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Tumors in the lung, liver, and pancreas can move considerably with normal 

respiration. The tumor motion extent, path, and baseline position change over time. This 

creates a complex “moving target” for external beam radiation and is a major obstacle to 

treating cancer. Real-time tumor motion compensation systems have emerged, but device 

performance is limited by tumor localization accuracy. Direct tumor tracking is not 

feasible for these tumors, but tumor displacement can be predicted from surrogate 

measurements of respiration.  

In this dissertation, we have developed a series of multivariate statistical 

techniques for reliably and accurately localizing tumors from respiratory surrogate 

markers affixed to the torso surface. Our studies utilized radiographic tumor localizations 

measured concurrently with optically tracked respiratory surrogates during 176 lung, 



 

 

liver, and pancreas radiation treatment and dynamic MR imaging sessions. We identified 

measurement precision, tumor-surrogate correlation, training data selection, inter-patient 

variations, and algorithm design as factors impacting localization accuracy. Training data 

timing was particularly important, as tumor localization errors increased over time in 

63% of 30-min treatments. This was a result of the changing relationship between 

surrogate signals and tumor motion. To account for these changes, we developed a 

method for detecting and correcting large localization errors. By monitoring the 

surrogate-to-surrogate and surrogate-to-model relationships, tumor localization errors 

exceeding 3 mm could be detected at a sensitivity of 95%. The method that we have 

proposed and validated in this dissertation leads to 69% fewer treatment interruptions 

than conventional respiratory surrogate model monitoring techniques. Finally, we 

extended respiratory surrogate-based tumor motion prediction to the otherwise time-

consuming process of contouring respiratory-correlated computed tomography scans. 

This dissertation clarifies the scope and significance of problems underlying existing 

surrogate-based tumor localization models. Furthermore, it presents novel solutions that 

make it possible to improve radiation delivery to tumors without increasing the time 

required to plan and deliver radiation treatments.  

 

  



 

 

 
MULTIVARIATE STATISTICAL TECHNIQUES FOR  

ACCURATELY AND NONINVASIVELY LOCALIZING  
TUMORS SUBJECT TO RESPIRATION-INDUCED MOTION 

 
 
 

By 
 
 

Kathleen T. Malinowski 
 
 
 
 
 

Dissertation submitted to the Faculty of the Graduate School of the 
University of Maryland, College Park, in partial fulfillment 

of the requirements for the degree of 
Doctor of Philosophy 

2012 
 
 

 
 
 
 
 
 
 
 
 
 

Advisory Committee: 
Dr. Warren D. D’Souza, Ph.D., Co-chair 
Professor Yang Tao, Ph.D., Co-chair 
Professor Jeffrey W. Herrmann, Ph.D. 
Professor Peter Kofinas, Ph.D. 
Professor Thomas J. Mc Avoy, Ph.D. 

 
 
 
 
 
 



 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

© Copyright by 

Kathleen T. Malinowski 

2012 

 
 

 
 
 
 
 
 
 
 
 
 
 



 

 

ii 

 

 

DEDICATION 

 

This dissertation is dedicated to my parents. Thank you, Mom and Dad, for your love and 

constant support. Thank you for giving me everything I’ve ever needed, including setting 

me up with a good education from an early age. It is because of you that I have been able 

to complete this dissertation. 



 

 

iii 

 

 

ACKNOWLEDGMENTS 

 

I would like to thank my Ph.D. advisor, Dr. Warren D’Souza, and my second mentor, Dr. 

Tom McAvoy, for their instruction, mentorship, and guidance throughout the process of 

this dissertation research. Thank you also to my committee co-chair Dr. Yang Tao for 

helping me understand Bioengineering policies and to my other committee members, Dr. 

Jeffrey Herrmann and Dr. Yu Chen, for participating in my dissertation defense. I would 

also like to acknowledge Dr. Sonja Dieterich of Stanford University for sharing data that 

she collected at Georgetown University Hospital and to Dr. Suresh Senan for sharing data 

collected at VU University Medical Center. 

Finally, thank you to my fiancé, Richard, for staying with me through every step 

of the process (from the everyday to the big events like my proposal and my defense), for 

helping me through the hard times, and for following me to Maryland so that I could 

finish my degree. 

 



 

 

iv 

 

 

TABLE OF CONTENTS 

 

DEDICATION   ................................................................................................................. ii	
  

ACKNOWLEDGMENTS .................................................................................................. iii	
  

TABLE OF CONTENTS ................................................................................................... iv	
  

LIST OF TABLES ............................................................................................................. ix	
  

LIST OF FIGURES ............................................................................................................. x	
  

CHAPTER 1:	
   Introduction ............................................................................................... 1	
  

1.1.	
   Problem Summary ................................................................................................ 1	
  
1.2.	
   Overall Goal of the Study ..................................................................................... 2	
  
1.3.	
   Previously Published Material Included in this Dissertation ............................... 2	
  

CHAPTER 2:	
   Background ............................................................................................... 4	
  

2.1.	
   Radiation Therapy for Tumors that Move with Respiration ................................ 4	
  
2.2.	
   Tumor Immobilization .......................................................................................... 5	
  
2.3.	
   Motion-Encompassing Treatment Planning ......................................................... 6	
  
2.4.	
   Imaging for Tumor Motion Assessment ............................................................... 6	
  
2.5.	
   Real-Time Tumor Motion Management .............................................................. 7	
  

2.5.1.	
  Real-Time Tumor Motion Compensation Devices ............................................... 8	
  
2.5.2.	
  Direct Real-Time Tumor Localization ................................................................ 10	
  
2.5.3.	
   Indirect Real-Time Tumor Localization .............................................................. 11	
  

2.6.	
   Regression Analysis for Indirect Tumor Localization ....................................... 12	
  
2.6.1.	
  Ordinary Least Squares (OLS) Regression ......................................................... 13	
  
2.6.2.	
   Partial Least Squares (PLS) Regression .............................................................. 14	
  

2.7.	
   Tumor Localization During Tumor-Surrogate Relationship Changes ............... 15	
  
2.8.	
   Statistical Process Control for Tumor Model Monitoring .................................. 15	
  

CHAPTER 3:	
   Approach ................................................................................................. 18	
  

3.1.	
   Specific Objectives of the Research ................................................................... 18	
  
3.2.	
   Respiratory Surrogate Model Building .............................................................. 18	
  
3.3.	
   Human Studies .................................................................................................... 21	
  



 

 

v 

  

 

3.3.1.	
  Cyberknife Database ........................................................................................... 21	
  
3.3.2.	
   4D Computed Tomography Data ........................................................................ 24	
  
3.3.3.	
  Magnetic Resonance Imaging Study ................................................................... 26	
  

CHAPTER 4:	
   Mitigating Errors in Respiratory Surrogate-Based Models of 
Tumor Motion ........................................................................................ 28	
  

4.1.	
   Introduction ........................................................................................................ 28	
  
4.2.	
   Methods .............................................................................................................. 29	
  

4.2.1.	
   Position Data ....................................................................................................... 29	
  
4.2.2.	
  Applying and Testing Inferential Models ............................................................ 30	
  
4.2.3.	
  Model Design ...................................................................................................... 30	
  
4.2.4.	
  Training Data Selection ....................................................................................... 33	
  
4.2.5.	
   Inter-Patient and Inter-Fraction Variation ........................................................... 34	
  
4.2.6.	
  Measurement Precision ....................................................................................... 35	
  

4.3.	
   Results ................................................................................................................ 35	
  
4.3.1.	
  Model Design ...................................................................................................... 35	
  
4.3.2.	
  Training Data Selection ....................................................................................... 36	
  
4.3.1.	
  Tumor-Surrogate Correlation .............................................................................. 37	
  
4.3.2.	
  Tumor Site ........................................................................................................... 37	
  
4.3.1.	
   Inter-Patient and Inter-Fraction Variation ........................................................... 41	
  
4.3.2.	
  Measurement Precision ....................................................................................... 41	
  

4.4.	
   Discussion ........................................................................................................... 43	
  
4.5.	
   Conclusions ........................................................................................................ 46	
  

CHAPTER 5:	
   Incidence of Changes in Respiration-Induced Tumor Motion and 
its Relationship with Respiratory Surrogates During Individual 
Treatment Fractions ................................................................................ 47	
  

5.1.	
   Introduction ........................................................................................................ 47	
  
5.2.	
   Methods .............................................................................................................. 48	
  

5.2.1.	
  Data 48	
  
5.2.1.	
  Tumor Location Analysis .................................................................................... 49	
  
5.2.2.	
  Tumor Position Variation .................................................................................... 50	
  
5.2.3.	
  Baseline Shift Detection ...................................................................................... 51	
  
5.2.4.	
   Internal-External Relationship Variation ............................................................ 52	
  

5.3.	
   Results ................................................................................................................ 53	
  
5.3.1.	
  Tumor Positions ................................................................................................... 53	
  
5.3.2.	
  Treatment Margins .............................................................................................. 56	
  
5.3.3.	
  Baseline Shift Detection ...................................................................................... 58	
  
5.3.4.	
   Internal-External Relationships ........................................................................... 58	
  

5.4.	
   Discussion ........................................................................................................... 62	
  
5.5.	
   Conclusions ........................................................................................................ 65	
  



 

 

vi 

 

 

CHAPTER 6:	
   Inferring Positions of Tumor and Nodes in Stage III Lung Cancer 
from Multiple Surrogates Using 4D CT ................................................. 66	
  

6.1.	
   Introduction ........................................................................................................ 66	
  
6.2.	
   Methods .............................................................................................................. 68	
  

6.2.1.	
   4D CT Position Data ........................................................................................... 68	
  
6.2.2.	
  Nodal Volume- and Tumor-Surrogate Correlation ............................................. 69	
  
6.2.3.	
  Modeling Tumor and Nodal Volume Position with Anatomical 

Surrogates ........................................................................................................ 70	
  
6.3.	
   Results ................................................................................................................ 71	
  

6.3.1.	
  Tumor-Surrogate Correlation .............................................................................. 71	
  
6.3.1.	
   Inferring Position of Primary Tumor and Nodes Using Anatomical 

Surrogates ......................................................................................................... 74	
  
6.4.	
   Discussion ........................................................................................................... 77	
  
6.5.	
   Conclusions ........................................................................................................ 80	
  

CHAPTER 7:	
   Online Monitoring and Error Detection of Real-Time Tumor 
Displacement Prediction Accuracy Using Control Limits on 
Respiratory Surrogate Statistics ............................................................. 81	
  

7.1.	
   Introduction ........................................................................................................ 81	
  
7.2.	
   Methods .............................................................................................................. 83	
  

7.2.1.	
  Data 83	
  
7.2.2.	
   Partial Least Squares (PLS) for Predicting Tumor Positions .............................. 83	
  
7.2.3.	
  Tumor Motion Models and Model Monitoring ................................................... 84	
  
7.2.4.	
  Respiratory Surrogate Metrics ............................................................................. 85	
  
7.2.5.	
   Performance of Respiratory Surrogate-Based Monitoring .................................. 86	
  

7.3.	
   Results ................................................................................................................ 88	
  
7.3.1.	
  Large Error Detection .......................................................................................... 88	
  
7.3.1.	
  Time to Error and Time to Alarm ........................................................................ 90	
  
7.3.2.	
  Effect of Tumor Site ............................................................................................ 92	
  

7.4.	
   Discussion ........................................................................................................... 92	
  
7.5.	
   Conclusions ........................................................................................................ 96	
  

CHAPTER 8:	
   Maintaining Tumor Targeting Accuracy in Real-Time Tumor 
Motion Compensation Systems for Respiration-Induced Tumor 
Motion .................................................................................................... 98	
  

8.1.	
   Introduction ........................................................................................................ 98	
  
8.2.	
   Methods .............................................................................................................. 99	
  

8.2.1.	
  Data 99	
  
8.2.2.	
  Tumor Motion Prediction .................................................................................. 100	
  
8.2.3.	
  Model Monitoring and Updates ......................................................................... 100	
  



 

 

vii 

 

 

8.3.	
   Results .............................................................................................................. 102	
  
8.3.1.	
  Model Errors ...................................................................................................... 103	
  
8.3.2.	
  Update Timing ................................................................................................... 105	
  
8.3.1.	
   Site-Specific Results .......................................................................................... 106	
  

8.4.	
   Discussion ......................................................................................................... 106	
  
8.5.	
   Conclusions ...................................................................................................... 109	
  

CHAPTER 9:	
   Understanding the Performance of Control Limit-Based 
Monitoring of Respiratory Surrogate Tumor Motion Models .............. 110	
  

9.1.	
   Introduction ...................................................................................................... 110	
  
9.2.	
   Methods ............................................................................................................ 111	
  

9.2.1.	
   Patient Data ....................................................................................................... 111	
  
9.2.2.	
  Respiratory Surrogate Models of Tumor Displacement .................................... 119	
  
9.2.3.	
  Monitoring Respiratory Surrogate Models of Tumor Displacement ................ 120	
  
9.2.4.	
   Simulations ........................................................................................................ 121	
  

9.3.	
   Results .............................................................................................................. 128	
  
9.3.1.	
   Imaging Study Results ....................................................................................... 128	
  
9.3.2.	
   Simulation Study Results .................................................................................. 131	
  

9.4.	
   Discussion ......................................................................................................... 135	
  
9.5.	
   Conclusions ...................................................................................................... 138	
  

CHAPTER 10:	
   Conclusions .......................................................................................... 140	
  

10.1.	
  Main Objective ................................................................................................. 140	
  
10.1.1.	
   Specific Objective #1: Identify Sources of Error in Multivariate 

Respiratory Surrogate Tumor Localization Models ...................................... 141	
  
10.1.2.	
   Specific Objective #2: Develop and Validate an Algorithm for 

Predicting Tumor Position from Mutliple Surrogates of Respiration ........... 142	
  
10.1.3.	
   Specific Objective #3: Develop and Validate Methods of Monitoring 

Changes in Respiratory Surrogate Model Accuracy ..................................... 144	
  
10.2.	
  Significance and Future Work .......................................................................... 145	
  

APPENDIX A: 	
  Institutional Review Board Approval ................................................... 147	
  

APPENDIX B: 	
  Selected Matlab Code ........................................................................... 148	
  

B.1	
    parseExternalData ............................................................................................ 148	
  
B.2	
    func_projectData ............................................................................................. 150	
  
B.3	
    func_lineFinder ................................................................................................ 150	
  
B.4	
    applyPLSandSPC ............................................................................................ 151	
  
B.5	
    func_pp_v1 ...................................................................................................... 152	
  
B.6	
    func_calcss ...................................................................................................... 152	
  



 

 

viii 

 

 

APPENDIX C: 	
  Selected Labview Code ........................................................................ 153	
  

C.1	
    Main Program for Spectra Tracking During MR Study .................................. 153	
  
C.1.1	
   Front Panel ......................................................................................................... 153	
  
C.1.2 	
  Block Diagram ................................................................................................... 154	
  

C.2	
    Data Logging Code .......................................................................................... 156	
  
