
University of Iowa
Iowa Research Online

Theses and Dissertations

Summer 2012

Effective and efficient correlation analysis with
application to market basket analysis and network
community detection
Lian Duan
University of Iowa

Copyright 2012 Lian Duan

This dissertation is available at Iowa Research Online: http://ir.uiowa.edu/etd/3288

Follow this and additional works at: http://ir.uiowa.edu/etd

Part of the Business Administration, Management, and Operations Commons

Recommended Citation
Duan, Lian. "Effective and efficient correlation analysis with application to market basket analysis and network community detection."
PhD (Doctor of Philosophy) thesis, University of Iowa, 2012.
http://ir.uiowa.edu/etd/3288.

http://ir.uiowa.edu?utm_source=ir.uiowa.edu%2Fetd%2F3288&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F3288&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F3288&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/623?utm_source=ir.uiowa.edu%2Fetd%2F3288&utm_medium=PDF&utm_campaign=PDFCoverPages

EFFECTIVE AND EFFICIENT CORRELATION ANALYSIS WITH

APPLICATION TO MARKET BASKET ANALYSIS AND NETWORK

COMMUNITY DETECTION

by

Lian Duan

An Abstract

Of a thesis submitted in partial fulfillment of the
requirements for the Doctor of Philosophy

degree in Business Administration
in the Graduate College of
The University of Iowa

July 2012

Thesis Supervisor: Professor W. Nick Street

1

ABSTRACT

Finding the most interesting correlations among items is essential for prob-

lems in many commercial, medical, and scientific domains. For example, what kinds

of items should be recommended with regard to what has been purchased by a cus-

tomer? How to arrange the store shelf in order to increase sales? How to partition the

whole social network into several communities for successful advertising campaigns?

Which set of individuals on a social network should we target to convince in order to

trigger a large cascade of further adoptions? When conducting correlation analysis,

traditional methods have both effectiveness and efficiency problems, which will be

addressed in this dissertation. Here, we explore the effectiveness problem in three

ways. First, we expand the set of desirable properties and study the property sat-

isfaction for different correlation measures. Second, we study different techniques to

adjust original correlation measure, and propose two new correlation measures: the

Simplified χ2 with Continuity Correction and the Simplified χ2 with Support. Third,

we study the upper and lower bounds of different measures and categorize them by

the bound differences. Combining with the above three directions, we provide guide-

lines for users to choose the proper measure according to their situations. With

the proper correlation measure, we start to solve the efficiency problem for a large

dataset. Here, we propose a fully-correlated itemset (FCI) framework to decouple

the correlation measure from the need for efficient search. By wrapping the desired

measure in our FCI framework, we take advantage of the desired measure’s superior-

ity in evaluating itemsets, eliminate itemsets with irrelevant items, and achieve good

computational performance. In addition, we identify a 1-dimensional monotone prop-

erty of the upper bound of any good correlation measure, and different 2-dimensional

2

monotone properties for different types of correlation measures. We can either use

the 2-dimensional search algorithm to retrieve correlated pairs above a certain thresh-

old, or our new Token-Ring algorithm to find top-k correlated pairs to prune many

pairs without computing their correlations. In order to speed up FCI search, we

build an enumeration tree to save the fully-correlated value (FCV) for all the FCIs

under an initial threshold. We can either efficiently retrieve the desired FCIs for any

given threshold above the initial threshold or incrementally grow the tree if the given

threshold is below the initial threshold. With the theoretical analysis on correlation

search, we applied our research to two typical applications: Market Basket Analysis

and Network Community Detection.

Abstract Approved:

Thesis Supervisor

Title and Department

Date

EFFECTIVE AND EFFICIENT CORRELATION ANALYSIS WITH

APPLICATION TO MARKET BASKET ANALYSIS AND NETWORK

COMMUNITY DETECTION

by

Lian Duan

A thesis submitted in partial fulfillment of the
requirements for the Doctor of Philosophy

degree in Business Administration
in the Graduate College of
The University of Iowa

July 2012

Thesis Supervisor: Professor W. Nick Street

Graduate College
The University of Iowa

Iowa City, Iowa

CERTIFICATE OF APPROVAL

PH.D. THESIS

This is to certify that the Ph.D. thesis of

Lian Duan

has been approved by the Examining Committee for the
thesis requirement for the Doctor of Philosophy degree
in Business Administration at the July 2012 graduation.

Thesis Committee:

W. Nick Street, Thesis Supervisor

Gautam Pant

Jeffrey W Ohlmann

Padmini Srinivasan

Sam Burer

ACKNOWLEDGEMENTS

I would like to sincerely thank my advisor Prof. Nick Street for his continuous

support of my Ph.D research, and his patience and immense knowledge to refine my

teaching and research skills. I cannot ask for a better advisor for my Ph.D study.

Besides my advisor, I would like to thank the rest of my thesis committee: Prof.

Gautam Pant, Prof. Jeffrey W Ohlmann, Prof. Padmini Srinivasan, and Prof. Sam

Burer, for their help and insightful comments. I thank my friends in the University of

Iowa: Mohammad Khoshneshin, Michael Rechenthin, Brian Almquist, Si-Chi Chin,

Chen Yang, Senay Yasar Saglam, Ray Hylock, Mahtab Ghazizadeh, Chris Harris,

Jieqiu Chen, Zhe Song, Wenjun Wang, Bob Arens, and Viet Ha-Thuc, for their help

and the time we were working together. Last but not the least, I would like to thank

my parents (Shanfa Duan and Youxi Ke) and wife (Ningning Zhang) for supporting

me spiritually throughout my life.

ii

ABSTRACT

Finding the most interesting correlations among items is essential for prob-

lems in many commercial, medical, and scientific domains. For example, what kinds

of items should be recommended with regard to what has been purchased by a cus-

tomer? How to arrange the store shelf in order to increase sales? How to partition the

whole social network into several communities for successful advertising campaigns?

Which set of individuals on a social network should we target to convince in order to

trigger a large cascade of further adoptions? When conducting correlation analysis,

traditional methods have both effectiveness and efficiency problems, which will be

addressed in this dissertation. Here, we explore the effectiveness problem in three

ways. First, we expand the set of desirable properties and study the property sat-

isfaction for different correlation measures. Second, we study different techniques to

adjust original correlation measure, and propose two new correlation measures: the

Simplified χ2 with Continuity Correction and the Simplified χ2 with Support. Third,

we study the upper and lower bounds of different measures and categorize them by

the bound differences. Combining with the above three directions, we provide guide-

lines for users to choose the proper measure according to their situations. With

the proper correlation measure, we start to solve the efficiency problem for a large

dataset. Here, we propose a fully-correlated itemset (FCI) framework to decouple

the correlation measure from the need for efficient search. By wrapping the desired

measure in our FCI framework, we take advantage of the desired measure’s superior-

ity in evaluating itemsets, eliminate itemsets with irrelevant items, and achieve good

computational performance. In addition, we identify a 1-dimensional monotone prop-

erty of the upper bound of any good correlation measure, and different 2-dimensional

iii

monotone properties for different types of correlation measures. We can either use

the 2-dimensional search algorithm to retrieve correlated pairs above a certain thresh-

old, or our new Token-Ring algorithm to find top-k correlated pairs to prune many

pairs without computing their correlations. In order to speed up FCI search, we

build an enumeration tree to save the fully-correlated value (FCV) for all the FCIs

under an initial threshold. We can either efficiently retrieve the desired FCIs for any

given threshold above the initial threshold or incrementally grow the tree if the given

threshold is below the initial threshold. With the theoretical analysis on correlation

search, we applied our research to two typical applications: Market Basket Analysis

and Network Community Detection.

iv

TABLE OF CONTENTS

LIST OF TABLES . viii

LIST OF FIGURES . x

LIST OF ALGORITHMS . xi

LIST OF LEMMAS . xii

CHAPTER

1 INTRODUCTION . 1

1.1 Correlation Measures . 1
1.2 Applications . 2

2 CORRELATION MEASURES . 5

2.1 Introduction and Related Work 5
2.2 Correlation Properties . 9

2.2.1 General Correlation Properties 9
2.2.2 Additional Properties for Pair-only Measures 12

2.3 Formulas and Property Satisfaction 16
2.3.1 General Correlation Measures 17

2.3.1.1 Support . 17
2.3.1.2 Any-confidence 17
2.3.1.3 All-confidence 18
2.3.1.4 Bond/Jaccard 19
2.3.1.5 The Simplified χ2-statistic 19
2.3.1.6 Probability Ratio/Lift/Interest Factor 21
2.3.1.7 Leverage . 21
2.3.1.8 Likelihood Ratio 22
2.3.1.9 BCPNN . 23
2.3.1.10 Simplified χ2 with Continuity Correction 25
2.3.1.11 Interest Factor with Support 25
2.3.1.12 Two-way Support/The Simplified Mutual Infor-

mation . 26
2.3.1.13 Simplified χ2 with Support 26

2.3.2 Pair-only Correlation Measures 27
2.3.2.1 ϕ Correlation Coefficient 27
2.3.2.2 Relative Risk 27
2.3.2.3 Odds Ratio . 27
2.3.2.4 Conviction . 28
2.3.2.5 Added Value . 28

2.3.3 Summary of Correlation Measures 29
2.4 The Upper and Lower Bounds of Measures 31

v

2.4.1 Upper and Lower Bound Analysis 31
2.4.1.1 Support . 33
2.4.1.2 Any-confidence 33
2.4.1.3 All-confidence 33
2.4.1.4 Bond . 34
2.4.1.5 Correlation Measures satisfying Property 3 . . . 34
2.4.1.6 Pair-only Correlation Measures 35

2.4.2 Upper and Lower Bound Summary 35
2.4.2.1 Sub-optimal measures 37
2.4.2.2 Other general measures 37
2.4.2.3 Pair-only measures 43

2.5 Experiments . 43
2.5.1 OMOP dataset . 44
2.5.2 Facebook dataset . 47
2.5.3 Netflix Dataset . 49

2.6 Conclusion . 51

3 CORRELATED ITEMSET MINING 54

3.1 Introduction and Related Work 54
3.2 Basic Properties . 58

3.2.1 Correlation Upper Bound for Pairs 58
3.2.2 1-Dimensional Property 59
3.2.3 2-Dimensional Property 60
3.2.4 Fully-correlated Itemset Framework 63

3.3 Correlation Search . 64
3.3.1 Correlated Pair Search 64

3.3.1.1 Correlated Pairs above a Certain Threshold . . . 65
3.3.1.1.1 Performance Analysis 67

3.3.1.2 Top-k Correlated Pairs 69
3.3.1.2.1 TOP-COP Search 69
3.3.1.2.2 Token-Ring Search 70

3.3.1.3 Combination of Two Tasks 73
3.3.2 Correlated Itemset Search 74

3.3.2.1 The incremental enumeration tree generation . . 77
3.3.2.2 User Interaction Procedure 78

3.4 Experiments . 79
3.4.1 Correlated pair search . 80

3.4.1.1 Finding correlated pairs above a certain threshold 80
3.4.1.1.1 Count the number of pair candidates . . . 80
3.4.1.1.2 Search the satisfied pairs 81

3.4.1.2 Finding top-k correlated pairs 82
3.4.1.3 Combination of Two Tasks 84

3.4.2 Correlated itemset search 86
3.4.2.1 Maximal Fully-correlated Itemset Search 86
3.4.2.2 Improvement from the enumeration tree structure 89
3.4.2.3 Build the enumeration tree 91
3.4.2.4 Generate MFCIs from the enumeration tree . . . 92
3.4.2.5 User Interaction Procedure 92

vi

3.5 Conclusion . 93

4 CORRELATION-BASED NETWORK COMMUNITY DETECTION 94

4.1 Introduction . 94
4.2 Community Detection Methods 96
4.3 Network Simulation . 100
4.4 Community Detection Evaluation 103
4.5 Community Detection from Correlation Perspective 105

4.5.1 Modularity-based Community Detection 105
4.5.2 Connecting Modularity-based Community Detection with

Correlation Analysis . 105
4.5.3 Upper Bound Analysis 107
4.5.4 Ensembling Different Methods 108

4.6 Experiments . 110
4.6.1 Evaluation on Individual Methods 110

4.6.1.1 Results on Simulated Graphs 110
4.6.2 Graph Parameter Estimation 114

4.6.2.1 Results on Real Life Graphs 119
4.6.3 Evaluation on Ensemble Methods 120

4.7 Conclusion . 122

5 CONCLUSION . 123

APPENDIX . 125

REFERENCES . 139

vii

LIST OF TABLES

Table

2.1 Actual sale of beer and diapers . 6

2.2 Expected sale of beer and diapers . 6

2.3 A 2-way contingency table for variables A and B 12

2.4 The grade-gender example from 1993 . 13

2.5 The grade-gender example from 2004 . 14

2.6 The original table . 14

2.7 The modified table . 15

2.8 The conditional probability table for variables A and B 28

2.9 Formulas of correlation measures . 30

2.10 Properties of correlation measures . 31

2.11 Bounds of correlation measures . 36

2.12 Evaluation Result for OMOP data . 46

2.13 Evaluation result for Facebook data . 48

2.14 Top-3 correlated itemsets for Netflix data 51

2.15 Top-3 correlated itemsets for Netflix data 52

3.1 Pair Matrix . 60

3.2 Type 1 Correlation Upper Bound Pattern 62

3.3 Type 2 Correlation Upper Bound Pattern 62

3.4 Type 3 Correlation Upper Bound Pattern 63

3.5 An independent case . 64

3.6 Correlation upper bound of the coined data 71

viii

3.7 Correlation of the coined data . 71

3.8 Maximal fully-correlated itemsets from Netflix subset using likelihood ratio 90

3.9 Top-20 correlated itemsets for Netflix subset using likelihood ratio 90

4.1 Parameter Setting for Simulated Graphs 111

4.2 Results on simulated datasets . 112

4.3 Results on real life datasets . 120

4.4 Ensemble results on simulated datasets 121

ix

LIST OF FIGURES

Figure

2.1 Upper and lower bounds of sub-category 1 38

2.2 Upper and lower bounds of sub-category 2 40

2.3 Upper and lower bounds of sub-category 3 41

2.4 Upper and lower bounds of sub-category 4 42

2.5 Upper and lower bounds of pair-only measures 43

3.1 The number of correlated pairs under different likelihood ratio thresholds 80

3.2 The number of candidates under different thresholds 81

3.3 The runtime of determining the number of candidates under different
thresholds . 82

3.4 The runtime for retrieving the satisfied pairs 83

3.5 The number of correlation and correlation upper bound checks 85

3.6 The runtime for top-k algorithms . 85

3.7 Correlation checks for top-k search and threshold search 86

3.8 Performance results for Netflix . 87

3.9 The runtime of building the enumeration tree 91

3.10 The runtime for generating MFCIs . 92

4.1 Upper bounds of different measures for a single community 109

4.2 NMI when fixing the minimal community size 115

4.3 The number of communities when fixing the minimal community size . . 116

4.4 NMI when fixing the ratio β . 117

4.5 The number of communities when fixing the ratio β 118

x

LIST OF ALGORITHMS

Algorithm

3.1 Find the Fully-Correlated Value . 77

xi

LIST OF LEMMAS

Lemma

2.1 Variance Convergence . 24

xii

1

CHAPTER 1
INTRODUCTION

Correlation generally refers to a broad class of statistical dependence rela-

tionships among variables. The dependent phenomena include the products being

purchased together, and the trend between price and sales. Correlations are very

useful because they can be exploited for prediction in practice. However, many cor-

relation patterns are under-exploited in practice because they are buried in a huge

amount of data and not easy to find. Therefore, research on correlation analysis helps

us find these under-exploited correlation patterns. The current correlation research

mainly focuses on correlated itemset search [26, 27] for binary transaction data and

canonical correlation search [45] for numeric data. In this thesis, we only focus on

the correlation search for binary data.

1.1 Correlation Measures

With the development of scanning devices, the Internet, and computer stor-

age technologies, retailing companies like Walmart compile large databases on con-

sumers’ past transactions, and online social network sites like Facebook store friend

relationships among people. There are many interesting business questions to these

companies. For example, what kinds of items should be recommended with regard to

what has been purchased by a customer? How to arrange the store shelf in order to

increase sales? How to partition the whole social network into several communities

for successful advertising campaigns? Which set of individuals on a social network

should we target to convince in order to trigger a large cascade of further adoptions?

All the above questions are related to correlation search.

2

Although there are numerous measures available for evaluating correlations,

different correlation measures provide drastically different results. Piatetsky-Shapiro

[68] provided three mandatory properties for any reasonable correlation measure and

Tan et al. [82] proposed several properties to categorize correlation measures; however,

it is still hard for users to choose the desirable correlation measures according to

their needs. In order to solve this problem, we explore the effectiveness problem in

three ways. First, we expand the set of desirable properties and study the property

satisfaction for different correlation measures. Second, we study different techniques

to adjust original correlation measure, and propose two new correlation measures: the

Simplified χ2 with Continuity Correction and the Simplified χ2 with Support. Third,

we study the upper and lower bounds of different measures and categorize them by the

bound differences. Combining with the above three directions, we provide guidelines

for users to choose the proper measure according to their situations.

1.2 Applications

With the proper correlation measure, we apply our correlation analysis to mar-

ket basket analysis. Finding the most interesting correlations in a collection of items

is essential for problems in many commercial, medical, and scientific domains. Much

previous research focuses on finding correlated pairs instead of correlated itemsets

in which all items are correlated with each other. Though some existing methods

find correlated itemsets of any size, they suffer from both efficiency and effective-

ness problems in large datasets. Here, we propose a fully-correlated itemset (FCI)

framework to decouple the correlation measure from the need for efficient search. By

wrapping the desired measure in our FCI framework, we take advantage of the desired

measure’s superiority in evaluating itemsets, eliminate itemsets with irrelevant items,

3

and achieve good computational performance. However, FCIs must start pruning

from 2-itemsets unlike frequent itemsets which can start the pruning from 1-itemsets.

When the number of items in a given dataset is large and the support of all the pairs

cannot be loaded into the memory, the IO cost O(n2) for calculating correlation of

all the pairs is very high. In addition, users usually need to try different correlation

thresholds and the cost of processing the Apriori procedure each time for a different

threshold is very high. Consequently, we propose two techniques to solve the effi-

ciency problem. With respect to correlated pair search, we identify a 1-dimensional

monotone property of the upper bound of any good correlation measure, and differ-

ent 2-dimensional monotone properties for different types of correlation measures. We

can either use the 2-dimensional search algorithm to retrieve correlated pairs above

a certain threshold, or our new Token-Ring algorithm to find top-k correlated pairs

to prune many pairs without computing their correlations. In addition, in order to

speed up FCI search, we build an enumeration tree to save the fully-correlated value

(FCV) for all the FCIs under an initial threshold. We can either efficiently retrieve

the desired FCIs for any given threshold above the initial threshold or incrementally

grow the tree if the given threshold is below the initial threshold.

In addition, we try to apply our correlation analysis to community detection,

a hot research topic related to social networks. Modularity [62] is by far the most

used and the best community detection method. The modularity function uses the

same idea of the correlation measure Leverage which calculates the difference between

the actual number and the expected number of co-ocurrences. Inspired by other

correlation measures, we can easily change the objective function to get different

results. Since it is very hard to find the exact community information in real life

network data, we make use of benchmark network simulation [50] to test the quality

4

of detected communities obtained by different objective functions.

The remainder of this thesis is organized as follows. In Chapter 2, important

correlation properties and different correlation measures are discussed. The corre-

lation properties are used to guide the choice of different correlation measures. A

fully-correlated itemset (FCI) framework together with other speed-up techniques is

proposed to decouple the correlation measure from the need for efficient search for

correlated itemsets in Chapter 3. Then, we explore the future opportunity of making

use of correlation analysis to change the objective function of classical community

detection methods for different needs in Chapter 4. Finally, we draw a conclusion

and discuss the future work in Chapter 5.

5

CHAPTER 2
CORRELATION MEASURES

2.1 Introduction and Related Work

Since the current correlation research for binary data mainly focuses on corre-

lated itemset search, we discuss correlation measures in the context of market basket

analysis. Each record in a typical market basket transaction dataset corresponds to

a transaction, which contains a unique identifier and a set of items bought by a given

customer. The analysis of relationships between items is fundamental in many data

mining problems. For example, the central task of association analysis [2] is to dis-

cover a set of items that co-occur frequently in a transaction database. Regardless of

how the relationships are defined, such analysis requires a proper measure to evaluate

the dependencies among items.

Perhaps the most useful tactic for measuring the level of correlation of a set

of items is by measuring the lack of independence of the items. Although there

are numerous measures [37, 81] available for evaluating correlation, many of them

provide conflicting information about the correlation of a given itemset. One of the

most straightforward examples of this strategy is the popular χ2 test for independence

from statistics. An example (from [48]) of this test is as follows. We want to check for

correlation between the purchase of beer and the purchase of diapers at a supermarket.

We first produce a contingency matrix for the four possible events in Table 2.1.

Then, we produce a similar matrix of expected values, based on an assumption of

independence of the different events, in Table 2.2. The expected number of purchases

of beer without diapers (given the assumption of independence) is 5729.9 = 6323 ·

50311/55519; the expected number of purchases of beer with diapers is 593.1. Next,

6

we compute the χ2 statistic, which is a sum over the four different cells rij in the

contingency matrix: χ2 =
∑

i

∑
j
(rij−E(rij))

2

E(rij)
. In our case, this sum is 2732.8 which is

large compared to the χ2 distribution. The probability of independence is nearly zero.

We reject the null hypothesis and testify to the correlation between the purchase of

beer and diapers.

Diapers No diapers
∑

Row
Beer 1734 4589 6323

No beer 3474 45722 49196∑
Column 5208 50311 55519

Table 2.1: Actual sale of beer and diapers

Diapers No diapers
∑

Row
Beer 593.1 5729.9 6323

No beer 4614.9 44581.1 49196∑
Column 5208 50311 55519

Table 2.2: Expected sale of beer and diapers

Although we are, in general, interested in correlated sets of arbitrary size,

most of the published work with regard to correlation is related to finding correlated

pairs [37, 81]. Related work with association rules [14, 15, 66] is a special case of cor-

relation pairs since each rule has a left- and right-hand side. Given an association

rule X ⇒ Y , Support = P (X ∩ Y) and Confidence = P (X ∩ Y)/P (X) [2] [66]

are often used to represent its significance. However, these can produce mislead-

ing results because of the lack of comparison to the expected probability under the

7

assumption of independence. In order to overcome the shortcoming, Lift [14], Convic-

tion [15], and Leverage [68] are proposed. Lift = P (X ∩ Y)/(P (X)P (Y)) measures

the ratio of X and Y ’s actual co-occurrence to the expected value under the indepen-

dence assumption. Conviction = (P (X)P (Ȳ))/P (X ∩ Ȳ) compares the probability

that X appears without Y if they were independent with the actual frequency of

the appearance of X without Y . Leverage = P (X ∩ Y) − P (X)P (Y) measures the

difference of X and Y appearing together in the data set and what would be ex-

pected if X and Y were statistically independent. Dunning [30] introduced a more

statistically reliable measure, Likelihood Ratio, which outperforms other correlation

measures. Jermaine [48] extended Dunning’s work and examined the computational

issue of Probability Ratio and Likelihood Ratio. Bate et al. [7] proposed a correlation

measure called Bayesian Confidence Propagation Neural Network (BCPNN) which

is good at searching for correlated patterns occurring rarely in the whole dataset.

The above correlation measures are intuitive; however, different correlation measures

provide drastically different results. Although Tan et al. [81] proposed several prop-

erties to categorize these correlation measures and Suzuki [79] mentioned four pitfalls

for correct categorization, we are more interested in guidelines for users to choose

the desirable correlation measures according to their needs. Piatetsky-Shapiro [68]

proposed three fundamental properties for a good correlation measure. The three

fundamental properties can rule out some bad correlation measures, but other bad

correlation measures can still satisfy all of them. Szczech et al. [80] proposed a new

property for association rules instead of itemsets. Lenca et al. [52] proposed a frame-

work of selecting the desired measure based on the properties of interest. In order

to provide better guidelines for users to choose the desirable correlation measures

according to their needs, we will propose several desirable properties for correlation

8

measures and study the property satisfaction for different correlation measures in this

chapter.

With so many correlation measures, people want to know which one is the best

for their applications. For example, Zhang et al. [95] conducted experiments to select

the appropriate measure to evaluate the correlation between syndrome elements and

symptoms. By studying the literature related to correlation, we notice that different

correlation measures are favored in different domains. In text mining area, people

use likelihood ratio [30]. BCPNN is favored in the medical domain [7], while leverage

is used in the social network context [20]. Our research will examine why different

areas favor different measures.

Different from the previous work made by Geng and Hamilton. [37], we only

focus on correlation instead of the broader topic of interestingness which includes

conciseness, coverage, reliability, peculiarity, diversity, novelty, surprisingness (i.e.

correlation), and utility. Different from the previous work of Tan et al. [81], we focus

on providing the guidelines for choosing the proper correlation measure according

to users’ situations instead of categorizing correlation measures. Although this is

not a survey, we have to analyze a reasonable number of correlation measures and

test them against our proposed guidelines. Therefore, we choose the best or most

common correlation measures instead of maintaining a complete list. In addition, we

differentiate our search on the corresponding itemset cell from that on the itemset

family. Given the itemset family {A,B,C}, it includes 8 cells, such as cell {A,B,C},

cell {A,B,C̄}, and so on. Some measures like leverage [68] and the simplified χ2-

statistic [48] evaluate the correlation corresponding to a cell, but other measures like

entropy [83] and χ2-statistic evaluate the overall correlation of all the cells related

to a given itemset family. We are not interested in the search of itemset family for

9

two reasons. First, it messes up the positive correlation and negative correlation. If

A, B, and C̄ are positively correlated with each other, the search on itemset family

can only tell us the dependence of items A, B, and C, but we don’t know whether

they are positively correlated. Second, for an itemset S with the size m, we need

to calculate the value for 2m cells. Though there are some smart ways of avoiding

redundant calculation [83], it is still computationally expensive for large itemsets.

The remainder of this chapter is organized as follows. In Section 2, impor-

tant correlation properties and different correlation measures will be discussed. The

correlation properties are used to guide the choice of different correlation measures.

Section 3 shows the experimental results. Finally, we draw a conclusion in Section 4.

2.2 Correlation Properties

Since some correlation measures can only be used for pairs, we categorize

correlation measures into the general and pair-only types. Both types can evaluate

correlation for pairs, but only the general type can evaluate correlation for item-

sets. There are some general correlation properties that both types need to satisfy.

However, there are some additional properties for the pair-only measures.

2.2.1 General Correlation Properties

Given an itemset S = {I1, I2, ..., Im}, the following seven properties provide

the guidelines for a good correlation measure M according to users’ needs:

P1: M is equal to a certain constant number C when all the items in the

itemset are statistically independent.

P2: M monotonically increases with the increase of P (S) when all the P (Ii)

remain the same.

10

P3: M monotonically decreases with the increase of any P (Ii) when the re-

maining P (Ik) and P (S) remain unchanged.

P4: The upper bound of M gets closer to the constant C when P (S) is closer

to 0.

P5: M gets closer to C (including negative correlation cases) when an inde-

pendent item is added to S.

P6: The lower bound of M gets closer to the lowest possible function value

when P (S) is closer to 0.

P7: M gets further away from C (including negative correlation cases) with

increased sample size when all the P (Ii) and P (S) remain unchanged.

The first three properties proposed by Piatetsky-Shapiro [68] are mandatory

for any good correlation measure M . The first property requires a constant C to

indicate independence when the actual probability is the same as the expected prob-

ability. It is positive correlation when above C, or negative correlation when below

C. The second property requires the correlation value to increase when the expected

probability stays the same while the actual probability goes up. In other words, it

deserves more credit when we have the same expectation but the actual performance

is better. Similarly, the correlation value will decrease when the expected probability

goes up while the actual probability stays the same.

The above three mandatory properties screen out some bad correlation mea-

sures, but there are still some other bad correlation measures which satisfy all the

three mandatory properties. In order to solve the problem, we proposed another two

desired properties [26] which are the fourth and fifth properties. The fourth property

means it is impossible to find any strong positive correlation from itemsets occurring

11

rarely. In other words, the itemset at least has to happen several times in order to be

statistically valid. We want to find the significant patterns rather than coincidences.

For the fifth property, we give some penalty for adding independent items in order

to make highly-correlated itemsets stand out. In the extreme case, when a lot of

independent items are added, the final itemset is dominated by the independence and

the correlation value should be very close to the constant C.

In addition, we proposed two optional properties which are the sixth and

seventh properties. The sixth property expects the strongest negatively correlated

itemsets to come from the low Support region. It is quite intuitive since the stronger

negative correlation means lower chance of happening together. The fourth property

checks whether correlation measures can correctly evaluate positive correlation while

the sixth property checks the correct evaluation for negative correlation. Therefore,

if users are only interested in positive correlation, it doesn’t matter if the correlation

measure cannot satisfy the sixth property. Similarly, if users are only interested in

negative correlation, it doesn’t matter if the correlation measure cannot satisfy the

fourth property. However, we treat the fourth property as desired and the sixth

property as optional for the following reason. If we consider the absence of an item I

as the presence of the absence, we can find the positive correlation like {A, B̄, C} and

we understand how A, B, and C are correlated with each other. From the negative

correlation {A,B,C}, we don’t know how A, B, and C are correlated with each

other. The seventh property indicates the correlation measure should increase our

confidence about the positive or negative correlation of the given itemset S when we

get more sample data from the same population. However, we prefer it to be optional

for two reasons. First, we can always make our correlation measures a function of

the sample size isolated from other parameters. In that way, we can either keep the

12

sample size parameter to satisfy the last property or drop the sample size parameter.

Second, we might want to compare the correlation from different sources which have

different sample sizes. In order to conduct a fair comparison, we might not want the

correlation measure to satisfy the last property.

B B̄
∑

Row
A f11 f10 f1+
Ā f01 f00 f0+∑

Column f+1 f+0 N

Table 2.3: A 2-way contingency table for variables A and B

2.2.2 Additional Properties for Pair-only Measures

In addition to the above 7 properties for both general and pair-only measures,

Tan et al. [82] proposed 3 additional properties for the pair-only type measures based

on operations for 2×2 contingency tables. Table 2.3 shows a typical 2×2 contingency

table for a pair of binary variables, A and B. Each entry fij in this 2×2 tables denotes

a frequency count.

The three proposed properties on a 2 contingency table are as follows:

AP1: M remains the same when exchanging the frequency count f11 with f00

and f10 with f01.

AP2: M remains the same by only increasing f00.

