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ABSTRACT

In this dissertation, I consider a range of topics in cross-sectional asset pric-

ing. The primary research focus is twofold. First, I provide new insights on analyzing

and testing capital market “anomalies” or patterns in equity returns that are not

well explained by the traditional models used in the finance literature. Second,

I propose and examine a methodology for pooling asset-pricing models to better

characterize the cross section of stock returns.

The first chapter offers an explanation for the financial distress anomaly, i.e.,

the previously documented poor stock-price performance for financially distressed

firms. I first show that market betas for distressed firms are highly volatile and

tend to be low during bad economic times. After properly controlling for exposure

to market risk, the low historical returns on these stocks are consistent with the

conditional Capital Asset Pricing Model (CAPM). I then explain these findings

through a theoretical model in which a levered firm’s equity beta is negatively related

to uncertainty about the unobserved value of its underlying assets. Empirical tests

support the main predictions of the theory.

The second chapter proposes a hierarchical Bayes approach for evaluating and

testing asset-pricing anomalies using individual firms as test assets. The empirical

results indicate that much of the anomaly-based evidence against the CAPM is

overstated. Anomalies are primarily confined to small stocks, few characteristics are

robustly associated with CAPM alphas out of sample, and most firm characteristics

do not contain unique information about abnormal returns.
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Lastly, the third chapter proposes a new econometric methodology to com-

bine predictive densities from a set of competing asset-pricing models to better

characterize the cross section of stock returns. Using a variety of test portfolios, the

optimal pool of models consistently outperforms the best individual model on both

statistical and economic grounds.
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CHAPTER 1
INFORMATION RISK, CONDITIONAL BETAS, AND THE

FINANCIAL DISTRESS ANOMALY

1.1 Introduction

In a recent article, Campbell, Hilscher, and Szilagyi (2008) show firms with

a high probability of bankruptcy or default earn lower average returns than those

with a low probability of financial distress in the post-1980 period.1 Furthermore,

this poor performance of distressed stocks is not explained by standard asset-pricing

models, including the unconditional Capital Asset Pricing Model (CAPM) of Sharpe

(1964) and Lintner (1965) and the three-factor model of Fama and French (1993).

Portfolios of distressed stocks have high market betas, load heavily on SMB and

HML, and have significantly negative unconditional alphas. These empirical findings

have received considerable attention in the finance literature for at least two reasons.

First, they contradict the notion that many cross-sectional anomalies are linked to

a premium required by investors for exposure to non-diversifiable distress risk (e.g.,

Fama and French (1996)). Second, they imply financial distress should be included

in the growing list of characteristic-based CAPM anomalies.

This paper shows these results are consistent with an intuitive, risk-based

1See Dichev (1998) and Griffin and Lemmon (2002) for additional evidence. Dichev
(1998) uses Altman’s (1968) Z -score and Ohlson’s (1980) O-score to identify firms with
a high likelihood of bankruptcy. He finds that portfolios of distressed stocks earn signifi-
cantly lower than average returns. Griffin and Lemmon (2002) show that Dichev’s (1998)
results are driven by the exceptionally poor performance of stocks with high bankruptcy
risk and low book-to-market ratios. More recently, Campbell, Hilscher, and Szilagyi (2008)
estimate a dynamic panel model that includes both market and accounting data to mea-
sure the probability a firm enters bankruptcy, is delisted for financial reasons, or defaults
over a given period. They then sort firms into portfolios based on this failure measure and
find a negative relation between the probability of financial distress and average returns.
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explanation. As indicated above, prior studies documenting the financial distress

anomaly only control for risk in an unconditional framework and do not consider

the potential for time variation in factor loadings or risk premiums. Jagannathan

and Wang (1996), Cochrane (2001), and Lewellen and Nagel (2006), among others,

demonstrate that stocks can exhibit large pricing errors relative to unconditional

asset-pricing models even when a conditional version of the CAPM holds perfectly.

In particular, a stock’s conditional alpha might be zero, when its unconditional alpha

is not, if its beta changes through time and is correlated with the equity premium.

Building on these arguments, I find that conditional market betas for dis-

tressed stocks are highly volatile, suggesting the unconditional risk measures used in

prior studies are inappropriate. After properly controlling for the conditional risk-

return relation, the low average returns for distressed stocks are consistent with the

conditional CAPM. I also propose a simple economic mechanism that explains the

observed time variation in market risk for distressed firms. The theoretical analysis

and empirical evidence suggest that ‘information risk,’ that is, investor uncertainty

about the underlying value of a firm’s assets, has a pronounced impact on equity

betas and required returns for distressed stocks.

I conduct the analysis in this paper in three steps. First, I revisit the empir-

ical evidence on the financial distress anomaly. Using both Campbell, Hilscher, and

Szilagyi’s (2008) failure probability (CHS) and Ohlson’s (1980) O-score to proxy

for distress risk, I find portfolios of distressed stocks have low average returns. More-

over, a trading strategy that goes long the quintile of stocks with highest distress

risk and short the quintile with lowest distress risk earns a significantly negative
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unconditional alpha regardless of the proxy used for financial distress. While these

findings are consistent with the existing evidence in the literature, I further show the

poor unconditional performance of distressed stocks is explained by the conditional

CAPM. There is no significant difference in the CAPM alphas for high- and low-

distress stocks once we allow for time variation in market risk. The results are robust

across proxies for distress risk and several alternative estimation methodologies for

the conditional CAPM.

I provide additional insight on these results by considering a decomposition of

unconditional alpha in terms of conditional betas and risk premiums. As discussed in

Lewellen and Nagel (2006), the conditional CAPM can only explain cross-sectional

anomalies if long-short portfolio betas covary with the equity premium. More for-

mally, if the conditional CAPM holds, we should observe an unconditional CAPM

alpha for a given asset of αu
i ≈ cov(βi,t, γt), where βi,t is the asset’s conditional

beta and γt is the conditional market risk premium. I find that when examining

the financial distress anomaly, long-short portfolio betas exhibit significant negative

covariance with the equity premium. As such, conditional betas tend to adjust over

time in a manner that can explain the negative unconditional alphas for distressed

stocks. These observed patterns in portfolio betas turn out to be key to the economic

story in this paper. The asset-pricing literature generally argues that the market

risk premium is countercyclical.2 The above result therefore implies that distressed

stocks must have relatively low systematic risk during bad economic times when the

2See Fama and French (1989), Constantinides and Duffie (1996), Campbell and
Cochrane (1999), Petkova and Zhang (2005), and Rapach, Strauss, and Zhou (2010).
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price of risk is high. While these findings may initially seem counterintuitive, they

end up having a simple explanation.

Second, I build on the model of Johnson (2004) to explain the observed vari-

ation in market risk for distressed stocks. The analysis highlights the importance of

information risk in determining equity betas and expected returns. In the model,

asset values are unobservable and investors receive noisy signals about the level of

fundamentals. Within this theoretical environment, I show that increases in uncer-

tainty about asset values lead to lower market betas and lower expected returns.

These effects are magnified in firms with high leverage. Given that distressed firms

also tend to be highly levered, the model suggests that increases in investor uncer-

tainty about fundamentals during bad economic times can potentially account for

the observed negative correlation between betas for distressed firms and the market

risk premium.

Third, I formally test the implications of the model in the context of the

financial distress anomaly. Following Johnson (2004), I use dispersion in analysts’

earnings estimates as a measure of unpriced information risk. I hypothesize that (i)

proxies for information risk for distressed stocks are positively related to estimates

of the market risk premium; (ii) portfolio betas for stocks with a high probability of

failure are negatively related to measures of investor uncertainty in the time series;

and (iii) portfolio betas for stocks with a low probability of failure are unrelated

to measures of investor uncertainty. The empirical evidence is largely consistent

with the model’s predictions. The results speak to the importance of considering

information uncertainty when assessing the systematic risk of levered firms. More
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importantly, the model successfully reconciles the potentially counterintuitive fact

that market risk for distressed stocks declines in bad economic times. I show that

these observed declines in beta are simply an artifact of sharp increases in investor

uncertainty about the fundamentals of distressed firms.

This paper contributes to the literature attempting to reconcile the finan-

cial distress anomaly. While Griffin and Lemmon (2002) interpret the low returns

on distressed stocks as evidence of market mispricing, recent papers have proposed

rational explanations. Chen, Novy-Marx, and Zhang (2010) develop an uncondi-

tional three-factor model that includes mimicking portfolios based on investment

and productivity. They show this model can explain the low average returns for

distressed firms. Chava and Purnanandam (2010) argue the poor performance of

firms with high distress risk in the post-1980 period is simply the result of bad luck.

They show the evidence of underperformance weakens when they extend the sample

period back to 1953. George and Hwang (2010) propose a model in which firms that

have high exposures to systematic risk and high distress costs choose lower levels

of financial leverage as a safeguard and, thus, also have lower default probabilities.

This choice results in a cross section of expected returns that is negatively related

to leverage and default probabilities.3 Garlappi and Yan (2010) also propose an eq-

uity valuation model that incorporates financial leverage and potential shareholder

recovery upon the resolution of financial distress. In this model, the possibility of

debt renegotiation drives a negative relation between leverage and equity betas in

3See Johnson, Chebonenko, Cunha, D’Almeida, and Spencer (2010) for a comment on
George and Hwang (2010) and additional discussion of the impact of endogenous debt
choice on expected stock returns.
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firms with high default probabilities. The primary advantage of my approach is its

simplicity. I show that the distress effect is completely consistent with the CAPM

once we allow for sufficient time variation in market risk and propose a mechanism

to account for the documented changes in equity betas.4

This article also contributes to a substantial literature on the effect of param-

eter uncertainty on asset prices and expected returns. Of particular relevance to this

paper, Johnson (2004) offers a theoretical explanation for the negative relation be-

tween analysts’ forecast dispersion and average returns based on the interpretation

of dispersion as a proxy for uncertainty about asset valuation. Pástor and Veronesi

(2003) show asset prices should increase with uncertainty about firm profitability.

Cremers and Yan (2009) simplify the model in Pástor and Veronesi (2003) to analyze

the impact of parameter uncertainty on bond prices. Finally, Korteweg and Polson

(2009) calibrate the Leland (1994) model to assess the effect of uncertainty about

firm asset value and asset volatility on corporate bond credit spreads. Consistent

with my paper, they also find uncertainty about asset values increases significantly

during times of market stress.

The paper is organized as follows. Section 1.2 introduces the conditional

CAPM, outlines the empirical methodology, and describes the data. Section 1.3

presents results on the performance of distress-sorted portfolios relative to the con-

ditional CAPM. Section 1.4 derives closed-form solutions for equity betas in the

context of a theoretical valuation model. Section 1.5 presents formal tests of the

4Other relevant papers include Vassalou and Xing (2004), Garlappi, Shu, and Yan
(2008), Avramov, Chordia, Jostova, and Phillipov (2009), Avramov, Cederburg, and Hore
(2010), and Da and Gao (2010).
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model. Section 1.6 concludes.

1.2 The conditional CAPM

Section 1.2.1 briefly introduces the conditional CAPM and presents a general

formula for the unconditional CAPM pricing error when the conditional CAPM

holds, Section 1.2.2 outlines the empirical methodology, Section 1.2.3 discusses the

proxies for distress risk used in the paper, and Section 1.2.4 describes the sample.

1.2.1 Key features of the conditional CAPM

The unconditional CAPM is given by

E[ri,t] = βu
i γ, (1.1)

where ri,t is the excess return on asset i in period t, βu
i is the asset’s unconditional

beta, and γ is the unconditional market risk premium. The unconditional alpha for

asset i is then

αu
i = E[ri,t]− βu

i γ. (1.2)

The conditional version of the CAPM allows betas and the market risk premium to

vary over time. Thus, expected excess returns in period t depend on information

available at the end of period t− 1:

Et−1[ri,t] = βi,tγt, (1.3)

where βi,t is the conditional beta for asset i, and γt is the conditional market risk

premium. Taking unconditional expectations of equation (1.3) yields

E[ri,t] = E[βi,t]γ + cov(βi,t, γt). (1.4)
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Equation (1.4) shows that the average excess return on asset i depends on the asset’s

average beta and on the covariance of the asset’s conditional beta with the market

risk premium. All else equal, stocks or portfolios that have higher betas in times

when the price of risk is high earn higher average returns. Moreover, the general

consensus in the asset-pricing literature is that the market risk premium tends to

be high in recessionary periods that are associated with heightened macroeconomic

risks and/or risk aversion. The conditional CAPM implies investors will require

higher average returns for holding securities with betas that rise during these times

when they particularly dislike risk.

In this paper, we are primarily concerned with explaining negative uncondi-

tional alphas for zero-cost portfolios that are long stocks with high bankruptcy risk

and short stocks with low bankruptcy risk. Thus, we would like an expression for

the unconditional CAPM alpha for asset i assuming the conditional version of the

model holds. Substituting equation (1.4) into equation (1.2) yields

αu
i = γ (E[βi,t]− βu

i ) + cov(βi,t, γt). (1.5)

Lewellen and Nagel (2006) derive an expression for βu
i and substitute into equation

(1.5) to obtain

αu
i =

[
1− γ2

σ2
m

]
cov(βi,t, γt)−

γ

σ2
m

cov
[
βi,t, (γt − γ)2

]
− γ

σ2
m

cov(βi,t, σ
2
t ), (1.6)

where σ2
t is the conditional variance of the market risk premium, and σ2

m is the

unconditional variance of the market risk premium. They then show that, for rea-

sonable monthly parameter values, the squared Sharpe ratio for the market, γ2/σ2
m,
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and the second covariance term in equation (1.6) are negligible. Thus, we can ap-

proximate the unconditional CAPM alpha for asset i as

αu
i ≈ cov(βi,t, γt)−

γ

σ2
m

cov(βi,t, σ
2
t ). (1.7)

Equation (1.7) suggests the observed negative unconditional alphas for long-short

distress portfolios are consistent with the conditional CAPM if conditional portfolio

betas covary sufficiently negatively with the market risk premium and/or positively

with market volatility.

1.2.2 Empirical methodology

I test the conditional CAPM on distress-sorted stock portfolios following the

short-window regression methodology in Lewellen and Nagel (2006). These tests

directly estimate conditional portfolio alphas and betas using a sequence of time-

series CAPM regressions. Specifically, I estimate a separate CAPM regression each

month, quarter, or half year using daily return data to obtain a time series of non-

overlapping conditional portfolio alphas that spans the entire sample period. The

regression model is

ri,t = αi + βi,0rm,t + βi,1rm,t−1 + βi,2 [(rm,t−2 + rm,t−3 + rm,t−4)/3] + ϵi,t, (1.8)

where ri,t is the excess return on portfolio i and rm,t is the excess market return on

day t. The portfolio beta estimate is

β̂i = β̂i,0 + β̂i,1 + β̂i,2. (1.9)

The regressions include lags of the market return to control for nonsynchronous

returns, and the slopes on lags two through four are constrained to be equal. If the
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conditional CAPM holds for portfolio i, the average of the conditional alphas should

be zero. I also consider whether the time-series variation in conditional portfolio

betas is consistent with the relation in equation (1.7). That is, I test if the estimated

portfolio betas covary with the market risk premium or with market volatility in a

manner that might explain the large negative unconditional alphas for high-distress

portfolios.

For robustness, I use three different window lengths (i.e., monthly, quarterly,

and semiannual). This methodology only requires that CAPM regression parameters

do not vary too much within each estimation window. The shorter the window

length, the more confident we can be that portfolio betas are relatively stable.

There is a tradeoff, however, as shorter window lengths can result in less precise

parameter estimates.

More traditional time-series tests of the conditional CAPMmodel conditional

betas and/or the market risk premium as functions of state variables. These methods

require the econometrician to take a stance on an appropriate set of conditioning

variables. This decision can be problematic because investors’ information sets

are inherently unobservable. As an example, Cooper and Gubellini (2009) show

the choice of state variables can critically affect inferences about the conditional

CAPM.5 The primary advantage of Lewellen and Nagel’s (2006) approach is that

the econometrician does not have to choose any conditioning variables.

Several recent papers, however, pose challenges to the Lewellen and Nagel

(2006) methodology. Li and Yang (2008) and Ang and Kristensen (2010) argue the

5Also see Ghysels (1998).
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estimation windows should not be specified arbitrarily by the researcher and propose

kernel regression techniques to use the data more efficiently. Similarly, Boguth, Carl-

son, Fisher, and Simutin (2009) point out that using contemporaneous estimates of

portfolio betas when estimating conditional alphas can lead to an overconditioning

bias. For robustness, I consider alternative estimation methodologies for the con-

ditional CAPM, including a specification in which portfolio betas are modeled as

a linear function of state variables and several specifications that address concerns

raised in the recent literature. The results, reported in Appendix B, are qualitatively

similar to those obtained using the Lewellen and Nagel (2006) approach.

1.2.3 Measures of financial distress

To ensure the results are robust to alternative proxies for distress risk, I con-

sider two separate measures. The first proxy for distress is Campbell, Hilscher, and

Szilagyi’s (2008) failure probability (hereafter CHS). See Appendix A for details on

the model and data construction. Using a dynamic panel specification, Campbell,

Hilscher, and Szilagyi (2008) model the probability a firm files for bankruptcy, is

delisted from an exchange for financial reasons, or receives a D rating from a lead-

ing credit rating agency over the next twelve months as a function of firm specific

covariates. Using their model, Campbell, Hilscher, and Szilagyi (2008) document a

significantly negative association between distress risk and average stock returns.

The CHS measure represents the state of the art in reduced-form bankruptcy

forecast accuracy and is, thus, a logical choice for characterizing financial distress.

CHS also has several advantages over potential alternatives. Notably, Shumway
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(2001) shows several widely used static bankruptcy prediction models, including

those of Altman (1968), Ohlson (1980), and Zmijewski (1984), introduce a selection

bias because they are estimated with only one observation for each sample firm.

In contrast, CHS is estimated from a panel that classifies each firm month as a

separate observation. Other advantages of CHS are the inclusion of market-based

predictor variables (e.g., Shumway (2001)) and the use of Chava and Jarrow’s (2004)

proprietary bankruptcy data.

One disadvantage of CHS is that this distress measure is estimated from firm

failures that cover the period 1963 to 2003. This sample period has some obvious

overlap with the period considered in my paper. To alleviate any concerns about

look-ahead bias, I also use Ohlson’s (1980) bankruptcy measure which becomes

available in 1980. Despite its vintage, O-score remains a common proxy for financial

distress in papers relating distress risk to equity returns, as well as in the general

finance literature.6

1.2.4 Sample construction

Dichev (1998) and Campbell, Hilscher, and Szilagyi (2008) document the

financial distress anomaly in the post-1980 period. I therefore restrict the sample

period in this paper to January 1981 through December 2009. The sample includes

all NYSE, Amex, and NASDAQ ordinary common stocks with (i) return data avail-

able on the CRSP daily file and (ii) data available to compute either CHS or

O-score. Ohlson’s (1980) O-score was developed explicitly for industrial companies,

6See Dichev (1998), Griffin and Lemmon (2002), Fama and French (2006a), Chava and
Purnanandam (2010), and Chen, Novy-Marx, and Zhang (2010).
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so I exclude financial firms (SIC codes between 6000 and 6999) from the sample.

The empirical tests use daily returns on distress-sorted portfolios. Each year

at the beginning of January, I sort firms into five groups based on either CHS or O-

score. The value-weighted portfolios are held for twelve months and then rebalanced.

In many cases, I focus on the performance of a long-short hedge portfolio that is

long the top quintile and short the bottom quintile of stocks based on a particular

measure of distress risk. Following Campbell, Hilscher, and Szilagyi (2008), I exclude

stocks with a share price below one dollar at the portfolio formation date. For cases

in which a firm is delisted from an exchange during a given month, I replace any

missing returns with the delisting returns provided by CRSP.7 Data on the daily

market return and risk-free rate are from Kenneth French’s website.8

Depending on data availability, I also construct firm-level measures of size

(RSIZE), book-to-market equity (BM), leverage (LEV ), and information risk

(DISP1 and DISP2). RSIZE is the log ratio of market capitalization to the

market value of the S&P 500 Index. BM is the ratio of the book value of equity to

the market value of equity, where the book value of equity is defined as shareholders’

equity if it is available, and as the difference between total assets and total liabilities,

otherwise. LEV is the ratio of total liabilities to the market value of total assets,

where the market value of assets is the book value of debt plus the market value of

equity. DISP1 is analysts’ forecast dispersion divided by the absolute value of the

7See Shumway (1997) for a discussion of delisting bias.

8http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/. I thank Kenneth French
for making this data available.
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mean forecast, and DISP2 is analysts’ forecast dispersion divided by the market

value of total assets. Forecast dispersion is computed from the IBES database as

the month-end standard deviation of current-fiscal-year earnings estimates across

analysts tracked by IBES. See Appendix A for additional details.

Finally, several of the empirical tests in this paper also require data on

macroeconomic state variables. I use the default premium (DEF ), dividend-to-

price ratio (DP ), dividend yield (DY ), net equity expansion (NTIS), short-term

interest rate (TB), and term premium (TERM). These variables are described in

Appendix A.

1.3 Results

The next section revisits the prior literature on the unconditional perfor-

mance of portfolios sorted on either CHS or O-score and then presents the pa-

per’s main results on the performance of these portfolios relative to the conditional

CAPM.

1.3.1 Conditional CAPM alphas

Panel A of Table 1.1 reports the average returns from January 1981 to De-

cember 2009 for portfolios sorted on financial distress. I report estimates in percent

per month (i.e., the daily average returns, unconditional alphas, and average con-

ditional alphas are multiplied by 21). Using either proxy for distress, there is an

inverse relation between average portfolio returns and distress risk. A zero-cost

portfolio that is long the high-distress quintile and short the low-distress quintile

earns an average return of -0.31% per month for the CHS sample and -0.27% per
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month for the O-score sample.

Panel B shows the financial distress anomaly relative to the unconditional

CAPM.9 Unconditional portfolio betas are monotonically increasing in distress risk

for the CHS portfolios. Thus, the performance of distressed stocks appears even

worse after adjusting for risk in an unconditional framework. The long-short CHS

portfolio has an unconditional alpha of -0.67% per month (-8.04% per year), which

is statistically significant at the 5% level (t-statistic of -2.19).

For the O-score portfolios, the relation between beta and financial distress

is not strictly monotonic, but the long-short portfolio does have a positive uncondi-

tional beta. The unconditional alpha for this portfolio is -0.48% per month (-5.76%

per year), which is also significant at the 5% level (t-statistic of -2.25). Thus, the

financial distress anomaly is not sensitive to the proxy for distress risk. Campbell,

Hilscher, and Szilagyi (2008) show portfolios of distressed stocks also have signifi-

cant underperformance relative to other unconditional factor models, including the

three-factor model of Fama and French (1993) and the four-factor model of Carhart

(1997). I confirm these results in my sample (not reported).

Panel C of Table 1.1 shows the results for the conditional CAPM. As de-

scribed above, I estimate a separate CAPM regression each month (M), quarter

(Q), or half year (SA) to obtain a series of conditional alphas for each portfolio.

Panel C reports the averages of these conditional alpha estimates. I test for statisti-

cal significance by using the time-series variability of the conditional alpha estimates

9The unconditional CAPM regressions are also estimated following equations (1.8) and
(1.9).
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to compute standard errors. None of the average alphas for the long-short portfolios

is significantly different from zero at the 5% level. The average conditional alpha

for the CHS hedge portfolio ranges from -0.37% to -0.17% per month, depending

on the rolling estimation window length (t-statistics are between -1.07 and -0.55).

Each of these estimates is noticeably smaller in magnitude than the -0.67% uncon-

ditional alpha reported in Panel B. The results for the long-short O-score portfolio

are even more striking. The average conditional alphas range from -0.13% to 0.25%

per month (t-statistics between -0.64 and 0.97) and are considerably larger than the

-0.48% unconditional estimate in Panel B.

Figure 1.1 shows the time series of conditional (quarterly) alpha estimates

for the long-short distress portfolios. The estimates are noisy, but seem to fluctuate

around zero without any obvious time-series trends. Thus, the figure alleviates one

potential concern related to the Lewellen and Nagel (2006) approach for testing the

CAPM. If the conditional CAPM holds, then average conditional alphas are close to

zero. The converse of this statement, however, is not true. For example, conditional

alphas for a portfolio could be significantly positive over the first half of the sample

period and significantly negative over the second half. The average conditional

alpha would be close to zero, but we would not say the conditional CAPM provides

an adequate description of portfolio returns. Figure 1.1 shows there are no such

patterns in conditional alphas over time.

The results in Table 1.1 suggest the conditional CAPM is able to explain the

poor unconditional performance of financially distressed stocks.10 In Section 1.3.2,

10The main empirical findings in this paper are robust to using decile, rather than
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I present more detail on why the conditional CAPM works so effectively.

1.3.2 Decomposing unconditional alphas

Panel A of Figure 1.2 presents a plot of the conditional (quarterly) beta for

the long-short CHS portfolio, as well as a plot of the individual betas for the high-

and low-distress portfolios. The long-short portfolio beta is remarkably volatile,

ranging from a low of -1.06 in 1995 to a high of 4.09 in 2001. There are substantial

periods of time in the late 1980s and mid 1990s in which the portfolio beta is

less than zero, suggesting high-distress stocks often have less market risk than low-

distress stocks. The plots of the individual portfolio betas reveal that most of the

variation in the long-short beta is driven by the high-distress portfolio. The beta

for the low-distress group is generally close to one. Panel B of Figure 1.2 plots the

conditional betas for the O-score portfolios. The plots are qualitatively similar to

those in Panel A. The long-short beta has a low of -0.92 in 1997 and a high of 1.55

in 2000.

