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The increased use of Computed Tomography as an imaging modality is of 

concern because of the growing body of evidence linking radiation exposure to cancer 

incidence. However, a framework does not yet exist for balancing the immediate needs of 

the clinical task (image quality) with future risks due to the imaging procedure (dose).

We developed a method to estimate the shape and thickness of materials yielding 

attenuation equivalent to that of bow-tie-shaped filters in clinical scanners. The results 

are especially useful for accurate modeling in Monte Carlo simulations of radiation 

transport. 

We then investigated measures of dose and image quality using both simulation 

and laboratory experimentation. We found that current measures of dose are robust under 

current clinical conditions. We also found that measures of image quality are object and 

task specific.
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Chapter 1

Overview

1.1 Introduction

Computed Tomography (CT) generally refers to the process by which three

dimensional volumes are reconstructed using multiple X-ray projection images from

different angles. CT has been clinically available since the early 1970’s, and has

seen use as a diagnostic tool for clinical scenarios ranging from cancer diagnosis to

acute trauma. The most common modern CT systems consist of an X-ray tube and

detector array pair mounted in a gantry. The tube and detector array rotate about

the volume of interest (often a patient) as it is translated through the field of view

and projection images are collected. These projection images are then used in the

three-dimensional reconstruction of the volume of interest. The main advantages of

CT versus traditional projection X-ray imaging is that it allows for the the removal

of overlying anatomy from the plane of interest and offers increased contrast between

structures.

Since the introduction of the first CT scanner (The EMI Mark 1), technological

improvements have been made reducing scan and reconstruction times. However,

increases in volume of coverage tend to increase dose per procedure.[3] Additionally,

the ease and speed with which CT scans can now be obtained has resulted in an

increasing number of procedures performed annually.[16] The collective radiation
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dose from all medical imaging procedures increased over seven-fold from 1990 to

2006, and while CT scans account for only 18 percent of procedures performed,

they contribute over 50 percent of this collective dose.[4] The advancement of further

applications of CT (e.g. cardiac CT angiography, colonoscopy, and interventional

CT) is also expected to fuel the growth of CT use. This is a concern because

exposure to ionizing radiation has been linked by a growing body of evidence to the

incidence of solid cancer and leukemia.[3]

Determining the “right” amount of radiation for a CT scan is a non-trivial

proposition. The difficulty lies in minimizing the radiation necessary to achieve

adequate image quality. Or, put another way, using the lowest possible dose to

create an image suitable for the clinical task. Before attempting to answer this

question, however, one must first address what metrics are to be used in measuring

dose and image quality.

There is question as to whether the current CT dosimetry and image-quality

metrics are suitable for modern CT technology. The current dosimetry system is

based on a metric developed at the FDA in the 1980’s.[56] However, for modern

scanners with larger fields-of-view, these metrics may lose accuracy and applicability.

Image quality is often reported in terms of its sharpness, usually characterized and

reported as a spread function, often with additional calculation of a modulation

transfer function.[52, 31, 32] This linear systems approach assumes that all objects

being imaged are transferred in the same way, which is not true for CT systems (and

even less so when non-linear reconstruction algorithms are used). The reasons for

this will be explored further later in the thesis. Furthermore, there is no meaninful
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metric linking CT image quality with radiation dose that has found widespread

acceptance in the medical physics community.

This thesis provides a tool for modeling clinical X-ray sources without knowl-

edge of proprietary information. The implementation of these source models into

existing Monte Carlo codes will allow for simulation of scanner specific imaging

procedures. Combined with existing anthropomorphic phantoms, these simulations

will provide insight into organ dose distribution in “average” patients. Furthermore,

they will allow for the testing of new protocols or devices in silico. This thesis also

describes current dosimetry metrics and image quality metrics. It will be shown that

scanners with large fields-of-view require small modifications of current dosimetry

metrics. However, the usefulness of these metrics remains potent. It will also be

shown that linear systems theory based metrics of image quality are task specific.

This is not to mean that they do not apply to CT, but rather that consideration

must be taken when implementing the estimation of such metrics.

1.2 Basic Principles of CT

Although the true mathematical details of CT reconstruction are beyond the

scope of this work, a basic review is necessary to understanding the experiments

and results presented in later chapters. The fundamental mathematics of CT recon-

struction were established over five decades prior to construction of the first clinical

scanner. J. Radon, in 1917, proved that with a complete, infinite set of projections

of a two- or three-dimensional object, the original could be reproduced.[50] Though
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Radon was working with gravitational theory, his proof had an important applica-

tion in medical imaging; the internal structure of an object could be reconstructed

using multiple projections of that object from different angles.

In its most elementary form, CT reconstruction is an exercise in linear algebra.[35,

21, 36, 19] If an x-ray beam is incident on one side of the object with intensity I0, and

a measurement is taken of the transmitted x-ray intensity, It, then the relationship

between the two is given by:

It = I0e
−µt, (1.1)

where t is the thickness of the attenuating region and µ is the average linear atten-

uation coefficient along the path between the source and the detector. Rearranging

and taking a natural logarithm yields:

ln(
I0
It

) = µt, (1.2)

revealing the true parameter of interest, µ.

A more complex case would be non-uniform object that we have divided into a

uniform array of four elements (see Figure 1.1). Taking two projections of this object

yields four transmission measurements, yielding a fully constrained system of four

equations with four unknown average linear attenuation coefficients (corresponding

to the average attenuation of each element). This system of equations can be solved

readily, yielding the average attenuation of each of the four elements. 1

1It is important to note that these examples assume a monochromatic beam. Because atten-
uation coefficients actually vary with the energy of the incident photon, correction factors must
be incorporated in clinical CT systems. These factors account for the heterochromatic nature of
x-rays used in commercial scanners. A geometric correction factor is also necessary to reconcile
the differences between the Cartesian picture array (squares) and the radial nature of the source
rotation about the object.
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Figure 1.2 shows what two projections of a more complicated theoretical ob-

ject of interest might look like. In order to reconstruct this object faithfully, a

higher density of array elements is needed than the four-element example. As the

number of elements within the array grows, the number of projections required

to fully constrain the system grows as well. Solving this system directly becomes

computationally expensive.

Fortunately, some basic strategies for dealing with this problem have been

devised including back-projection (with and without filtering), iterative reconstruc-

tion, and Fourier analysis. The most common method in use today is the filtered

back-projection method.[19] The volume of interest in this method is reconstructed

by algorithmically reversing the steps used during acquisition. Each attenuation

value measured is smeared along the path from the source to the detector equally.

As this smearing is performed for many projections, an image of the volume is built

up. The filtering portion of filtered back-projection is necessary to re-weight the

data because of geometric issues arising from the conversion between polar coordi-

nates and rectangular coordinates.[35] Iterative reconstruction assumes values for

the matrix of attenuation coefficients, and then compares the assumed values to

measured projection values. Corrections are made according to an algorithm, and

the process is repeated until a tolerance threshold is reached.

In general, these basic approaches are referred to as linear reconstructions

because only linear mathematical operations are used (i.e. the same operation is

performed on the whole of the image, and it is easily invertable). More modern

scanners may also include non-linear reconstruction algorithms. These include tech-
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Figure 1.1: Two projections fully constrain a four-element system.

Figure 1.2: Two projection images of a theoretical object.
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niques for selectively sharpening parts of the image to improve edge detection while

smoothing other parts to reduce noise. These algorithms have also been used to

suppress artifacts. While these approaches qualitatively improve image quality, it

is unknown how they affect quantitative measures of image quality, and ultimate

clinical performance.

1.3 Concepts of Dosimetry

The radiation dose to the patient from CT procedures is an important issue.

It is of interest because radiation quantities provide an idea of the risk of biologic

damage associated with exposure to that radiation. The interaction of radiation

with biology produces a range of effects that include skin reddening, hair loss, acute

cataract, temporary or permanent fertility loss, hematopoietic syndromes, and ra-

diation induced carcinogenesis.[19]

Before discussing methods of measuring radiation dose, it is important to dis-

tinguish the term exposure from dose. Exposure relates to the number of ionizations

in air that are produced by x-ray photons. Dose refers to the amount of radiation

deposited in a body of interest, usually the patient.

In current clinical practice, the primary radiation dose metric is the Computed

Tomography Dose Index (CTDI). The CTDI is a measurement of the dose delivered

to a polymethyl methacrylate (PMMA) right-round cylindrical phantom for the

imaging procedure performed. Derivatives of the CTDI are used to express average

doses delivered in a volume of interest of the cylinder, or total dose to the cylinder,
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or effective dose, which attempts to assess the potential biologic risk due to a CT

procedure.[1]

However, the CTDI was defined in the early 1980’s.[56] There is concern that

as modern scanners evolve to have ever larger fields-of-view, the associated increased

beam-width along the z-axis tends to grow to a size that no longer can be evaluated

in the CTDI paradigm. Therefore, exploring the behavior of dose profiles in the

CTDI PMMA phantoms is necessary to determine if the metrics are still stable

under modern scanning conditions.

1.4 Image Quality Metrics

The fundamental image properties are contrast and spatial resolution.[19] Con-

trast refers to the difference in the gray scale of the image, which in CT are produced

by differences in tissue composition (corresponding to different attenuation coeffi-

cients). Resolution is the ability to see small details, and for photon based imaging

modalities is theoretically limited by the wavelength of the photon used to probe

the object’s details. In practice, however, the spatial resolution of clinical imaging

systems is lower than this theoretical limit. In comparison to projection imaging,

the contrast of CT is much better. This is because the tomographic reconstruction

removes overlying structures. However, CT generally has worse spatial resolution.

A useful metric of spatial resolution is the Point Spread Function (PSF). In

the spatial domain, the PSF is defined as the response of the imaging system to

a single point input. Knowledge of the complete PSF is useful because it allows
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for a prediction of the image output given the object input. It is beneficial to

also study resolution in the frequency domain. Frequency domain measurements

are reported in terms of line pairs per millimeter, and are thought of as sine wave

inputs into the imaging system and blurred by the PSF. The effect of the blurring

is to reduce the contrast between the crests and troughs of the sine wave, and if the

frequency is high enough, the waves are blurred together and indistinguishable in

the image produced. This blurring effect is dependent on the frequency of the sine

wave input, and the frequency dependence of the blurring is called the Modulation

Transfer Function (MTF). The MTF of an imaging system is the currently accepted

method of reporting the resolution properties of an imaging system. However, the

calculation of the MTF for a real imaging system makes some limiting assumptions.

It assumes that the system be stationary (that the PSF does not change as a function

of position in the image) and shift-invariant (that the noise in the system does not

change with position in the image). It also assumes that the system is linear, i.e.

all objects are transferred from the object plane to the imaging plane in the same

way. It is possible that these assumptions are broken in real CT imaging systems,

and therefore it is important to investigate what systemic errors are introduced into

image quality measurements by these effects.

1.5 Outline of the Thesis

The work presented here is divided into three steps. First, a tool for incorpo-

rating CT-scanner specific source models into Monte Carlo simulations is reported.

9



Next, radiation dosimetry concepts and metrics are discussed. Finally, image quality

evaluation is described.