AP3: M remains the same under the row/column scaling operation from Table

T to T ′, where T is a contingency table with frequency counts [f11; f10; f01; f00],

T ′ is a contingency table with scaled frequency counts [k1k3f11; k2k3f10; k1k4f01;

13

k2k4f00], and k1, k2, k3, k4 are positive constants.

The first property is the inversion property which argues that the correlation

of A and B should be the same as that of Ā and B̄. The second property is the

null addition property. Tan et al. [81] argued that the correlation between two items

should not be affected by adding unrelated data to a given data set. For example,

we are interested in analyzing the relationship between a pair of words, such as data

and mining, in a set of computer science papers. The association between data and

mining should not be affected by adding a collection of articles about ice fishing. The

third property is the scaling property. Mosteller [59] presented the following example

to illustrate the scaling property. Tables 2.4 and 2.5 show the contingency tables for

gender and the grades achieved by students enrolled in a particular course in 1993 and

2004 respectively. The data in these tables showed that the number of male students

has doubled since 1993, while the number of female students has increased by a factor

of 3. However, the male students in 2004 are not performing any better than those

in 1993 because the ratio of male students who achieve a high grade to those who

achieve a low grade is still the same, i.e., 3:4. Similarly, the female students in 2004

are performing the same as those in 1993.

Male Female
∑

Row
High 30 20 50
Low 40 10 50∑
Column 70 30 100

Table 2.4: The grade-gender example from 1993

However, the purpose of these three properties proposed by Tan et al. [81] is

14

Male Female
∑

Row
High 60 60 120
Low 80 30 110∑
Column 140 90 230

Table 2.5: The grade-gender example from 2004

to categorize correlation measures. They don’t provide any guideline for choosing

the proper correlation measure according to users’ situation. In fact, we argue these

three properties are not desirable correlation properties.

For the first inversion property, we argue the correlation of A and B is de-

termined by f11 or the other three occurrences f01, f10, and f00 instead of f00 alone.

In Table 2.6, we can fix the true probability and the expected probability of A ∩ B,

but alternate the values of f01, f10, and f00 to generate another Table 2.7. Since the

true probability and the expected probability of A and B are the same in these two

tables, the correlation of A and B in these two tables is the same. If the inversion

property stands, we can conclude that the correlation of Ā and B̄ in Table 2.6 is equal

to the correlation of Ā and B̄ in Table 2.7. However, it is controversial because the

co-occurrence of Ā and B̄ is different.

B B̄
∑

Row
A 5 4 9
Ā 11 80 91∑

Column 16 84 100

Table 2.6: The original table

For the second null addition property, the correlation of A and B should be the

15

B B̄
∑

Row
A 5 7 12
Ā 7 81 88∑

Column 12 88 100

Table 2.7: The modified table

same if only we fix the values of f11, f01, and f10. Given the extreme example that we

add a huge number of ice fishing documents into the set of computer science papers,

the ice fishing documents start to dominate the corpus and the set of computer science

papers becomes the background noise. Although the co-occurrence of the pair of

words “data” and “mining” is not changed, intuitively, we don’t want the correlation

between “data” and “mining” to be as strong as that in the initial setting since it is

the background noise now. We can also analyze this case in another way. The actual

probability of A and B is f11/(f11+f01+f10+f00) and the expected probability of A

and B is (f11+f10)/(f11+f01+f10+f00)·(f11+f01)/(f11+f01+f10+f00). For the pair

A and B, both the actual probability and the expected probability decreases when

f00 increases. The decrease of the actual probability lowers the correlation according

to Property 2, and the decrease of the expected probability increases the correlation

according to Property 3. The final change of correlation is due to the tradeoff between

the effect from the actual probability and that from the expected probability, and it

is unnecessary for these to be the same. When we add a huge number of ice fishing

documents into the set of computer science papers, the Support of the pair of words

“data” and “mining” is close to 0. The correlation of the pair of words “data” and

“mining” should also be close to the constant number C according to Property 4,

which also contradicts the null addition property.

For the third scaling property, let’s reconsider the gender-grade example shown

16

in Table 2.4 and 2.5. Though the ratio of male students who achieve a high grade to

those who achieve a low grade in 1993 is still the same as that of 2004, the ratio of

male students who achieve a high grade to those who achieve a low grade is different

from that of females. Since the portion of the male students has changed from 1993

to 2004, we are expecting the high-grade students are less likely to be male in 2004.

The correlation between grade and gender should be changed.

Though we doubt the three addition properties qualify as desirable properties

and the experimental results in this chapter support our arguments, it is still up to

users’ choice. Besides the three properties proposed by Tan et al., Geng et al. [37]

also proposed two properties for pair correlation measures as follows:

AP4: M should be an increasing function of Support if the margins in the

contingency table are fixed.

AP5: M should be an increasing function of Confidence if the margins in the

contingency table are fixed.

However, the increase of Support must cause the increase of Confidence if the

margins in the contingency table are fixed. These two rules are talking about the

same idea, and they are also rephrase Property 2 in a different way. Therefore, we

combine these two properties into Property 2.

2.3 Formulas and Property Satisfaction

In this section, we study a collection of popular correlation measures for both

the general and the pair-only types, and their property satisfaction.

17

2.3.1 General Correlation Measures

Given an itemset S = {I1, I2, ..., Im} with m items in the dataset with the

sample size n, the true probability is tp = P (S), the expected probability is ep =∏m
i=1 P (Ii), and the occurrence is k = P (S) ·n. The above parameters will be used in

different general correlation measures, and we use “Support” and “true probability”

interchangeably in this thesis.

2.3.1.1 Support

Support of the itemset S is the proportion of transactions that contain S.

Using Support, the level of correlation is simply the fraction of times that the items

co-occur. As a metric, Support facilitates fast search, but it has drawbacks [14, 15].

For example, the finding that A and B occur together in 81% of the transactions is not

interesting if A and B both occur in 90% of the transactions. This would be expected

since P (A) = P (A|B) and P (B) = P (B|A). Most simple statistical tests over A and

B would reflect this lack of true correlation between A and B, even though A and B

together have very high Support. Among all the seven properties mentioned above,

Support only satisfies Property 2 and 6 1. Since even two mandatory properties are

violated by Support, it is a poor correlation measure.

2.3.1.2 Any-confidence

Any-confidence [66] of the itemset S is the ratio of its probability to the

probability of the item with the lowest probability in S: AnyConfidence(S) =

P (S)/min(P (I1), P (I2), ..., P (Im)). The value of Any-confidence is the upper bound

of the confidence of all association rules which can be generated from the itemset S.

1The property satisfaction proofs related to each correlation measure are in the appendix.

18

It helps us to determine whether we can find at least one rule which has a confidence

greater than the specified threshold. However, it is not designed as a correlation

measure, and does not have a downward closure property [2] to facilitate search. A

property ρ is downward-closed if for every set with property ρ, all its subsets also

have property ρ.

2.3.1.3 All-confidence

All-confidence [66] of the itemset S is the ratio of its probability to the

probability of the item with the highest probability in S: AllConfidence(S) =

P (S)/max(P (I1), P (I2), ..., P (Im)). The value of All-confidence is the lower bound

of the confidence of all association rules which can be generated from the itemset S.

Although All-confidence itself possesses the downward closure property to facilitate

search, it is not designed as correlation measure and suffers the same problems as

Support. Theoretically, All-confidence lacks comparison to the expected probabil-

ity under the independence assumption. Like Support, it satisfies only the second

and the sixth of the seven desired correlation measure properties. Practically, All-

confidence shares three problems with Support. First, it is biased toward itemsets

with high-Support items. If an itemset S consists of independent, high-Support items,

Support(S) will be high (despite the independence), and AllConfidence(S) will also

be high. This problem is exaggerated if we extend our search to include the pres-

ence of some items and the absence of others, since absence of a rare item is itself a

high-Support item. This is typically not relevant in marketing but could be in, e.g.,

genetic data. Second, intuitively we want exact-length correlation patterns. However,

All-confidence is biased to short itemsets as its value decreases monotonically with

increasing itemset size. More maximal All-confidence sets are likely to be 2-itemsets

19

like maximal frequent itemsets. Third, the anti-monotone property makes it difficult

to compare correlation among itemsets of different sizes.

2.3.1.4 Bond/Jaccard

Bond [66] of the itemset S is the ratio of its probability to the probability of

the union of all the items in S: Bond(S) = P (S)/P (I1 ∪ I2 ∪ ... ∪ Im). Normally,

Jaccard is used for pairs and Bond is used for itemsets, but they share the same

idea. Bond is similar to Support but with respect to a related subset of the data

rather than the entire data set. Like Support and All-confidence, Bond possesses

the downward closure property. Given a set of strongly related rare items, both

Bond and All-confidence can assign a high score for this itemset which can relieve the

disadvantage of Support. However, worse than All-confidence, Bond satisfies only the

sixth of the seven desired correlation measure properties, and measures correlation in

a sub-optimal way.

2.3.1.5 The Simplified χ2-statistic

The χ2 is calculated as χ2 =
∑

i

∑
j (rij − E(rij))

2/E(rij). If an itemset con-

tains n items, 2n cells in the contingency table must be considered for the above

Pearson χ2 statistic. The computation of the statistic itself is intractable for high-

dimensional data. However, we can still use the basic idea behind the χ2-statistic

to create the Simplified χ2-statistic: χ′2 = (r − E(r))2/E(r), i.e., n · (tp − ep)2/ep ,

where the cell r corresponds to the exact itemset S. Since the Simplified χ2-statistic

is more computationally desirable, in the rest of thesis we only discuss the properties

and experimental results of the Simplified χ2-statistic. The value of the Simplified

χ2-statistic is always larger than 0 and cannot differentiate positive from negative

20

correlation. Therefore, we take advantage of the comparison between tp and ep. If

tp > ep, it is a positive correlation. Then the Simplified χ2-statistic is equal to

n · (tp − ep)2/ep. If tp < ep, it is a negative correlation. Then the Simplified χ2-

statistic is equal to −n · (tp − ep)2/ep. This transformed Simplified χ2-statistic is

mathematically favorable. Larger positive numbers indicate stronger positive corre-

lation, 0 indicates no correlation, and larger (in magnitude) negative numbers indicate

stronger negative correlation.

However, even if we can solve the computational problem for a given itemset,

the performance of the χ2-statistic (including the Simplified χ2-statistic) for measur-

ing correlation within the itemset framework is still very doubtful. The problem with

this correlation measure stems from the fact that each possible event should be ex-

pected to occur at least five times for the χ2 test of independence to be valid [36]. This

requirement is unrealistic in many data mining domains. For example (from [48]),

in market basket applications, it is practical to anticipate the order of 105 items (or

more) that may be purchased. Suppose each basket contains 20 items on average, and

we want to apply the χ2 test to an arbitrary three-itemset. In the best case (without

a skewed distribution of items purchased), to ensure that we would expect to find at

least one such three-itemset in the database, we would need a database with at least

((105)3)/20 ≈ 1014 transactions. That is, we require that every person on Earth pur-

chases tens of thousands of baskets. The situation deteriorates exponentially when

we move from three-way correlations to four-way, five-way, and higher-degree cor-

relations. Dunning [30] shows how the application of the χ2 test to the domain of

co-occurrence analysis in text can produce poor results. The domain is closely re-

lated to the market basket domain where we have a relatively large number of possible

“items” (words in the English language) and a database which is not large enough to

21

validate the test.

2.3.1.6 Probability Ratio/Lift/Interest Factor

Probability Ratio [15] is the ratio of its actual probability to its expected prob-

ability under the assumption of independence. It is calculated as follows: PR(S) =

tp/ep. This measure is straightforward and means how many times the itemset S

happens more than expected. In some cases, we also use the log value of Probability

Ratio. In that way, we make the constant number C in the first mandatory property

0, which is consistent with other measures. However, this measure might not still be

a reasonable correlation measure to use. The problem is that it favors the itemsets

containing a large number of items rather than significant trends in the data. For

example, given a common transaction containing 30 items and each item in this trans-

action has 50% chance to be bought individually, the expected probability for this

transaction is 9.31 ∗ 10−10 if all the items are independent. Even if this transaction

coincidentally happened once out of one million transactions, its Probability Ratio is

1073 which is still very high. However, a single transaction is hardly something that

we are interested in.

2.3.1.7 Leverage

An itemset S with higher Support and low Probability Ratio may be more

interesting than an alternative itemset S ′ with low Support and high Probability

Ratio. Introduced by Piatesky-Shapiro [68], Leverage(S) = tp− ep. It measures the

difference between the actual probability of an itemset S and its expected probability

if all the items in S are independent from each other. Since
∏m

i=1 P (Ii) is always

no less than 0, Leverage(S) can never be bigger than P (S). Therefore, Leverage is

22

biased to high-Support itemsets.

2.3.1.8 Likelihood Ratio

Likelihood Ratio is similar to a statistical test based on the loglikelihood ratio

described by Dunning [30]. The concept of a likelihood measure can be used to sta-

tistically test a given hypothesis, by applying the likelihood ratio test. Essentially, we

take the ratio of the highest likelihood possible given our hypothesis to the likelihood

of the best “explanation” overall. The greater the value of the ratio, the stronger our

hypothesis will be.

To apply the likelihood ratio test as a correlation measure, it is useful to

consider the binomial distribution. This is a function of three variables: Pr(p, k, n) →

[0 : 1]. Given our assumption of independence of all items in the itemset S, we

predict that each trial has a probability of success ep. Then the binomial likelihood

of observing k out of n transactions containing S is Pr(ep, k, n). However, the best

possible explanation of the probability of containing S is tp instead of ep. Therefore,

we perform the Likelihood Ratio test, comparing the binomial likelihood of observing

k transactions under the assumption of independence with the best possible binomial

explanation. Formally, the Likelihood Ratio in this case is LikelihoodRatio(S) =

Pr(tp, k, n)/Pr(ep, k, n).

In the rest of the thesis, we use a transformed Likelihood Ratio to measure cor-

relation for two reasons. First, since the actual Likelihood Ratio could be extremely

large, we use the ln value instead of its original value. Second, the numerator of the

Likelihood Ratio is the maximal likelihood of the real situation, so the Likelihood Ra-

tio is always larger than 1 and cannot differentiate positive from negative correlation.

When calculating the transformed Likelihood Ratio, we take advantage of the compar-

23

ison between tp and ep. If tp > ep, it is a positive correlation. Then the transformed

Likelihood Ratio is equal to ln(LikelihoodRatio(S)). If tp < ep, it is a negative corre-

lation. Then the transformed Likelihood Ratio is equal to −ln(LikelihoodRatio(S)).

This transformed Likelihood Ratio is mathematically favorable. Larger positive num-

bers indicate stronger positive correlation, 0 indicates no correlation, and larger (in

magnitude) negative numbers indicate stronger negative correlation.

The Likelihood Ratio strikes a balance between the Probability Ratio and the

actual occurrence k. It favors itemsets with both high Probability Ratio and high

occurrence. For the itemsets containing a small number of items, their occurrence

tends to be high, but the Probability Ratio tends to be low, while, for the itemsets

containing a large number of items, their Probability Ratio tends to be high, but the

actual occurrence tends to be low. Likelihood Ratio favors the middle size itemsets

which can strike a balance between the Probability Ratio and the actual occurrence.

2.3.1.9 BCPNN

Probability Ratio is straightforward and means how many times the combi-

nation happens more than expected. However, the Probability Ratio is very volatile

when the expected value is small, which makes it favor coincidences rather than sig-

nificant trends in the data. In order to solve the problem, we use shrinkage [7,29,65]

to regularize and reduce the volatility of a measure by trading a bias to no correlation

for decreased variance. For an itemset S, the calculated tp is 0 if S is not observed

in the dataset. However, we might get some transactions containing S if we get more

samples. In order to make the conservative estimation to the ground tp and ep, we

add a continuity correction number here. Suppose the continuity correction is cc, the

formula of BCPNN is BCPNN = ln(tp+ cc)/(ep+ cc). Normally, we set cc = 0.5/n

24

when the data set is relatively clean; however, it could be any positive number the-

oretically. Especially when the data set contains a lot of noisy data, we might use

larger number to make more conservative estimation. This shrinkage strength has

been successfully applied to pattern discovery in the analysis of large collections of

individual case safety reports. Noren et al. [65] claimed that it precludes highlighting

any pattern based on less than three events but is still able to find strongly correlated

rare patterns. In general, the strength and direction of the shrinkage can be adjusted

by altering the magnitude and ratio of the constants added to the nominator and

denominator, which will be fully discussed in Section 2.4. From a frequency perspec-

tive, BCPNN is a conservative version of Probability Ratio, tending towards 0 for

rare events and with better variance properties. As tp and ep increase, the impact of

the shrinkage diminishes.

Lemma 2.1 (Variance Convergence). Given the true probability p for an itemset

S in the dataset with n transactions, the variance of Probability Ratio approaches ∞

and the variance of BCPNN approaches 0 when p→ 0.

Proof. Since the occurrence of S, denoted by X, follows the binomial distribution,

we get E(X) = n · p and V ar(X) = n · p · (1− p).

(1) ProbabilityRatio = X/(n·p). Therefore, V ar(ProbabilityRatio) = V ar(X)/(n2·

p2) = (1−p)/(n·p). According to the formula, we can see that V ar(ProbabilityRatio) →

∞ when p→ 0.

(2) BCPNN = (X + cc)/(n · p+ cc). Therefore, V ar(BCPNN) = V ar(X +

cc)/(n ·p+cc)2 = (n ·p−n ·p2)/(n2 ·p2+2 ·cc ·n ·p+cc2). As p→ 0, V ar(BCPNN) →

0/cc2 = 0

25

2.3.1.10 Simplified χ2 with Continuity Correction

Inspired by the shrinkage technique applied to BCPNN, we propose a new

correlation measure, Simplified χ2 with Continuity Correction (SCWCC). Suppose the

continuity correction is cc, we add cc additional occurrences to both the actual events

and the expected events. The formula of SCWCC is SCWCC = n·(tp−ep)2/(ep+cc).

As tp gets closer to 0, the upper bounds of Likelihood Ratio, Leverage, BCPNN and

SCWCC get closer to the constant number C. However, different measures have

different biases towards different Support regions which will be discussed in Section

2.4.

2.3.1.11 Interest Factor with Support

Since interest factor (Probability Ratio) favors the rare combinations rather

than significant trends in the data and Support favors frequent combinations rather

than strong correlation, Tan et al. [64] proposed Interest factor with Support (IS)

which is the square root of the product of Interest factor and Support, i.e. IS(S) =√
ProbabilityRatio(S) · Support(S) = tp/

√
ep. When measuring pairs for binary

data, IS is exactly cosine similarity, which is n · P (A ∩ B)/
√
n · P (A) · n · P (B) =

tp/
√
ep. Therefore, we treat the cosine similarity as a special case of IS when mea-

suring binary data. Intuitively, IS is large when both Probability Ratio and Support

are large enough. In fact, the IS value of a rare large combination is still very large

which is not that much better than Probability Ratio. In addition, when all the items

in the itemset S are independent with each other, i.e. tp = ep, IS =
√
ep which is

not constant. It violates the first mandatory property.

26

2.3.1.12 Two-way Support/The Simplified Mutual Information

Sharing the same idea with IS, Zhong et al. [97] proposed Two-way Support

measure which is the product of Support and the log value of Probability Ratio, i.e.

TwoWaySupport(S) = tp · ln(tp/ep). It borrows the idea of mutual information [32]

to measure the correlation for the target cell. Better than IS, Two-way Support

satisfies the first mandatory property and uses the log value of Probability Ratio to

suppress the increase of Probability Ratio. As Support approaches 0, the decrease

from Support dominates the increase from the log value of Probability Ratio, i.e.,

its upper bound is close to 0. However, the side effect is that its lower bound also

approaches 0 when Support is close to 0. In other words, there are no significant

negatively correlated patterns for low Support itemsets, which is wrong.

2.3.1.13 Simplified χ2 with Support

Both Simplified χ2 and Probability Ratio favor rare combinations rather than

significant trends in the data. Inspired by the IS measure, we propose a new corre-

lation measure called Simplified χ2 with Support (SCWS), which is the product of

Simplified χ2 and Support. The formula of SCWS is SCWS(S) = tp · (tp− ep)2/ep.

Better than IS measure, SCWS satisfies the first mandatory property. However, the

same as IS measure, the SCWS value of a rare large combination is still very large. In

addition, the same as Two-way Support, the SCWS value of the negatively correlated

itemset gets closer to the constant number C when the Support of this itemset gets

closer to 0, which is not qualified for the negative correlation search.

27

2.3.2 Pair-only Correlation Measures

Given the typical 2×2 contingency table for a pair of binary variables in Table

2.3, the commonly-used pair-only type correlation measures are calculated as follows.

2.3.2.1 ϕ Correlation Coefficient

The ϕ Correlation Coefficient [73] is derived from Pearson’s Correlation Coef-

ficient for binary variables. The formula of the ϕ Correlation Coefficient is as follows:

(f00f11 − f01f10)/
√
f0+f1+f+0f+1. It measures the linear relationship between two

binary variables.

2.3.2.2 Relative Risk

Relative Risk [77] is the ratio of the probability of the event occurring in the

exposed group versus a non-exposed group. It is often used to compare the risk

of developing a side effect, in people receiving a drug versus people not receiving

the treatment. Given Table 2.3, the Relative Risk for the event B within the two

situations defined by A and Ā is f11/f1+
f01/f0+

.

2.3.2.3 Odds Ratio

The Odds Ratio [59] is a measure of effect size, describing the strength of

non-independence between two binary variables and comparing them symmetrically.

It plays an important role in logistic regression. The Odds Ratio is the ratio of the

odds of an event occurring in one group to the odds of it occurring in another group.

In Table 2.3, the odds for B within the two subpopulations defined by A and Ā are

defined in the terms of the conditional probabilities in Table 2.8. Thus the Odds

Ratio is (f11/f1+
f10/f1+

)/(f01/f0+
f00/f0+

) = f11∗f00
f10∗f01 . The final expression is easy to remember as

the product of the concordant cells (A = B) divided by the product of the discord

28

cells (A ̸= B). Since Relative Risk is a more intuitive measure of effectiveness, the

distinction is important especially in cases of medium to high probabilities. If action

A carries a risk of 99.9% and action B a risk of 99.0% then the Relative Risk is just

over 1, while the odds associated with action A are almost 10 times higher than the

odds with B. In medical research, the Odds Ratio is favored for case-control studies

and retrospective studies. Relative Risk is used in randomized controlled trials and

cohort studies.

B B̄

A f11/f1+ f10/f1+

Ā f01/f0+ f00/f0+

Table 2.8: The conditional probability table for variables A and B

2.3.2.4 Conviction

Conviction [15] is calculated as f1+ ∗f+0/f10. Logically, A→ B can be rewrit-

ten as ¬(A ∧ ¬B). Similar to Lift, f11/(f1+ ∗ f+1), which seeks the deviation from

independence between A and B, Conviction exams how far A ∧ ¬B deviates from

independence. In other words, Conviction looks for the correlation underlying the

rule A→ B instead of the pair A and B.

2.3.2.5 Added Value

The same as Conviction, Added Value [98] is a measure for rules instead

of pairs. Given the rule A → B, Added Value measures the difference between

Support(B) in the whole population and that in the population A. Specifically,

29

AddedV alue(A → B) = P (B|A) − P (B). If we transform the formula, we get

AddedV alue(A → B) = (P (A ∧ B) − P (A) · P (B))/P (A) = Leverage(A,B)/P (A).

It is Leverage tuned by P (A). When P (A) is small, Leverage(A,B) will also be small.

Added Value tries to divide Leverage by P (A) to prompt the correlated pattern in a

small population.

2.3.3 Summary of Correlation Measures

We have categorized both general and pair-only correlation measures. The

general type can be further divided into three sub-categories: sub-optimal measures,

basic measures, and adjusted measures. Support, Any-confidence, All-confidence, and

Bond are the sub-optimal measures. All of them violate more than one mandatory

correlation property. However, most of them have the downward closed property to

facilitate the search. The basic correlation measures, derived from simple statistical

theories, include Simplified χ2, Probability Ratio, Leverage, and Likelihood Ratio.

They satisfy all three mandatory properties, but don’t possess the downward closed

property. In addition, they might violate some desirable correlation properties. The

measures adjusted by continuity correction are BCPNN and Simplified χ2 with Con-

tinuity Correction. They use the shrinkage technique to reduce the volatility of a

measure by trading a bias to no correlation for decreased variance. In this way, we

modify the basic correlation measures to satisfy all the desirable properties. The

measures adjusted by Support include IS, Two-way Support, and SCWS. They try

to adjust the basic measures by multiplying Support to suppress the increase from

correlation measures when Support is close to 0. Table 2.9 shows the original formu-

las of measures, and Table 2.10 is a summary of the original version measures with

regard to all ten properties.

30

Correlation Measure Formula

Support tp

Any-confidence
tp

min(P (I1),P (I2),...,P (Im))

All-confidence
tp

max(P (I1),P (I2),...,P (Im))

Bond
tp

P (I1∪I2∪...∪Im)

Simplified χ2-statistic n·
(tp−ep)2

ep

Probability Ratio ln
tp
ep

Leverage tp− ep

Likelihood Ratio n · [tp · ln tp
ep +(1− tp) · ln 1−tp

1−ep]

BCPNN ln
tp+cc
ep+cc

SCWCC n·
(tp−ep)2
ep+cc

IS
tp√
ep

Two-way Support tp · ln tp
ep

SCWS n · tp·
(tp−ep)2

ep

ϕ-coefficient
f00·f11−f10·f01√
f1+·f0+·f+1·f+0

Relative Risk
f11/f1+
f01/f0+

Odds Ratio
f11·f00
f10·f01

Conviction
f1+·f+0
n·f10

Added Value
n·f11−f1+·f+1

n·f1+

Table 2.9: Formulas of correlation measures

31

Correlation Measure P1 P2 P3 P4 P5 P6 P7 AP1 AP2 AP3
Support X X

Any-confidence X X X
All-confidence X X X

Bond X X
Simplified χ2-statistic X X X X X X
Probability Ratio X X X X

Leverage X X X X X X X
Likelihood Ratio X X X X X X X

BCPNN X X X X X X
SCWCC X X X X X X X

IS X X X X
Two-way Support X X X X X

SCWS X X X X X
ϕ-coefficient X X X X X
Relative Risk X X X X
Odds Ratio X X X X X X
Conviction X X X X
Added Value X X X X

Table 2.10: Properties of correlation measures

2.4 The Upper and Lower Bounds of Measures

Among 18 correlation measures we study, the three mandatory properties

proposed by Piatetsky-Shapiro screen out 5 measures. The two desired properties

proposed by us together with the three mandatory properties can narrow down the

candidate list to 5 measures: Leverage, Likelihood Ratio, BCPNN, Two-way Sup-

port, and SCWCC. Since the candidate list still has 5 measures, a natural question

is whether they achieve the same results. In order to find the differences, we study

the upper and lower bounds of different measures when tp is fixed, and discuss the

trade-offs between Support and itemset size in this section.

2.4.1 Upper and Lower Bound Analysis

The following theorem is used to analyze the upper and lower bounds.

32

Theorem 2.2. Given an itemset S = {I1, I2, ..., Im} with the actual probability tp,

its expected probability ep is no less than tpm and no more than ((m− 1 + tp)/m)m.

Proof. (1) According to definition, ep =
∏m

i=1 P (Ii = 1). For each item Ii in S,

tp ≤ P (Ii = 1) ≤ 1. When the actual probability of each item Ii reaches the lower

bound tp and all the items occur together, the expected probability ep reaches its

lower bound tpm.

(2) Given the itemset {I1, I2, ..., Im}, we have

I1=1∑
I1=0

I2=1∑
I2=0

...
Im=1∑
Im=0

P (I1, I2, ..., Im) = 1. (2.1)

and the Support for each item Ii is

P (Ii = 1) =

I1=1∑
I1=0

...

Ii−1=1∑
Ii−1=0

Ii+1=1∑
Ii+1=0

...

Im=1∑
Im=0

P (I1, ..., Ii−1, Ii = 1, Ii+1, ..., Im).

Given the cell {Ii = 1, I1, I2, ..., Ip = 0, ..., Iq = 0, ..., Im} with more than two

items having value 0, if its probability is greater than 0, we can decrease its probability

to 0 and increase the probability of the cell {Ii = 1, I1, I2, ..., Ip = 1, ..., Iq = 0, ..., Im}

(or {Ii = 1, I1, I2, ..., Ip = 0, ..., Iq = 1, ..., Im}). By doing that, we keep P (Ii = 1) the

same but increase P (Ip = 1) (or P (Iq = 1)).

Since ep =
∏m

i=1 P (Ii = 1), ep can be increased by adjusting the probability of

the cell with more than two absent items to 0. Therefore, in order to get the maximal

ep, we can simplify Equation 2.1 to

P (I1 = 1, I2 = 1, ..., Im = 1)+
m∑
i=1

P (I1 = 1, ..., Ii−1 = 1, Ii = 0, Ii+1 = 1..., Im = 1) = 1.

Since we know P (I1 = 1, I2 = 1, ..., Im = 1) = tp, then

m∑
i=1

P (I1 = 1, ..., Ii−1 = 1, Ii = 0, Ii+1 = 1..., Im = 1) = 1− tp.

33

Therefore, we have

P (Ii = 1) = 1− P (I1 = 1, I2 = 1, ..., Ii−1 = 1, Ii = 0, Ii+1 = 1..., Im = 1)

and

m∑
i=1

P (Ii = 1) = m−
m∑
i=1

P (I1 = 1, ..., Ii−1 = 1, Ii = 0, Ii+1 = 1..., Im = 1)

= m− 1 + tp.

In order to get the maximal ep =
∏m

i=1 P (Ii = 1) when
∑m

i=1 P (Ii = 1) =

m − 1 + tp, we have P (I1 = 1) = P (I2 = 1) = ... = P (Im = 1) = (m − 1 + tp)/m.

Therefore, the upper bound of ep is ((m− 1 + tp)/m)m.

2.4.1.1 Support

Since Support(S) = tp, both the upper bound and the lower bound of Support(S)

is tp.

2.4.1.2 Any-confidence

Since tp ≤ P (Ii) ≤ 1 for each item Ii in S, the minimal value ofmin(P ({Ii|Ii ∈

S})) is tp. Suppose the maximal value of min(P ({Ii|Ii ∈ S})) is x, then we need

to find the maximal x which satisfies P (I1) ≥ x, P (I2) ≥ x, ..., and P (Im) ≥

x. In order to maintain the value of tp, x is the maximal value that all the P (Ii)

can reach simultaneously. According to Theorem 2.2, we get x = (m − 1 + tp)/m.

Therefore, the upper bound of Any-confidence(S) is tp/tp = 1 and the lower bound

is tp/((m− 1 + tp)/m) = m · tp/(m− 1 + tp).

