 1030.90 0.22
hybridNeural 1285.50 0.22 950.00 0.35
ES (nearest 20) 1485.60 0.33 1935.70 0.15
ES (nearest 10) 1552.10 0.36 1866.18 0.17
ES (nearest 5) 1717.90 0.37 3723.00 0.19

Table 5.4.4: Average performance of predictive models.

5.4.2 Prescription

In this section, we carry out experiments to compare routing policy performance with respect to

predictive models. We use three different routing policies. These are the a priori, predecision, and

postdecision routing policies. In combination with each type of route generating policy, we use

the Kriging (Metric), Kriging (Separable), SF-Spatial, and hybridNeural prediction methods. The

predictive methods are useful to evaluate future cod catchability at various regions. The routing

heuristics discussed in Section 5.3 choose to visit a fishing region based on this evaluation of future

cod catchability.
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5.4.2.1 Experimental Design

To test the performance of different combinations of a routing strategy and a predictive model, we

use March 2013 data to create test (validation) instances that correspond to a weekly trip in March of

2013. These serve to evaluate which policy plus predictive model combination will perform better

in reality, thus have better generalizable performance.

For March 2013 in particular, the survey has been conducted only for 37 different ICES rect-

angles. Accordingly, our test instances use these ICES rectangles only. A major challenge is how

to handle the case if the decision heuristic chooses to visit an ICES rectangle with no actual ob-

servation for a particular time period. In fact, starting from March 1, 2013 until March 21, 2013,

there are only 166 sample points in our data set. However, a complete experimental test case should

consist of an observation every three hours for all 37 ICES rectangles from March 1st to March

21st. In order to overcome the sparsity and make a fair comparison of the various prediction and

decision heuristics, we use standard interpolation techniques to complete our observations. We use

leave-one-out (LOO) cross-validation to estimate the true error rate of several interpolation tech-

niques. The LOO cross-validation method has a better estimation ability of the true error rate from

among model evaluation methods such as the hold-out method, k-fold cross-validation, and repeated

subsampling.

We use all sample points from 1991 to 2014 that fall in the months of February, March, and

April. Additionally, we use features including hour, day, month, latitude, and longitude to interpo-

late cpue in March of 2013. We experiment with various interpolation methods including K-nearest

neighbors, radial basis function interpolation, generalized regression neural networks, and linear in-

terpolation. We find that K-nearest neighbors with K = 3 neighbors has the smallest average RMSE

measure (Table A1 in the Appendix). Consequently, we create test instances based on this specific

interpolation method.

We use one week’s worth of data to create each test instance whose beginning date is shifted

one period (3 hours) into the future. In each test instance, we treat observations that fall into the first

two periods as known to the decision maker.

The test instances assume a vessel with 165 hours time to complete a trip, a tank capacity to

hold 50,000 fish, and we assume that a vessel visits a fishing region at most twice at any particular

time before the duration limit is reached. We use the geographical location of Rostock (Germany)

from which vessels operate and land their catch.

We solve a total of 107 test instances. Each time we use a different combination of the four

predictive models Kriging (Metric), Kriging (Separable), SF-Spatial, and hybridNeural. For each of

the predictive models, we use the three routing strategies a priori, predecision, and postdecision. We

refer to a combination of a predictive model and routing strategy as a prescriptive model, in short.

We implement our algorithms using C++ and execute them on a high performance cluster sys-

tem. The computations are carried out on 2.6GHz machines with 16 cores and 64 GB RAM. These

machines run on the CentOS 6.4 Linux operating system. The heuristic routine is chosen to be

restarted 100 times before delivering a final solution.
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5.4.2.2 Results

In this section, we present the quality of the average reward that can be earned if a particular combi-

nation of a predictive method and rollout method is used. We focus on predictions made by Kriging

(Metric), Kriging (Separable), SF-Spatial, and hybridNeural.

Upon our initial experiments, we observe that rerouting strategies do not necessarily lead to bet-

ter outcomes. However, (Goodson et al., 2014) show that when exact solution evaluation is possible,

then a rollout algorithm can be fortified to deliver better results than an a priori solution. Although

we cannot evaluate a solution exactly, nonetheless, we implement rollout with fortification, which

is a simple variation to a rollout algorithm that updates its policy only if it has found a better policy

to follow. See Goodson et al. (2013a, 2014) and Bertsekas (2013) for more detail.