Monte Carlo techniques allow for the simulation and testing of CT systems

without collecting large amounts of data physically. However, manufacturers place

differing amounts of filtration in the beam path and often keep this information pro-

prietary (as a trade secret). In order to perform realistic simulations, however, the

Monte Carlo code must have x-ray spectra that match the filtered spectra from these

clinical systems as closely as possible. To enable simulations using scanner-specific

spectra without disclosing proprietary information from manufacturers, Chapter 2

demonstrates the implementation of a technique for calculating equivalent spectra

from a few simple measurements. Using common equipment (aluminum filters and

an ionization chamber), we demonstrate that it is possible to estimate accurately

matched equivalent filters to the unknown filters in the CT system. With this tool,

researchers can simulated specific scanners without being dependent on disclosure

from manufacturers, and without risking exposure of proprietary information.

Chapter 3 discusses radiation dosimetry. First, the framework of the Com-

puted Tomography Dose Index (CTDI) metric and its derivatives are described.

Then, the behaviors of both longitudinal and radial dose profiles in CTDI phantoms

are reported. It is shown that CTDI metrics are applicable to current CT imaging

systems, and with a small adjustments can be applied to proposed future systems.

In Chapter 4, the modulation transfer function (MTF) is investigated. This

is accomplished by testing of multiple methods of estimating an imaging system’s

image quality in terms of the MTF. A comparison of methods is made with an eye

10



towards clinical applicability.

Chapter 5 is a summary of conclusions. It also includes final remarks and

suggestions for further avenues of investigation.
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Chapter 2

Angle dependent spectra of clinical CT systems

2.1 Introduction

Exposure to ionizing radiation has been linked by a growing body of evidence

to the incidence of solid cancer and leukemia.[3] Additionally, exposure exceeding

deterministic thresholds can yield erythema, hair epilation and acute cataract. The

collective radiation dose from all medical imaging procedures increased over seven-

fold from 1990 to 2006, and while CT scans account for only 18 percent of proce-

dures performed, they contribute over 50 percent of this collective dose.[4] Because

increasing dose is of concern individually and collectively, efforts are being made to

quantify radiation dose delivered to individual patients, including dose delivered to

each organ, as well as average collective doses.[29, 58]

One approach that is favored is the use of Monte Carlo techniques to estimate

radiation dose.[60] Knowledge of the complex spectra character of CT emissions is

essential for Monte Carlo simulations of radiation transport and in the estimation of

organ doses.[57] All commercial CT scanners make use of filtration to harden the x-

ray beam. The proprietary aspect of the designs of shaped filters limits researcher’s

access to them and hence impedes accurate modeling of these spectra.

Turner et al described a method for estimating clinical CT-scanner spectra us-

ing half value layer (HVL) measurements and the bow-tie profile (exposure across the

12



fan beam) to determine an equivalent filter.[59] In this method, a “soft” tungsten-

target spectrum is simulated to be transmitted through a hardening material such

as aluminum. The composition and thickness of the material is varied until the

HVL of the candidate spectrum is matched as closely as possible to experimental

measurement along the central ray. The angle-dependent filtration path length of

additional aluminum is then determined using the ratio of measured exposure at a

given angle to the exposure along the central ray. While this method can estimate

the relative number of photons in the off-centerline spectra, because only one ma-

terial thickness is varied it cannot match both relative photon number and spectral

shape. Another method is discussed theoretically by Boone,[15] in which a radiation

monitor is placed at the periphery of the CT field, and kerma rate versus time is

used to extract angle-dependent bow-tie filter attenuation. By taking these mea-

surements at multiple kVp settings, an equivalent bow-tie filter can be estimated.

However, to date this work has not been demonstrated in the clinical setting, and

is limited by the need for a radiation monitor with high temporal resolution.

To properly frame the task addressed in the present work, it is important to

recognize that filter materials can be compared on two bases – “quantitative” equiv-

alence and “qualitative” equivalence. For two filters to be quantitatively equivalent,

they must decrease the measured air kerma by the same amount for a specified in-

cident x-ray spectrum. Quantitative equivalence, however, does not guarantee that

the transmitted spectra will have the same shapes. Two filters are qualitatively

equivalent if they result in transmitted spectra that have the same relative spectral

intensity distribution for a given incident spectrum, though not necessarily the same
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absolute intensity. It is the task here to generate qualitatively equivalent spectra

for use in Monte Carlo simulation.

In this section, we leverage published x-ray spectra, energy-dependent linear

attenuation coefficients and kerma conversion factors[24] to provide a simple method

of generating an equivalent bow-tie-shaping filter. First, we review the theory in-

volved in matching spectral measurements to generated spectra. We then investigate

with a simulated experiment the ideal accuracy limits of such an approach. Third,

we validate the approach by laboratory measurements on known filters. We then

generate an equivalent bow-tie-shaping filter evaluated from a clinical system and

the associated angle dependent spectra for use with Monte Carlo simulation.

2.2 Methods

2.2.1 Theory

To find a filter that is qualitatively equivalent to an unknown filter, we begin

with an empirical finding: the attenuation coefficients of any material whose K-

edge does not encroach on the energy range of interest can be written as a linear

combination of those of two other materials, provided they are sufficiently linearly

independent.[46, 7] That is, an appropriate combination of two materials can be

used to substitute for other materials in an x-ray path, and both resulting spectra

would have good agreement in shape and intensity.

We assume a priori knowledge of a spectrum as it exits the anode (i.e., without

any filtration whatsoever) from those of Report 78 of the Institute of Physics and
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Engineering in Medicine.[24] We denote the mAs-normalized x-ray photon fluence

of this unattenuated spectrum as Φ (number of photons/mm2 mAs). The air kerma

(Ka) produced by this spectrum is given by the expression:

Ka =
∫
k(E)Φ(E)dE, (2.1)

where k(E) is the energy-dependent conversion factor that can be obtained from

the literature. If there is an unknown attenuator between the x-ray tube and mea-

surement device, the expression is modified by the attenuator:

Ka =
∫
k(E)e−µunk(E)×TΦ(E)dE, (2.2)

where T is the equivalent thickness of the unknown attenuator. We can characterize

the unknown attenuator in terms of a combination of two materials. For basis

functions, we use the attenuation spectra of aluminum and polymethyl methacrylate

(PMMA), two materials commonly used in the fabrication of clinical CT filters:

Ka =
∫
k(E)e−µAl(E)×TAle−µPMMA(E)×TPMMAΦ(E)dE. (2.3)

Determining the two unknown thicknesses is an exercise in linear algebra.

2.2.2 Algorithm implementation

2.2.2.1 If mAs is known

In order to solve for TAl and TPMMA, at least two measurements of air kerma at

the scanner isocenter must be taken, one free in air and one with added Al filtration.

We evaluate expected air kerma per mAs versus notional thicknesses of PMMA and
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Al for both the free-in-air and added-filtration cases. After taking experimental

measurements of air kerma under the same respective conditions, using numerical

methods we select TAl and TPMMA such that expected values of Ka per mAs match

their corresponding measured values.

Figure 2.1 shows the contours of exposure in µGy/mAs associated with no-

tional thicknesses of Al and PMMA for a 120 kVp beam. Figure 2.2 shows the

contours of ratio of Ka after adding 10 mm of Al to Ka free-in-air. To solve for an

equivalent filter using this approach, the two experimental measurements define con-

tours on the two surfaces, and the intersection of the contours yields the thicknesses

of PMMA and aluminum, the combination of which corresponds to an equivalent of

the unknown filter.

2.2.2.2 If mAs is unknown

Typically, clinical CT scanners use a slot-scanning technique to acquire a pro-

jection image. Even though total mAs for the projection image is reported, this is

not necessarily the same as the mAs that corresponds to the portion of the beam

incident on the ionization chamber. A model for a bow-tie-shaped filter for Monte

Carlo simulations can be developed by matching the spectral shape at each angle

and the relative number of photons between the centerline and a given off-center

angle. From Figure 2.2 we see that given the ratio of Ka with and without added

filtration (determined for a particular angle), a range of different TAl and TPMMA

can generate the same spectral shape. The relative number of photons at each an-
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gle can then be determined by choosing TAl and TPMMA from one of the possible

values (as determined from the contours of Figure 2.2) at the centerline. From the

Ka per mAs (shown in Figure 2.1) that corresponds to the chosen TAl and TPMMA,

we determine a reference mAs which is then used to obtain the relative number of

photons at each off-center angle.

2.2.3 Simulated test case

A computer algorithm for solving equation (3) was implemented matching ex-

posure and percent decrease of air kerma following known added filtration. To test

the accuracy of this algorithm under ideal conditions, a test filter was modeled com-

putationally from 2 mm beryllium, 2 mm glass, 0.05 mm copper and 3 mm PMMA to

simulate some attenuating materials that could be used as filters in clinical systems.

This test filter was used to attenuate 80, 100 and 120 kVp tungsten anode spec-

tra. The calculated exposure and exposure decrement following additional filtration

were used to generate an equivalent filter of aluminum and PMMA. The spectra

that resulted following attenuation with the test filter were compared to the spectra

following attenuation with the equivalent filter estimated by our method, and per-

cent agreement is reported. Further, the equivalent filter thicknesses were compared

to one another to investigate the influence of kVp on the calculated filtration.
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2.2.4 Laboratory verification

In the laboratory, the algorithm was tested for its ability to recreate known

filters of PMMA and aluminum. The x-ray tube used is a Varian B180 (Varian

Corp., Salt Lake City, UT) with an inherent filtration of 1 mm Al. Air kerma

measurements were performed with a Radcal model 9010 radiation monitor with a

0.6 cm3 ionization chamber (Radcal Corp., Monrovia, CA), the smallest chamber

available to us. Four thickness combinations were used, summarized in Table 2.1.

The source-to-detector distance was 75 cm.

The process was repeated a second time without knowledge of mAs. The

measured filter material thicknesses were the same as those listed in Table 2.1. To

illustrate that the shape of the spectrum is constant on a contour line in Figure 2.2,

we selected three pairs of material thicknesses that would result in the measured

ratio of Ka with and without added filtration for the first thickness combination

(2 mm al, 10 mm PMMA). The resulting filtered spectra were all normalized by

area and compared with the expected spectrum resulting from the known filter

composition. We then calculated a “reference” mAs for each of the three estimated

thickness pairs. This was done by dividing the measured free-in-air kerma (in mGy)

by the free-in-air kerma (in mGy/mAs) taken from Figure 2.1. This reference mAs

was used to normalize the other free-in-air kerma measurements in the experiment

to units of mGy/mAs. This is done to fix the relative number of photons among

the filters. That is, using Figure 2.2 fixes the shape of each characterized spectrum,

and using the reference mAs and Figure 2.1 fixes the relative number of photons.
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2.2.5 Application to a clinical CT system

To study the practicability of implementation and plausibility of results asso-

ciated with a CT system used clinically, the algorithm was applied to characterize

the filtration associated with a Toshiba Aquilion 64 at Johns Hopkins University

Hospital. With the source in scan-projection mode and positioned horizontally to

reduce scatter from the patient couch, air kerma measurements at 120 kVp tube

voltage were taken at five points from the central ray toward the peripheral ray of

the fan beam, starting at the scanner isocenter and then going up +30, +60, +80 and

+110 mm covering the full field of view. Air kerma measurements were performed

with a Radcal model 9010 radiation monitor and a 0.6 cm3 ionization chamber. The

ionization chamber was supported by a long thin stand as far away as possible from

the patient couch to reduce scatter effects. Scan conditions of operation were those

for a CT perfusion scan (without movement of the patient couch) with a small field

of view, and so the small bowtie filter was in place. Air kerma was measured with

zero or 16-mm filtration of 99.5% pure aluminum at each point. The experimental

setup is shown in Figure 4.5. These measurements were used to calculate angle

dependent equivalent thicknesses of aluminum and PMMA, and interpolation was

used to create angle-dependent profiles of the aluminum and PMMA thicknesses

comprising an equivalent of the shaped filtration.
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2.3 Results

2.3.1 Simulated test case

The spectra computed from the test filter described in section 2.3 and from the

equivalent filter are shown in figures 2.4(a), 2.4(b) and 2.4(c). The distributions show

excellent matching qualitatively, so the percent agreement versus photon energy is

shown in figures 2.5(a), 2.5(b) and 2.5(c). The percent difference was not calculated

for energies lower than 20 kV because photon counts are low in this region. The

calculated thicknesses for equivalent aluminum and PMMA filters varied by less

than 5 percent.