2.4.1.3 All-confidence

Since tp ≤ P (Ii) ≤ 1 for each item Ii in S and P (I1 ∩ I2 ∩ ... ∩ Im) = tp holds

when each P (Ii) = tp, the minimal value of max(P ({Ii|Ii ∈ S})) is tp when each

34

P (Ii) = tp. When a certain P (Ii) = 1, it is still possible for P (I1 ∩ I2 ∩ ...∩ Im) = tp.

Therefore, the maximal value of max(P ({Ii|Ii ∈ S})) is 1. Then, the upper bound of

All-confidence(S) is tp/tp = 1 and the lower bound is tp/1 = tp.

2.4.1.4 Bond

Since tp ≤ P (Ii) ≤ 1 for each item Ii in S and P (I1 ∩ I2 ∩ ... ∩ Im) = tp holds

when each P (Ii) = tp, the minimal value of P (I1 ∪ I2 ∪ ... ∪ Im) is tp when each

P (Ii) = tp. When a certain P (Ii) = 1, it is still possible for P (I1 ∩ I2 ∩ ...∩ Im) = tp.

Therefore, the maximal value of P (I1 ∪ I2 ∪ ... ∪ Im) is 1. Then, the upper bound of

Bond(S) is tp/tp = 1 and the lower bound is tp/1 = tp.

2.4.1.5 Correlation Measures satisfying Property 3

In the following, we study the upper and lower bounds of the correlation

measures satisfying Property 3.

Theorem 2.3. The lower bound of ep, tpm, is no more than tp and its upper bound

((m− 1 + tp)/m)m is no less than tp.

Proof. (a) Since 0 ≤ tp ≤ 1 and m is a positive integer larger than 1, tpm ≤ tp.

(b) Let f(tp) = ((m−1+tp)/m)m−tp be a function of tp, then we have f ′(tp) = ((m−

1+ tp)/m)(m−1)−1. Since 0 ≤ tp ≤ 1, we have (m−1)/m ≤ (m−1+ tp)/m ≤ m/m.

Therefore, ((m − 1 + tp)/m)(m−1) ≤ 1 and f ′(tp) ≤ 0. Thus, f(tp) ≥ f(1) = 0. We

get ((m− 1 + tp)/m)m − tp ≥ 0, i.e., ((m− 1 + tp)/m)m ≥ tp.

Theorem 2.4. Given any correlation measure which satisfies Property 3 and an

itemset S = {I1, I2, ..., Im} with fixed tp, the correlation measure reaches its upper

bound when ep = tpm, and reaches its lower bound when ep = ((m− 1 + tp)/m)m.

35

Proof. Given any correlation measure which satisfies Property 3, its correlation value

should monotonically decrease with the increase of ep when tp is fixed. In other words,

this measure reaches its upper bound when ep reaches the lower bound tpm, given

the itemset size m and the actual probability tp. Similarly, any correlation measure

which satisfies Property 3 reaches its lower bound when ep reaches the upper bound.

2.4.1.6 Pair-only Correlation Measures

All the pair-only correlation measures in this chapter satisfy Property 3. Given

tp and m = 2, tp2 ≤ ep ≤ ((1+tp)/2)2. They reach their upper bound when ep = tp2.

When ep = tp2, we have f10 = 0, f01 = 0, and f00 = n−f11. According to the formulas

shown in Table 2.9, it is easy to get ϕub = 1, RelativeRiskub = ∞, OddsRatioub = ∞,

Convictionub = ∞, and AddedV alueub = 1− tp. The lower bounds for the pair-only

correlation measures are achieved in one or more of the following situations: (1)

f11 = tp, f10 = 1 − tp − ϵ, f01 = ϵ, and f00 = 0 where ϵ is a very small positive

number. (2) f11 = tp, f10 = ϵ, f01 = 1 − tp − ϵ, and f00 = 0 where ϵ is a very small

positive number. (3) f11 = tp, f10 = (1 − tp)/2, f01 = (1 − tp)/2, and f00 = 0. ϕ

reaches its lower bound −1−tp
1+tp

in Case 3. Relative Risk reaches its lower bound tp in

Case 1. Odds Ratio reaches its lower bound 0 when f00 = 0. Conviction reaches its

lower bound tp in Case 2. Added Value reaches its lower bound − (1−tp)2

2·(1+tp)
in Case 3.

2.4.2 Upper and Lower Bound Summary

Table 2.11 shows the upper and lower bounds of all the measures given tp.

Figures 2.1, 2.2, 2.3, 2.4, and 2.5 show the upper and lower bounds of the various

measures with respect to different Support and itemset sizes. It is easy to see that

different measures favor itemsets within different Support ranges.

36

Correlation Measure Upper Bound Lower Bound

Support tp tp

Any-confidence 1
m·tp

m−1+tp

All-confidence 1 tp

Bond 1 tp

Simplified χ2-statistic
(tp−tpm)2

tpm −(tp− (
m−1+tp

m)m)2 · (m
m−1+tp)m

Probability Ratio
tp
tpm tp· (m

m−1+tp)
m

Leverage tp− tpm tp− (m−1+tp
m)m

Likelihood Ratio tp · ln tp
tpm +(1− tp) · ln 1−tp

1−tpm −tp · ln tp·mm

(m−1+tp)m −(1− tp) · ln
(1−tp)·mm

mm−(m−1+tp)m

BCPNN
tp+cc
tpm+cc

(tp+cc)·m
m−1+tp+cc·m

SCWCC
(tp−tpm)2

tpm+cc − (tp·mm−(m−1+tp)m)2

mm·(m−1+tp)m+cc·m2m

IS tp(1−m/2) tp · (m
m−1+tp)m/2

Two-way Support (1−m) · tp · ln(tp) tp · ln(tp)−m · tp · ln m−1+tp
m

SCWS
tp·(tp−tpm)2

tpm −tp·(tp−((m−1+tp)/m)m)2

((m−1+tp)/m)m

ϕ-coefficient 1 −1−tp
1+tp

Relative Risk ∞ tp

Odds Ratio ∞ 0

Conviction ∞ tp

Added Value 1− tp −(1−tp)2
2(1+tp)

Table 2.11: Bounds of correlation measures

37

2.4.2.1 Sub-optimal measures

Since both the upper bound and lower bound of Support are itself, Support

strictly favors high Support itemset. In Figure 2.1, Any-confidence has the fixed

upper bound 1, but the lower bound of Any-confidence increases with the increase

of tp. Given an itemset with the fixed Support tp and the fixed itemset size m, we

assume its Any-confidence follows a certain distribution between its upper bound 1

and the lower bound m · tp/(m − 1 + tp). The expected Any-confidence increases

with the increase of tp when m is fixed, and the expected Any-confidence decreases

with the increase ofm when tp is fixed. Any-confidence favors high Support and small

size itemsets. Similar to Any-confidence, All-confidence and Bond favor high Support

itemsets. Though the lower bounds of All-confidence and Bond have nothing to do

with the itemset size m, Support favors small size itemsets by its nature. Therefore,

All-confidence and Bond favor small size itemsets indirectly. In addition, the lower

bounds of All-confidence and Bond are lower than that of Any-confidence. Therefore,

All-confidence and Bond favor higher Support itemsets than Any-confidence.

2.4.2.2 Other general measures

The upper bounds of the Simplified χ2-statistic and Probability Ratio increase

to infinity when Support is close to 0, which means they favor coincidences rather

than significant patterns. The only special situation is that the upper bound of the

Simplified χ2-statistic is equal to 1 instead of ∞ when the itemset size is 2. That

explains why χ2 works well for pairs but poorly for larger itemsets. As we increase the

itemset size, the upper bounds of the Simplified χ2-statistic and Probability Ratio get

higher as Support approaches 0. Compared to the Simplified χ2-statistic, Probability

Ratio is more biased to low Support itemset with large size.

38

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Support

S
up

po
rt

2−itemset
3−itemset
5−itemset

(a) Support

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Support

A
ny

−
co

nf
id

en
ce

2−itemset
3−itemset
5−itemset

(b) Any-confidence

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Support

A
ll−

co
nf

id
en

ce

2−itemset
3−itemset
5−itemset

(c) All-confidence

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Support

B
on

d

2−itemset
3−itemset
5−itemset

(d) Bond

Figure 2.1: Upper and lower bounds of sub-category 1

39

Leverage, Likelihood Ratio, BCPNN, Two-way Support, and SCWCC reach

their highest upper bound when tp is between 0 and 1. For Leverage, the maximal

value is reached when tp is between 0.5 and 0.8. In other words, the itemset with tp

between 0.5 and 0.8 has better chance to get higher value. As we can see, different

measures favor different tp regions. According to Figures 2.2 and 2.3, BCNNP favors

lowest-Support itemsets, followed by SCWCC, Likelihood Ratio, Two-way Support,

and Leverage. The favored Support range of BCPNN and SCWCC can be adjusted

by different continuity correction numbers according to Figure 2.3. Normally, we

recommend cc = 0.5/n for clear datasets. If the dataset is dirty, we might use a

larger value to favor relatively high Support region to suppress the false positive

correlations from the noise data in the low Support region, but the large value will

also suppress the true positive correlations in the low Support region at the same

time. Therefore, improper cc adjustment will degrade the effectiveness of BCPNN

and SCWCC.

Tan et al. [64] purposed IS by hoping the additional Support can suppress the

increase of Probability Ratio when Support is close to 0. It works for 2-itemsets, but

fails for large size itemsets. Better than IS, Two-way Support successfully decreases

the upper bound when Support is close to 0. However, the lower bound trend is

also reversed when the Support is close to 0, which is not what we want. We expect

the highest negatively-correlated itemsets to come from the low Support region. The

Simplified χ2 with Support has both the disadvantage of IS and the disadvantage

of Two-way Support. It successfully suppresses the upper bound of 2-itemsets and

3-itemsets, but not for itemsets with the size greater than 3. In addition, the trend

of lower bound is reversed when the Support is close to 0.

40

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Support

S
im

pl
ifi

ed
 C

hi
−

sq
ua

re

2−itemset
3−itemset
5−itemset

(a) Simplified χ2

0.0 0.2 0.4 0.6 0.8 1.0
−

4
−

2
0

2
4

Support

P
ro

ba
bi

lit
y

R
at

io

2−itemset
3−itemset
5−itemset

(b) Probability Ratio

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
0.

0
0.

2
0.

4

Support

Le
ve

ra
ge

2−itemset
3−itemset
5−itemset

(c) Leverage

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

Support

Li
ke

lih
oo

d
R

at
io

2−itemset
3−itemset
5−itemset

(d) Likelihood Ratio

Figure 2.2: Upper and lower bounds of sub-category 2

41

0.0 0.2 0.4 0.6 0.8 1.0

−
5

0
5

Support

B
C

P
N

N

2−itemset
3−itemset
5−itemset

(a) BCPNN for different itemset size when
cc = 0.00005

0.0 0.2 0.4 0.6 0.8 1.0

−
6

−
4

−
2

0
2

4
Support

B
C

P
N

N

cc=0.00005
cc=0.0005
cc=0.005

(b) BCPNN for different cc when itemset
size is 2

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

5
0.

0
0.

5
1.

0

Support

S
C

W
C

C

2−itemset
3−itemset
5−itemset

(c) SCWCC for different itemset size when
cc = 0.00005

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

5
0.

0
0.

5
1.

0

Support

S
C

W
C

C

cc=0.00005
cc=0.0005
cc=0.005

(d) SCWCC for different cc when itemset
size is 2

Figure 2.3: Upper and lower bounds of sub-category 3

42

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

Support

IS

2−itemset
3−itemset
5−itemset

(a) IS

0.0 0.2 0.4 0.6 0.8 1.0
−

1
0

1
2

3

Support

Tw
o−

w
ay

 S
up

po
rt

2−itemset
3−itemset
5−itemset

(b) Two-way Support

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Support

S
C

W
S

2−itemset
3−itemset
5−itemset

(c) Simplified χ2 with Support

Figure 2.4: Upper and lower bounds of sub-category 4

43

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Support

P
hi

−
co

ef
fic

ie
nt

(a) ϕ-coefficient

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Support

A
dd

ed
 V

al
ue

(b) Added Value

Figure 2.5: Upper and lower bounds of pair-only measures

2.4.2.3 Pair-only measures

The upper bound of ϕ-coefficient, Relative Risk, Odds Ratio, and Conviction

is a fixed number, they don’t favor any region. The highest value can come from

anywhere. The upper bound of Added Value decreases with the increase of Support,

which violates Property 4.

2.5 Experiments

There is no ground truth for us to compare with for real life datasets as

correlation search is an unsupervised learning procedure. Therefore, we will make

use of the characteristics of different datasets to evaluate the performance of different

measures.

44

2.5.1 OMOP dataset

The Observational Medical Outcomes Partnership (OMOP2) is a public-private

partnership to help monitor drug safety. For observational analysis, we want to find

correlation between drugs and conditions from a population. To facilitate the method-

ological research, it typically requires some ‘gold standard’ to measure performance.

However, the ground truth may not be absolutely determined because most observa-

tional data sources are poorly characterized, and clinical observations may be insuf-

ficiently recorded or poorly validated. Because of these issues, OMOP developed a

simulation procedure to supplement the methods evaluation.

The simulated dataset has the predefined associations between drugs and con-

ditions. For each condition, each synthetic patient has a prevalent probability of

having it. When the patient takes the related drugs for a certain condition, the

probability of having it will increase. The dataset contains ten million persons, more

than 90 million drug exposures from 5000 unique drugs and more than 300 million

condition occurrences from 4500 unique conditions over a span of 10 years. In order

to simulate the reality, most drugs and conditions only happen a few times. There-

fore, only 1/3 of the predefined associations are observed in the simulated dataset.

In addition, among those predefined associations being observed, most of them only

happen a few times.

A key step in the application of our correlation measure is the mapping of the

data into drug-condition two-by-two tables, and then we can calculate the correlation

between drugs and conditions. Among different ways of constructing two-by-two

tables for longitudinal data (such as claims databases or electronic health records),

2http://omop.fnih.org/

45

we only use the “Modified SRS” method [67] to construct the two-by-two contingency

table which is the benchmark proposed by OMOP.

We check the bias and performance for each measure. First, we calculated

the average Support of the top-K pairs retrieved by each measure. If the value is

large, the measure favors frequent correlation patterns. Second, the mean average

precision (MAP), a commonly-used metric in the field of information retrieval, is

used to evaluate each method. It measures how well a system ranks items, and

emphasizes ranking true positive items higher. Let ydc be equal to 1 if the dth drug

causes the cth condition, and 0 otherwise. Let M =
∑

d,c ydc denote the number of

causal combinations and N = D×C the total number of combinations. Let zdc denote

the correlation value for the dth drug and cth condition. For a given set of correlation

values −→z = (z11, ..., zDC), we define “precision-at-K” denoted PK(−→z) as the fraction

of causal combinations among the K largest predicted values in −→z . Specifically, let

z1 > ... > zN denote the ordered value of −→z . Then, PK(−→z) = 1
K

∑K
i=1 yi, where yi

is the true status of the combination corresponding to zi. The MAP is calculated as

1
M

∑N
K=1(P

K(−→z)·yK). The MAP is very similar to the area under the precision-recall

curve, which penalizes both types of misclassification: identifying a correlation when

no relationship exists (false positive) and failing to identify true correlations (false

negative). Table 2.12 shows the average Support of the top 1000 pairs and the MAP

for each measure.

Since only 1/3 of the predefined associations are observed, no methods can

achieve MAP beyond 0.33 unless it can infer unobserved drug-condition correlations.

In Section 2.2, correlation properties are categorized into four groups: mandatory,

desired, optional, and pair-only. Here, we study the effectiveness of these properties

in terms of selecting good correlation measures.

46

Type Measures
Average Support of
the Top 1000 pairs

Mean Average
Precision

Support 55849.62 0.0344
Sub-optimal Any-confidence 9377.08 0.0925
Measures All-confidence 32425.03 0.0668

Bond 33330.55 0.0694
Simplified χ2-statistic 31838.57 0.2258

Basic Probability Ratio 71.19 0.1102
Measures Leverage 44955.40 0.1472

Likelihood Ratio 42298.72 0.2505
BCPNN 2984.61 0.2440

Adjusted SCWCC 35370.45 0.2415
IS 32531.93 0.0961

Measures Two-way Support 43695.10 0.1876
SCWS 41345.57 0.1983

ϕ-coefficient 31855.09 0.2256
Pair-only Relative Risk 89.62 0.1070

Odds Ratio 6928.90 0.0482
Measures Conviction 4344.26 0.1020

Added Value 4344.00 0.1016

Table 2.12: Evaluation Result for OMOP data

First, Support, Any-confidence, All-confidence, Bond, and IS violate some

mandatory properties, and all their MAPs are below 0.1. If the correlation measures

satisfy all the mandatory properties, all their MAPs are above 0.1 except Odds Ratio

which is frequently used for case-control studies and retrospective studies.

Second, among all the measures satisfying all three mandatory properties, if

they satisfy two desired properties proposed by us, their MAPs are generally better.

In order to simulate the reality, most drugs and conditions only happen a few times;

therefore, the Support of most predefined associations is small. However, Leverage

favors the high Support region, and that is why Leverage doesn’t work well in this

dataset. According to the average Support of the top 1000 pairs, Leverage favors the

highest Support pairs, followed by Two-way Support, Likelihood Ratio, SCWCC, and

BCPNN, which is consistent with Figures 2.2, 2.3, and 2.4. Here, we are measuring the

47

performance of pair search. If we only consider the upper bound for pairs, SCWS also

satisfies two desired properties and its MAP is good. If we further relax Property 4 to

“The upper bound ofM won’t increase to infinity when P (S) is close to 0”, Simplified

χ2-statistic satisfies the relaxed Property 4 since its upper bound is equal to 1 instead

of∞ when the itemset size is 2. Therefore, when searching correlated pairs, Simplified

χ2-statistic works well. This also explains why statisticians usually use χ2-statistic

for pairs but doubt the performance of χ2-statistic for large-size itemsets. The upper

bound of Probability Ratio increases to infinity when P (S) is close to 0. It favors

coincidences rather than significant correlations in the data, which is verified by its

small average Support of the top 1000 pairs.

Third, Simplified χ2-statistic, Likelihood Ratio, and SCWCC satisfy all the

optional properties. Here, we are not interested in the negative correlation and search

positive correlation in one dataset. Therefore, the optional properties won’t help us

to identify good correlation measures in this experiment.

At last, satisfying the first and third additional properties cannot help us to

identity good correlation measures. In addition, only bad correlation measures satisfy

the second additional property. Therefore, we doubt the three additional properties

qualify as desired properties.

2.5.2 Facebook dataset

We crawled Facebook for the University of Iowa community. The resulting

dataset contains 41,073 people and their friend information within this community.

If we consider each friend list as a transaction and people as items in the transaction,

we can calculate the correlation between any two people in this community and get a

ranking list of how people are correlated with each other. However, we don’t have the

48

Measures Mean Average Precision Mean Personal MAP
Support 0.4415 0.7084

Any-confidence 0.3657 0.6106
All-confidence 0.4865 0.5920

Bond 0.5062 0.6302
Simplified χ2-statistic 0.5029 0.6563
Probability Ratio 0.1800 0.4312

Leverage 0.4579 0.7278
Likelihood Ratio 0.5287 0.7363

BCPNN 0.5168 0.7342
SCWCC 0.4970 0.7327

IS 0.5067 0.6582
Two-way Support 0.5177 0.7360

SCWS 0.5540 0.7104
ϕ-coefficient 0.5033 0.6564
Relative Risk 0.1275 0.1977
Odds Ratio 0.1609 0.3278
Conviction 0.2420 0.5874
Added Value 0.3224 0.7278

Table 2.13: Evaluation result for Facebook data

ground truth whether two given people are correlated or not in this real life dataset.

Therefore, we assume two given people are correlated with each other if they are

friends of each other. Since the ground truth is not perfect, the experimental result

is only complementary to the OMOP result. By using the friend relationships within

this community, we can calculate the MAP to evaluate the friend ranking list as we

do in the OMOP dataset. Another interesting question related to this dataset is how

other people are correlated to a particular person. The ranking list of this type is

useful for friend recommendation in Facebook. Similarly, we can calculate the MAP

for each ranking list related to a particular person, and then average all the personal

MAP values. All the evaluation values are shown in Table 2.13.

Surprisingly, sub-optimal measures work pretty well in this application. The

result supports why the Facebook friend recommender system recommends the per-

49

son with the most common friends. The reason why sub-optimal measures work well

in this application is as follows. If two people know 90% of the people in this com-

munity and have a lot of common friends, the chance for them to know each other

is high. Knowing each other doesn’t mean the high correlation with each other. For

example, we might make friends with a stranger who doesn’t know any of our friends.

We use friendship as a indicator for correlation because there is no better indicator

for this dataset. Although friendship biases to Support, for Simplified χ2-statistic,

Leverage, Likelihood Ratio, BCPNN, SCWCC, Two-way Support, SCWS which sat-

isfy all the mandatory and relaxed desired properties, they can still do slightly better

than Support. Another interesting measure that works well for mean personal MAP

in this application is Added Value. The formula, P (B|A) − P (B), indicates that B

can achieve a high score if B knows most of the people A knows. In social activity,

B usually has a tight connection with A first in order to know most of the people A

knows.

2.5.3 Netflix Dataset

Since different correlated itemsets might have an overlapping part, the sim-

ulation and validation procedure is controversial. Therefore, we will make use of

the characteristics of the Netflix dataset 3 to evaluate the effectiveness of different

correlated itemset search methods. Since the Netflix dataset contains 17,770 movies

and has around 480 thousand transactions, it is impossible to find the top-k corre-

lated itemsets due to the computational cost. Therefore, we create a subset of Netflix

which only contains the first 100 movies (according to the code sequence in the Netflix

dataset), and use brute-force search method to find top-k correlated itemsets in this

3http://www.netflixprize.com/

50

subset.

We show the top-3 correlated itemsets of typical measures and Support for each

itemset in Table 2.14. First, all three patterns retrieved by Support contain the movie

“Something’s Gotta Give.” It is the most popular movie in the subset. Considering

the probability of liking “Dragonheart” conditioned on liking “Something’s Gotta

Give” is lower than the probability of liking “Dragonheart,” Support is a bad measure

for correlation search. Second, Simplified χ2-statistic, Probability Ratio, IS, and the

SCWS violate the desired Property 4, and they retrieve the same three long patterns

that only happen once. The upper bounds of these four measures become steeper

when the itemset size increases from 2 to 3 to 5, and their upper bounds increase

to infinity when Support is close to 0. In other words, they favor rare itemsets with

large size. The upper bound graphs are consistent with the experimental result. If

the measure violates the desired properties proposed by us, the performance might

be good for pair search, but they are all bad for itemset search. Third, for the

measures satisfying all the mandatory and desired properties, Leverage favors frequent

correlation patterns followed by Two-way Support, Likelihood Ratio, SCWCC, and

BCPNN according to the Support of retrieved itemsets.

In the Netflix data, we can assume movies in the same series are strongly

correlated. Since this subset contains few movies in the same series, most retrieved

patterns are not movies in the same series which is hard to justify. It would be better

if we can find the top-k patterns in the whole Netflix dataset. Therefore, we make

use of the maximal fully-correlated itemset framework [25] in Section 3.2.4 to find the

top-5 patterns in the whole Netflix dataset for four typical measures in Table 2.15.

Only one of the five patterns retrieved by Support is movies in the same series. All

the five patterns retrieved by Leverage, Likelihood Ratio, and BCPNN are movies

51

Measures Top-3 correlated itemsets Support
Lilo and Stitch (2002), Something’s Gotta Give (2003) 9574

Support Something’s Gotta Give (2003), Silkwood (1983) 5248
Something’s Gotta Give (2003), Dragonheart (1996) 3736

Simplified χ2-statistic, a set with 18 movies 1
Probability Ratio, a set with 17 movies 1
IS, and SCWS a set with 17 movies 1

Lilo and Stitch (2002), Dragonheart (1996) 3108
Leverage Dragonheart (1996), Congo (1995) 1091

Spitfire Grill (1996), Silkwood (1983) 1207
Lilo and Stitch (2002), Dragonheart (1996) 3108

Two-way Support Dragonheart (1996), Congo (1995) 1091
Spitfire Grill (1996), Silkwood (1983) 1207
Dragonheart (1996), Congo (1995) 1091

Likelihood Ratio Lilo and Stitch (2002), Dragonheart (1996), Congo (1995) 501
The Rise and Fall of ECW (2004), WWE: Royal Rumble (2005) 153

My Favorite Brunette (1947), The Lemon Drop Kid (1951) 103
SCWCC The Rise and Fall of ECW (2004), WWE: Royal Rumble (2005) 153

Screamers (1996), Dragonheart (1996), Congo (1995) 120
My Favorite Brunette (1947), The Lemon Drop Kid (1951) 103

BCPNN
The Rise and Fall of ECW (2004), WWE: Royal
Rumble (2005), ECW: Cyberslam ’99 (2002)

41

WWE: Armageddon (2003), WWE: Royal Rumble (2005) 47

Table 2.14: Top-3 correlated itemsets for Netflix data

in the same series. Leverage and Likelihood Ratio find popular movie series, while

BCPNN retrieves unpopular movie series, which is consistent with our correlation

analysis.

2.6 Conclusion

In the chapter, we did a comprehensive study on effective correlation search

for binary data. First, we studied 18 different correlation measures and proposed 2

desirable properties to help us select good correlation measures. Second, we studied

different techniques to adjust original correlation measures, and use them to propose

two new correlation measures: the Simplified χ2 with Continuity Correction and the

Simplified χ2 with Support. Third, we studied the upper and lower bounds of different

measures to find their different favorable Support region. Last, we made use of the

characteristics of different data sets to validate our conclusions. In Section 1, we men-

52

Measure Maximal fully-correlated itemsets
The Lord of the Rings: The Fellowship of the Ring (2001),

The Lord of the Rings: The Two Towers (2002),
The Lord of the Rings: The Return of the King (2003)

Forrest Gump (1994),
The Green Mile (1999)

Support
The Lord of the Rings: The Two Towers (2002),

Pirates of the Caribbean: The Curse of the Black Pearl (2003)
The Lord of the Rings: The Fellowship of the Ring (2001),

Pirates of the Caribbean: The Curse of the Black Pearl (2003)
Forrest Gump(1994),

The Shawshank Redemption: Special Edition (1994)
The Lord of the Rings: The Fellowship of the Ring (2001),

The Lord of the Rings: The Two Towers (2002),
The Lord of the Rings: The Return of the King (2003)

Raiders of the Lost Ark (1981),
Indiana Jones and the Last Crusade (1989)

Leverage
Star Wars: Episode V: The Empire Strikes Back (1980),

Star Wars: Episode VI: Return of the Jedi (1983)
The Lord of the Rings: The Fellowship of the Ring: Extended Edition (2001),

The Lord of the Rings: The Two Towers: Extended Edition (2002)
Star Wars: Episode IV: A New Hope (1977),

Star Wars: Episode V: The Empire Strikes Back (1980)
The Lord of the Rings: The Fellowship of the Ring: Extended Edition (2001),

The Lord of the Rings: The Two Towers: Extended Edition (2002),
The Lord of the Rings: The Return of the King: Extended Edition (2003)

Star Wars: Episode IV: A New Hope (1977),
Star Wars: Episode V: The Empire Strikes Back (1980),

Star Wars: Episode VI: Return of the Jedi (1983)

Likelihood Ratio
The Lord of the Rings: The Fellowship of the Ring (2001),

The Lord of the Rings: The Two Towers (2002),
The Lord of the Rings: The Return of the King (2003)

Harry Potter and the Sorcerer’s Stone (2001),
Harry Potter and the Chamber of Secrets (2002)

Kill Bill: Vol. 1 (2003),
Kill Bill: Vol. 2 (2004)

Roughnecks: The Starship Troopers Chronicles:
The Homefront Campaign (2000),

Roughnecks: The Starship Troopers Chronicles:
The Klendathu Campaign (2000)

Now and Then, Here and There: Vol. 1: Discord and Doom (1999),
Now and Then, Here and There: Vol. 2: Flight and Fall (2002),

Now and Then, Here and There: Vol. 3: Conflict and Chaos (1999)

BCPNN

Dragon Ball: King Piccolo Saga: Part 1 (1986),
Dragon Ball: King Piccolo Saga: Part 2 (1986)
Dragon Ball: Piccolo Jr. Saga: Part 1 (1995),
Dragon Ball: Piccolo Jr. Saga: Part 2 (1995)
Dragon Ball: Red Ribbon Army Saga (2002),
Dragon Ball: Commander Red Saga (2002)

Dragon Ball: Piccolo Jr. Saga: Part 1 (1995),
Dragon Ball: Piccolo Jr. Saga: Part 2 (1995)
Dragon Ball: Red Ribbon Army Saga (2002)

Table 2.15: Top-3 correlated itemsets for Netflix data

53

tioned different correlation measures are favored in different domains by studying the

literature related to correlation, which can be explained by our correlation analysis.

In text mining, too frequent or rare words don’t have too much discriminative power

for classification. Therefore, they favor Likelihood Ratio to find the pattern which

is not too rare or too frequent [30]. In medical domain, the associations between

frequent diseases and frequent symptoms have already been observed in the clinical

trials. The big issue is how to find the correlation between rare diseases and rare

symptoms. That is why they use BCPNN [7]. In social networks, people are more

interested the patterns affecting a larger population. Therefore, they favor Lever-

age [20]. We recommend Leverage for searching obvious patterns in the dataset that

we know nothing about. We suggest Likelihood Ratio, Simplified χ2 with Continuity

Correction, and Two-way Support for searching typical patterns in the dataset that

we know something of. We refer BCPNN for searching rare patterns in the dataset

that we know well.

54

CHAPTER 3
CORRELATED ITEMSET MINING

3.1 Introduction and Related Work

Much previous research focuses on finding correlated pairs instead of correlated

itemsets in which all items are correlated with each other. However, there are some

applications in which we are specifically interested in correlated itemsets rather than

correlated pairs. For example, we are interested in finding sets of correlated stocks in

a market, or sets of correlated gene sequences in a microarray experiment. But finding

correlated itemsets is much harder than finding correlated pairs because of three major

problems. First, computing correlation for each possible itemset is an NP-complete

problem [48]. Second, if there are some highly correlated items within an itemset

and the rest are totally independent items, most correlation measures still indicate

that the itemset is highly correlated. No existing measure provides information to

identify the itemsets with independent items. Third, there is no guarantee that the

itemset has high correlation if any of its strict subsets are highly correlated. Since the

correlated pair search can be considered a special case of the correlated itemset search

for 2-itemsets, we focus on the correlated itemset search in the rest of the chapter.