We present the average runtime (in seconds) for a single epoch in Table 5.4.5. The rows corre-

spond to the rollout method and columns are organized by predictive method. The a priori heuristic

takes about 5 seconds, on average. The predecision heuristic takes on average close to 3 seconds

per epoch. In the initial epochs, the predecision heuristic takes longer to execute than at later epochs

when the number of feasible routes has decreased significantly. The postdecision heuristic takes the

most time per epoch since it applies the heuristic from every feasible action at a given state. On

average, it takes about 67 seconds per epoch. Note, adding to the computation time, the algorithm

communicates with an external program that generates predictions at the beginning of every epoch.

hybridNeural Kriging (Metric) Kriging (Separable) SF-Spatial

a priori 5.01 6.10 7.49 4.93
predecision 2.18 2.78 2.80 5.45

postdecision 61.40 72.97 71.59 64.72
Table 5.4.5: Average runtime per epoch for each combination (seconds).

In Table 5.4.6, we present the average reward earned over all the instances for every predictive

and rollout method. The rerouting strategies do better across all the predictive methods. Moreover,

Kriging (Metric) and SF-Spatial do about equally well for predecision and postdecision state pol-

icy generation. Kriging (Metric) interpolation performs best with an average of about 41,891 cod

caught during a one-week trip in March 2013. SF-Spatial produces an average of about 41,793 cod.

Kriging (Separable) produces an average of 41,416 cod. The hybridNeural method is only able to

deliver 30,512 cod, on average.

SF-Spatial Kriging (Metric) Kriging (Separable) hybridNeural

a priori 38,971.75 39,279.47 40,697.21 28,519.61
predecision 42,822.41 43,318.33 42,138.93 31,632.78

postdecision 43,587.46 43,076.29 41,411.91 31,386.47
ave. reward 41,793.87 41,891.36 41,416.02 30,512.96

Table 5.4.6: Average reward for each combination (number of cod).

Figure 5.4.5 shows the distribution and mean reward earned by each routing strategy. Although
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there is a visual overlap between the different strategies, Table 5.4.7 shows that the a priori strategy

is statistically worse than the predecision and postdecision strategy. However, there is no statistical

difference between the predecision and postdecision strategies.
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Figure 5.4.5: Mean reward comparison.

Lower 95% Mean Difference Upper 95% p-value

( a priori − postdecision ) -4,215.50 -2,998.50 -1,781.50 2.40E-08
( a priori − predecision ) -4,328.10 -3,111.10 -1,894.10 7.16E-09

( postdecision − predecision ) -1,329.60 -112.5811 1,104.40 9.74E-01
Table 5.4.7: Pairwise differences in mean reward.

A predictive method, used in the application of the heuristic, does better ultimately because

it enables the variable neighborhood search heuristic to compare solutions correctly, i.e. routes

that would yield higher reward in actuality (according to the test instance) are ranked higher by the

heuristic evaluation of each route. It is interesting to understand the relationship between the quality

of prediction and the quality of routing.

For the following discussion, we consider the predecision routing strategy to compare all the

predictive methods. In Figure 5.4.6, a point corresponds to an RMSE error of a specific prediction

model on the groundtruth of a test instance and the associated reward as a result of applying the

predecision routing strategy on that test instance. There is a point for each of the prediction models

from Table 5.4.4 and test instance. There is a center point associated with each prediction model

marked by a colored shape. These centers are the mean RMSE and mean reward for each prediction

model. We can see that higher reward is, on average, associated with better squared error in RMSE.
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The dashed line is a linear fit through all the points and the continuous line is a quadratic fit through

all the points. There is a lower bound to the RMSE that can be attained (no prediction model is

going to achieve zero error); as a result, the quadratic line seems to be a better fit. Moreover, in

Figure 5.4.7, the relationship between prediction performance in terms of correlation and higher

reward is positive and linear. This is also a strong indication between predictive performance and

better optimization.

The top predictive methods that lead to good routing performance on the groundtruth test

instances are SF-MA, Kriging-Metric, SF-Spatial, Kriging-Separable, and Kriging-ProductSum.

Their groundtruth RMSE measures as well as optimization performance are close to each other.