The instability in portfolio betas seen in Figure 1.2 clearly suggests that the

unconditional models previously used to characterize the performance of distressed

firms are inappropriate. In the context of the conditional CAPM, however, volatility

in beta only matters if there is also some meaningful correlation with either the

expected market return or market volatility. More formally, equation (1.7) shows

that the negative unconditional alphas reported in Table 1.1 for long-short distress

portfolios are entirely consistent with the conditional CAPM if the portfolio betas

quintile, portfolios and considering the performance of a zero-cost portfolio that is long
the high-distress decile and short the low-distress decile.
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covary sufficiently negatively with the market risk premium and/or positively with

market volatility. These quantities, cov(βi,t, γt) and cov(βi,t, σ
2
t ), can be estimated

directly from the data. The results are reported in Table 1.2.

Panel A presents covariance estimates that rely on estimated betas for the

long-short distress portfolios. That is, I estimate cov(βi,t, γt) as cov(β̂i,t, rm,t), where

β̂i,t is the estimated conditional beta for portfolio i and rm,t is the realized excess

market return over the same estimation window as the beta. Similarly, I estimate

cov(βi,t, σ
2
t ) as cov(β̂i,t, σ̂

2
t ), where σ̂2

t is the realized variance of the market risk

premium, calculated from daily returns over the same estimation window as the

conditional beta. I then multiply this covariance estimate by γ̂/σ̂2
m to approximate

the volatility effect in equation (1.7).

The results in Panel A show that the covariance between betas and the

market risk premium can explain a large proportion of the negative unconditional

alphas for long-short distress portfolios. The covariance estimates range from -

0.40% to -0.20% per month for the CHS portfolio (although only one of the three

is statistically significant at the 5% level) and from -0.62% to -0.30% for the O-

score portfolio (all three are statistically significant). However, with the exception

of the monthly window O-score estimate (-0.62%), none of the covariance estimates

can fully explain the corresponding unconditional alpha reported in Table 1.1 (-

0.67% for the CHS portfolio and -0.48% for the O-score portfolio). Moving to the

covariances between conditional betas and market volatility reported in Panel A, all

of the estimates are positive and significant at the 5% level. The estimated effects on

unconditional alphas range from -0.16% to -0.13% per month for the CHS portfolio
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and from -0.10% to -0.09% for the O-score portfolio. Thus, the positive covariance

between conditional betas and market volatility also appears to explain a portion

of the negative unconditional alphas for the long-short portfolios.

Summing the risk premium effect and the volatility effect in Panel A, I find

that the unconditional alpha should be between -0.56% and -0.36% per month for the

long-short CHS portfolio and between -0.72% and -0.39% per month for the O-score

portfolio (the numbers vary depending on the rolling estimation window length).

Thus, the conditional betas for distressed stocks vary over time in a way that makes

the unconditional CAPM alpha estimates of -0.67% for the CHS portfolio and -

0.48% per month for the O-score portfolio seem quite reasonable.

For robustness, Panel B of Table 1.2 repeats the analysis using predicted port-

folio betas. I estimate cov(βi,t, γt) as cov(β̂
∗
i,t, rm,t) and cov(βi,t, σ

2
t ) as cov(β̂

∗
i,t, σ̂

2
t ),

where β̂∗
i,t is the fitted value from a regression of β̂i,t on its own lag, DEFt−1, and

DPt−1. The results in Panel B using predicted betas are qualitatively similar to

those in Panel A. The combined risk premium and volatility effects for the CHS

portfolio range from -0.44% to -0.31% per month. The covariance estimates for the

O-score portfolio imply an unconditional CAPM alpha between -0.30% and -0.27%

per month.

1.3.3 Conditional betas and the market risk premium

The results in Table 1.2 suggest that the success of the conditional CAPM

in explaining the financial distress anomaly is largely driven by the covariance of

conditional betas with the market risk premium. Stocks with high measures of
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financial distress tend to have low market risk in states of the world in which the

market risk premium is high. These findings may be counterintuitive under the

assumption that a high market risk premium is associated with recessionary periods

and relatively high investor risk aversion. However, as we will see below, these

results are integral to the economic story in this paper.

Also note that the covariance estimates in Table 1.2 all rely on realized market

returns to proxy for risk premiums. To solidify the relation between conditional

betas and expected returns, we require a more formal characterization of the market

risk premium. I build such a model following the forecast combination methodology

in Rapach, Strauss, and Zhou (2010). Specifically, I estimate six separate regressions

of the form

rm,t = δ0 + δ1Zt−1 + ϵm,t, (1.10)

where rm,t is the quarterly excess return on the CRSP stock market index and Zt−1

is a single lagged state variable known at the beginning of the period over which

the excess market return is measured. The six Zt−1 variables are DEFt−1, DPt−1,

DYt−1, NTISt−1, TBt−1, and TERMt−1, each of which is an established predictor

variable in the literature on forecasting the equity premium. The fitted values from

the above regressions take the following form:

r̂m,t = δ̂0 + δ̂1Zt−1. (1.11)

The estimate of market risk premium, γ̂, is the average of the six fitted values

associated with the six individual predictor variables.

Rapach, Strauss, and Zhou (2010) discuss the advantages of the forecast com-
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bination approach. Notably, this methodology combines information from several

predictor variables that provide potentially unique signals about macroeconomic

conditions. While individual predictive regressions often exhibit structural insta-

bility, performing well in some time periods and poorly in others, the combination

forecast approach provides diversification benefits and produces estimates of the

market risk premium that are much more economically plausible. The combination

forecasts also perform better statistically in terms of mean squared prediction error

relative to other alternatives in the literature. Finally, Rapach, Strauss, and Zhou

(2010) show combination estimates of the market risk premium have strong linkages

to the real economy. These forecasts tend to have local maxima (minima) during

NBER business-cycle troughs (peaks) and are significantly correlated with future

growth in several macroeconomic time series, including real GDP.

I use a long time series of data on the six predictor variables, from 1927

to 2009, to construct the combination estimate of the market risk premium. This

resulting series, shown in Figure 1.3, appears economically reasonable. The market

risk premium is always positive, ranging from 0.37% to 5.20% per quarter. The

series shows pronounced peaks during the two recessionary periods of the Great

Depression in the 1930s, as well as during the current global financial crisis. There

are clear links to macroeconomic conditions, with the risk premium typically rising

sharply during recessions as defined by the NBER.

To better characterize the dynamics of conditional betas for the distress-

sorted portfolios, I examine average portfolio betas across economic states. I define

economic states based on the combination estimates of the market risk premium in
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Figure 1.3. Specifically, I divide the 1981 to 2009 sample period into three states: ‘γ̂

Low,’ ‘γ̂ Intermediate,’ and ‘γ̂ High,’ which correspond to the lowest third, middle

third, and highest third of observations of the market risk premium, respectively.

Table 1.3 reports the average (quarterly) conditional betas for the distress-

sorted portfolios in each state. The table also presents the p-value for a test of the

null hypotheses that the average beta for a given portfolio is the same in states ‘γ̂

Low’ and ‘γ̂ High.’ Focusing on the CHS sample, the average beta for the high-

distress portfolio in state ‘γ̂ Low’ is 1.46, but falls to 1.17 in state ‘γ̂ High.’ Thus,

distressed stocks tend to be relatively riskier in good times when the price of risk

is low. By comparison, the average beta for the low-distress portfolio rises from

0.87 in state ‘γ̂ Low’ to 0.95 in state ‘γ̂ High.’ Consequently, the long-short CHS

portfolio is relatively risky in good times (average beta of 0.59), but much less so in

bad times (average beta of 0.22). The numbers for the O-score sample are similar.

Financially distressed stocks tend to have high market risk in good economic times

(average long-short portfolio beta is 0.31), but relatively low betas in bad times

(average long-short portfolio beta is 0.00). The test of the null hypothesis that

average long-short betas are equal in states ‘γ̂ Low’ and ‘γ̂ High’ is rejected for both

samples.

1.3.4 Discussion

In an influential paper, Lewellen and Nagel (2006) examine the size, value,

and momentum effects and argue the conditional CAPM can not explain these

anomalous cross-sectional patterns in stock returns. They then present formal es-
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timates of covariances between long-short portfolio betas and both the market risk

premium and market volatility, similar to the ones provided in Table 1.2. These

estimates are either too close to zero or of the wrong sign to explain any of the

three anomalies. The reader is left with a sense that time-varying exposure to mar-

ket risk is not a sufficient mechanism to explain cross-sectional deviations from the

unconditional CAPM.

The results in Tables 1.1 through 1.3 provide a stark contrast with those in

Lewellen and Nagel (2006) on the size, value, and momentum anomalies. So what

makes the financial distress effect different from the other CAPM anomalies pre-

viously considered in the literature? First, in contrast with any of the anomalies

examined in Lewellen and Nagel (2006), the betas for the long-short distress portfo-

lios covary positively with market volatility. That is, the second covariance term in

equation (1.7) explains a small portion of the distress effect. Second and most im-

portantly, however, the conditional betas for the long-short distress-sorted portfolios

are highly volatile and negatively correlated with the market risk premium. Betas

for zero-cost portfolios for the other anomalies do not fluctuate in any meaningful

way with the expected market return.

The remainder of the paper provides a reasonable economic interpretation

for the observed variation in equity betas for distressed firms. I start by considering

the characteristics of the firms comprising the high- and low-distress portfolios.

Table 1.4 presents summary statistics on firm size (RSIZE), book-to-market equity

(BM), market leverage (LEV ), and analysts’ forecast dispersion (DISP1) for the

distress-sorted portfolios. Panel A reports time-series averages of cross-sectional
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medians for each characteristic within the high- and low-distress groups. Consistent

with the conjecture in Fama and French (1993) that book-to-market equity proxies

for sensitivity to a systematic distress factor, the high-CHS group tends to be

more tilted toward value stocks relative to the low-CHS portfolio. Interestingly,

however, this association is not robust across proxies for financial distress. There is

no apparent relation between BM and distress risk for the O-score sample. These

results suggest that theories linking conditional equity beta to BM (e.g., Gomes,

Kogan, and Zhang (2003) and Zhang (2005)) are unlikely to provide a sufficient

explanation for the findings in Tables 1.1 to 1.3.

The summary statistics for the other three variables, however, motivate the

proposed theoretical explanation for the dynamics in betas for distressed stocks. Fol-

lowing Johnson (2004), I interpret scaled dispersion in analysts’ forecasts, DISP1,

as a proxy for unpriced information risk, reflecting investor uncertainty about the

fundamental value of a firm. More formally, consider an environment in which the

value of a firm’s assets follows some unobservable process. In this environment,

there are two sources of risk facing investors: (i) systematic risk which is reflected in

the covariance between changes in the value of the firm and changes in a stochastic

discount factor process and (ii) information risk or investor uncertainty about the

current value of the firm. Johnson (2004) argues dispersion in analysts’ forecasts is

a measure of the latter and presents a valuation model linking information risk and

expected returns.

In the next section, I derive a closed-form relation between equity beta and

information risk. In the model, equity betas and expected returns are inversely
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related to investor uncertainty about fundamentals and these effects are magnified

with increases in firm leverage. Intuitively, when equity is viewed as a levered claim

on the underlying value of the firm, raising uncertainty about fundamental value

raises the option value of the claim and also lowers exposure to priced risk.

Panel A of Table 1.4 reveals distressed stocks tend to be much smaller than

those with a low probability of failure and have higher market leverage. The table

also shows that distressed stocks tend to have substantially higher DISP1. Fol-

lowing the interpretation outlined above, distressed stocks tend to be smaller firms

that are considerably more difficult to assess and far less transparent than firms

with a low probability of bankruptcy or default. More importantly, any sufficient

explanation for the success of the conditional CAPM must capture the time-series

variation in portfolio betas shown in Tables 1.2 and 1.3. Panel B of Table 1.4 sug-

gests distressed stocks show substantial variation in DISP1 across economic states.

Investor uncertainty about fundamentals for distressed stocks appears to increases

sharply in times of high risk premiums. I argue in the next section that these fluc-

tuations in information risk across the business cycle can reasonably account for the

observed patterns in portfolio betas.

1.4 Model

Johnson (2004) presents a straightforward valuation model based on an en-

vironment in which a firm’s asset value is unobservable and investors receive noisy

signals about the level of fundamentals. The parameter governing the quality of

these signals is analogous to dispersion in analysts’ earnings forecasts. The model
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relies on the theory of unobserved state variables and the pricing of levered claims

along the lines of Merton (1974). Johnson (2004) applies this model to analyze the

cross-sectional relation between forecast dispersion and expected returns.

In this section, I extend the theory to explicitly consider a CAPM economy

and the relation between information risk and equity betas. I briefly review the

basic elements of the model in Section 1.4.1 and present closed-form expressions for

asset prices, expected returns, and equity betas in Section 1.4.2. I consider several

testable implications of the model in the context of the financial distress anomaly

in Section 1.4.3.

1.4.1 Information environment

The model considers a single firm whose asset value, Vt, follows an unobserv-

able geometric Brownian motion

dVt

Vt

= ϵdt+ σV dW
V
t , (1.12)

where ϵ is the known expected instantaneous rate of return on assets, σV is the

instantaneous volatility, and W V
t is a standard Brownian motion. Investors do not

observe the true level of fundamentals, but are able to aggregate the information

contained in analysts’ forecasts of the firm’s earnings rate to make inferences about

Vt. That is, investors receive a signal, Ut, of the true value process corrupted by a

stationary noise process:

Ut = Vte
ηt . (1.13)
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Taking logs,

dvt = ϵ̄dt+ σV dW
V
t , (1.14)

dut = dvt + dηt, (1.15)

where ϵ̄ ≡ ϵ−1
2
σ2
V . The noise process, ηt, is assumed to follow an Ornstein–Uhlenbeck

process:

dηt = −κηtdt+ σηdW
η
t . (1.16)

The parameters κ and ση determine the information quality of the signal, Ut, but

the primary focus of the model is the impact of ση on asset prices and expected

returns. Intuitively, we should see substantial heterogeneity both across firms and

over time in terms of investor familiarity, predictability of operations, and informa-

tion transparency. The empirical proxy for this uncertainty about fundamentals is

dispersion in analysts’ forecasts.11

In the model, the rate of return on assets also has a known systematic compo-

nent and investors are able to use information on the aggregate state of the economy

to make inferences about Vt. That is, the earnings process in equation (1.12) has a

known correlation with the stochastic discount factor. While Johnson (2004) simply

assumes a generic pricing kernel, I specify the following stochastic discount factor

process that is consistent with the CAPM:

dΛt

Λt

= −rdt− σMdWM
t , (1.17)

11The signal process presented in equation (1.15) is a simplified version of a model in
which an investor receives N distinct analyst signals of the value process. Johnson (2004)
shows that the considering a single aggregate signal, Ut, is sufficient. Moreover, if the
innovations to the individual signals are independent, ση can be viewed as the dispersion
across the forecasts.
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where r is the risk-free rate and σM is market volatility. A derivation of the stochastic

discount factor specified in equation (1.17) is provided in Appendix A. Finally, it

is assumed that the variances and covariances of the processes specified above are

known and the signal noise, dW η
t , is uncorrelated with both dW V

t and dWM
t . The

model solution follows the approach in Johnson (2004).

In summary, investors observe the processes Ut and Λt and use this informa-

tion to update their beliefs about the unobserved state variable Vt. Let mt ≡ Et[vt]

and ωt ≡ Et[(vt −mt)
2]. Applying results on optimal nonlinear filtering, mt follows

the stochastic process given below

dmt = ϵ̄dt+ h̃tdW̃t, (1.18)

where W̃t is a Brownian motion and h̃t converges to σV in the steady state. The

posterior variance, ωt, also converges to a steady-state value, ω, given by

ω =
σ2
V

κ
(1− ρ2VM)

[√
1 +

σ2
η

σ2
V (1− ρ2VM)

− 1

]
, (1.19)

where ρVM is the correlation between dW V
t and dWM

t . Assuming h̃t and ωt have

reached their steady-state values, the conditional distribution at time t about future

values vT is

N(mt + ϵ̄τ, ω + σ2
V τ), (1.20)

where τ ≡ T − t. Thus, uncertainty about future asset values depends on both the

true volatility of fundamentals and on the level of parameter uncertainty. Parameter

uncertainty, in turn, is a function of the volatility of the noise process, ση, and the

mean reversion parameter, κ.
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1.4.2 Asset prices and equity betas

The asset pricing results assume that the value of the firm is paid out to

equityholders at some future time T . The price, St, of an unlevered claim to the

firm is

St = Et[VTΛT ]/Λt

= e−rτemt+(1/2)ωe(ϵ−ρV MσV σM )τ . (1.21)

For a levered firm with face value of debt K, equity is valued as a call option on

the value of the firm along the lines of Merton (1974). The price, Pt, of equity for

a levered firm is

Pt = StΦ(d1)− e−rτKΦ(d2), (1.22)

where Φ(·) is the normal cumulative distribution function and

d1 =
log(St/K) + rτ + (ω + σ2

V τ)/2√
ω + σ2

V τ
,

d2 =
log(St/K) + rτ − (ω + σ2

V τ)/2√
ω + σ2

V τ
.

Applying Itô’s lemma to equations (1.21) and (1.22), we can solve for the dynamics

of St and Pt as follows:

dSt

St

= (r + ρVMσV σM)dt+ σV dW̃t, (1.23)

dPt

Pt

= (r + ρVMσV σMΦ(d1)
St

Pt

)dt+ (σVΦ(d1)
St

Pt

)dW̃t. (1.24)

From equations (1.23) and (1.24), we can readily derive the primary quantities of

interest for this paper. The equity beta for the unlevered claim can be solved for as

βS =
ρVMσV

σM

. (1.25)
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Note that for an unlevered firm, the parameter risk term, ω, has absolutely no effect

on either equity beta or expected returns. Parameter risk, however, does have a

pronounced impact on the beta for a levered claim

βP = βS
St

Pt

Φ(d1)

= βS
St

Pt

Φ

(
log(St/K) + rτ + (ω + σ2

V τ)/2√
ω + σ2

V τ

)
. (1.26)

The relevant result for this paper is that βP is decreasing in ω (and also ση). Increas-

ing parameter risk raises investor uncertainty about the future value of the firm, VT ,

that is to be paid out to investors at time T . Since parameter risk is unpriced, there

is no impact on the asset beta or the required return for an unlevered claim. For a

levered firm, however, an increase in parameter risk increases the option value of the

claim and lowers the covariance between equity payoffs and the stochastic discount

factor.

These effects are displayed graphically in Figure 1.4. I plot the theoretical

relation between the volatility of the noise process, ση, and equity beta for various

levels of firm leverage. In constructing the plots, I set the value of an unlevered

claim, S, equal to 100 and follow the discussion in Johnson (2004) in selecting

other reasonable parameter values. These values are provided in Table 1.5. In

particular, Johnson (2004) argues that the range of ση displayed in Figure 1.4 is a

realistic representation of investor uncertainty observed in the IBES data. The plots

are intended to show qualitative patterns which are robust across a wide range of

parameter choices.

Figure 1.4 shows that when the firm has no debt (i.e., K = 0), there is
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no relation between parameter risk and equity beta. For firms with leverage (i.e,

K > 0), we see that equity beta decreases monotonically with parameter risk.

These effects are significantly magnified as leverage increases. The simple theoretical

relations in Figure 1.4 form the basis for the economic argument in this paper. In

the next section, I formalize the testable implications of the model in the context of

the financial distress anomaly.

1.4.3 Testable implications

The model presented above does not explicitly allow for time variation in

ση. We would, however, like to apply the predictions of the model in a time-series

setting to relate patterns in equity betas for distressed stocks to changes in parameter

uncertainty. To some extent, this exercise is consistent with the model if we view the

conditional CAPM as a model that holds period-by-period. At the same time, the

closed-form solutions for asset prices and equity betas rely on the assumption that

enough time has elapsed for certain model parameters to reach their steady-state

values. With this caveat in mind, I build on the model’s qualitative implications on

the relation between equity beta, information risk, and leverage.

Finally, I also note that we can not make any causality statements about

the relation between distress risk and equity beta. Intuitively, investor uncertainty

about fundamentals could affect the firm’s chosen level of debt which, in turn, would

impact its probability of default. The model takes the level of debt, K, as given,

and I analyze the impact of information risk on equity betas and returns in a partial

equilibrium setting.
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Figure 1.5 presents density histograms of market leverage, LEV , for the

high- and low-distress portfolios sorted on both CHS and O-score. Given that both

models of distress risk explicitly include a measure of firm leverage as a predictor

variable, it is not surprising to see that firms with low probabilities of bankruptcy

or default tend to have relatively low levels of leverage. While the distribution of

leverage is relatively more dispersed within the high-distress groups, it is still quite

common to see firms with market leverage of 0.60 or higher. According to the

model in the previous section, these firms are exactly the ones for which parameter

uncertainty should have the greatest impact on equity betas. Moreover, we saw

some preliminary evidence in Table 1.4 that information risk for distressed stocks

tends to peak during times of high expected market returns. Holding asset betas

constant, these increases in investor uncertainty should be associated with decreases

in measured equity betas. The analysis so far leads to the following testable empirical

predictions:

1. Hypothesis 1: Proxies for information risk for distressed stocks should be

positively related to estimates of the market risk premium. That is, investor

uncertainty about the fundamentals of distressed firms should be higher in

states of the world with high required returns.

2. Hypothesis 2: The portfolio betas for stocks with a high probability of failure

should be negatively related to measures of investor uncertainty in the time

series.

3. Hypothesis 3: The portfolio betas for stocks with a low probability of failure
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should be unrelated to measures of investor uncertainty in the time series.

Hypothesis 1 is a relatively indirect test of the theory. If changes in in-

formation risk drive the observed time-series variation in the betas for distressed

stocks, then according to the model it must be the case that information risk is

more pronounced at times when equity betas for distressed firms are relatively low.

Hypotheses 2 and 3 reflect the model’s predicted relation between equity beta, pa-

rameter uncertainty, and leverage. Distressed firms tend to have high leverage and,

as such, should exhibit an inverse association between equity beta and information

risk over time. In contrast, firms with low distress risk have low leverage. For these

firms, the theory suggests changes in information risk should have little, if any,

impact on observed betas.

1.5 Empirical analysis

In Section 1.5.1, I describe the measures of information risk used in the

empirical analysis. I then present formal tests of Hypotheses 1 to 3 in Sections 1.5.2

and 1.5.3.

1.5.1 Measures of information risk

I construct firm-level measures of information risk based on dispersion in

analysts’ earnings forecasts. Johnson (2004) discusses in detail the motivation for

using dispersion as a proxy for nonsystematic risk related to investor uncertainty

about underlying value of a firm’s assets. He specifically cites the common prac-

tice in the social sciences to use disagreement across a survey of respondents as a
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measure of uncertainty in the underlying environment. Barron, Stanford, and Yu

(2009) provide additional support for the argument that dispersion levels reflect

idiosyncratic uncertainty that increases the option value of the firm. Their results

directly contradict other potential interpretations, including the notion that fore-

cast dispersion proxies for information asymmetry or disagreement among investors

(e.g., Diether, Malloy, and Scherbina (2002)). Similarly, Güntay and Hackbarth

(2010) examine the relation between dispersion of analysts’ earnings forecasts and

corporate bond credit spreads and conclude dispersion primarily reflects future cash

flow uncertainty.

As described in Section 1.2.4 and Appendix A, I computeDISP1 andDISP2

for each firm-month with data available in the IBES database, where DISP1 is an-

alysts’ forecast dispersion divided by the absolute value of the mean forecast and

DISP2 is analysts’ forecast dispersion divided by the market value of total assets.

Table 1.6 provides summary statistics on analysts’ forecast dispersion and firm size

over the period 1983 to 2009. Each year I compute the percentage of sample stocks

with at least one valid monthly observation of dispersion (i.e., stocks covered by at

least two analysts during one month of the year). Panel A reports the average, min-

imum, and maximum of these percentages across all sample years. In a typical year,

roughly half of sample stocks have dispersion estimates, although the percentage

of covered stocks ranges from 35.5% to 79.8%. Panel A also shows that the IBES

database is heavily tilted toward big firms. Panels B and C of Table 1.6 report

summary statistics for the CHS and O-score portfolios, respectively. Consistent

with the evidence in Diether, Malloy, and Scherbina (2002), I find financially dis-
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tressed firms tend to be under-represented in the IBES database. On average, only

25.0% (26.8%) of stocks in the highest CHS (O-score) group are covered. Within

any given portfolio, there is also evidence that the covered firms have larger market

capitalization.

Testing the hypotheses outlined in Section 1.4.3 requires us to convert the

firm-level proxies for information risk into corresponding portfolio-level measures.

Given the evidence in Table 1.6 that forecast dispersion is often unavailable for

distressed firms, one potential concern is that any particular proxy for the high-

distress group may not adequately reflect investor uncertainty about stocks in that

portfolio. For robustness, I consider several alternatives.

For each distress-sorted portfolio, I compute the following four measures

of investor uncertainty: DISP1VW , DISP1M , DISP2VW , and DISP2M . The

measure DISP1VW (DISP1M) for a given month is the value-weighted average

(median) value of DISP1 across all stocks in the specified portfolio with a valid

observation for DISP1. Similarly, DISP2VW (DISP2M) is the value-weighted

average (median) value of DISP2 across all stocks in the specified portfolio. I also

construct two aggregate proxies for information risk: DISP1AGG and DISP2AGG,

where DISP1AGG (DISP2AGG) for a given month is the median value of DISP1

(DISP2) across all sample stocks.

1.5.2 Time-varying information risk

Hypothesis 1 predicts a positive relation between information risk for dis-

tressed stocks and the market risk premium. Intuitively, if the model outlined
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above is to account for the inverse relation between market risk for distressed firms

and the equity premium established in Section 1.3, it must be that investor uncer-

tainty about fundamentals for distressed firms increases during times of high risk

premiums. To test this prediction, I compare the portfolio-level measures of investor

uncertainty across economic states. Economic states are again based on the combi-

nation estimates of the market risk premium defined in Section 1.3.3 (i.e., ‘γ̂ Low,’

‘γ̂ Intermediate,’ and ‘γ̂ High,’ correspond to the lowest third, middle third, and

highest third of observations of the market risk premium, respectively).

Panel A of Table 1.7 presents results for the high-distress CHS portfolio.