The first related technique for correlated itemset search is frequent itemset

mining. By using support, the search is fast. However, co-occurrence is related to

two factors: the correlation and the single item support within the itemset. In other

words, co-occurrence is related but not equal to correlation. The second technique is

to find the top-k correlated itemsets. Tan et al. [81] compared 21 different measures

for correlation. Only six of the 21 measures can be used to measure the correlation

within a given k-itemset.

55

The above correlation measures can search for more meaningful correlated

patterns than support, but do not have the downward-closed property to reduce

the computational expense. Once we can find a set which does not satisfy a given

downward-closed property, we can prune the exponential superset search space imme-

diately. Since existing correlation measures satisfying the three primary correlation

properties [25] do not possess the downward-closed property to facilitate the search,

finding the top-k correlated itemsets is very computationally expensive. To sum up,

frequent itemset mining is efficient, but not effective; top-k correlated itemset mining

is effective, but not efficient. In order to solve the problem, others proposed efficient

correlation measure like all-confidence [66]. All-confidence is as fast as support; how-

ever, the correlation is still measured in a sub-optimal way. Requiring the correlation

measure to be both effective and efficient is too demanding. Instead of proposing

another efficient correlation measure, we propose the framework of fully-correlated

itemsets (FCI) [25], in which any two subsets are correlated. This framework can not

only decouple the correlation measure from the need for efficient search, but also rules

out the itemsets with irrelevant items. With it, we only need to focus on effectiveness

when selecting correlation measures.

Even though the FCI framework can impose the downward-closed property

for any given correlation measure, there are still two computational issues to find

the desired maximal fully-correlated itemsets (MFCIs). First, unlike finding maximal

frequent itemsets which can start pruning from 1-itemsets, finding MFCIs must start

pruning from 2-itemsets. However, as the number of items and transactions in the

dataset increases, calculating the correlation values for all the possible pairs is com-

putationally expensive. Since there is no monotone property for correlation measures

which can help prune, the brute-force method is straightforward. When a database

56

contains 105 items, a brute-force approach requires computing the correlation value

of 0.5 ∗ 1010 pairs. Even worse, when the support of all the pairs cannot be loaded

into the memory, the IO cost for retrieving supports is much more expensive than

the computational cost for calculating correlations. Therefore, an efficient correlated

pair search algorithm can speed up the MFCI search.

The most significant progress on correlated pair search was made by Xiong

et al. [89, 90], who made use of the upper bound of the Pearson correlation coef-

ficient (ϕ-coefficient) for binary variables. The computation of this upper bound

is much cheaper than the computation of the exact correlation because this upper

bound is a function of single item supports. In addition, the upper bound has special

1-dimensional and 2-dimensional properties that prune many pairs from the search

space without the need to compute their upper bounds. The algorithm TAPER [90]

makes use of the 1-dimensional and 2-dimensional properties to retrieve correlated

pairs above a given threshold. The algorithm TOP-COP [89] uses the 1-dimensional

property and a diagonal traversal method, combined with a refine-and-filter strat-

egy, to efficiently find the top-k pairs. However, this work is only related to the

ϕ-coefficient, which is not the only or the best correlation measure. Second, users

usually need to try different correlation thresholds for different desirable MFCIs.

For example, when we set the likelihood ratio threshold to 15, 000 using the Netflix

dataset, we successfully retrieve the series of “Lord of the Rings 1, 2, and 3” in one

MFCI; however, we only retrieve several pairs of the TV show “Sex and the City”

like {1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}. In order to get the whole series of “Sex

and the City 1, 2, 3, 4, 5, 6” in one MFCI, we have to lower the threshold to 8000.

However, the cost of processing the Apriori procedure each time for a different corre-

lation threshold is very high. Since the framework of FCI is relatively new, there is

57

no related work on improving its efficiency.

Since itemset mining has a long history from 1993 when frequent itemset min-

ing [2] was proposed, a lot of related concepts are proposed such as closed itemset [92],

contrast itemset [1], and discriminative itemset [19]. These concepts are related to

each other in a certain degree; however, in this chapter, we only focus on the per-

formance issue and the general framework of finding correlated itemsets where the

correlation measure must explicitly use the measures true probability tp and expected

probability ep. In addition, there are several other issues related to correlation that

we also don’t address here, such as statistical type-1 and type-2 error reduction, error-

tolerant methods using sampling, and the existing optimization methods on itemset

mining. In Chapter 2, we carefully studied 18 correlation measures and provided

four extra properties for correlation measures from the statistical point of view which

can help users to choose the correlation measure retrieving results closer to human

intuition. Webb [87] proposed a framework of reducing the type-1 and type-2 error

of itemset mining which can be applied to our pattern search framework. Zhang and

Feigenbaum [94] studied the distribution of the ϕ-coefficient and relaxed the upper

bound in TAPER in order to speed up search. Guns et al. [43] formulated the tra-

ditional itemset mining problem, such as frequent, closed, and discriminative itemset

mining, as constraint programming problems, and then applied an existing solver for

constraint programming to speed up the search. However, traditional itemset mining

can easily retrieve the value of a given itemset S, while the fully-correlated itemset

mining cannot retrieve the value of a given itemset S without calculating the value of

all the subsets of S. Therefore, there is no obvious way of formulating our problem

as a constraint programming problem.

The rest of this chapter is organized as follows. Section 2 presents basic notions

58

of correlation upper bound, 1-dimensional and 2-dimensional properties, and the fully-

correlated itemset framework. We propose several methods to speed up correlated

pair and correlated itemset search in Section 3. Section 4 shows the experimental

results. Finally, we draw a conclusion in Section 5.

3.2 Basic Properties

In this section, some basic properties of correlation are introduced to better

explain the improved performance of correlation search. We only address the perfor-

mance issue related to the correlation measures satisfying the first three mandatory

properties in Section 2.2.1. Without loss of generality, in this chapter we do experi-

ments by using the typical correlation measure [25], likelihood ratio, which measures

the ratio of the likelihood of k out of n transactions containing the itemset S when the

single trial probability is the true probability to that when the single trial probability

is the expected probability if all the items in S are independent from each other.

3.2.1 Correlation Upper Bound for Pairs

Theorem 3.1. Given any pair {Ii, Ij} and support values P (Ii) for item Ii and

P (Ij) for item Ij, the correlation upper bound CUB(Ii, Ij), i.e. the highest possi-

ble correlation value of the pair {Ii, Ij}, is the correlation value for {Ii, Ij} when

P (Ii ∩ Ij) = min{P (Ii), P (Ij)}.

Proof. The upper bound of the support value P (Ii ∩ Ij) for the 2-itemset {Ii, Ij} is

min{P (Ii), P (Ij)} and the lower bound is max{0, P (Ii) + P (Ij)− 1}. For the given

P (Ii) and P (Ij), any correlation measure reaches its upper bound when P (Ii ∩ Ij) =

min{P (Ii), P (Ij)} and its lower bound when P (Ii ∩ Ij) = max{0, P (Ii) + P (Ij)− 1}

according to correlation property 2.

59

The calculation of correlation upper bound (CUB) for pairs only needs the

support of each item which can be saved in memory even for large datasets; however,

the calculation of correlation for pairs needs the support of pairs, incurring a high IO

cost for large datasets. Given a 2-itemset {Ii, Ij}, if its correlation upper bound is

lower than the correlation threshold we specify, there is no need to retrieve the support

of the 2-itemset {Ii, Ij}, because the correlation value for this pair is definitely lower

than the threshold no matter what the support is. If we only retrieve the support of

a given pair in order to calculate its correlation when its upper bound is greater than

the threshold, we will save a lot of unnecessary IO cost when the threshold is high.

3.2.2 1-Dimensional Property

Although the correlation upper bound calculation can save a lot of unnecessary

IO cost, it still requires the correlation upper bound calculation for all the possible

pairs. Therefore, we make use of the 1-dimensional property to eliminate unnecessary

upper bound checks. It is motivated by the search algorithm TAPER [90] for the ϕ-

coefficient. In order to fit the situation for any good correlation measure, we sort the

items according to their supports in increasing order instead of decreasing order as

in TAPER.

Theorem 3.2. Given a user-specified threshold θ and an item list {I1, I2, ..., Im}

sorted by support in increasing order, the correlation upper bound of {Ii, Ik} is less

than θ if the correlation upper bound of {Ii, Ij} is less than θ and i < j < k.

Proof. Since i < j < k and the item list {I1, I2, ..., Im} is sorted by support in

increasing order, P (Ii) ≤ P (Ij) ≤ P (Ik). Then, the support upper bound of both

{Ii, Ij} and {Ii, Ik} is equal to P (Ii). For the pair {Ii, Ij}, Pupper(Ii ∩ Ij) = P (Ii)

and Pexpected(Ii ∩ Ij) = P (Ii)P (Ij). For the pair {Ii, Ik}, Pupper(Ii ∩ Ik) = P (Ii)

60

I1 I2 I3 I4 I5 I6
I1 X X X X X
I2 X X X X
I3 X X X
I4 X X
I5 X
I6

Table 3.1: Pair Matrix

and Pexpected(Ii ∩ Ik) = P (Ii)P (Ik). Therefore, Pupper(Ii ∩ Ik) = Pupper(Ii ∩ Ij), and

Pexpected(Ii ∩ Ik) ≥ Pexpected(Ii ∩ Ij) because P (Ik) ≥ P (Ij). According to correlation

property 3, we get CUB(Ii, Ik) ≤ CUB(Ii, Ij). Since CUB(Ii, Ij) < θ, CUB(Ii, Ik) <

θ.

To get all the pair correlation upper bounds, we need to calculate an n × n

matrix for an item list sorted by support as shown in Table 3.1. Since this matrix

is symmetrical, we only need to calculate the upper part above the diagonal. If the

data set contains n items, (n−1) branches (rows) need to be calculated. The pairs in

branch i are {Ii, Ij} where i+1 ≤ j ≤ n. The reference item Ii is fixed in each branch

i and it has the minimum support value due to the way we construct the branch.

Since items in each branch are also sorted based on their support in increasing order,

the correlation upper bound of {Ii, Ij} monotonically decreases with the increase of

j by Theorem 3.2. In other words, CUB(Ii, Ik) < θ when CUB(Ii, Ij) < θ and

j + 1 ≤ k ≤ n.

3.2.3 2-Dimensional Property

When the threshold is low, we might still calculate a lot of correlation upper

bounds by using the 1-dimensional property. In order to avoid too many correlation

61

upper bound checks, a 2-dimensional property similar to TAPER [90] for the ϕ-

coefficient is used. However, we present different 2-dimensional properties and use

different search sequences for three different types of correlation measures.

Given three items Ii, Ij, and Ik with P (Ii) ≥ P (Ij) ≥ P (Ik), the correlation

measure M is

• Type 1 if CUB(Ii, Ij) ≥ CUB(Ii, Ik).

• Type 2 if CUB(Ii, Ij) ≤ CUB(Ii, Ik).

• Type 3 if CUB(Ii, Ij) = CUB(Ii, Ik).

Given an itemset S = {I1, I2, ..., Im} with m items, the actual probability is

tp = P (S), the expected probability is ep =
∏m

i=1 P (Ii). The simplified χ2-statistic,

leverage, likelihood ratio, and ϕ-coefficient are all type 1 correlation measures. Al-

though we know of no existing type 2 correlation measure, we can construct a type

2 correlation measure which satisfies all the three mandatory correlation properties

like

Correlationtype2 =

{ √
tp−ep
ep

, when tp ≥ ep

−
√
ep−tp
ep

, when tp < ep
(3.1)

Probability ratio is a type 3 correlation measure.

If we sort items according to their support values in increasing order and

calculate the upper bound for each pair, Tables 3.2, 3.3, and 3.4 show the typical

patterns of different types of correlation measures. For different types of correlation

measures, we get different 2-dimensional properties. For type 1 correlation measures,

the upper bound value decreases from left to right and from bottom to top. If the

upper bound of the current cell {Ii, Ij} is below θ, then CUB(Ip, Iq) < θ when

1 ≤ p ≤ i and j ≤ q ≤ n. In the example, if the correlation upper bound of the

randomly selected cell {I2, I5} is below θ = 40, the cells in the gray area are all below

62

I1 I2 I3 I4 I5 I6
I1 43 39 35 26 13
I2 56 41 33 25
I3 42 37 29
I4 59 37
I5 46
I6

Table 3.2: Type 1 Correlation Upper Bound Pattern

I1 I2 I3 I4 I5 I6
I1 92 84 76 69 51
I2 75 67 58 41
I3 55 42 38
I4 36 23
I5 17
I6

Table 3.3: Type 2 Correlation Upper Bound Pattern

θ. For type 2 correlation measures, the upper bound value decreases from left to

right and from top to bottom. If the upper bound of the current cell {Ii, Ij} is below

θ, then CUB(Ip, Iq) < θ when i ≤ p ≤ n − 1 and max(p + 1, j) ≤ q ≤ n. In the

example, if the correlation upper bound of the randomly selected cell {I2, I5} is below

θ = 60, the cells in the gray area are all below θ. For type 3 correlation measures,

the rightmost column has the lowest upper bound value. If the upper bound of the

current cell {Ii, Ij} is below θ, then the upper bounds of any cell to its right is below θ.

In the example, if the correlation upper bound of the randomly selected cell {I2, I5}

is below θ = 40, the cells in the gray area are all below θ.

63

I1 I2 I3 I4 I5 I6
I1 53 41 37 23 17
I2 41 37 23 17
I3 37 23 17
I4 23 17
I5 17
I6

Table 3.4: Type 3 Correlation Upper Bound Pattern

3.2.4 Fully-correlated Itemset Framework

Correlation search for arbitrary size itemsets has two more problems than that

for pairs. First, we need a way to rule out independent items from a given itemset.

Second, we need a framework or a measure with downward-closed property to speed

up the search. Since no existing correlation measures satisfying the three correlation

properties can solve either of the above problems, we proposed the fully-correlated

itemset framework [25].

Definition 1. Given an itemset S and a correlation measure, if the correlation value

of any subset containing no less than two items of S is higher than a given threshold

θ, this itemset S is a fully-correlated itemset.

This definition has two very important properties. First, it can be incorporated

with any correlation measure for itemsets to impose the downward-closed property

which can help us to prune unsatisfied itemsets quickly like Apriori [2]. If a given

itemset S is not a fully-correlated itemset, it must contain a subset S ′ whose corre-

lation is below the threshold. Since the subset S ′ is a subset of any superset of S,

any superset of S is not a fully-correlated itemset either. With this framework, we

only need to focus on effectiveness side when selecting correlation measures. Second,

it helps to rule out an itemset with independent items. For example in Table 3.5,

64

C not C
B not B B not B

A 25 25 25 425
not A 25 25 25 425

Table 3.5: An independent case

B is correlated with C, and A is independent from B and C. Suppose we use the

likelihood ratio and set the correlation threshold to be 2. The likelihood ratio of the

set {A,B,C} is 8.88 which is higher than the threshold. But the likelihood ratio of its

subset {A,B} which is 0 doesn’t exceed the threshold. According to our definition,

the set {A,B,C} is not a fully-correlated itemset. The only fully-correlated itemset

in this example is {B,C} whose likelihood ratio is 17.93.

3.3 Correlation Search

As the number of items and transactions in the data set increases, calculating

the correlation values for all the possible pairs is already computationally expensive,

and it is much harder to calculate correlation for all the possible itemsets. We propose

several methods to handle the efficiency problem.

3.3.1 Correlated Pair Search

Correlated pair search is a special case of correlated itemset search. Unlike

frequent itemset search which can start pruning for 1-itemsets, correlated itemset

search even with the downward-closed property has to start pruning with 2-itemsets.

Therefore, correlated pair search is the cornerstone of correlated itemset search. In

general, there are two types of correlated pair searches: correlated pairs above a

certain threshold and top-k correlated pairs. Although the correlation itself doesn’t

have a monotone property to help prune, the correlation upper bound does. Conse-

quently, we make use of the 1-dimensional monotone property of the upper bound of

65

any good correlation measure, and different 2-dimensional monotone properties for

different types of correlation measures. We can either use the 2-dimensional search

algorithm to retrieve correlated pairs above a certain threshold, or our new Token-

Ring algorithm to find the top-k correlated pairs, to prune many pairs without the

need to compute their correlations. Although the 2-dimensional search algorithm

can efficiently find correlated pairs above a given threshold, it is difficult for users to

provide an appropriate correlation threshold in real-world applications since different

data sets have different characteristics. Instead, we try to find the top-k correlated

pairs. However, when using the Token-Ring algorithm to find the top-k correlated

pairs, we could spend a lot of time on calculation and end up with trivial results in

a data set that doesn’t contain strong positive correlations. Therefore, we propose a

user procedure to combine the 2-dimensional search algorithm and the Token-Ring

algorithm to reconcile the two tasks.

3.3.1.1 Correlated Pairs above a Certain Threshold

In this subsection, we focus on the task of finding correlated pairs above a

certain threshold. The easiest way of speeding up search is calculating the correlation

upper bound before the actual correlation measure. If the upper bound is already

below the threshold, there is no need to retrieve the pair support to calculate the

correlation. Therefore, we greatly reduce IO cost for high thresholds. Upper bound

checking needs to calculate the upper bound of all the possible n(n−1)/2 pairs which is

still computationally expensive. The 1-dimensional property can be used to save a lot

of unnecessary upper bound checks for very high thresholds. We specify the reference

item A and start a search within each branch. The reference item A is fixed in each

branch and it has the minimum support value due to the way we construct the branch.

66

Items in each branch are also sorted based on their support in increasing order. By

Theorem 3.2, the correlation upper bound of {A,B} monotonically decreases with

the increase of the support of item B. Therefore, if we find the first item B, the

turning point, which results in an correlation upper bound less than the user-specified

threshold, we can stop the search for the current branch. If the upper bound is greater

than the user-specified threshold, we calculate the exact correlation and check whether

this pair is really satisfied. Furthermore, the 2-dimensional property can be used to

prune cells faster. The key difference between 1-dimensional search and 2-dimensional

search is that the 2-dimensional search algorithm records the turning point in the

previous branch and starts computing from that point instead of the beginning of the

current branch. But we will use different search sequences for three different types

of correlation measures. For type 1 correlation measures, we start the search from

the upper-left corner. If the upper bound of the current cell is above the threshold

θ, we will check the cell to the right of it; else we will instead check the cell under

it. Take the threshold 36 in Table 3.2 for example, the search sequence is (I1, I2),

(I1, I3), (I1, I4), (I2, I4), (I2, I5), (I3, I5), (I3, I6), and (I4, I6). The upper bound of

any cell below this boundary is greater than the threshold θ. For type 2 correlation

measures, we start the search from the upper-right corner. If the upper bound of the

current cell is greater than θ, we check the cell below the current cell; else, we check

the cell to the left of the current cell. Take the threshold 45 in Table 3.3 for example,

the search sequence is (I1, I6), (I2, I6), (I2, I5), (I3, I5), and (I3, I4). The upper bound

of any cell above this boundary is greater than θ. For type 3 correlation measures,

the rightmost column has the lowest upper bound value. We only need to search the

first branch. If the current column is above the threshold, we continue the search of

the right-side column until the current column is below the threshold.

67

3.3.1.1.1 Performance Analysis

Theorem 3.3. The number of upper bound calculations in the 2-dimensional search

is between n− 1 and 2n− 3 for the first type, n− 1 for the second type, and between

1 and n− 1 for the third type.

Proof. For the 2-dimensional search in type 1, the number of calculations is deter-

mined by the cell where we stop on the right most column. If the algorithm stops at

the upper-right corner, the whole search moves from left to right n− 1 times. If the

algorithm stops at the lower-right corner, the whole search moves from left to right

n − 1 times and from up to down n − 2 times, so there are n − 1 + n − 2 = 2n − 3

movements. Since the search might stop at any cell on the most right column, the

calculation for type 1 is between n− 1 and 2n− 3.

For the second type, the search starts at the upper-right corner and stops at

one of the border cells along the diagonal, that is, cell Ci,i+1 where i = 1, 2, ..., n− 1.

From the upper-right corner cell C1,n to the cell Ci,i+1, we have to make i movements

from up to down and n− i− 1 movements from right to left. In all, we need to make

i+ n− i− 1 = n− 1 movements no matter in which cell we stop the search.

For the third type, we stop the search between the calculation for the first

column and that of the last column, so the number of calculation is between 1 and

n− 1.

Different methods of facilitating correlated pair search above a certain thresh-

old are discussed in this section. If we don’t make use of correlation upper bound at

all, we need to calculate the correlation for all the possible pairs to find correlated

pairs above a threshold. This brute-force method will have n(n−1)/2 support IO cost

and n(n− 1)/2 correlation calculations. Here, we call a pair a candidate if its corre-

68

lation upper bound is greater than the user-specified threshold θ. For a given dataset

and θ, the number of candidates, α, is fixed. For each candidate, we have to calculate

its true correlation to determine whether its correlation is above the threshold or not.

No matter which method we use, the IO cost of retrieving support and the computing

cost of correlation for α candidates are inevitable. The only difference is the number

of correlation upper bound checks. If it is just upper bound calculation, n(n − 1)/2

upper bounds need to be calculated. If it is 1-dimensional search, α plus an extra β

upper bounds need to be calculated where β is between 0 and n − 1 depending on

in how many branches we check all the cells. If it is 2-dimensional search, γ upper

bounds need to be calculated which is between n− 1 and 2n− 3 for type 1, n− 1 for

type 2, and between 1 and n− 1 for type 3.

Here, we further study the difference between 1-dimensional and 2-dimensional

search. If we want to find correlated pairs above a given threshold, α IO cost and

correlation calculation is inevitable because each candidate must be checked. The

difference is that 1-dimensional has α+β upper bound calculations and 2-dimensional

has γ upper bound calculations. Since α is much greater than β and γ, and IO is much

more expensive than calculation, the α IO cost dominates the computational cost.

There is no significant difference between 1-dimensional and 2-dimensional search

with regard to finding pairs above a threshold. However, it is hard to determine

which threshold is proper for a given dataset. Normally, this threshold is determined

by intuition. But we can use the number of candidates for the given threshold to do

the evaluation. For example, we may know how much time we spend on retrieving

support and calculating correlation for a pair and how long we are allowed to search.

We can estimate how many candidates we can afford to search. When just finding

the number of candidates, we can avoid the α support IO cost and α correlation

69

calculation. In this case, 2-dimensional search can find the number of candidates in

linear time which is much better than 1-dimensional search.

3.3.1.2 Top-k Correlated Pairs

Although 2-dimensional search can efficiently find correlated pairs above the

threshold θ, it is hard for users to provide a proper correlation threshold in many

applications. Instead, finding top-k correlated pairs is more meaningful for users.

3.3.1.2.1 TOP-COP Search

The original TOP-COP algorithm [89] introduced a diagonal traversal method

for efficiently searching the top-k correlated pairs of ϕ-coefficient. While it exploits

the 2-dimensional monotone property of the upper bound of the ϕ-coefficient, it needs

O(n2) space to save pair status indicating whether or not the pair needs to be checked.

Saving pair status only takes 3% of the space of saving support, but it is still not

feasible for large datasets. If items are sorted by their support in increasing order,

the upper bound of pairs for any good correlation measure decreases from left to right

for each row in Table 3.1. The search starts from the diagonal consisting of {Ii, Ii+1}

which is the closest to the main diagonal, then goes to the diagonal consisting of

{Ii, Ii+2} which is the second closest to the main diagonal, and so on. During the

iterative search process, this method maintains a top-k list and a pair is pushed into

this list if its correlation coefficient is greater than the current minimum correlation

coefficient in the top-k list. The search stops if the maximal upper bound of all the

pairs in a diagonal is less than the current minimum correlation coefficient in the

top-k list.

70

3.3.1.2.2 Token-Ring Search

TOP-COP calculates all the pairs in a diagonal to find the maximal upper

bound. In fact, the upper bound calculation of some pairs in the diagonal can be

avoided if the upper bound of their left pair is already less than the current minimum

correlation coefficient τ in the top-k list. In order to achieve that, we propose a

token-ring search algorithm. We treat all the n − 1 branches as nodes in the token-

ring. Only the branch that gets the token can calculate the upper bound of the

leftmost uncalculated pair in this branch and compare its upper bound against τ . If

the upper bound is above τ , we will check the correlation value of this pair. This

pair will be pushed into this list if its correlation coefficient is greater than τ . If the

upper bound is below τ , this branch will be removed from the token-ring because the

upper bounds of the uncalculated pairs in this branch must be less than τ according

to the 1-dimensional property. In addition, a branch will also be removed from the

token-ring if all the pairs in this branch are calculated. The algorithm will stop when

there is no branch in the token-ring. According to the way token-ring search works,

the upper bound of all the pruned pairs must be less than the current minimum

correlation coefficient in the top-k list, so the current top-k list contains the pairs

with the k highest correlation values in the data set.

We coined a data set with 6 items. The correlation upper bounds and corre-

lations of all the pairs are shown in Tables 3.6 and 3.7 respectively. An example of

the Token-Ring search for the top-5 pairs in this data set is shown as follows. After

traveling the first diagonal from {I1, I2} to {I5, I6}, all the five pairs are pushed into

the top-5 list, and the current minimum correlation coefficient in the top-5 list is 15.

Since the current τ = 15 is less than the maximal upper bound in the current diagonal

71

I1 I2 I3 I4 I5 I6
I1 15 14 13 8 5
I2 36 23 14 9
I3 48 31 19
I4 49 31
I5 45
I6

Table 3.6: Correlation upper bound of the coined data

I1 I2 I3 I4 I5 I6
I1 15 14 3 -2 1
I2 36 3 12 0
I3 48 2 10
I4 36 29
I5 20
I6

Table 3.7: Correlation of the coined data

49, we continue the search. When checking {I1, I3}, the upper bound 14 is less than

the current minimum correlation coefficient in the top-5 list 15, so the first branch

quits the Token-Ring. The upper bound of {I2, I4} is 23 which is greater than 15, but

its correlation is less than 15. Therefore, the second branch stays in the Token-Ring

and the current top-5 list is not changed. A similar thing happens to {I3, I5}. After

checking {I4, I6}, the current minimum correlation coefficient in the top-5 list is 20

and the maximal upper bound in the current diagonal is 31. Therefore, we continue

the search in the third diagonal. Branch 1 is already pruned, so {I1, I4} won’t be

checked. We only check {I2, I5} and {I3, I6}. After traveling the third diagonal, the

current minimum correlation coefficient in the top-5 list is 20 and the maximal upper

bound in the current diagonal is 19. Finally, we stop the search at cell {I3, I6}.

72

Theorem 3.4. Both TOP-COP and Token-Ring calculate the same number of corre-

lations. The only performance difference between TOP-COP and Token-Ring is that

Token-Ring reduces the number of correlation upper bound computations.

Proof. The correlation upper bound check for the cell {Ii, Ii+j} in the i-th branch

and the j-th diagonal line can be avoided if the correlation upper bound of the cell

{Ii, Ii+j−1} in the i-th branch and the (j − 1)-th diagonal line is below the minimum

correlation coefficient in the top-k list at that time. Therefore, Token-Ring avoids

the upper bound checks of TOP-COP for those pairs that cannot affect the current

top-k list, but the current top-k list changes at the same cells for both Token-Ring

and TOP-COP. In all, both TOP-COP and Token-Ring calculate the same number

of correlations, but they check a different number of correlation upper bounds.

Theorem 3.5. For the Token-Ring algorithm, the difference between the number of

computed correlation upper bounds and the number of computed correlations is no

more than n− 1.

Proof. For the Token-Ring algorithm, there are n−1 branches at the beginning. If the

i-th branch is pruned because all the pairs in this branch are calculated, we calculate

the same number of upper bounds as correlations. If the i-th branch is pruned because

the upper bound is lower than the current minimum correlation coefficient in the top-k

list, we calculate one more upper bound than correlations for this branch. Therefore,

the difference between the number of computed correlation upper bounds and the

number of computed correlations is no more than n− 1.

73

3.3.1.3 Combination of Two Tasks

The 2-dimensional search can efficiently find correlated pairs above θ, but it

is difficult for users to provide an appropriate correlation threshold. When using

the Token-Ring algorithm to find the top-k correlated pairs, we could spend a lot of

time on calculation and end up with trivial results in a data set that doesn’t contain

strong positive correlations. In the extreme case, any item in a transaction appears

alone, which means there is no positive correlation for any pair. Both TOP-COP

and Token-Ring will calculate the correlations of all the pairs and end up with the

trivial top-k correlated pairs. In order to solve this problem, we propose a user

procedure to combine 2-dimensional search and Token-Ring search which can stop

searching wisely on its way finding the top-k correlated pairs when there are few

strong positive correlations in the data set.

Before we try to find the correlated pairs, we can calculate the number of

candidates for a given threshold and use this number to estimate the time we will

spend. For example, if we hope the algorithm is completed in one day and the time for

processing one candidate is 20ms, then we should choose the threshold under which

the number of candidates is less than 4 million. Due to the existence of 2-dimensional

search, we can get the number of candidates for any threshold in the linear time O(n).

We can choose the lowest threshold θmin under which the number of candidates is less

than 4 million, and then search the correlated pairs by using 2-dimensional search.

The advantage is that the algorithm will stop on time if the data set contains few

strong positive correlations. However, there are two disadvantages. First, we might

retrieve too many pairs and we are only interested in the top-k correlated pairs.

Second, we will definitely spend one day to search the correlated pairs, while we

74

might only need to spend one hour to find the top-k correlated pairs by using the

Token-Ring algorithm. Instead of searching the correlated pairs above θmin by the

2-dimensional search algorithm, we integrate the threshold θmin into the Token-Ring

algorithm. We treat all the n−1 branches as nodes in the token-ring. Only the branch

which gets the token can calculate the upper bound of the leftmost uncalculated pair

in this branch and compare its upper bound against the value ψ = max{θmin, τ}

where τ is the current minimum correlation coefficient in the top-k list. If the upper

bound is above ψ, we will check the correlation value of this pair. This pair will

be pushed into this list if its correlation coefficient is greater than ψ. If the upper

bound is below ψ, this branch will be removed from the token-ring. The algorithm

will stop when there is no node in the token-ring. In that way, even if the current

minimum correlation coefficient τ in the top-k list never exceeds the threshold θmin,

the algorithm will process all the candidates under the threshold θmin which won’t

cost more than the maximal time we allow. It stops searching wisely on its way to

finding the top-k correlated pairs when there are few strong positive correlations in

the data set. If there are a lot of strong positive correlations in the data set, the

algorithm will find the top-k list and stop. For example, if we try to find the top-5

pairs and set up the threshold 40 in the coined data set shown in Tables 3.6 and 3.7,

the search sequence is as follows: {I1, I2}, {I2, I3}, {I3, I4}, {I4, I5}, {I5, I6}, {I3, I5},

and {I4, I6}. We end up with the only strong pair {I3, I4}.