2.3.2 Laboratory filtration matching

Calculated versus measured thicknesses of aluminum and PMMA are summa-

rized in Table 2.1. At most, the calculated thicknesses of aluminum deviate by less

than 6% from measured values, whereas the deviation of PMMA is larger, ranging

between 0.5 and 8.5%. For the result with the largest deviation, which was 3 mm

aluminum and 20 mm PMMA, the percent agreement between the spectra is shown

Figure 2.6.

With mAs unknown, we selected three points in Figure 2.2 that matched the

measured ratio of Ka for the first material thickness combination (2 mm al and

10 mm PMMA). TAl was set to 0.5, 1, or 2 mm, and the corresponding TPMMA was

found for each TAl. The resulting estimated spectra, normalized by area, are shown

in Figure 2.7(a). The reference mAs was calculated for each of the three estimated

20



thickness combinations, and was used to normalize the free-in-air kerma measure-

ments for the other measured material thickness combinations. Then their filtered

spectra were characterized, and are plotted in Figures 2.7(b), 2.7(c), and 2.7(d).

Though three spectra are plotted in each figure, they are almost indistinguishable.

To facilitate comparison, percent agreement with respect to energy is shown for

each material thickness combination in Figures 2.8(a), 2.8(b), 2.8(c), and 2.8(d).

In regions where photon counts were highest, percent agreement stayed within five

percent of the expected spectrum as calculated using the known thicknesses of fil-

tering materials, and even in regions with lower photon counts, percent agreement

stayed within 8 percent of the expected spectrum.

2.3.3 Representation of the bow-tie-shaped filter for a clinical CT

scanner

The measurements at the five points from a Toshiba Aquilion 64 were used to

calculate equivalent thicknesses of PMMA and aluminum, and a profile of the filter

was interpolated from these points. This profile is shown in figure 2.9.

2.4 Discussion

A method for determining angle-dependent equivalent filtration and spectra of

a CT scanner was developed and tested computationally, experimentally and with

a clinical CT scanner. For shaped filters used in CT, the method matches not only

decrement in intensity with changing angle, but also spectral shape, which cannot

21



Figure 2.1: The air kerma (nomalized as µGy/mAs) expected[24] at 75 mm follow-
ing attenuation of a 120-kVp x-ray beam by varying notional thicknesses Al and
PMMA representing the inherent plus bow-tie filtration. The boxes label curves
with constant values of mAs-normalized air kerma.

Filter Material Thickness (mm)

Measured Calculated

Al PMMA Al PMMA

2 10 2.01 10.05

3 10 2.99 10.85

6 10 5.78 10.48

3 20 3.16 18.75

Table 2.1: Measured thicknesses and calculated thicknesses of aluminum and
PMMA.
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Figure 2.2: Contours of the ratio of Ka after adding 10 mm of Al to Ka free-in-air
for a 120-kVp x-ray beam for different notional thicknesses of aluminum and PMMA
representing inherent plus bow-tie filtration. The boxes label curves with constant
ratios.

Figure 2.3: Schematic of measurements taken from a Toshiba Aquilion 64. The
scanner is in scan-projection mode to reduce scatter and attenuation from the patient
couch.
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Figure 2.4: Spectra computed from a simulated test filter (crosses) and the estimated
(Est) equivalent filter (squares) for (a) 120 kVp, (b) 100 kVp and (c) 80 kVp sources.
The simulated test filter is described in section 2.3.
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Figure 2.5: Percent difference between a simulated test filter and the estimated
equivalent filter for (a) 120 kVp, (b) 100 kVp and (c) 80 kVp sources. The simulated
test filter is described in section 2.3.
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be accomplished by varying one thickness alone.

This method is intended for designing accurate Monte Carlo models of clin-

ical CT scanners. Monte Carlo simulations can be used to estimate organ-specific

and peak doses from particular medical imaging studies. The method is quick and

easy to implement, as only two measurements per angle are needed. While knowl-

edge of mAs reduced inaccuracy in the calculated spectrum, the algorithm using

unknown mAs was demonstrated to be robust in that the calculated, normalized

angle-dependent spectra (section 2.3.2) are not sensitive to assumed starting thick-

nesses.

For off-central-ray thickness calculations, the source-to-isocenter distance must

be known. When making air kerma measurements with added filtration, care must

be taken to select a thickness that will attenuate enough radiation such that the low-

energy portion of the spectrum will not dominate the matching algorithm. However,

a thickness so great that eliminates most of the spectrum altogether is also not

desirable. Making multiple measurements with different added filtration and using

a least squares approach to average the multiple estimated spectra can increase the

accuracy of the fitted spectrum, but will simultaneously add to the data collection

effort.

2.5 Conclusion

We have developed a method to estimate the shape and thickness of materials

representing the attenuation of shaped filters used in clinical CT scanners. The
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method requires minimal equipment – a small ionization chamber and aluminum

filters, and it involves relatively simple computational algorithms. The approach was

tested in a laboratory and evaluated for an actual clinical system. Further collection

of data from more clinical scanners and a comparison of radial dose profiles from

simulations and experimental measurements are needed for additional verification.
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Figure 2.6: The percent difference in spectra resulting from a test filter with 3 mm
Al and 20 mm PMMA and the calculated equivalent 3.16 mm Al and 18.75 mm
PMMA.
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Figure 2.7: The spectra resulting from the unknown mAs algorithm. The measured
test filters were: (a) 2 mm Al and 10 mm PMMA, (b) 3 mm Al and 10 mm PMMA,
(c) 6 mm Al and 10 mm PMMA, and (d) 3 mm Al and 20 mm PMMA. In each
plot there are four spectra - the reference expected spectrum (ref) from the known
material thicknesses and the three spectra characterized using a different starting
point in Figure 2.2. The spectra are normalized by the area of the spectrum in plot
(a) such that a relative emission probability of photons by energy and “angle” was
determined.
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Figure 2.8: The percent difference among spectra calculated using the unknown
mAs algorithm and assumed Al thickness in the first filter of 0.5, 1 , and 2 mm.
The measured test filters were: (a) 2 mm Al and 10 mm PMMA, (b) 3 mm Al and
10 mm PMMA, (c) 6 mm Al and 10 mm PMMA, and (d) 3 mm Al and 20 mm
PMMA.
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evaluated data points. PMMA is shown as a solid line, whereas aluminum is shown
as a dashed line.
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Chapter 3

Measuring Dose

3.1 Overview

3.1.1 CTDI metrics

The fundamental dose metric from which the most common modern CT dose

metrics are defined is the Computed Tomography Dose Index.[56] CTDI is defined

as:

CTDI =
1

nT

∫ ∞
−∞

D1(z)dz, (3.1)

where D1(z) is the dose as a function of position along the z axis coordinate for a

single scan dose profile at a given point in the x and y plane, divided by the slice

thickness T and number of images n, as stated by the manufacturer. The CTDI

value represents the integral under the z-axis radiation dose profile of a single scan

to produce 1 tomographic slice of the volume of interest. Measuring the pure CTDI

is very time consuming, meaning it is rarely performed.

For this reason, a more convenient variant, the so-called CTDI100, is now

regularly used as a quality assurance measurement. It is defined by the Interna-

tional Electrotechnical Commission (IEC) and American Association of Physicists

in Medicine (AAPM) as:

CTDI100 =
1

nT

∫ +50mm

−50mm
D(z)dz, (3.2)
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using 100 mm active length pencil ionization chambers to measure the exposure

along the central axis and at the periphery (1 cm below the surface) of polymethyl

methacrylate (PMMA) cylindrical phantoms. A photograph of the instrumentation

involved in collecting the CTDI100 is shown in Figure 3.1.

3.2 Longitudinal Dose Profiles

3.2.1 Introduction

The advent of multislice computed tomography (MSCT) allows for faster imag-

ing studies using wider x-ray beams.[33] The penalty paid for this ease of imaging

is an increased exposure of the patient population to ionizing radiation.[30] Ac-

curately characterizing radiation dose delivered to patients becomes a concern as

the maximum beam width of some of these machines tends to become wider than

the 100-mm charge-collection length of the pencil ionization chamber conventionally

used in CT dosimetry to measure the computed tomography dose index (CTDI100),

the current dose metric.[13] Alternatives to the CTDI100 evaluation have been sug-

gested, including applications of a conventional ionization chamber[26] and using a

larger phantom[48]. Dixon et al[26] suggest using a small ionization chamber and

translating the phantom through the tomographic plane, in effect integrating the

same amount of dose as would be collected by a stationary pencil chamber of length

equal to the translation distance. While this method allows one to overcome the

length limitation of the pencil chamber, the phantom must still be long enough to

allow for the generation of a distribution of scatter radiation sufficiently broad to be
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considered clinically relevant. In the present work we develop size specifications for

the design of a cylindrical phantom that can be used for dose evaluation of CT scan-

ners. Specifications are determined such that the phantom incurs approximately the

same dose as would an infinitely long cylinder, but yet is of a size and weight that

a person can carry. These determinations are made by simulating dose profiles in

cylindrical phantoms using the PENELOPE Monte Carlo package.[54, 51] Addition-

ally, we investigate a previously developed semi-empirical computational model that

allows one to represent the dose profile corresponding to abeam of arbitrary width.

3.2.2 Methods

3.2.2.1 Simulated CT scanner

Fig. (3.2(a)) and (3.2(b)) shows the setup of the generic CT system used for

the simulations. A two-dimensional detector was modeled. Due to the cylindri-

cal symmetry of the phantom, only one projection is simulated, i.e. there was no

modeling of multiple projections through a 360-degree rotation. The focal spot and

detector plane are each separated from the isocenter by 60 cm. The phantom sym-

metry axes intercept the isocenter, and the axis of cylindrical symmetry is aligned

along the axis of rotation of the scanner. In the simulations the beam originates

from a focal spot modeled as a point source of rays collimated with lead (that is

100% attenuating), and this modeling allows for a variable beam width along the

z-axis while limiting the x-axis width to the phantom diameter. Bow-tie shaping

filtration was not modeled in the simulations.
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3.2.2.2 Phantoms

The phantoms are modeled as polymethyl methacrylate (PMMA) cylinders

described mathematically with quadric surfaces, of diameters 10, 16, 20, 24 and 32

cm in the xy-plane and lengths 15, 30 and 300 cm along the z-axis. For the pur-

poses of these simulations, 300 cm is deemed to be sufficiently long such that the

magnitude of the radiation-scatter tails of the dose spread function (DSF) at the

extremities is essentially “zero”. The diameters were chosen to reflect and expand

on those currently in use for evaluation of dose. PMMA was selected because it is

commonly used for the reasonably acceptable similitude of its attenuation proprties

to that of human tissue and because it is a convenient medium for comparison to

CTDI100, as PMMA is required for conventional CT dosimetry in U.S. and inter-

national standards.[22] For dose evaluation, each cylinder was divided into energy-

deposition sub-volumes comprised of concentric regions of 2 mm thickness. Along

the z-axis, the cylinder was divided into 1 mm sections for most cases; but for the 10

micrometer beamwidth simulation the cylinder was divided into 0.03 mm sections

along z.