The table shows the average of each information risk measure within each economic

state. Regardless of the proxy for investor uncertainty, there is a pronounced increase

in the value of the measure when moving from ‘γ̂ Low’ to ‘γ̂ High.’ For example,

DISP1VW goes from 0.252 in times of low risk premiums to 0.948 in times of high

premiums. The table also reports a p-value for each measure of information risk

for the test of the null hypotheses that average is the same in states ‘γ̂ Low’ and ‘γ̂

High.’ The null hypothesis is strongly rejected in each case.

Panel B of Table 1.7 reports results corresponding to the high-distressO-score

portfolio, and Panel C presents figures for the two aggregate uncertainty measures.

In each case, the results are analogous to those in Panel A. Information risk tends to

rise sharply with corresponding increases in the market risk premium. For additional

insight, Figure 1.6 plots the relation between between DISP1VW and the equity

premium for each of the high-distress portfolios.

Taken as a whole, the results in Table 1.7 provide strong support for Hypoth-
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esis 1. Uncertainty about fundamentals appears to rise substantially during times of

market stress when investors are also demanding high risk premiums. I note these

results are consistent with those based on alternative proxies in the literature. For

example, Korteweg and Polson (2009) use Markov chain Monte Carlo methods to

uncover the posterior distribution of a firm’s asset value given observed prices, ac-

counting data, and a structural model. They also find parameter uncertainty rises

during bad economic times, particularly during the recent credit crisis.

1.5.3 Determinants of conditional betas

Hypotheses 2 and 3 are direct predictions based on the theoretical relation

between equity beta, parameter uncertainty, and leverage. Given that firms in

the high-distress portfolios are often highly levered, Hypothesis 2 conjectures an

inverse relation between proxies for information risk and betas for distressed stocks.

In contrast, Hypothesis 3 suggests we should see no relation between uncertainty

about fundamentals and equity betas for the non-distressed portfolio.

Table 1.8 provides a time-series regression analysis of these predictions. In

each model, the dependent variable is the quarterly conditional beta for either the

high- or low-distress quintile portfolio. The explanatory variables are the portfolio-

level proxies for information risk, median portfolio leverage, and lagged beta. Each of

these variables is known at the beginning of the quarter over which beta is estimated.

Panel A presents results for the high-distress CHS portfolio. Models 1 to 4

are univariate regressions of conditional beta on the individual measures of uncer-

tainty. The results support Hypothesis 2. Each of the four proxies for information
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risk is negatively associated with beta in the time series, and the coefficients for

DISP1VW , DISP1M , and DISP2VW are significant at the 5% level using a one-

tailed test. Models 5 and 6 add controls for leverage and/or lagged beta, which

the theory implies could be important determinants of beta. Information risk re-

mains significantly negatively related to equity beta for the high-CHS portfolio.12

Moreover, the positive coefficients on LEV are also consistent with the theoretical

relation in equation (1.26).13 Models 7 to 9 present results for the low-distress port-

folio. In each case, there is no significant association between information risk and

conditional beta. These findings are consistent with Hypothesis 3.

Panel B of Table 1.8 presents corresponding regression results for the O-

score portfolios. The conclusions are consistent with those in Panel A. In Models

1 to 6, information risk is significantly negatively related to conditional beta at

the 5% level in all cases. Models 7 to 9 again reveal no significant association

between investor uncertainty and equity betas for firms with a low probability of

bankruptcy. Thus, the results in Table 1.8 provide strong empirical support for

the model’s predicted time-series relation between equity betas for distress-sorted

portfolios and information risk.

1.6 Conclusion

In this paper, I show that a conditional version of the CAPM can explain

the apparent underperformance of financially distressed stocks. Using the empirical

12For brevity, I only present results for DISP1VW in Models 5 to 9. The findings are
qualitatively similar using the other three proxies for information risk.

13Also see Figure 1.4.
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methodology of Lewellen and Nagel (2006), I find the average conditional alphas

for long-short portfolios sorted on either Campbell, Hilscher, and Szilagyi’s (2008)

failure probability or Ohlson’s (1980) O-score are not significantly different from

zero. The conditional CAPM successfully explains the distress anomaly because

conditional betas for financially distressed stocks are negatively correlated with the

market risk premium and positively correlated with market volatility. In particular,

betas for distressed stocks tend to decline in times when business conditions are

weak and investors demand a large premium for bearing market risk.

I also show these results are consistent with a simple equity valuation model

that incorporates investor uncertainty about underlying firm fundamentals. Specif-

ically, building on the model of Johnson (2004), I demonstrate that equity betas

for levered firms are negatively related to information risk. The predicted effects

are economically significant. Moreover, the empirical results suggest the model goes

a long way in explaining the observed time-series patterns in systematic risk for

distressed stocks. Thus, this study not only helps to establish a rational explana-

tion for the financial distress anomaly, but also further highlights the importance

of parameter uncertainty in understanding the determinants of equity beta and the

performance of levered firms.
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Table 1.3: Average conditional betas across economic states, 1981–2009

CHS portfolios O-score portfolios

Economic state Risk premium L H H–L L H H–L

γ̂ Low 1.07 0.87 1.46 0.59 1.11 1.41 0.31
(0.03) (0.12) (0.14) (0.03) (0.08) (0.08)

γ̂ Intermediate 1.67 0.97 1.31 0.34 1.07 1.40 0.33
(0.02) (0.10) (0.11) (0.03) (0.08) (0.09)

γ̂ High 2.43 0.95 1.17 0.22 1.04 1.04 0.00
(0.03) (0.08) (0.10) (0.03) (0.05) (0.07)

p-value 0.071 0.047 0.040 0.103 0.000 0.004

Note: The table presents average conditional betas in different economic states for
portfolios sorted on financial distress. Economic states are determined by sorting on
the average fitted value from six separate conditional market regressions of the form
rm,t = δ0 + δ1Zt−1 + ϵm,t, where rm,t is the excess market return and Zt−1 is a state
variable (i.e., DEFt−1, DPt−1, DYt−1, NTISt−1, TBt−1, or TERMt−1) known at the
beginning of the period over which the excess market return is measured. The market
regressions use quarterly data, and the state variables are defined in the text. ‘γ̂ Low’ cor-
responds to the lowest third of observations of the market risk premium, ‘γ̂ Intermediate’
corresponds to the middle third, and ‘γ̂ High’ corresponds to the highest third. The betas
are estimated quarterly using daily data. The last line reports the p-value for the test
of the null hypotheses that the average beta for a given portfolio is the same in states ‘γ̂
Low’ and ‘γ̂ High.’ CHS is Campbell, Hilscher, and Szilagyi’s (2008) failure probability.
O-score is Ohlson’s (1980) bankruptcy probability. The portfolios are value weighted and
rebalanced annually. ‘H’ is the high-distress quintile, ‘L’ is the low-distress quintile, and
‘H–L’ is their difference.
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Table 1.5: Parameter values

Parameter Symbol Value

Price of unlevered claim to V S 100
Beta for unlevered firm βS 0.70
Risk-free rate r 0.04
Market volatility σM 0.25
Volatility of fundamentals σV 0.20
Mean reversion parameter in noise process κ 0.10
Cash-flow horizon τ 3.00

Face value of debt K Variable
Volatility of noise process ση Variable

Note: The table reports the parameter values used to construct the plots of equity beta
in Figure 4. The model parameters are discussed in detail in Section 1.4.
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Table 1.6: Summary statistics on analysts’ forecast dispersion, 1983–2009

Avg. % of stocks RSIZE stocks RSIZE stocks
with estimates Minimum % Maximum % with estimates in portfolio

Panel A: Statistics for full sample
50.6 35.5 79.8 -9.446 -10.487

Panel B: Statistics for CHS portfolios
L 63.8 49.7 79.6 -8.914 -9.458
2 65.6 48.9 87.5 -8.999 -9.391
3 57.0 40.5 84.7 -9.521 -10.152
4 43.5 29.0 76.9 -10.141 -11.034
H 25.0 12.2 71.1 -10.795 -11.974

Panel C: Statistics for O-score portfolios
L 66.0 54.2 84.9 -9.173 -9.710
2 62.3 51.1 85.8 -9.013 -9.646
3 55.4 38.4 85.1 -9.285 -9.987
4 44.8 27.6 76.5 -9.889 -10.885
H 26.8 10.4 71.5 -10.550 -11.739

Note: The table presents descriptive statistics on analyst coverage. Panel A reports
statistics for all sample stocks, i.e., all NYSE, Amex, and NASDAQ ordinary common
stocks (excluding financial firms) with data available to compute either CHS or O-score
and a share price of at least one dollar at the beginning of January in a given year.
Panel B reports statistics for portfolios sorted on CHS, and Panel C reports statistics
for portfolios sorted on O-score. Analysts’ forecast dispersion is the standard deviation
of current-fiscal-year earnings estimates across analysts tracked by IBES. A firm must be
covered by at least two analysts to have a valid observation of dispersion. RISZE is the
log ratio of market capitalization to the market value of the S&P 500 Index. For each group
in each calendar year, I compute the percentage of stocks with at least one valid monthly
observation of analysts’ forecast dispersion. The table reports the average, minimum,
and maximum of these percentages across all sample years. The table also reports the
time-series averages of the cross-sectional medians of RISZE (measured at the portfolio
formation date) across firms with dispersion estimates and across all firms in the indicated
group. CHS is Campbell, Hilscher, and Szilagyi’s (2008) failure probability. O-score is
Ohlson’s (1980) bankruptcy probability. The distress-sorted portfolios are formed at the
beginning of January and rebalanced annually. ‘H’ is the high-distress quintile, and ‘L’ is
the low-distress quintile.
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Table 1.7: Time-varying information risk, 1983–2009

DISP1V W DISP1M DISP1AGG DISP2V W DISP2M DISP2AGG

Panel A: Information risk for CHS, H portfolio
γ̂ Low 0.252 0.160 0.0048 0.0056
γ̂ Intermediate 0.501 0.228 0.0077 0.0062
γ̂ High 0.948 0.420 0.0157 0.0106

p-value 0.000 0.000 0.000 0.000

Panel B: Information risk for O-score, H portfolio
γ̂ Low 0.269 0.124 0.0064 0.0055
γ̂ Intermediate 0.358 0.155 0.0066 0.0049
γ̂ High 0.601 0.294 0.0108 0.0079

p-value 0.000 0.000 0.000 0.000

Panel C: Information risk across all stocks
γ̂ Low 0.050 0.0018
γ̂ Intermediate 0.056 0.0021
γ̂ High 0.089 0.0038

p-value 0.000 0.000

Note: The table presents average measures of information risk in different economic states.
Each proxy for information risk is a monthly, portfolio-level time series. DISP1 is the
standard deviation of current-fiscal-year earnings forecasts divided by the absolute value
of the mean forecast. The portfolio-level measure, DISP1VW (DISP1M ), for a given
month is the value-weighted average (median) value of DISP1 across all stocks in the
specified portfolio with a valid observation forDISP1. DISP2 is the standard deviation of
current-fiscal-year earnings forecasts divided by the market value of assets. The portfolio-
level measure, DISP2VW (DISP2M ), for a given month is the value-weighted average
(median) value ofDISP2 across all stocks in the specified portfolio. Similarly, DISP1AGG

(DISP2AGG) for a given month is the median value of DISP1 (DISP2) across all sample
stocks. Economic states are determined by sorting on the average fitted value from six
separate conditional market regressions of the form rm,t = δ0 + δ1Zt−1 + ϵm,t, where rm,t

is the excess market return and Zt−1 is a state variable (i.e., DEFt−1, DPt−1, DYt−1,
NTISt−1, TBt−1, or TERMt−1) known at the beginning of the period over which the
excess market return is measured. The market regressions use quarterly data, and the state
variables are defined in the text. ‘γ̂ Low’ corresponds to the lowest third of observations
of the market risk premium, ‘γ̂ Intermediate’ corresponds to the middle third, and ‘γ̂
High’ corresponds to the highest third. Panel A reports average monthly measures of
information risk in different economic states for the high-distress quintile of stocks sorted
on CHS. Panel B reports average monthly measures of information risk in different
economic states for the high-distress quintile of stocks sorted on O-score. Panel C reports
average aggregate monthly measures of information risk in different economic states. The
table also reports a p-value for each measure of information risk for the test of the null
hypotheses that average is the same in states ‘γ̂ Low’ and ‘γ̂ High.’
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Table 1.8: Determinants of conditional betas, 1983–2009

β̂H β̂L

Model 1 2 3 4 5 6 7 8 9

Panel A: CHS portfolios
Intercept 1.60 1.71 1.50 1.53 1.11 0.56 0.93 1.15 0.56

(14.8) (14.3) (13.5) (9.97) (4.06) (2.04) (25.5) (12.7) (4.77)
DISP1V W -0.48 -0.69 -0.52 0.01 0.15 0.03

(-3.02) (-3.63) (-2.91) (0.02) (0.34) (0.07)
DISP1M -1.36

(-3.70)
DISP2V W -17.6

(-1.87)
DISP2M -26.2

(-1.47)
LEV 1.26 1.08 -1.17 -0.70

(1.96) (1.84) (-2.58) (-1.78)

β̂i,t−1 0.40 0.54
(4.68) (6.57)

Panel B: O-score portfolios
Intercept 1.63 1.60 1.63 1.55 1.95 1.24 1.05 1.11 0.78

(19.5) (19.2) (14.6) (11.7) (15.9) (5.97) (24.6) (13.6) (5.80)
DISP1V W -0.80 -0.43 -0.33 0.40 0.48 0.30

(-4.77) (-2.25) (-1.85) (0.87) (1.03) (0.66)
DISP1M -1.55

(-4.41)
DISP2V W -40.8

(-3.32)
DISP2M -41.0

(-2.10)
LEV -1.19 -0.70 -0.55 -0.30

(-3.43) (-2.03) (-0.88) (-0.49)

β̂i,t−1 0.37 0.29
(4.15) (3.06)

Note: The table presents time-series regressions of conditional betas on explanatory vari-
ables. The conditional betas are estimated quarterly using daily data. β̂H is the con-
ditional beta for the high-distress quintile of stocks sorted on either CHS (Panel A) or
O-score (Panel B). β̂L is the conditional beta for the low-distress quintile. The explanatory
variables are all know at the beginning of the quarter over which the betas are estimated.
DISP1VW (DISP1M ) is the value-weighted average (median) value of DISP1 across
all stocks in the specified portfolio, DISP2VW (DISP2M ) is the value-weighted average
(median) value of DISP2 across all stocks in the specified portfolio, LEV is the median
market leverage across all stocks in the specified portfolio, and β̂i,t−1 is the conditional
beta from the prior quarter. The numbers in parentheses are t-statistics.
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Figure 1.1: Conditional alphas, 1981–2009
The figure presents conditional CAPM regression alphas (in percent per month) for portfo-
lios sorted on financial distress. Panel A plots the conditional alphas for the hedge portfolio
that is long the top quintile and short the bottom quintile of firms sorted on Campbell,
Hilscher, and Szilagyi’s (2008) failure probability. Panel B plots the conditional alphas
for the hedge portfolio that is long the top quintile and short the bottom quintile of firms
sorted on Ohlson’s (1980) bankruptcy probability. The alphas are estimated quarterly
using daily returns. The dotted lines indicate a two-standard-error confidence interval.
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Figure 1.2: Conditional betas, 1981–2009
The figure presents conditional CAPM regression betas for portfolios sorted on Campbell,
Hilscher, and Szilagyi’s (2008) failure probability (Panel A) and Ohlson’s (1980) O-score
(Panel B). The betas are estimated quarterly using daily returns. Within each panel, the
plot on the left is the conditional beta for the hedge portfolio that is long the top quintile
and short the bottom quintile of firms sorted on the given measure of financial distress.
The dotted lines indicate a two-standard-error confidence interval. The plot on the right
shows conditional betas for the high- and low-distress quintiles.
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Figure 1.3: Market risk premium, 1927–2009
The figure shows the quarterly market risk premium estimated as the average fitted value
from six separate conditional market regressions of the form rm,t = δ0 + δ1Zt−1 + ϵm,t,
where rm,t is the excess market return and Zt−1 is a state variable (i.e., DEFt−1, DPt−1,
DYt−1, NTISt−1, TBt−1, or TERMt−1) known at the beginning of the period over which
the excess market return is measured. The market regressions use quarterly data, and the
state variables are defined in the text. The shaded areas indicate recessions as defined by
the National Bureau of Economic Research.
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Figure 1.4: Theoretical relation between information risk and equity beta
The figure shows equity beta as a function of the volatility of the noise process (ση) and the
face value of debt (K) based on the model outlined in Section 1.4. The plots correspond
to unlevered firm value S = 100, unlevered beta βS = 0.7, and cash-flow horizon τ = 3.
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Figure 1.5: Market leverage, 1981–2009
The figure presents plots of the density histogram of market leverage for portfolios sorted
on Campbell, Hilscher, and Szilagyi’s (2008) failure probability (Panel A) and Ohlson’s
(1980) O-score (Panel B). Market leverage is the ratio of total liabilities to the market
value of total assets (LEV ). Within each panel, the histograms are for the lowest and
highest quintile of firms sorted on the given measure of financial distress. The histograms
use all firm-month observations.
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Figure 1.6: Portfolio-level measures of information risk, 1983–2009
The figure shows the time series of DISP1VW for the portfolio that is long the top quintile
of firms sorted on Campbell, Hilscher, and Szilagyi’s (2008) failure probability (Panel A)
and for the portfolio that is long the top quintile of firms sorted on Ohlson’s (1980)
bankruptcy probability (Panel B). The portfolio-level measure, DISP1VW , for a given
month is the value-weighted average value of DISP1 across all stocks in the specified
portfolio with a valid observation for DISP1. The dashed line is the quarterly market
risk premium estimated as the average fitted value from six separate conditional market
regressions of the form rm,t = δ0+δ1Zt−1+ϵm,t, where rm,t is the excess market return and
Zt−1 is a state variable (i.e., DEFt−1, DPt−1, DYt−1, NTISt−1, TBt−1, or TERMt−1)
known at the beginning of the period over which the excess market return is measured. The
shaded areas indicate recessions as defined by the National Bureau of Economic Research.
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CHAPTER 2
ASSET-PRICING ANOMALIES AT THE FIRM LEVEL

2.1 Introduction

An anomaly is a pattern in average stock returns that is inconsistent with the

predictions of the Capital Asset Pricing Model (CAPM) of Sharpe (1964) and Lint-

ner (1965). Anomalies are commonly identified using a portfolio-based approach.

The researcher sorts stocks on a firm characteristic and constructs a zero-cost hedge

portfolio by taking long and short positions in the extreme groups. If the hedge

portfolio earns abnormal returns relative to the CAPM, the sorting characteristic

is classified as an anomaly. Over the past three decades, a large number of anoma-

lies have been uncovered, suggesting the CAPM is unable to explain much of the

cross-sectional variation in average stock returns.

There are, however, growing concerns in the literature about the use of port-

folios to identify anomalies and, more generally, to test asset-pricing models. These

arguments are centered around the idea that grouping firms into portfolios and ag-

gregating returns wastes and potentially distorts valuable information about cross-

sectional patterns in abnormal returns.1 One way to avoid the concerns with port-

folios is to use firm-level data. To examine anomalies at the firm level, however, the

1For example, Litzenberger and Ramaswamy (1979) and Ang, Liu, and Schwarz (2010)
consider the loss in efficiency from using portfolios rather than individual firms in asset-
pricing tests, while Roll (1977), Kandel and Stambaugh (1995), and Fama and French
(2008) discuss how patterns in firm-level pricing errors can be distorted at the portfolio
level. Lo and MacKinlay (1990) highlight the data-snooping biases inherent in portfolio-
based asset-pricing tests. Ahn, Conrad, and Dittmar (2009) and Lewellen, Nagel, and
Shanken (2010) show inferences in asset-pricing tests are remarkably sensitive to the choice
of test portfolios. For other issues, see Conrad, Cooper, and Kaul (2003), Kan (2004), and
Daniel and Titman (2006b).



55

researcher has to relate firm characteristics to abnormal returns. Abnormal returns

are not directly observable, so the researcher must model and estimate the evolution

of betas – a challenging problem, especially at the firm-level.

Two recent firm-level studies adopt contrasting approaches to control for mar-

ket risk. Avramov and Chordia (2006) model market risk as an exact linear function

of firm size, book-to-market, and macroeconomic variables, while Fama and French

(2008) argue that market risk should not be related to firm characteristics removing

the need to examine abnormal returns. Both approaches are problematic. Speci-

fying betas as an exact linear function of covariates is only valid if the researcher

knows the full set of variables associated with variation in betas, while tests exam-

ining the relation between firm characteristics and raw returns will overstate the

CAPM’s failings if firm-level betas are associated with firm characteristics.

In this paper, we develop a hierarchical Bayes approach to explore anomalies

at the firm level. Specifically, we simultaneously estimate (1) conditional CAPM

model parameters for each firm using an approach similar to Lewellen and Nagel

(2006) which specifies short time periods and avoids the need for conditioning infor-

mation, (2) the cross-sectional relation between conditional alphas and firm char-

acteristics in each time period, and (3) the systematic association between alphas

and firm characteristics across the entire sample period. Our approach has several

desirable features relative to the prior literature. We put little structure on the dy-

namics of conditional betas, thereby minimizing potential model mis-specification.

Our one-step methodology eliminates a measurement error problem encountered in

traditional two-step approaches (e.g., Brennan, Chordia, and Subrahmanyam (1998)
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and Avramov and Chordia (2006)). We also implicitly control for cross-sectional

heteroskedasticity and cross-correlations among stocks.

We use this approach to examine nine anomalies over the period 1963 to

2008: size, book-to-market, momentum, reversal, profitability, asset growth, net

stock issues, accruals, and financial distress.2 Studying each anomaly separately, we

find that firm-level associations are distorted at the portfolio level for four of the

nine anomalies. For example, the traditional portfolio approach suggests size and

reversal are associated with abnormal returns, but using information from the entire

cross section of stocks there is no evidence of a robust relation between either of

these variables and firm alphas. Further analysis suggests the portfolio-level results

for size and reversal are driven by a small subset of stocks with extreme values for

these characteristics. Nevertheless, the initial firm-level evidence still paints a bleak

picture for the CAPM. Seven of the nine characteristics are significantly associated

with alphas, suggesting that the CAPM does indeed fail across multiple dimensions.

These results, however, may be misleading for three reasons.

First, a disadvantage of using the entire cross section of firms to study anoma-

2Previous papers show a positive relation between average returns and book-to-market
equity (Rosenberg, Reid, and Lanstein (1985), Chan, Hamao, and Lakonishok (1991), and
Fama and French (1992)), stock return momentum (Jegadeesh (1990) and Jegadeesh and
Titman (1993, 2001)), and profitability (Haugen and Baker (1996) and Cohen, Gompers,
and Vuolteenaho (2002)). There is a negative relation between average returns and size
(Banz (1981) and Fama and French (1992)), stock return reversal (DeBondt and Thaler
(1985) and Chopra, Lakonishok, and Ritter (1992)), asset growth (Fairfield, Whisenant,
and Yohn (2003), Titman, Wei, and Xie (2004), and Cooper, Gulen, and Schill (2008)), net
stock issues (Loughran and Ritter (1995), Ikenberry, Lakonishok, and Vermaelen (1995),
Daniel and Titman (2006a), and Pontiff and Woodgate (2008)), accruals (Sloan (1996),
Collins and Hribar (2000), and Xie (2001)), and financial distress (Dichev (1998) and
Campbell, Hilscher, and Szilagyi (2008)).
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lies is that inferences may be heavily influenced by small, illiquid stocks. It is possi-

ble that the anomalous patterns are being driven primarily by firms which represent

only a tiny fraction of the total market capitalization. We investigate this issue by

allowing associations between alphas and firm characteristics to vary across micro,

small, and big stocks.3 We find the associations are strongest in terms of statistical

and economic magnitude for micro and small stocks. For big stocks, alphas are

significantly associated with only three of the nine characteristics - asset growth,

net stock issues, and accruals.

Second, anomalies could be the result of temporary market mis-pricing or

data snooping by researchers. These explanations suggest established deviations

from the CAPM should weaken over time. To examine this issue, we consider

whether the relation between alphas and each firm characteristic attenuates or per-

sists after the anomaly is established in the asset-pricing literature. Anomalies

that persist post publication are more likely to reflect a fundamental failure of the

CAPM. Of the seven anomaly variables with sufficient post-publication sample peri-

ods only two – book-to-market and accruals – are significantly related to abnormal

returns after publication. Further, these relations are driven by micro stocks for

which transaction costs and liquidity concerns diminish investors’ ability to exploit

anomalies and correct mis-pricings (e.g., Jensen (1978)). Among big stocks, no firm

characteristic is significantly associated with abnormal returns post publication.

Third, firm characteristics could be correlated with each other and offer lit-

3Following Fama and French (2008), we classify stocks into three size groups - micro,
small, and big. The breakpoints are based on the 20th and 50th percentiles of market
capitalization for NYSE stocks at the end of June each year.
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tle unique information about abnormal returns. Asset-pricing tests that consider

each firm characteristic in isolation are likely to suffer from an omitted variable

bias that will result in the importance of an anomaly being overstated. Traditional

portfolio approaches are unable to adequately address this omitted variable prob-

lem. Researchers typically rely on multi-dimensional sorts to isolate the effects of

a particular characteristic, but controlling for more than one or two characteristics

simultaneously is infeasible. In contrast, our approach is particularly well suited

to assess which anomalies contain unique information; we simply specify condi-

tional alphas as a function of multiple firm characteristics. Our results suggest that

univariate tests do indeed suffer from a pronounced omitted variable bias. Consid-

ering all characteristics simultaneously we find that size, momentum, reversal, asset

growth, and financial distress do not contain significant incremental information

about abnormal returns, in contrast to the corresponding portfolio-level results.

Taken together, the results suggest that while the CAPM does not perfectly

explain firm returns, the anomaly-based evidence against the CAPM is generally

overstated. Relations between firm characteristics and conditional firm-level alphas

are primarily focused among micro and small stocks and tend not to persist after

the anomalies are first documented. Furthermore, few of the firm characteristics

associated with alphas actually contain unique information.