3.3.2 Correlated Itemset Search

In a large dataset, it is impossible to calculate correlation for all the possible

itemsets in order to retrieve the top-k correlated itemsets or correlated itemsets above

a threshold. Even the best measures, such as leverage and likelihood ratio, only

75

penalize itemsets with independent items, but cannot detect whether a given itemset

contains items that are independent of the others. Therefore, we make use of the

fully-correlated itemset framework [25] for correlated itemset search. Given a fully-

correlated itemset S, if no other item can be added to generate a new fully-correlated

itemset, then S is a maximal fully-correlated itemset. MFCIs provide more compact

information for FCI as maximal frequent itemset for frequent itemset.

When going through the Apriori procedure, we will discard the (k − 1)-level

information after we generate the k-level information. However, if we generate a

fully-correlated k-itemset given a correlation threshold θ and keep that information,

we know that this itemset satisfies any correlation threshold lower than θ. To achieve

that, we build an enumeration tree to save the fully-correlated value for all the MFCIs

under a given initial correlation threshold. We can either efficiently retrieve the

desired MFCIs for any given threshold above the initial threshold or incrementally

grow the tree if the given threshold is below the initial threshold.

Definition 2. Given an itemset S, the fully-correlated value ρ(S) for this itemset is

the minimal correlation value of all its subsets.

Given an itemset S and the correlation threshold θ, if the current correlation

threshold θ ≤ ρ(S), the current itemset is a fully-correlated itemset because the

correlation of any subset is no less than θ, i.e., any subset is highly correlated. If

the current correlation threshold θ is greater than ρ(S), the current itemset is not a

fully-correlated itemset because the correlation of at least one subset is lower than θ,

i.e., at least one subset is uncorrelated.

Theorem 3.6. Given a k-itemset S (k ≥ 3), the fully-correlated value (FCV) ρ(S)

for this itemset is the minimal value α among its correlation value and the fully-

76

correlated values for all its (k − 1)-subsets.

Proof. For any true subset SS of the current k-itemset S, SS must be the subset of

at least one of all the (k − 1)-subset of the current itemset S. Among all the subsets

of S, either S itself or one true subset SS has the minimal correlation value β.

(i) If the S itself has the minimal correlation value β, then the correlation of

any true subset SS is no less than β. According to the definition of fully-correlated

values, ρ(S) = β and ρ((k− 1)-Subseti) ≥ β. According to the definition of α in this

theorem, α = β. Therefore, ρ(S) = α.

(ii) If one true subset SS has the minimal correlation value β, then the corre-

lation of S and any true subset is no less than β. According to the definition of fully-

correlated values, ρ(S) = β and ρ((k− 1)-Subseti) ≥ β. Since SS must be the subset

of at least one of all the (k−1)-subset of the current itemset S, ρ((k−1)-Subsetj) = β

at least for one j. According to the definition of α in this theorem, α = β. Therefore,

ρ(S) = α.

By making use of the above theorems, we can calculate the fully-correlated

value for each itemset by Algorithm 3.1.

An enumeration tree will be used to store the fully-correlated value. This

enumeration tree is commonly used for itemset search, and more details can be found

in [11]. If the fully-correlated value of the current node is less than a given threshold

θ, the fully-correlated value of any descendant of the current node is also lower than θ

which can be avoided when traversing the tree. Then we can easily traverse this tree

to retrieve all possible fully-correlated itemsets given a threshold. Since finding the

maximal fully-correlated itemsets from the enumeration tree saving fully-correlated

value information is exactly the same as finding the maximal frequent itemsets from

77

Algorithm 3.1 Find the Fully-Correlated Value
Main: CalculateFullyCorrelatedValue()

ρ(pairs) = CalCorrelation(pairs);

for k = 3; k ≤ n; k ++ do

for each possible k-itemset C do

for i = 1; i ≤ k; i++ do

θi is the fully-correlated value of the i-th (k-1)-subset of C

end for

ρ(C) = min{CalCorrelation(C), θ1, θ2, ..., θk}

end for

end for

the enumeration tree saving support information, we can apply any technique of

searching maximal frequent itemsets to MFCI search, such as MAFIA [16], Max-Miner

[8], and GenMax [40]. Here, we use MAFIA to find the MFCIs given a threshold.

3.3.2.1 The incremental enumeration tree generation

Given threshold θ, we can save all the fully-correlated itemsets with FCV

greater than θ in this enumeration tree structure. Therefore, we can modify the

original MFCI algorithm as follows. Given the threshold θ, instead of only getting

the fully-correlated itemsets for each level, we keep all the candidates generated from

lower levels and their fully-correlated values in the enumeration tree T . Although

we keep all the candidates generated from low levels, we only use the fully-correlated

itemsets instead of the candidates in the current level to generate the next-level

candidates. For any threshold θ1 greater than θ, we can easily get the corresponding

fully-correlated itemsets and the corresponding enumeration tree T1 by traversing the

current enumeration tree T . For a threshold θ2 < θ, the current enumeration tree T

is a subtree of the target enumeration tree T2. In this case, we only need to increment

the current enumeration tree T instead of building the target enumeration tree T2

78

from scratch. To generate k-itemset candidates from fully-correlated (k−1)-itemsets,

the candidates generated by the fully-correlated itemsets whose fully-correlated value

is greater than θ have already been saved in the enumeration tree T . In order to

generate the remaining candidates, we generate the candidates involving at least one

(k − 1)-itemset whose fully-correlated value is between θ and θ2 to increment the

enumeration tree T . In this way, we can generate the target enumeration tree T2 and

avoid repeating calculations that were made when building the enumeration tree T .

3.3.2.2 User Interaction Procedure

The best way to get the desired MFCIs is to select a relatively low threshold

θ to build a corresponding enumeration tree to keep the fully-correlated values first.

Then for any threshold above θ, we can easily generate the corresponding MFCIs

from this enumeration tree. The core problem is how to determine this relative low

threshold θ. If the threshold is too high, there might be some MFCIs which we are

interested in but are not contained in the enumeration tree. We have to do extra

work to increment the current enumeration tree. If the threshold is too low, we will

keep much unnecessary information and might not have enough memory to generate

or save the enumeration tree. Therefore, several proper user interaction procedures

are needed in order to select the proper threshold.

We split the enumeration tree construction into two steps. First, we keep rel-

evant pair correlation information for a relatively low threshold θ. By doing that,

we can get the satisfied pairs for any threshold higher than θ by a simple query.

Second, we construct the enumeration tree by trying different thresholds. Using the

2-dimensional search algorithm, we can easily count the number of pair candidates

whose correlation upper bound is above a tentative threshold. Since we need to re-

79

trieve the support of all the pair candidates to calculate their correlation, we can

estimate the time we will spend in the first step by the count for any given threshold.

We will choose the threshold under which the computational time is affordable to us.

For the second step, it is hard to estimate the time we will spend for any given thresh-

old. The best way to finish the second step is to choose a relatively high threshold

first, and then gradually grow the enumeration tree by lowering the threshold until

we run out of time to update the tree for a threshold.

3.4 Experiments

The efficiency performance of our methods was tested on several real-life

datasets. Since the results were similar for all the datasets, we only present results on

two typical datasets. The first is the Netflix data set which contains 17,770 movies

and 480,000 transactions. The second is a retail data set from the FIMI repository

containing 16,470 items and 88,000 transactions. Netflix contains many correlated

patterns because of movies in the same series and TV shows of many episodes, while

the retail data set contains fewer correlated patterns because those highly correlated

items might be already offered by manufactures as a package. The number of corre-

lated pairs under different likelihood ratio thresholds for these two data sets is shown

in Figure 3.1. We implemented our algorithm using Java 1.6.0 on a Dell workstation

with 2.4GHz Dual CPU and 4G memory running on the Vista operating system. In

the following, we will check the performance improvement from each algorithm.

80

8000 10000 12000 14000 16000 18000 20000

0
10

0
20

0
30

0
40

0
50

0

Threshold

C
or

re
la

te
d

P
ai

rs

(a) Netflix

20 40 60 80 100

0
10

00
30

00
50

00
70

00

Threshold

C
or

re
la

te
d

P
ai

rs

(b) Retail

Figure 3.1: The number of correlated pairs under different likelihood ratio thresholds

3.4.1 Correlated pair search

3.4.1.1 Finding correlated pairs above a certain threshold

Here, we focus on the task of finding correlated pairs above a given threshold

θ.

3.4.1.1.1 Count the number of pair candidates

Before we determine the threshold to search the satisfied pairs, we can count

how many pairs’ CUBs are above a tentative threshold. This number can help us to

estimate the time we will spend on the satisfied pair search because the support of the

pair needs to be retrieved if its CUB is above the threshold. The number of candidates

and the time spent on counting candidates under different thresholds are shown in

Figure 3.2 and 3.3 respectively. To get the number of pair candidates, 2-dimensional

search is linear and 1-dimensional search is exponential with the threshold. When

the threshold is 0, the 1-dimensional search will check all the pairs. Therefore, the

81

2000 4000 6000 8000 10000 14000

0.
0e

+
00

5.
0e

+
06

1.
0e

+
07

1.
5e

+
07

2.
0e

+
07

Threshold

C
an

di
da

te
s

(a) Netflix

200 400 600 800 1000

0e
+

00
2e

+
06

4e
+

06
6e

+
06

8e
+

06

Threshold

C
an

di
da

te
s

(b) Retail

Figure 3.2: The number of candidates under different thresholds

runtime of 1-dimensional search with threshold 0 is equal to the runtime of the upper

bound calculation method. The 1-dimensional search takes less time than the upper

bound calculation method when the threshold is high, but the 2-dimensional search

is always an order of magnitude faster than the just upper bound calculation method.

3.4.1.1.2 Search the satisfied pairs

Since the IO cost for calculating correlation of pairs is much higher than the

time cost for calculating CUB, the CUB calculation can save a lot of unnecessary

IO cost when the threshold is high. The runtime of retrieving the satisfied pairs

by calculating CUB first given different correlation thresholds is shown in Figure

3.4. The 1-dimensional and 2-dimensional search are almost identical. The runtime

of the CUB, 1-dimensional, and 2-dimensional search all decreases drastically as we

increase the threshold. Both 1-dimensional and 2-dimensional search take much less

time than the CUB search when the threshold is high because 1-dimensional and

82

2000 4000 6000 8000 10000 14000

0
10

00
20

00
30

00
40

00
50

00

Threshold

T
im

e(
s)

1−D search
2−D search

(a) Netflix

200 400 600 800 1000

0
20

0
40

0
60

0
80

0

Threshold

T
im

e(
s)

1−D search
2−D search

(b) Retail

Figure 3.3: The runtime of determining the number of candidates under different

thresholds

2-dimensional search take less time to find the pairs whose CUB is higher than the

threshold. However, the CUB, 1-dimensional, and 2-dimensional search do not make

too much difference when the threshold is low.

3.4.1.2 Finding top-k correlated pairs

For finding the top-k correlated pairs, the runtime of the brute-force method

is determined by the number of correlations we need to compute, while the runtime

of TOP-COP or Token-Ring is determined by the number of correlations and the

number of CUBs we need to compute. The brute-force method will calculate the

correlation of all the possible pairs which is not feasible for large datasets. According

to Theorem 3.4, Token-Ring computes fewer CUBs than TOP-COP, but computes

the same number of correlations. Therefore, the runtime difference between Token-

Ring and TOP-COP is determined by the difference between the number of CUB

83

2000 4000 6000 8000 10000 14000

1e
+

05
2e

+
05

3e
+

05
4e

+
05

Threshold

T
im

e(
s)

Upper bound search
1−D search
2−D search

(a) Netflix

200 400 600 800 1000

40
00

0
60

00
0

80
00

0
10

00
00

12
00

00

Threshold

T
im

e(
s)

Upper bound search
1−D search
2−D search

(b) Retail

Figure 3.4: The runtime for retrieving the satisfied pairs

calculations. The number of correlation calculations and CUB calculations under dif-

ferent k is shown in Figure 3.5. According to Theorem 3.5, the number of correlation

calculations is almost equal to that of CUB calculations in the Token-Ring algorithm

which is verified in Figure 3.5. Token-Ring can save a huge number of unnecessary

CUB checks compared to TOP-COP. The runtime of TOP-COP and Token-Ring for

top-k correlated pairs is shown in Figure 3.6. When the IO cost of retrieving pair

support is much more expensive than the CUB calculation for a dense dataset like

Netflix, the total runtime is dominated by the time spent on correlation calculation

and there is little difference between Token-Ring and TOP-COP. When the IO cost is

not that expensive compared to the CUB calculation for a sparse dataset like retail,

we can see Token-Ring took significantly less time than TOP-COP. The advantage of

Token-Ring over TOP-COP is obvious only for datasets where the gap between the

true correlation and the correlation upper bound is large.

84

The top-k search method is more flexible for finding the desired patterns com-

pared to the 2-dimensional method. Assuming we can get the k-top pair correlation

ahead of time and use it to search the top-k pairs with the 2-dimensional method,

Figure 3.7 shows the number of correlation calculations using 2-dimensional search

and those using our top-k search method. The gap between the 2-dimensional method

and the top-k search method is not huge and the gap gradually increases with the k.

The top-k search method is more flexible and does not require much more time than

the threshold search method.

3.4.1.3 Combination of Two Tasks

We proposed a user procedure to combine the 2-dimensional search algorithm

and the Token-Ring algorithm to reconcile two tasks of searching for pairs above a

certain threshold and for top-k pairs. The performance of the user procedure really

depends on the parameters we set. If the threshold θ is so high that the k-th corre-

lation in the dataset is less than θ, the runtime is equal to the 1-dimensional search

under the threshold θ because the modified Token-Ring checks the same number of

correlations and the same number of CUBs as the 1-dimensional search algorithm. If

k is small and the data set contains many strong positive correlations, the runtime is

close to the original Token-Ring algorithm. From Figures 3.4 and 3.6, we can easily

estimate the runtime of the modified Token-Ring for different parameters. For exam-

ple, when the threshold θ is 1000 and k is 10 in Netflix, the runtime will be close to

18,000 seconds.

85

10 20 30 40 50

0e
+

00
2e

+
06

4e
+

06
6e

+
06

k

C
ou

nt
 N

um
be

r

Upper bound by TOP−COP
Upper bound by Token−Ring
Correlation Computed

(a) Netflix

10 20 30 40 50

0.
0e

+
00

1.
0e

+
07

2.
0e

+
07

k

C
ou

nt
 N

um
be

r

Upper bound by TOP−COP
Upper bound by Token−Ring
Correlation Computed

(b) Retail

Figure 3.5: The number of correlation and correlation upper bound checks

10 20 30 40 50

0
10

00
0

30
00

0
50

00
0

k

T
im

e(
s) TOP−COP

Token−Ring

(a) Netflix

10 20 30 40 50

0
50

00
10

00
0

15
00

0

k

T
im

e(
s) TOP−COP

Token−Ring

(b) Retail

Figure 3.6: The runtime for top-k algorithms

86

10 20 30 40 50

0e
+

00
1e

+
05

2e
+

05
3e

+
05

4e
+

05

k

C
ou

nt
 N

um
be

r

TOP−k
2 dimensional search

(a) Netflix

10 20 30 40 50

0
50

00
00

15
00

00
0

25
00

00
0

k

C
ou

nt
 N

um
be

r

TOP−k
2 dimensional search

(b) Retail

Figure 3.7: Correlation checks for top-k search and threshold search

3.4.2 Correlated itemset search

3.4.2.1 Maximal Fully-correlated Itemset Search

Since it is impossible to find the top-k correlated itemsets on both datasets

and we want to compare the top-k correlated itemsets with MFCIs, we use a subset

of the Netflix dataset which only contains the first 100 movies according to the code

sequence in the Netflix dataset and test on it. The performance of our algorithm

depends on the characteristic of the data set. In the extreme case, among all the

n items in the data set, if the first (n − 1) items always show up together and the

remaining item appears alone, our algorithm will start with
(
n−1
2

)
2-itemsets and end

with the only (n− 1)-maximal fully-correlated itemset. In other words, all the 2(n−1)

possible combinations will be checked. It is still an NP-hard problem. But in reality,

most data sets are sparse, so most of the search space can be pruned.

The runtimes of our algorithm on the Netflix subset data given different cor-

87

10 20 30 40 50

0
50

00
0

15
00

00

Correlation Threshold

T
im

e(
m

s)

MFCI
Top−K

(a) Runtime for each threshold

0 10 20 30 40 50

0
10

0
30

0
50

0

Correlation Threshold

T
he

 N
um

be
r

of
 M

F
C

Is

(b) MFCIs for each threshold

Figure 3.8: Performance results for Netflix

relation thresholds are shown in Figure 3.8(a). The runtime decreases drastically as

we increase the threshold. The runtime of the top-k method is also shown. When

running the top-k method, we only checked the itemsets which occurred at least once

in the dataset, so about 2 million itemsets were checked instead of all 2100 possible

itemsets. In the worst case, our algorithm checks all the itemsets that occur at least

once. Therefore, the runtime of our algorithm is at least as good as the top-k method

if both use Apriori. Even though we use the prefix tree structure [11] to find the top-k

correlation itemsets, the runtime of our method is less than the top-k method when

the threshold is larger than 3. In addition, the number of maximal fully-correlated

itemsets corresponding to each correlation threshold is shown in Figure 3.8(b). It

shows even if we use a small threshold like 1, we still get a relatively small number

of compact itemsets.

Besides the gain from the efficiency side, we can also make use of the character-

88

istics of the Netflix dataset to evaluate the effectiveness of the MFCI framework. Like

maximal frequent itemsets, there is no ranking of maximal fully-correlated itemsets.

Rather, we only get a different number of them under different thresholds. Therefore,

we try to find the threshold under which only 15 MFCIs are retrieved to compare with

top-20 correlation itemsets which are retrieved by calculating every possible combina-

tion. The 15 maximal fully-correlated itemsets are shown in Table 3.8, and the top-20

correlated sets are listed in Table 3.9. Our maximal fully-correlated itemsets have

several advantages over the top-20 correlated sets. First, some top-k correlated sets

are redundant since they are subsets of other top-k correlated sets. For example, the

first correlated set of Netflix is a subset of the second one. There is no need to show

redundant information. Second, some top-k correlated itemsets contain irrelevant

information. Among all the top-20 correlated itemsets, 16 of them are subsets of the

15 maximal fully-correlated itemsets. Four remaining itemsets all contain one more

movie “Something’s Gotta Give (2003)” than the corresponding maximal correlation

sets. In fact, “Something’s Gotta Give (2003)” is the most favored movie among

all the 100 films. It almost has no correlation with any other movie. If we remove

“Something’s Gotta Give (2003)” from these 4 itemsets, we can get higher correlation

values. For each of these four itemsets, if we treat “Something’s Gotta Give (2003)”

as set A and the remaining movies as set B, all the correlation values between A

and B are close to 0 which means there is no correlation. Especially in the 17th

correlation set, {Dragonheart (1996), Congo (1995)} and {Something’s Gotta Give

(2003)} are negatively correlated. The probability of favoring “Something’s Gotta

Give (2003)” is 55.28%. The conditional probability of favoring “Something’s Gotta

Give (2003)” given {Dragonheart (1996), Congo (1995)} is 47.02%. Since favoring

“Dragonheart (1996)” and “Congo (1995)” will decrease the probability of favoring

89

“Something’s Gotta Give (2003)”, putting them together is not a wise choice. As

mentioned above, the top-k method contains some redundant itemsets. One way to

solve this problem is to only keep the itemsets that do not have any superset in the

top-k list. However, because of the existence of irrelevant items like “Something’s

Gotta Give (2003)”, the itemsets that have no superset within the top-k itemsets

might contain irrelevant items. The maximal fully-correlated itemsets are more rea-

sonable than the top-k correlated itemsets. We get similar patterns by testing other

correlation measures. Some of the movies in MFCIs do not seem to go together due

to the weak connection among a small set of items. However, if MFCIs are considered

bad, the top-k correlated itemsets are even worse. Since it is impossible to compare

MFCI with the top-k correlated itemsets on the whole dataset, we instead chose the

traditional maximal frequent itemsets to compare with. We tried different thresholds

and stopped when only five patterns are retrieved. Table 2.15 shows the 5 maximal

frequent itemsets and the 5 MFCIs on the whole Netflix dataset. We naively assume

that movies and TV shows in the same series are more correlated. MFCIs get better

results than maximal frequent itemsets.

3.4.2.2 Improvement from the enumeration tree structure

The performance improvement for MFCI comes from the improved pair search

and the enumeration tree structure. We have checked the improvement from the im-

proved pair search. In the following, we check the improvement from the enumeration

tree structure. The fully-correlated values saved in the enumeration tree benefit the

next search round. We need to build the tree first, and then handily retrieve MFCIs

according to fully-correlated values saved in the enumeration tree.

90

ID Maximal Fully-Correlated Itemsets
1 Character (1997), Mostly Martha (2002)
2 My Favorite Brunette (1947), The Lemon Drop Kid (1951)
3 7 Seconds (2005), Never Die Alone (2004)
4 Immortal Beloved (1994), Richard III (1995)
5 Aqua Teen Hunger Force: Vol. 1 (2000), Invader Zim (2004)
6 Rudolph the Red-Nosed Reindeer (1964), Jingle All the Way (1996)
7 The Bad and the Beautiful (1952), The Killing (1956)
8 Richard III (1995), The Killing (1956)
9 Dragonheart (1996), Jingle All the Way (1996)

10
The Rise and Fall of ECW (2004), WWE: Armageddon (2003),

WWE: Royal Rumble (2005)

11 The Rise and Fall of ECW (2004), WWE: Royal Rumble (2005),
ECW: Cyberslam ’99 (2002)

12 Screamers (1996), Dragonheart (1996), Congo (1995)
13 Immortal Beloved (1994), Spitfire Grill (1996), Silkwood (1983)

14
Lilo and Stitch (2002), Justice League (2001),

The Powerpuff Girls Movie (2002)
15 Lilo and Stitch (2002), Dragonheart (1996), Congo (1995)

Table 3.8: Maximal fully-correlated itemsets from Netflix subset using likelihood ratio

Ranking Correlated Itemset
1 Dragonheart (1996), Congo (1995)
2 Lilo and Stitch (2002), Dragonheart (1996), Congo (1995)
3 The Rise and Fall of ECW (2004), WWE: Royal Rumble (2005)
4 Spitfire Grill (1996), Silkwood (1983)
5 My Favorite Brunette (1947), The Lemon Drop Kid (1951)
6 Immortal Beloved (1994), Spitfire Grill (1996), Silkwood (1983)
7 Screamers (1996), Dragonheart (1996), Congo (1995)
8 Lilo and Stitch (2002), Dragonheart (1996)

9
Lilo and Stitch (2002), Something’s Gotta Give (2003),

Dragonheart (1996), Congo (1995)

10 The Rise and Fall of ECW (2004), WWE: Royal Rumble (2005),
ECW: Cyberslam ’99 (2002)

11 Aqua Teen Hunger Force: Vol. 1 (2000), Invader Zim (2004)
12 Something’s Gotta Give (2003), Spitfire Grill (1996), Silkwood (1983)
13 The Bad and the Beautiful (1952), The Killing (1956)
14 Rudolph the Red-Nosed Reindeer (1964), Jingle All the Way (1996)
15 Immortal Beloved (1994), Richard III (1995)

16
Immortal Beloved (1994), Something’s Gotta Give (2003),

Spitfire Grill (1996), Silkwood (1983)
17 Something’s Gotta Give (2003), Dragonheart (1996), Congo (1995)

18 The Rise and Fall of ECW (2004), WWE: Armageddon (2003),
WWE: Royal Rumble (2005)

19 The Rise and Fall of ECW (2004), ECW: Cyberslam ’99 (2002)
20 Screamers (1996), Dragonheart (1996)

Table 3.9: Top-20 correlated itemsets for Netflix subset using likelihood ratio

91

8000 10000 12000 14000 16000 18000 20000

0e
+

00
2e

+
05

4e
+

05
6e

+
05

8e
+

05

Threshold

T
im

e(
s)

Original MFCI
Previous Search+Incremental Step
Incremental Step

(a) Netflix when the threshold gap is 1000

20 40 60 80 100

0
50

00
0

10
00

00
15

00
00

20
00

00

Threshold

T
im

e(
s)

Original MFCI
Previous Search+Incremental Step
Incremental Step

(b) Retail when the threshold gap is 10

Figure 3.9: The runtime of building the enumeration tree

3.4.2.3 Build the enumeration tree

Since it is hard to estimate the time we will spend to build the enumeration

tree for any given threshold, the best way to build the enumeration tree is to choose

a relative high threshold first, and then gradually increment the enumeration tree by

lowering the threshold. Given the threshold θ and the threshold gap g, the time to

build the enumeration tree T for the threshold θ is a, the time to build the enumeration

tree T1 for the threshold (θ+g) is b, and the time for incrementing the tree from T1 to

T is c. Therefore, the runtime of the original MFCI is a, and the total runtime of the

incremental algorithm is (b+c). The runtime of the original MFCI and the incremental

algorithm given the threshold gap g and different threshold is shown in Figure 3.9.

The total runtime of these two algorithms is very close, but the incremental algorithm

is more flexible for user interactions.

92

8000 10000 14000 18000

0e
+

00
2e

+
05

4e
+

05
6e

+
05

8e
+

05

Threshold

T
im

e(
s)

Original MFCI
Tree Search

(a) Netflix

20 40 60 80 100

0
50

00
0

10
00

00
15

00
00

Threshold

T
im

e(
s)

Original MFCI
Tree Search

(b) Retail

Figure 3.10: The runtime for generating MFCIs

3.4.2.4 Generate MFCIs from the enumeration tree

The enumeration tree saving fully-correlated values has exactly the same downward-

closed property of the enumeration tree saving support, so we can apply any search

technique for maximal frequent itemsets. Here, we only show how much improvement

we get if we use MAFIA to generate MFCIs from the enumeration tree. Figure 3.10

shows the runtime of the original MFCI algorithm and the MFCI generation from the

enumeration tree. The MFCI generation from the enumeration tree is much faster

than the original MFCI algorithm.

3.4.2.5 User Interaction Procedure

If the goal is to build a relatively large enumeration tree which can facilitate

the search of MFCIs under different thresholds, we use the following procedure. First,

2-dimensional search is used to evaluate the threshold θ under which time allows to

93

retrieve all the correlated pairs. Second, CUB search is used to find the correlated

pairs and save their correlation value in the database. Third, we choose a relatively

high threshold, and then gradually update the enumeration tree by lowering the

threshold until we run out of time to grow the tree or lowering the threshold. After

that, we can easily retrieve MFCIs under any threshold above the threshold of the

enumeration tree.

If the goal is to identify the highly correlated patterns, we can combine 2-

dimensional search with the incremental algorithm for the enumeration tree. From

Figure 3.4 and 3.9, we expect the runtime saving mainly comes from the 2-dimensional

search.

3.5 Conclusion

In the chapter, we propose an FCI framework to decouple the correlation

measure from the need for efficient search. By wrapping the desired measure in our

FCI framework, we take advantage of the desired measure’s superiority in evaluating

itemsets, make use of the property of FCI to eliminate itemsets with irrelevant items,

and still achieve good computational performance. Further, we facilitated search for

both pairs and itemsets. For pairs, we can either use the 2-dimensional search to

retrieve correlated pairs above a certain threshold, or our new Token-Ring algorithm

to find top-k correlated pairs. For itemsets, we build an enumeration tree to save the

fully-correlated value. In that way, we can either efficiently retrieve the desired FCIs

for any given threshold above the initial threshold or incrementally grow the tree if

the given threshold is below the initial threshold.

94

CHAPTER 4
CORRELATION-BASED NETWORK COMMUNITY DETECTION

4.1 Introduction

The modern science of graphs (alternatively networks) has significantly helped

us understand complex systems. One important feature of graphs is community

structure where many edges join vertices of the same community and comparatively

few edges join vertices of different communities. Such communities can be considered

as fairly independent components of a graph and play a role like the organs in the

human body. Community detection has a long history with sociology, biology, and

computer science where systems are often represented as graphs. The original study

on graphs is Euler’s solution [31] of the puzzle of Konigsberg’s bridges in 1736. A lot

of studies on graph mathematical properties [10] have been made since then. Social

network analysis started in the 1930’s and remains one of the most important topics

in sociology [75]. With the development of information techniques, we are able to

capture the large scale of actual individual activities at the micro-level. The size

of real graphs has grown to millions or even billions of vertices, which requires new

methods to handling large-scale graphs [61].

Community structure has many different forms in graphs from sociology, biol-

ogy, computer science, engineering, politics, etc. For social networks, we have group

organizations such as families, working and friendship, towns, and nations. The dif-

fusion of Internet leads to the creation of online communities [35]. In protein-protein

interaction networks, communities are likely to be a group of proteins with the same

function in the cell [17]. In the World Wide Web, they might be related to groups

of pages of the same topics [24]. In metabolic networks, they might correspond to

95

functional modules such as cycles and pathways [41].

Community detection is the process of identifying the modules and, possibly,

the hierarchical or overlapping structure by using only the graph topology. The

first research on community detection was made by Weiss and Jacobson [88]. They

studied the matrix of working relationships between members of a government agency.

Work groups were found by removing the members working with people in different

departments. The cutting bridge idea is the basis of several modern community

detection methods. In 2002, Girvan and Newman proposed a new algorithm [39]

aiming at the identification of edges lying between communities. Two years later, they

proposed a measurement called modularity [62] to measure the quality of detected

communities. However, some heuristic methods [18] aiming at maximizing modularity

also find good results.

We are also concerned with two issues related to evaluating community de-

tection results. First, testing an algorithm means applying it to a specific problem

which has a known solution and comparing the solution with that delivered by the

algorithm. Since community detection is unsupervised learning and we don’t have

the ground truth to test the performance of different methods for real datasets, we

need to simulate a network with a realistic community structure. Second, we need

a reliable testing measure to judge how close the detected results are to the setting

that we use to simulate the network data.

The rest of this chapter is organized as follows. Section 2 introduces the

classical community detection methods and explores the opportunity for us to improve

their results through correlation. The simulation of network data is discussed in

Section 3. We investigate the way of evaluating the detected results according to the

ground truth we have for the simulated data in Section 4. Finally, we talk about the

96

future research plan in Section 5.

4.2 Community Detection Methods

Community detection is intuitive but not well defined. However, the widely

accepted idea of communities is that there must be more edges inside the community

than edges linking vertices of the community with the rest of the graph. Because of

the ambiguous concept of community, people have proposed many different objectives

to optimize. Given a subgraph S of a graph G with ns = |S| and n = |G| vertices,

kintv is the internal degree of vertex v ∈ S as the number of edges connecting v to

other vertices of S and kextv is the external degree. If kextv = 0, the vertex only has

neighbors within S, which is likely to be a member of community S. If kintv = 0, the

vertex is disjoint from S and it should be assigned to another community.