3.2.2.3 Monte Carlo simulations

The PENELOPE[54, 51] Monte Carlo radiation transport code was used for

all simulations in this study. The code has been extensively validated,[55] so direct

validation was not performed here. A radiographic projection of each cylinder was

created with an x-ray source was modeled as a cone beam (of the same cone angle
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for all collimations) originating from a point focal spot at a source-to-cylindrical

symmetry axis distance of 60 cm. Tube-current modulation was not modeled. The

x-ray energy spectrum was provided in a look up table and was based on a 120-

kVp source filtered with 3 mm thick aluminum (Fig. (3.2(c))). Beam width at the

isocenter was varied among the following values at the isocenter: 0.01, 0.1, 1, 10, 20,

50, 100, 150, 200, 300, 400, 500, and 600 mm. A total of 1 × 109 incident photons

were simulated for most projections, while 2 × 1010 photons were used for the 0.01

mm beam widths to reduce statistical uncertainty.

3.2.2.4 Determination of phantom lengths

For each diameter, the length of the phantom was chosen to be twice the

distance from the maximum of the dose profile to its 5% level. This criterion es-

tablishes practicable design lengths of phantoms and, for scanning at any particular

collimation, ensures that each phantom is long enough to incur neraly all of the dose

that would be distributed along the length of an infinitely long cylinder.Establishing

design lengths this way was done for each beam width for each phantom diameter.

3.2.2.5 Dose-profile reconstruction theory

The mathematical construction of dose profiles has been discussed at length

previously[14], and so only the main points are summarized here. The dose pro-

file of a given x-ray beam can be conceptualized in terms of two components - the

contribution from primary scattering (that is, the spatial distribution of dose asso-
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ciated with primary-photon-generated photoelectrons and Compton electrons) and

the contribution from secondary scattering (photo- and Compton-electron energy

deposition following transport of Compton and Rayleigh scattered secondary pho-

tons). While the dose profile can be reconstructed with sufficient knowledge of these

components, the primary beam model can be very complicated, especially if one in-

cludes the heel effect and tilted anodes of clinical CT systems.[27] However, since

the objective of our study is to broadly characterize how dose profiles are related

to scattering-medium dimensions as a function of beam width, the heel effect and

anode tilt are a second-order concern not incorporated in to the modeling.

In addition to explicit modeling of collimated ray geometry and Monte Carlo sim-

ulation of transport, we investigated the application of mathematical convolution

as an alternative method to compute dose profiles.For this purpose we modeled the

primary beam as a pulse of dimensionless unit height and width equal to the beam

width at the isocenter. This function describes the source in an ideal way as a

homogeneous, contiguous distribution of rays incident in effect perpendicular to the

x-z plane, i.e. approximating primary photons incident on the phantom in parallel

rays originating from a point inginitely far away.

The scatter model is developed by taking advantage of the shift invariance of scatter-

radiation generation along the longitudinal axis of a uniform, cylindrical phantom.[9]

A very-narrow-slit beam of primary radiation can be used to probe the local scat-

ter response via Monte Carlo computation, and this response function can then be

applied as the kernel of a convolution representation of the axial dose profile. Thus,

with our simulation results and primary-beam model, a dose profile associated with
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a beam of width w can be represented as a convolution (denoted the asterisk):

D(z) = a× S(z) ∗H(z) (3.3)

where dose profile D(z) corresponds to the average dose incurred over the phan-

tom circular cross section located at z, where S(z) is the scatter kernel evaluated

through Monte Carlo simulation, and where H(z) represents the primary beam,

mathematically described with a Heaviside function in first approximation:

H(z) = 1, |z| < w

2
,

H(z) = 0, |z| > w

2
, (3.4)

The coefficient a is a scaling factor that allows for comparisons to results of PENE-

LOPE simulations or to those of experimental measurement.

3.2.3 Results

3.2.3.1 Dose profiles constructed via explicit modeling of collimated

ray geometry and Monte Carlo simulation

The cross sectional average dose profiles in the 32 and 16 cm diameter phan-

toms obtained from direct Monte Carlo simulation, i.e. not involving the convolution

of a scatter kernel and primary beam, are plotted in Fig. (3.3). These particular

figures are representative of the plots corresponding to the other phantoms as well.

Dose data were collected only within the phantoms and hence are not reported for

values of z extending beyond phantom lengths. The scattered tails fall off asymptot-

ically with distance from the primary-beam sections. In the 15 cm long phantoms,
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the dose tends to saturate with increasing beam width much more quickly than in

the longer phantoms. Moreover, the maximum value reached is lower than in the

longer phantoms. These trends suggest that the scatter-radiation contribution that

would otherwise accrue in longer phantoms is being lost beyond the 15-cm long

phantom longitudinal bounds, which in turn implies that the dose values in this

phantom do not scale with larger beam widths. The dose profiles associated with

the 300 cm long phantoms provide insight into the approach to peak dose equilib-

rium, the condition in which the collimator is opened so wide that scatter radiation

associated with rays incident through the collimator near its edges originates in the

phantom too far away to make more than a negligibly small additional contribution

to the peak dose. For the 32 cm diameter cylinder, the 15 cm long phantom reaches

an equilibrium peak dose of 85% of that of the 300 cm long phantom, whereas the

30 cm long phantom reaches an equilibrium peak dose of 97% of the 300 cm long

phantom. For the 16 cm diameter cylinder, the equilibrium peak doses of the 15 cm

long and 30 cm long phantom are 92% and 99%, respectively, of that of the 300 cm

long phantom.

3.2.3.2 Dose-length integral

The net loss of scattered radiation leaving finite-length phantoms through

their surfaces affects not only the approach to equilibrium and the magnitude of

the plateau of dose profile, but also dose-length integral that would be measured

in a phantom. The ratios of dose-length integral (DT ) between the shorter cases

(DT,15, DT,30) and long case (DT,300) are summarized in Tables 3.1 and 3.2 for the
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16 and 32 cm diameter phantoms, respectively. The results show that under these

conditions, increasing beam width results in a growing discrepancy between the

dose-length integrals for shorter cylinder vs. longer cylinder. In the 30 cm long

phantom case, the ratio of dose-length integral stays relatively constant until the

beam width begins approaches 15 cm, while in the 15 cm long phantom case the

ratio of dose-length integral is relatively constant until the beam width approaches

5 cm. Even when the beam width is shorter than the phantom length, 8-12% of the

dose-length integral associated with a 300-cm long phantom would not be registered

by a 15 cm long phantom.

3.2.3.3 Phantom Design-Length Determination

The phantom design length is defined as twice the distance along z from the

maximum of the dose profile to its 5% level. Results are plotted in Fig. (3.4) and

they demonstrate that the scattered tail causes the dose profile to be much larger

along the z axis than the primary beam width. Moreover, the range of the 5%

maximum dose increases with increasing beam width. After an initial phase up to

8 cm beam widths, the length necessary to fully characterize the dose profile grows

linearly with increasing beam width.

3.2.3.4 Scatter kernel

The scatter kernel is determined by simulating a very thin beam (in this case

10 µm), in the 300 cm long phantom. The output dose profile of this simulation
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Figure 3.1: Instrumentation involved in the measurement of CTDI100. Pictured
is the 100 mm ionization chamber, and a 16 cm diameter head phantom. The
ionization chamber is equipped with a sleeve to minimize the air gap when it is
inserted into the measurement hole, and the holes not in use are plugged with
PMMA rods to eliminate any air gaps.

Beam width (cm) DT,15/DT,300 DT,30/DT,300

1 0.912 0.986

2 0.912 0.986

5 0.906 0.986

10 0.885 0.983

15 0.837 0.978

20 0.661 0.969

30 0.448 0.922

40 0.344 0.738

50 0.282 0.606

60 0.243 0.521

Table 3.1: Ratio of dose-length integral in 16 cm diameter phantoms between the
15 and 30 cm long cases and the 300 cm long case for given beam width.
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(a) (b)

(c)

Figure 3.2: (a) Geometry of the simulated system. (b) Schematic representation of
a phantom with dose profile superimposed. (c) X-ray spectrum simulated.

Beam width (cm) DT,15/DT,300 DT,30/DT,300

1 0.837 0.965

2 0.836 0.965

5 0.831 0.964

10 0.813 0.960

15 0.776 0.953

20 0.674 0.943

30 0.457 0.904

40 0.351 0.788

50 0.289 0.649

60 0.250 0.560

Table 3.2: Ratio of dose-length integral in 32 cm diameter phantoms between the
15 and 30 cm long cases and the 300 cm long case for given beam width.
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Figure 3.3: Cross-sectional average energy deposited per unit mass per incident-
photon history along z-axis of PMMA cylinders. In the left column the phantom
has a diameter of 16 cm and in the right column 32 cm. The phantom lengths are
15 cm in the first row, 30 cm in the second row and 300 cm in the third row. The
beamwidths corresponding to each curve (from smallest to largest) are 1, 2, 5, 10,
15, 20, 30, 40, 50 and 60 cm.
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is taken to be the scatter response for the given system. The scatter kernel is

normalized by area, such that integrated dose is 1 dimensionless unit. This is shown

in Fig. (3.5). The figure shown is the scatter response from the 16 cm diameter

cylinder, and it is representative of those from other diameter phantoms as well.

The extent of these curves along the central axis was selected so as to not limit

the reconstruction of the dose profile via convolving - i.e. these values are large

enough so that the scatter contribution a large distance z from the primaries was

approximately zero.

3.2.3.5 Dose profiles via convolution

Applying the results of the previous section and Eqs. 3.3 and 3.4, we con-

structed convolution-derived dose profiles with beam widths varying from 1 to 60

cm (Fig. (3.6)). These plots should correspond to Fig. (3.3) (e) and (f). Qualita-

tively, the curves differ in shape at the shoulders. For direct comparison, some of

the convolution-derived dose profiles for the 16 cm diameter phantom are compared

in Fig. (3.7) to those obtained by direct Monte Carlo simulation. Differences in peak

dose values (including results not shown in Fig. (3.7)) do not exceed 3%. Differences

in dose-length integrals range between 5 and 7%.