The paper is organized as follows. Section 2.2 develops our econometric model

for testing asset-pricing anomalies and discusses the advantages and disadvantages

of the proposed approach. Section 2.3 describes the data. Section 2.4 presents the

empirical results. Section 2.5 concludes.



59

2.2 Methodology

This section develops our firm-level approach for identifying anomalies rela-

tive to the CAPM. The Sharpe–Lintner version of the CAPM states that

E [ri,t] = βiE [rm,t] , (2.1)

where E [ri,t] denotes the expected excess return on stock i at time t, E [rm,t] is the

market risk premium, and βi =
Cov(ri,t,rm,t)

V ar(rm,t)
captures stock i’s exposure to market

risk. The Sharpe–Lintner CAPM relates the unconditional expectations of firm and

market returns. In reality, as a firm grows and evolves, its exposure to market

risk will change. Similarly, the market risk premium is likely to vary depending

on the state of the economy and the risk tolerance of investors. In the presence of

time-varying risk exposures and risk premiums, a conditional version of the CAPM,

Et−1 [ri,t] = βi,tEt−1 [rm,t] , (2.2)

may hold even if the unconditional CAPM does not (Jagannathan andWang (1996)).

The conditional CAPM implies that the expected conditional alpha, defined

as

Et−1[αi,t] = Et−1 [ri,t]− βi,tEt−1 [rm,t] , (2.3)

should equal zero for all stocks. A common way of testing this prediction is to

examine whether alphas can be forecasted by firm characteristics. Many existing

tests in the literature rely on portfolio-based approaches. However, grouping firms

into portfolios and aggregating returns has adverse effects. Specifically, valuable

information is discarded while averaging across firms and cross-sectional patterns
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in firm returns may be distorted as a result of the portfolio formation procedure.

An alternative approach involves testing the CAPM’s prediction that alphas are

not forecastable using the full cross section of firm returns by examining the cross-

sectional relation,

αi,t = δ0 + δxxi,t−1 + ϵi,t, (2.4)

where xi,t−1 is a firm characteristic that is observable at time t− 1. The conditional

CAPM implies that δx = 0 in a cross-sectional regression based on equation (2.4).

Analysis of this cross-sectional regression is complicated by the fact that the

dependent variable, αi,t, is a latent variable. As such, a model for the latent alphas

is necessary to examine the relation in equation (2.4). A test using such a model

would ideally have two features. First, the specification should not introduce a

spurious relation between αi,t and xi,t−1 through the model for the latent alphas.

Second, given the structure of the problem, the posterior precision of δx should be

maximized.

With these considerations in mind, we develop a firm-level test of the CAPM’s

implication that alphas are not predictable. Specifically, we estimate a system of

simultaneous equations,

ri,t,y = αi,y + βi,yrm,t,y + ϵi,t,y, ϵi,t,y ∼ N
(
0, σ2

i,y

)
, (2.5)

αi,y = Xi,yδy + ηi,y, ηi,y ∼ N
(
0, σ2

α,y

)
, (2.6)

δy = δ + νy, νy ∼ MVN (0,V) , (2.7)

where ri,t,y denotes the excess return on stock i in subperiod t of time period y,

rm,t,y is the excess market return, and Xi,y is a matrix including a constant and firm
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characteristics observable at the beginning of period y. In the primary model speci-

fication, we use monthly subperiods (t) and annual periods (y). We therefore allow

firm alphas and betas to change each year, utilizing the short-window regression

approach of Lewellen and Nagel (2006) to test the conditional CAPM. In equation

(2.6), δy measures the year-by-year relations between alphas and firm characteris-

tics. In a given year, however, abnormal returns may be related to characteristics

purely by chance. To examine whether there is a systematic relation between firm

characteristics and alphas throughout the entire sample period, we assume that the

parameter vectors, {δy}Yy=1, in equation (2.6) are drawn from the multivariate nor-

mal distribution specified in equation (2.7). If an element of δ is focused away from

zero, there is evidence of an anomaly that persists through time. In our empiri-

cal analysis, we analyze δ when assessing the importance of firm characteristics in

forecasting alphas.

We estimate the system of equations (2.5) to (2.7) simultaneously as a hi-

erarchical Bayes model.4,5 The model structure and estimation technique provides

important benefits when examining the relations between alphas and characteristics.

In particular, we minimize the potential for specification issues while modeling the

4Several papers have used Bayesian techniques to examine asset-pricing models. Mc-
Culloch and Rossi (1991) and Geweke and Zhou (1996) develop Bayesian analyses of the
Arbitrage Pricing Theory (APT), while Shanken (1987), Harvey and Zhou (1990), Kandel,
McCulloch, and Stambaugh (1995), and Cremers (2006) propose Bayesian tests for the
mean-variance efficiency of a given portfolio. Ang and Chen (2007) use Bayesian meth-
ods to examine whether the conditional CAPM can explain the value premium. Davies
(2010) and Cederburg (2010) test the CAPM and the ICAPM, respectively, using Bayesian
approaches.

5See Rossi, Allenby, and McCulloch (2005) for a discussion of hierarchical Bayes models.
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latent alphas and maximize the precision of δ.

Relative to existing approaches, our methodology is unlikely to find spurious

relations between alphas and characteristics. We make limited assumptions about

the evolution of betas over time, only assuming that betas are relatively stable within

each year. In contrast, the conditional CAPM is often tested by allowing betas to

vary as a function of state variables. Avramov and Chordia (2006) take this ap-

proach and model firm betas as an exact linear function of size, book-to-market, and

macroeconomic variables. However, such an approach requires the econometrician to

know the “right” state variables (e.g., Harvey (1989), Shanken (1990), Jagannathan

and Wang (1996), and Lettau and Ludvigson (2001)). Further, misspecification of

the process for betas may introduce spurious relations between measured alphas

and firm characteristics. If betas are related to other firm characteristics, such as

profitability or leverage, that are not included in the model, firm betas will be sys-

tematically mismeasured and a researcher may generate incorrect inferences about

δx.

Rather than taking an approach which relies on conditioning information, we

directly examine firm alphas and betas within each year, which Fama and French

(2006b) note is less vulnerable to specification issues. Fama and French (2008) also

avoid complex dynamics for betas by regressing raw returns on firm characteristics

to examine anomalies, implicitly assuming that all stocks have betas of one. How-

ever, even in the absence of a relation between alphas and firm characteristics, this

approach will find δx ̸= 0 if Corr(βi,t, xi,t−1) ̸= 0. There is ample theoretical and

empirical evidence that betas are related to firm characteristics (e.g., Karolyi (1992),
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Gomes, Kogan, and Zhang (2003), and Avramov and Chordia (2006)), so properly

adjusting for market risk is important while testing whether alphas are forecastable.

Given that our model design is unlikely to produce spurious relations be-

tween alphas and characteristics, we turn to developing estimates of δ which are as

precise as possible conditional on the data. Our approach of simultaneously esti-

mating equations (2.5) to (2.7) maximizes the precision of δ. In contrast, a common

approach in the literature is to estimate the relations between alphas and character-

istics in two steps (e.g., Brennan, Chordia, and Subrahmanyam (1998) and Avramov

and Chordia (2006)). In the first step, the latent alphas are estimated for each firm.

The second step involves a cross-sectional regression of estimated alphas on the firm

characteristics,

α̂i,t = δ0 + δxxi,t−1 + ϵi,t. (2.8)

However, a two-step approach introduces a measurement error problem which leads

to an understatement of the evidence against the conditional CAPM. Alphas are

measured with error in the first step, and the variance of each firm’s estimated al-

pha is greater than the posterior variance of the firm alpha. The variance of δ is

increasing in the variance of the alphas used as dependent variables, so the mea-

surement error problem decreases the precision of δ. As a result, δx may not be

different from zero and alphas may appear to be unforecastable even when a sig-

nificant relation exists in the data. Our methodology eliminates this measurement

error problem by simultaneously estimating equations (2.5) to (2.7) to maximize the

precision of δ. In particular, while a two-step approach uses only time-series infor-

mation about the latent alphas, the simultaneous estimation methodology utilizes
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both time-series and cross-sectional information to make inferences about alphas.

An additional feature of the model specified in equations (2.5) to (2.7) is

that cross-sectional heteroskedasticity and cross-correlations among firms are im-

plicitly taken into account. Cross-sectional heteroskedasticity and cross-correlations

will influence the precision of δy in each period. By allowing the relation between

firm characteristics and alphas to vary over time, these features of the cross sec-

tion of returns will be reflected in the posteriors of δ and V (Shanken and Zhou

(2007)). Thus, a large number of test assets can be considered without requiring

the estimation of a variance-covariance matrix.

Estimating equations (2.5) to (2.7) simultaneously is, however, a challenging

problem. The model involves a high-dimensional parameter space since firm-specific

parameters must be estimated for thousands of firms in each year. Moreover estima-

tion is further complicated by the fact that the latent variables αi,y and δy appear

in multiple equations within the system. Fortunately, the problem can be greatly

simplified by recognizing the hierarchical structure of the model. Equation (2.7) is

a hierarchical prior for δy in equation (2.6), while equation (2.6) is a hierarchical

prior for αi,y in equation (2.5). Thus, we adopt a hierarchical Bayes approach to

estimate equations (2.5) to (2.7) simultaneously. In addition to greatly reducing the

computational burden relative to using maximum likelihood estimation or the gen-

eralized method of moments, the Bayesian approach provides a complete accounting

of parameter uncertainty and exact finite sample inference.

The Bayesian approach does require the researcher to specify explicit pri-

ors and hyperparameters for all model parameters. We specify the prior for the
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parameter vector of interest, δ, to be

δ ∼ MVN (0, 100I) . (2.9)

The prior mean of zero implies that firm-level alphas are not associated with firm

characteristics, which is not consistent with the considerable empirical evidence

to the contrary. However, the informativeness of the prior depends on the prior

variance. We specify a large prior variance indicating that we have little prior

information about δ, so our prior has little effect on the posterior distribution of δ.

In unreported results, we considered non-zero prior means for each firm characteristic

based on the evidence in the asset-pricing literature, but the impact on the posterior

distributions was minimal due to the large prior variance.

We specify the prior for firm-level betas as

βi,y ∼ N (1, 10) . (2.10)

We use a prior mean equal to one because the average beta of firms in the market

must equal one. We set the prior variance at 10, so the prior mean should have

little impact on the posterior distribution of betas for most firms. For comparison,

Vasicek (1973) recommends a prior variance of 0.25, which has a much stronger

effect of shrinking firm betas toward one.6

It is also necessary to specify priors for
{
σ2
i,y

}
,
{
σ2
α,y

}
, and V. We model{

σ2
i,y

}
and

{
σ2
α,y

}
using the Inverse Gamma distribution and V with the Inverse

6We also considered a hierarchical model structure for firm betas, similar to the model
specified in equations (2.6) to (2.7) for firm-level alphas. However, we found that the pos-
terior distributions for the parameter vector of interest, δ, are almost identical using either
the hierarchical prior or the prior specified above so we opt for the more parsimonious
specification.
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Wishart distribution. The hyperparameters for these distributions are chosen to

ensure that they have minimal influence on the posterior distributions. Our results

are not sensitive to either doubling or halving the hyperparameter values.

We estimate the model specified in equations (2.5) to (2.7) using standard

Markov chain Monte Carlo (MCMC) techniques. We draw directly from the condi-

tional posterior distributions for all model parameters using a Gibbs sampler. The

algorithm converges quickly. For our empirical applications, we run the chain for

5,000 iterations and discard the first 2,500 as a burn-in period. To test whether the

algorithm has converged, we initially ran the chain for 20,000 iterations and found

that the posterior distributions characterized using iterations 2,500 to 5,000 were

nearly identical to those based on iterations 17,500 to 20,000.

A detailed description of the estimation algorithm and the prior distributions

and associated hyperparameters is provided in Appendix C. We also conduct a series

of simulation experiments to demonstrate the validity of the estimation approach as

well as the robustness of inferences to various features of the cross section of firm

returns. A summary of these results is also provided in Appendix C.

2.3 Data

This section outlines the sample construction and data requirements for esti-

mating the model described in equations (2.5) to (2.7). We obtain accounting data

from the Compustat Fundamentals Annual files and stock return data from CRSP.

The sample includes all NYSE, Amex, and NASDAQ ordinary common stocks with

the data required to compute at least one of the following firm characteristics: size
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(M), book-to-market (BM), momentum (MOM), reversal (REV ), profitability

(ROA), asset growth (AG), net stock issues (NS), accruals (ACC), and financial

distress (OS).

Following Fama and French (1992), year y runs from July of calendar year y

through June of calendar year y+1. The characteristics are measured at the end of

June in each calendar year y. The variables are matched to monthly returns from

July of calendar year y to June of calendar year y + 1. We exclude financial firms

(SIC codes between 6000 and 6999) and firms with negative book equity. Based

on Fama and French (2008), we classify firms into micro, small, and big categories

using the 20th and 50th percentiles of market capitalization for NYSE stocks at the

end of June of calendar year y.

The model described in Section 2.2 requires alphas and betas to be estimated

for each firm-year observation. For a firm to be included in the estimation sample

in a given year, we require 12 months of return data during that year. The final

sample includes 163,603 firm-years of data from July 1963 to June 2008. We use the

CRSP value-weighted stock market index as the proxy for the unobserved market

portfolio. Monthly excess returns on the CRSP value-weighted stock market index,

the risk-free rate, and size breakpoints are from Kenneth French’s website.7 See

Appendix C for a detailed description of variable definitions and data construction.

7http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/. We thank Kenneth
French for making this data available.
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2.4 Results

This section applies the methodology developed in Section 2.2 to explore

cross-sectional anomalies. Section 2.4.1 presents the main firm-level results from

the estimation of the model described in equations (2.5) to (2.7) and contrasts these

results with those from traditional portfolio-level tests. Section 2.4.2 takes a more

detailed look at CAPM anomalies at the firm level.

2.4.1 Firm-level tests

Panel A of Table 2.1 summarizes the posterior distribution of δ in equation

(2.7), which measures the systematic relation between alphas and firm characteris-

tics over the entire sample period. Initially we examine each firm characteristic in

isolation. Following Avramov and Chordia (2006) and Fama and French (2008) we

assume a linear relation between conditional alphas and firm characteristics.

Panel A shows that seven of the nine firm characteristics are significantly

associated with firm-level alphas. Alphas are positively associated with book-to-

market, momentum, and profitability and negatively associated with asset growth,

net stock issues, accruals, and financial distress. In terms of economic significance,

a one-standard-deviation change in any of the seven variables is associated with a

change in alpha ranging in magnitude from 16 basis points (bps) per month for

momentum (0.51 x 0.32) to in excess of 20 bps per month for book-to-market,

profitability, asset growth, and net stock issues.

For comparison, in Panel B of Table 2.1 we report results based on the tradi-

tional portfolio approach that is commonly used to identify anomalies. For each firm
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characteristic, we sort stocks into deciles each year at the end of June and then form

hedge portfolios that are long the highest decile and short the lowest decile of stocks.

The portfolios are equally weighted and rebalanced annually. Panel B presents the

average conditional CAPM alphas. The conditional alphas are computed following

the short-window regression methodology in Lewellen and Nagel (2006). Specifi-

cally, we estimate a separate CAPM regression each year using monthly data to

obtain a time series of non-overlapping conditional portfolio alphas. The standard

errors reported in Panel B are based on the time-series variability of the estimated

conditional alphas.

The hedge portfolios formed from sorts on size, book-to-market, momentum,

reversal, asset growth, net stock issues, and accruals have CAPM alphas that are

significantly different from zero at the 1% level. We find no evidence of signifi-

cant abnormal returns for the hedge portfolios formed on profitability and financial

distress.8 The results in Table 2.1 provide evidence that underlying firm-level asso-

ciations can be obscured at the portfolio level. Comparing the firm-level results in

Panel A to the portfolio-based tests in Panel B, we find that inferences differ for four

of the nine firm characteristics: size, reversal, profitability, and financial distress.

One clear difference between the firm-level and portfolio-level tests is that the

portfolio approach only considers firms in deciles one and ten, ignoring information

contained in the remaining 80% of stocks. The firm-level approach, on the other

8The results for profitability are consistent with those of Fama and French (2008)
for portfolio sorts. Chava and Purnanandam (2010) document that the financial distress
anomaly is specific to the post-1980 period used by Dichev (1998) and Campbell, Hilscher,
and Szilagyi (2008).
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hand, utilizes information from the entire cross section. Thus, the portfolio-level

analysis could be unduly influenced by a small number of outlier observations in

the extreme deciles. To investigate this possibility, in Panel A of Table 2.2 we

specify alphas as a function of a constant, the firm characteristic, and two dummy

variables identifying whether a particular firm lies in the top or bottom decile for

that characteristic. The results suggest that the portfolio-level associations for size

and reversal are driven primarily by the extremes. For example, there is no linear

relation between alphas and size, but firms in the smallest decile earn alphas that

are nearly 0.4% per month higher than firms in the largest decile. For all other

firm characteristics, inferences are not substantially altered by the introduction of

dummy variables.9

When conducting firm-level tests of the CAPM it is also important to consider

the potential impact of non-synchronous returns. Our initial model specification

uses monthly returns and assumes that all stocks are traded frequently. If trading

is infrequent, betas measured by relating firm returns to contemporaneous market

returns will tend to understate exposure to market risk. This issue is particularly

relevant for our analysis if the extent to which a firm has non-synchronous returns

is associated with a given firm characteristic. To control for non-synchronicities we

follow Dimson (1979) and include the lagged excess market return as an additional

factor in equation (2.5) to correct for any downward bias in measured betas. Panel

B of Table 2.2 shows that allowing for non-synchronicities has little impact on the

9In results not reported, we considered other non-linear specifications, including the
addition of squared and cubed terms for each characteristic, but our inferences were un-
changed.
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relations between alphas and firm characteristics.

Although there is evidence in Tables 2.1 and 2.2 that firm-level associations

between alphas and firm characteristics are distorted at the portfolio level for four

out of nine characteristics, the firm-level analysis nonetheless finds substantial ev-

idence against the conditional CAPM. Seven of the nine firm characteristics are

significantly associated with conditional CAPM alphas even after allowing for the

possibility of non-linearities and non-synchronous returns. In the next section we

take a more detailed look at the empirical shortcomings of the conditional CAPM.

2.4.2 A closer look at CAPM anomalies

Given our main results in Panel A of Table 2.1, it is tempting to conclude that

the CAPM provides a poor characterization of stock returns. However, in order to

properly evaluate the performance of the CAPM we must consider the performance

of the model across three dimensions. First, from an economic perspective, it is im-

portant to know whether anomalous patterns in returns are market-wide or limited

to illiquid stocks that represent a small portion of the total market capitalization.

Second, anomalies could arise due to temporary mis-pricing or data snooping by

researchers and, as such, would be unlikely to persist over time. Third, it is impor-

tant to examine to what extent firm characteristics identified as anomalies contain

unique information about abnormal returns. If multiple firm characteristics contain

the same information then tests that consider each firm characteristic in isolation

are likely to suffer from an omitted variable bias that will result in the importance

of an anomaly being overstated.
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To examine whether anomalies are pervasive across size groups, we repeat

the firm-level analysis from Table 2.1, but allow δ to vary across micro, small, and

big stocks.10 The posterior distributions are presented in Figure 2.1 for each firm

characteristic. Of the nine characteristics considered, seven are significantly related

to the conditional CAPM alphas of micro stocks based on 95% credible intervals. In

contrast, only three anomaly variables – asset growth, net stock issues, and accruals

– are significantly associated with the abnormal returns of big stocks. Moreover, the

economic magnitude of the relations is greatly reduced among big stocks relative to

micro stocks. For example, a one-standard-deviation shock in asset growth has a

32 bps per month impact on micro stocks compared to just 12 bps for big stocks.

The results in Figure 2.1 suggest that the CAPM provides a much more effective

characterization of the returns of big stocks, which constitute over 90% of the total

market capitalization.

In Table 2.3 we examine the extent to which firm-level relations between firm

characteristics and alphas persist after each firm characteristic is first documented

as an anomaly.11 We re-estimate the model in equations (2.5) to (2.7), but unlike

10The robustness of anomalies across size subgroups is an active area of interest. For
example, Loughran (1997) argues that the value effect is restricted to small stocks, while
Fama and French (2006b) show Loughran’s (1997) results are specific to the value/growth
indicator, the sample period, and US stocks. Several other papers documenting individual
anomalies conduct double sorts on size and a particular anomaly variable, with mixed
results. Fama and French (2008) take a more comprehensive approach by analyzing the
relations between returns and several firm characteristics within size subgroups.

11In prior research regarding the persistence of anomalies, Schwert (2003) finds that
the size and book-to-market effects appear to have attenuated after the anomalies were
documented, while the momentum anomaly has persisted. Jegadeesh and Titman (2001)
also find that the momentum anomaly appears to have persisted throughout the 1990s.
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Panel A of Table 2.1, in which δ is constant across the whole sample period, we

allow δ to vary across the pre- and post-publication periods.12 In pre-publication

periods the results in Table 2.3 show that alphas are positively related to book-

to-market, momentum, and profitability, and negatively related to accruals and

financial distress. In the post-publication periods, only book-to-market and accruals

remain significantly associated with firm alphas. Moreover, the results for book-to-

market and accruals are driven by micro stocks. Among big stocks, there is no

evidence of any robust relations between firm characteristics and conditional alphas

post publication.

In Figure 2.2 we highlight the relation between accruals and firm alphas

before and after the initial publication by Sloan in 1996. Pre-publication there

is a robust relation between accruals and alphas across stocks of all sizes. Post-

publication, the negative relation persists among micro stocks, diminishes for small

stocks, and disappears in big stocks. This pattern is consistent with market par-

ticipants attempting to exploit the anomaly to earn abnormal returns. Among big

stocks, where transaction costs are lowest and there are few, if any, short selling

constraints, deviations from CAPM pricing are quickly eliminated. In contrast, in-

vestors appear to be unable to trade away the anomaly among micro stocks, where

transaction costs are high, liquidity is low, and short selling is often difficult to

12We use publication dates based on the following papers: Banz (1981) (size), Rosen-
berg, Reid, and Lanstein (1985) (book-to-market), Jegadeesh (1990) (momentum),
DeBondt and Thaler (1985) (reversal), Haugen and Baker (1996) (profitability), Sloan
(1996) (accruals), and Dichev (1998) (financial distress). The asset growth (Cooper,
Gulen, and Schill (2008)) and net stock issues (Daniel and Titman (2006a)) anomalies
were only recently uncovered so we do not include these characteristics in our analysis.
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implement (e.g., Jensen (1978)).

The pre-post analysis in Table 2.3 and Figure 2.2 provides little evidence

that anomalies persist after they are first documented, especially among big firms.

As such, our evidence is more consistent with the hypothesis that anomalies arise

in the data either due to market participants making a mistake which they later

correct or due to data snooping by researchers.

Thus far our analysis has focused on the relation between conditional al-

phas and each firm characteristic in isolation. If firm characteristics are correlated

with each other and offer little unique information about alphas then studying each

characteristic in isolation will overstate the failings of the conditional CAPM. The

traditional portfolio approach is unable to adequately address this omitted variable

problem. Researchers typically rely on two- or possibly three-dimensional sorts to

isolate the effects of a particular characteristic. Controlling for more than one or

two characteristics simultaneously, however, is infeasible and inferences are sensi-

tive to both the sorting technique and the sorting sequence (e.g., Conrad, Cooper,

and Kaul (2003)). In contrast, our approach is particularly well suited to assess

which anomalies contain unique information; we simply specify firm-year alphas in

equation (2.6) as a function of all nine firm characteristics in Table 2.1.

In Figure 2.3 we compare the posterior distributions from two analyses – one

in which each firm characteristic is considered in isolation and one in which all char-

acteristics are considered simultaneously.13 Momentum, asset growth, and financial

13In results not reported we also considered a model specification in which conditional
alphas were modeled as a function of multiple firm characteristics and the relations were
allowed to vary across micro, small, and big stocks. As in Figure 2.1 the relations between
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distress are significantly associated with CAPM alphas when considered in isola-

tion, but as Figure 2.3 highlights, none of these characteristics contain significant

incremental information when all characteristics are considered simultaneously. The

only firm characteristics that are significantly related to firm-level alphas when mul-

tiple characteristics are considered simultaneously are book-to-market, profitability,

net stock issues, and accruals. Our analysis therefore suggests that univariate tests

provide a low hurdle for firm characteristics to be classified as anomalies.

2.5 Conclusion

In this paper, we use a hierarchical Bayes framework to examine asset-pricing

anomalies, modeling firm-year alphas as a function of one or more firm character-

istics. We investigate nine anomalies – size, book-to-market, momentum, reversal,

profitability, asset growth, net stock issues, accruals, and financial distress – over

the period 1963 to 2008. Studying each anomaly separately we find robust evidence

that CAPM alphas are positively associated with book-to-market, momentum, and

profitability. Alphas are negatively associated with asset growth, net stock issues,

accruals, and financial distress.