Currently, there are four categories of methods: cut-based, spectral-based,

density-based, and correlation-based community detection.

1. Cut-based methods identify communities in a graph by detecting the edges

that connect different communities. The communities get disconnected from

each other by removing these edges. They just perform hierarchical clustering

on the graph data. Being hierarchical clustering techniques, the results are rep-

resented by dendrograms. The early cut-based methods use conductance [10].

The conductance ϕ(S) of the subgraph S is c(S,G\S)
min(kS ,kG\S)

where c(S,G\S) is the

cut size of S, and kS, kG\S are the total degree of S and of the rest of the graph

G\S respectively. The low value of the cut size and the large value of the de-

nominator are required to minimize conductance. The most popular algorithm

on this cut-based category was proposed by Girvan and Newman [39] which

started a new era of community detection. They raised the concept of between-

97

ness which is related to the edge frequency of a certain process. Historically, edge

betweenness was introduced by Anthonisse [3]. Although Girvan and Newman

considered three alternative definitions: geodesic edge betweenness, random-

walk edge betweenness, and current-flow betweenness, these definitions share

the same idea, and we only discuss geodesic edge betweenness without the loss

of generality. They calculate the number of shortest paths between all vertex

pairs that run through the edge. It is intuitive that intercommunity edges have

a large value of the edge betweenness because many shortest paths connecting

vertices of different communities will pass through them. This method itera-

tively removes the highest betweenness edge that has not been removed. Then,

we get the dendrogram of disconnected subgraphs. Tyler et al. [84] proposed a

faster version of the Girvan-Newman algorithm. Instead of starting from each

vertex and computing the contribution to betweenness from all paths starting

at that vertex, Tyler et al. calculate the contribution to edge betweenness only

from a limited number of randomly chosen nodes. Empirical tests indicate that

to pick the log number of total vertices is enough. Another fast version of

the Girvan-Newman algorithm proposed by Rattigan et al. [72] uses a network

structure index [71] to approximate the edge betweenness values. Counting all

possible shortest path in the calculation of betweenness may lead to unbalanced

partitions. Chen and Yuan [17] proposed to count only non-redundant paths

whose endpoints are all different from each other.

2. Spectral-based methods use the eigenvectors of the adjacency matrix for com-

munity detection. Donath and Hoffman [23] proposed the first spectral-based

methods. In the same year, Fiedler [33] found the eigenvector of the Laplacian

98

matrix can obtain a bipartition of the graph with low cut. The Laplacian is by

far the most used matrix in spectral-based methods. Though there is no unique

convention which matrix is exactly called the graph Laplacian [54], one com-

monly used Laplacian is calculated as follows. Given the adjacency matrixW of

the graph G, we calculate the matrix D where the diagonal element dii is equal

to
∑n

j=1(wij) and non-diagonal elements are 0. The Laplacian matrix L [63,76]

is equal to D −W . If the graph G has k mutually disconnected components,

the Laplacian matrix has k zero eigenvalues. Usually the graph we are dealing

with is one component and the Laplacian matrix only has one zero eigenvalue.

Therefore, we choose k eigenvectors corresponding to the k smallest eigenval-

ues to transform the original adjacency matrix, and then apply any clustering

method like k-means on the transformed matrix. The spectral-based methods

are popular because the change of representation induced by eigenvectors makes

the community structure more obvious.

3. Density-based methods try to find the communities within which vertices are

tightly connected with each other. We define the internal-community density

δint(S) of the subgraph S as the ratio of the number of internal edges of S to

the number of all possible internal edges, i.e. δint(S) =
kint(S)

ns∗(ns−1)/2
where kint(S)

is the number of internal edges of S. Similarly, the external-community density

δext(S) =
kext(S)

ns∗(n−ns)
. For S to be a community, we expect large δint(S) and small

δext(S). Searching for the best tradeoff between δint(S) and δext(S) is the goal

of density-based methods. A simple way of doing that is to maximize the sum

of the difference δint(S)− δext(S) over all the communities [57].

4. The most famous correlation-based community detection method is related to

99

maximazing modularity [62] which is originally introduced as a stopping crite-

rion for the cut-based method [39]. However, it has rapidly become an essential

element of many clustering methods. The modularity function has several vari-

ants, but these variants share the same idea. Without the loss of generality,

we introduce the original modularity-based method [20]. Given a graph with n

nodes andm links represented by the adjacency matrixW , the expected number

of edges falling between two nodes i and j is ki ·kj/(2m) under the assumption of

independence where ki is the degree of node i. The modularity Q is calculated

as 1
2m

∑
ij(wij− ki·kj

2m
)·δ(vi, vj). It is the sum of the difference between the actual

number of edges and the expected number of edges over all the pairs of nodes

in the same community. δ(vi, vj) is the Kronecker delta function whose value

is equal to 1 if vi and vj are in the same community and 0 otherwise. Initially,

each node is the only member of its own community. The original algorithm

iteratively joins the two communities that increase the modularity most in the

current round. The original algorithm will stop if the best merge cannot further

increase modularity. Modularity is by far the most used and the best commu-

nity detection method. It has been proved that modularity optimization is an

NP-complete problem [12]. The commonly used optimization techniques for

modularity are greedy search [20,60,85], simulated annealing [42,58], extremal

optimization [9, 28], and genetic algorithms [44, 69]. In addition, modularity

can be easily extended to different forms. For networks with weighted edges,

we only need to replace degrees with the sum of weights. In fact, weights can

also be assigned to the edges of an undirected network by using any measure

of correlation between vertices. In this way, we can use weighted modularity to

detect communities with a potentially better exploitation of the network struc-

100

ture [38,91]. Modularity can also be extended to directed networks [4,51]. If an

edge is directed, the probability oriented in in(out)-directions depends on the

in(out)-degrees of the end vertices.

According to empirical study [34], modularity-based methods yield better re-

sults in the general setting. The modularity function calculates the difference between

the actual number of edges inside communities and the expected number of edges in-

side communities if communities are randomly partitioned. Higher modularity means

the given partition is less likely to be a random partition. Since correlation analysis

also searches patterns which deviate from expectation under the assumption of inde-

pendence, we can see the connection between the modularity function and correlation

analysis. All the existing modularity-based methods use different optimization tech-

niques to maximize the modularity function. Instead of searching other optimization

techniques for the modularity function, we investigate the opportunity to improve the

modularity function from the correlation analysis perspective in this chapter.

4.3 Network Simulation

When a community detection algorithm is designed, we need to compare it

with other methods. Since the ground truth for real datasets is impossible to retrieve

completely, we investigate the classical simulation procedures here.

The first work on this problem is called the planted L-partition model [21].

The model partitions a graph with n = g ∗ l vertices in l groups with g vertices

each. Vertices of the same group are linked with a probability pin, whereas vertices

of different groups are linked with a probability pout. If pin > pout, the intra-cluster

edge density exceeds the inter-cluster edge density. Then the graph has a community

structure which is quite intuitive. A seemingly different benchmark is the relaxed

101

caveman graph [86] to simulate the clustering properties of social networks. The

starting point is a set of disconnected cliques. With the probability p, edges are

rewired to link different cliques. Such models are smooth variations of the graph

with perfect communities. To some extent, the model is equivalent to the planted

L-partition model, where pin = 1− p and pout = p.

However, by using the planted L-partition model, all vertices have approxi-

mately the same degree and all communities have exactly the same size. In real social

network data, degree distributions are usually skewed, with many vertices with low

degree and a few vertices with high degree. A similar heterogeneity is also observed

in the distribution of cluster size. Bagrow [5] introduced a model with power-law de-

gree distributions. It starts with the Barabasi-Albert scale free graphs [6], and then

vertices are randomly assigned to one of four equal size communities. At last, pairs

of edges between two communities are rewired so that either edge ends up with the

same community, without changing the degree of each vertex. Suppose we have edges

a1-b1 and a2-b2, where a1, a2 belong to community A and b1, b2 belong to community

B. The edges are replaced by a1-a2 and b1-b2. With this rewiring procedure, we can

arbitrarily vary the edge density within and between clusters, and keep the degree of

each vertex.

Recently, Lancichinetti et al. [50] introduced a very popular LFR model. They

assume that the distributions of degree and community size are power laws with τ1

and τ2 respectively. Each vertex shares a fraction of 1−u of its edges with the vertices

in the same community and a fraction of u with the vertices in the other communities,

where u is the mixing parameter. The simulation procedure is as follows:

1 A set of community sizes sj following the predefined power law parameter τ2 is

102

generated.

2 A set of node degrees ki following the predefined power law parameter τ2 is

generated. The internal degree of each node is (1− u)ki where u is the mixing

parameter.

3 In the beginning, nodes are not assigned to any community. For each node, it

will be assigned to a randomly chosen community which has empty spots to

accept a new node. If the community size exceeds the internal degree of the

node, the node enters the community; otherwise, it enters a waiting list.

4 For each node in the waiting list, we let the node enter a random community

whose size exceeds the node’s internal degree and randomly kick one node in

the selected community out to the waiting list. We do this step iteratively until

the waiting list is empty.

5 We enforce the condition on the fraction of internal degree and external degree.

The rewiring procedure in [5] is performed when needed.

As we have seen, nearly all existing benchmark graphs are inspired by the

planted L-partition model, to some extent. However, the model needs to be redefined

to provide a good description of real graphs with community structure. The hypoth-

esis that the linking probabilities of each vertex with the vertices of its community or

of the other communities are constant is not realistic. It is more plausible that each

pair of vertices i and j has its own linking probability pij, and that such probabilities

are correlated for vertices in the same cluster. Since the LFR model is the closest

model to reality by far, we will use the networks generated by this model to test our

algorithms. However, the constraint used in the LFR model to assign the internal

degree of each node in the second step is problematic because the condition imposed

103

by a fixed u cannot guarantee pinternal > pexternal which must be satisfied for a commu-

nity structure. For a node A in a community with n′ nodes in a graph with n nodes,

u must be smaller than 1 − n′/n to guarantee pinternal > pexternal. Therefore, we use

the following constraint to assign the internal degree of each node in the second step:

pinternal = β · pexternal, where β is the ratio to control the community structure and

must be greater than 1.

4.4 Community Detection Evaluation

Evaluating a community detection algorithm involves a criterion to measure

how similar the partition result of the algorithm is to the partition we hope to find.

For two paritions X = (X1, X2, ..., Xnx) and Y = (Y1, Y2, ..., Yny) of a graph, X is

determined by the algorithm with nx communities and Y is the ground truth with

ny communities. Most evaluation measures can be divided into three categories: pair

counting, community matching, and information theory.

Measures based on pair counting depend on the number of pairs which are

successfully (unsuccessfully) classified in the same (different) communities according

to the ground truth. Let SS be the number of pairs in the same community in both X

and Y partitions, SD be the number of pairs in the same community inX but different

communities in Y , DS be the number of pairs in different communities in X but the

same community in Y , and DD be the number of pairs in different communities in

both X and Y partitions. The Rand Index [70] is the ratio of the number of pairs

correctly classified to the total number of pairs, RI = (SS + DD)/(SS + SD +

DS +DD). Since DD is usually greater than SS and putting nodes not in the same

community in different partitions is not very challenging, Jaccard proposed a measure

focusing on SS. The Jaccard Index [46] is the ratio of the number of vertex pairs in

104

the same community in both partitions to the number of pairs in the same community

in at least one partition, JI = SS/(SS + SD +DS).

Measures based on community matching aim at the largest overlaps between

pairs of communities of different partitions. The most popular measures for this

category are Purity, Inverse Purity, and their harmonic mean (F measure). Pu-

rity [96] focuses on the frequency of the most common Yj into each Xi, Purity =∑nx

i=1
|Xi|
n
maxj

Xi∩Yj

Xi
. Purity penalizes the noise in X partitions, but it does not re-

ward grouping objects in the same community in Y partitions. If we simply make

each node a community, we can trivially get a maximum purity value. Similarly,

we can calculate Inverse Purity as: InversePurity =
∑ny

j=1
|Yj |
n
maxi

Xi∩Yj

Yj
. Inverse

Purity rewards grouping objects in the same community in Y partitions, but doesn’t

penalizes the noise in X partitions. A more robust metric [78] combines the concepts

of Purity and Inverse Purity using F measure [74]: F =
∑nx

i=1
|Xi|
n
maxj

2∗
Xi∩Yj

Xi
∗
Xi∩Yj

Yj
Xi∩Yj

Xi
+

Xi∩Yj
Yj

.

The third class of measures is based on the framework of information theory

[56]. The idea is that we need little information to infer one partition given the

other if two partitions are similar. Mutual Information MI measures the amount of

information by which our knowledge about the communities in one partition increases

when we are told what the communities are in the other partition. It is calculated

as follows: MI =
∑

i

∑
j P (Xi ∩ Yj)log P (Xi∩Yj)

P (Xi)P (Yj)
. The minimum of MI is 0 if the X

partition is random with respect to the Y partition. However, given a partion Y , all

partitions derived from Y by further partitioning have the same mutual information

with Y , even though they are different from each other. In this case, the mutual

information is equal to the entropy H(Y) = −
∑

j P (Yj)log(P (Yj)). To avoid that,

Danon et al. [22] proposed the normalized mutual information: NMI = 2∗MI
H(X)+H(Y)

.

It is currently often used and reaches its maximal value 1 if theX partition is identical

105

to the Y partition.

4.5 Community Detection from Correlation Perspective

In this section, we introduce an improvement to modularity-based community

detection from the correlation perspective.

4.5.1 Modularity-based Community Detection

The modularity function has several variants, but these variants share the

same idea. Without the loss of generality, we introduce the original modularity-

based method [20]. Given a graph with n nodes and m links represented by the

adjacency matrix W , the expected number of edges falling between two nodes i and

j is ki · kj/(2m) under the assumption of independence where ki is the degree of node

i. The modularity Q is calculated as 1
2m

∑
ij(wij − ki·kj

2m
) · δ(vi, vj). It is the sum

of the difference between the actual number of edges and the expected number of

edges over all the pairs of nodes in the same community. δ(vi, vj) is the Kronecker

delta function whose value is equal to 1 if vi and vj are in the same community and 0

otherwise. Initially, each node is the only member of its own community. The original

algorithm iteratively joins the two communities that increase the modularity most in

the current round. The original algorithm will stop if the best merge cannot further

increase modularity.

4.5.2 Connecting Modularity-based Community Detection with Correlation

Analysis

In this section, we transform the modularity function and connect it with

correlation measures. Given a partition with l groups {G1, G2, ..., Gl} for the graph

G with n nodes and m links, the modularity Q is 1
2m

∑
ij(wij− ki·kj

2m
) ·δ(vi, vj). For the

106

node vq in the group Gp, k
int
q is the number of the nodes in the group Gp that connect

to vq. The partial modularity Qp, which all the nodes in the group Gp contribute to

the overall modularity function, is 1
2m

∑
i∈Gp,j∈G(wij − ki·kj

2m
) · δ(vi, vj).

Therefore,

Qp =
∑

i∈Gp,j∈G

wij · δ(vi, vj)
2m

−
∑

i∈Gp,j∈G

ki · kj · δ(vi, vj)
(2m)2

=
∑
i∈Gp

∑
j∈Gwij · δ(vi, vj)

2m
−
∑
i∈Gp

ki ·
∑

j∈G kj · δ(vi, vj)
(2m)2

=
∑
i∈Gp

kinti

2m
−
∑
i∈Gp

ki ·
∑

j∈Gp
kj

(2m)2

=

∑
i∈Gp

kinti

2m
−
∑

i∈Gp
ki

2m
·
∑

j∈Gp
kj

2m
.

It is easy to calculate that the total number of links inside Gp is
∑

i∈Gp
kinti /2

and the total number of links in the graph G is m. If we randomly select a link

from the graph G, the probability of the link inside Gp is
∑

i∈Gp
kint
i /2

m
. Similarly, the

probability of the link with at least one end inside Gp is
∑

i∈Gp
ki

2m
when we randomly

select a link from the graph G. If the partition with l groups {G1, G2, ..., Gl} for the

graph G is totally random, the probability of the link with the other end inside Gp

from the links with one end already inside Gp is
∑

i∈Gp
ki

2m
·
∑

j∈Gp
kj

2m
. Therefore, given a

partition with l groups {G1, G2, ..., Gl} for the graph G, if we randomly select a link

from the graph G, the true probability of the link being inside Gp, tp, is
∑

i∈Gp
kint
i

2m
,

and the expected probability of the link being inside Gp under the assumption of

independent partition, ep, is
∑

i∈Gp
ki

2m
·

∑
j∈Gp

kj

2m
. Therefore, the partial modularity

function Qp can be rewritten as: Qp = tp−ep. By comparing the correlation measure

Leverage(S) = tp − ep, we can see the modularity function shares the same idea

with the correlation measure Leverage. Since the other correlation measures are also

functions of tp and ep, we can change the partial modularity function Qp by using the

107

formula of other correlation measures. In the rest of the chapter, instead of using the

term modularity, we use Simplified χ2, Probability Ratio, Leverage, and Likelihood

Ratio referring to the corresponding changed partial modularity function Qp, and

Leverage is the original modularity community detection method.

4.5.3 Upper Bound Analysis

In this section, we analyze the upper bound of different partial modularity

functions Qp inferred from four typical correlation measures: Simplified χ2, Prob-

ability Ratio, Leverage, and Likelihood Ratio. According to the above correlation

property, the measures reach their upper bound when tp is fixed and ep reaches its

lower bound.

Given a partition with l groups {G1, G2, ..., Gl} for the graph G, the true

probability of a link being inside Gp, tp, is
∑

i∈Gp
kint
i

2m
, and the expected probability,

ep, is
∑

i∈Gp
ki

2m
·
∑

j∈Gp
kj

2m
. If

∑
i∈Gp

kinti is fixed, the lowest possible value for
∑

i∈Gp
ki

is
∑

i∈Gp
kinti because kinti ≤ ki. In other words, when tp for the group Gp is fixed, the

lowest possible value for ep is tp2. When ep = tp2, the measures reach their upper

bound. Figure 4.1 shows the upper bounds of the various measures with respect to

different tp for a single community. It is easy to see that different measures favor

groups within different tp ranges. The upper bound of Simplified χ2 increases to 1

and that of Probability Ratio increases to infinity when tp is close to 0, which means

they favor extremely small groups rather than large groups. Leverage and Likelihood

Ratio reach their highest upper bound when tp is between 0 and 1. According to

the graph, Leverage does not favor the group which contains more than half of the

edges in the graph since its upper bound starts to decrease even when the group size

increases. Similarly, Likelihood Ratio does not favor the group which contains more

108

than roughly a quarter of the edges in the graph. In all, Probability Ratio favors the

smallest groups, followed by Simplified χ2, Likelihood Ratio, and Leverage.

4.5.4 Ensembling Different Methods

Since different methods have different biases according to the analysis in Sec-

tion 4.5.3, we can take advantage of the difference to ensemble them for better results.

The raw value of different measures might be in the different scales. If we ensemble

the raw value, the measure with the largest scale might dominate the final result.

Instead, we try different ways to ensemble the ranking lists.

The algorithm uses the agglomerative clustering procedure. Two important

steps affect the agglomerative clustering performance. First, we need to choose the

most promising community pair to merge in each iteration. Since different measures

rank the same pair differently, in order to choose the most promising pair, we can use

three different functions to ensemble the ranking list: product, sum, and min. For

example, given the community pair CPi, the ranking given by method Mj is Ri,j. If

we use the product function, the final value for CPi is
∏n

j=1Ri,j. Then, we choose

the pair with the minimal final value as the most promising pair at each iteration.

If there is a tie between different pairs, we use min(Ri,1, Ri,2, ..., Ri,n) to break the

tie. Second, we need to decide when to stop the iteration. For the modularity-

based algorithm, the algorithm will stop if the most promising merge cannot increase

the modularity function any more. However, for ensemble algorithms, one objective

function might increase but the other objective function might decrease for the most

promising merge. Due to this conflict, we use two different stopping criteria. The

first strategy is to stop the algorithm when any objective function starts to decrease.

The second strategy is to stop the algorithm when all objective functions start to

109

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

True Probability

S
im

pl
ifi

ed
 C

hi
−

sq
ua

re

(a) Simplified χ2

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20
True Probability

P
ro

ba
bi

lit
y

R
at

io

(b) Probability Ratio

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
10

0.
20

True Probability

Le
ve

ra
ge

(c) Leverage

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
05

0.
10

0.
15

True Probability

Li
ke

lih
oo

d
R

at
io

(d) Likelihood Ratio

Figure 4.1: Upper bounds of different measures for a single community

110

decrease.

4.6 Experiments

Past research on modularity-based methods set modularity as their objective

function and use different optimization techniques to search for the partition that

generates the highest value. In this chapter, instead of exploring better optimization

techniques for the same objective function, we change the objective function and

study the impact the different objective functions make. In order to conduct a fair

comparison for different objective functions, we choose greedy search, the simplest

optimization technique, which is also used by the original modularity method and

generates reasonably good results [20]. Initially, each node is the only member of its

own community. The algorithm iteratively joins the two communities that increase

the objective function most in the current round. The algorithm will stop if the

best merge cannot further increase the objective function. Here, we conduct our

experiments on both simulated and real life data sets.

4.6.1 Evaluation on Individual Methods

4.6.1.1 Results on Simulated Graphs

Here, we use the improved LFR model to simulate graphs and the normalized

mutual information to measure the performance. There are 8 parameters related to

the LFR simulation model: the total number of nodes, the minimal node degree, the

maximal node degree, the power law parameter for node degree, the minimal commu-

nity size, the maximal community size, the power law parameter for community size,

and the ratio β for community structure. We conduct 9 sets of experiments and the

parameter values are shown in Table 4.1. We only change the minimal community

111

Parameter Value
The total number of nodes 2000
The minimal node degree 5
The maximal node degree 300

The power law parameter for node degree 2.5
The minimal community size 5, 50, or 100
The maximal community size 300

The power law parameter for community size 1.5
The ratio β for community structure 5, 10, or 20

Table 4.1: Parameter Setting for Simulated Graphs

size and the ratio β for community structure to generate different graphs. When

the minimal community size is 5, there are many small communities, some mid-size

communities, and a few large communities, while the graph only contains large com-

munities when the minimal community size is 100. The community structure is fuzzy

when β is 5, while it is clear when β is 20.

For each parameter setting, we generate the graph 10 times to test each

method. We calculate the average value for each measure shown in Table 4.21. Dif-

ferent evaluation measures provide different information. Since NMI is the most

widely-accepted measure, we focus our discussion on NMI in the following. The av-

erage NMI and the average number of partitioned communities generated by each

method for each parameter setting are shown in Figures 4.2 - 4.5.

Figure 4.2 shows the NMI achieved by each method and Figure 4.3 shows

the number of partitioned communities when fixing the minimal community size and

changing the ratio β. No matter what the minimal community size and the ratio β

are, the NMI and the number of partitioned communities for both Simplified χ2 and

Probability Ratio are almost the same. They always detect more than 500 commu-

1DNC: the detected number of communities, ANC: the actual number of communities

112

Data Set Measure NMI Jaccard Rand Index F-measure DNC 2 ANC 3

Simplified χ2 0.5868 0.0122 0.9391 0.0240 629.5 50.8
MCS=5 Probability Ratio 0.5856 0.0062 0.9390 0.0124 903.3 50.8
β=5 Leverage 0.1222 0.0809 0.7749 0.1481 9.4 50.8

Likelihood Ratio 0.5515 0.0272 0.9388 0.0530 300.5 50.8
Simplified χ2 0.6023 0.0146 0.9397 0.0289 604.8 51.2

MCS=5 Probability Ratio 0.5937 0.0068 0.9394 0.0136 905 51.2
β=10 Leverage 0.2741 0.1523 0.7900 0.2605 7.5 51.2

Likelihood Ratio 0.5992 0.0462 0.9406 0.0883 263.4 51.2
Simplified χ2 0.6212 0.0196 0.9436 0.0385 564.6 51.8

MCS=5 Probability Ratio 0.6035 0.0089 0.9432 0.0177 855.7 51.8
β=20 Leverage 0.5349 0.2265 0.8215 0.3658 6.8 51.8

Likelihood Ratio 0.7545 0.5136 0.9714 0.6699 139.5 51.8
Simplified χ2 0.4775 0.0091 0.9177 0.0181 586.2 16

MCS=50 Probability Ratio 0.4765 0.0054 0.9176 0.0107 777.6 16
β=5 Leverage 0.1172 0.1016 0.7754 0.1820 9.2 16

Likelihood Ratio 0.4314 0.0194 0.9172 0.0381 283.7 16
Simplified χ2 0.5075 0.0125 0.9240 0.0246 554.3 16.5

MCS=50 Probability Ratio 0.4969 0.0069 0.9237 0.0137 747.9 16.5
β=10 Leverage 0.4318 0.2523 0.8302 0.3983 6.2 16.5

Likelihood Ratio 0.5040 0.0507 0.9259 0.0958 243.3 16.5
Simplified χ2 0.5280 0.0154 0.9211 0.0303 533 15.8

MCS=50 Probability Ratio 0.5065 0.0076 0.9205 0.0151 758.4 15.8
β=20 Leverage 0.7375 0.4098 0.8886 0.5773 6.5 15.8

Likelihood Ratio 0.7663 0.6430 0.9703 0.7778 67.9 15.8
Simplified χ2 0.4210 0.0073 0.8978 0.0145 568.9 10.7

MCS=100 Probability Ratio 0.4243 0.0044 0.8977 0.0088 750 10.7
β=5 Leverage 0.1471 0.1330 0.7710 0.2336 8.5 10.7

Likelihood Ratio 0.3727 0.0156 0.8972 0.0306 280.2 10.7
Simplified χ2 0.4538 0.0092 0.9038 0.0183 571.9 11.3

MCS=100 Probability Ratio 0.4514 0.0053 0.9036 0.0106 774.2 11.3
β=10 Leverage 0.5587 0.3423 0.8532 0.5038 6.2 11.3

Likelihood Ratio 0.4458 0.0287 0.9046 0.0558 250.8 11.3
Simplified χ2 0.4844 0.0128 0.9016 0.0253 522.6 11.2

MCS=100 Probability Ratio 0.4657 0.0069 0.9010 0.0138 721.9 11.2
β=20 Leverage 0.8318 0.5755 0.9291 0.7300 6.8 11.2

Likelihood Ratio 0.7614 0.6550 0.9638 0.7851 52.2 12

Table 4.2: Results on simulated datasets

113

nities. Since the total number of nodes is 2000, most of the communities they detect

contain 2 or 3 nodes. That supports our observation in Section 4.5.3 that Simplified

χ2 and Probability Ratio favor small size communities. No matter what the minimal

community size is, both Leverage and Likelihood Ratio achieve better NMI when

the community structure becomes clearer. Only when the community structure is

clear and the whole graph only contains large communities, the NMI of Leverage is

better than that of Likelihood Ratio. Leverage has more bias towards large com-

munities than Likelihood Ratio according to our upper bound analysis; therefore,

we expect Leverage is better than Likelihood Ratio when the graph only contains

large communities. In practice, social networks contain a lot of small communities;

therefore, Likelihood Ratio is better in the common case. The number of partitioned

communities by Leverage are almost the same no matter how we change the mini-

mal community size and the ratio β, while the number of partitioned communities

by Likelihood Ratio get closer to the ground truth when the community structure

becomes clearer. Another interesting observation related to Leverage is that its NMI

is very low when the minimal community size is large under the fuzzy community

structure. Even under the fuzzy community structure, Leverage detects the same

number of large communities. Such a partition assigns many nodes in different real

communities to the same partitions, which results in the low NMI. Generally speak-

ing, the partition generated by Likelihood Ratio is better and more adaptive to the

different types of graphs than that by Leverage.

Figure 4.4 shows the NMI achieved by each method and Figure 4.5 shows

the number of partitioned communities when fixing the ratio β and changing the

minimal community size. Since both Simplified χ2 and Probability Ratio favor small-

size communities, their NMI decreases with the increase of the minimal community

114

size whether the community structure is fuzzy or clear. The NMI of Likelihood Ra-

tio decreases with the increase of the minimal community size when the community

structure is not clear. However, when the community structure is clear, Likelihood

Ratio achieves almost the same performance with the increase of the minimal com-

munity size. The NMI of Leverage always increases with the increase of the minimal

community size since it has the bias to large communities.

4.6.2 Graph Parameter Estimation

In the previous section, we checked the performance of different measures under

different parameters. Likelihood Ratio is more robust. However, Leverage is better

when there are only large communities and the community structure is clear. Given

a real life dataset, we need a way to assess whether there are only large communities

and the community structure is clear. And then, it helps us to choose the right

function for community detection.

We calculate the number of k-cliques from each simulated graph (when k=2,3,

and 4). If y is the number of k-cliques in the graph, we can find a following linear

regression model: y ∼ k + β +minimal community size. The regression function is

y = 21648.569 − 5851.667 ∗ k + 91.23 ∗ β + 1.867 ∗ minimal community size. The

p-value of the coefficient for β is 2.48e − 08 and the p-value of the coefficient for

minimal community size is 0.465. Since the coefficient for β is significant, we can

estimate the β by calculating the number of k-cliques from the graph (when k=2,3,

and 4).