3.2.4 Discussion

In order to design phantoms that would reasonably represent the build-up and

distribution of dose incurred in patients of computed tomography, we used Monte
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Carlo techniques to estimate dose profiles as a function of beam width and phantom

diameter. The resulting design lengths suggest that for the relatively wide beam

widths associated with MSCT, phantoms longer than 14 to 15 cm long phantoms

currently used in CT dosimetry are necessary to include most of the contribution

from scatter radiation. However, when cylinders with smaller diameters are consid-

ered, shorter lengths are possible. For the current generation of scanners with z-axis

coverage of 4 to 8 cm, the 16 and 32 cm phantoms require design lengths between

20 and 30 cm. The findings in Tables 3.1 and 3.2 support the idea of designing

relatively longer phantoms for more accurate dosimetry: dose-length integrals are

approximately constant until the beam width exceeds a threshold value. When the

beam width exceeds such a threshold, the phantom is insufficiently long to generate

the spatial disposition of scatter energy that would occur in a patient, and some

of these contributions to the dose-length integral are lost. Such losses occur when

beams incident on 15 to 30 cm long phantoms exceed widths between 15 and 20

cm. Fig. (3.4) suggests a slope (phantom length/beam width) of 0.93 for the 16 cm

diameter phantom and 0.87 for the 32 cm diameter phantom, values which imply

phantom masses of over 60 kg for very wide beams.

While phantoms that heavy argue against the prospect of their widespread use,

convolution-based construction of dose profiles suggests a potentially more prac-

ticable alternative. Our results demonstrate that dose profiles reasonably similar

to those derived from direct Monte Carlo simulation of suitably-modeled beam-

phantom irradiation geometry can be constructed from a Monte Carlo-simulated

scatter kernel convoluted with a simple model of the primary beam as a box func-
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tion appropriately normalized to the actual magnitude of emissions from a scanner.

To estimate the height of this box function, one could insert filtration equivalent

to that of the phantom PMMA and air between the source and a small ionization

chamber. Measuring the dose in air at this point gives the height of the primary

input function. The dose profile for any particular beam width can be estimated by

means of such convolution, and it would approximately represent actual dose profile

so long as the simulation used to construct the scatter kernel matches the actual

scatter for such a system.

This convolution-based approach would reduce the amount of bulky equipment a

medical physicist would need to carry in the clinical setting for quality assurance

measurements. Limitations of the convolution construction include a systemic over-

estimation of dose associated with the modeling of the primary beam. A geometric

argument can be made, especially for larger beam widths, that the incident beam

is not comprised of parallel rays. Acutely-angled rays traveling through the phan-

tom then would involve irradiating areas non-uniformly in the x-y and x-z planes.

Under such circumstances, one would expect to see a smoothing out of the dose

profile shoulders with respect to those evident in the results associated with our

simplistic model of primary beam, which is exactly what is seen in the more com-

pletely modeled Monte Carlo simulation results. One could refine the simple model

of the primary beam with geometric adjustment factors. For example, a cosine or

trapezoidal function would be starting points, and one could then approach the com-

plexity of the model of Dixon et al.[27] Kyprianou demonstrated how to ray-trace a

cylinder to extract a primary function.[45] While this approach also assumes parallel
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rays, it should also be better than that of a box function. Finally, this convolution

method is also limited by the ability to realistically simulate output of actual CT

scanners used clinically. A conversion factor between Monte Carlo simulations and

clinical CT systems is needed (e.g., either by normalizing measurements with respect

to the same simulation dose in air or by calculating a conversion factor relating the

number of specific histories to the mAs for each system).

3.2.5 Remarks

We examined two alternative methods for MSCT dosimetry and have shown

that the approach using longer phantoms is relatively more accurate, but limited

in practicality by the sizes and weights that would be involved. The convolution-

based approach would be practical and simple to implement, but the accuracy of

this method is not yet sufficient for quality-assurance purposes.

3.3 Radial Dose Profiles

3.3.1 Introduction

The proliferation of third generation CT scanners in the late 1970s necessitated

a reliable and reproducible method for reporting radiation exposure or dose delivered

by those systems. One such metric was the Computed Tomography Dose Index

(CTDI).[56] A variant of the CTDI100, the weighted value of CTDI (CTDIw), is

defined as

CTDIw =
1

3
CTDIc +

2

3
CTDIp, (3.5)

47



where CTDIc and CTDIp denote the CTDI at the center and periphery of the

phantom, respectively.

Recently, the ability of the CTDI metric to reflect dose to patients undergoing

CT imaging in systems with larger beamwidths has been questioned.[13, 26, 48] Some

have looked at the efficiency of the CTDI100 with increasing beamwidths, finding

that the efficiency falls as the beamwidth exceeds the charge collection length, but is

relatively flat when the beamwidth is smaller than the charge collection length.[13]

Others have looked using a shorter ionization chamber or a longer phantom when

making measurements of dose to increase the efficiency of CTDI100 or replace it with

another metric altogether.[26, 48] Another work chose to examine the selection of

weighting factors in the CTDIw using geometrically formulated arguments.[8] This

approach argues that the central axis dose is underrepresented in the current CTDIw,

and that other weighting factors should be used.

We have previously used Monte Carlo simulations to investigate the dose pro-

files along the longitudinal axis of cylindrical phantoms.[5] The primary purpose of

this work is to investigate dose profiles in the radial (or axial) plane of a cylindrical

phantom. We perform a range of simulations to report the relationship between

CTDIw and the total energy deposited in the phantom. The dose profiles versus

radial distance from the center of the phantom are examined to gain insight into the

weighting factors used in CTDIw. Finally, we investigate the effect of the diameter

of the phantom on the radial behavior of the dose profile.
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3.3.2 Methods

The phantoms were modeled as polymethyl methacrylate (PMMA) cylinders

described mathematically with quadric surfaces, of diameters 16 and 32 cm in the

xy-plane and length 300 cm along the z-axis (see Fig 3.8). For the purposes of these

simulations, 300 cm was deemed to be sufficiently long such that the magnitude

of the radiation-scatter tails of the dose spread function (DSF) at the extremities

was essentially “zero.” PMMA was selected because it is commonly used for the

reasonably acceptable similitude of its attenuation proprties to that of human tissue

and because it is a convenient medium for comparison to CTDI100, as PMMA is

required for conventional CT dosimetry in U.S. and international standards.[22]

For dose evaluation, each cylinder was divided into energy-deposition sub-volumes

comprised of concentric annular regions of 1 cm thickness. Along the z-axis, the

cylinder was divided into 1 mm sections along z. In addition to the concentric rings,

dose was recorded to two CTDI-like regions-of-interest. These were two 10 cm long

rods with diameter 1 cm within the phantom. They were located at the center,

modeling CTDI100,c, and the periphery, modeling CTDI100,p, of the phantom (see

Fig 3.9). The periphery region of interest was positioned such that the symmetry

axis of the rod was 1 cm below the surface of the phantom.

The PENELOPE[54, 51] Monte Carlo radiation transport code was used for

all simulations in this study. 360 radiographic projections (rotated 1 degree for

each projection) of the cylinders were created with an x-ray source modeled as a

cone beam (of the same cone angle for all collimations) originating from a point
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focal spot at a source-to-cylindrical symmetry axis distance of 60 cm. The x-ray

energy spectrum was provided in a look up table and was based on a 120-kVp source

filtered with 3 mm thick aluminum. Beam width at the isocenter was varied among

the following values: 1, 5, 10, 15, and 20 cm. A total of 1 × 108 incident photons

was simulated for each projection, resulting in uncertainties (defined as two standard

deviations) of less than 1 percent.

3.3.2.1 Laboratory calibration and verification

Our Monte Carlo simulations results are tabulated in values per history. In

order to convert these values to per mAs, we devised a simple experiment. Using

published KERMA conversion factors, we calculated the KERMA expected from our

simulated spectrum in mGy per mAs.[24] We then ran a Monte Carlo experiment

under the same conditions, with the results in mGy per history. Division gave us a

conversion factor (specific to these conditions) of histories per mAs.

To validate that our results were reasonable, we constructed a cylindrical phan-

tom with diameter 16 cm and length 45 cm. A hole with 1 cm diameter was drilled

in this phantom parallel along the long axis of symmetry at the center. 1 cm tall

plugs that fit the hole were also constructed. The phantom was placed on a stage

60 cm from an X-ray tube (a Varian B180 with an inherent filtration of 1 mm Al

with 0.3 and 0.6 mm nominal focal spots) with 2 mm Al additional filtration. A

Radcal model 9010 radiation monitor with a 0.6 cm3 ionization chamber (Radcal

Corp., Monrovia, CA) was placed at the bottom of the center hole. The phantom
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was rotated through 360 degrees with 30 total exposures as dose was collected. Fol-

lowing the 360 degree rotation, the ionization chamber was removed, a 1 cm tall plug

was placed in the center hole, and the ionization chamber was reinserted. Following

each rotation of data collection, another 1 cm plug was inserted and thus a z-axis

dose profile at 1 cm intervals was recorded. This experiment was modeled in our

Monte Carlo simulation, and a continuous curve of dose along z was tabulated. The

Monte Carlo results were converted to mGy per mAs using the technique described

above. Because the ionization chamber was of a defined size, and also the possibil-

ity of imperfect positioning, the experimental measurement was actually the dose

profile convolved with a 2 cm wide, off-center box function. For this reason, the

simulated data was convolved with a 2 cm wide, off-center box before comparison

with the experimental data. The degree of the offset of the convolution kernel was

determined using iteration and minimization of the mean absolute percent difference

between the simulated curve and experimental data.

3.3.2.2 CTDIw versus total energy deposited in the phantom

The dose delivered to each of the two ROIs was estimated for each projection

angle. The sum of all 360 doses for each ROI was taken to be a CTDI100-like

measurement for a single axial rotation of the source at the center of the phantom,

i.e. the CTDI100,c and CTDI100,p. CTDIw was then calculated according to Equation

3.5.

Total energy deposited in the phantom was also estimated. Total energy was
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used instead of dose as dose is dependent on the size of the phantom (a larger

phantom would result in a “smaller” dose because of division by a larger volume).

The ratio of CTDIw to total energy deposition was calculated for each beam width

simulated and examined for trends. Additionally, different weighting factor sets were

used to calculate other CTDIws to examine the effect of weighting factor choice.

3.3.2.3 Radial profiles of dose

Dose deposition was recorded within the 32 cm diameter phantom in bins

divided radially (concentric annular rings) and along the z-axis, as described above.

Because of the symmetry of the annular rings, dose was collected for one projection

only. The dose estimates were plotted for each simulated beam width, and fitting

functions were tested. The fitted functions were used to examine possible changes

to the weighting factors in Equation 3.5.

3.3.2.4 Influence of phantom size on radial profile

The experiment described in section 3.3.2.3 was repeated with a 16 cm diam-

eter phantom. The shape of the radial dependence of the dose profile was compared

to that from the 32 cm diameter phantom. The differences in radial dependence of

dose for different diameter phantoms are reported.
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3.3.3 Results

All simulations were run on nodes of a supercomputer cluster, requiring ap-

proximately 2 hours of run time per projection.

3.3.3.1 Laboratory verification

The calibrated Monte Carlo results and the laboratory measurements for the

center hole is shown in Figure 3.10. The experimental data points match well with

the simulated curve. Minimizing the mean absolute percent difference between the

two revealed a positioning error in the experiment of 0.52 cm, with a mean absolute

percent difference of 9%. The manufacturer of the ionization chamber states a

calibration uncertainty of 4% and energy dependence of 5%. Taking these values

into account with possible alignment errors means it is reasonable to assume a good

match.

3.3.3.2 CTDIw versus total energy deposited in the phantom

The dose to the ROIs versus projection angle is shown in Figures 3.11 and

3.12. The dose to the periphery shows sinusoidal behavior, while the dose to the

center is flat, as expected. The average of the data points in Figures 3.11 and 3.12

represent the CTDI100,p and CTDI100,c, respectively.