These initial results imply the failings of the CAPM are widespread. A

deeper investigation of anomalies, however, suggests that while the CAPM may not

perfectly explain firm returns, the anomaly-based evidence against the CAPM is

greatly overstated. Relations between firm characteristics and conditional firm-level

alphas are primarily focused among micro and small stocks and tend not to persist

characteristics and alphas are generally driven by micro and small stocks.
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after the anomaly is first documented. Among large firms there is no evidence of

any persistent anomalies. Furthermore, few of the firm characteristics associated

with alphas actually contain unique information.
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Table 2.1: Firm characteristics and CAPM alphas, 1963-2008

M BM MOM REV ROA AG NS ACC OS

Panel A: Base specification

Posterior mean for the aggregate-level parameters, δ
0.05 0.24∗∗ 0.51∗∗ -0.06 1.79∗∗ -0.45∗∗ -1.36∗∗ -1.27∗∗ -1.20∗

(0.06) (0.08) (0.19) (0.08) (0.51) (0.09) (0.21) (0.22) (0.46)
Average cross-sectional standard deviation of firm characteristics

1.89 0.86 0.32 0.78 0.15 0.58 0.16 0.13 0.14

Panel B: Performance of hedge portfolios

Average conditional CAPM alpha, α̂CAPM

-1.08∗∗ 1.37∗∗ 0.61∗∗ -0.78∗∗ 0.17 -1.23∗∗ -1.14∗∗ -0.54∗∗ -0.18
(0.33) (0.20) (0.20) (0.23) (0.29) (0.17) (0.16) (0.12) (0.27)

Note: Panel A presents the results from the estimation of the model described in equa-
tions (2.5) to (2.7) examining the cross-sectional relation between firm alphas and each
firm characteristic separately. We report the posterior mean and standard deviation for
the aggregate-level parameters, δ, which provide information about the relation between
alphas and firm characteristics across the entire sample period. An ∗ (∗∗) indicates that
the 95% (99%) credible interval of the posterior distribution does not include zero. Panel
B reports average conditional alphas for hedge portfolios that are long the highest decile of
stocks and short the lowest decile for each variable. Following Lewellen and Nagel (2006),
the conditional CAPM alphas are estimated annually using monthly data. Standard errors
are in parentheses. An ∗ (∗∗) indicates significance at the 5% (1%) level using a two-tailed
test. The firm characteristics are described in Appendix C.
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Table 2.2: Alternative model specifications, 1963-2008

M BM MOM REV ROA AG NS ACC OS

Panel A: Nonlinear specification

Posterior Mean for the aggregate-level parameters, δ

δ, Linear 0.08 0.23∗∗ 0.50∗ -0.01 1.74∗∗ -0.42∗∗ -0.91∗∗ -1.44∗∗ -0.79∗

(0.07) (0.09) (0.24) (0.09) (0.51) (0.10) (0.23) (0.28) (0.33)

δ, Decile 1 0.19 -0.07 -0.42∗∗ -0.15 -0.15 -0.20 0.17∗ -0.46∗∗ -0.01
(0.12) (0.11) (0.14) (0.15) (0.17) (0.14) (0.08) (0.13) (0.09)

δ, Decile 10 -0.18∗ -0.02 -0.31∗ -0.27∗ -0.15 -0.08 -0.16 -0.21∗ -0.33∗

(0.08) (0.11) (0.13) (0.11) (0.10) (0.12) (0.11) (0.10) (0.16)

Panel B: Sum betas

Posterior mean for the aggregate-level parameters, δ

δ 0.09 0.23∗∗ 0.48∗ -0.07 2.03∗∗ -0.47∗∗ -1.49∗∗ -1.42∗∗ -1.48∗∗

(0.06) (0.08) (0.22) (0.09) (0.54) (0.09) (0.24) (0.23) (0.47)

Note: The table presents the results from the estimation of the model described in equa-
tions (2.5) to (2.7) examining the cross-sectional relation between firm alphas and each
firm characteristic separately. We report the posterior mean and standard deviation for
the aggregate-level parameters, δ, which provide information about the relation between
alphas and firm characteristics across the entire sample period. Panel A shows estimates
from a nonlinear specification including a linear component and dummy variables for firms
with characteristic values in the top or bottom deciles. Panel B shows estimates using sum
betas. An ∗ (∗∗) indicates that the 95% (99%) credible interval of the posterior distribution
does not include zero.



79

Table 2.3: Firm characteristics and CAPM alphas pre- and post-publication, 1963-
2008

M BM MOM REV ROA ACC OS

Publication date 1981 1985 1990 1985 1996 1996 1998

Pre-publication – Posterior means for the aggregate-level parameters, δ

All -0.00 0.24∗ 0.64∗∗ -0.19 1.91∗∗ -1.32∗∗ -1.18∗

(0.09) (0.11) (0.24) (0.11) (0.58) (0.25) (0.52)

Micro -0.03 0.31∗ 0.52∗ -0.17 1.48∗∗ -1.31∗∗ -1.18∗∗

(0.12) (0.13) (0.20) (0.13) (0.46) (0.22) (0.40)
Small 0.12 0.24 0.53 -0.19 2.53∗∗ -1.35∗∗ -2.25∗∗

(0.13) (0.15) (0.29) (0.14) (0.60) (0.38) (0.60)
Big -0.08 0.09 0.57 -0.12 1.16 -1.31∗∗ 0.39

(0.11) (0.14) (0.37) (0.15) (0.93) (0.39) (0.84)

Post-publication – Posterior means for the aggregate-level parameters, δ

All 0.08 0.23∗ 0.33 0.07 1.29 -0.97∗ -1.19
(0.08) (0.11) (0.33) (0.11) (0.98) (0.43) (0.94)

Micro 0.01 0.41∗∗ 0.22 -0.02 0.99 -1.35∗∗ -0.92
(0.10) (0.13) (0.26) (0.13) (0.75) (0.40) (0.72)

Small 0.11 0.24 0.39 0.04 1.67 -0.50 -1.91∗∗

(0.11) (0.15) (0.37) (0.14) (0.95) (0.64) (0.74)
Big -0.01 0.12 0.36 -0.01 0.49 0.11 -1.80

(0.09) (0.14) (0.47) (0.16) (1.58) (0.70) (1.05)

Note: The table presents the results from the estimation of the model described in equa-
tions (2.5) to (2.7) examining the cross-sectional relation between firm alphas and each
firm characteristic separately. We report the posterior mean and standard deviation for
the aggregate level parameters, δ, which provide information about the relation between
alphas and firm characteristics across time. We allow for different aggregate-level param-
eters in the pre- and post-publication periods. We estimate two models for each anomaly,
one in which δ is restricted to be the same across all firms (All) and one in which δ varies
across micro, small, and big stocks. An ∗ (∗∗) indicates that the 95% (99%) credible
interval of the posterior distribution does not include zero.
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Figure 2.1: Firm characteristics and CAPM alphas by size group
The figure presents the results from the estimation of the model described in equations
(2.5) to (2.7) examining the cross-sectional relation between firm alphas and each firm
characteristic separately. We report the posterior distributions for the aggregate-level
parameters, δ, which provide information about the relation between alphas and firm
characteristics across the entire sample period. We estimate a model for each anomaly in
which the aggregate-level parameters (δ) vary across micro (dotted), small (dashed), and
big (line) stocks.
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Figure 2.2: The accruals anomaly pre- and post-publication
The figure presents the results from the estimation of the model described in equations
(2.5) to (2.7) examining the cross-sectional relation between firm alphas and accruals.
We report the posterior distributions for the aggregate-level parameters, δ, which provide
information about the relation between alphas and firm characteristics across time. We
allow for different aggregate-level parameters in the pre- and post-publication periods and
also allow the aggregate-level parameters to vary across micro (dotted), small (dashed),
and big (line) stocks.
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Figure 2.3: Individual and multiple anomaly variables
The figure presents the results from the estimation of the model described in equations
(2.5) to (2.7) examining the cross-sectional relation between firm alphas and multiple
firm characteristics simultaneously. We report the posterior distributions (line) for the
aggregate-level parameters, δ, which provide information about the relation between al-
phas and firm characteristics across the entire sample period. For comparison, for each
anomaly variable we also present the posterior distribution (dashed) of δ from estimation
of the model described in equations (2.5) to (2.7) for each characteristic in isolation using
the same data sample.
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CHAPTER 3
MODELING THE CROSS SECTION OF STOCK RETURNS: A

MODEL POOLING APPROACH

3.1 Introduction

Over the past three decades, finance academics have discovered a number

of empirical regularities in the cross section of stock returns that pose a challenge

to models such as the CAPM. The discovery of these anomalies has in turn led

to a vigorous search for the ‘true’ model that explains the cross section of asset

returns. This effort has given rise to a number of asset pricing models that purport

to improve upon the CAPM or the Fama–French (1993) three-factor model. The

search for such models is not without criticism, however. For example, in a recent

critique, Lewellen, Nagel, and Shanken (2010) argue that the apparently strong

explanatory power of many such models, as evidenced by high cross-sectional R2s,

in fact provides quite weak support for the models.

This paper proceeds in the spirit of Box (1980) that all models are false, but

some are useful. Most would agree with the dictum of Box when applied to the

case of asset pricing models. More formally, this implies that the space of asset

pricing models is incomplete. A model space is said to be complete when it contains

the true model. When faced with competing models in a decision context such as

performance evaluation or cost of capital estimation, a commonly used strategy is

to implement model selection, that is, to choose one of the competing models to

the exclusion of the others. However, model selection is a flawed strategy when the

model space is incomplete.
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The purpose of this paper is to illustrate the advantages of a model pooling

approach in contrast to model selection in the context of asset pricing models. One

implementation of the model pooling approach is to combine point forecasts of indi-

vidual models. A more comprehensive approach, and the one adopted in this paper,

is to combine the predictive distributions produced by the models under considera-

tion. This approach is warranted because decision problems involving asset returns

often require knowledge of the entire probability distribution of returns. Combining

distributions has received relatively limited treatment in the econometrics literature.

Papers adopting this methodology include Wallis (2005), Hall and Mitchell (2007),

and Geweke and Amisano (2010).

Following the framework in Geweke and Amisano (2010), the predictive dis-

tributions are combined linearly and the resulting combinations are evaluated using

the log predictive score function. The log predictive score function is a well-known

measure of the out-of-sample prediction performance track record of the model. The

log score rule was introduced by Good (1952), and the connection between the log

score rule and the Kullback–Leibler directed distance is studied in Hall and Mitchell

(2007). The use of the log score rule typically results in several of the models in the

pool under consideration receiving positive weights, a desirable feature in contexts

where the model space is incomplete in the sense noted above. As noted by Hendry

and Clements (2002), model combination is particularly valuable in applications

where individual models are likely to be misspecified due to periodic shifts in the

underlying data generating process.

This paper considers optimal model pools of some well-known asset pricing
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models for the purpose of forming predictions of the one-step-ahead cross section of

stock portfolio returns. The weights for the optimal model pools are obtained by

maximizing the log predictive score criterion. The properties of the resulting opti-

mal model pools are illustrated for several alternative sets of test assets, including

industry-based stock portfolios and portfolios formed on size and book-to-market

equity. The illustrations use monthly data for the period 1927–2008.

The initial analysis considers the properties of two-model pools using three of

the best-known asset pricing models, namely, the CAPM, the Fama–French three-

factor model, and the Carhart (1997) four-factor model. The optimal two-model

pools are shown to perform better than any of the individual constituent models

when judged by the log predictive score criterion. A similar finding holds for the

three-model pool. For both the two- and three-model pools, the model weights of

the optimal pools vary over time confirming the well-known instability in the perfor-

mance of the individual models. It is noteworthy that all the models, including the

CAPM, are typically assigned positive weights under the model pooling approach.

Although the CAPM is often inferior to other models in the pool, it can help predic-

tion by being included in the pool rather than by being discarded. This application

illustrates that treating the model space as incomplete can lead to improved pre-

dictions compared to an approach that discards a model like the CAPM on model

selection grounds.

Next the performance of two recently proposed models is compared to the

original three-model pool. These are the models introduced by Pástor and Stam-

baugh (2003) and Chen and Zhang (2009). On a stand-alone basis these models
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are unable to beat the predictive performance of the original optimal three-model

pool. This suggests that the three-model pool is a more appropriate benchmark

against which to compare new candidate models rather than using the pre-existing

individual models on a stand-alone basis as benchmarks, as is typically done in

the literature. Finally, the performance of the five-model pool is considered. As

expected, the five-model pool, which contains the two recent models, exhibits bet-

ter performance than the original three model pool, which in turn is the revised

benchmark for model performance.

The advantage of the model pooling approach is confirmed when judged by

a metric motivated by Fama and French (1996), namely the cross-sectional average

absolute pricing error. Specifically, consider comparing the performance of two re-

searchers interested in modeling the cross section of returns. Suppose one researcher

uses model pooling to address model uncertainty and the other uses model selection.

We show that the model pooling strategy consistently delivers lower pricing errors

compared to several alternative strategies based on model selection. For complete-

ness, the performance of a Bayesian model averaging strategy is also considered.

Superficially Bayesian model averaging appears to be model pooling. In practice,

this procedure typically results in model selection since one model tends to dominate

as the sample size increases. As such the model pooling strategy also outperforms

the Bayesian model averaging strategy.

This study contributes to the literature on forecast combination pioneered by

Bates and Granger (1969) and more recently surveyed by Clemen (1989), Diebold

and Lopez (1996), Newbold and Harvey (2001), and Timmermann (2006). The
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primary contribution of the paper is to illustrate the advantage of model pooling

based on the log predictive score criterion in an asset pricing context. Our results

complement earlier results on the advantage of pooling forecasts of macroeconomic

variables (see, e.g., Stock and Watson (2003, 2004) and Guidolin and Timmermann

(2009)). Applications of forecast combination methodologies remain relatively scarce

in the finance literature. Mamaysky, Spiegel, and Zhang (2007) and Rapach, Strauss,

and Zhou (2010) are recent examples in the context of mutual fund performance

evaluation and equity premium prediction, respectively. A distinguishing feature of

the present paper compared to the earlier work is the focus on combining predictive

densities rather than point forecasts.

The rest of the paper is organized as follows. Section 3.2 describes the class

of asset pricing models considered in the paper and the relevant predictive distri-

butions for asset returns. Section 3.3 reviews the theoretical framework for model

pooling based on the log predictive score criterion and establishes the basis for the

choice of predictive distributions employed in this paper. Section 3.4 explores the

characteristics of two-model pools while Section 3.5 examines the multi-model pools.

Section 3.6 compares model pooling to model selection and Bayesian model aver-

aging using an economic metric, namely the out of sample cross-sectional average

pricing errors. Section 3.7 contains the concluding comments.

3.2 Predictive distributions

The focus of this paper is on constructing optimal pools of asset pricing

models for the purpose of forming predictions of the cross section of stock portfolio
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returns. The choice of the models to be used in the pool is, of course, a matter of

judgment on the part of the researcher who may be guided by theory or empirical

evidence. The model weights for the optimal pools are obtained by maximizing

the log predictive score criterion, which is formally introduced in Section 3.3. The

log predictive score function incorporates the predictive densities for the individual

models included in the pool. This section specifies the class of asset pricing models

considered in this paper and develops the corresponding predictive densities for asset

returns. This class of models includes three well-known asset pricing models: the

CAPM, the Fama–French three-factor model, and the Carhart four-factor model.

Consider asset pricing models that can be specified as multivariate normal

linear regression models with random regressors. Assume that the conditional expec-

tation function is linear in the factors and the disturbance vector is independently

and identically normally distributed with mean zero and positive definite variance

matrix Σ. Then the excess return vector at time t for a typical asset pricing model

is

rt = α+ βft + ϵt, ϵt ∼ i.i.d. N (0,Σ) ,

where rt is an m× 1 vector of excess returns at time t for a set of m assets, ft is a

k×1 vector of k factors at time t and ϵt is an m×1 vector of disturbances at time t.

The parameters α and β have dimensions m× 1 and m× k, respectively. As stated,

the return vector is conditional on the contemporaneous factor vector. The model

rewritten in terms of a sample of length τ is

Rt−τ,t−1 = Ft−τ,t−1B+Ut−τ,t−1, (3.1)
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where the subscript t− τ, t− 1 denotes a sample that extends from month t− τ to

month t− 1. In equation (3.1) the i-th row of the τ ×m matrix Rt−τ,t−1 is rt−τ−1+i,

the i-th row of the τ × (k + 1) matrix Ft−τ,t−1 is (1, f ′t−τ−1+i), the i-th row of the

τ×m matrix Ut−τ,t−1 is ϵ
′
t−τ−1+i and B = [α, β]′ is a (k+1)×m matrix of regression

parameters. It is assumed that rank(Ft−τ,t−1) = k + 1. By the earlier assumption

on the ϵt vectors, the rows of Ut−τ,t−1 are i.i.d. N (0,Σ).

A frequentist or Bayesian approach may be used to obtain the predictive

density of rt conditional on ft. In the frequentist approach, the parameter estimates

α̂, β̂, and Σ̂ are obtained by least squares or maximum likelihood. At time t−1 the

one-step-ahead prediction for rt is obtained by replacing the unknown parameters

with estimates and conditioning on ft, the one-step-ahead factor realizations. Note

that in the context of asset pricing models the relevant past history for estimation

also includes the time series of the factor vectors as well as the return vectors.

Accordingly, the resulting complete conditional predictive density is

p(rt;Rt−τ,t−1,Ft−τ,t−1, ft) = p(rt|Rt−τ,t−1,Ft−τ,t−1, ft, β̂, Σ̂).

A special feature of prediction with factor models is that α is set equal to zero.

This paper implements a Bayesian approach to obtain the conditional pre-

dictive density for asset returns. Assume that the investor has the standard unin-

formative prior on B:

p(B,Σ) ∝ |Σ|−
m+1

2 . (3.2)
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The posterior distribution of the parameters of interest is then given by

Σ−1 ∼ Wishart(τ − k,S−1),

V ec(B) ∼ N
(
vec(B̂),Σ⊗ (F′

t−τ,t−1Ft−τ,t−1)
−1
)
,

where S = (Rt−τ,t−1 − Ft−τ,t−1B̂)′(Rt−τ,t−1 − Ft−τ,t−1B̂), and B̂ = [α̂, β̂]′ is the

matrix of maximum likelihood (ML) parameter estimates.

Note that the marginal posterior probability density function (pdf) for Σ is

in the form of the inverse-Wishart distribution and the conditional posterior pdf for

B is multivariate normal. Following Zellner (1971) the expression for the one-step-

ahead conditional predictive density for rt has the form of the multivariate Student

t distribution:

p(rt|Rt−τ,t−1,Ft−τ,t−1, ft) =
v1/2Γ [(v +m) /2] |V|1/2

πm/2Γ (v/2)
×[

v +
(
rt − α̂− β̂ft

)′
V
(
rt − α̂− β̂ft

)]−(v+m)/2

, (3.3)

where ft is the vector of one-step-ahead factor realizations, V = gvS−1, g = 1 −

f ′t(F̄
′F̄+ f ′tft)

−1ft, F̄ = {ft−τ , . . . , ft−1} and v = τ − (k + 1)− (m− 1).

For the investor with complete confidence in the factor model, the posterior

predictive distribution incorporates the dogmatic point prior α = 0. This implies

that α̂ is set equal to zero in the above conditional predictive density. This conven-

tion is followed here for the purpose of model performance evaluation.

Also note that the predictive density of rt is conditional on ft. This frame-

work is appropriate since the class of asset pricing models considered here specifies

a relation between the realized asset returns and the contemporaneous realization
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of the factor returns. While this density can be used to compare the in-sample

prediction performance of alternative asset pricing models, the predictive distribu-

tion of rt conditional on ft is not apparently useful for comparing models when the

evaluation is based on true out-of-sample predictive performance. This is because

the factor return realized in period t is unknown at time t − 1. In other words, a

predictive distribution of asset returns that conditions on contemporaneous factor

returns does not represent the outcome of a realistic prediction exercise. We show

below, however, that under the assumption the asset pricing models share a common

prediction model for the factor returns, the density in (3.3) can be used to evaluate

the true out-of-sample predictive performance for a set of competing models. Thus,

conditioning on observed factor returns does not detract from the predictive nature

of the exercise.

There are two approaches to obtaining a predictive distribution that is con-

ditional only on the history available at t − 1. The first approach is based on the

joint prediction of asset and factor returns. This assumes a model for forecasting the

factor returns. The joint one-step-ahead predictive distribution of rt and ft can be

written as the product of two predictive distributions, the one-step-ahead predictive

distribution of rt conditional on ft, which is provided by model A, an asset pricing

model, and the one-step-ahead predictive distribution of ft provided by model B, a

factor returns model. The product is

p(rt, ft|Rt−τ,t−1,Ft−τ,t−1, A,B) =p(rt|Rt−τ,t−1,Ft−τ,t−1, ft, A)×

p(ft|Rt−τ,t−1,Ft−τ,t−1, B).
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In the second approach the one-step-ahead predictive distribution of rt is the marginal

distribution of rt derived from the joint one-step-ahead predictive distribution. This

marginal is obtained by integrating out ft from the joint distribution:

p(rt|Rt−τ,t−1,Ft−τ,t−1, A) =

∫
p(rt|Rt−τ,t−1,Ft−τ,t−1, ft, A)×

p(ft|Rt−τ,t−1,Ft−τ,t−1, B)dft.

With either of these approaches the prediction of the asset returns relies only on the

history available at time t− 1, not on the contemporaneous factor returns.

The focus in this paper is on the first approach because it provides the basis

for constructing a realistic prediction exercise that can be implemented in practice.

The joint predictive distribution of rt and ft can be thought of as the result of a

two-stage prediction procedure where the first stage involves predicting the factor

returns and the second stage predicts the asset returns conditional on the forecast of

the factor returns. Indeed, this interpretation is often implicit in the specification of

asset pricing models. As we show below, under the assumption that the prediction

model B for the factors is the same in each case, the evaluation of the various asset

pricing models does not require the explicit specification of a prediction model for

the factors.

3.3 Optimal model pools

This section reviews the construction of optimal model pools using the frame-

work in Geweke and Amisano (2010). The section begins by introducing the log

scoring rule to evaluate linear combinations of predictive probability distributions

implied by individual asset pricing models. Linear combinations of predictive dis-
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tributions are known as linear prediction pools. An optimal prediction pool is one

where the model weights are chosen to maximize the log predictive score function.

The linear prediction pools used in this paper are linear combinations of the joint

predictive distributions of the asset and factor returns. This section establishes the

rationale for using these joint predictive distributions to construct optimal predic-

tion pools.

As noted above, the log predictive score function can be based on either the

joint predictive distributions of asset and factor returns or the marginal predictive

distribution of asset returns. In this paper the log score is based on the joint

predictive distribution. A key reason for basing the log predictive score function

on the joint distribution of asset and factor returns is that the prediction model for

the factors does not have to be specified. As in Geweke and Amisano (2010), the

primitives are the predictive densities and the realizations of the time series rt and

ft, where the latter are denoted by rot and fot (o for observed) in situations where

the distinction between the random vector and its realization are important. For a

sample consisting of rot , f
o
t , R

o
t−τ,t−1, and Fo

t−τ,t−1, the log predictive score function

of the joint predictive distribution is

LS(rot , f
o
t ,R

o
t−τ,t−1,F

o
t−τ,t−1, A,B) =

T∑
t=τ+1

log
[
p(rot , f

o
t |Ro

t−τ,t−1,F
o
t−τ,t−1, A,B)

]
.

The log predictive score function is intuitively appealing as it gives a high score to the

model that ex ante assigns a high probability to the value of rt that materializes, that

is, rot . As such the log predictive score function reflects the out-of-sample prediction

performance of a given asset pricing model.
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This paper considers n alternative asset pricing models and hence alternative

prediction models A1, . . . , An for rt conditional on ft. The log scoring rule is used

to evaluate linear combinations of the predictive densities of the form

n∑
i=1

wip(r
o
t , f

o
t |Ro

t−τ,t−1,F
o
t−τ,t−1, Ai, B);

n∑
i=1

wi = 1; wi ≥ 0 (i = 1, . . . , n).

This formulation assumes that the prediction model for the factors is the same

for all the asset pricing models, namely model B is the same for all A1, . . . , An.

The restrictions on the weights wi are necessary and sufficient to assure that the

linear combination of density functions is a density function for all values of the

weights and all arguments of any density function. Note that in our context the

predictive density produced by each model as shown in (3.3) is heavy-tailed. The

combination of these densities is also heavy-tailed, a desirable feature when modeling

asset returns.

The assumption that the prediction model for the factors is the same for all

Ai implies that the log predictive score function can be expressed as the sum of

two terms where the first term involves only the prediction model B and the second

term only the prediction models A1, . . . , An. The expression is

fT (w) =
T∑

t=τ+1

log

[
n∑

i=1

wip(r
o
t , f

o
t |Ro

t−τ,t−1,F
o
t−τ,t−1, Ai, B)

]

=
T∑

t=τ+1

log
[
p(fot |Ro

t−τ,t−1,F
o
t−τ,t−1, B)

]
+

T∑
t=τ+1

log

[
n∑

i=1

wip(r
o
t |Ro

t−τ,t−1,F
o
t−τ,t−1, f

o
t , Ai)

]
. (3.4)
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The derivation of this result in the case of a two-model pool is the following:

fT (w) =
T∑

t=τ+1

log[wp(fot |Ro
t−τ,t−1,F

o
t−τ,t−1, B)p(rot |Ro

t−τ,t−1,F
o
t−τ,t−1, f

o
t , A1)+

(1− w)p(fot |Ro
t−τ,t−1,F

o
t−τ,t−1, B)p(rot |Ro

t−τ,t−1,F
o
t−τ,t−1, f

o
t , A2)]

=
T∑

t=τ+1

log{p(fot |Ro
t−τ,t−1,F

o
t−τ,t−1, B)×

[wp(rot |Ro
t−τ,t−1,F

o
t−τ,t−1, f

o
t , A1)+

(1− w)p(rot |Ro
t−τ,t−1,F

o
t−τ,t−1, f

o
t , A2)]}

=
T∑

t=τ+1

log[p(fot |Ro
t−τ,t−1,F

o
t−τ,t−1, B)]+

T∑
t=τ+1

log[wp(rot |Ro
t−τ,t−1,F

o
t−τ,t−1, f

o
t , A1)+

(1− w)p(rot |Ro
t−τ,t−1,F

o
t−τ,t−1, f

o
t , A2)].

Observe that the weights only enter into one term of expression (3.4), namely the

right-hand side term in the last line of (3.4). This term involves the linear combi-

nation of the predictive distributions of rt conditional on ft for asset pricing models

A1, . . . , An. Similarly, in the case of the two-model pool the weights are associ-

ated only with the asset pricing models A1 and A2, not with the factor model B.

The relevance of this result will become apparent once the choice of the weights is

addressed.