C.2.1 	
  Log File Creation ............................................................................................... 156	
  
C.2.2 	
  Logging During Tracking .................................................................................. 157	
  

C.3	
    Transformation from Quaternion to Cartesian Coordinates ............................ 158	
  
C.2.1 	
  Front Panel ......................................................................................................... 158	
  
C.2.2 	
  Block Diagram ................................................................................................... 158	
  

REFERENCES   ............................................................................................................. 159	
  

 



 

 

ix 

 

 

LIST OF TABLES 

 

Table 4.1  Errors for models based on 6 training points, stratified by tumor site ........... 40	
  

Table 5.1  Lung tumor locations ..................................................................................... 49	
  

Table 5.2 Incidence of large differences between 10 min- and 30 min-based 
treatment margins ........................................................................................... 57	
  

Table 7.1  Summary of monitoring performance for all tumor sites at 90% and 
95% sensitivity. .............................................................................................. 90	
  

Table 9.1. Respiratory cycle measurements for a randomly selected surrogate 
marker in the first imaging session for each patient .................................... 124	
  

Table 9.2.  Modeling and model monitoring performance for patient datasets ............. 130	
  

Table 9.3. The effect of sampling rate on modeling and model monitoring 
performance  for simulations incorporating all sources of cycle-to-
cycle variation .............................................................................................. 134	
  

Table 9.4. Modeling and model monitoring performance for acquisition-time 
averaged training data .................................................................................. 134	
  



 

 

x 

  

 

LIST OF FIGURES 

 

Figure 2.1 (a) Respiratory gating, (b) beam tracking, and (c) couch tracking 
technologies. .................................................................................................... 9	
  

Figure 3.1 Schematic of respiratory surrogate model development and use. (1) A 
mathematical model is designed from a set of respiratory surrogate 
measurements and tumor localizations that have been captured 
concurrently. (2) The model is then applied to convert real-time 
surrogate measurements into high-frequency, noninvasive predictions 
of tumor position. ........................................................................................... 20	
  

Figure 3.2 Four optically trackable markers affixed to the abdomen of a volunteer. ....... 20	
  

Figure 3.3. Cyberknife Synchrony suite, which includes (from left to right) the 
radiation treatment device (a miniature linear accelerator mounted on 
a robotic arm), the stereoscopic radiograph imaging system, and the 
respiratory surrogate marker optical tracking system. ................................... 23	
  

Figure 3.4. Setup for a 4DCT scan, including a camera system at the foot of the 
table that optically tracks a marker fixed to the subject’s abdomen. ............. 25	
  

Figure 3.5. Optical tracking camera in position for respiratory surrogate tracking 
concurrent with magnetic resonance imaging. ............................................... 27	
  

Figure 4.1 Example of (a) 3D surrogate marker motion data (solid) projected onto 
its first principle component (arrow) line (dashed) to obtain (b) a 1D 
representation of respiration-induced surrogate marker motion. ................... 31	
  

Figure 4.2 Histogram of tumor localization errors during the first minute of 
testing for models based on 6 training samples. The last bin comprises 
all errors greater than 0.5 cm. ......................................................................... 36	
  

Figure 4.3 Mean and 95th percentile tumor position model prediction errors in the 
test data acquired over 20 minutes for (a) OLSxyz, (b) PLSxyz, (c) 
OLSr, (d) PLSr, and  (e) SYNr models. For clarity, the y-axis in (a) is 
scaled differently than that of (b-e). ............................................................... 38	
  

Figure 4.4 Mean and standard deviation (error bars) of tumor position model 
prediction errors, binned by time elapsed since the end of training 



 

 

xi 

 

 

data collection. *The standard deviation of the OLSxyz error bar in 
the >20 min bin is 2.3 cm. .............................................................................. 39	
  

Figure 4.5 The impact of an uncorrelated (Gaussian noise) input variable in OLSr 
and PLSr models. Mean and standard deviation of model errors 
indicate that the additional input increased errors. In the 0-2 min bin, 
OLSr errors increased by 57%, and PLSr errors increased by 16%. ............. 39	
  

Figure 4.6 Histograms of mean error in each fraction by tumor site for (a) 
OLSxyz, (b) PLSxyz, (c) OLSr, (d) PLSr, and (e) SYNr models, each 
based on 6 training data points. ...................................................................... 40	
  

Figure 4.7 Mean and standard deviation of 9-training-datapoint PLSr in each 
fraction for 9 patients. Errors represent samples acquired within 20 
minutes of the training dataset. For clarity, the figure is limited to the 
9 patients with at least 4 treatment fractions available for analysis; the 
results for these patients are consistent with the dataset as a whole. ............. 42	
  

Figure 4.8 (a) Tumor and (b) external marker localization noise (in the training 
data used to build the model that predict tumor position) versus tumor 
position prediction error. Best fit lines represent least-squared-error 
linear regression fits with an assumption of zero error for zero noise. 
OLSr regression lines have slopes of (a) 1.1 and (b) 3.7. The PLSr 
line overlies the SYNr line in (b). .................................................................. 42	
  

Figure 5.1 Tumor and surrogate marker (a) SI, (b) AP, (c) ML displacements for a 
single treatment fraction. For clarity, data from only one of the three 
surrogate markers is shown. ........................................................................... 50	
  

Figure 5.2 Mean and standard deviation (error bars) of absolute differences in 
mean position of tumor (a) in subsequent  (combined data from first 
to second and second to third) 10-min blocks of data and (b) from the 
first to third 10-min blocks of data. ................................................................ 55	
  

Figure 5.3 Boxplots of changes in mean tumor displacement differences between 
consecutive (first-to-second and second-to-third) 10-min blocks of 
data for upper, middle, and lower lung lobes in the (a) SI, (b) AP, and 
(c) ML directions. .......................................................................................... 55	
  

Figure 5.4 Boxplots of differences between treatment margins calculated from the 
first 10 min and from the first 30 min of SI data for (a) lung and (b) 



 

 

xii 

 

 

pancreas fractions. Positive values indicate that the 30-min margin 
was larger than the 10-min margin. ................................................................ 56	
  

Figure 5.5 Boxplots of differences between treatment margins calculated from the 
first 10 min and from the first 30 min of SI data for (a) LUL, (b) LLL, 
(c) RUL, (d) RML, and (e) RLL lung fractions. Positive values 
indicate that the 30-min margin was larger than the 10-min margin. ............ 57	
  

Figure 5.6 Histogram of correlation between dtumor and dmarker for each marker 
and treatment fraction. ................................................................................... 59	
  

Figure 5.7 (a) Displacement from initial position for tumor (dtumor) versus 
displacement from initial position for surrogate markers (dmarker) 
with a linear least-squares best fit line (R2 = 0.43). (b) Residuals for 
linear fit line indicating the errors in predicting dtumor from the best 
fit line in (a). ................................................................................................... 59	
  

Figure 5.8 Example of a change in the relationship between AP motion of a 
surrogate marker and SI motion of a tumor from 1st 10-min block 
(circles) to the 3rd 10-min block (x’s). The ratios of tumor motion to 
surrogate marker motion are indicated by the slopes of the least-
squares fit lines: 2.8 mm tumor displacement per mm surrogate 
displacement and 3.6 mm tumor displacement per mm surrogate 
displacement. .................................................................................................. 60	
  

Figure 5.9 Boxplots of PLS model error (mean error in each fraction) in each of 
the first four 10-min blocks of data for (a) lung and (b) pancreas 
cases. Models were trained on the data in Block 1. Errors in each 
population increased monotonically for subsequent blocks of data. .............. 60	
  

Figure 5.10 Proportion of (a) lung and (b) pancreas treatment fractions associated 
with a positive trend or no trend in model error over time when the 
first 10, 20, or 30 min of testing data is considered. There were no 
cases in which error decreased significantly over the course of the 
treatment fraction. .......................................................................................... 61	
  

Figure 6.1 Summary of methodology employed for inferring the positions of the 
primary tumor and nodal volumes. ................................................................ 67	
  

Figure 6.2 Mean and standard deviations of correlation between anatomical 
surrogate and tumor for surrogate (a) ML, (b) AP, and (c) SI 
coordinates. pt = primary tumors, nv = nodal volumes. ................................ 72	
  



 

 

xiii 

 

 

Figure 6.3 Proportion of primary tumor and nodal volume coordinates that are 
most highly correlated with each anatomical surrogate coordinate, 
normalized according to the quantity of data available for that 
anatomical surrogate. ..................................................................................... 73	
  

Figure 6.4 Means and standard deviations (error bars) of OLS and PLS errors for 
models trained on a range (3-8) of quantities of contoured volumetric 
respiratory phase bin images. The standard deviation of the PLS 
errors is smaller and more consistent than the standard deviation of 
the OLS errors. ............................................................................................... 74	
  

Figure 6.5 Target coordinate peak-to-peak motion vs. mean 3-phase PLS model 
error. Mean error (1.1 mm) for coordinates with peak-to-peak motion 
>0.5 cm (points in the gray area) is indicated by the dashed line. ................. 76	
  

Figure 6.6 Histogram summarizing inferred position errors of 3-phase PLS 
models, including all primary tumors and nodal volumes in the 
dataset. Errors exceeded 0.2 cm in 7% of inferred positions. ........................ 76	
  

Figure 6.7 Mean and standard deviation (error bars) of 3-phase model error for 
nodal volumes, subdivided by zone of nodal station. .................................... 77	
  

Figure 7.1 Schematic of proposed improvement to respiratory surrogate-based 
model monitoring. .......................................................................................... 82	
  

Figure 7.2 The surrogate marker projection process. (a) Example of 3D surrogate 
marker motion data, including its mean and first principal component 
vector (blue dot and arrow, respectively) and its projection line 
(dashed). (b) The 1D representation of the 3D data in (a). ............................ 85	
  

Figure 7.3 Receiver operator characteristic (ROC) curves showing ability to 
predict localization errors exceeding 3 mm for various confidence 
levels. ............................................................................................................. 89	
  

Figure 7.4 Example of (a) T2, (b) Q(X), and (c) tumor localization error versus time 
elapsed since the training data. In (a) and (b), horizontal dashed lines 
represent control limits, and times in which the control limit is 
exceeded are shaded red. In (c), the horizontal dashed line represents 
a 3 mm error limit, and radiographic tumor localizations errors are 
indicated at t = 0.8 min and t = 1.8 min by circled x’s (⊗). It is likely 
that localization errors exceed 3 mm from 0.3 to 0.5 min and after 0.9 



 

 

xiv 

 

 

min, but radiographic validation is only possible at two moments over 
this 2 min period. ........................................................................................... 91	
  

Figure 7.5 Comparison of mean time to alarm for lung and pancreas results using 
2 sec of data. ................................................................................................... 92	
  

Figure 8.1. Timing of model updates for the four update methods in a 
representative treatment fraction. Updates are indicated by “x”s at the 
appropriate time. Results for this fraction for each method are 
summarized at right. ..................................................................................... 104	
  

Figure 8.2. Mean and standard deviation (error bars) tumor position predition 
errors over 20 min for each update method. There is no significant 
difference (p>0.05) between results for surrogate-based, error-based, 
and always update methods. ......................................................................... 104	
  

Figure 8.3. Incidence of large (>3 mm and >5 mm) errors for each update method. ..... 105	
  

Figure 8.4. Numbers of model updates per 20-min fraction for each update 
method. ......................................................................................................... 106	
  

Figure 9.1. Tumor localization (box) in a sagittal slice through the tumor. .................... 113	
  

Figure 9.2. Stereoscopic camera system in position at the MR scanner. ........................ 114	
  

Figure 9.3. Phantom marker artifact of the stereoscopic camera system. The 
system is unable to distinguish between the real and phantom markers 
when two real markers are coplanar with the two camera lenses. The 
dashed purple and red lines are parallel to the solid purple and red 
lines, respectively, and the phantom marker positions are reported at 
the intersections of the purple and red lines. ................................................ 116	
  

Figure 9.4. Respiratory surrogate marker data processing for patient #1 imaging 
session #1.  (a) Unsorted surrogate marker data. (b) Surrogate marker 
data replotted after automated sorting. On this plot, the user selects a 
box around the data known to be associated with true (non-phantom) 
marker data. (c) Phantom marker data circled on the sorted marker 
plot. .............................................................................................................. 117	
  

Figure 9.5. The five respiratory surrogate marker datasets projected onto one 
dimension in (a) a patient dataset showing gross patient motion, 
amplitude variations, period variations, and measurement noise but no 



 

 

xv 

 

 

baseline variations, and (b) a simulated dataset incorporating all 
sources of variation. ..................................................................................... 122	
  

Figure 9.6. Tumor localizations (predictions) based on either a single set of 
respiratory surrogate marker positions (continuous blue lines) or the 
average of respiratory surrogate marker positions recorded over the 
course of 450 msec (450-msec-long red horizontal lines). .......................... 130	
  

 



 

 
   1 

 

CHAPTER 1: Introduction 

1.1. Problem Summary 

Recent advances in radiation therapy allow clinicians to plan highly conformal treatments 

that target radiation to the tumor while sparing the surrounding healthy tissue. However, 

the tumor can move out of alignment with the radiation beam during therapy. In 

particular, tumor motion caused by patient breathing spreads much of the radiation dose 

meant for the periphery of the tumor into the surrounding healthy tissue. This targeting 

error leads to reduced tumor control while increasing the chance that the patient will 

develop radiation-induced side effects. 

Tracking systems that correct for tumor motion within the body by continually 

repositioning either the radiation beam or the tumor itself are under development. These 

devices rely upon accurate knowledge of the real-time tumor position. There are two 

ways by which real-time tumor position can be measured: (1) directly, using continuous 

imaging or trackable markers implanted in the tumor, or (2) indirectly, by inferring the 

position of the tumor from surrogate measurements of respiration.  

Direct tracking systems either require unsafe levels of ionizing radiation or are 

only available for use in the prostate. Thus, direct tracking is not currently possible for 

tumors in the lung, liver, and pancreas that are subject to high-speed respiration-induced 

motion. Instead, surrogate measurements of respiration can be used to indirectly infer 

tumor displacement. Because tumors move with respiration, each respiratory surrogate 
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signal is partially correlated to the tumor motion. Surrogate-based systems offer the 

advantages of high-frequency, low-latency, and noninvasive measurements.  

Surrogate-based tumor localization systems that match the accuracy and the 

precision of the radiation delivery are not available. To improve radiation treatment 

outcomes in cancer patients whose tumors move with respiration, it is necessary to 

develop accurate surrogate-based tracking techniques. 

1.2. Overall Goal of the Study 

The overall goal of this work was to develop multivariate statistical methods for 

localizing tumors from respiratory surrogates in a radiation oncology environment.  

1.3. Previously Published Material Included in this Dissertation 

The material in many of the research chapters of this dissertation has been published as 

journal articles, as follows: 

Chapter 4 has been accepted for publication in The International Journal of 

Radiation Oncology Biology and Physics as “Mitigating errors in external respiratory 

surrogate-based models of tumor position” by Malinowski, K.T., McAvoy, T.J., George, 

R., Dieterich, S., and D’Souza, W.D. 