By checking the number of communities detected by Likelihood Ratio and

Leverage, we find the number of communities detected by Likelihood Ratio is close to

that of Leverage when there are only large communities and the community structure

115

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

The Ratio Beta

N
M

I

The Simplified Chi−square
Probability Ratio
Leverage
Likelihood Ratio

(a) The minimal community size is 5

5 10 15 20
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

The Ratio Beta

N
M

I

The Simplified Chi−square
Probability Ratio
Leverage
Likelihood Ratio

(b) The minimal community size is 50

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

The Ratio Beta

N
M

I

The Simplified Chi−square
Probability Ratio
Leverage
Likelihood Ratio

(c) The minimal community size is 100

Figure 4.2: NMI when fixing the minimal community size

116

5 10 15 20

0
20

0
40

0
60

0
80

0
10

00
12

00

The Ratio Beta

T
he

 N
um

be
r

of
 C

om
m

un
iti

es

The Simplified Chi−square
Probability Ratio
Leverage
Likelihood Ratio
The Ground Truth

(a) The minimal community size is 5

5 10 15 20
0

20
0

40
0

60
0

80
0

10
00

12
00

The Ratio Beta

T
he

 N
um

be
r

of
 C

om
m

un
iti

es

The Simplified Chi−square
Probability Ratio
Leverage
Likelihood Ratio
The Ground Truth

(b) The minimal community size is 50

5 10 15 20

0
20

0
40

0
60

0
80

0
10

00
12

00

The Ratio Beta

T
he

 N
um

be
r

of
 C

om
m

un
iti

es

The Simplified Chi−square
Probability Ratio
Leverage
Likelihood Ratio
The Ground Truth

(c) The minimal community size is 100

Figure 4.3: The number of communities when fixing the minimal community size

117

20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

The Minimal Community Size

N
M

I

The Simplified Chi−square
Probability Ratio
Leverage
Likelihood Ratio

(a) The ratio β is 5

20 40 60 80 100
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

The Minimal Community Size

N
M

I

The Simplified Chi−square
Probability Ratio
Leverage
Likelihood Ratio

(b) The ratio β is 10

20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

The Minimal Community Size

N
M

I

The Simplified Chi−square
Probability Ratio
Leverage
Likelihood Ratio

(c) The ratio β is 20

Figure 4.4: NMI when fixing the ratio β

118

20 40 60 80 100

0
20

0
40

0
60

0
80

0
10

00
12

00

The Minimal Community Size

T
he

 N
um

be
r

of
 C

om
m

un
iti

es

The Simplified Chi−square
Probability Ratio
Leverage
Likelihood Ratio
The Ground Truth

(a) The ratio β is 5

20 40 60 80 100
0

20
0

40
0

60
0

80
0

10
00

12
00

The Minimal Community Size

T
he

 N
um

be
r

of
 C

om
m

un
iti

es

The Simplified Chi−square
Probability Ratio
Leverage
Likelihood Ratio
The Ground Truth

(b) The ratio β is 10

20 40 60 80 100

0
20

0
40

0
60

0
80

0
10

00
12

00

The Minimal Community Size

T
he

 N
um

be
r

of
 C

om
m

un
iti

es

The Simplified Chi−square
Probability Ratio
Leverage
Likelihood Ratio
The Ground Truth

(c) The ratio β is 20

Figure 4.5: The number of communities when fixing the ratio β

119

is clear. If the difference between the number of communities detected by Likelihood

Ratio and Leverage is small and the estimated β is large, thenminimal community size

must be large.

4.6.2.1 Results on Real Life Graphs

In this section, we conduct experiments on two real life datasets with manually

identified community information: Karate [93], and Football [39]. The karate dataset

contains friendships between 34 members of a karate club at a US university in the

1970s. There was a disagreement between the administrator and the instructor in

the club, which resulted in two communities in this graph. The football dataset

records games between Division IA colleges during regular season Fall 2000. There

were 115 teams in 12 different conferences. We use different algorithms to partition

graphs and evaluate how similar the partition is to the ground truth by different

measures. The final result is shown in Table 4.3. The best method for Karate dataset

is Leverage. The result is consistent with our theoretical analysis. The karate dataset

only contains two large communities, and Leverage is the method having the most

bias to large communities. Both Simplified χ2 and Likelihood Ratio are good for the

football dataset. This dataset contains 12 almost equal size communities. Likelihood

Ratio has the bias to middle-size communities. According to its performance on the

simulated data, it is not surprising that Likelihood Ratio works very well for the

football dataset. However, Simplified χ2 also works surprisingly well in the football

dataset. According to Figure 4.1, it has the bias, but not the extreme bias, to

small communities. When the dataset contains many clear middle-size communities,

Simplified χ2 can work well, but is not recommended because it is not as robust as

Likelihood Ratio.

120

Data Set Measure NMI Jaccard Rand Index F-measure DNC ANC
Simplified χ2 0.4852 0.2842 0.6453 0.4426 7 2

Karate Probability Ratio 0.3868 0.0945 0.5561 0.1728 14 2
Leverage 0.6925 0.6833 0.8414 0.8118 3 2

Likelihood Ratio 0.5385 0.3958 0.6952 0.5671 5 2
Simplified χ2 0.9141 0.7571 0.9793 0.8618 14 12

Football Probability Ratio 0.6864 0.0829 0.9240 0.1531 55 12
Leverage 0.6977 0.3622 0.8807 0.5317 6 12

Likelihood Ratio 0.9086 0.7897 0.9812 0.8825 12 12

Table 4.3: Results on real life datasets

4.6.3 Evaluation on Ensemble Methods

After checking the performance for each individual method, we examined the

performance for ensemble methods. Among the four individual methods, Leverage

and Likelihood Ratio are robust and have different biases. Therefore, we only check

the ensemble of Leverage and Likelihood Ratio in the following. There are three

ensemble functions and two stopping criteria. The results of different ensemble meth-

ods on the simulated data are shown in Table 4.4. Since Leverage tends to find

large communities, Likelihood Ratio will stop the search before Leverage. Therefore,

the stopping criterion is determined by Likelihood Ratio if the stopping criterion is

“AtLeastOneNegative”, or Leverage if the stopping criterion is “AllNegative”. If the

stopping criterion is “AtLeastOneNegative”, the final performance is similar to Like-

lihood Ratio no matter which ensemble function we use. If the stopping criterion is

“AllNegative”, there are significant differences among three ensemble functions. The

result of Min function is very similar to Likelihood Ratio, while the result of Sum

function is similar to Leverage. The Product function is in the middle. When us-

ing the “AllNegative” stopping criterion, the ensemble result is at least better than

the worst individual method. If we cannot estimate the situation of a given dataset,

the ensemble method with the “AllNegative” stopping criterion can prevent us from

getting the worst result.

121

Data Set Function Stop NMI Jaccard Rand Index F-measure DNC ANC
Product AllNegative 0.5275 0.0400 0.9384 0.0760 236.9 50.8
Product AtLeastOneNegative 0.5611 0.0239 0.9389 0.0467 369.6 50.8

MCS=5 Min AllNegative 0.5506 0.0341 0.9391 0.0656 292.3 50.8
β=5 Min AtLeastOneNegative 0.5599 0.0248 0.9389 0.0485 352.3 50.8

Sum AllNegative 0.2942 0.1487 0.9122 0.2543 18.5 50.8
Sum AtLeastOneNegative 0.5537 0.0228 0.9384 0.0445 400.8 50.8

Leverage 0.1222 0.0809 0.7749 0.1481 9.4 50.8
Likelihood Ratio 0.5515 0.0272 0.9388 0.0530 300.5 50.8

Product AllNegative 0.6212 0.2387 0.9517 0.3537 191.6 51.2
Product AtLeastOneNegative 0.6016 0.0418 0.9405 0.0802 310.3 51.2

MCS=5 Min AllNegative 0.6121 0.1228 0.9453 0.2155 246.6 51.2
β=10 Min AtLeastOneNegative 0.6006 0.0449 0.9406 0.0858 279 51.2

Sum AllNegative 0.5517 0.4389 0.9365 0.6050 13.1 51.2
Sum AtLeastOneNegative 0.5961 0.0432 0.9401 0.0826 356 51.2

Leverage 0.2741 0.1523 0.7900 0.2605 7.5 51.2
Likelihood Ratio 0.5992 0.0462 0.9406 0.0883 263.4 51.2

Product AllNegative 0.7931 0.6977 0.9695 0.8061 79.3 51.8
Product AtLeastOneNegative 0.7535 0.4925 0.9705 0.6522 182.9 51.8

MCS=5 Min AllNegative 0.7882 0.7176 0.9826 0.8276 107.2 51.8
β=20 Min AtLeastOneNegative 0.7510 0.4893 0.9702 0.6472 168.9 51.8

Sum AllNegative 0.7490 0.4136 0.9226 0.5824 12.5 51.8
Sum AtLeastOneNegative 0.7650 0.5529 0.9735 0.7031 164.7 51.8

Leverage 0.5349 0.2265 0.8215 0.3658 6.8 51.8
Likelihood Ratio 0.7545 0.5136 0.9714 0.6699 139.5 51.8

Product AllNegative 0.4087 0.0394 0.9173 0.0754 213.6 16
Product AtLeastOneNegative 0.4421 0.0175 0.9173 0.0344 342.6 16

MCS=50 Min AllNegative 0.4322 0.0294 0.9177 0.0568 275.2 16
β=5 Min AtLeastOneNegative 0.4410 0.0177 0.9173 0.0348 333.4 16

Sum AllNegative 0.2119 0.1298 0.8904 0.2250 18.9 16
Sum AtLeastOneNegative 0.4393 0.0174 0.9170 0.0342 368.5 16

Leverage 0.1172 0.1016 0.7754 0.1820 9.2 16
Likelihood Ratio 0.4314 0.0194 0.9172 0.0381 283.7 16

Product AllNegative 0.5257 0.2557 0.9398 0.3836 145.4 16.5
Product AtLeastOneNegative 0.5112 0.0581 0.9267 0.1054 298.9 16.5

MCS=50 Min AllNegative 0.5178 0.1330 0.9318 0.2276 222.9 16.5
β=10 Min AtLeastOneNegative 0.5083 0.0439 0.9257 0.0834 304.4 16.5

Sum AllNegative 0.5217 0.3861 0.9222 0.5507 11.9 16.5
Sum AtLeastOneNegative 0.5050 0.0446 0.9252 0.0852 307.6 16.5

Leverage 0.4318 0.2523 0.8302 0.3983 6.2 16.5
Likelihood Ratio 0.5040 0.0507 0.9259 0.0958 243.3 16.5

Product AllNegative 0.8267 0.6414 0.9581 0.7772 12.9 15.8
Product AtLeastOneNegative 0.7592 0.6152 0.9684 0.7562 108.1 15.8

MCS=50 Min AllNegative 0.8100 0.6846 0.9679 0.8096 32.5 15.8
β=20 Min AtLeastOneNegative 0.7310 0.5433 0.9620 0.6968 129.4 15.8

Sum AllNegative 0.8713 0.7191 0.9702 0.8340 11.8 15.8
Sum AtLeastOneNegative 0.8409 0.7550 0.9797 0.8577 56.5 15.8

Leverage 0.7375 0.4098 0.8886 0.5773 6.5 15.8
Likelihood Ratio 0.7663 0.6430 0.9703 0.7778 67.9 15.8

Product AllNegative 0.3064 0.0449 0.8895 0.0843 165.9 10.7
Product AtLeastOneNegative 0.3849 0.0138 0.8973 0.0271 346.5 10.7

MCS=100 Min AllNegative 0.3729 0.0214 0.8975 0.0418 273.3 10.7
β=5 Min AtLeastOneNegative 0.3803 0.0144 0.8973 0.0285 316.9 10.7

Sum AllNegative 0.1788 0.1022 0.8660 0.1846 17.4 10.7
Sum AtLeastOneNegative 0.3871 0.0144 0.8972 0.0284 364.3 10.7

Leverage 0.1471 0.1330 0.7710 0.2336 8.5 10.7
Likelihood Ratio 0.3727 0.0156 0.8972 0.0306 280.2 10.7

Product AllNegative 0.4846 0.2653 0.9213 0.4003 109 11.3
Product AtLeastOneNegative 0.4528 0.0273 0.9047 0.0531 303.7 11.3

MCS=100 Min AllNegative 0.4608 0.1053 0.9110 0.1787 223.8 11.3
β=10 Min AtLeastOneNegative 0.4507 0.0271 0.9046 0.0526 290.6 11.3

Sum AllNegative 0.5075 0.3948 0.9131 0.5630 10.3 11.3
Sum AtLeastOneNegative 0.4610 0.0324 0.9050 0.0628 325.2 11.3

Leverage 0.5587 0.3423 0.8532 0.5038 6.2 11.3
Likelihood Ratio 0.4458 0.0287 0.9046 0.0558 250.8 11.3

Product AllNegative 0.8164 0.7675 0.9745 0.8675 17.8 11.2
Product AtLeastOneNegative 0.7408 0.5866 0.9567 0.7255 89.2 11.2

MCS=100 Min AllNegative 0.8032 0.7530 0.9729 0.8583 18.8 11.2
β=20 Min AtLeastOneNegative 0.7419 0.5987 0.9585 0.7294 78 11.2

Sum AllNegative 0.8744 0.8254 0.9808 0.9037 10.8 11.2
Sum AtLeastOneNegative 0.8087 0.6887 0.9676 0.8106 63.5 11.2

Leverage 0.8318 0.5755 0.9291 0.7300 6.8 11.2
Likelihood Ratio 0.7614 0.6550 0.9638 0.7851 52.2 11.2

Table 4.4: Ensemble results on simulated datasets

122

4.7 Conclusion

In this chapter, we connect modularity-based methods with correlation analy-

sis and use different correlation measures to change the objective function of modularity-

based methods. An upper bound analysis is conducted to analyze the bias of different

objective functions and the bias is validated by our experiments. With respect to the

widely accepted measure, Normalized Mutual Information, to compare the partition

determined by the algorithm with the ground truth, Likelihood Ratio is better and

more robust. We proposed the way to estimate the graph parameters which can help

us to select the right measure. In addition, different measures can be used for different

purposes. For example, Probability Ratio can be used if we want to fairly partition

the students in the class into small groups for class projects, and we might use Lever-

age to find relatively large groups for marketing campaigns. If we want to find the

real community structure but don’t know the parameter setting of the real dataset,

we can use the ensemble method with the “AllNegative” stopping criterion to prevent

us from getting the worst result. In the future, we will investigate more correlation

measures and work towards overlapping partitioning which is more realistic.

123

CHAPTER 5
CONCLUSION

In this dissertation, we did research on correlation analysis for binary data.

First, we studied 18 different correlation measures and provide guidelines for users to

select good correlation measures according to their situation. Second, we applied our

correlation analysis to two important applications: market basket analysis and net-

work community detection. For market basket analysis, we propose an FCI framework

to decouple the correlation measure from the need for efficient search of correlated

itemset. In addition, we proposed several algorithms to speed up the pair search

or repeated search. For network community detection, we connect modularity-based

methods with correlation analysis and use different correlation measures to change

the objective function of modularity-based methods. In addition to the above two

applications, there are also many promising applications related to our correlation

research. In the data mining area, itemset mining and association rules is a big

research topic. My research on correlation analysis brings new insights to a lot of re-

search questions by replacing the measure Support with other correlation measures.

In the past ten years, much research has extended itemset mining and association

rules to handle time series data and graph data like frequent subgraph mining [49]

and itemset mining on time series data [55]. We can see a big opportunity to improve

the research on itemset mining and association rules to handle time series data and

graph data from the correlation analysis perspective. In classification, Liu et al. [53]

made use of association rules for classification problems. Jalali-Heravi et al. [47] con-

ducted the research on how correlation measures can improve associative classifiers

proposed by Liu et al., and there are many unanswered questions on this topic. An-

124

other related research question is how to make use of correlation measures to select

concise and useful association rules [13]. In social network area, the influential nodes

search can either be used for word-of-mouth marketing or infectious disease preven-

tion. The traditional methods assume a person has the same impact on all his or

her friends. In reality, a person in a network is usually more influenced by his or her

close friends, and is able to influence only a few others. This observation requires us

to study which correlation measure can more effectively measure the impact to each

other, and how we can adjust the impact if we get information other than the topol-

ogy of the social network. Another important issue is the role of the person across

different communities. A person connected to many different communities plays a

very important role in passing the message or disease. This requires us to extend

the fundamental research to overlapping community detection. In all, our correlation

analysis has provided better solutions for many practical problems, and has many

research opportunities for other practical problems.

125

Property 1. M is equal to a certain constant number C when all the items in the

itemset are statistically independent.

Proof. Support: When tp = ep = 0.1, the Support is 0.1. When tp = ep = 0.2, the

Support is 0.2. There is no such constant number C for Support.

Any-confidence, All-confidence, Bond: For a pair {A,B} with tp = 0.1, P (A) = 0.2,

and P (B) = 0.5, the Any-confidence is 0.5. For a pair {A,B} with tp = 0.1, P (A) = 0.4,

and P (B) = 0.25, the Any-confidence is 0.4. There is no such constant number C. The

same example applies to All-confidence and Bond.

IS: When tp = ep, IS =
√
tp which is not constant. Therefore, there is no such constant

number C for IS.

Other General Correlation Measures: When tp = ep, the Simplified χ2-statistic, Prob-

ability ratio, Leverage, Likelihood Ratio, BCPNN, SCWCC, Two-way Support, and SCWS

are all equal to 0. Therefore, the constant number C for them is 0.

ϕ-coefficient, Added Value: When A and B are independent from each other, ϕ-

coefficient and Added Value are equal to 0. Therefore, the constant number C for them is

0.

Relative Risk, Odds Ratio, Conviction: When A and B are independent from each

other, Relative Risk, Odds Ratio, and Conviction are equal to 1. Therefore, the constant

number C for them is 1.

Property 2. M monotonically increases with the increase of P (S) when all the P (Ii)

remain the same.

Proof. Support: Since the Support is equal to tp, the Support increases with tp when ep

is fixed.

Any-confidence: When all the P (Ii) remain the same, min(P (I1), P (I2), ..., P (Im)) re-

main the same. Then Any-confidence increases with the increase of tp according to the

126

formula.

All-confidence: When all the P (Ii) remain the same, max(P (I1), P (I2), ..., P (Im)) remain

the same. Then All-confidence increases with the increase of tp according to the formula.

Bond: When all the P (Ii) remain the same, P (I1∪ I2∪ ...∪ Im) could increase or decrease.

Then Bond might decrease with the increase of tp when all the P (Ii) remain the same.

Simplified χ2-statistic, SCWCC, and SCWS: When all the P (Ii) remain the same, ep

stays the same. When tp ≥ ep, (tp− ep)2 increases with the increase of tp. The Simplified

χ2-statistic, n · (tp − ep)2/ep, increases with the increase of tp. When tp < ep, (tp − ep)2

decreases with the increase of tp. The Simplified χ2-statistic, −n · (tp − ep)2/ep, increases

with the increase of tp. Similar to the Simplified χ2-statistic, SCWCC and SCWS increase

with the increase of tp when ep stays the same.

Probability Ratio, BCPNN, IS, and Two-way Support: When all the P (Ii) remain

the same, ep stays the same. Probability Ratio, ln(tp/ep), increases with the increase of tp.

Similar to Probability Ratio, BCPNN, IS and Two-way Support increase with the increase

of tp when ep stays the same.

Leverage: When all the P (Ii) remain the same, ep stays the same. Leverage, tp − ep,

increases with the increase of tp.

Likelihood Ratio: When all the P (Ii) remain the same, ep stays the same.

When tp > ep,

LikelihoodRatio(S) = n · tp · (ln(tp)− ln(ep)) + n · (1− tp) · (ln(1− tp)− ln(1− ep))

= n · tp · ln(tp)− n · tp · ln(ep) + n · ln(1− tp)− n · ln(1− ep)

−n · tp · ln(1− tp) + n · tp · ln(1− ep)

= n · tp · ln tp

1− tp
+ n · ln(1− tp)− n · ln(1− ep) + n · tp · ln1− ep

ep

127

If we consider LikelihoodRatio(S) as a function of tp, then

LikelihoodRatio(S)′ = n · ln tp

1− tp
+ n · tp · 1− tp

tp
· (1− tp)− (−1) · tp

(1− tp)2

+n · −1

1− tp
+ n · ln1− ep

ep

= n · ln(tp

1− tp
· 1− ep

ep
)

Since tp > ep, tp/ep > 1 and (1− ep)/(1− tp) > 1, then LikelihoodRatio(S)′ > 0.

In other words, Likelihood Ratio increases with the increase of tp when tp > ep.

When tp < ep,

LikelihoodRatio(S) = −n · tp · (ln(tp)− ln(ep))− n · (1− tp) · (ln(1− tp)− ln(1− ep))

= −n · tp · ln(tp) + n · tp · ln(ep)− n · ln(1− tp) + n · ln(1− ep)

+n · tp · ln(1− tp)− n · tp · ln(1− ep)

= n · tp · ln1− tp

tp
− n · ln(1− tp) + n · ln(1− ep) + n · tp · ln ep

1− ep

If we consider LikelihoodRatio(S) as a function of tp, then

LikelihoodRatio(S)′ = n · ln1− tp

tp
+ n · tp · tp

1− tp
· −tp− (1− tp)

tp2

−n · −1

1− tp
+ n · ln ep

1− ep

= n · ln(1− tp

tp
· ep

1− ep
)

Since tp < ep, ep/tp > 1 and (1− tp)/(1− ep) > 1, then LikelihoodRatio(S)′ > 0.

In other words, Likelihood Ratio increases with the increase of tp when tp < ep. In all,

Likelihood Ratio increases with the increase of tp.

ϕ-coefficient: When f1+ and f+1 remain the same but f11 increases, f10 and f01 decrease

because f1+ = f11 + f10 and f+1 = f11 + f01. Since f0+ is the same and f01 decreases, then

f00 increases. According to the formula, the ϕ correlation coefficient increases.

Relative Risk: When f1+ and f+1 remain the same but f11 increases, f0+ remains the

same and f01 decreases. According to the formula, Relative Risk increases.

Odds Ratio: When f1+ and f+1 remain the same but f11 increases, f10 and f01 decrease

128

because f1+ = f11 + f10 and f+1 = f11 + f01. Since f0+ is the same and f01 decreases, then

f00 increases. According to the formula, Odds Ratio increases.

Conviction: When f1+ and f+1 remain the same but f11 increases, f10 decreases because

f1+ = f11 + f10. According to the formula, Conviction increases.

Added Value: When f1+ and f+1 remain the same but f11 increases, Added Value in-

creases according to the formula.

Property 3. M monotonically decreases with the increase of any P (Ii) when the

remaining P (Ik) and P (S) remain unchanged.

Proof. Support: Since the Support is equal to tp, the Support stays the same with the

increase of ep when tp is fixed.

Any-confidence: For any P (Ij) which is not equal to min(P (I1), P (I2), ..., P (Im)), Any-

confidence stays the same with the increase of P (Ij) when the remaining P (Ik) and tp

remain unchanged.

All-confidence: For any P (Ij) which is not equal to max(P (I1), P (I2), ..., P (Im)), All-

confidence stays the same with the decrease of P (Ij) when the remaining P (Ik) and tp

remain unchanged.

Bond: With the increase of a certain P (Ij), P (I1 ∪ I2 ∪ ...∪ Im) might be the same. Then

Bond might stay the same with the decrease of P (Ij) when the remaining P (Ik) and tp

remain unchanged.

Simplified χ2-statistic, SCWCC, and SCWS: With the increase of a certain P (Ij),

ep increases. When tp ≥ ep, χ2(S) = n · (tp − ep)2/ep. If we consider the Simplified χ2-

statistic as a function of ep, then χ2′(S) = n · (ep2 − tp2)/ep2. Since 0 ≤ ep ≤ tp ≤ 1,

ep2 ≤ tp2. Therefore, χ2′(S) ≤ 0. Similarly, when tp < ep, χ2(S) = −n · (tp − ep)2/ep

and χ2′(S) = −n · (ep2 − tp2)/ep2 < 0. In all, the Simplified χ2-statistic decreases with the

increase of ep. Similar to the Simplified χ2-statistic, SCWCC and SCWS decrease with the

increase of ep when tp stays the same.

129

Probability Ratio, BCPNN, IS, and Two-way Support: With the increase of a

certain P (Ij), ep increases. When tp is fixed, Probability Ratio decreases with the increase

of ep. Similar to Probability Ratio, BCPNN, IS and Two-way Support decrease with the

increase of ep when tp stays the same.

Leverage: With the increase of a certain P (Ij), ep increases. When tp is fixed, Leverage

decreases with the increase of ep.

Likelihood Ratio: With the increase of a certain P (Ij), ep increases.

When tp > ep,

LikelihoodRatio(S) = n · tp · (ln(tp)− ln(ep)) + n · (1− tp) · (ln(1− tp)− ln(1− ep))

= n · tp · ln(tp)− n · tp · ln(ep) + n · ln(1− tp)− n · ln(1− ep)

−n · tp · ln(1− tp) + n · tp · ln(1− ep)

= n · tp · ln tp

1− tp
+ n · ln(1− tp)− n · ln(1− ep) + n · tp · ln1− ep

ep
.

If we consider LikelihoodRatio(S) as a function of ep, then

LikelihoodRatio(S)′ =
n

1− ep
− n · tp

(1− ep) · ep

=
n · (ep− tp)

(1− ep) · ep
.

Since tp > ep, then LikelihoodRatio(S)′ < 0. In other words, Likelihood Ratio

decreases with the increase of ep when tp > ep. Similarly, when tp < ep, we can prove

Likelihood Ratio decreases with the increase of ep. In all, Likelihood Ratio decreases with

the increase of ep.

ϕ-coefficient: We have

ϕ =
P (AB)− P (A) ∗ P (B)√

P (A) ∗ P (B) ∗ (1− P (A)) ∗ (1− P (B))
.

If P (AB) and P (B) remain the same but P (A) increases, we need to prove ϕ de-

130

creases. If we consider ϕ as a function of P (A), then

ϕ′ =
1√

P (B) · (1− P (B))
· (P (AB)− P (A) · P (B)√

P (A) · (1− P (A))
)′

=
1√

P (B) · (1− P (B))

·
−P (B) ·

√
P (A) · (1− P (A))− (P (AB)− P (A) · P (B)) · 1−2·P (A)

2·
√

P (A)·(1−P (A))

P (A) · (1− P (A))

=
P (AB) · P (A)− P (AB)/2− P (A) · P (B)/2

(
√

P (A) · (1− P (A)))3

=
(P (AB)− P (B)) · P (A)/2 + (P (A)− 1) · P (AB)/2

(
√

P (A) · (1− P (A)))3

Since P (AB) < P (B) and P (A) < 1, ϕ′ < 0. Therefore, ϕ decreases as P (A)

increases. Similarly, we can prove ϕ decreases when P (AB) and P (A) remain the same but

P (B) increases.

Relative Risk: f11 remains the same. When f1+ increases and f+1 stays the same, f11/f1+

decreases and f01/f0+ increases. In this case, Relative Risk decreases. When f1+ stays the

same and f+1 increases, f11/f1+ is the same and f01/f0+ increases. In this case, Relative

Risk decreases. In all, Relative Risk decreases when tp is the same and ep increases.

Odds Ratio: When f11 remains the same but f1+ or f+1 increases, then f10 or f01 increases

and f00 decreases. According to the formula, Odds Ratio decreases.

Conviction: f11 remains the same. When f1+ increases and f+1 stays the same, f10

increases and f00 decreases. Conviction = (f11+f10) · (f10+f00)/f10 = f11+n−f+1+f11 ·

f00/f10. Conviction decreases. When f1+ stays the same and f+1 increases, f10 is the same

and f00 decreases. Conviction = (f11+f10) · (f10+f00)/f10 = f10+f11+f00+f11 ·f00/f10.

Conviction decreases. In all, Conviction decreases when tp is the same and ep increases.

Added Value: Since AddedV alue = P (B|A)−P (B) = P (A∩B)/P (A)−P (B), it decreases

when P (A) or P (B) increases if P (A ∩B) is fixed.

Property 4. The upper bound of M gets closer to the constant C when P (S) is close

to 0.

131

Proof. Support, Any-confidence, All-confidence, Bond, IS: There is no such con-

stant number C. Therefore, it is impossible to be closer to C for them.

Remaining General Correlation Measures: Given tp and m ≥ 2, we have tpm ≤ ep ≤

((m−1+ tp)/m)m. For the remaining general correlation measures which satisfy properties

1 and 3, they reach their upper bound when ep = tpm < tp. According to the formula

shown in Table 2.9, we can check their upper bounds when tp → 0.

The Pair-only Correlation Measure: For the pair-only correlation measures, tp2 ≤

ep ≤ ((1 + tp)/2)2 given tp and m = 2. They reach their upper bound when ep = tp2. It

means f10 = 0, f01 = 0, and f00 = n − f11. According to the formula shown in Table 2.9,

we can check their upper bounds when tp → 0.

Property 5. M gets closer to C (including negative correlation cases) when an in-

dependent item is added to S.

Proof. Support, Any-confidence, All-confidence, Bond, IS: Since there is no such

constant number C, it is impossible to be closer to C for them.

Simplified χ2-statistic: Let S′ = S ∪ I, where item I is independent from the set S.

The actual probability of S′ is tp · p and the expected probability of S′ is ep · p. Then,

when tp ̸= ep, we need to prove |χ2(S′)| ≤ |χ2(S)|. Since |χ2(S)| = n · (tp − ep)2/ep and

|χ2(S′)| = n · (tp · p− ep · p)2/(ep · p) = p · n · (tp− ep)2/ep, |χ2(S′)| = p · |χ2(S)| ≤ |χ2(S)|.

Probability Ratio: Let S′ = S∪I, where item I is independent from the set S. The actual

probability of S′ is tp ·p and the expected probability of S′ is ep ·p. ProbabilityRatio(S′) =

(tp · p)/(ep · p) = tp/ep = ProbabilityRatio(S). Therefore, Property 6 is violated.

Leverage: Let S′ = S ∪ I, where item I is independent from the set S. The actual

probability of S′ is tp · p and the expected probability of S′ is ep · p. Then when tp ̸= ep,

we need to prove |Leverage(S′)| ≤ |Leverage(S)|. Since |Leverage(S)| = |tp − ep| and

|Leverage(S′)| = |tp · p− ep · p|, |Leverage(S′)| = p ∗ |Leverage(S)| ≤ |Leverage(S)|.

Likelihood Ratio: Let S′ = S∪I, where item I is independent from the set S. The actual

132

probability of S′ is tp · p and the expected probability of S′ is ep · p. Then when tp ̸= ep,

we need to prove |LikelihoodRatio(S′)| ≤ |LikelihoodRatio(S)|. Since

|LikelihoodRatio(S)| =
(
n
k

)
tpk · (1− tp)(n−k)(

n
k

)
epk · (1− ep)(n−k)

and

|LikelihoodRatio(S′)| =
(

n
k·p
)
(tp · p)(k·p) · (1− tp · p)(n−k·p)(

n
k·p
)
(ep · p)(k·p) · (1− ep · p)(n−k·p) ,

we need to prove: when tp ̸= ep,(
n
k·p
)
(tp · p)(k·p) · (1− tp · p)(n−k·p)(

n
k·p
)
(ep · p)(k·p) · (1− ep · p)(n−k·p) <

(
n
k

)
tpk · (1− tp)(n−k)(

n
k

)
epk · (1− ep)(n−k)

.

If we consider the left-hand side as a function of p,

f(p) =

(
n
k·p
)
(tp · p)(k·p) · (1− tp · p)(n−k·p)(

n
k·p
)
(ep · p)(k·p) · (1− ep · p)(n−k·p) ,

then the right-hand side is the value of f(p) when p = 1.

Let

g(p) = ln(f(p))

= k · (ln(tp)− ln(ep)) · p+ (n− k · p)(ln(1− tp · p)

−ln(1− ep · p)).

According to Taylor’s theorem, when 0 < tp · p < 1,

ln(1− tp · p) = −
∞∑
i=1

(tp · p)i

i
.

Similarly, when 0 < ep · p < 1,

ln(1− ep · p) = −
∞∑
i=1

(ep · p)i

i
.