Hall and Mitchell (2007) have proposed combining density forecasts using

optimal nonnegative weights. This choice of weights is motivated by the desire

to obtain the most accurate density forecast in a statistical sense. An optimal

prediction pool is one where the weights are chosen to maximize fT (w) subject to
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the restrictions noted above. Accordingly, the optimal prediction pool corresponds

to

w∗
T = arg maxwfT (w).

The motivation in Hall and Mitchell (2007) is asymptotic: as T → ∞, the weights

that maximize the log predictive score function minimize the distance between the

combined forecast density and the true but unknown density as measured by the

Kullback–Leibler information criterion (KLIC). See Geweke and Amisano (2010) for

further discussion.

It is clear from the above discussion that the rationale for basing the log

predictive score function on the joint distribution of asset and factor returns is that

the prediction model for the factors does not have to be specified. This rationale

hinges on the assumption that the prediction model B for the factors is the same

for all Ai. As shown in (3.4), with this assumption, the log predictive score function

fT (w) can be expressed as the sum of two terms where the weights only enter into

one of the terms. The term with weights is the log score function of the linear

combination of the predictive distributions of rt conditional on ft for asset pricing

models A1, . . . , An. This result implies that the objective function for calculating

the weights of the optimal prediction pool reduces to the last term in (3.4). In other

words, the optimal prediction pool corresponds to w∗
T = arg maxwf̃T (w), where

f̃T (w) =
T∑

t=τ+1

log

[
n∑

i=1

wip(r
o
t |Ro

t−τ,t−1,F
o
t−τ,t−1, f

o
t , Ai)

]
. (3.5)

The function expressed in (3.5) is referred to as the reduced objective function in this

paper. The reduced objective function does not involve the prediction model B for
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the factor returns, and hence the optimal prediction pool can be constructed without

specifying model B. This provides the rationale for using the joint one-step-ahead

predictive distribution of rt and ft instead of the marginal distribution of rt derived

from the joint one-step-ahead predictive distribution of rt and ft. By contrast, the

marginal distribution of the asset returns involves model B. The model pool weights

w∗
T , determined from the optimization of the objective function expressed in (3.5),

are based on the entire sample. From the perspective of an investor making decisions

in real-time, the model weights may be determined recursively at each date t using

data available through date t − 1. This latter approach is used in the empirical

implementation in this paper.

The fact that the prediction model for the factor returns does not have to be

specified is important in practical applications. This is because the factor prediction

model is typically unspecified in empirical studies of asset pricing models. In the

empirical sections of this paper the weights corresponding to the optimal prediction

pool are calculated by maximizing f̃T (w), and the value of the objective function

reported for an optimal pool is the maximized value of f̃T (w). What is lost is the

value of the full objective function, fT (w), but that does not matter for the purpose

of comparing the performance of prediction models and model prediction pools.

Geweke and Amisano (2010) point out that the features of optimal prediction

pools tend to be strikingly different from those constructed by means of Bayesian

model averaging as well as those that result from conventional frequentist testing.

Given a data generating process D that produces ergodic rt, a limiting optimal

prediction pool exists, and unless one of the models Ai coincides with D, several of
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the weights in an n-model pool typically are positive. In the case of a two-model

pool, if w∗ ∈ (0, 1), then for a sufficiently large sample size the optimal pool will

have a log predictive score superior to that of either A1 or A2 alone, and as the

sample size increases, w∗
T

a.s.→ w∗. In contrast, both conventional Bayesain model

comparisons and frequentist tests tend to exclude one model or the other as the

sample size increases. For the Bayesian approach, the contrast is due to the fact

that the conventional setup conditions on one of either D = A1 or D = A2 being

true. However, an incomplete model space implies D ̸= A1 and D ̸= A2. Models

that are inferior, as measured by Bayes factors, can substantially improve predictions

from the superior model as measured by a log scoring rule. For non-Bayesian testing

the explanation is similar. A frequentist test that rejects one model and accepts the

other must also condition on one of either D = A1 or D = A2 being true.

This paper uses the past performance of the pool to select the weights of the

optimal prediction pool; the past constitutes the training sample for the present.

Following a long standing tradition in finance starting with Fama and MacBeth

(1973), the predictive densities for the asset pricing models use a five-year rolling

window of monthly time-series data, that is, τ = 60 to calculate β̂ and S. Accord-

ingly, the first density is calculated for date t = 61, which is the month of January of

the sixth year of the time series. As noted previously, for a pool of models, the opti-

mal weights are calculated from the predictive densities based on the maximization

of the reduced objective function (3.5).

The model weights are obtained for three different designs: the full sample,

expanding windows and rolling five-year windows. In the case of the full sample
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design, the log score function value is calculated for date T using monthly predictive

densities from date t = 61 to date t = T where T is the last December of the

time series. In the case of expanding windows, the first log score function value

is calculated using predictive densities from date t = 61 to date t = 120, which is

the period from January of the sixth year of the time series to December of the

tenth year; the subsequent log score values are calculated using densities up to and

including the subsequent Decembers. In other words, the first log score value is

computed using an initial five-year window and the subsequent values are updated

annually based on expanding windows. Finally, for the five-year rolling window

design, the first log score function value is calculated using predictive densities

from date t = 61 to date t = 120; the subsequent log score values are calculated

for subsequent Decembers using only the previous five years of monthly predictive

densities up to and including each December. Note that the notation for equation

(3.5) corresponds to the full sample design case. Modifications to accommodate the

expanding and rolling windows are straightforward. In each case the model weights

are determined at date t using only data available through date t− 1.

For the purpose of comparison, in some parts of this study the model weights

are also calculated under a Bayesian model averaging (BMA) approach. Under

BMA the individual model weights are the Bayesian posterior probabilities that the

given model is the true model, conditional on the data (see, e.g., Hoeting, Madigan,

Raftery, and Volinsky (1998) for a review). Given diffuse priors and equal prior

probabilities for the n models under consideration, the BMA weight for model Ai
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based on a sample of size T is approximately

wi =
exp

(
−1

2
BICi

)∑n
j=1 exp

(
−1

2
BICi

) ,
where BICi = 2Li+ki log(T ) is the Bayesian information criterion for model Ai, Li

is the negative log likelihood, and ki is the number of parameters in model Ai.

3.4 Examples of two-model pools

This section illustrates the main features of two-model pools with asset pric-

ing models. The individual models considered are three well-known asset pricing

models: the CAPM, the Fama–French three-factor model, and the Carhart four-

factor model. The illustration uses monthly data for the period January 1927 to

December 2008. The factor returns for the CAPM, the Fama–French three-factor

model, and the Carhart four-factor model and the test asset returns are taken from

Kenneth French’s (2009) website. The primary set of test assets considered in this

paper is a collection of 50 stock portfolios consisting of 30 value-weighted indus-

try portfolios, 10 value-weighted portfolios formed on market capitalization, and 10

value-weighted portfolios formed on book-to-market equity. This choice of test as-

sets follows the suggestion in Lewellen, Nagel, and Shanken (2010) to augment the

standard size and book-to-market portfolios with industry-sorted portfolios when

evaluating asset pricing models. In a few cases, we also present results for a subset

of portfolios based solely on size, book-to-market, or industry. All raw portfolio

returns are converted to excess returns by subtracting the one-month U.S. T-bill

return.

First consider the log predictive score as a function of the weight w in a
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two-model pool using 30 industry portfolios together with 10 size portfolios and 10

book-to-market portfolios for the entire sample period, January 1932 to December

2008. Figure 3.1 shows for each of the two-model pools that f̃T (w) is a concave

function and that w is between 0 and 1. In other words, the optimal two-model pool

in each case involves a positive weight on both models in the pool. For example, as

seen in the upper left panel of Figure 3.1, the optimal two-model pool consisting of

the CAPM and the Fama–French model assigns a weight of w = 0.48 to the CAPM

with the balance to the Fama–French model. A similar pattern emerges in the other

two panels of Figure 3.1.

Table 3.1 reports the log predictive scores for each of the individual models

as well as for the optimal model combinations using the full sample. Also shown

are the corresponding model weights for the optimal combinations. Panel A of the

table presents results for the case with 30 industry portfolios used together with 10

size portfolios and 10 book-to-market portfolios as test assets. First consider the

performance of each of the three models individually. Over the entire sample period,

the CAPM performed the best as evidenced by the model’s log score function value

of -126,699, which is the highest (least negative) of the three models. By contrast,

the Carhart model was the worst performer during this period with the lowest log

score function value.

Next, consider the two-model pools in Panel A. Several facts are noteworthy

here. One, the log score function value for each of the optimal two-model pools is

higher than the corresponding values for either of the individual constituent mod-

els. For example, the log score value for the two-model pool containing the CAPM
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and the Fama–French model is -125,530, which is higher than the log score val-

ues of -126,699 and -128,766 for the CAPM and Fama–French model, respectively.

Two, the best performing two-model pool includes the CAPM and the Fama–French

model. Moreover, even though the CAPM outperforms the Fama–French model on

a stand-alone basis based on log score, the Fama–French model is assigned a higher

weight (0.52) in the optimal pool. Finally, note that not all the two-model pools

dominate the CAPM, in particular, the model pool that includes the Fama–French

and Carhart models.

For comparison, Panel B of Table 3.1 reports results using only 30 industry

portfolios as test assets. With this reduced set of test portfolios, the Fama–French

model exhibits the best out-of-sample predictive ability as measured by the model’s

log score function value of -74,867. Similar to Panel A, the CAPM and the Fama–

French model are featured in the best performing two-model pool. Interestingly,

even though the CAPM is the worst performing individual model, it is in fact

included in the best performing two-model pool. This last observation is important

as it highlights a key feature of model pooling, namely, that models that appear to

be inferior on a stand-alone basis may in fact be assigned a positive and significant

weight when optimally pooled with other models.

Finally, Panels C and D of Table 3.1 present results based on 10 size-sorted

portfolios and 10 book-to-market portfolios, respectively. In these cases we would

expect the Fama–French and Carhart models to outperform the CAPM given that

both of these models include factors designed to ‘explain’ returns on the cross section

of portfolios sorted by size and book-to-market equity. In each panel, we see the
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Fama–French model has the highest log predictive score, while the CAPM performs

the worst. In Panels C and D, the two-model pools typically assign only a small

weight to the CAPM. These results also highlight an important feature of optimal

pooling. Specifically, the log predictive score criterion does not mechanically allocate

a substantial weight to all models in a given pool. Models that fail to improve out-

of-sample prediction are largely excluded from the optimal pool.

The model weights reported in Table 3.1 are all based on the full sample pe-

riod. An alternative design is to iteratively update the weights each year using only

available data. Figure 3.2 shows the evolution of model weights with an expanding

window design for the two-model pools using 30 industry portfolios together with

10 size portfolios and 10 book-to-market portfolios over the period 1936–2008. With

the expanding window design, the first weight for a two-model pool is calculated at

the end of December 1936 using predictive densities for January 1932 to December

1936. The subsequent weights are calculated at the end of December of each of the

following years using an expanding window of data beginning in January 1932. As

seen in the figure, the individual model weights vary moderately over time suggest-

ing instability in the relative model performance. Further note that in every model

pool, each of the constituent models has a significant weight over the entire period.

In this context it is instructive to compare the optimal model pool weights in

Figure 3.2 to the model weights obtained under BMA when considering two-model

pairs. Figure 3.3 depicts the evolution of model weights under the latter approach

using an expanding window design. As seen from Figure 3.3, BMA effectively results

in model selection. For example, when the two models under consideration are the
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CAPM and the Fama–French model, the CAPM is assigned a zero weight almost

throughout the sample period. A similar result obtains for the case when the two

models under consideration are the CAPM and the Carhart model. Once again the

CAPM is assigned a zero weight.

An investor relying on BMA to address model uncertainty would have effec-

tively discarded the CAPM and relied on a single competing model. However, as is

clear from the earlier discussion, this strategy would have been sub-optimal in terms

of out-of-sample forecasting since an optimal model combination that includes the

CAPM in fact outperforms the best performing single model.

For the purpose of comparison, Figure 3.4 shows the evolution of the model

weights for the optimal two-model pools under a five-year rolling window design.

As expected, with the rolling window design, the individual model weights tend

to be considerably more volatile compared to the corresponding weights under the

expanding window design shown in Figure 3.2. In other words, the variation over

time in the composition of the optimal two-model pools is more pronounced under

the rolling window design. Nevertheless, in nearly every case, each model in the

pool is consistently assigned a substantial and positive weight.

3.5 Multiple-model pools

In this section the characteristics of multiple-model pools are examined. Ini-

tially the three-model pool consisting of the CAPM, the Fama–French model and

the Carhart model is considered. Then two recent factor models are introduced:

the Pástor and Stambaugh (2003) and the Chen and Zhang (2009) models. The
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Pástor and Stambaugh model includes the market factor, SMB, HML, and a liq-

uidity factor designed to capture the systematic effect of cross-sectional differences

in liquidity. The Chen and Zhang model includes the market factor, and two new

factors based on firm-level profitability and investment. The Pástor and Stambaugh

traded liquidity factor is taken from the Wharton Research Data Services (WRDS),

and the factors for the Chen and Zhang three-factor model are taken from Long

Chen’s (2009) website.

Turning again to Table 3.1 we see the optimal model weights and the cor-

responding log predictive score values for the three-model pools. These results are

also based on the full sample period, January 1932 to December 2008. When the

optimal model pool is based on the 30 industry portfolios, 10 size portfolios, and

10 book-to-market portfolios (last row of Panel A), the CAPM and Fama–French

model dominate with weights of 0.47 and 0.44, respectively. The residual weight of

0.09 is assigned to the Carhart model. Panel B shows that with 30 industry portfo-

lios as test assets, the weights are roughly comparable across the three models. Not

surprisingly, the three-model pools in Panels C and D allocate very little weight to

the CAPM. Furthermore, as expected, the log predictive score values reported in

Table 3.1 confirm that the optimal three-model pool for each set of assets outper-

forms the corresponding best performing two-model pool and the best individual

model.

Comparing the results for the three-model pool with those for a two-model

pool that omits a particular model provides an indication of the omitted model’s

contribution to the performance of the complete pool. For example, in the three-
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model pool with industry portfolios (Table 3.1, Panel B) note that the CAPM is

assigned the smallest weight. However, this does not reflect the contribution of

the CAPM to the performance of the pool. We can see that the two-model pool

which omits the CAPM has the lowest log predictive score. In contrast, the cost

of excluding either the Fama–French or the Carhart model is noticeably less. This

result highlights the notion that a large model weight is not necessarily a reflection

of the model’s overall value to the pool.

The optimal weights and the corresponding log predictive score values for

three-, four-, and five-model pools are reported in Table 3.2 using a sample re-

stricted to the period January 1977 to December 2008, where the restriction is due

to the data availability for the Chen and Zhang model. The test assets for Table 3.2

are restricted to the base case of 30 industry portfolios used together with 10 size

portfolios and 10 book-to-market portfolios. On a stand-alone basis, the CAPM out-

performs the other four models. By contrast, the Chen and Zhang model performs

the worst. Turning to the three-model pools, the best performing pool includes the

CAPM, the Fama–French model, and the Chen and Zhang model. Note that the

best three-model pool is only slightly better than the pool that includes only the

benchmark models, namely the CAPM, Fama–French model, and Carhart model.

As expected, the best four-model pool and the five-model pool have higher log score

function values than the corresponding best three-model pool. Note, however, that

not every four-model pool outperforms the best three-model pool.

The contribution of each individual model to the performance of the complete

pool may be inferred by contrasting the results for the four- and five-model pools.
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For example, note that the assigned weight on the Fama–French model slightly

exceeds the CAPM’s weight in the five-model pool. Interestingly, however, the

omission of the CAPM from the complete pool reduces the log predictive score

value by 405 points. In contrast, the cost of excluding the Fama–French model is

only 96 points. Similarly, the weight on the Carhart model exceeds that on the Chen

and Zhang model in the five-model pool, but omitting the Chen and Zhang model

from the complete pool is more detrimental to the resulting log score. Thus, we

see that a model’s relative weight is not necessarily synonymous with the model’s

overall value to the pool.

To summarize, the results in this section confirm the advantage of a model

pooling approach over model selection as the optimal multi-model pool is shown to

outperform the best performing individual model. In this sense the performance of

the optimal model pools shown in Tables 3.1 and 3.2 is impressive. Of course, the

composition of the optimal model pool is not known to a decision maker ex ante.

Similarly, the identity of the single best performing model over the entire sample

period is also not known ex ante. A question of interest is whether model pooling is

an attractive strategy for a decision maker in real time. This question is examined

in the following section.

3.6 An economic interpretation

As a way of motivating an economic interpretation of the previous results,

this section compares the performance of two researchers interested in modeling

the cross section of stock returns. One researcher uses model pooling to address
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model uncertainty and the other uses model selection. Following Fama and French

(1996) the measure of performance is based on model pricing errors. The examples

in this section illustrate that the researcher using model pooling outperforms the

researcher using model selection when performance is judged by model pricing errors.

Of course, the model pricing errors are subject to sampling variations. In the spirit of

Cochrane (2006), our objective is to provide the reader with a sense of the economic

value of model pooling versus model selection.

The researcher using model pooling employs the log predictive score function

to determine model pooling weights. At the start of each year, the researcher chooses

the model pooling weights by optimizing the log score function using predictive

densities from the past sixty months. These weights are used by the researcher

to model returns for the next twelve months. Under model pooling the predicted

returns are the weighted average of predicted returns of each model using the optimal

weights, where the predicted return based on a model for period t is β̂ft. As noted

previously, the one-step-ahead predictions are conditional on the one-step-ahead

realizations of the factor returns.

By contrast the researcher using model selection chooses one model from the

model space at the start of each year using one of four well-known model selection

criteria applied to the data from the past sixty months. The criteria are the aver-

age absolute time-series regression alpha, the adjusted R2, the Akaike Information

Criterion (AIC), and the Bayesian Information Criterion (BIC). The single model

selected is the basis for modeling returns over the next twelve months.

The prediction or model pricing errors for month t are the difference between
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the realized and predicted returns on each portfolio. The average model pricing error

for each portfolio is defined as the time-series average of these monthly out-of-sample

errors from 1982 to 2008. The model pricing errors are calculated for 50 portfolios.

The measure of economic performance for the researcher is the average pricing error

criterion, namely, the across-portfolio average of the absolute value of the average

pricing error. For completeness, the performance of a researcher who relies on BMA

is also examined. Note that BMA is not equivalent to model selection when only

five years of data are used for model evaluation.

Figure 3.5 shows the evolution of the model weights over the period December

1981 to December 2008 for the three-model pool that includes the CAPM, the

Fama–French model, and the Carhart model based on 30 industry portfolios used

together with 10 size portfolios and 10 book-to-market portfolios and a rolling five-

year window design. The first set of model weights are calculated at the end of

December 1981 and the weights are subsequently updated on an annual basis. As

noted above, the researcher who relies on a model pooling strategy based on the log

predictive score criterion uses these weights to make predictions for the next twelve

months. As can be seen, while the model weights vary through time, each model

typically receives a positive weight in the pool.

Table 3.3 presents the value of the average pricing error criterion under the

model pooling strategy and the corresponding errors under the alternative model

selection strategies or under BMA. As a starting point, first consider the case in

which the researcher relies on a single pre-determined model to form expectations

for the portfolio returns. The Carhart model is then seen to be the best performing
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model over 1982–2008 on a stand-alone basis as evidenced by the lowest average

pricing error of 14.5 basis points per month.

Next consider the performance of the researcher that relies on the three-

model pool based on the log predictive score criterion. The three models in the

pool are the CAPM, the Fama–French model and the Carhart model. For this

investor, the average pricing error criterion value is 13.0 basis points per month.

This model pooling strategy improves upon the performance of the Carhart model-

based strategy. This result highlights that even if a researcher, at the start of

the sample period, had perfect foresight about the identity of the best individual

model, she would still do better by adopting a model pooling approach. Moreover,

the reported pricing error for a researcher relying on the log score criterion is lower

than the corresponding measure for a BMA strategy (15.3 basis points per month)

that relies on the same three models. The average pricing error criterion value for

the model pooling approach (based on the log predictive score criterion) is also lower

than for each of the four model selection strategies.

Turning next to the five-model pools, the model pooling strategy based on the

log predictive score criterion again outperforms the BMA strategy with an average

pricing error criterion value of 13.1 basis points per month compared to an average

pricing error criterion value of 15.9 basis points per month for the BMA strategy.

The model pooling strategy also outperforms all of the model selection strategies.

The evolution of the model weights used by the five-model pooling strategy is shown

in Figure 3.6. With a few exceptions, each of the five models has a consistently

positive weight in the optimal pool.
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In summary, the results in this section confirm that the model pooling ap-

proach offers advantages over model selection to a researcher making decisions in

real time. Both the three- and the five-model pools based on the log predictive score

criterion outperform the best individual model which, of course, is not known ex

ante. In contrast, both the BMA strategy and the model selection strategies lead

to higher realized pricing errors compared to the best individual model.

3.7 Conclusion

The choice of an appropriate asset pricing model is a key problem faced by

researchers and investors alike in applications such as performance evaluation or cost

of capital estimation. The conventional approach is to implement a model selection

procedure to choose one model from among a set of competing models. Such an

approach is justified when the space of models being considered is complete in the

sense that the true model is included in the set of models being evaluated. However,

this approach is inherently misguided in the much more likely scenario when the

true model is not available to the researcher.

This paper considers optimal linear pools of some well-known asset pricing

models for the purpose of forming expectations (i.e., predictions) of the one-step-

ahead cross section of stock portfolio returns. The optimal model pool weights are

based on the optimization of the log predictive score criterion, a measure of the

out-of-sample predictive ability of a model. The properties of the resulting optimal

model pools are illustrated in the context of stock portfolios formed on industry, size,

and book-to-market equity. The study first examines the performance of two-model
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pools based on three asset pricing models, namely, the CAPM, the Fama–French

three-factor model, and the Carhart four-factor model. The optimal pool of two

models is shown to perform better than any of the individual models in a two-

model pool when judged by the log predictive score criterion. A similar finding

holds for the optimal three-model pool that includes all of the models. A key aspect

of the model pooling approach in the present context is that all the models under

consideration, including the CAPM, are assigned positive weights in the optimal

pool. A model that may appear to be inferior to other models on a stand-alone

basis can in fact help prediction by being included in the pool rather than by being

discarded. This application illustrates that treating the model space as incomplete

can lead to improved predictions compared to an approach that discards a model

like the CAPM on model selection grounds.

Next the study compares the performance of the recently proposed alterna-

tive models of Pástor and Stambaugh (2003) and Chen and Zhang (2009) to the

original three-model pool. It turns out that these models are unable to beat the

predictive performance of the optimal original three-model pool. This suggests that

the three-model pool is a more appropriate benchmark against which to compare

new candidate models rather than using the pre-existing individual models as bench-

marks as is typically done in the literature. The advantage of the model pooling

approach is further confirmed when evaluating model performance using an economic

metric, namely the average out-of-sample model pricing error criterion. Again, the

optimal model pools consistently outperform the best individual model(s).

The central message of this paper is that researchers would be well served to
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explicitly recognize in their research design what they implicitly understand, namely,

that all models involve approximations to reality. In other words, the model space

is incomplete. An explicit acknowledgement of this fact dictates the use of a model

pooling approach, as opposed to model selection, when dealing with the problem of

forming expectations of stock returns. This paper illustrates the advantages of the

former approach in the context of various stock portfolios. Future extensions of this

work include implementing the model pooling framework in applications involving

performance evaluation, e.g., in the context of assessment of portfolio management

skill or the calculation of ‘abnormal performance’ in corporate event studies.
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Table 3.2: Log predictive scores and optimal N -model pools, 1977–2008

Model weights

Pool size CAPM FF Carhart CZ PS Log predictive score

1 1.000 – – – – -53,156
– 1.000 – – – -53,776
– – 1.000 – – -55,030
– – – 1.000 – -55,319
– – – – 1.000 -55,306

3 0.440 0.432 0.128 – – -52,588
0.373 0.550 – 0.077 – -52,584
0.443 0.487 – – 0.070 -52,596
0.521 – 0.369 0.109 – -52,774
0.512 – 0.272 – 0.216 -52,687
0.530 – – 0.126 0.344 -52,819
– 0.543 0.168 0.288 – -52,978
– 0.648 0.222 – 0.129 -53,742
– 0.612 – 0.288 0.099 -52,991
– – 0.356 0.340 0.304 -53,155

4 0.368 0.426 0.128 0.077 – -52,572
0.439 0.375 0.125 – 0.062 -52,585
0.371 0.482 – 0.077 0.069 -52,580
0.422 – 0.268 0.098 0.213 -52,665
– 0.471 0.161 0.288 0.081 -52,974

5 0.367 0.370 0.125 0.077 0.060 -52,569

Note: The table reports optimal weights and log predictive scores for various N -model
pools. The asset pricing models considered are the CAPM, Fama–French (1993) three-
factor model (FF), Carhart (1997) four-factor model (Carhart), Chen and Zhang (2009)
three-factor model (CZ), and Pástor and Stambaugh (2003) four-factor model (PS). For a
given pool, the log score and optimal weights are computed from predictive densities based
on the maximization of the reduced objective function in equation (5) using the entire
sample. The test assets are 30 industry portfolios used together with 10 size portfolios
and 10 book-to-market portfolios.
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Table 3.3: Average absolute pricing errors, 1982–2008

Model Combination Model Selection

Pool size Models Log score BMA |α| R2 AIC BIC

1 CAPM 16.0
FF 17.1
Car 14.5
CZ 23.3
PS 18.3

3 CAPM, FF, Car 13.0 15.3 15.1 14.5 14.6 14.6

5 CAPM, FF, Car, CZ, PS 13.1 15.9 14.7 14.9 15.0 15.0

Note: The table reports out-of-sample average cross-sectional absolute pricing errors in
basis points per month realized by decision makers relying on individual asset pricing
models, model combination, or model selection to form one-step-ahead expectations of
excess returns. The weights for the model combination and model selection approaches
are updated once a year at the end of December using a rolling five-year window of data,
as described in the text. The log-score methodology, Bayesian model averaging, and the
model selection criteria are outlined in detail in the text. The pricing errors are computed
as the difference between realized returns and the one-step-ahead expected returns. The
test assets are 30 industry portfolios used together with 10 size portfolios and 10 book-
to-market portfolios. The asset pricing models considered are the CAPM, Fama–French
(1993) three-factor model (FF), Carhart (1997) four-factor model (Car), Chen and Zhang
(2009) three-factor model (CZ), and Pástor and Stambaugh (2003) four-factor model (PS).
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Figure 3.1: Log predictive scores as a function of model weight in two-model pools,
1932–2008
The figure shows log predictive scores for various two-model pools as a function of model
weight. The asset pricing models considered are the CAPM, Fama–French (1993) three-
factor model, and Carhart (1997) four-factor model. For a given pool, the log score is
computed from predictive densities based on the reduced objective function in equation
(5) using the entire sample. The test assets are 30 industry portfolios used together with
10 size portfolios and 10 book-to-market portfolios.
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Figure 3.2: Evolution of model weights with expanding windows in two-model pools,
1936–2008
The figure shows the evolution of model weights for various two-model pools of predictive
densities. The test assets are 30 industry portfolios used together with 10 size portfolios
and 10 book-to-market portfolios. The asset pricing models considered are the CAPM,
Fama–French (1993) three-factor model, and Carhart (1997) four-factor model.