Chapter 5 has been accepted for publication in The International Journal of 

Radiation Oncology Biology and Physics as “Incidence of changes in respiration-induced 

tumor motion and its relationship with respiratory surrogates during individual treatment 

fractions” by Malinowski, K.T., McAvoy, T.J., George, R., Dieterich, S., and D’Souza, 

W.D. It was published online (ahead of print) on April 16, 2011. 
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Chapter 6 has been published in The International Journal of Radiation Oncology 

Biology and Physics as “Inferring Positions of Tumor and Nodes in Stage III Lung 

Cancer from Multiple Anatomical Surrogates Using 4D CT” by Malinowski, K.T., 

McAvoy, T.J., George, R., Dieterich, S., and D’Souza, W.D. in 2010 Volume 77 Issue 5 

pages 1553-1560. 

Chapter 7 has been accepted for publication in Medical Physics as “Online 

monitoring and error detection of real-time tumor displacement prediction accuracy using 

control limits on respiratory surrogate statistics” by Malinowski, K., McAvoy, T.J., 

George, R., Dieterich, S., and D’Souza, W.D. 
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CHAPTER 2: Background 

2.1. Radiation Therapy for Tumors that Move with Respiration 

 

Cancer can be treated through any combination of radiation therapy, surgery, and 

chemotherapy, but radiation therapy (or radiotherapy) is a part of the standard of care for 

many types of cancer. Most radiotherapy treatments (88% in 2004) are performed on a 

medical linear accelerator, a device that generates beams of high-energy x-rays that are 

delivered to the tumor through the patients’ skin.1 As a result, it is inevitable that over the 

course of treatment some radiation energy is deposited in the tissue surrounding the 

tumor. This radiation can damage the healthy tissue. Thus, the ultimate goal of radiation 

therapy is to deliver sufficient radiation to control the cancer while sparing the healthy 

tissue, particularly that of organs at high risk of severe radiation damage. In the lung, for 

instance, radiation can cause radiation pneumonitis or pulmonary fibrosis. These 

radiation-induced side effects are especially dangerous for lung cancer patients, who 

often have pulmonary comorbidities like emphysema.2 Side effects of radiation therapy 

can be as severe as organ failure or even death. 

For each radiation treatment session (called a treatment fraction), the patient is 

carefully aligned with the radiation beam. When the tumor is not in the expected position, 

radiation energy that was planned for deposition in the tumor is instead deposited in the 

surrounding tissue. Targeting radiation to the tumor site on each day of treatment 

involves two components: day-to-day alignment and intra-fraction motion. Tattoo marks, 
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lasers fixed in the treatment room, and in-room imaging systems are used to position the 

patient at the start of each day of radiation therapy. However, subsequent undetected 

tumor motion during the treatment fraction (intra-fraction motion) is common.  

Depending on the tumor site, intra-fraction motion can be caused by any 

combination of muscle relaxation, gross patient movements, digestive tract activity, 

tissue settling, and respiration. Tumors in the lung, liver, and pancreas can move up to 2-

4 cm with free breathing.3-4 In the absence of motion management, respiration-induced 

tumor motion reduces the accuracy and effectiveness of radiation therapy to affected 

tumors.5-10 Clinicians are guided by an American Association of Physicists in Medicine 

task group report, which recommends intervention when the respiration-induced tumor 

motion is greater than 5 mm.5  

2.2. Tumor Immobilization  

Tumor immobilization through patient breath holding, either voluntary or 

involuntary, has been investigated but is not a viable option.11-12 The majority of lung 

cancer patients affected by respiration-induced tumor motion have compromised 

pulmonary function and cannot hold their breath for an extended period of time.2 In 

addition, it has been shown that the tumor position may not be consistent across 

individual breath holds.12 Similarly, abdominal compression can be used to reduce 

respiration-induced tumor motion, but it does not eliminate the tumor movement 

completely.13 
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2.3. Motion-Encompassing Treatment Planning 

The International Commission on Radiation Units and Measurements (ICRU) has 

recommended radiating an internal margin (IM) of tissue around the planned target of 

radiation such that the high-dose radiation encompasses the expected intra-fraction 

motion.14 The IM is meant to ensure that the entire tumor receives sufficient dose for 

tumor control. However, with an IM of a magnitude on the order of the extent of tumor 

motion, considerable radiation dose can be delivered to healthy tissues.5-6 As a result, the 

prescription dose is limited by the quantity of radiation that the healthy tissue irradiated 

during treatment is able to tolerate.  

2.4. Imaging for Tumor Motion Assessment 

Computed tomography (CT), digital x-ray, and magnetic resonance (MR) imaging have 

been utilized to estimate the path and extent of tumor motion. 

CT techniques are used in most clinics to volumetrically image the patient 

anatomy as a part of the treatment planning process. CT images are acquired over 

multiple respiratory cycles, leading to artifacts that misrepresent the tumor shape, 

volume, and position.15 Slow CT scans effectively blur the tumor image over its extent of 

motion by oversampling the CT dataset. This is accomplished by reducing the scanner’s 

gantry rotation speed, helical acquisition pitch, or both. Slow CT scans allow clinicians to 

estimate the volume through which the tumor passed during the acquisition. 4D CT 

scanning is also based upon oversampled CT data and is a more advanced technology. 

The 4D CT data is retrospectively sorted by respiratory phase such that multiple 

volumetric images, each representing a different portion of the respiratory cycle, can be 
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reconstructed. The 4D CT data can be used to characterize the tumor shape, volume, and 

average range of motion over an acquisition period of a few minutes. However, tumor 

motion over the acquisition period may not be the same as tumor motion during 

treatment. 

Recently, MR imaging has also been used to estimate the extent of tumor motion. 

Dynamic MR imaging, which can capture image slices at a rate greater than 1 Hz, can 

provide a great deal of information about anatomy at a high temporal and spatial 

resolution.16 Although efforts to develop an MR imaging system compatible with the 

linear accelerator environment are underway, it currently is not possible to obtain MR 

images in the radiation treatment room. 

Modern linear accelerator radiation treatment machines are equipped with x-ray 

imaging tubes and flat-panel detectors for radiographic and fluoroscopic imaging. Pairs 

of orthogonal radiographic images (anterior-posterior and lateral) are used routinely in 

the patient setup process to align the patient with the treatment beam. Fluoroscopic 

images can be captured rapidly (15-30 Hz) to capture images of the moving anatomy and 

to compare the extent of motion with the size and shape of the treatment beam.  

2.5. Real-Time Tumor Motion Management 

The 5-year survival rates for lung, liver, and pancreas cancer are 16%, 6%, and 14%, 

respectively.17 Thus, there is a great need for improving treatment techniques for these 

difficult-to-access, mobile tumors. Because radiation treatment planning and radiation 

delivery are highly precise, the efficacy of radiation treatments must be improved through 

increasingly accurate tumor targeting. 
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2.5.1. Real-Time Tumor Motion Compensation Devices 

Recently, a number of real-time tumor motion management solutions have emerged. By 

continuously adjusting the treatment according to the instantaneous tumor position, 

healthy tissue can be spared without sacrificing tumor control. Existing real-time 

solutions include both radiation gating and tumor tracking technologies (Figure 2.1).18-20 

In the case of gating systems, the radiation beam is paused except during a pre-selected 

portion of the respiratory cycle21 or while the tumor is within a limited range of 

positions.22 Tracking systems follow the tumor with the radiation beam18,20 or 

continuously reposition the patient such that the tumor remains stationary with respect to 

the radiation source.19  

To manage tumor motion, real-time devices must precisely localize the tumor at a 

high frequency throughout the treatment fraction. The performance of real-time tumor 

motion compensation systems is closely related to the accuracy of the tumor 

localization.20 Both direct and indirect tumor localization systems have been developed. 

Direct tracking systems measure the position of the tumor itself, while indirect tracking 

systems use other measurements to predict the instantaneous tumor displacement. A few 

direct tracking systems are available for clinical or research use, but these devices have 

considerable limitations.  
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(a) 

 

 
(b) 

 

  
(c) 

 

Figure 2.1 (a) Respiratory gating, (b) beam tracking, and (c) couch tracking technologies. 

 

 



 

 
   10 

 

2.5.2. Direct Real-Time Tumor Localization 

The first direct tracking system to be introduced to the radiation oncology community 

was described by Shirato et al.23 This device uses a dual-detector fluoroscopy system to 

localize the tumor through continuously captured x-ray images. This system must be 

active throughout each 20-60 min treatment fraction, during which time significant 

ionizing radiation is imparted to the patient’s body. Because of the risk associated with 

the ionizing radiation delivered to the patient, this device is not expected to gain FDA 

approval for clinical use in the United States. 

A second direct tracking technology is the Calypso 4D Localization System 

(Varian Medical Systems, Palo Alto, CA).24 The Calypso system utilizes non-ionizing 

electromagnetic radiation to localize wireless transponders that are implanted in or near 

the tumor. This system is only approved for use in the prostate. Research has shown that 

the transponders do not remain fixed in lung tissue and therefore cannot be used to track 

lung tumor motion.25  

The third direct tumor tracking system was recently introduced by Navotek 

Medical Lt. (Yokneam, Israel). To utilize this device, a fiducial marker containing 100 

µCi of radioactive Ir-192 is implanted in or near the tumor. A tracking system comprising 

radiation detectors localizes the fiducial marker during the treatment.26 Like the Calypso 

system, this device is seeking initial approval for use in the prostate.27 Because the 

Navotek fiducial markers are even smaller than those of the Calypso system,26 

implantation in the lung is likely to be problematic. 



 

 
   11 

 

2.5.3. Indirect Real-Time Tumor Localization 

Indirect tracking systems use a measurement of some surrogate of respiration to infer the 

respiration-induced motion of the tumor. Previously investigated respiratory surrogates 

include torso surface motion,3,6,28-30 spirometrically measured tidal volume and air 

flow,6,30-31 and the motion of internal anatomical structures visible in x-ray images.29,32 Of 

these, torso surface motion is the least invasive and the safest for the patient.  

Torso surface motion is partially correlated with respiration-induced tumor 

motion.3,30,33 The magnitude of the correlation varies by tumor site and location, by the 

position of markers on the torso surface, and over time. Because of these variations, a 

different respiratory surrogate model must be developed for each treatment session and 

patient. To predict tumor motion from respiratory surrogate measurements, a small set of 

gold-standard tumor localizations must be captured concurrently with respiratory 

surrogate measurements. This data makes it possible to develop an understanding of the 

relationship between tumor motion and surrogate signals.  

The most commonly used respiratory surrogate device tracks the anterior-

posterior (AP) motion of a marker placed on the abdomen of a supine patient (Real-time 

Position Management, RPM, Varian Medical Systems, Palo Alto, CA). Tumor motion in 

each dimension is assumed to be linearly related to the AP marker motion. However, this 

assumption can lead to significant radiation targeting errors.28,34-35  

The accuracy of existing surrogate tumor motion prediction systems may not be 

sufficient for high-precision radiation therapy systems.21 The first specific objective of 
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this dissertation is to identify and quantify sources of error in multivariate respiratory 

surrogate tumor localization models. 

2.6. Regression Analysis for Indirect Tumor Localization  

Combining multiple surrogate signals into a single model of tumor motion has been 

recommended as a means to create accurate respiratory surrogate-based tumor motion 

models.33,36,38 By incorporating multiple surrogates into one model, the marker placement 

effect, differences between respiratory surrogate paths of motion and tumor paths of 

motion, and phase offsets between motion of the tumor and motion of the torso surface 

can be overcome.3,28,35-36,39  

To predict tumor displacement from respiratory surrogate signals, a mathematical 

model describing the relationship between tumor motion and surrogate measurements 

must be developed. Because the literature lacks direct, quantitative comparisons of 

existing multiple-input models, there is no consensus on the best mathematical approach 

for modeling tumor motion from multiple markers. The second specific objective of this 

dissertation is to develop and validate an algorithm for predicting tumor position from 

multiple surrogates of respiration. 

In this dissertation, we developed novel techniques for localizing tumors based 

upon multilinear regression analysis. Regression analysis is a technique by which the 

form and accuracy of a relationship between outputs and inputs can be estimated.40 When 

applied to respiratory surrogate inputs, the relationship between each dimension 

(anterior-posterior, AP, superior-inferior, SI, and medial-lateral, ML) of tumor motion 

and each respiratory surrogate signal can be estimated. If a linear relationship is assumed, 
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the outputs are estimated as a sum of linearly scaled inputs. The linear regression yields a 

model of the form BXY ⋅=ˆ , where Ŷ  is the n × 3 matrix of estimated 3D tumor 

positions, X is the n × m matrix of respiratory surrogate signal measurements at n 

samples, and B is an m × 3 matrix of regression coefficients. In this dissertation work, 

two multilinear regression techniques were explored: ordinary least squares (OLS) 

regression and partial least squares (PLS) regression. These techniques provide 

alternative solutions to the equation BXY ⋅=ˆ .  

2.6.1. Ordinary Least Squares (OLS) Regression 

The OLS method defines B as the set of regression coefficients that result in the smallest 

possible sum of squared errors, (Ŷi, j −Yi, j )
2

i
∑

j
∑ , for approximate and actual target 

positions Ŷ  and Y, respectively, at time i and for direction of tumor motion j. The unique 

OLS solution is given by YXB ⋅= + , where +X  is the Moore-Penrose pseudo-inverse of 

X. For full-rank, real X, the Moore-Penrose pseudo-inverse is defined as 

)( XXXX TT ⋅=+ . For rank-deficient, real X, TUVX ⋅Σ⋅= ++ , where U, Σ, and V are the 

matrices in the singular value decomposition of X given by VUX ⋅Σ⋅= . The terms of 

+Σ  are given by 1
,, )( −+ Σ=Σ jiji  for 0, ≠Σ ji  and 0, =Σ+

ji  for 0, =Σ ji .  
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2.6.2. Partial Least Squares (PLS) Regression 

PLS regression is a technique that yields a coefficient matrix, B, in BXY ⋅=ˆ  such that the 

expression 1
2
BT ⋅XTX ⋅B− (XTY )T ⋅B  is minimized. In this dissertation, the SIMPLS 

algorithm41 was used to calculate the regression coefficients.  

The SIMPLS algorithm involves sequentially determining the A scores, weights, 

and loadings associated with X and Y. X is compressed into an m × A matrix of scores (or 

latent variables), T = [t1, t2,  …, tA], where A < m. The latent variables of Y, ui for i = 1 to 

A, are linear combinations of the columns of Y that are chosen so as to maximize the 

covariance between ti and ui for each i. The first X score, t1, is given by 

)(01 YXXnormYXXt TT ⋅⋅⋅⋅= , where Y0 is mean-centered Y. The first X weight, r1, and 

the first X basis, v1, each have elements equal to one. The Y loadings and scores are 

calculated as i
T

i tYq ⋅= 0  and ii qYu ⋅= 0 , respectively. The X basis is updated with each 

iteration as ))(( 111
TTT

iiii XtVVvv ⋅⋅⋅−= −−−
, where Vi-1 = [v1, v2, …, vi-1]. Subsequent X 

weights and scores are calculated as ii
T

iii qSvvSr
i

⋅⋅⋅−= −− ))(( 11  and ii rXt ⋅= .  