Note, although the cross-validation measure for SF-MA is relatively worse in Table 5.4.4, SF-MA’s

predictions are marginally better on the test instances (green plus sign in Figure 5.4.6). However,

the groundtruth RMSE measure for SF-Spatial, Kriging-Metric, Kriging-Separable, and Kriging-

ProductSum are among the best (centers in the lower right), which is as expected based on their

cross-validation performances (Table 5.4.4). These are also associated with the top routing perfor-

mance.
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Figure 5.4.6: RMSE vs. earned reward (per predictive method).

In Figures 5.4.8a, 5.4.8b, and 5.4.9 we present the geographical route prescribed by the a priori,

predecision, and postdecision heuristic between March 1st, 2013 to March 8th, 2013, respectively.

These paths suggested by the heuristics seem to capture the regions where more abundant cod is

likely to be during the day (Figure 5.4.1).
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Figure 5.4.7: ρ vs. earned reward (per predictive method).
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Figure 5.4.8: Kriging routes.
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Figure 5.4.9: Kriging, Postdecision, number of cod = 50,000.

5.5 Conclusion and Future Work

Our experimental results rely on test instances generated by interpolation. We have tested the quality

of our estimation with LOO cross-validation; however, there is room for improving the estimation.

In K-nearest neighbor interpolation, features and/or neighbors can be weighted. In addition, nearest

neighbors can be chosen using mutual information over the features.

A potentially fruitful question is to consider machine learning techniques that focus on ranking

outcomes instead of minimizing traditional error measures. Any solution approach that compares its

best solution to the incumbent solution, under uncertainty, is influenced by the probability of making

a correct comparison which is more of a ranking problem than an estimation problem. Techniques

that focus on such a goal could be valuable (Burges et al., 2005; Cao et al., 2007; He et al., 2008;

Liu, 2009).

We used a certainty equivalence approach while searching for better solutions. This approach

associates a scalar to every solution, which may contain a significant bias with respect to the true

value of a solution. Monte carlo simulation is one method that can reduce the bias in the evaluation

of routing solutions. It works by simulating the reward that could be earned along a policy and

taking their average. Note, this will significantly increase computational time unless the algorithm

is carefully designed.

We have shown that rerouting strategies are beneficial even under relatively simple stochastic

dynamic policy classes such as the a priori policy class. We used a real data set to build predictive

models and generate test instances to validate our solution approach. We explored the relationship

between the quality of prediction and routing performance. We suggest that a better predictive

performance (squared error) implies higher earnable average reward. This suggestion is in line

with the analytical discussion on approximate objective function evaluation in Secomandi (2003),

although we do not prove the regularity conditions assumed therein in order for rollout strategies to

be preferable. Moreover, the correlation performance of a models predictions is also important.
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Chapter 6

Summary

In this thesis, we propose several methodologies for routing problems that integrate data-analytic

methods into their solution approach.

In Chapter 3, we propose a scalable cluster-first, route-second approach to the vehicle routing

problem. Our approach focuses on the shape of the clusters to obtain efficient routes. We model

the objective function of a standard clustering problem by a special distance function that takes into

account polar and angular coordinates between customer locations. Our solution approach is easy

to maintain and competitive to benchmark VRP solver.

In Chapter 4, we incorporate data to create consistency in parcel delivery problems across mul-

tiple periods. We do this by adding extra constraints to a clustering problem that optimizes over the

degree of consistency. We quantify the degree of consistency mathematically by the information

entropy function, which models consistency in a lexicographic fashion. Our solution approach is

less restrictive than existing approaches.

In Chapter 5, we focus on a fish trawling problem that allows for correlated catch across fishing

regions. We incorporate data via forecasting to reduce error on solution evaluation during local

search. We shed light on the relationship between predictive performance and quality of routing.

Qualitatively, if a model performs better in RMSE and correlation, it tends to deliver better quality

routes, on average.
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Appendix

Method RMSE Correlation

Knn, K=3 2859.2* 0.62*
Kernel regression 3600.1 0.18

Linear Interpolation 3788.7 0.33
Rbf Interpolation 3888.3 0.003

Grnn 4525.7 0.19
Table A1: Cross-validation performance.

Figure A1: Observed vs. fitted values for 2013 March cpue data.
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