119

1930 1940 1950 1960 1970 1980 1990 2000 2010
0

0.2

0.4

0.6

0.8

1

Year

M
od

el
 w

ei
gh

t

CAPM, Fama−French

 

 

CAPM
FF

1930 1940 1950 1960 1970 1980 1990 2000 2010
0

0.2

0.4

0.6

0.8

1

Year

M
od

el
 w

ei
gh

t

Fama−French, Carhart

 

 

FF
Carhart

1930 1940 1950 1960 1970 1980 1990 2000 2010
0

0.2

0.4

0.6

0.8

1

Year

M
od

el
 w

ei
gh

t

CAPM, Carhart

 

 

CAPM
Carhart

Figure 3.3: Evolution of model weights with expanding windows in two-model pools
under Bayesian model averaging, 1936–2008
The figure shows the evolution of model weights for various two-model pools. The optimal
weights are based on Bayesian model averaging, as described in the text. The asset pricing
models considered are the CAPM, Fama–French (1993) three-factor model, and Carhart
(1997) four-factor model.
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Figure 3.4: Evolution of model weights with five-year rolling windows in two-model
pools, 1936–2008
The figure shows the evolution of model weights for various two-model pools of predictive
densities. The test assets are 30 industry portfolios used together with 10 size portfolios
and 10 book-to-market portfolios. The asset pricing models considered are the CAPM,
Fama–French (1993) three-factor model, and Carhart (1997) four-factor model. Optimal
weights are based on the maximization of the reduced objective function in equation (5)
using a five-year rolling window.
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Figure 3.5: Evolution of model weights with five-year rolling windows in three-model
pool, 1981–2008
The figure shows the evolution of model weights for a three-model pool of predictive
densities. The test assets are 30 industry portfolios used together with 10 size portfolios
and 10 book-to-market portfolios. The asset pricing models considered are the CAPM,
Fama–French (1993) three-factor model, and Carhart (1997) four-factor model. Optimal
weights are based on the maximization of the reduced objective function in equation (5)
using a five-year rolling window.
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Figure 3.6: Evolution of model weights with five-year rolling windows in five-model
pool, 1981–2008
The figure shows the evolution of model weights for a five-model pool of predictive densi-
ties. The test assets are 30 industry portfolios used together with 10 size portfolios and
10 book-to-market portfolios. The asset pricing models considered are the CAPM, Fama–
French (1993) three-factor model, Carhart (1997) four-factor model, Chen–Zhang (2009)
three-factor model, and Pástor–Stambaugh (2003) four-factor model. Optimal weights
are based on the maximization of the reduced objective function in equation (5) using a
five-year rolling window.
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APPENDIX A
DATA AND MODEL APPENDIX FOR CHAPTER 1

This appendix provides details on Campbell, Hilscher, and Szilagyi’s (2008)

failure probability, Ohlson’s (1980)O-score, analysts’ forecast dispersion, the macroe-

conomic state variables used in the empirical analysis, and the stochastic discount

factor process specified in equation (1.17). In constructing the proxies for financial

distress, I merge the CRSP daily file, CRSP monthly file, and Compustat quarterly

file. I lag all accounting data by four months to ensure it is available to investors

at the time of portfolio formation. If an accounting variable for a given firm is

missing in the Compustat file, I replace the missing variable with the most recent

observation for that firm. To alleviate the influence of extreme outliers, I winsorize

each of the explanatory variables in the CHS and O-score models at the 1st and

99th percentiles of their monthly cross-sectional distributions.

A.1 Campbell et al. (2008) failure probability

Campbell, Hilscher, and Szilagyi (2008) model the probability a firm files for

bankruptcy, is delisted from an exchange for financial reasons, or receives a D rating

from a leading credit rating agency over the next twelve months as a function of

accounting and market variables. This proxy for financial distress is given by

CHS =− 9.164− 20.264 (NIMTAAV G) + 1.416 (TLMTA) (A.1)

− 7.129 (EXRETAV G) + 1.411 (SIGMA)− 0.045 (RSIZE)

− 2.132 (CASHMTA) + 0.075 (MB)− 0.058 (PRICE) .
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The variable NIMTAAV G is a geometrically declining average of past measures of

firm-level profitability:

NIMTAAV Gt−1,t−12 =
1− ϕ3

1− ϕ12
(NIMTAt−1,t−3 + · · ·+ ϕ9NIMTAt−10,t−12),

where NIMTAt−1,t−3 is the ratio of net income to the market value of total assets

for the most recent quarter and ϕ = 2
1
3 . Similarly,

EXRETAV Gt−1,t−12 =
1− ϕ

1− ϕ12
(EXRETt−1 + · · ·+ ϕ11EXRETt−12),

where EXRETt−1 is the log excess return in the previous month relative to the S&P

500 index. Other model variables are defined as follows: TLMTA is the ratio of

total liabilities to the market value of total assets, SIGMA is the standard deviation

of daily stock returns over the previous three months, RSIZE is the log ratio of

market capitalization to the market value of the S&P 500 index, CASHMTA is the

ratio of cash to the market value of total assets, MB is the market-to-book ratio,

and PRICE is the log price per share truncated from above at $15. In constructing

the market-to-book ratio, MB, I define the book value of equity as shareholders’

equity if it is available, and as the difference between total assets and total liabilities,

otherwise.1

1See Campbell, Hilscher, and Szilagyi (2008) for additional details on variable defini-
tions. CHS is the third model from Table IV in their paper.
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A.2 Ohlson’s (1980) bankruptcy probability

Ohlson’s (1980) bankruptcy measure is given below

O-score =− 1.32− 0.407 (SIZE) + 6.03 (TLTA)− 1.43 (WCTA) (A.2)

+ 0.076 (CLCA)− 1.72 (OENEG)− 2.37 (NITA)

− 1.83 (FUTL) + 0.285 (INTWO)− 0.521 (CHIN) ,

where SIZE is the log of the ratio of total assets to the GNP price-level index,

TLTA is the ratio of total liabilities to total assets, WCTA is the ratio of working

capital to total assets, CLCA is the ratio of current liabilities to current assets,

OENEG is a dummy variable equal to one if total liabilities exceeds total assets

and zero otherwise, NITA is the ratio of net income to total assets, FUTL is the

ratio of funds from operations to total liabilities, INTWO is a dummy variable

equal to one if net income was negative for the past two years and zero otherwise,

and CHIN is the following measure of the change in net income:

CHIN =

(
NI t −NI t−1

|NI t|+ |NI t−1|

)
,

where NI t is net income for the most recent year.2

A.3 Analysts’ forecast dispersion

I compute analysts’ forecast dispersion from the IBES database as the month-

end standard deviation of current-fiscal-year earnings estimates across analysts tracked

by IBES. I compute forecast dispersion from the unadjusted detailed history file us-

ing only the most recent forecast made by a particular analyst. I eliminate forecasts

2See Ohlson (1980) for exact variable definitions. O-score is the first model from Table
IV in his paper.
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that are over six months old or are related to fiscal periods that have already ended.

I construct two proxies for dispersion of beliefs. The measureDISP1 is the standard

deviation of current-fiscal-year earnings forecasts divided by the absolute value of the

mean forecast, and DISP2 is the standard deviation of current-fiscal-year earnings

forecasts divided by the market value of assets, where the market value of assets is

the book value of debt plus the market value of equity. These firm-level measures of

information risk are available at a monthly frequency from January 1983 to Decem-

ber 2009. I also winsorize both DISP1 and DISP2 at the 1st and 99th percentiles

of their monthly cross-sectional distributions.

A.4 State variables

The state variables described below are used in various parts of the empirical

analysis. Each of the variables is available at a monthly frequency from January

1927 to December 2009. The data construction largely follows Welch and Goyal

(2008).

1. Default premium (DEF ): the yield spread between Moody’s Baa and Aaa

corporate bonds. The bond yields are from the Federal Reserve Bank of St.

Louis website.3

2. Dividend-to-price ratio (DP ): the difference between the log of the sum of

dividends accruing to the CRSP value-weighted market portfolio over the pre-

vious 12 months and the log of the current index level.

3http://research.stlouisfed.org/fred2/
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3. Dividend yield (DY ): the difference between the log of the sum of dividends

accruing to the CRSP value-weighted market portfolio over the previous 12

months and the log of the lagged index level from 12 months prior.

4. Net equity expansion (NTIS): the sum of net issues by NYSE listed stocks

over the previous 12 months divided by the current market capitalization of

NYSE stocks. The net issuing activity for month t is computed as

Net Issuet = MCAPt −MCAPt−1 × (1 + VWRETXt),

where MCAPt is the total market capitalization at the end of month t, and

VWRETXt is the value-weighted return (excluding dividends) on the NYSE

index. The data are from CRSP.

5. Short-term interest rate (TB): The short-term interest rate from 1927 to

1933 is the U.S. yield on short-term United States securities, three-six month

Treasury notes and certificates, three month Treasury series in the NBER

Macrohistory database.4 The short-term interest rate from 1934 to 2009 is

the yield on the three-month Treasury bill from the Federal Reserve Bank of

St. Louis website.

6. Term premium (TERM): the yield spread between long-term government

bonds and Treasury bills (TB). The long-term government bond yield from

January 1927 to March 1953 is the U.S. yield on long-term United States Bonds

from the NBERMacrohistory database. The long-term government bond yield

4http://www.nber.org/macrohistory/
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from April 1953 to December 2009 is the 10-year Treasury constant maturity

rate from the Federal Reserve Bank of St. Louis website.

A.5 Stochastic discount factor process

This section shows that the stochastic discount factor process in equation

(1.17) is consistent with the CAPM. Following Chapter 9 in Cochrane (2001), assume

investors have log utility over consumption, u(ct) = log(ct), and define the discount

factor in continuous time as

Λt ≡ e−δtu′(ct).

Assume the price, pWt , of the aggregate wealth portfolio follows a diffusion as spec-

ified below

dpWt
pWt

= µdt+ σMdWM
t .

The first-order condition for a security with price pWt that pays a dividend stream

equal to aggregate consumption is given by

u′(ct)p
W
t = Et

[∫ ∞

0

e−δsu′(ct+s)ct+sds

]
.

With u′(ct) = 1/ct we have

pWt
ct

=

∫ ∞

0

e−δsds =
1

δ
.

The equation above reflects the well-known result that log utility leads to a constant

consumption-to-wealth ratio. Log utility also implies

Λt =
e−δt

ct
=

e−δt

δpWt
.
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Applying Itô’s lemma and substituting for the aggregate wealth process, the stochas-

tic discount factor process is

dΛt

Λt

= −δdt− dpWt
pWt

+
1

2

dpW 2
t

pW 2
t

=

(
−δ − µ+

1

2
σ2
M

)
dt− σMdWM

t

= −rdt− σMdWM
t .
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APPENDIX B
ROBUSTNESS TESTS FOR CHAPTER 1

In this appendix, I return to the results in Table 1.1 on the performance of

distress-sorted portfolios relative to the conditional CAPM. The primary advantage

of the Lewellen and Nagel (2006) methodology is that the econometrician is not

forced to model conditional betas and/or expected market returns as a function

of observable state variables. Recent studies such as Li and Yang (2008), Boguth,

Carlson, Fisher, and Simutin (2009), and Ang and Kristensen (2010), however, have

raised concerns with this empirical approach and present alternative procedures for

estimating the conditional CAPM with high frequency data. Below I show the main

results in Table 1.1 are robust to these methodologies as well as more traditional

approaches to estimating the conditional CAPM.

B.1 The lagged portfolio approach

Boguth, Carlson, Fisher, and Simutin (2009) argue the Lewellen and Nagel

(2006) methodology, which relies on contemporaneous estimates of portfolio betas

when estimating conditional alphas, can be problematic. Given that these betas

are not in the investor information set, the econometrician is essentially ‘overcondi-

tioning.’ Boguth, Carlson, Fisher, and Simutin (2009) show this approach can lead

to large biases in reported alphas when an asset’s payoffs are nonlinear in market

returns. This overconditioning problem is also most relevant when the rolling re-

gression windows are divided too finely. One method proposed by Boguth, Carlson,

Fisher, and Simutin (2009) to address overconditioning is the lagged portfolio risk
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adjustment approach.

Let j = 1, . . . , J index the short-window regression intervals in the Lewellen

and Nagel (2006) approach (e.g., months, quarters, or half years), where J is the

total number of intervals. The vector of Lewellen and Nagel (2006) factor loadings

for portfolio i in interval j is

B̂i,j =

[
β̂i,0,j β̂i,1,j β̂i,2,j

]′
The lagged portfolio estimate of alpha is given by

α̂BCFS
i =

1

T

J∑
j=1

∑
t∈j

ri,t − B̂′
i,j−1Rm,t, (B.1)

where

Rm,t =

[
rm,t rm,t−1 (rm,t−2 + rm,t−3 + rm,t−4)/3

]′
,

and T is the total number of days in the estimation sample. In short, the lagged

portfolio approach simply estimates conditional portfolio alphas in interval j using

estimates of beta from interval j−1. These factor loadings are available to investors

at the start of interval j and, as such, this approach alleviates any potential bias in

estimated alphas.

Table B.1 (Method 2) reports estimates of average long-short conditional

alphas for the CHS and O-score portfolios using the lagged portfolio methodol-

ogy of Boguth, Carlson, Fisher, and Simutin (2009). The results are provided for

monthly, quarterly, and semiannual periods. For comparision, I also reproduce the

corresponding conditional CAPM results from Table 1.1 for the Lewellen and Nagel

(2006) approach (Method 1). The average BCFS alpha for the long-short CHS



132

portfolio ranges from -0.48% to 0.03% per month depending on the rolling estima-

tion window length. None of these estimates is statistically significant at the 5%

level. Moreover, the BCFS alphas are similar in magnitude to the Lewellen and

Nagel (2006) alphas, suggesting that any overconditioning bias is likely small. Sim-

ilarly, none of the BCFS alpha estimates for the O-score portfolio is significantly

different from zero. The monthly BCFS estimate of -0.23, however, is considerably

smaller than the corresponding LN monthly alpha of 0.25. This result suggests

overconditioning could be an issue when the estimation windows are divided very

finely. In contrast, the quarterly and semiannual alphas for the O-score portfolio

are relatively similar across the LN and BCFS approaches.

B.2 State variables approach

A second approach, also advocated by Boguth, Carlson, Fisher, and Simutin

(2009), to address potential problems with overconditioning is to estimate the condi-

tional CAPM using lagged conditioning variables. This methodology follows Ferson

and Schadt (1996), Ferson and Harvey (1999), Petkova and Zhang (2005), and others

and is the traditional empirical approach for implementing the conditional CAPM.

In this spirit, I estimate the following time-series regression with daily portfolio

return data:

ri,t = αi + (biZt−1)
′Rm,t + ϵi,t, (B.2)

where Zt−1 is a (k+1)×1 vector of a constant and k state variables that are known

at time t− 1, and bi is a 3× (k + 1) vector of coefficients. I model the conditional

portfolio betas as linear functions of two state variables: DEFt−1 and DPt−1. The
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state variables are defined in Appendix A and updated monthly. The portfolio beta

estimate is then

β̂SV
i,t = (b̂iZt−1)

′ι,

where ι is a vector of ones. This regression approach allows beta to vary over time

with the state variables and also incorporates an adjustment for nonsynchronous

returns.

Table B.1 (Method 3) presents the regression results. The long-short CHS

portfolio has a conditional CAPM alpha of -0.44% per month (t-statistic of -1.49),

and the long-short O-score portfolio has a conditional alpha of -0.32% (t-statistic of

-1.56). Neither estimate is significant at the 5% level, suggesting this version of the

conditional CAPM also explains the distress-risk anomaly. The table also reports

factor loadings that are summed across lags. These parameter estimates allow us

to see how conditional betas respond to the specific state variables. The long-short

portfolio betas tend to increase with the default premium and decrease with the

dividend-to-price ratio.

B.3 Kernel regression approach

A problem with the empirical methodologies outlined in Sections B.1 and

B.2 is that both require the econometrician to know the ‘right’ state variables.

In contrast, the Lewellen and Nagel (2006) approach avoids the problem of using

incorrect state variables but is subject to potential overconditioning bias from using

a contemporaneous realized beta that is not entirely within the investor information

set. Given that overconditioning is typically a result of dividing the rolling-regression
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windows too finely, recent papers attempt to compute an optimal window size that

minimizes overconditioning bias but still allows for sufficient time variation in factor

loadings. Li and Yang (2008) and Ang and Kristensen (2010) apply nonparametric

methods to estimate the conditional CAPM in a manner that is similar to Lewellen

and Nagel (2006) but also includes a data-driven optimal window size. Essentially,

the window size is chosen such that the window contains sufficient data to achieve

estimation efficiency but is still short enough that the information structure does

not substantially change.

Let z characterize the estimation window length. The objective of the kernel

regression approach is to choose, at every time t, parameters αi,t and Bi,t to minimize

the following quantity:

min
α,B

t+z∑
s=t−z

(
ri,s − αi,t −B′

i,tRm,s

)2
ks,t, (B.3)

where

B̂i,t =

[
β̂i,0,t β̂i,1,t β̂i,2,t

]′
,

ks,t =
T

z
k

(
s− t

z

)
,

and k(·) is the Epanechnikov kernel:

k(u) =
3

4

(
1− u2

)
1 (|u| ≤ 1) .

Thus, this estimation approach uses data in the window t − z to t + z to estimate

alpha and beta at time t. The functional form of k(·) implies that observations

closer to time t receive more weight in estimating αi,t and Bi,t. The researcher can

either specify z or estimate an optimal window size as described below. Following
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the methodology outlined in Li and Yang (2008), I use the reflection method to

create pseudodata for estimating alpha and beta close to the boundary areas. The

optimal window size is obtained from the cross-validation method. Define α̂−i,t and

B̂−i,t as the ‘leave one out’ estimates from the following:

min
α,B

t+z∑
s=t−z, s ̸=t

(
ri,s − α−i,t −B′

−i,tRm,s

)2
ks,t. (B.4)

These estimates will be functions of the chosen window size, z. The optimal window

size minimizes the following quantity:

Q(z) =
T∑
t=1

(
ri,t − α̂−i,t − B̂′

−i,tRm,t

)2
. (B.5)

This approach is based on the idea that data in the vicinity of time t can be used

to predict the observation at time t.

Solving the optimization problem in (B.3) yields a time series of daily alpha

estimates. To assess the performance of the long-short distress portfolios relative to

the conditional CAPM, I report the average of these daily pricing errors:

α̂KR
i =

1

T

T∑
t=1

α̂i,t. (B.6)

Li and Yang (2008) show α̂KR
i is distributed asymptotically normal with variance

equal to the (1, 1)th element of

1

T
Ω−1

0

∞∑
l=−∞

E(XtX
′
t+lϵtϵt+l)Ω

−1
0 ,

where Xt =
[
1 R′

m,t

]′
, Ω0 = E(XtX

′
t), and l is the lag order.

Table B.1 (Method 4) reports the results. For each long-short distress port-

folio, I compute average conditional alphas corresponding to monthly (z = 11 days),
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quarterly (31 days), and semiannual (63 days) windows, as well as an optimal win-

dow length determined from equation (B.5). For the CHS portfolio, the average

pricing errors are quite similar across the various estimation windows, ranging from

-0.25% to -0.18% per month. These estimates are also close to those obtained from

the Lewellen and Nagel (2006) method. None is statistically significant at the 5%

level. The optimal z is 52 days. The nonparametric alpha estimates for the O-score

portfolio are similar to those from the Lewellen and Nagel (2006) approach. The

optimal z for this portfolio is 60 days, corresponding to an average pricing error of

-0.14% per month (t-statistic of -0.72).

B.4 Dummy variables approach

Finally, I estimate conditional CAPM regressions for the distress-sorted port-

folios in the spirit of Fama and French (2006b). These regressions also follow equa-

tions (1.8) and (1.9), but include slope dummy variables to allow for periodic changes

in betas. I allow for monthly, quarterly, or semianual changes in beta and estimate

one portfolio intercept for the entire sample period. Table B.1 (Method 5) reports

the estimated alphas in percent per month. The zero-cost CHS portfolio has condi-

tional CAPM alphas ranging from -0.39% to -0.18% per month, and the long-short

O-score portfolio alpha estimates are between -0.15% and 0.08% per month. None

of these estimates is statistically different from zero.

Figure B.1 plots the conditional betas for the long-short CHS portfolio cor-

responding to Methods 1, 3, 4, and 5.1 The pattern in portfolio betas is generally

1The conditional betas for Method 2 are the same as those for Method 1 with a lag of
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similar across the estimation methodologies. Betas tend to be low in the late 1980s

and high in the early 2000s.

In summary, the findings in this paper appear robust to reasonable alternative

estimation methodologies. In particular, the insignificant alphas reported in Panel C

of Table 1.1 are unlikely a result of the overconditioning problem outlined in Boguth,

Carlson, Fisher, and Simutin (2009) or selected window lengths that are divided too

finely. Moreover, the results hold when more traditional estimation methodologies

based on conditioning information or dummy variables are applied.

one period.
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Figure B.1: Conditional beta for portfolio sorted on financial distress: Alternative
estimation methodologies, 1981–2009
The figure presents conditional CAPM regression betas for the hedge portfolio that is
long the top quintile and short the bottom quintile of firms sorted on Campbell, Hilscher,
and Szilagyi’s (2008) failure probability. Each plot corresponds to a different estimation
approach as described in the text. ‘LN’ is the Lewellen and Nagel (2006) rolling-regression
approach with quarterly windows. ‘State Vars.’ is based on the following time-series
regression: ri,t = αi + (biZt−1)

′Rm,t + ϵi,t. ‘Kernel Reg.’ is the kernel regression approach
of Li and Yang (2008) with an optimally selected window size. ‘FF’ is the Fama–French
(2006b) regression approach with quarterly changes in beta.
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APPENDIX C
DATA AND MODEL APPENDIX FOR CHAPTER 2

Section C.1 provides details about the MCMC estimation algorithm, and

Section C.2 presents a simulation study that demonstrates the ability of the algo-

rithm to accurately recover parameters. Section C.3 describes the construction of

the anomaly variables used in the empirical analysis.

C.1 Estimation methodology

The model outlined in equations (2.5) to (2.7) can be estimated by repeatedly

cycling through steps 1 to 6 below. As discussed in the text, we place a hierarchical

structure on alphas, but not on betas. Instead we impose a proper, but diffuse,

prior directly on betas in the base specification, βi,y ∼ N
(
µ = 1, σ2

β = 10
)
. Let rei,t,y

denote the excess return on stock i in month t of year y and rem,t,y the excess return

on the market portfolio. Further, let Z denote a matrix in which the first column is a

vector of ones and the second column is the excess returns on the market portfolio,

and let X denote a matrix of a constant and firm-year characteristics associated

with anomalies.

1. Draw αi,y, βi,y|σ2
i,y, δy, σ

2
α,y for each stock i = 1, ..., N , in each year y = 1, ..., Y .

We obtain a draw from the marginal posterior distribution of αi,y and βi,y as

follows:  αi,y

βi,y

 ∼ N
(
λi, (σ

−2
i,yZ

′
i,yZi,y +V−1

λ )−1
)
, (C.1)
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where

λi = (σ−2
i,yZ

′
i,yZi,y +V−1

λ )−1(σ−2
i,yZ

′
i,yZi,yλ̂i +V−1

λ λi,y), (C.2)

λ̂i =
(
Z ′

i,yZi,y

)−1
Z ′

i,yr
e
i,y, (C.3)

λi,y =

 Xi,yδy

1

 , (C.4)

and

Vλ =

 σ2
α,y 0

0 10

 . (C.5)

2. Draw σ2
i,y |αi,y, βi,y for each stock i = 1, ..., N , in each year y = 1, ..., Y . We

obtain a draw from the marginal posterior distribution of σ2
i,y as follows:

σ2
i,y ∼ Inverse Gamma

(
v1s

2
1

2
,
v1
2

)
, (C.6)

v1 = v0 +M, (C.7)

and

s21 =
v0s

2
0 + s2

v0 +M
, (C.8)

where s2 is the sample sum of squared errors and M denotes the number of

observations. The priors, v0 and s20, are determined by the researcher. We set

v0 equal to 3 and s20 equal to the variance of the monthly returns for stock i

in year y.