Because the PLS algorithm determines scores in order of decreasing contribution 

to the PLS model, utilizing only the first A of m factors serves to select the input 

information most relevant to the outputs. Thus the score and loading matrices were 

compressed as 

€ 

X = ˆ T ⋅ ˆ W + E  and 

€ 

Y = ˆ U ⋅ ˆ Q + F , where 

€ 

ˆ T  was the n × A matrix 

€ 

ˆ T  = [t1, 

t2, …, tA], 

€ 

ˆ W  was the m × A matrix 

€ 

ˆ W  = [w1, w2, …, wA], 

€ 

ˆ U  was the n × A matrix 

€ 

ˆ U  = 

[u1, u2, …, uA], and 

€ 

ˆ Q  was the p × A matrix 

€ 

ˆ Q  = [q1, q2, …, qA]. The residual matrices 

were E and F. Cross-validation approaches such as the leave-one-out and bootstrap 
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methods42 were used to select the appropriate number of factors, A, for each training 

dataset. The regression coefficient matrix, B, was given by TQRB ˆˆ ⋅= , where 

€ 

ˆ R  = [r1, r2, 

…, rA] and 

€ 

ˆ Q  = [q1, q2, …, qA]. 

2.7. Tumor Localization During Tumor-Surrogate Relationship Changes 

Respiratory surrogate models of tumor motion only work as long as the tumor-surrogate 

relationship remains constant.6 However, researchers have documented changes in 

relative motion amplitudes, drifts in the baseline tumor position, drifts in the surrogate 

signals, and shifts in the phase offset between the tumor and surrogate motion.6,43-44  

Inconsistencies in the day-to-day relationship between tumor motion and external 

surrogate signals have led researchers to recommend assessing such changes by imaging 

prior to the start of each treatment fraction.44-46 However, tumor-surrogate relationship 

changes have been detected during the duration of a single treatment fraction.6,47 To 

maintain respiratory surrogate model accuracy throughout a radiation treatment, it is 

necessary to periodically create a new model based on additional gold-standard tumor 

localizations. The third specific objective of this dissertation is to develop and validate 

methods for monitoring changes in respiratory surrogate model accuracy.  

2.8. Statistical Process Control for Tumor Model Monitoring 

In this dissertation work, we developed a set of methods for monitoring respiratory 

surrogate-based tumor motion models. These monitoring methods are based statistical 

process control techniques. 
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Statistical process control (SPC) is a class of statistical techniques in which new 

observations are compared to observations captured while the system was operating 

under control. Specifically, SPC metrics, as plotted versus time on control charts,48 

increase as changes occur in the observations relative to one another and relative to the 

model. These metrics, therefore, can rapidly detect the external disturbances that degrade 

the validity of the process under study.  

In the case of respiratory surrogate models, the respiratory surrogate 

measurements captured during the model-building period can be compared to the 

respiratory surrogate measurements captured during treatment. In this dissertation work, 

Hotelling’s T2 statistic and the input variable squared prediction error (Q(X)), were used to 

monitor the tumor-surrogate relationship through surrogate measurements alone, without 

halting the radiation beam to directly measure the tumor position. Both of these metrics 

are compatible with PLS regression and utilize the latent variables, or scores, that are 

developed as part of the regression process. 

Hotelling’s T2 statistic is an extension of the student’s t-test to multiple 

dimensions. In this work, T2 was used to measure the variation amongst the respiratory 

surrogate-based PLS input scores, ti.49 Aberrant T2 values indicate that the relationship 

between latent variables differs from that of the PLS model training data and that the 

model therefore must be extrapolated to fit the new respiratory surrogate data. T2 was 

calculated as Ti
2 = ti

T ⋅
T̂i
T ⋅ T̂i
n−1

#

$
%

&

'
(

−1

⋅ ti . The (1 −	
 α) percentile confidence limit on T2 was 
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calculated as ),(
)(
)1( 2

2 AnAF
Ann
AnT −

−

−
= αα , n was the number of training samples used to 

generate the model, A was the number of scores utilized by the PLS model, and 

),( AnAF −α  was the upper (α ×100%) critical point of the F distribution with (A, n – A) 

degrees of freedom.  

The input variable squared-prediction-error, Q(X), detects events that cause the 

process to move away from the hyper-plane defined by the reference model.50 Q(X) was 

given by 

€ 

Qi
(X ) = (ˆ z ij − zij )

2

j =A +1

n

∑ , where 

€ 

ˆ z i = ti ⋅ ˆ W  represents the surrogate marker 

measurement vector at sample i, 

€ 

zi, compressed to A latent variables. Confidence limits 

on Q(X) were calculated through the Jackson-Mudholkar formula,51 

€ 

Qα = θ1 1−
θ2h0(1− h0)

θ1
2 +

zα 2θ2h0
2

θ1

% 

& 
' 
' 

( 

) 
* 
* 

1/ h0

, in which 

€ 

zα  is the upper 

€ 

(100%)⋅ (α)  critical 

point of the normal distribution, 

€ 

θ j = λk
j

k=A +1

N

∑ , 

€ 

h0 =1− 2θ1θ3
3θ2

2 , and λk is the kth eigenvalue 

of 

€ 

(ˆ z new,i − znew,i)
T (ˆ z new,i − znew,i) . 
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CHAPTER 3: Approach 

3.1. Specific Objectives of the Research 

The purpose of this work was to develop multivariate statistical techniques for localizing 

tumors from respiratory surrogates in a radiation oncology environment. The specific 

objectives of this research were: 

1. To identify and quantify sources of error in multivariate 

respiratory surrogate tumor localization models, 

2. To develop and validate an algorithm for predicting tumor 

position from multiple surrogates of respiration, and 

3. To develop and validate methods for monitoring changes in 

respiratory surrogate model accuracy over time. 

3.2. Respiratory Surrogate Model Building 

To develop methods for localizing tumors with respiratory surrogates, it was necessary to 

evaluate respiratory surrogate models developed under a variety of conditions. 

Respiratory surrogate models are based upon concurrent measurements of tumor and 

respiratory surrogate marker positions. These concurrent measurements make it possible 

to develop a mathematical model describing tumor displacement as a function of 

respiratory surrogate measurements. Because of variations in patient anatomy, tumor size 

and position, breathing patterns, and respiratory surrogate setup, surrogate models of 

tumor motion must be redeveloped for each patient and day of treatment. Only after the 
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mathematical model is developed with gold-standard tumor localization data can 

subsequent tumor positions be predicted from respiratory surrogate measurements alone 

(Figure 3.1).  

The data used to develop and test the respiratory surrogate models was acquired 

from volunteers in three human imaging studies (Section 0). Two components, high-

frequency external localization and low-frequency internal localization, comprised each 

study. The external surrogates of respiration in each of these studies were optically 

tracked markers placed on the abdominal surface to allow monitoring of abdominal 

surface displacement during breathing. The markers were affixed to the subject either 

with adhesive tape (Figure 3.2) or with hook-and-loop fasteners and a form-fitting vest.52 

The internal localization was accomplished by identifying the tumor in radiographic, 

computed tomography (CT), or magnetic resonance (MR) images.  

Of note, it is not possible to localize the tumor at a high frequency throughout a 

radiation treatment fraction using images, because imaging modalities compatible with 

radiation delivery devices emit ionizing radiation (Section 2.5.2). Instead, because of the 

retrospective nature of this work, the images in this study were captured at a lower 

frequency (radiographs, CT) or through a modality incompatible with radiation delivery 

(MR). 
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Figure 3.1 Schematic of respiratory surrogate model development and use. (1) A mathematical 

model is designed from a set of respiratory surrogate measurements and tumor localizations that 

have been captured concurrently. (2) The model is then applied to convert real-time surrogate 

measurements into high-frequency, noninvasive predictions of tumor position. 

 

 

 

 

 

 

Figure 3.2 Four optically trackable markers affixed to the abdomen of a volunteer. 
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Models of tumor motion were developed and tested using in-house-developed 

Matlab (Mathworks, Natick, MA) code, which utilized the Partial Least Squares (PLS) 

code provided by the PLS_Toolbox (Eigenvector Research Incorporated, Wenatchee, 

WA). A selection of Matlab code written for this purpose is included in Appendix B. 

3.3. Human Studies 

The specific objectives of this work were accomplished in six studies included as 

chapters of this dissertation work. Each study utilized one of three human imaging 

datasets described below.  

3.3.1. Cyberknife Database 

Data was obtained under Institutional Review Board approval. A total of 91 cancer 

patients, including 63 with lung tumors, 5 with liver tumors, and 23 with pancreas 

tumors, underwent sterotactic body radiation therapy using a Cyberknife SynchronyTM 

(Accuray, Sunnyvale, CA) system at Georgetown University Hospital. Each patient 

underwent 1-5 treatment sessions. The Georgetown University Institutional Review 

Board approved sharing of an anonymized version of this dataset with research partners, 

including our group at the University of Maryland.  

In the course of a usual treatment, the Cyberknife SynchronyTM system (Figure 

3.3) records both tumor and torso surface positions. For this patient population, three 

respiratory surrogate markers in the form of light-emitting diodes (LEDs) were fixed to a 

form-fitting vest worn by the patient. The LED surrogate markers were optically tracked 

at a rate of 26 Hz throughout the treatment. Second, using a pair of stereoscopic 
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radiographs, the centroid of 2-3 fiducial markers implanted in or near the tumor was 

localized every 3 radiation beams delivered, once per minute on average. The fiducial 

marker centroid displacement was considered to be equivalent to the tumor displacement. 

The tumor and surrogate marker localizations were aligned using timestamps in the log 

files. 

The raw Cyberknife SynchronyTM system data files were processed in Matlab 

(Mathworks, Natick, MA). Periods of tracking while the patient was being repositioned 

were removed from the dataset. For each imaging session, the longest period of tracking 

between repositioning events was utilized in the analyses. Each tracking period included 

at least 40 tumor localizations. 
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Figure 3.3. Cyberknife Synchrony suite, which includes (from left to right) the radiation treatment 

device (a miniature linear accelerator mounted on a robotic arm), the stereoscopic radiograph 

imaging system, and the respiratory surrogate marker optical tracking system. 
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3.3.2. 4D Computed Tomography Data 

A retrospective analysis of planning 4D computed tomography (CT) scans was evaluated 

to determine whether easily localized anatomical landmarks in the chest are predictive of 

lung primary tumor and lung nodal volume motion. Sixteen patient scans with clearly 

demarcated mediastinal lymph nodes and without imaging artifacts were selected from 

the VU University Medical Center (Amsterdam, Netherlands) database of planning 4D 

CT scans. 

Patients were scanned in the supine position on a 16-slice CT scanner 

(LightSpeed 16, GE Healthcare, Waukesha, WI) with no intravenous contrast (Figure 

3.4). Scans were performed in cine acquisition mode at 2.0 cm intervals with a slice 

thickness of 2.5 mm. Patients were instructed to breathe normally with a regular rhythm, 

and images were obtained only after a quiet, regular breathing pattern was observed. The 

respiratory signal was detected using a Real-time Position Monitoring (RPM) system 

(Varian Medical Systems, Palo Alto, CA). The CT imaging data and corresponding 

respiratory signal files were binned into 10 separate respiratory phases by dividing each 

RPM-derived respiratory cycle into 10 equal time intervals. The phases were labeled 

from 0% to 90%, with end-inspiration corresponding to the 0% bin. 

A single radiation oncologist manually contoured the primary tumors and the 

thoracic nodal volumes and localized the anatomical respiratory surrogates, and a second 

radiation oncologist verified the contours. Depending on their visibility in the 4D CT 

scan, 3-5 anatomical surrogates were tracked for each patient. The anatomical surrogates 

were xyphoid (n=16), carina (n=16), left (n=7) and right (n=11) nipples (tracked in male 
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patients only), and mid-sternum (n=15). The mid-sternum was localized as a metal 

marker placed on the sternum at the time of 4D CT in the images. The carina was 

localized as the peak between main-stem bronchi on coronal image slices, which had 

been automatically interpolated by the treatment software. In total, 3D position data from 

16 primary tumors, 53 nodal volumes, and 65 anatomical surrogates from the 16 patients 

were analyzed.  

 

 

 

 
Figure 3.4. Setup for a 4DCT scan, including a camera system at the foot of the table that optically 

tracks a marker fixed to the subject’s abdomen. 
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3.3.3. Magnetic Resonance Imaging Study 

Five lung cancer patients undergoing radiation therapy at the University of Maryland 

Department of Radiation Oncology participated in an Institutional Review Board-

approved magnetic resonance (MR) imaging study at the University of Maryland Medical 

Center. The study participants underwent dynamic (high-frequency) MR scanning on 

three separate days.  The first scan took place 1-2 weeks prior to the start of the patient’s 

radiation treatments. The second scan took place between the 5th and 11th treatments for 

patients undergoing conventionally fractionated radiation therapy or between the 1st and 

2nd treatments for patients undergoing hypo-fractionated radiation therapy. The third scan 

took place between the 15th and 21th treatments for patients undergoing conventionally 

fractionated radiation therapy or between the 2nd and last treatments for patients 

undergoing hypo-fractionated radiation therapy. 

Images of the tumor were acquired on a 1.5 T Magnetic Resonance Imager 

(Manetom Avanto, Siemens, Erlangen, Germany) using a TrueFISP sequence (200 

images, 5 sagittal slices, 8 mm slice thickness, interleaved acquisition, TE 1.29 ms, TR 

2.57 ms, 60deg flip angle, matrix 176 × 256 matrix, in-plane spatial resolution of 1.6-

2.2mm in each direction, 1028 bandwidth, 500 sec total acquisition time). The FOV was 

selected to encompass the tumor and the tumor motion in the medial-lateral dimension 

and to encompass the thorax in each sagittal slice. 

During scan acquisition, five spherical reflective markers affixed to the abdomen 

were tracked (Figure 3.5) by an infrared camera system (Polaris Spectra, NDI, Waterloo, 

Ontario) using in-house developed software (Labview, National Instruments, Austin, 
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Texas). The software was designed to poll the camera for marker positions at a rate of 30-

60 Hz, parse the response, log the positions, and synchronize marker tracking with MR 

image acquisition. The software emits a voltage pulse through a DAQ board once every 

500 msec. The scanner receives this signal through its electrocardiogram input hardware. 

The scan sequence was programmed to acquire one image slice per pulse. This scheme 

ensures that marker position logging is synchronized with the MR acquisition. 

Developing this software involved modifying the available Labview drivers designed for 

the older Polaris camera system for compatibility with the Polaris Spectra camera system 

used in this study. Selected Labview code written for this project is included in 

APPENDIX C:  Selected Labview Code.  