The ratio of CTDIw to total energy deposited versus beamwidth is shown in

Figure 3.13. CTDIw is in units of mGy per mAs, and total dose is in units of Joules

per mAs, therefore the ratio calculated here is in units of inverse kilograms, but
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this is not taken to mean that it depends on the mass of the phantom. The ratio

stays flat until the beam width begins to exceed the length of the ROI, which in the

clinical setting would correspond to a beam width longer than the charge collection

length of the ionization chamber. On the same plot, the ratio is shown for two

other sets of weighting factors. The curves have the same shape, but are of differing

magnitude.

3.3.3.3 Radial profiles of dose

The experiment described in section 3.3.2.3 resulted in a dose profile in two

(cylindrical) dimensions: r and z. For visualization of general trends, contour plots

of dose versus radius and z-location are shown in Figure 3.14. Plots of dose vs. radius

at certain z-axis locations for each simulated beam width are shown in Figure 3.15

corresponding to the dashed lines superimposed on the plots in Figure 3.14. The

dose curves do not show behavior that follows a straight line fit. In fact, a linear

least-squares fit resulted in a coefficient of determination under 0.85. Rather, in

the regions within the primary irradiation zone, the curves are fit much better by

a polynomial. Through iteration of least-squares-fit with polynomials of increasing

order, it was found that the coefficient of variation of the fit plateaued with a third

order polynomial. However, even with a second order polynomial, the coefficient of

determination of the fit was over 0.995. In the transition regions where z-location

shifted from inside to outside of the primary irradiation beam, the behavior of the

dose profile versus radius was much less predictable. As z-location deviated further
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from the center of the beam, the dose closer to the periphery was the first to fall,

resulting in a flattening of the curve. At z-locations outside the primary beam width,

the radial shape of the dose profile became essentially flat, though still non-zero.

The behavior with changing z-locations in this region is analogous to the results

discussed in a previous work.[5] The peak dose at the center and periphery did

not behave in the same ways with increasing beam width. The peak dose at the

periphery increased with beam width until reaching a plateau when beam width

equaled 15cm. The peak dose at the center did not reach a plateau within the beam

widths simulated. This behavior fits with a previous discussion of the scatter kernel

at different r-locations.[13]

3.3.3.4 Influence of phantom size on radial profile

The same experiment as above was repeated with a cylinder of diamter 16 cm.

The results are shown in Figures 3.16 and 3.17. The r-dependence of the dose profiles

remained more accurately modeled by a polynomial than a linear fit (coefficients of

determination of 0.996 and 0.9, respectively). With z-locations that deviated from

the center of the irradiating beam, the dose profiles exhibit the same “peeling off”

behavior noted for the larger diameter phantoms.

3.3.4 Discussion

The first goal of this work was to examine the relationship between CTDIw

and the total amount of energy deposited in the phantom. In figure 3.13 it was
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shown that the ratio of CTDIw to energy deposited stayed constant until the beam

width exceeds the length of the CTDI-like regions of interest. The shape of these

curves follows closely the plots of CTDI100 efficiency previously published.[13] The

question that naturally follows is: what influence do the weighting factors have on

this curve? It has previously been argued that the reason the CTDI100 efficiency

does not fall off more precipitously with beam widths between 1 and 10 cm is due

to the changing nature of the dose profile. While, at increased beam width, more

scattered radiation does not fall within the CTDI-like region, there is more overall

radiation deposited from primary radiation in this region. It is believed that this

counterbalance of effects leads to the stability of the CTDI metrics at smaller beam

widths.[13] Due to the similar nature of the scatter tails along z at the center and

periphery (as seen in Figure 3.15) it was expected that varying the coefficients in

the CTDIw equation will not have a large effect on the shape of the ratio curve.

However, because the CTDI100,p is larger in magnitude than CTDI100,c, it was also

expected that changing the coefficients would effect the magnitude of the ratio curve.

Indeed, this was found to be the case as shown in Figure 3.13.

With this in mind, the next goal was to determine what the weighting factors

should be to estimate the total dose to the phantom. If one has knowledge of the

radial profile of the dose deposition in the cylinder, then the average dose to the

whole cylinder is:

DT =

∫ R
0 D(r)dr∫ R

0 dr
, (3.6)

Where R is the radius of the cylinder, and D(r) is the dose profile in versus radial
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postion. This is a cross-sectional average of the dose in the cylinder, and the de-

nominator is necessary to keep units consistent when taking a spatial average. If

we assume the dose profile is linear with respect to radius, then after integration

and simple arithmetic, the resulting weighting factors are both 1/2, the same as

proposed in other work.[8] Inclusion of a bow-tie-shaping filter in the CT system

might result in a more linear radial dose profile, but this is not necessarily the

case for all systems (e.g. cone beam/flat panel based systems). In the absence

of a bow-tie-shaping filter, we have shown that the dose profile is more akin to a

quadratic polynomial. Fitting a quadratic polynomial to the dose curve requires at

minimum three measurement points. After introducing a third measurement point

(the CTDIm from the AAPM body phantom, for example) integrating Equation 3.6

and solving the three simultaneous equations results in a much more complicated

formula for dose:

DT =
Rp(CTDI100,pRm(3Rm − 2Rp)− CTDI100,mR2

p + CTDI100,c(3R
2
m − 4RmRp +R2

p))

6Rm(Rm −Rp)
,

(3.7)

with Rp and Rm being the radial location of the periphery and middle holes, respec-

tively.

Dose profiles in the radial direction are not always linear, and a quadratic

fit forces the inclusion of a third measuring point and more complicated weighting

factors. It is therefore reasonable to ask if there are other ways to use the same

data. If using the CTDIw as a QA/QC measurement, it might be more useful to

report the periphery and center doses individually. This is because in the QA/QC
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setting, the CTDI measurements are used to verify two things: the total energy

output of the scanner, and the performance of the bow-tie-shaping filter. In this

setting, relative doses are used to inform the operator about the function of the

filter, while the absolute values of the doses inform about the scanner’s total energy

output. For shorter scan lengths, we have shown that one could use CTDIw as

a proxy for total energy deposited, as the ratio between the two states constant

until beam widths exceed 10 cm. A further advantage of reporting two values is in

estimating the patient’s skin dose. It is reasonable to assume that the CTDI100,p is

a better indicator of skin dose than CTDI100,c or CTDIw.

What is not addressed in this work is the relationship between these measures

and risks of interest in the health care setting, such as patient dose or effective

dose. While it was postulated that CTDI100,p might be a better indicator of skin

dose that the other measurements investigated here, a direct relationship between

CTDI100,p and skin dose was not examined. In order for these values to be useful in

that setting, the relationship between deterministic or stochastic effects and these

values must be investigated. Additionally, though the effect of the bow-tie filter on

radial dose profiles was speculated at, it was not directly simulated.

3.3.5 Conclusion

It was shown that for current clinical CT scanners, the CTDIw is a mea-

surement that will stably reflect the total dose to the cylindrical PMMA phantom.

Further, the weighting factors necessary for the CTDIw to reflect the average total
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dose to the phantom were calculated based on two radial dose profiles: linear and

quadratic. We conclude the the CTDIw is a robust engineering QA/QC metric, but

more investigation is needed regarding health care metrics for tracking dose and risk

for patients undergoing procedures.
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% of maximum for given phantom diameter. The trend lines are second order
interpolations.
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Figure 3.5: Scatter dose profile for 16 cm diameter, 300 cm long phantom (a) in
linear scale and (b) in logarithmic scale. These plots are normalized to unit area
and are representative of those of the other diameter phantoms.
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Figure 3.6: Dose profiles in the (a) 16 and (b) 32 cm diameter phantoms. These
plots are comparable to those of Fig. (3.3) (e) and (f). The primary-radiation beam
widths corresponding to the curves from smallest to largest are 1, 2, 5, 10, 15, 20,
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(a)

(b)

Figure 3.8: Schematics representing the modeled experiment. The PMMA phantom
is 300 cm long in the z-axis, and a collimated x-ray source rotates about it 360
degrees. Thickness t is the beamwidth at the isocenter.
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(a)

(b)

Figure 3.9: Depictions of the CTDI-like regions of interest. There are two CTDI-like
ROIs where the dose is recorded - in the center and at the periphery. They are 10
cm along the z-axis, with diameter 1 cm. The center of the periphery ROI is located
1 cm below the surface of the phantom.
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Figure 3.10: Comparison of experimentally measured vs. simulated z-axis dose
profiles at the center of the phantom. The data collected in the simulation were
continuous, and so were convolved with a rect function the size of the ionization
chamber to get results comparable to experimental measurement. The solid line
represents the simulated data after being convolved. The errors on the experimen-
tally measured data are 5% along the y-axis (manufacturers stated uncertainty) and
0.5 cm along the z-axis (uncertainty in placement of ionization chamber).
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different beam widths. The order of beam widths from bottom to top is: 1cm, 5
cm, 10 cm, 15 cm, 20 cm. As expected, the dose vs. projection angle is sinusoidal
and increases with increasing beam width.
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15 cm, 20 cm. As expected, the dose vs. projection angle is flat and increases with
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(a) 1 cm beam width (b) 5 cm

(c) 10 cm (d) 15 cm

(e) 20 cm

Figure 3.14: Contours of dose along both r and z for the 32 cm diameter phantom.
Dose is highest at the periphery of the cylinder and at the center of the beam path.
The dashed lines represent the cuts which are shown in Figure 3.15. Each contour
plot is the result of a different simulated beam width. The dose is shaded from low
(white) to high (black). Actual values are shown in Figure 3.15.
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Figure 3.15: Sections of dose along r for given z for the 32 cm diameter phantom.
Dose is highest at the periphery of the cylinder and at the center of the beam path.
The curves are the cuts which are shown as dashed lines in Figure 3.14. Each plot
is the result of a different simulated beam width.
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(a) 1 cm beam width (b) 5 cm

(c) 10 cm (d) 15 cm

(e) 20 cm

Figure 3.16: Contours of dose along both r and z for the 16 cm diameter phantom.
Dose is highest at the periphery of the cylinder and at the center of the beam path.
The dashed lines represent the cuts which are shown in Figure 3.17. Each contour
plot is the result of a different simulated beam width. The dose is shaded from low
(white) to high (black). Actual values are shown in Figure 3.17.
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Figure 3.17: Sections of dose along r for given z for the 16 cm diameter phantom.
Dose is highest at the periphery of the cylinder and at the center of the beam path.
The curves are the cuts which are shown as dashed lines in Figure 3.16. Each plot
is the result of a different simulated beam width.
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Chapter 4

Image Quality

4.1 Overview

4.1.1 Estimating Image Quality

A quantitative description of the object transfer properties of a CT system is

necessary when evaluating image quality. Image sharpness is usually characterized

and reported as a spread function, often with additional calculation of a modulation

transfer function (MTF),[52, 31, 32] which is defined as the two-dimensional Fourier

transform of a point spread function (PSF), the one-dimensional Fourier transform

of a line spread function (LSF), or a Fourier transform of the derivative of an edge

spread function (ESF).[49, 12, 53] Additionally, for a linear system, knowledge of

the spread functions allow prediction of the image produced for a particular object;

this prediction allows for calculations of theoretical model-based signal-to-noise ra-

tio or detectability. Linear systems theory assumes that all objects being imaged

are transferred in the same way, which is not true. CT image reconstruction is

inherently a non-linear process because the image blur depends on the object to

be imaged. For a computed tomography (CT) system with a poly-energetic source

spectrum, objects with different energy-dependent attenuation coefficients will not

be projected linearly in the imaging plane (i.e. the blur, due to scattered photons, of
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the image depends on the object being imaged), even if the reconstruction algorithm

or the detector transfer characteristics are linear. This is because different materials

generate different amounts of scattered photons and absorb/transmit different parts

of the energy spectrum in a poly-energetic beam. For a task specific evaluation of

image quality it is important that the CT system blur properties are determined

under the same conditions for a typical imaging task the CT system is designed for.