3. Draw δy| {αi,y} , σ2
α,y, δ,V for each year y = 1, ..., Y . Let α denote a column

vector composed of draws of αi,y for all firms i in the dataset in year y. We

obtain a draw from the marginal posterior distribution of δy as follows:

δy ∼ N
(
δy, (σ

−2
α,yX

′
yXy +V−1)−1

)
, (C.9)
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where

δy = (σ−2
α,yX

′
yXy +V−1)−1(σ−2

α,yX
′
yXy δ̂y +V−1δ), (C.10)

and

δ̂y =
(
X ′

yXy

)−1
X ′

yα. (C.11)

4. Draw σ2
α,y | {αi,y} , δy for each year y = 1, ..., Y . We obtain a draw from the

marginal posterior distribution of σ2
α,y as follows:

σ2
α,y ∼ Inverse Gamma

(
v1s

2
1

2
,
v1
2

)
, (C.12)

v1 = v0 +M, (C.13)

and

s21 =
v0s

2
0 + s2

v0 +M
, (C.14)

where s2 is the sample sum of squared errors and M denotes the number of

observations. The priors, v0 and s20, are determined by the researcher. We set

v0 equal to 3. We elicit priors for s20 in the following manner. For each stock

in year y we estimate equation (2.5) using OLS and store α̂. We set s20 equal

to the variance of α̂ across all firms in year y.

Having drawn the firm- and year-level coefficients we proceed to draw the

aggregate-level parameters. Let P denote a Y × nvar matrix comprised of a draw

of {δy}Yy=1 , where nvar denotes the number of columns in X, and let H be a ma-

trix of covariates the researcher believes to be associated with the evolution of the

parameter vector δy over time. In our specification, H is a column vector of ones,

but could easily be extended, for example, to include macroeconomic variables.
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5. Draw V| {δy}. We obtain a draw from the marginal posterior distribution of

V as follows:

V ∼ Inverse Wishart (nvar +Nu+ Y,V0 + S) , (C.15)

where

S =
(
P −HΓ̃

)′ (
P −HΓ̃

)
+
(
Γ̃− Γ

)′
A
(
Γ̃− Γ

)
, (C.16)

Γ̃ =
(
(H ′H +A)

−1
(
H ′HΓ̂+AΓ

))
, (C.17)

and

Γ̂ = (H ′H)
−1

(H ′P ) . (C.18)

A, Γ, Nu and V0 are priors specified by the researcher. We set A−1 = 100I

and define Γ to be an nH × nvar matrix of zeros, where nH denotes the

number of columns in H. Nu is set to nvar+ 3, and V0 = NuI. I denotes an

appropriately dimensioned identity matrix.

6. Draw γ| {δy} ,V. We obtain a draw from the marginal posterior distribution

of γ as follows:

γ ∼ N
(
γ̃,V ⊗ (H ′H +A)

−1
)
, (C.19)

where γ̃ = vec
(
Γ̃
)
. Given that H is a vector of ones, δ = γ.

C.2 Model simulation

In this section, we conduct a simulation exercise and show our estimation

algorithm successfully recovers the parameters of interest. Data are created for

1,000 firms over a 45-year period. The length of each time period, y, is set to 12
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months. We assume there are two firm characteristics associated with firm-level

alphas, x1 and x2, which are both uniformly distributed over the range -0.5 to +0.5.

The parameters in the simulation are set to ensure that the simulated firm-level

returns, alphas, betas, and market returns are consistent with the actual values

observed using the CRSP return data.

1. Draw δy ∼ MVN
(
µ = δ, σ2 = V

)
for each 12-month time period, y. We set

δ =


δ0 = 0

δ1 = 1

δ2 = 1

 , and V =


1.5 0.5 0.5

0.5 1.5 0.5

0.5 0.5 1.5

 .

2. Draw αy ∼ MVN(µ = δ0,y + δ1,yx1 + δ2,yx2, σ
2 = Σα), where αy is a column

vectors of firm-specific alphas in time period y. We consider two specifications

for the variance-covariance matrix, Σα, one in which the error terms are inde-

pendent across firms, and one in which the error terms are correlated across

firms. We examine two different levels of correlations, low to medium with

correlations ranging from −0.5 to +0.5, and medium to high with correlations

ranging from −0.9 to +0.9. The diagonal elements of Σα are set equal to

σ2
α = 2.1

3. Draw βi,y ∼ N(µ = 1, σ2 = 4) for each firm i in each time period y.

1We use the following procedure to create a 1,000 × 1,000 variance-covariance matrix.
First, create a column vector, u, with 1,000 draws from the Uniform(-1,1) distribution.
Second, calculate κuu′ where κ = pσ2

α. The parameter, p is a scaling factor, between 0
and 1, for the maximum level of correlation in the error terms across firms. If p = 0,
firm-level alphas are independent. If p = 1, κuu′ correlations range from −1 to +1. For
low to medium correlations we set p = 0.5, while for medium to high correlations we set
p = 0.9. Finally, set Σα = κuu′ and replace the diagonal elements with σ2

α = 2.
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4. Generate excess monthly returns on the market: rem,t,y ∼ N(µ = 0.5, σ2 = 25).

5. Generate monthly excess returns for each firm in each month of each time

period: ret,y = αy + βyr
e
m,t,y + ϵt,y, where ϵt,y ∼ MVN(µ = 0, σ2 = Σret) and

ret,y denotes a column vector of excess returns for all firms in month t of time

period y. αy and βy are column vectors of firm-specific alphas and betas.

The specifications for the variance-covariance matrix, Σret, are constructed in

a similar manner to those for Σα. The only difference is that the diagonal

elements of Σret, σ
2
ret, are set equal to 169.

We examine seven different scenarios to investigate the sensitivity of our

model to different correlation structures in the error terms of equations (2.5) and

(2.6). The MCMC algorithm is run for 1,000 iterations for each scenario. The

algorithm converges quickly. The posterior distributions are characterized using the

final 500 iterations. We use the same seed for the random number generator for each

scenario. Table C.1 reports the results from the simulation study. Regardless of the

correlation structure in the error terms of equations (2.5) and (2.6), the estimation

algorithm is able to accurately recover the aggregate-level model parameters, δ and

V, indicating that the approach is not sensitive to the possibility of cross-correlations

across firms.

C.3 Data description

We obtain accounting data from the Compustat Fundamentals Annual files

and stock return data from the CRSP monthly return files. Each of the anomaly

variables is measured once a year at the end of June in calendar year j. The variables
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are matched to returns from July of calendar year j to June of calendar year j + 1.

To ensure that the accounting data are known prior to the returns they are used

to forecast, we lag all accounting variables by six months. The sample includes all

NYSE, Amex, and NASDAQ ordinary common stocks with the data required to

compute at least one of the following anomaly variables:

1. Size (M): The natural log of price per share times the number of shares

outstanding at the end of June of year j.

2. Book-to-market (BM): The natural log of the ratio of book value of equity

to market value of equity. Following Fama and French (2008), we define the

book value of equity as total assets (at), minus total liabilities (lt), plus balance

sheet deferred taxes and investment tax credits (txditc) if available, minus the

book value of preferred stock if available. Depending on availability, we use

liquidating value (pstkl), redemption value (pstkrv), or carrying value (upstk)

for the the book value of preferred stock. The market value of equity is price

per share times the number of shares outstanding at the end of December of

year j − 1.

3. Momentum (MOM): The continuously compounded stock return from Jan-

uary to June of year j. We require a firm to have a price for the end of

December of year j − 1 and a good return for June of year j.

4. Reversal (REV ): The continuously compounded stock return from July of

year j − 5 to June of year j − 1. We require a firm to have a price for the end

of June of year j − 5 and a good return for June of year j − 1.
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5. Profitability (ROA): Income before extraordinary items (ib), minus dividends

on preferred (dvp) if available, plus income statement deferred taxes (txdi) if

available divided by total assets (at).

6. Asset growth (AG): Total assets (at) at the fiscal year end in year j−1, minus

total assets at the fiscal year end in year j − 2 divided by total assets at the

fiscal year end in year j − 2. We also require a firm to have non-zero total

assets in both year j − 1 and j − 2.

7. Net stock issues (NS): The natural log of the ratio of split-adjusted shares

at the fiscal year end in year j − 1 divided by split-adjusted shares at the

fiscal year end in year j− 2. The number of split-adjusted shares outstanding

is common shares outstanding from Compustat (csho) times the cumulative

adjustment factor by ex-date (adjex f).

8. Accruals (ACC): The change in current assets (act) from the fiscal year end

in year j − 2 to j − 1, minus the change in current liabilities (lct), minus the

change in cash and short-term investments (che), plus the change in debt in

current liabilities (dlc), minus depreciation (dp) in fiscal year j− 1 divided by

total assets (at) from the fiscal year end in year j − 2.

9. Financial distress (OS): Ohlson’s (1980) O-score:

O-score =
1

1 + exp(−x)
,
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where

x =− 1.32− 0.407 (SIZE) + 6.03 (TLTA)− 1.43 (WCTA)

+ 0.076 (CLCA)− 1.72 (OENEG)− 2.37 (NITA)− 1.83 (FUTL)

+ 0.285 (INTWO)− 0.521 (CHIN) ,

where SIZE is the log of the ratio of total assets (at) to the GNP price-level

index, TLTA is the ratio of total liabilities (lt) to total assets, WCTA is

the ratio of working capital (act – lct) to total assets, CLCA is the ratio of

current liabilities (lct) to current assets (act), OENEG is a dummy variable

equal to one if total liabilities exceeds total assets and zero otherwise, NITA

is the ratio of net income (ni) to total assets, FUTL is the ratio of funds from

operations (pi) to total liabilities, INTWO is a dummy variable equal to one

if total net income was negative for the past two years and zero otherwise, and

CHIN is the change in net income from fiscal year j − 2 to j − 1 divided by

the sum of the absolute values of net income in fiscal years j − 2 and j − 1.

Data on the GNP price-level index are from the Federal Reserve Bank of St.

Louis website.2 Following Ohlson (1980), we assign the index a value of 100

in 1968, and the index year is as of the year prior to the year of the balance

sheet date.

We exclude financial firms (SIC codes between 6000 and 6999) and firms with

negative book equity. The sample period is July 1963 to June 2008. To alleviate

the influence of outliers, we winsorize ROA, AG, NS, and ACC at the 1st and 99th

2http://research.stlouisfed.org/fred2/.



149

percentiles. For cases in which a firm is delisted from an exchange during a given

month, we replace any missing returns with the delisting returns provided by CRSP.



150

T
ab

le
C
.1
:
M
o
d
el

es
ti
m
at
io
n
on

si
m
u
la
te
d
d
at
a

C
ro
ss
-C

o
rr
el
a
ti
o
n

C
ro
ss
-C

o
rr
el
a
ti
o
n

in
R
et
u
rn

E
rr
or

in
A
lp
h
a
E
rr
o
r

C
as
e

(E
q
u
at
io
n
(2
.5
))

(E
q
u
a
ti
o
n
(2
.6
))

δ 0
δ 1

δ 2
V

1
1

V
2
2

V
3
3

V
1
2

V
1
3

V
2
3

T
ru
e
V
al
u
es

0
.0
0

1
.0
0

1
.0
0

1
.5
0

1
.5
0

1.
5
0

0
.5
0

0.
5
0

0.
50

P
o
st
er
io
r
M
ea
n
s
fo
r
th
e
A
gg

re
ga

te
-L
ev
el

P
ar
am

et
er
s,

δ
an

d
V

C
as
e
1

N
o
n
e

N
o
n
e

-0
.2
2

0
.9
4

1
.0
7

1
.8
6

1.
7
4

1
.6
7

0.
5
7

0
.6
8

0.
75

(0
.2
0
)

(0
.2
0
)

(0
.2
1
)

(0
.3
9)

(0
.3
8
)

(0
.4
0)

(0
.2
9)

(0
.3
1
)

(0
.2
8)

C
as
e
2

L
ow

N
o
n
e

-0
.2
1

0
.8
7

1
.0
6

1
.8
6

1.
7
9

1
.6
5

0.
5
1

0
.6
7

0.
78

(0
.2
0
)

(0
.2
0
)

(0
.2
1
)

(0
.3
9)

(0
.3
9
)

(0
.4
0)

(0
.2
9)

(0
.3
1
)

(0
.2
9)

C
as
e
3

H
ig
h

N
on

e
-0
.2
0

0
.8
4

1
.0
8

1
.8
7

1
.7
9

1.
6
5

0
.4
9

0.
6
6

0.
78

(0
.2
0
)

(0
.2
0
)

(0
.2
1
)

(0
.3
9
)

(0
.3
9)

(0
.4
0
)

(0
.2
9
)

(0
.3
1)

(0
.2
9)

C
as
e
4

N
on

e
L
ow

-0
.2
2

0
.9
3

1
.0
7

1
.8
6

1
.7
4

1.
7
2

0
.5
6

0.
6
8

0.
79

(0
.2
0
)

(0
.2
0
)

(0
.2
1
)

(0
.3
9
)

(0
.3
8)

(0
.4
1
)

(0
.2
9
)

(0
.3
1)

(0
.2
9)

C
as
e
5

N
on

e
H
ig
h

-0
.2
2

0
.9
3

1
.0
7

1
.8
6

1
.7
4

1.
7
2

0
.5
6

0.
6
7

0.
80

(0
.2
0
)

(0
.2
0
)

(0
.2
1
)

(0
.3
9
)

(0
.3
8)

(0
.4
1
)

(0
.2
9
)

(0
.3
1)

(0
.2
9)

C
as
e
6

L
ow

L
ow

-0
.2
1

0
.8
6

1
.0
6

1
.8
6

1
.8
2

1.
7
0

0
.5
1

0.
6
6

0.
82

(0
.2
0
)

(0
.2
0
)

(0
.2
1
)

(0
.3
9
)

(0
.4
0)

(0
.4
1
)

(0
.3
0
)

(0
.3
1)

(0
.3
0)

C
as
e
7

H
ig
h

H
ig
h

-0
.2
0

0
.8
3

1
.0
8

1
.8
8

1.
8
2

1
.6
9

0.
4
9

0
.6
4

0.
84

(0
.2
0
)

(0
.2
0
)

(0
.2
1
)

(0
.3
9)

(0
.4
0
)

(0
.4
1)

(0
.3
0)

(0
.3
1
)

(0
.3
0)

N
ot
e:

T
h
e
ta
b
le

p
re
se
n
ts

th
e
re
su
lt
s
fr
o
m

th
e
es
ti
m
a
ti
o
n
o
f
th
e
m
o
d
el

d
es
cr
ib
ed

in
eq
u
a
ti
o
n
s
(2
.5
)
to

(2
.7
)
fo
r
si
m
u
la
te
d
d
at
a.

W
e
re
p
or
t

th
e
p
os
te
ri
or

m
ea
n
a
n
d
st
an

d
a
rd

d
ev
ia
ti
o
n
fo
r
th
e
a
g
g
re
g
a
te
-l
ev
el

p
a
ra
m
et
er
s
δ
a
n
d
V
.
W
e
si
m
u
la
te

d
a
ta

fo
r
1,
0
00

fi
rm

s
ov
er

a
45
-y
ea
r

p
er
io
d
.
W
e
cr
ea
te

se
v
en

d
iff
er
en
t
se
ts

of
d
at
a
u
si
n
g
th
e
sa
m
e
se
ed

fo
r
th
e
ra
n
d
o
m

n
u
m
b
er

g
en
er
a
to
r
in

ea
ch

sc
en

ar
io
.
E
ac
h
se
t
of

d
at
a

d
iff
er
s
on

ly
w
it
h
re
sp
ec
t
to

th
e
as
su
m
p
ti
o
n
s
ab

o
u
t
cr
o
ss
-c
o
rr
el
a
ti
o
n
s
in

th
e
er
ro
r
te
rm

s
o
f
eq
u
at
io
n
(2
.5
)
(m

on
th
ly

fi
rm

re
tu
rn
s)

an
d
/o
r

eq
u
at
io
n
(2
.6
)
(fi
rm

-y
ea
r
al
p
h
a
s)
.
S
p
ec
ifi
ca
ll
y,

w
e
a
ll
ow

cr
o
ss
-c
o
rr
el
a
ti
o
n
s
in

ea
ch

eq
u
a
ti
o
n
to

ta
k
e
o
n
o
n
e
of

th
re
e
le
v
el
s:

ze
ro
,
lo
w
,
or

h
ig
h
.
T
h
e
lo
w

le
v
el

al
lo
w
s
cr
os
s-
co
rr
el
at
io
n
s
to

ra
n
g
e
b
et
w
ee
n
∓
0.
5
,
w
h
il
e
th
e
h
ig
h
le
v
el

al
lo
w
s
cr
o
ss
-c
o
rr
el
a
ti
o
n
s
to

ra
n
ge

b
et
w
ee
n
∓
0.
9.

W
e
ru
n
th
e
G
ib
b
s
sa
m
p
le
r
fo
r
1
,0
0
0
it
er
a
ti
o
n
s
a
n
d
d
is
ca
rd

th
e
fi
rs
t
5
0
0
a
s
a
b
u
rn
-i
n
p
er
io
d
.



151

REFERENCES

Ahn, D.-H., J. Conrad, and R. F. Dittmar (2009): “Basis assets,” Review of Finan-
cial Studies, 22, 5133–5174.

Altman, E. I. (1968): “Financial ratios, discriminant analysis and the prediction of
corporate bankruptcy,” Journal of Finance, 23, 589–609.

Ang, A., and J. Chen (2007): “CAPM over the long run: 1926–2001,” Journal of
Empirical Finance, 14, 1–40.

Ang, A., and D. Kristensen (2010): “Testing conditional factor models,” Working
paper, Columbia University.

Ang, A., J. Liu, and K. Schwarz (2010): “Using stocks or portfolios in tests of factor
models,” Working paper, Columbia University.

Avramov, D., S. Cederburg, and S. Hore (2010): “Cross-sectional asset pricing puz-
zles: An equilibrium perspective,” Working paper, University of Maryland.

Avramov, D., and T. Chordia (2006): “Asset pricing models and financial market
anomalies,” Review of Financial Studies, 19, 1001–1040.

Avramov, D., T. Chordia, G. Jostova, and A. Phillipov (2009): “Credit ratings and
the cross-section of stock returns,” Journal of Financial Markets, 12, 469–499.

Banz, R. W. (1981): “The relationship between return and market value of common
stocks,” Journal of Financial Economics, 9, 3–18.

Barron, O. E., M. H. Stanford, and Y. Yu (2009): “Further evidence on the relation
between analysts’ forecast dispersion and stock returns,” Contemporary Account-
ing Research, 26, 329–357.

Bates, J., and C. Granger (1969): “The combination of forecasts,” Operational Re-
search Quarterly, 20, 451–468.

Boguth, O., M. Carlson, A. Fisher, and M. Simutin (2009): “Conditional risk and
performance evaluation: Volatility timing, overconditioning, and new estimates
of momentum alphas,” Working paper, University of British Columbia.

Box, G. (1980): “Sampling and Bayes inference in scientific modeling and robust-
ness,” Journal of the Royal Statistical Society Series A, 143, 383–430.

Brennan, M. J., T. Chordia, and A. Subrahmanyam (1998): “Alternative factor
specifications, security characteristics, and the cross-section of expected stock
returns,” Journal of Financial Economics, 49, 345–373.



152

Campbell, J. Y., and J. H. Cochrane (1999): “By force of habit: A consumption-
based explanation of aggregate stock market behavior,” Journal of Political Econ-
omy, 102, 205–251.

Campbell, J. Y., J. Hilscher, and J. Szilagyi (2008): “In search of distress risk,”
Journal of Finance, 63, 2899–2939.

Carhart, M. (1997): “On persistence in mutual fund performance,” Journal of Fi-
nance, 52, 57–82.

Cederburg, S. (2010): “Intertemporal risk and the cross section of expected stock
returns,” Working paper, University of Iowa.

Chan, L. K., Y. Hamao, and J. Lakonishok (1991): “Fundamentals and stock returns
in Japan,” Journal of Finance, 46, 1739–1764.

Chava, S., and R. A. Jarrow (2004): “Bankruptcy prediction with industry effects,”
Review of Finance, 8, 537–569.

Chava, S., and A. K. Purnanandam (2010): “Is default risk negatively related to
stock returns?,” Review of Financial Studies, 23, 2523–2559.

Chen, L., R. Novy-Marx, and L. Zhang (2010): “An alternative three-factor model,”
Working paper, Washington University in St. Louis.

Chen, L., and L. Zhang (2009): “A better three-factor model that explains more
anomalies,” Forthcoming in Journal of Finance.

Chopra, N., J. Lakonishok, and J. R. Ritter (1992): “Measuring abnormal perfor-
mance: Do stocks overreact?,” Journal of Financial Economics, 31, 235–268.

Clemen, R. (1989): “Combining forecasts: A review and annotated bibliography,”
International Journal of Forecasting, 5, 559–581.

Cochrane, J. (2006): “Financial markets and the real economy,” Working paper,
University of Chicago.

Cochrane, J. H. (2001): Asset Pricing. Princeton University Press, Princeton, NJ.

Cohen, R. B., P. A. Gompers, and T. Vuolteenaho (2002): “Who underreacts to
cash-flow news? Evidence from trading between individuals and institutions,”
Journal of Financial Economics, 66, 409–462.

Collins, D. W., and P. Hribar (2000): “Earnings-based and accrual-based market
anomalies: One effect or two?,” Journal of Accounting and Economics, 29, 101–
123.

Conrad, J., M. Cooper, and G. Kaul (2003): “Value versus glamour,” Journal of
Finance, 58, 1969–1996.



153

Constantinides, G. M., and D. Duffie (1996): “Asset pricing with heterogeneous
consumers,” Journal of Political Economy, 104, 219–240.

Cooper, M. J., and S. Gubellini (2009): “The critical role of conditioning information
in determining if value is riskier than growth,” Working paper, University of Utah.

Cooper, M. J., H. Gulen, and M. J. Schill (2008): “Asset growth and the cross-
section of stock returns,” Journal of Finance, 63, 1609–1651.

Cremers, K. J. M. (2006): “Multifactor efficiency and Bayesian inference,” Journal
of Business, 79, 2951–2998.

Cremers, M., and H. Yan (2009): “Uncertainty and valuations,” Working paper,
Yale University.

Da, Z., and P. Gao (2010): “Clientele change, liquidity shock, and the return on
financially distressed stocks,” Journal of Financial and Quantitative Analysis, 45,
27–48.

Daniel, K., and S. Titman (2006a): “Market reactions to tangible and intangible
information,” Journal of Finance, 61, 1605–1643.

(2006b): “Testing factor-model explanations of market anomalies,” Working
paper, Northwestern University.

Davies, P. (2010): “A firm-level test of the CAPM,” Working paper, University of
Iowa.

DeBondt, W. F. M., and R. Thaler (1985): “Does the stock market overreact?,”
Journal of Finance, 40, 793–805.

Dichev, I. D. (1998): “Is the risk of bankruptcy a systematic risk?,” Journal of
Finance, 53, 1131–1147.

Diebold, F., and J. Lopez (1996): “Forecast evaluation and combination,” in Statis-
tical Methods in Finance, ed. by G. Maddala, and C. Rao, vol. 14, pp. 241–268.
Elsevier Science B.V., Amsterdam.

Diether, K. B., C. J. Malloy, and A. Scherbina (2002): “Differences of opinion and
the cross section of stock returns,” Journal of Finance, 57, 2113–2141.

Dimson, E. (1979): “Risk measurement when shares are subject to infrequent trad-
ing,” Journal of Financial Economics, 7, 197–226.

Fairfield, P. M., J. S. Whisenant, and T. L. Yohn (2003): “Accrued earnings and
growth: Implications for future profitability and market mispricing,” The Ac-
counting Review, 78, 353–371.

Fama, E. F., and K. R. French (1989): “Business conditions and expected returns
on stocks and bonds,” Journal of Financial Economics, 25, 23–49.



154

(1992): “The cross-section of expected stock returns,” Journal of Finance,
47, 427–465.

(1993): “Common risk factors in the returns on stocks and bonds,” Journal
of Financial Economics, 33, 3–56.

(1996): “Mutlifactor explanations of asset pricing anomalies,” Journal of
Finance, 51, 55–84.

(2006a): “Profitability, investment, and average returns,” Journal of Fi-
nancial Economics, 82, 491–518.

(2006b): “The value premium and the CAPM,” Journal of Finance, 61,
2163–2185.

(2008): “Dissecting anomalies,” Journal of Finance, 63, 1653–1678.

Fama, E. F., and J. MacBeth (1973): “Risk, return, and equilibrium: Empirical
tests,” Journal of Political Economy, 81, 607–636.

Ferson, W. E., and C. R. Harvey (1999): “Conditioning variables and the cross
section of stock returns,” Journal of Finance, 54, 1325–1360.

Ferson, W. E., and R. W. Schadt (1996): “Measuring fund strategy and performance
in changing economic conditions,” Journal of Finance, 51, 425–462.

Garlappi, L., T. Shu, and H. Yan (2008): “Default risk, shareholder advantage, and
stock returns,” Review of Financial Studies, 21, 2743–2778.

Garlappi, L., and H. Yan (2010): “Financial distress and the cross-section of equity
returns,” Forthcoming in Journal of Finance.

George, T. J., and C.-Y. Hwang (2010): “A resolution of the distress risk and lever-
age puzzles in the cross section of stock returns,” Journal of Financial Economics,
96, 56–79.

Geweke, J., and G. Amisano (2010): “Optimal prediction pools,” Working paper,
Center for Quantitative Economic Research.

Geweke, J., and G. Zhou (1996): “Measuring the pricing error of the Arbitrage
Pricing Theory,” Review of Financial Studies, 9, 557–587.

Ghysels, E. (1998): “On stable factor structures in the pricing of risk: Do time-
varying betas help or hurt?,” Journal of Finance, 53, 549–573.

Gomes, J., L. Kogan, and L. Zhang (2003): “Equilibrium cross section of returns,”
Journal of Political Economy, 111, 693–732.

Good, I. (1952): “Rational decisions,” Journal of the Royal Statistical Society Series
B, 14, 107–114.



155

Griffin, J. M., and M. L. Lemmon (2002): “Book-to-market equity, distress risk, and
stock returns,” Journal of Finance, 57, 2317–2335.

Guidolin, M., and A. Timmermann (2009): “Forecasts of U.S. short-term interest
rates: A flexible forecast combination approach,” Journal of Econometrics, 150,
297–311.
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