 

 
Figure 3.5. Optical tracking camera in position for respiratory surrogate tracking concurrent with 

magnetic resonance imaging. 
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CHAPTER 4: Mitigating Errors in Respiratory Surrogate-Based Models 

of Tumor Motion  

 

4.1. Introduction 

Respiration-induced tumor motion degrades radiation therapy targeting accuracy.5,9-10 

Tumor displacement can be inferred by indirect tracking systems that rely on external 

surrogates of respiratory motion, such as optical markers affixed to the torso, to predict 

the position of the tumor.18,21,33,36-37,53-54 However, few studies to date explore potential 

variations in the model or explain sources of error. While the literature has suggested that 

such issues as signal-to-noise ratio (SNR)34 and variations in the tumor-surrogate 

relationship3,6,30,45 might lead to indirect tumor tracking system errors, to our knowledge 

no study to date has provided a systematic investigation of factors that may contribute to 

the accuracy of surrogate-based predictive models of tumor position. This information 

would make it possible to more accurately track real-time tumor motion. 

`In this study, we evaluate potential sources of error in tumor position prediction 

models. The primary purpose of this study was to investigate the impacts of: (1) tumor 

site, (2) tumor and external surrogate measurement precision, (3) tumor-surrogate 

correlation, (4) training data selection, (5) model design, (6) inter-patient variations, and 

(7) inter-fraction variations on the accuracy of external marker-based models of tumor 

position in the context of three modeling algorithms: ordinary least squares (OLS) 
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regression, the Cyberknife SynchronyTM algorithm, and partial least squares (PLS) 

regression. The secondary goal of this study was to evaluate PLS regression for modeling 

tumor motion from external surrogates. Preliminary studies37 have indicated that PLS 

may be more accurate than computationally simpler multiple-marker linear algorithms 

such as OLS and Synchrony.TM This may be due to the collinearity in external markers’ 

motion.40  

4.2. Methods 

4.2.1. Position Data 

Data consisted of Cyberknife SynchronyTM system (Accuray Inc., Sunnyvale, CA) log 

files captured during 113, 10, and 44 stereotactic body radiation therapy treatments from 

61, 5, and 22 lung, liver, and pancreas patients, respectively, at Georgetown University 

Hospital, Washington, DC. An Institutional Review Board approved the collection of this 

data and the distribution of de-identified data from this study to research partners.  

Cyberknife SynchronyTM data files included 3D positions of: (1) the centroid of a 

set of 2-3 fiducial markers implanted in the tumor that were measured via stereoscopic x-

rays, henceforth referred to as the tumor position; and (2) three markers affixed to the 

patient’s form-fitting vest that were tracked optically. The positions of the tumor, 

identified as the centroid of the set of fiducial markers, were aligned in time with those of 

the external respiratory surrogate markers according to the timestamps in the system log 

files. Each dataset included 40-112 (mean = 62) concurrent tumor and marker 

localizations spaced at a mean interval of 66 sec. The log files also included the 
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continuous real-time output of the Cyberknife SynchronyTM model predicting tumor 

motion from respiratory surrogate marker motion.  

4.2.2. Applying and Testing Inferential Models 

For each treatment fraction, a series of models was tested. First, a model was fit (Section 

4.2.3) to a training dataset of the first N concurrent tumor and external marker positions 

in the treatment fraction. This model was used to predict tumor positions from subsequent 

external marker measurements in the same treatment fraction. Each predicted tumor 

position, derived from marker measurements alone, was validated against the tumor 

position measured from stereoscopic x-rays. This process was repeated for training 

datasets of each set of N consecutive measurements in the treatment fraction, each time 

testing the model against the tumor localizations during that fraction that were acquired 

after the training dataset. Prediction error was defined as the Euclidean distance between 

the stereoscopic x-ray-measured tumor position and the modeled tumor position.  

4.2.3. Model Design 

4.2.3.1. Input Data Pre-Processing 

In addition to the raw external marker positions, an alternative input was created by 

projecting marker displacements onto a single dimension of motion, defined as ri (Figure 

4.1). The motivation for comparing raw 3D inputs to projected, 1D inputs was to better 

understand the impact of this data processing technique on the Cyberknife SynchronyTM 
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algorithm’s performance. As described by Sayeh et al., the Cyberknife SynchronyTM 

system uses ri as the inputs to its tumor position models.52  

To calculate ri(t) for a marker i, the projection line was determined from the 

matrix of mean-centered 3D marker positions acquired during training data collection. 

The direction of the line was given by the first principal component vector of the marker 

positions, which is defined as the first eigenvector of the marker data covariance matrix.55 

The projection line also was designed to intersect the origin. Each 3D marker position 

was then projected orthogonally onto the line. For each position (xi(t), yi(t), zi(t)), ri(t) was 

defined as the distance from the origin to the sample’s projected position.  

 

 

 
(a) 

 

 

(b) 

Figure 4.1 Example of (a) 3D surrogate marker motion data (solid) projected onto its first 

principle component (arrow) line (dashed) to obtain (b) a 1D representation of respiration-

induced surrogate marker motion. 
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4.2.3.2. Model Algorithms 

Three model fitting algorithms were considered: OLS regression, PLS regression, and the 

SynchronyTM algorithm. OLS and PLS are mutlilinear models of the form BXY ⋅=ˆ , 

where X is matrix of inputs (respiratory surrogate positions) with m measurements and n 

inputs, B is an n×3 matrix of regression coefficients, and Ŷ  is a matrix of m×3 outputs 

(predicted tumor positions). See Section 2.6 for details regarding how to calculate B 

through OLS and PLS, respectively. 

The inferential model in the SynchronyTM system was reproduced for this study 

based on the description by Sayeh et al. While the SynchronyTM output was available in 

the system log files, reproducing the model made it possible to control the training data 

and timing in order to compare results to that of OLS and PLS models.52 The algorithm 

can be stated briefly as follows. Initially, separate linear, quadratic, or hybrid models 

were developed for each of the three markers. The linear and quadratic models were 

defined by iiii ArAY ,0,1
ˆ +=  and iiiiii ArArAY ,0,1

2
,2

ˆ ++= , respectively. For quadratic and 

hybrid models, separate coefficients were calculated for inhalation and exhalation. The 

final tumor position estimate was given by the average of the outputs of models using the 

three markers. The system selects between linear or quadratic models through a modified 

standard error function that selects for increased accuracy and reduced computational 

complexity.52 In the clinical Cyberknife SynchronyTM system, the operator selects both 

the number of images used to train the model and the frequency of images acquired 

during treatment. Our implementation of the SynchronyTM model, SYNr, based on 15 
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tumor localizations (the typical training data length in the clinic from which our data 

originated) was validated against the actual logged 15-sample SynchronyTM model 

output. In the SI, ML and AP directions, respectively, the mean (± standard deviation) 

distances between SYNr and actual SynchronyTM outputs were 0.5 ± 1.2 mm, 0.5 ± 1.7 

mm, and 0.3 ± 0.5 mm. For this study, only the linear form was considered, because more 

than 70% of cases in the database did not utilize quadratic models when the modified 

standard error function was applied.  

Both the OLS and the SYNr algorithms utilize an ordinary linear regression step. 

The SYNr algorithm differs from OLS in that SYNr creates separate linear models for 

each of the 3 markers and averages their outputs to predict the tumor position. In contrast, 

the OLS model regresses on one matrix comprising all of the marker data, leading to a 

different set of regression coefficients. 

4.2.3.3. Summary of Models Evaluated 

Five tumor position prediction models were considered: OLSxyz, OLSr, PLSxyz, PLSr, 

and SYNr. OLSxyz and PLSxyz models utilized the 3D marker data. OLSr, PLSr, and 

SYNr models utilized the one-dimensional, projected marker data. 

4.2.4. Training Data Selection 

4.2.4.1. Quantity of Training Data 

Training datasets of N = 6 to N = 35 samples of measured tumor and external surrogate 

positions were evaluated for their accuracy in inferring tumor positions that occurred 
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subsequent to the training data. Mean and 95th percentile errors over 20 minutes of data 

were evaluated. 

4.2.4.2. Time Since Training Data Acquisition 

Errors for models in which 6 samples of concurrent external marker and tumor positions 

comprised the training data were binned by time elapsed since the end of training data.  

4.2.4.3. Tumor-Surrogate Correlation 

The impact of uncorrelated external surrogate inputs on tumor localization model 

accuracy was explored in OLSr, PLSr, and SYNr models. For each model type, models 

with 6 samples of concurrent external marker and tumor position were created. Then new 

models were trained on the same training data (6 samples × 3 inputs) plus an additional 

input vector of Gaussian noise (6 random values × 1 input) for a total of 4 inputs. The 

accuracies of models with and without the additional noise input were compared. 

4.2.5. Inter-Patient and Inter-Fraction Variation 

Each patient underwent 1-5 treatment fractions. The mean tumor-surrogate model 

prediction error for each treatment fraction was determined. Using the 46 patients for 

whom more than one treatment fraction of data was available, the Kruskal-Wallis one-

way analysis of variance test was applied to determine whether the mean error of a 

fraction was significantly associated with either patient index or fraction index. 
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4.2.6. Measurement Precision 

Tumor-surrogate models created from the training data were compared to models with 

simulated noise in either input (external marker) or output (tumor) measurements. In each 

case, models based on 6 training samples were evaluated on the testing dataset. 

To simulate radiographic tumor localization uncertainties, noise from a Gaussian 

distribution was added to the radiographic tumor localizations. Noise levels were varied 

by randomly selecting the standard deviation of the Gaussian noise in each trial. Another 

set of models was then created from training data with noise and used to determine new 

predicted tumor positions in the testing dataset. This process was repeated for noise 

added to external marker localizations. 

4.3. Results 

4.3.1. Model Design 

For OLSxyz, PLSxyz, OLSr, PLSr, and SYNr models trained on 6 samples, 22.8%, 

12.7%, 19.0%, 9.1%, and 9.5% of the predictions, respectively, exceeded 0.5 cm (Figure 

4.2). The OLSxyz, PLSxyz, and OLSr distributions peaked in the 0.1 cm to 0.2 cm range, 

and the PLSxyz, PLSr, and SYNr distributions peaked in the 0-0.1 cm range. PLSr and 

SYNr results did not differ significantly for any quantity of training points. 
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Figure 4.2 Histogram of tumor localization errors during the first minute of testing for models 

based on 6 training samples. The last bin comprises all errors greater than 0.5 cm.  

 

 

 

4.3.2. Training Data Selection 

4.3.2.1. Quantity of Training Data 

The 95th percentile and mean tumor position prediction errors for each number of training 

samples are shown in Figure 4.3. The OLSxyz error peaked to an average of 7.7 cm when 

N = 10 samples were used to train the model. OLSxyz, and OLSr 95th percentile errors 

exceeded 1 cm for some values of N, but PLSxyz, PLSr, and SYNr 95th percentile errors 

did not exceed 1 cm in the tested range of N. Mean errors for the six models converged to 

approximately 0.2 cm for N > 20.  
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4.3.2.1. Time Since Data Acquisition 

Average errors for each model type increased as time elapsed after the end of the training 

data (Figure 4.4). Mean errors in 0-2 min and in 10-20 min of data increased from 0.3 to 

1.3 cm for OLSxyz, 0.2 to 0.5 cm for PLSxyz, 0.2 to 0.6 cm for OLSr, 0.2 to 0.4 cm for 

PLSr, and 0.2 cm to 0.4 cm for SYNr. 

4.3.1. Tumor-Surrogate Correlation 

The uncorrelated (Gaussian noise) input degraded prediction models (Figure 4.5). Mean 

errors in the 0-2 min bin increased by 57% for OLSr and by 16% for PLSr. 

4.3.2. Tumor Site 

For each modeling algorithm, error distributions were comparable across the three tumor 

sites (Figure 4.6). Lung, liver, and pancreas mean errors were 2.2 mm, 1.9 mm, and 2.3 

mm, respectively, and further details are described in Table 4.1. Of the three sites, only 

the pancreas errors differed significantly (Kruskal-Wallis one-way ANOVA, p<0.05) 

from errors of the other sites. However, it can be argued that the 0.1 mm mean error 

difference between lung and pancreas cases is not likely to be clinically significant. It is 

not clear whether liver results would differ significantly from lung results with a larger 

sample size. 
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Figure 4.3 Mean and 95th percentile tumor position model prediction errors in the test data 

acquired over 20 minutes for (a) OLSxyz, (b) PLSxyz, (c) OLSr, (d) PLSr, and  

(e) SYNr models. For clarity, the y-axis in (a) is scaled differently than that of (b-e).  
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Figure 4.4 Mean and standard deviation (error bars) of tumor position model prediction errors, 

binned by time elapsed since the end of training data collection. *The standard deviation of the 

OLSxyz error bar in the >20 min bin is 2.3 cm.  

 

 

 
Figure 4.5 The impact of an uncorrelated (Gaussian noise) input variable in OLSr and PLSr 

models. Mean and standard deviation of model errors indicate that the additional input increased 

errors. In the 0-2 min bin, OLSr errors increased by 57%, and PLSr errors increased by 16%. 
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Figure 4.6 Histograms of mean error in each fraction by tumor site for (a) OLSxyz, (b) PLSxyz, 

(c) OLSr, (d) PLSr, and (e) SYNr models, each based on 6 training data points.  

 

Table 4.1 Errors for models based on 6 training points, stratified by tumor site 

 Mean ± standard deviation of error (mm) 

Model Lung Liver Pancreas 

OLSxyz 3.0 ± 4.5 2.7 ± 2.7 3.3 ± 4.6 

PLSxyz 1.9 ± 2.0 1.7 ± 1.3 2.0 ± 2.0 

OLSr 2.5 ± 3.4 2.1 ± 2.6 2.6 ± 2.8 

PLSr 1.8 ± 1.6 1.6 ± 1.1 1.8 ± 1.5 

Synchrony 1.7 ± 1.6 1.6 ± 1.0 1.8 ± 1.5 

Pooled results 2.2 ± 2.9 1.9 ± 1.9 2.3 ± 2.8 
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4.3.1. Inter-Patient and Inter-Fraction Variation 

For each of the model types, the model error in a single fraction was significantly (p < 

0.05) associated with the patient from whom the fraction was recorded. This pattern is 

evident in Figure 4.7, in which the mean errors of the four fractions of patient 2, for 

instance, cluster around a value that differs from the value associated with patient 8. The 

mean model error over a fraction was not significantly (p > 0.05) associated with the 

treatment fraction index. 

4.3.2. Measurement Precision 

When noise was added to measurements of radiographic tumor positions in the training 

dataset (Figure 4.8), the resulting average error in the testing dataset varied as 1.1, 0.3, 

and 0.4 times the average noise for OLSr, PLSr, and SYNr, respectively; noise-to-error 

correlations ranged from 0.44 to 0.53. When noise was added to the measurement of the 

external surrogate position data, the resulting average error in the testing dataset varied as 

3.7, 0.6, and 0.6 times the average noise for OLSr, PLSr, and SYNr, respectively, and 

noise-to-error correlations ranged from 0.09 to 0.32.  
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!