133

Therefore,

g(p) = k · ln
(
tp

ep

)
· p+ (n− k · p) ·

∞∑
i=1

(ep · p)i − (tp · p)i

i

= k · ln
(
tp

ep

)
· p+ n ·

∞∑
i=1

(
epi − tpi

i
· pi
)
−

k · p ·
∞∑
i=1

(
epi − tpi

i
· pi
)

=

[
k · ln

(
tp

ep

)
− n · (tp− ep)

]
· p+

∞∑
i=2

[
k · tp

(i−1) − ep(i−1)

i− 1
− n · tp

i − epi

i

]
· pi

Since k = n · tp,

g(p) = k ·
[
ln

(
tp

ep

)
− 1 +

ep

tp

]
· p+

∞∑
i=2

(
n · tp · tp

(i−1) − ep(i−1)

i− 1
− n · tp

i − epi

i

)
· pi

= k ·
[
ln

(
tp

ep

)
− 1 +

ep

tp

]
· p+

∞∑
i=2

(
tpi − tp · ep(i−1)

i− 1
− tpi − epi

i

)
· n · pi

= k ·
[
ln

(
tp

ep

)
− 1 +

ep

tp

]
· p+

∞∑
i=2

tpi − epi − i · (tp− ep) · ep(i−1)

i · (i− 1)
· n · pi

Let f1(i) = tpi − epi − i · (tp− ep) · ep(i−1). Then

g(p) = k ·
[
ln

(
tp

ep

)
− 1 +

ep

tp

]
· p+

∞∑
i=2

f1(i)

i · (i− 1)
· n · pi.

Since tpi−epi = (tp−ep) ·
∑i−1

j=0

(
tp(i−1−j) · epj

)
and i ·ep(i−1) =

∑i−1
j=0 ep

(i−1), then

f1(i) = (tp− ep) ·
i−1∑
j=0

(
tp(i−1−j) · epj

)
− (tp− ep) ·

i−1∑
j=0

ep(i−1)

= (tp− ep) ·

 i−1∑
j=0

(
tp(i−1−j) · epj

)
−

i−1∑
j=0

ep(i−1)

= (tp− ep) ·

i−1∑
j=0

(
tp(i−1−j) · epj − ep(i−1)

)

= (tp− ep) ·
i−1∑
j=0

(
tp(i−1−j) − ep(i−1−j)

)
· epj .

134

Therefore,

g(p) = k ·
[
ln

(
tp

ep

)
− 1 +

ep

tp

]
· p+

∞∑
i=2

∑i−1
j=0

(
tp(i−1−j) − ep(i−1−j)

)
· epj

i · (i− 1)
· n · (tp− ep) · pi

Given the coefficient of p in g(p),

k ·
[
ln

(
tp

ep

)
− 1 +

ep

tp

]

Suppose

x =
tp

ep
, f2(x) = lnx− 1 +

1

x
.

Then

f ′
2(x) =

1

x
− 1

x2
.

When tp > ep, x > 1 and f ′
2(x) > 0. Therefore, f2(x) > f2(1) = 0 when x > 1. When

tp < ep, 0 < x < 1 and f ′
2(x) < 0. Therefore, f2(x) > f2(1) = 0 when 0 < x < 1. Thus, the

coefficient of p is larger than 0 when tp ̸= ep.

Given the coefficient of pi in g(p),∑i−1
j=0 (tp

(i−1−j) − ep(i−1−j)) · epj

i · (i− 1)
· n · (tp− ep)

When tp > ep, tp− ep > 0 and tp(i−1−j) − ep(i−1−j) > 0. Therefore,∑i−1
j=0 (tp

(i−1−j) − ep(i−1−j)) · epj

i · (i− 1)
· n · (tp− ep) > 0.

When tp < ep, tp− ep < 0 and tp(i−1−j) − ep(i−1−j) < 0. Therefore,∑i−1
j=0

(
tp(i−1−j) − ep(i−1−j)

)
· epj

i · (i− 1)
· n · (tp− ep) > 0.

Thus, the coefficient of pi(i = 2, 3, ...) is larger than 0 when tp ̸= ep.

Given the function f3(x) =
∑∞

i=1 αi · xi (0 < x < 1), if all the coefficients αi > 0,

the function f3(x) monotonically increases with x. Therefore, the functions g(p) and f(p)

monotonically increase with p.

135

Therefore, f(p) < f(1). We get |LikelihoodRatio(S′)| < |LikelihoodRatio(S)|,

when tp ̸= ep.

BCPNN: Let S′ = S∪I, where item I is independent from the set S. The actual probability

of S′ is tp · p and the expected probability of S′ is ep · p. Then when tp ̸= ep, we need to

prove |BCPNN(S′)| ≤ |BCPNN(S)|. When tp > ep, (tp−ep)·cc > (tp−ep) ·p ·cc. We get

tp ·cc+ep ·p ·cc > ep ·cc+tp ·p ·cc ⇒ tp ·ep ·p+tp ·cc+ep ·p ·cc+cc2 > tp ·ep ·p+ep ·cc+tp ·p ·

cc+ cc2 ⇒ (tp+ cc) · (ep ·p+ cc) > (ep+ cc) · (tp ·p+ cc) ⇒ |BCPNN(S)| > |BCPNN(S′)|.

Similarly, when tp < ep, we also get |BCPNN(S)| > |BCPNN(S′).

SCWCC: Let S′ = S ∪ I, where item I is independent from the set S. The actual

probability of S′ is tp · p and the expected probability of S′ is ep · p. Then when tp ̸= ep, we

need to prove |SCWCC(S′)| ≤ |SCWCC(S)|. Since p2 · ep+ cc · p2 < p · ep+ cc, we have

p2

ep·p+cc < 1
ep+cc ⇒ (tp·p−ep·p)2

ep·p+cc < (tp−ep)2

ep+cc . We get |SCWCC(S)| > |SCWCC(S′)|

Two-way Support: Let S′ = S∪I, where item I is independent from the set S. The actual

probability of S′ is tp · p and the expected probability of S′ is ep · p. Then when tp ̸= ep,

we need to prove |TwowaySupport(S′)| ≤ |TwowaySupport(S)|. |TwowaySupport(S′)| =

tp · p · |ln tp·p
ep·p | = tp · p · |ln tp

ep | < tp · |ln tp
ep | = |TwowaySupport(S)|.

SCWS: Let S′ = S∪I, where item I is independent from the set S. The actual probability

of S′ is tp·p and the expected probability of S′ is ep·p. Then, when tp ̸= ep, we need to prove

|SCWS(S′)| ≤ |SCWS(S)|. Since |SCWS(S)| = n · tp · (tp− ep)2/ep and |SCWS(S′)| =

n · tp · p · (tp · p− ep · p)2/(ep · p) = p2 ·n · tp · (tp− ep)2/ep, |SCWS(S′)| = p2 · |SCWS(S)| ≤

|SCWS(S)|.

Pair-only Correlation Measures: If we add an independent item, the itemset size is

no longer 2. These measure cannot measure 3-itemset correlation. Therefore, they don’t

satisfy this property.

Property 6. The lower bound of M gets closer to the lowest possible function value

when P (S) is closer to 0.

136

Proof. Support: The lower bound of Support is tp, the lower bound gets closer to the

lowest possible function value 0 when tp is close to 0.

Any-confidence: Since tp ≤ P (Ii) ≤ 1, tp ≤ min(P (I1), P (I2), ..., P (Im)) ≤ ((m − 1 +

tp)/m)m. The lower bound of Any-confidence is tp/(1− (1− tp)/m)m. It gets closer to the

lowest possible function value 0 when tp is close to 0.

All-confidence: Since tp ≤ P (Ii) ≤ 1, max(P (I1), P (I2), ..., P (Im)) ≤ 1. The lower bound

of All-confidence is tp. It gets closer to the lowest possible function value 0 when tp is close

to 0.

Bond: No matter how close tp is to 0, P (I1 ∪ I2 ∪ ... ∪ Im) always has the chance to be 0.

Then the lower bound of Bond is tp. It gets closer to the lowest possible function value 0

when tp is close to 0.

Remaining General Correlation Measures: Given tp and m ≥ 2, tpm ≤ ep ≤ ((m −

1 + tp)/m)m. For the remaining general type correlation measures which satisfy properties

1 and 3, they reach their lower bounds when ep = ((m − 1 + tp)/m)m > tp. According to

the formula shown in Table 2.9, we can check their lower bounds when tp → 0.

The Pair-only Correlation Measures: For the pair-only correlation measures, tp2 ≤

ep ≤ ((1 + tp)/2)2 given tp and m = 2. They reach their lower bounds when ep = ((1 +

tp)/2)2 > tp. It means f10 = (1 − tp)/2, f01 = (1 − tp)/2, and f00 = 0. According to the

formula shown in Table 2.9, we can check their lower bounds when tp → 0.

Property 7. M gets further away from C (including negative correlation cases) with

increased sample size when all the P (Ii) and P (S) remain unchanged.

Proof. Since any correlation measure is a function of the sample size isolated from other

parameters, we use the original version of each measure to test against this property. If

the original version contains the parameter of the sample size, it satisfies this property.

Otherwise, it doesn’t.

137

Additional Property 1. M remains the same when exchanging the frequency count

f11 with f00 and f10 with f01.

Proof. Leverage: For Leverage, Leveragebefore = f11− (f11+ f10)/n · (f11+ f01)/n before

the exchanging operation. After the operation, Leverageafter = f00 − (f00 + f01)/n · (f00 +

f10)/n. Since n = f11+f10+f01+f00, Leveragebefore = [f11 · (f11+f10+f01+f00)− (f11+

f10) · (f11 + f01)]/n = (f11 · f00 − f10 · f01)/n and Leverageafter = (f00 · f11 − f01 · f10)/n.

We get Leverageafter = Leveragebefore.

ϕ-coefficient: For ϕ-coefficient, ϕbefore = (f11 · f00− f10 · f01)/
√

f1+ · f0+ · f+1 · f+0. After

the operation, ϕafter = (f00 · f11 − f01 · f10)/
√

f0+ · f1+ · f+0 · f+1. We get ϕafter = ϕbefore.

Odds Ratio: For Odds Ratio, OddsRatiobefore = f11 · f00/(f10 · f01). After the operation,

OddsRatioafter = f00 · f11/(f01 · f10). We get OddsRatioafter = OddsRatiobefore.

Others: Given the example of f11 = 1, f10 = 2, f01 = 3, and f00 = 4, this exchanging

operation changes the value of Support, Any-confidence, All-confidence, Bond, Simplified

χ2-statistic, Probability Ratio, Likelihood Ratio, BCPNN, SCWCC, IS, Two-way Support,

SCWS, Relative Risk, Conviction, and Added Value.

Additional Property 2. M remains the same by only increasing f00.

Proof. Any-confidence, All-confidence, Bond, IS: AnyConfidence = f11/min(f11 +

f10, f11+f01), AllConfidence = f11/max(f11+f10, f11+f01), Bond = f11/(f11+f10+f01),

and IS = f11/
√

(f11 + f10) · (f11 + f01). No matter how f00 is changed, their value stays

the same.

Others: Suppose the original two-by-two table is as follow: f11 = 1, f10 = 2, f01 = 3,

and f00 = 4. Then we increase f00 to 94 and keep others the same. This increasing

operation changes the value of Support, Simplified χ2-statistic, Probability Ratio, Leverage,

Likelihood Ratio, BCPNN, SCWCC, Two-way Support, SCWS, ϕ-coefficient, Relative Risk,

Odds Ratio, Conviction, and Added Value.

138

Additional Property 3. M remains the same under the row/column scaling oper-

ation from Table T to T ′, where T is a contingency table with frequency counts [f11;

f10; f01; f00], T
′ is a contingency table with scaled frequency counts [k1k3f11; k2k3f10;

k1k4f01; k2k4f00], and k1, k2, k3, k4 are positive constants.

Proof. Odds Ratio: Originally, OddsRatiobefore = f11 ·f00/(f10 ·f01). After the operation,

OddsRatioafter = k1 · k3 · f11 · k2 · k4 · f00/(k2 · k3 · f10 · k1 · k4f01) = f11 · f00/(f10 · f01). We

get OddsRatioafter = OddsRatiobefore

Others: Suppose the original two-by-two table is as follow: f11 = 1, f10 = 2, f01 = 3, and

f00 = 4. Then we specify k1 = 1, k2 = 2, k3 = 3, and k4 = 4 to do the row/column

scaling operation. This operation changes the value of Support, Any-confidence, All-

confidence, Bond, Simplified χ2-statistic, Probability Ratio, Leverage, Likelihood Ratio,

BCPNN, SCWCC, IS, Two-way Support, SCWS, ϕ-coefficient, Relative Risk, Conviction,

and Added Value.

139

REFERENCES

[1] Charu C. Aggarwal, Jian Pei, and Bo Zhang. On privacy preservation against
adversarial data mining. In Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining, KDD ’06, pages 510–516,
New York, NY, USA, 2006. ACM.

[2] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. Mining association rules
between sets of items in large databases. In SIGMOD ’93: Proc. ACM SIGMOD
Int. Conf. on Management of Data, pages 207–216, New York, NY, USA, 1993.
ACM.

[3] Jac M. Anthonisse. The rush in a directed graph. Technical report, Stichting
Mathemastisch Centrum, Amsterdam, The Netherlands, 1971.

[4] A. Arenas, J. Duch, A. Fernandez, and S. Gomez. Size reduction of complex
networks preserving modularity. NEW JOURNAL OF PHYSICS, 9:176, 2007.

[5] J. P. Bagrow. Evaluating local community methods in networks. Journal of
Statistical Mechanics: Theory and Experiment, 2008(05):P05001+, 2008.

[6] A. L. Barabasi and R. Albert. Emergence of scaling in random networks. Science
(New York, N.Y.), 286(5439):509–512, October 1999.

[7] A. Bate, M. Lindquist, I. R. Edwards, S. Olsson, R. Orre, A. Lansner, and R. M.
De Freitas. A bayesian neural network method for adverse drug reaction signal
generation. European Journal of Clinical Pharmacology, 54(4):315–321, 1998.

[8] Roberto J. Bayardo. Efficiently mining long patterns from databases. In SIG-
MOD ’98: Proceedings of the 1998 ACM SIGMOD international conference on
Management of data, pages 85–93, New York, NY, USA, 1998. ACM.

[9] S. Boettcher and A. G. Percus. Extremal optimization for graph partitioning.
PHYS.REV.E, 64:026114, 2001.

[10] Bela Bollobas. Modern Graph Theory. Springer, 1998.

[11] Christian Borgelt. Efficient implementations of Apriori and Eclat. In ICDM
’03: Proc. 3rd IEEE Int. Conf. on Data Mining, Workshop on Frequent Itemset
Mining Implementations, 2003.

[12] Ulrik Brandes, Daniel Delling, Marco Gaertler, Robert Gorke, Martin Hoefer,
Zoran Nikoloski, and Dorothea Wagner. On modularity clustering. IEEE Trans.
on Knowl. and Data Eng., 20:172–188, February 2008.

[13] Yannick Le Bras, Philippe Lenca, and Stéphane Lallich. Optimonotone measures
for optimal rule discovery. Computational Intelligence, 2012.

140

[14] Sergey Brin, Rajeev Motwani, and Craig Silverstein. Beyond market baskets:
Generalizing association rules to correlations. In SIGMOD ’97: Proc. ACM
SIGMOD Int. Conf. on Management of Data, pages 265–276, New York, NY,
USA, 1997. ACM.

[15] Sergey Brin, Rajeev Motwani, Jeffrey D. Ullman, and Shalom Tsur. Dynamic
itemset counting and implication rules for market basket data. In SIGMOD ’97:
Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 255–264, New
York, NY, USA, 1997. ACM.

[16] Doug Burdick. Mafia: A maximal frequent itemset algorithm for transactional
databases. In ICDE ’01: Proceedings of the 17th International Conference on
Data Engineering, page 443, Washington, DC, USA, 2001. IEEE Computer So-
ciety.

[17] Jingchun Chen and Bo Yuan. Detecting functional modules in the yeast protein–
protein interaction network. Bioinformatics, 22:2283–2290, September 2006.

[18] Jiyang Chen, Osmar R. Zaane, and Randy Goebel. Detecting communities in
social networks using max-min modularity. In SDM’09, pages 978–989, 2009.

[19] Hong Cheng, Xifeng Yan, Jiawei Han, and Chih-Wei Hsu. Discriminative fre-
quent pattern analysis for effective classification. In ICDE’07, pages 716–725,
2007.

[20] Aaron Clauset, M. E. J. Newman, and Cristopher Moore. Finding community
structure in very large networks. Physical Review E, 70(6):066111+, December
2004.

[21] Anne Condon and Richard M. Karp. Algorithms for graph partitioning on the
planted partition model. Random Struct. Algorithms, 18:116–140, March 2001.

[22] Leon Danon, Albert D. Guilera, Jordi Duch, and Alex Arenas. Comparing com-
munity structure identification. Journal of Statistical Mechanics: Theory and
Experiment, 2005(9):P09008–09008, September 2005.

[23] W. E. Donath and A. J. Hoffman. Lower bounds for the partitioning of graphs.
IBM J. Res. Dev., 17:420–425, September 1973.

[24] Yon Dourisboure, Filippo Geraci, and Marco Pellegrini. Extraction and classi-
fication of dense implicit communities in the web graph. ACM Transactions on
the Web, 3:1–36, 2009.

[25] Lian Duan and W. Nick Street. Finding maximal fully-correlated itemsets in
large databases. In ICDM ’09: Proc. Int. Conf. on Data Mining, pages 770–775,
Miami, FL, USA, 2009.

[26] Lian Duan and W. Nick Street. Selecting the right correlation measure for binary
data. Under review, 2012.

141

[27] Lian Duan and W. Nick Street. Speeding up correlation search for binary data.
Under review, 2012.

[28] Jordi Duch and Alex Arenas. Community detection in complex networks using
extremal optimization. Physical Review E, 72(2):027104+, August 2005.

[29] William Dumouchel. Bayesian data mining in large frequency tables, with an
application to the fda spontaneous reporting system. The American Statistician,
53(3):177–202, 1999.

[30] Ted Dunning. Accurate methods for the statistics of surprise and coincidence.
Computational Linguistics, 19(1):61–74, 1993.

[31] Leonhard Euler. Solutio problematis ad geometriam situs pertinentis. Graph
Theory 1736-1936, 1736.

[32] H. Everett. ‘Relative State’ formulation of quantum mechanics. Reviews of
Modern Physics, 29:454–462, 1957.

[33] M. Fiedler. Algebraic connectivity of graphs. Czechoslovak Mathematical Jour-
nal, 23(98):298–305, 1973.

[34] Santo Fortunato. Community detection in graphs. Physics Reports, 486:75–174,
2010.

[35] Linton C. Freeman. The Development of Social Network Analysis: A Study in
the Sociology of Science. Empirical Press, 2004.

[36] Katsuki Fujisawa, Yukinobu Hamuro, Naoki Katoh, Takeshi Tokuyama, and
Katsutoshi Yada. Approximation of optimal two-dimensional association rules
for categorical attributes using semidefinite programming. In DS ’99: Proc. 2nd
Int. Conf. on Discovery Science, pages 148–159, London, UK, 1999. Springer-
Verlag.

[37] Liqiang Geng and Howard J. Hamilton. Interestingness measures for data mining:
A survey. ACM Computing Surveys, 38(3):9, 2006.

[38] Rumi Ghosh and Kristina Lerman. Community detection using a measure of
global influence. In Proceedings of the Second international conference on Ad-
vances in social network mining and analysis, SNAKDD’08, pages 20–35, Berlin,
Heidelberg, 2010. Springer-Verlag.

[39] M. Girvan and M. E. J. Newman. Community structure in social and biological
networks. Proceedings of the National Academy of Sciences, 99(12):7821–7826,
June 2002.

[40] Karam Gouda and Mohammed J. Zaki. Genmax: An efficient algorithm for
mining maximal frequent itemsets. Data Min. Knowl. Discov., 11(3):223–242,
2005.

142

[41] Roger Guimera and Luis A. Nunes Amaral. Functional cartography of complex
metabolic networks. NATURE, 433:895, 2005.

[42] Roger Guimerà, Marta S. Pardo, and Lu’is A. Nunes Amaral. Modularity
from fluctuations in random graphs and complex networks. Physical Review
E, 70(2):025101+, August 2004.

[43] Tias Guns, Siegfried Nijssen, and Luc De Raedt. Itemset mining: A constraint
programming perspective. Artif. Intell., 175:1951–1983, August 2011.

[44] John H. Holland. Adaptation in natural and artificial systems. MIT Press,
Cambridge, MA, USA, 1992.

[45] Harold Hotelling. Relations between two sets of variates. Biometrika, 28:321–377,
1936.

[46] Paul Jaccard. Étude comparative de la distribution florale dans une portion
des Alpes et des Jura. Bulletin del la Société Vaudoise des Sciences Naturelles,
37:547–579, 1901.

[47] Mojdeh Jalali-Heravi and Osmar R. Zäıane. A study on interestingness measures
for associative classifiers. In Proceedings of the 2010 ACM Symposium on Applied
Computing, SAC ’10, pages 1039–1046, New York, NY, USA, 2010. ACM.

[48] Christopher Jermaine. Finding the most interesting correlations in a database:
How hard can it be? Information Systems, 30(1):21–46, 2005.

[49] Chuntao Jiang, Frans Coenen, and Michele Zito. A Survey of Frequent Subgraph
Mining Algorithms. Knowledge Engineering Review, 2012.

[50] Andrea Lancichinetti, Santo Fortunato, and Filippo Radicchi. Benchmark graphs
for testing community detection algorithms. Phys. Rev. E, 78:046110, Oct 2008.

[51] E. A. Leicht and M. E. J. Newman. Community Structure in Directed Networks.
Physical Review Letters, 100(11):118703+, March 2008.

[52] Philippe Lenca, Patrick Meyer, Benot Vaillant, and Stphane Lallich. On se-
lecting interestingness measures for association rules: User oriented description
and multiple criteria decision aid. European Journal of Operational Research,
184(2):610 – 626, 2008.

[53] Bing Liu, Wynne Hsu, and Yiming Ma. Integrating Classification and Asso-
ciation Rule Mining. In Knowledge Discovery and Data Mining, pages 80–86,
1998.

[54] Ulrike Luxburg. A tutorial on spectral clustering. Statistics and Computing,
17:395–416, December 2007.

[55] Nizar R. Mabroukeh and C. I. Ezeife. A taxonomy of sequential pattern mining
algorithms. ACM Comput. Surv., 43(1):3:1–3:41, December 2010.

143

[56] David J. C. Mackay. Information Theory, Inference and Learning Algorithms.
Cambridge University Press, 1st edition, June 2003.

[57] S. Mancoridis, B. S. Mitchell, and C. Rorres. Using automatic clustering to
produce high-level system organizations of source code. In In Proc. 6th Intl.
Workshop on Program Comprehension, pages 45–53, 1998.

[58] Claire P. Massen and Jonathan P. K. Doye. Identifying communities within
energy landscapes. 71(046101), 2005.

[59] Frederick Mosteller. Association and estimation in contingency tables. Journal
of the American Statistical Association, 63(321):1–28, 1968.

[60] M. E. J. Newman. Fast algorithm for detecting community structure in networks.
September 2003.

[61] M. E. J. Newman. The structure and function of complex networks. SIAM
REVIEW, 45:167–256, 2003.

[62] M. E. J. Newman and M. Girvan. Finding and evaluating community structure
in networks. Physical Review E, 69(2):026113+, February 2004.

[63] A. Ng, M. Jordan, and Y. Weiss. On Spectral Clustering: Analysis and an
algorithm. In T. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in
Neural Information Processing Systems, pages 849–856. MIT Press, 2001.

[64] Pang ning Tan and Vipin Kumar. Interestingness measures for association pat-
terns: A perspective. In KDD 2000 Workshop on Postprocessing in Machine
Learning and Data Mining, 2000.

[65] G. Niklas Norén, Andrew Bate, Johan Hopstadius, Kristina Star, and I. Ralph
Edwards. Temporal pattern discovery for trends and transient effects: its appli-
cation to patient records. In KDD ’08: Proceeding of the 14th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 963–
971, New York, NY, USA, 2008. ACM.

[66] Edward R. Omiecinski. Alternative interest measures for mining associations in
databases. IEEE Transactions on Knowledge and Data Engineering, 15(1):57–69,
2003.

[67] OMOP. Methods section for the disproportionality paper, September 2010.
http://omop.fnih.org/MethodsLibrary.

[68] Gregory Piatetsky-Shapiro. Discovery, Analysis, and Presentation of Strong
Rules. AAAI/MIT Press, 1991.

[69] Clara Pizzuti. Community detection in social networks with genetic algorithms.
In Proceedings of the 10th annual conference on Genetic and evolutionary com-
putation, GECCO ’08, pages 1137–1138, New York, NY, USA, 2008. ACM.

144

[70] William M. Rand. Objective Criteria for the Evaluation of Clustering Methods.
Journal of the American Statistical Association, 66(336):846–850, 1971.

[71] Matthew J. Rattigan, Marc Maier, and David Jensen. Using structure indices
for efficient approximation of network properties. In Proceedings of the 12th
ACM SIGKDD international conference on Knowledge discovery and data min-
ing, KDD ’06, pages 357–366, New York, NY, USA, 2006. ACM.

[72] Matthew J. Rattigan, Marc Maier, David Jensen Bin Wu, Xin Pei, JianBin Tan,
and Yi Wang. Exploiting network structure for active inference in collective
classification. In Proceedings of the Seventh IEEE International Conference on
Data Mining Workshops, ICDMW ’07, pages 429–434, Washington, DC, USA,
2007. IEEE Computer Society.

[73] Henry T. Reynold. The Analysis of Cross-Classifications. Free Press, 1977.

[74] C.J. Van Rijsbergen. Foundation of Evaluation. Journal of Documentation,
30:365–373, 1974.

[75] John P Scott. Social Network Analysis: A Handbook. Sage Publications Ltd.,
2000.

[76] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE
Trans. Pattern Anal. Mach. Intell., 22:888–905, August 2000.

[77] Christopher L. Sistrom and Cynthia W. Garvan. Proportions, odds, and risk.
Radiology, 230(1):12–19, 2004.

[78] M. Steinbach, G. Karypis, and V. Kumar. A comparison of document clustering
techniques, 2000.

[79] Einoshin Suzuki. Pitfalls for categorizations of objective interestingness measures
for rule discovery. 127:383–395, 2008.

[80] I. Szczech, S. Greco, and R. Slowinski. New property for rule interestingness mea-
sures. In Computer Science and Information Systems (FedCSIS), 2011 Federated
Conference on, pages 103 –108, sept. 2011.

[81] Pang-Ning Tan, Vipin Kumar, and Jaideep Srivastava. Selecting the right ob-
jective measure for association analysis. Information Systems, 29(4):293–313,
2004.

[82] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to Data
Mining. Addison Wesley, 2005.

[83] Nikolaj Tatti. Maximum entropy based significance of itemsets. Knowl. Inf.
Syst., 17:57–77, October 2008.

145

[84] Joshua R. Tyler, Dennis M. Wilkinson, and Bernardo A. Huberman. Email as
spectroscopy: automated discovery of community structure within organizations,
pages 81–96. Kluwer, B.V., Deventer, The Netherlands, The Netherlands, 2003.

[85] Ken Wakita and Toshiyuki Tsurumi. Finding community structure in mega-scale
social networks. In Proceedings of the 16th international conference on World
Wide Web, WWW ’07, pages 1275–1276, New York, NY, USA, 2007. ACM.

[86] D.J. Watts. Small Worlds : The Dynamics of Networks between Order and
Randomness. Princeton University Press, 2003.

[87] Geoffrey I. Webb. Discovering significant patterns. Mach. Learn., 68:1–33, July
2007.

[88] Robert S. Weiss and Eugene Jacobson. A method for the analysis of the structure
of complex organizations. American Sociological Review, 20(6):pp. 661–668, 1955.

[89] Hui Xiong, Mark Brodie, and Sheng Ma. TOP-COP: Mining top-k strongly
correlated pairs in large databases. In ICDM ’06: Proc. sInt. Conf. on Data
Mining, pages 1162–1166, Washington, DC, USA, 2006.

[90] Hui Xiong, Shashi Shekhar, Pang-Ning Tan, and Vipin Kumar. TAPER: A two-
step approach for all-strong-pairs correlation query in large databases. IEEE
Trans. on Knowl. and Data Eng., 18(4):493–508, 2006.

[91] Xiaowei Xu, Nurcan Yuruk, Zhidan Feng, and Thomas A. J. Schweiger. Scan: a
structural clustering algorithm for networks. In Proceedings of the 13th ACM
SIGKDD international conference on Knowledge discovery and data mining,
KDD ’07, pages 824–833, New York, NY, USA, 2007. ACM.

[92] S. Ben Yahia, T. Hamrouni, and E. Mephu Nguifo. Frequent closed itemset
based algorithms: a thorough structural and analytical survey. SIGKDD Explor.
Newsl., 8:93–104, June 2006.

[93] W. W. Zachary. An information flow model for conflict and fission in small
groups. Journal of Anthropological Research, 33:452–473, 1977.

[94] Jian Zhang and Joan Feigenbaum. Finding highly correlated pairs efficiently with
powerful pruning. In CIKM ’06: Proc. ACM CIKM Int. Conf. on Information
and Knowledge Management, pages 152–161, New York, NY, USA, 2006. ACM.

[95] Lei Zhang, Qi-ming Zhang, Yi-guo Wang, and Dong-lin Yu. Selecting an ap-
propriate interestingness measure to evaluate the correlation between syndrome
elements and symptoms. In Proceedings of the 15th international conference
on New Frontiers in Applied Data Mining, PAKDD’11, pages 372–383, Berlin,
Heidelberg, 2012. Springer-Verlag.

[96] Y. Zhao and G. Karypis. Criterion functions for document clustering: Experi-
ments and analysis, 2001.

146

[97] Ning Zhong, Chunnian Liu, and Setsuo Ohsuga. Dynamically organizing kdd
processes. International Journal of Pattern Recognition and Artificial Intelli-
gence, 15(3):451–473, 2001.

[98] Ning Zhong, Y. Y. Yao, and Setsuo Ohsuga. Peculiarity oriented multi-database
mining. In PKDD ’99: Proceedings of the Third European Conference on Prin-
ciples of Data Mining and Knowledge Discovery, pages 136–146, London, UK,
1999. Springer-Verlag.

	University of Iowa
	Iowa Research Online
	Summer 2012

	Effective and efficient correlation analysis with application to market basket analysis and network community detection
	Lian Duan
	Recommended Citation

	tmp.1352240283.pdf.943Ka