Many methods have been proposed for estimating the MTF of a CT system.

Some have proposed a simple phantom of aluminum foil sandwiched by flat plastic

slabs.[12] Others have suggested using a wire in air to estimate the PSF.[49] Still

others have used bar patterns[2] or an edge.[34] Previous work exists comparing

the different techniques in theory[25] and experimentally in projection imaging.[52]

However, it appeared through a review of the literature that such an intercompar-

ison of these different techniques has not yet been reported for CT systems. We

investigate a comparison of MTF estimation techniques of specifically designed test

objects in order to determine which is the most appropriate to evaluate the per-

formance of a specific detection task (i.e. for a clinical modality where the patient

can be represented with a fairly uniform, approximately water equivalent object,

and where the detection task is mainly low contrast objects such as masses or micro

calcifications).
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4.2 Test-object specific line spread function and modulation transfer

function of a CT imaging system

4.2.1 Methods

4.2.1.1 Test objects

Four test objects were used in this study: two thin foil objects for the slit

method, and two different cube objects for the edge method.1 The two foil test

devices were constructed of a foil sandwiched between two 2.54 cm (1 inch) thick

polystyrene plates. One of the foil objects was a 0.025 mm thick molybdenum, while

the second was 0.1 mm thick aluminum (see Figure 4.1). One cube test object was

constructed of a Polytetrafluoroethylene (Teflon) block with dimensions 2.0 cm ×

2.0 cm × 5.0 cm. Figure 4.2 shows a schematic drawing, along with a picture and

axial (for estimating x-y plane spread functions) and sagittal (for estimating z-axis

spread functions) sections from the CT reconstruction of this object. This will be

referred to as the “positive” edge object because it has a higher attenuation than the

surrounding material. Teflon was chosen for its radiodensity property in the energy

range of interest that was hoped would be suitable for providing a sharp edge while

reducing the amount of beam-hardening artifacts. A “negative” cube test object

was newly designed for this project and consisted of a cube of air that was bounded

1Here we use the projection radiography terms for slit and edge since the reconstruction of a

foil test object results in a line pattern similar to one generated by a slit in projection radiography,

while the reconstruction of a cube test object results in a square pattern similar to one generated

by an edge in projection radiography.
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on all six sides by polished 2.54 cm thick PMMA blocks, thus creating an edge

with lower attenuation than the surrounding material. Four blocks with dimensions

2.54 cm × 2.54 cm × 5.08 cm were assembled as shown in Figure 4.3 (a). The

resulting square was capped on either side by a 7.62 cm × 7.62 cm × 2.54 cm block

of PMMA, resulting in a trapped cube of air, pictured in Figure 4.3 (b). Axial

and sagittal sections of the reconstructed CT image of the phantom are shown in

Figures 4.3 (c) and (d). The choice of low attenuation (water equivalent PMMA)

material surrounding an air cube was made in order to reduce the introduction

of beam-hardening artifacts into the CT reconstruction that are frequently seen

with materials of high attenuation, while still allowing for an interface with a large

difference in attenuation. All of the test objects were placed at the center of a

water filled 14 cm diameter by 21.5 cm tall PMMA cylinder for imaging, resting

on a PMMA stage. This was done so that the object specific CT system blur, as

characterized by the LSFs, ESFs and MTFs, would be evaluated at the same local

position. Given that CT blur not only depends on the specific test object but also

on the location within the imaging field, performing the tests at effectively the same

localized are will allow inter-comparison of the methods and objects. The PMMA

cylinder included built-in tracking beads on the top and bottom peripheries forming

circles that can be used for geometrical correction of acquired images of the test

object.[40] Figure 4.4 shows the PMMA cylinder in which the test objects were

placed for imaging acquisition. The two cube test objects were constructed such

that the top surface was slightly slanted from the plane normal to the rotation axis,

also known as the axial plane. This was done so that the slanted edge method can
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be used for generating the LSF in the direction parallel to the object rotation axis,

which is conventionally referred to as the z-axis (see Figure 4.5).

4.2.1.2 Image acquisition

All images were acquired using a custom-built bench-top flat-panel-based cone-

beam CT scanner.[43, 44, 17] The detector used was a Varian 4030CB (Varian Corp.,

Salt lake City, UT) with 2046 × 1536 pixels, with 0.195 mm pixel size and a 0.6 mm

columnar CsI(Tl) scintillator. The x-ray tube was a Varian B180 with an inherent

filtration of 1 mm Al with 0.3 mm and 0.6 mm nominal focal spots. Additional

filtration of 0.025 mm Ytterbium and a tube voltage of 100 kV was used. For all

the data collection we used the 0.6 mm focal spot.

4.2.1.3 Data correction and reconstruction

The raw projection images were corrected for non-uniform gain, non-responsive

pixels and the heel effect. Then, the calibrated images were geometrically corrected

using a method based on estimating the inclination angles of each projected bead

trajectory over the entire CT acquisition.[40] Following all image corrections, 3D

volume data were reconstructed with a cubic voxel size of 0.1 mm, using a parallel

implementation of the Feldkamp filtered back projection algorithm.
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Figure 4.1: (a) Schematic representation of the foil test object. The PMMA plate
dimensions are 5.0 cm × 5.0 cm × 2.54 cm. (b) Photograph of the foil test object.
(c) The average of 100 axial slices of the reconstructed molybdenum foil test object.
(d) The average of 100 axial slices of the reconstructed aluminum foil test object.
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Figure 4.2: (a) Schematic drawing of the teflon cube test object. It was cut to
present four edges in the x-y plane, and with a slanted edge along the top to provide
a tilt along the z-axis. (b) Photograph along the longest side of the cube test object.
This is a Polytetrafluoroethylene (Teflon) block with dimensions 2.0 cm × 2.0 cm ×
5.0 cm. (c) The average of 100 axial slices of the reconstructed positive test object.
(d) The average of 100 sagittal slices of the reconstructed positive test object.
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Figure 4.3: (a) Assembly of the negative cube test object. Four blocks of 2.54 cm
× 2.54 cm × 5.08 cm are assembled as shown on the left to create a square of air,
which is then capped on either side by a 7.62 cm × 7.62 cm × 2.54 cm block to
create a trapped cube. (b) Photograph of the negative cube test object mounted
on a PMMA stage. (c) The average of 100 axial slices of the reconstructed negative
test object. (d) The average of 100 sagittal slices of the reconstructed negative test
object
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Figure 4.4: The PMMA cylinder (not filled with water), shown with the tracking
beads for geometrical alignment corrections.

Figure 4.5: Schematic of the bench-top, cone-beam CT system.
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4.2.1.4 Line and Edge spread function estimation and comparison

The estimation of the oversampled LSF or ESF was consistent with previously

described computational methods. [31, 6] The volumes were reconstructed such

that the edges of each test object make a small angle with the x and y axes, as

shown in Figure 4.2 (c). It was not necessary to know this angle exactly prior to

reconstruction, only that it be between 2 and 5 degrees. For each edge, a region of

interest was selected far enough from the corners such that boundary effects could

be ignored. One such region from the image of the positive phantom is shown in

Figure 4.6 (a). Each row from such an ROI was taken as an estimate of the ESF

of this system. However, the resolution of a single row was limited by the voxel

size of the image. Because of the tilt of the object, each row was out of phase

of the preceding row by a factor defined by the tilt angle. The edge of the cube

test object in the region of interest was detected by taking the derivative in the

direction normal to the edge, and a line was fit to the resulting maxima of the edge

derivative. The slope of this line determines the offset between consecutive rows.

ESFs from the out-of-phase rows are shown in Figure 4.6 (b), and the same data is

shown in Figure 4.6 (c) after the offset was applied. At this point, our ESF data

was no longer limited by the voxel size, but still suffers from noise, especially in the

regions away from the edge. Because the angle of the edge was small, the resulting

in-phase ESF data was very dense (in this case, roughly 1000 data points per voxel).

It was thus reasonable to reduce the noise by averaging neighboring points (here we

average every ten neighbors for both location and grayscale value), with the resulting
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smoothed ESF shown in Figure 4.6 (d). A similar process was used to obtain the

voxel-size-independent estimate of the LSF from the foil test objects, only in this

case the derivative operation was not necessary. These ESFs and LSFs can then be

used in estimating a local, object specific MTF.

For intercomparison among methods the ESF curves were converted to LSF

curves. This was done by taking the derivative of the image prior to determining

the high resolution spread function. The procedure described above was then used

to find the voxel-size-independent, low-noise estimate of the LSFs.

4.2.1.5 Object-specific, local Modulation Transfer Function calcula-

tion

By definition, the traditional MTF assumes the system is shift-invariant and

cyclic, that the CT system is linear (i.e the MTF is independent of the object

measured or the system transfers all objects in the same way), and the system

decomposition basis are the Fourier cosines. Such assumptions are however vi-

olated in real imaging systems, and a number of references describe the MTF

limitations.[17, 18, 47, 38, 39, 37, 44, 43, 40] For this reason the MTF estimated

here is designated as the local, object specific MTF (MTFlo) to distinguish from

the traditional MTF, as it makes the comparison of the resulting LSF/ESFs as a

function of their spatial frequency mroe straight forward. The MTFlo was calcu-

lated using two different previously described methods.[53, 28, 20] From the foil

test object phantoms, the MTFlo was calculated as the magnitude of the Fourier

82



1 100 200 320

1
20
40
60
80

101

1 100 200 320
1
20
40
60
80
101

pixel numbers

pi
xe

ln
um

be
rs

Teflon test object

(a)

0 10 20 30 40
1.0

1.2

1.4

1.6

1.8

2.0

mm

gr
ay

sc
al

e
Ha

rb
itr

ar
y

un
its

L

Out of phase ESF

(b)

0 5 10 15 20 25 30
1.0

1.2

1.4

1.6

1.8

2.0

mm

gr
ay

sc
al

e
Ha

rb
itr

ar
y

un
its

L

In phase ESF

(c)

0 5 10 15 20 25 30

1.2

1.4

1.6

1.8

mm

gr
ay

sc
al

e
Ha

rb
itr

ar
y

un
its

L

Smoothed ESF

(d)

Figure 4.6: The process of going from a ROI to an estimate of a smoothed, in phase
ESF is shown. (a) A sample region of interest from one edge of the positive cube
test object. (b) Noisy ESF estimates that are out of phase. (c) ESF estimates that
have been shifted to be in phase. (d) ESF estimates from the positive test object
that have been smoothed by averaging every ten data points. Ripples from beam
hardening artifacts are clearly visible at the base and apex of this edge.
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transform of the estimated LSF. From the cube test object phantoms, the MTFlo

was calculated either directly or indirectly. To calculate the MTFlo directly from

the ESF integration by parts was used. To calculate the MTFlo indirectly from

the ESF, the derivative of the image was taken as an estimate of the LSF, and the

Fourier transform of this LSF yielded an estimate of the MTFlo.