 
Figure 4.7 Mean and standard deviation of 9-training-datapoint PLSr in each fraction for 9 

patients. Errors represent samples acquired within 20 minutes of the training dataset. For clarity, 

the figure is limited to the 9 patients with at least 4 treatment fractions available for analysis; the 

results for these patients are consistent with the dataset as a whole. 

 

 

 

 

 

 
(a) 

 
(b) 

Figure 4.8 (a) Tumor and (b) external marker localization noise (in the training data used to build 

the model that predict tumor position) versus tumor position prediction error. Best fit lines 

represent least-squared-error linear regression fits with an assumption of zero error for zero noise. 

OLSr regression lines have slopes of (a) 1.1 and (b) 3.7. The PLSr line overlies the SYNr line in 

(b). 
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4.4. Discussion 

In this study, a series of factors impacting the accuracy of respiratory surrogate models of 

tumor motion were explored. Model accuracy was affected by inter-patient variations, 

tumor and external surrogate measurement precision, tumor-surrogate correlation, 

training data selection, tumor-surrogate correlation, and model design. Tumor site and 

fraction index were not predictive of model accuracy. These results provide the reader 

with a framework for designing and evaluating a surrogate-based tumor position 

prediction model. In addition, PLS models were more accurate than OLS models and 

were as accurate as SynchronyTM models. 

Many studies reporting high tumor-surrogate correlations have evaluated only a 

few minutes of data.3,56 The results of these studies may not be representative of the 

behavior of the model over entire treatment fractions. Analyses of datasets capturing 

motion over the duration of a treatment fraction have reported variations in the tumor-

surrogate relationship.6,21,30 In this study, model errors increased over time; we attribute 

this increasing error to tumor-surrogate relationship changes. In practice, this effect could 

be overcome by updating the model during the treatment fraction. Intra-fraction model 

updates have been utilized by tracking systems like Cyberknife SynchronyTM, but model 

updates are not common in gated treatment protocols.  

In this work, projecting external marker motion onto a single dimension improved 

accuracy by increasing the correlation between surrogate signals and tumor motion. 

Shifting the surrogate signal in time relative to the tumor signal is a common method for 

increasing tumor-surrogate correlation.29-30,33,57 However, because of changes in the 
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tumor-surrogate phase offset, these shifted surrogates are not likely to maintain their 

improved correlation over time.6,30  

PLSr and SYNr results did not differ significantly. We investigated other model 

designs (not described in detail here) but were unable to reduce model errors below those 

of the PLSr model. Because the continuous external marker motion in the data log files 

appears to indicate a high signal-noise ratio (SNR), we hypothesize that the accuracy of 

any model based on this dataset is limited by precision of the gold-standard radiographic 

tumor localizations. PLSr and SYNr represent the state-of-the-art in indirect tumor 

localization algorithms. In addition to their accuracy, each requires only milliseconds to 

derive tumor position from surrogate data. Subject to the limitations of SNR and the other 

factors investigated in this study, both PLSr and SYNr are candidates for real-time 

applications. 

Decreased measurement precision in either gold-standard tumor localizations or 

external surrogate measurements was found to have considerable impact on model 

accuracy. For OLSr models, the errors in tumor position prediction induced by 

measurement precision limitations were 1-4 times as large as the measurement errors 

themselves. For PLSr and SynchronyTM models, the errors in tumor position prediction 

were 0.3-0.6 times as large as the measurement errors. Many optical (surrogate) tracking 

systems are capable of achieving sub-millimeter accuracy,58-59 but infrared tracking 

accuracies exceeding one millimeter have been reported in clinically available devices.60 

Typical errors of x-ray-based localizations of bony anatomy or fiducial tracking are 0.6-2 

mm.60  
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Surprisingly, utilizing a larger quantity of training data, whether in dimensionality 

of marker motion or in number of training data points, did not improve the accuracy of 

tumor position predictions. In the case of OLS models, the error peaked at the transition 

between underdetermined and overdetermined systems. For any modeling algorithm, the 

optimal number of training points will also vary as a function of spacing between training 

samples. Training data captured over a period of minutes may encompass tumor-

surrogate relationship changes that would not be present in training data captured in a 

shorter period of time.  

PLS was consistently more accurate than OLS, a conclusion in agreement with 

the diaphragm tracking work of Qiu et al. OLS regression coefficients are volatile when 

inputs are collinear;37 the regression coefficients in OLS models often vary considerably 

for different training samples from the same dataset.40 As a result, PLS has been 

described a superior alternative to OLS when the inputs are highly collinear.61  

Yan et al. has shown that multiple-surrogate models of tumor motion can be more 

accurate than single-marker models by overcoming the location effect, in which tumor-

surrogate correlation varies with marker placement.33,36 Nevertheless, our results support 

the conclusion that incorporating additional surrogate-based inputs that are uncorrelated 

with tumor motion may actually degrade the model. Fortunately, respiration-induced 

tumor motion is correlated with such respiratory surrogates as markers affixed to the 

torso, spirometry, and bellows systems.6,33,62  

Finally, patient-specific, fraction-specific, and site-specific results were evaluated. 

Results did not differ between lung, liver, and pancreas cancers. Furthermore, the model 
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error was not found to be significantly associated with fraction index. Patient index, on 

the other hand, was significantly associated with model accuracy. The practical 

implication of these results is that the design of a study to evaluate tumor motion models 

should use a large enough group of patients to obtain statistically significant results; 

multi-site and inter-fraction data are less important unless a model will be applied 

without revision on multiple treatment days.  

4.5. Conclusions 

The accuracy of tumor position prediction models using external surrogates was affected 

by inter-patient variations, measurement precision, tumor-surrogate correlation, training 

data selection, and model design, but tumor site and fraction index were not predictive of 

model accuracy. PLS regression models were more accurate OLS models and as accurate 

as SynchronyTM models. 
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CHAPTER 5: Incidence of Changes in Respiration-Induced Tumor 

Motion and its Relationship with Respiratory Surrogates 

During Individual Treatment Fractions 

 

5.1. Introduction 

A major challenge of tumor motion management in radiation therapy is that respiration-

induced tumor motion is not truly periodic. Both tumor motion and the relationship 

between tumor position and respiratory surrogate signals can change over time. However, 

to our knowledge, no study to date has quantified the incidence of tumor motion changes 

during individual fractions. This information would allow clinicians to better evaluate the 

need for complex, often time- and resource-consuming motion management techniques. 

Furthermore, Studies to date have not quantified the incidence of changes in the 

relationship between tumor motion and respiratory surrogate signals during individual 

treatment fractions. If it is found that the tumor-surrogate relationship should be 

evaluated more than once during a fraction, such a change could be implemented rapidly 

in clinical protocols 

In this study, tumor motion and the relationship between tumor displacements and 

concurrent external marker displacements were evaluated in a retrospective analysis. The 

purpose of this study was to determine how frequently (1) tumor motion and (2) the 

spatial relationship between the tumor and respiratory surrogates change over the course 
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of a treatment fraction in lung and pancreas cancers. Tumor motion differences were 

evaluated through both displacements and their implications on treatment margins.  

5.2. Methods 

5.2.1. Data 

A database of Cyberknife SynchronyTM system log files comprising 55 treatment 

fractions from 37 lung cancer patients and 29 treatment fractions from 16 pancreas cancer 

patients who underwent stereotactic body radiation therapy (SBRT) was analyzed. Lung 

tumor locations are described in Table 5.1. The log files included (1) the three-

dimensional coordinates of the centroid of fiducials (typically, 3 fiducials) implanted in 

the tumor and intermittently measured via stereoscopic radiographs, and (2) three-

dimensional coordinates of a set of three light-emitting diodes (LEDs) affixed to the 

patient’s form-fitting vest. The frequent (26 Hz) measurements of LED (external) 

positions were matched to the intermittent (once every 3 beams – approximately once per 

minute) measurements of tumor positions using timestamps stored in the Cyberknife log 

files. The data included only the longest period of uninterrupted treatment in each 

fraction. Thus, any pre-treatment images, patient repositioning events, and unplanned 

radiographs were excluded from the analysis. 

The treatment fraction datasets were divided into 10-min blocks (Figure 5.1). 

Because radiographic localizations were timed as once every third beam, the images were 

captured at irregular intervals that varied with the duration of individual treatment beams. 

Intervals between localizations sometimes exceed five minutes, leading to sparse 10-min 
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datasets. For this reason, only treatment fractions with at least 9 data points in each of the 

first three 10-min data blocks were selected for this study.  

While it usually takes an hour or longer to deliver hypofractionated treatments 

using the Cyberknife system, most patients receive hypofractionated treatments on 

conventional linear accelerators, where treatment times are 30 min or less. Conventional 

treatment fractions may be shorter in duration. For this reason, this analysis was limited 

to 30 min of data (Figure 5.1). 

5.2.1. Tumor Location Analysis 

Results were stratified by tumor site (lung and pancreas) and, for lung tumors, by lobe. 

The lung lobe was known for 26 of 37 (Table 5.1) lung cancer patients.  

 

 

Table 5.1 Lung tumor locations 

Location  Number of patients Number of fractions 

Left upper lobe 7 12 

Left lower lobe 6 6 

Right upper lobe 4 5 

Right middle lobe 3 4 

Right lower lobe 6 8 

Unknown 11 20 
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          (a)     (b)             (c) 

Figure 5.1 Tumor and surrogate marker (a) SI, (b) AP, (c) ML displacements for a single treatment 

fraction. For clarity, data from only one of the three surrogate markers is shown. 

 

 

 

5.2.2. Tumor Position Variation 

The means of tumor positions (determined directly from the Cyberknife SynchronyTM log 

files) within 10-min data blocks were evaluated and compared. Differences in mean 

position across 10-min periods are representative of changes in the baseline tumor 

position but are subject to under-sampling errors. For this reason, the 10-min data blocks 

were characterized and compared using the Wilcoxon Rank-Sum test and the Kruskal- 
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Wallis one-way ANOVA test.63 These tests are capable of discerning whether detected 

differences are statistically significant for the available sample size. They calculate the 

probability that data captured during different 10-min data blocks are representative of 

the same continuous distribution of tumor positions and can detect changes in both the 

median tumor position and the tumor position probability density function (PDF). The 

Wilcoxon Rank-Sum test was used to determine whether the distribution of tumor 

positions changed significantly from one 10-min period to the next, and the Kruskal-

Wallis one-way ANOVA test was used to determine whether the distribution of tumor 

positions differed during at least one 10-min block in first 30 min of the treatment 

fraction.  

Tumor position variations were further characterized by calculating appropriate 

treatment margins (1) from the first 10 min of data in the fraction and (2) from the first 30 

min of data in the fraction. Anisotropic margins were calculated according to a previously 

validated margin formulation.64 Margins were estimated as: 

5376.04096.084.05.2 2 −++Σ= σM , where σ is the standard deviation of tumor 

positions about zero and Σ is the standard deviation of tumor positions about the mean 

tumor displacement. This margin formulation assumes penumbra width of 6.4 mm, 95% 

isodose coverage and a 90% probability level.  

5.2.3. Baseline Shift Detection 

To determine whether tumor baseline position shifts can be predicted from surrogate 

marker position baseline shifts, the tumor and surrogate marker displacements from their 
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positions at the start of the treatment fraction were determined as 
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sample i, where k indicates the marker index. The correlation between dtumor and dmarker 

was determined for each marker and treatment fraction. 

5.2.4. Internal-External Relationship Variation 

To characterize the relationship between the external surrogate marker and tumor 

displacements, partial-least-squares (PLS) regression was applied to the data in the first 

10 min (the training dataset) of each treatment fraction. PLS is a statistical modeling 

approach that allows for prediction of tumor positions (output variables) from concurrent 

surrogate marker positions (input variables). The PLS regression model was of the form 

BXY ⋅=ˆ , where the model-based estimate of the tumor position, Ŷ , is given by the 

product of the matrix of surrogate marker positions X and the matrix of PLS regression 

coefficients B. See Section 2.6.2 for details regarding the calculation of B through PLS 

regression. 

Degradation in the accuracy of the models over time, as indicated by increasing 

PLS tumor displacement prediction error, would indicate a changing relationship between 

the tumor positions and the surrogate marker positions. Therefore, the PLS model was 

then applied to the surrogate marker positions that were localized after the first 10 

minutes of the fraction to estimate the concurrent tumor positions. The estimated 
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positions determined by the model were then compared to the tumor positions in the log 

files to determine the errors between the predicted and actual tumor positions. Time 

trends in error for each fraction were evaluated.  

Reported tumor position error values represent the 3D vector displacement 

between the actual tumor position and the modeled tumor position. The errors were 

analyzed in two ways. First, for each fraction, the mean error of each 10-min block of 

data was calculated. Errors were then compared across 10-min data blocks. Second, each 

treatment fraction was evaluated individually to determine the incidence of increasing 

error in the population. To determine whether the error increased significantly, a line was 

fit to the time versus error data in each fraction using ordinary-least-squares regression. 

The hypotheses that the slope of each line was non-zero and either positive or negative 

were tested (F-test, p<0.05) to detect significant time trends. 

5.3. Results 

5.3.1. Tumor Positions 

The maximum vector displacements between mean tumor positions in consecutive (either 

first to second or second to third) data blocks were 7.1 mm for lung and 6.0 mm for 

pancreas. In each direction and tumor site, the difference in mean tumor position between 

the first and third 10-min blocks was larger than the differences in first to second and 

second to third data blocks (Figure 5.2), indicating a trend of increasing divergence of the 

baseline position over time. For lung and pancreas, respectively, the mean tumor position 

changed by >5 mm in 2% and 1% of cases comparing consecutive 10-min blocks of data 
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and in 13% and 7% of cases comparing first and third 10-min blocks of data. SI and ML 

differences in mean positions between consecutive 10-min blocks were significantly 

(one-way ANOVA, p<0.05) associated with the lobe of the lung (Figure 5.3).   

In consecutive 10-min data blocks, the differences between tumor position 

distributions were significant (Wilcoxon Rank-Sum, p<0.05) in 23%, 23%, and 41% of 

lung cases and in 20%, 13%, and 33% of pancreas cases for SI, AP, and ML motion, 

respectively. In the first three 10-min blocks there was a statistically significant (Kruskal-

Wallis, p<0.05) change in tumor position distributions in 76%, 80%, and 90% of lung 

fractions and in 71%, 60%, and 75% of pancreas fractions for SI, AP, and ML motion, 

respectively. Incidence of tumor position distribution changes was not significantly 

associated with lung tumor location. 
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(a) 

 
(b) 

Figure 5.2 Mean and standard deviation (error bars) of absolute differences in mean position of 

tumor (a) in subsequent  (combined data from first to second and second to third) 10-min blocks of 

data and (b) from the first to third 10-min blocks of data. 

 

 

 
(a)  

(b) 
 

(c) 

Figure 5.3 Boxplots of changes in mean tumor displacement differences between consecutive 

(first-to-second and second-to-third) 10-min blocks of data for upper, middle, and lower lung 

lobes in the (a) SI, (b) AP, and (c) ML directions. 
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5.3.2. Treatment Margins 

In 61% and 54% of lung and pancreas fractions, respectively, margins in any of the three 

orthogonal directions that were calculated from 30 min of data were larger than margins 

calculated from 10 min of data (Figure 5.4). The absolute difference between margins 

derived from 10 min of SI data and margins derived from 30 min of SI data was >1 mm 

in 42% of lung and in 45% of pancreas cases. AP and ML results are given in Table 5.2. 

Treatment margins for lower lobe lung tumors were significantly (t-test, p<0.05) 

larger than those of both upper and middle lobe lung tumors. The difference between 10-

min and 30-min SI margins for lower lobe tumors differed significantly (t-test, p<0.05) 

from those of upper (but not middle) lobe tumors (Figure 5.5). Differences between 10-

min and 30-min AP and ML margins were not significant (t-test, p>0.05) for any lung 

tumor location. 

 

 

 
(a) 

 
(b) 

Figure 5.4 Boxplots of differences between treatment margins calculated from the first 10 min and 

from the first 30 min of SI data for (a) lung and (b) pancreas fractions. Positive values indicate that 

the 30-min margin was larger than the 10-min margin. 
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Table 5.2 Incidence of large differences between 10 min- and 30 min-based treatment margins  

  Lung   Pancreas  

 SI AP ML SI AP ML 

Difference > 1 mm 42% 35% 36% 45% 31% 31% 

Difference > 2 mm 18% 11% 16% 21% 10% 17% 

Difference > 3 mm 4% 4% 5% 3% 3% 0% 

  

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 5.5 Boxplots of differences between treatment margins calculated from the first 10 min and 

from the first 30 min of SI data for (a) LUL, (b) LLL, (c) RUL, (d) RML, and (e) RLL lung 

fractions. Positive values indicate that the 30-min margin was larger than the 10-min margin. 



 

 
   58 

 

5.3.3. Baseline Shift Detection 

The mean (± standard deviation) of correlations between the displacement of the tumor 

from its initial position, dtumor, and the displacement of a marker from its initial position, 

dmarker, was 0.70 ± 0.21 (Figure 5.6). Eighty-three percent of correlations were >0.5, 

indicating a strong correlation. However, when data from all fractions are pooled (Figure 

5.7), it is apparent that dmarker, though well correlated with dtumor, is not predictive (R2 = 

0.43 for linear fit) of dtumor. Estimating dtumor from dmarker using a linear least-squares fit 

can lead to errors exceeding 10 mm (Figure 5.7b). 

5.3.4. Internal-External Relationships 

Regression analysis was used to characterize the relationship between surrogate marker 

positions and tumor positions. An example of a change in the relationship between 

motion of a surrogate marker and motion of the tumor is given in Figure 5.8. 

When tumor position prediction errors (3D vector displacement between the 

actual tumor position and the modeled tumor position) were binned by data block and the 

population considered as a whole, the PLS tumor position model errors increased 

monotonically for subsequent blocks of data (Figure 5.9). The baseline errors (mean 

radial error for the model-training data) were 1.1 mm for lung and 1.2 mm for pancreas. 

The mean radial tumor position prediction errors in the 2nd, 3rd, and 4th 10-min data 

blocks, respectively, were 2.1 mm, 2.9 mm, and 3.6 mm for lung cases and 2.0 mm, 2.8 

mm, and 3.6 mm for pancreas cases.  
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Figure 5.6 Histogram of correlation between dtumor and dmarker for each marker and treatment 

fraction.  

 

 

 

 
(a) 

 
(b) 

Figure 5.7 (a) Displacement from initial position for tumor (dtumor) versus displacement from 

initial position for surrogate markers (dmarker) with a linear least-squares best fit line (R2 = 

0.43). (b) Residuals for linear fit line indicating the errors in predicting dtumor from the best fit 

line in (a). 
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Figure 5.8 Example of a change in the relationship between AP motion of a surrogate marker and 

SI motion of a tumor from 1st 10-min block (circles) to the 3rd 10-min block (x’s). The ratios of 

tumor motion to surrogate marker motion are indicated by the slopes of the least-squares fit lines: 

2.8 mm tumor displacement per mm surrogate displacement and 3.6 mm tumor displacement per 

mm surrogate displacement.  

 

 

 

 

 
(a) 

 
(b) 

Figure 5.9 Boxplots of PLS model error (mean error in each fraction) in each of the first four 10-

min blocks of data for (a) lung and (b) pancreas cases. Models were trained on the data in Block 1. 

Errors in each population increased monotonically for subsequent blocks of data. 
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For 10 min and 30 min of data, respectively, there was significant evidence of 

model degradation in 22% and 67% of lung fractions and 24% and 55% of pancreas 

fractions (Figure 5.10). The slopes of the trend lines describing tumor position prediction 

error versus time in each fraction were not significantly (t-test, p>0.05) different for the 

10-min and 30-min datasets; the mean ± standard deviation rates of change were 1.2 ± 

2.0 mm per 10 min when measured over the first 10 min of data and 1.1 ± 2.1 mm per 10 

min when measured over 30 min data. For the 63% of lung and pancreas fractions 

showing significant model degradation over 30 min, the mean (± standard deviation) rate 

of error increase was 1.6 ± 2.5 mm per 10 min. 

 

 

  
Figure 5.10 Proportion of (a) lung and (b) pancreas treatment fractions associated with a positive 

trend or no trend in model error over time when the first 10, 20, or 30 min of testing data is 

considered. There were no cases in which error decreased significantly over the course of the 

treatment fraction. 
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5.4. Discussion 

The results of this study clarify the scope and significance of the problem of respiration-

induced tumor motion during radiation therapy. Cases in which the patient is on the 

couch for 30 min (in-room rather than beam-on time) were considered. During these 30-

min fractions, baseline tumor position shifts greater than 5 mm are unlikely (13% for 

lung and 7% for pancreas). However, changes in tumor motion patterns over the course 

of a fraction are common, as tumor position distributions changed in about 75% of 

datasets. Finally, there was significant evidence of changes in the spatial relationship 

between tumor positions and surrogate marker positions in 60% of fractions analyzed. 

The AAPM Task Group Report 76 recommends applying motion management 

techniques to tumors that move more than 5 mm.5 In the absence of motion management, 

geometric misses are an inevitable consequence of respiration-induced tumor motion. 

While the motion can degrade the performance of any type of external beam radiation 

therapy,5 it has even greater impact on advanced techniques like SBRT and IMRT, given 

the generally smaller sizes of tumors and the more precise nature of the treatments.9 For 

these more precise techniques to benefit the patient, it is vital that targeting become 

correspondingly more accurate. 

There has been debate on the importance of compensating for intra-fraction 

variations. Engelsman et al. reported that lung tumor set-up errors are generally larger 

than intra-fraction position variations, and that efforts should be focused on reducing 

setup error.65 Conversely, Berbeco reported that the beam-to-beam variations of residual 

motion of the tumor during gating are greater than fraction-to-fraction variation.21 In this 
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study, we conclude that the tumor motion is likely (>50% of cases) to change during a 

treatment fraction (~30 min).  

The results of this study indicate that baseline tumor position and the pattern of 

tumor motion tend to diverge over time, with more than 6 times as many fractions seeing 

a shift of greater than 5 mm over 30 min as compared to 10 min. Such changes translate 

into difficulties in assessing tumor motion for the purposes of choosing an appropriate 

internal margin. The difference in margins based on 30 min of data as compared to 

margins based on 10 min of data was at least 1 mm in 42% and 45% of lung and pancreas 

cases, respectively. These results underscore the importance of either (1) completing 

treatment as quickly as possible or (2) monitoring real-time tumor motion throughout the 

duration of the treatment fraction. Of note, however, the rare large shifts between 

consecutive 10-min blocks of data sometimes exceeded 0.5 cm, a magnitude of potential 

clinical significance for those few patients. This tissue position divergence phenomenon 

was also observed by Hoogeman et al. In that study, changes of the order of magnitude 

seen in this study were observed in the spine of prone SBRT patients, which can be 

shifted by respiration.66 Of interest, smaller drifts in the bony anatomy (spine of supine 

extra-cranial and skull of intra-cranial radiosurgery cases) that were not expected to be 

affected by respiration were also seen. Thus, it is reasonable to conclude that baseline 

lung and pancreas tumor position shifts may be caused, at least in part, by phenomena 

other than respiration, such as tissue settling and muscle relaxation. 

Tumor motion could be more easily managed if tumor position could be predicted 

reliably from external surrogates. In this study, we utilized PLS to characterize the tumor-
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surrogate relationship. While any form of regression analysis can be used to characterize 

the relationship between input and output variables,40 our previous work has shown that 

models based on PLS tend to maintain their fidelity over a longer period of time than the 

more conventional ordinary-least-squares (OLS) models (Chapter 4). Thus, PLS is an 

ideal technique for determining whether the tumor-surrogate relationship truly changes.   

By using a regression model to characterize the tumor-surrogate relationship, we 

were able to show that the relationship changes over time, a conclusion in agreement with 

Seppenwoolde et al.’s analysis of the Cyberknife SynchronyTM modeling algorithm 

output.18 Previous studies have characterized some of these tumor-surrogate relationship 

changes as a time-varying phase difference between the tumor and the surrogate marker 

and have identified some of their causes, including destabilizing events like coughs, deep 

breaths, and breath-holds.6,30,36 However, our study is the first to quantify the incidence of 

such changes in the patient population. Our results indicate that in most cases the tumor-

surrogate relationship changes over a 30-min treatment fraction. Furthermore, while 

baseline tumor position shifts were associated with baseline position shifts in the 

surrogate markers, the magnitude of the tumor baseline position shift was not directly 

related to the magnitude of the surrogate marker baseline position shifts. 

When a surrogate of respiration is used to infer tumor motion during treatment, it 

is important that new images be acquired during the fraction to confirm the model and 

correct for potential changes. The Cyberknife SynchronyTM system, for instance, 

intermittently localizes the tumor through radiographs at an average rate of once per 

minute. However, Seppenwoolde et al. suggests that capturing new training data once, 
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halfway through the treatment fraction, may be sufficient.18 The optimal frequency of 

gold-standard tumor localizations will vary by patient but can be optimized for a patient 

population. The frequency for a clinical protocol will vary with the form of the tumor-

surrogate model, the type of respiratory surrogate, and the desired tumor localization 

accuracy. 

Results for lung and pancreas cases were similar. However, baseline position 

changes and tumor-surrogate relationship degradation were greater in the pancreas than 

in the lung. Similarly, lower lobe tumors, which generally have larger respiration-induced 

motion than other lung tumors,47 were associated with larger treatment margins and 

changes in treatment margins for 10- and 30-min datasets.  

The data in this study corresponded to free-breathing condition. It is unclear 

whether the results of this study may have changed if respiratory coaching was used to 

make breathing patterns more consistent. Nevertheless, Nehmeh et al. has shown that 

respiratory variations can be significant even with coaching.43 

5.5. Conclusions 

Both the tumor motion and the relationship between tumor and surrogate marker 

displacements change over most 30 min treatment fractions. Such changes must be taken 

into account for optimal motion management.  
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CHAPTER 6: Inferring Positions of Tumor and Nodes in Stage III Lung 

Cancer from Multiple Surrogates Using 4D CT 

 

6.1. Introduction 

4D CT has emerged as a widely used tool for respiration-induced tumor motion 

assessment.67-69 Recently, a number of groups have recommended the use of 4D CT to 

assess patient-specific nodal volume motion in Stage III lung cancer.70-74  

Typical 4D CT image datasets include 10 volumetric images of the patient 

anatomy, each of which is associated with a different stage of respiration. To utilize the 

information in 4D CT images, it is necessary to identify relevant structures (primary 

tumor, nodal volumes, nearby organs) in each volumetric image. Current limitations of 

image analysis tools necessitate manual contouring for identifying these structures. To 

manually contour structures, a clinician traces the edge of the structure in each individual 

slice of the multi-slice volumetric image. For radiation targets such as the primary tumor 

and the nodal volumes, this process must be repeated for each respiratory phase image 

set.  

The time-consuming nature of manually contouring relevant structures each of the 

volumetric datasets in a 4D CT image precludes its routine use in many clinics. In this 

study, we propose a new approach (Figure 6.1) for decreasing the contouring burden of 

4D treatment planning for Stage III lung cancer, whereby (1) the target volumes 
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(including the primary tumor and nodes) in a subset of respiratory phase bin images are 

localized, (2) a group of anatomical respiratory surrogates in all image sets corresponding 

to respiratory phase bins are localized, (3) a mathematical model relating target position 

to anatomical surrogate positions is created, and (4) target positions in the uncontoured 

images are determined using the model. 

 
Figure 6.1 Summary of methodology employed for inferring the positions of the primary tumor 

and nodal volumes. 
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The purpose of this study was to evaluate respiratory surrogate-based tumor 

motion modeling as a means of improving the workflow associated with contouring 

radiation targets in 4D CT scans. We first characterized the relationship between 

radiation targets (primary tumors and nodal volumes) and a series of anatomical 

surrogates visible in 4D CT images: carina, xyphoid, nipples, and mid-sternum. We then 

applied two mathematical modeling techniques, Ordinary-Least-Squares (OLS) and 

Partial-Least-Squares (PLS), for inferring tumor and nodal volume positions from the 

surrogates. To examine the limits of this method, we tested models based on as few as 3 

contoured respiratory phases, and we compared models based on all available surrogates 

to models based on carina position alone. 

6.2. Methods 

6.2.1. 4D CT Position Data 

The VU University Medical Center database of planning scans was evaluated 

retrospectively to identify patient scan with both clearly demarcated mediastinal lymph 

nodes and the absence of 4D imaging artifacts. Patients were scanned in the supine 

position on a 16-slice CT scanner (LightSpeed 16; GE Healthcare; Waukesha, WI) with 

no intravenous contrast. Scans were performed in cine acquisition mode at 2.0 cm 

intervals, and images had a slice thickness of 2.5 mm. Patients were instructed to breathe 

normally with a regular rhythm. The respiratory signal was detected using the Real-time 

Position Monitoring (RPM) system (Varian Medical Systems, Palo Alto, CA). Images 

were obtained only after a quiet, regular breathing pattern was observed. All images and 
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corresponding respiratory signal files were binned into 10 separate respiratory phases of 

equal time intervals. The phases were labeled from 0% to 90%, with end-inspiration 

corresponding to the 0% bin. 

A single radiation oncologist manually contoured the primary tumors and the 

nodal volumes and localized the anatomical respiratory surrogates, and a second radiation 

oncologist verified the contours. We included both benign and malignant nodes, 

regardless of size, and classified them according to the 1997 Mountain and Dresler 

system (Table 5.1).75  

The anatomical surrogates were xyphoid (n=16), carina (n=16), left (n=7) and 

right (n=11) nipples (tracked in male patients only), and mid-sternum (n=15). We 

localized the mid-sternum by identifying a metal marker placed at the time of 4D CT, and 

we localized the carina by identifying the peak between main-stem bronchi on coronal 

image slices, which had been automatically interpolated by the treatment software.  