4.2.2 Results

To reduce noise in the images, the average of 100 axial sections of each test

object was taken. If the edges of the phantom in the x-z and y-z planes are not

parallel to the long axis of the cylinder, then this averaging will increase the blur

of the edges in the x-y plane. Therefore, sagittal and coronal sections of the test

objects were examined, and no significant tilting of the test objects was observed

(less than 100 micrometers over the length 2 cm). The foil phantoms only allow for

estimation of one LSF in the x or y directions, and so we are forced to assume that

the LSF in the x-y plane is rotationally symmetric using this method. The edge

phantom, however, allows for estimation of four Edge or Line spread functions in the

axial plane, two each along the x- and y-axes. These spread functions were found

to be radially symmetric (data not shown) as the phantoms were at the center of

the imaging system. Even though it was not performed here, the cube test objects

would allow for estimating the off center location specific ESF/LSFs and MTFlo

profiles in four directions.
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4.2.2.1 Axial spread functions and MTFs

The smoothed ESFs from the positive and negative test objects are shown in

Figure 4.7 (a). The positive object estimates a sharper spread function, but also

has ripples near the base and apex of the edge. These ESFs have been rescaled so

that the base is at 0 and the peak is at 1, while the edges have been centered at

0 mm on the x-axis. The normalization was accomplished by dividing the ESFs

by their respective maximum grayscale value and then subtracting their minimum

value, followed by recentering such that the crest of the edge is at pixel number 0.

The central 2.0 mm of the smoothed estimates of LSF are shown in Figure

4.7 (b). The LSF curve from the foil test objects are less noisy than that obtained

from the other test objects. However, the molybdenum foil exhibits a much wider

spread, a curve that is significantly different than estimated by the other three test

objects. Because they track one another so closely, the LSFs from the aluminum foil

and negative phantom were isolated and reploted in Figure 4.7 (c). The two LSFs

follow one another in the central 1 mm, but the negative object’s LSF tails are lower,

crossing below the x axis, demonstrating the anti-correlations of the reconstruction

kernel.

The local, object specific MTFs are shown in Figure 4.8. The MTFlos shown

in Figure 4.8 (a) are all calculated as the Fourier transform of the estimate of the

LSF (which is the derivative of the image for the positive and negative objects).

Figure 4.8 (b) shows the MTFlo as estimated from the positive and negative objects

only. From each object, the MTFlo was estimated two ways – the direct method and
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indirect method. The estimated MTFs from the same object do not match when

calculated using the two methods, with the direct method MTFlos generally higher

than the indirect method.

4.2.2.2 Z-axis spread functions and MTFs

The smoothed ESFs from the positive and negative test objects are shown in

Figure 4.9 (a). The positive object estimates a sharper spread function as it did in

the x and y directions. These ESFs have been rescaled so that the base is at 0 and

the peak is at 1, while the edges have been centered at 0 mm on the x-axis. The

normalization was accomplished in the same manner as for the axial slices.

Figure 4.9 (b) shows the z-axis MTFlo as estimated from the positive and

negative test objects only. From each object, the MTFlo was estimated using the

direct method. As in the axial case, the estimated MTFlos from the same object

do not match when calculated using the two objects. The positive cube estimates a

higher MTFlo than the negative cube. It is important to note that the z-axis spread

functions and MTF could not be estimated using the foil method.

4.2.3 Discussion and Conclusion

In this section we present the LSF and ESF of four test objects that can be

used for MTF estimation methods. Based on previous work,[25] we expected that

there will be frequency dependent differences in the results. Specifically, we expected

that the edge methods perform better for estimating low-frequency response, and
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Figure 4.7: The LSF/ESF estimates using the different test objects. (a) The central
2 mm of both ESFs as obtained from the positive and negative test objects. The
ESFs have been normalized and centered to allow for comparison of the relative
amounts of spread. (b) 1 mm, starting at the peak, of all LSFs as obtained from the
test objects. The LSFs have been normalized and centered to allow for comparison
of the relative amounts of spread. The LSFs were symmetric about the peak, so
only half are shown for clarity. (c) The LSFs as obtained from the aluminum foil
and negative test objects. The LSFs have been normalized and centered to allow for
comparison of the relative amounts of spread. The aluminum foil LSF is the dashed
line, while the negative cube LSF is the solid line.
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Figure 4.8: The x-y plane MTFlo estimates using the different test objects. (a) For
the edge test objects, the derivative of the image was taken as an estimate of the
LSF first, and then the Fourier transform was taken to estimate the MTFlo. The
order of curves from left to right is: Mo foil, Al foil, negative cube, positive cube.
(b) The MTFlo as estimated by the positive and negative test objects. From each
image, the MTFlo was calculated two ways: the direct method using integration by
parts and the indirect method using the Fourier transform of the derivative of the
image (an estimate of the LSF).
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Figure 4.9: The z-axis ESF and MTF estimates using the different test objects. (a)
The central 2 mm of both z-axis ESFs as obtained from the positive and negative test
objects. The ESFs have been normalized and centered to allow for comparison of
the relative amounts of spread. (b) The z-axis MTF as estimated by the positive and
negative test objects. The MTF was calculated using the direct method described
in Section 4.2.1.5. For ease of comparison, the x-y plane MTF from the cube test
objects are also included.
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that the slit method is superior for measuring the high-frequency response.

When examining the ESF from each test object, the negative test object shows,

as expected, fewer artifacts at the base and crest of the edge than the positive test

object. However, the positive test object exhibits a sharper boundary between the

two materials, as shown by the presence of a steeper slope at the edge, as seen in

Figure 4.7 (a). To understand where this difference arises, it is important to first

identify the sources that contribute to the spread of the edge. In this system, spread

comes from: 1) the fact that the source has a finite size focal spot rather than a

point source (generating focal spot unsharpness), 2) the detector blur, 3) potential

geometric misalignments, 4) blur generated through the back-projection algorithm,

and 5) scatter generated within the phantom. The first four sources of spread

are constant between the two test objects (with geometrical alignment verified by

inspection in the sagittal and coronal planes), and so we must conclude that the

difference arises in how much scatter from the water phantom or the test object

itself reaches the detector. Because the positive phantom is more attenuating than

the negative phantom, a possible explanation that some of the scattered photons

generated in the surrounding water are absorbed in the higher-attenuating material.

Effectively, fewer scattered photons generated in the water phantom region between

the Teflon cube and the phantom walls closer to the source reach the detector, and

thus it appears that the image of the positive edge contains less spread. A similar

effect can be seen in the asymmetry of the ESFs. With both the positive and negative

test objects, tails at the base of the ESF (corresponding to the lower attenuation

material) exhibit longer, more slowly varying tails than the apex. This is also evident
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from the MTF curves in Figure 4.8 (a): the low frequency drop of the negative

object MTF demonstrates the presence of scatter,[42, 41, 45, 10, 11, 23] while such

a low frequency drop for the positive cube is not present, thereby resulting in a

much higher MTF overall. This demonstrates that measured response functions are

dependent on the material being imaged, with smaller spread if higher attenuation

materials are used.

In Figure 4.7 (b), it appears that foil LSFs are less noisy than the edge meth-

ods. There are two factors that contribute to the relative noise on the LSF: first,

to arrive at an LSF from an ESF, a derivative must be taken. The derivative oper-

ation multiplies the transfer function in the frequency domain by a factor of i2πf ,

amplifying high frequency noise. This effect also explains why the MTFs as cal-

culated by the direct and indirect methods do not match in Figure 4.8 (b). Since

the high frequency noise is amplified in the derivative image, we expect deviation

in the high frequency regions, as is seen here. The second reason that the foil test

objects produce lower noise LSFs is that they are both metals, and, especially for

the molybdenum, have high CT numbers, yielding a much larger difference between

water and the peak of the LSF compared to the cube objects used in this work. The

large attenuation the metal foils have is also a detriment: the molybdenum test foil

method results in a larger amount of spread in the LSF. At projection angles where

the x-rays must travel through the length of the foil, significant beam hardening

artifacts are introduced, greatly increasing the spread in the image. The aluminum

foil might still be a good option because its thickness and attenuation properties

were less detrimental than the molybdenum foil, meaning it suffered less from ar-
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tifact introduction. However, the few artifacts present prevent the capture of the

anti-correlations seen in the tails of the negative object LSF and the low frequency

bump of the MTF.

From these observations, we conclude that if one were to select a test object

for estimating a spread function and MTF for a low contrast detection task in

tissues that are very similar to water, either the negative test cube object or the

aluminum foil object is favored. This is because one obtains from these phantoms an

LSF estimate that describes the scatter characteristics of the uniform water region.

Because of its higher radiodensity (Teflon is approximately 990 HU), the positive

cube might be a better approximation of the spread near more opaque structures,

such as bone. The molybdenum foil method, because of the large number of metal

artifacts, results in a image with large spread of the LSF, and therefore we expect

its applicability will be limited. The edge method allows for the estimation of the

spread function and MTF along the z-axis, which is difficult to achieve using a

foil based method. Even though foil based methods are used to evaluate the slice

sensitivity profile of CT scanners (i.e. the point response function in the z-direction)

the foil size is limited to about 2 mm diameter, therefore the over-sampled or voxel-

independent LSF cannot be determined in the z-direction. With careful alignment

and use of the coronal or sagittal views in addition to axial views, the cube test

object provides 6 tilted edges. Thus, one can extract four ESFs in the x-y plane,

and two along the z-axis, and subsequently calculate the MTF profiles in all three

directions.

The results of this study are limited only to the center of the CT system
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we investigated. It is important to note that the LSF and ESF of a CT imaging

system are location dependent (not shift-invariant). This means that if off center

measurements are taken, they are likely to differ from ESFs and LSFs measured

here. However, the same methods can be used, and a profile of the imaging system’s

characteristics from center to periphery could be created. The cube test object

allows for estimation of local asymmetric ESFs, LSFs and MTFs in three x-y and

z directions. The spread functions in combination with the noise properties of CT

allow estimates of low contrast detectability to be made.
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Chapter 5

Summary of Conclusions

The main contribution of this thesis is the examination of the applicability of

current dose and image quality metrics to modern and proposed future CT scan-

ners. This examination shows the limitations of these metrics, and under what

conditions they can be used, and under what conditions care should be taken in

their application.

A secondary contribution of this thesis is a simple technique for calculating

the image quality metrics in a manner that increases resolution beyond the limiting

reconstructed voxel size while reducing noise. This procedure is used to derive an

optimum, task-specific method for estimating image quality.

A third contribution of this thesis is a method for estimating angle-dependent

spectra of clinical CT scanners, using equivalent filters. Knowledge of these angle-

dependent spectra allows for statistical simulations that are faithful to actual clinical

systems without relying on manufacturers’ proprietary information disclosure.

Future work stemming from these projects should have two thrusts: designing

a practical phantom that incorporates both dose and image quality components

using the results in this thesis, and the linking of patient dosimetry estimates in

Monte Carlo experiments with real world imaging studies. The ultimate goal would

be real time estimation of patient organ-specific dose during CT imaging studies.
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Additionaly, linking with research in radiobiology would provide a framework for

converting these doses into risk factors that would be more comprehensible to the

lay person undergoing a CT scan.
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