Depending on their visibility in the 4D CT scan, 3-5 anatomical surrogates were 

tracked for each patient. In total, 3D position data from 16 primary tumors, 53 nodal 

volumes, and 65 anatomical surrogates from the 16 patients were analyzed. Subsequently, 

the centroid of the contoured volumes was used to describe their displacements.  

6.2.2. Nodal Volume- and Tumor-Surrogate Correlation 

We measured the correlations between positions of each primary tumor/nodal volume 

and positions of each anatomical surrogate in three orthogonal directions: medial-lateral 

(ML), anterior-posterior (AP), and superior-inferior (SI).  
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6.2.3. Modeling Tumor and Nodal Volume Position with Anatomical Surrogates 

6.2.3.1. Modeling Methods  

We used two methods, ordinary least squares (OLS) and partial least squares (PLS) 

regression, to model the position of the primary tumor or a node as a function of 

anatomical surrogate positions. Both OLS and PLS operate according to BXY ⋅=ˆ , where 

X is an m×n matrix of anatomical surrogate coordinates with m measurements (phases) 

and n variables (position coordinates), B is an n× 3 matrix of regression coefficients, and 

Ŷ  is a matrix of m× 3 target position coordinates. See Sections 2.6.1 and 2.6.2 for details 

regarding how B was calculated through OLS and PLS regression, respectively. 

6.2.3.2. Impact of the Quantity of Contoured Respiratory Phase Images  

We attempted to infer primary tumor and node positions from anatomical surrogates 

using image datasets corresponding to 3-8 randomly chosen respiratory phases. In 

creating each model, we randomly partitioned the image datasets into training and testing 

subsets, where the training subset contained 3-8 datasets. We used the training subset to 

create the model and then assessed the accuracy of the results (in the form of target 

inferred position errors) by applying the model to the testing subset. To cross-validate our 

analysis, we randomly partitioned the dataset 50 times and repeated the analysis for each 

primary tumor and nodal volume coordinate. Figure 6.1 (above) summarizes the 

methodology employed in this work. 
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6.2.3.3. Three-Phase Model Analyses 

We next determined the set of three phase bins that, when used to create models, resulted 

in the lowest overall mean error.  To choose this set of phases, we tested models based on 

each of the 120 combinations of three respiratory phase bins ([0%, 10%, 20%], [0%, 

10%, 30%], etc.) for each target, determining separate 3-phase sets for OLS and PLS. 

Finally, we used the 3-phase sets to create and analyze OLS and PLS models from (1) all 

available anatomical surrogates and (2) the carina alone.  

6.2.3.4. Impact of Target Position  

To determine whether the 3-phase model error varies with target position, we separated 

the 53 nodes into (1) upper mediastinal zone (stations 2 and 3), (2) mid-mediastinal zone 

(stations 4, 5, and 6), and (3) lower mediastinal zone (stations 7 and 8). We did not 

subdivide the primary tumors by location, because we had insufficient data (N=16).  

6.3. Results 

6.3.1. Tumor-Surrogate Correlation 

The mean (± standard deviation) correlations between target position and anatomical 

surrogate position for nodal volumes and primary tumors were 0.41 ± 0.26 and 0.42 ± 

0.26, respectively. Correlations between target coordinates and anatomical surrogate SI, 

AP, and ML coordinates (Figure 6.2) were 0.47 ± 0.27, 0.42 ± 0.25, and 0.34 ± 0.24, 

respectively. 
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 (a)  

  
 (b) 

  
 (c)  

Figure 6.2 Mean and standard deviations of correlation between anatomical surrogate and tumor 

for surrogate (a) ML, (b) AP, and (c) SI coordinates. pt = primary tumors, nv = nodal volumes.  
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We determined the anatomical surrogate coordinate that was best correlated with 

each tumor/node coordinate (Figure 6.3). Since some surrogates were not visible in every 

4D CT, we normalized the histogram by dividing each anatomical surrogate coordinate  

count by the number of target coordinates (number of nodal volumes and primary tumors 

times three orthogonal directions) available for comparison. The carina SI motion was 

most correlated with both primary tumor and nodal volume motion more often than any 

other anatomical surrogate coordinate. The mid-sternal AP motion and carina ML motion 

showed a better correlation with motion of the primary tumor than did the coordinates of 

other anatomical surrogates, while the nipple AP motion showed a better correlation with 

motion of the nodes than anatomical surrogate coordinates. 

 

 

 
Figure 6.3 Proportion of primary tumor and nodal volume coordinates that are most highly 

correlated with each anatomical surrogate coordinate, normalized according to the quantity of data 

available for that anatomical surrogate.  
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6.3.1. Inferring Position of Primary Tumor and Nodes Using Anatomical Surrogates 

We created OLS and PLS models from a randomly chosen subset of 3D datasets 

corresponding to respiratory phases and using all available surrogates for each patient 

dataset. While the quantity of latent variables, A, varied for each dataset, most PLS 

models (100% for 3-phase models decreasing to 65% for 8-phase models) were based on 

a single latent variable. The models’ errors varied with the number of contoured 3D 

datasets from the 4D CT used to train the models (Figure 6.4). OLS model error 

decreased slightly when the number of image sets corresponding to respiratory phases 

was increased from 3 (mean = 1.1 mm) to 4 (mean = 1.0 mm) but increased 

monotonically with each additional contoured respiratory phase image set. In contrast, 

the mean PLS error decreased monotonically from 1.0 mm for 3 phases to 0.8 mm for 8 

phases. Errors for nodal volumes were comparable to those of primary tumors. Mean PLS 

error was significantly less than mean OLS error (p<0.05)) for each quantity of training 

phases. 

 

Figure 6.4 Means and standard deviations (error bars) of OLS and PLS errors for models trained 

on a range (3-8) of quantities of contoured volumetric respiratory phase bin images. The standard 

deviation of the PLS errors is smaller and more consistent than the standard deviation of the OLS 

errors. 
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The average model errors were minimized when the 0%, 40%, and 70% phase 

bins and the 0%, 40%, and 80% phase bins were used to create the model with OLS and 

PLS, respectively. In the following analyses, OLS analyses referring to “3-phase” models 

refer to models trained on data from the datasets corresponding to the 0%, 40%, and 70% 

respiratory phases; PLS analyses referring to “3-phase” models refer to models trained on 

data from the datasets corresponding to the 0%, 40%, and 80% respiratory phases.  

The overall mean (± standard deviation) 3-phase model error for all nodal 

volumes and primary tumors included in the study and when all anatomical surrogates 

were used to create the model was 0.8 ± 0.5 mm for OLS and 0.8 ± 0.5 mm for PLS. 

Model error generally increased with increasing peak-to-peak motion of the target 

coordinates (Figure 6.5). The mean (± standard deviation) model error for target 

coordinates whose motion was greater than 5 mm was 1.1 ± 0.6 mm for OLS and 1.1 ± 

0.5 mm for PLS. PLS errors for 3-phase models exceeded 2 mm in only 7% of inferred 

positions (Figure 6.6). 

The mean (± standard deviation) 3-phase PLS model error for upper, middle, and 

lower mediastinal nodes were 0.9 ± 0.6 mm, 0.9 ± 0.7 mm, and 1.1 ± 0.8 mm, 

respectively. Complete OLS and PLS results are included in Figure 6.7. 

Lastly, we created 3-phase models using 3D carina position data alone. The 

overall mean (± standard deviation) errors for carina-only OLS and PLS models were 2.4 

± 1.1 mm and 1.1 ± 1.1 mm. The carina-only PLS mean (± standard deviation) errors for 

primary tumors and nodal volumes were 1.2 ± 1.4 mm and 1.1 ± 0.9 mm, respectively. 
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Figure 6.5 Target coordinate peak-to-peak motion vs. mean 3-phase PLS model error. Mean error 

(1.1 mm) for coordinates with peak-to-peak motion >0.5 cm (points in the gray area) is indicated 

by the dashed line. 

 

 

 

 

 

 

 
Figure 6.6 Histogram summarizing inferred position errors of 3-phase PLS models, including all 

primary tumors and nodal volumes in the dataset. Errors exceeded 0.2 cm in 7% of inferred 

positions. 
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Figure 6.7 Mean and standard deviation (error bars) of 3-phase model error for nodal volumes, 

subdivided by zone of nodal station. 

 

6.4. Discussion 

To our knowledge, the correlation between lung tumor motion and multiple respiratory 

surrogates’ motion in 4D CT images has not been reported previously. Our results 

indicate that it is possible to model both primary tumor and nodal volume motion in 

Stage III lung cancer from anatomical respiratory surrogates. Our main findings were that 

1) correlation of tumor motion with a specific respiratory surrogate was patient-specific, 

2) carina SI motion was best-correlated with both primary tumor and nodal volume 

motions more often than any other anatomical surrogate coordinate, and 3) mean 

modeling error using PLS was on the order of CT resolution 

The correlations in our study were lower than the correlations between abdominal 

tumor motion and surrogate motion in 4D CT images reported by Beddar et al. and 

Gierga et al.3,56 However, both Gierga et al. and Ozhasoglu et al. observed that surrogate 
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motion and abdominal tumor motion are in phase, whereas the common phase differences 

between lung tumor and surrogates result in decreased correlation.3,6 Gierga suggested 

that variability in abdominal- and chest-breathing may contribute to a complex 

relationship between respiratory surrogates and thoracic tissue motion, whereas the 

relationship between abdominal skin markers and abdominal tumor motion is more 

direct. This is supported Koch et al., who reported correlations between external 

respiratory surrogate motion and pulmonary tissue motion that were comparable to the 

surrogate-target correlations in our study.76 

In agreement with Koch et al. and Yan et al., no single respiratory surrogate was 

consistently better correlated to tumor or nodal volume motion.33,76 Rather, the 

correlation of tumor motion with a specific respiratory surrogate varies by patient. In 

addition, ML or SI surrogate motion was sometimes better correlated with target motion 

than AP motion. This implies that external markers tracking only skin AP motion, though 

common, may not be ideal for all patients.  

We did not use the diaphragm as a respiratory surrogate in this study because of 

the difficulty in localizing the same portion of the diaphragm in images corresponding to 

the different respiratory phases. The carina is smaller, less deformable, and easier to 

localize accurately in 4D CT images. The performance of the carina-only models is in 

agreement with Higgins et al., who found that the carina may be better suited as a 

registration landmark for inter-fraction patient alignment than the lung tumor itself.77  

To date, only a few studies have compared carina positions to tumor or nodal 

volume positions. Van der Weide et al. reported that carina SI motion is well-correlated 
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with total lung volume, while Piet et al. reported that the distance between the carina and 

nodal volumes is highly variable.78-79 However, Piet et al. did not attempt to characterize 

the relationship between carina motion and nodal volume motion. We found that the 

mean error for carina-only PLS models was 1.1 mm, an average of less than 0.5 mm 

greater than mean error of PLS models incorporating data from all surrogates. The 

proximity of the carina to locally advanced lung cancer target volumes and its tendency 

to be in phase with target motion make the carina well-suited to be a surrogate for Stage 

III primary tumor and nodal volume motion.78  

When only 3 phases were used to train the models, the sets of 3 phase bins for 

which target position prediction was most accurate were the 0%, 40%, and either 70% 

(for OLS) or 80% (for PLS). The 0% phase bin represents end-inspiration. The phase 

associated with end-expiration varies by patient due to the gradual change in direction at 

the end of expiration. Thus, the three phase bins used to train the models include one 

extreme position (0% phase) and, we speculate, two additional phase bins representing 

the partial inhalation and partial exhalation data are necessary to characterize the path of 

motion of the target. 

The mean 3-phase carina-only PLS model accuracies for primary tumors and 

nodal volumes differed by only 0.1 mm. Localization accuracy for superiorly positioned 

mediastinal nodes was slightly better than for inferior nodes. Our conclusion that the 

model error was positively correlated with peak-to-peak target motion is in agreement 

with prior studies showing that mediastinal nodes below the carina move more than 

mediastinal nodes in superior stations.70-72  
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Our results are based on data acquired during normal respiration without coaching 

aids. We speculate that our models may be improved by using training or audio-visual 

coaching to induce more regular breathing during 4D CT acquisition. Finally, while our 

method does not take target volume deformation into account, Liu et al. and Wu et al. 

showed that deformable and rotational registration, respectively, results in negligible 

improvement over rigid tumor registration across 4D CT phases.80-81 Thus, our method of 

combining centroid tracking with target contours determined manually in a single 

respiratory phase bin image is likely to be sufficient for target delineation in 4D CT. 

The modeling methods described in this study may make it possible to localize 

targets in uncontoured images with an accuracy of approximately 1 mm. This technique 

would require manually identifying anatomical surrogates in only three phases. 

Comprehensive motion management in Stage III lung cancer, including developing 

accurate patient-specific treatment margins to account for motion, may be made more 

accessible, and thus treatment more effective, by reducing the contouring burden of 4D 

CT through models similar to those tested in this study.  

6.5. Conclusions 

In summary, we established the feasibility of inferring the primary tumor and nodal 

volume motion from anatomical surrogates in 16 4D CT scans of Stage III lung cancer. 

The results from this work suggest that inferential modeling may have the potential to 

decrease the time required to process 4D CT scans, thereby improving therapy by 

allowing for incorporation of patient-specific margins in the planning process. 
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CHAPTER 7: Online Monitoring and Error Detection of Real-Time 

Tumor Displacement Prediction Accuracy Using Control 

Limits on Respiratory Surrogate Statistics 

 

7.1. Introduction 

Tumor motion inferred from an external marker block during gated radiation treatments 

varies beam-to-beam and day-to-day with no apparent external warning.21 To our 

knowledge, no prospective method for detecting inferential model breakdown from 

surrogate signals has been developed. Instead, systems must frequently interrupt 

treatment to validate a model through additional ground-truth measurements of tumor 

position. The Cyberknife SynchronyTM system, for instance, validates its model at a user-

selected rate of about once per minute by localizing tumor-implanted fiducials with 

stereoscopic radiographs.18 This technique of pre-scheduled intermittent data collection 

for model validation has at least three shortcomings:  

(1)  If changes to the tumor-surrogate relationship occur shortly after one 

tumor localization, then the model can have large localization errors 

until the changes are detected at the next tumor localization minutes 

later;  

(2) Added and unnecessary tumor localizations not leading to model 

updates result in unnecessary exposure to ionizing radiation; and  
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(3) Pausing for image-based tumor localization extends the duration of the 

treatment fraction. 

In this study, we propose a novel method for continuously monitoring a 

respiratory surrogate model of tumor motion through exclusive analysis of respiratory 

surrogate measurements (Figure 7.1). The purpose of this study was to describe and 

evaluate Hotelling’s T2 statistic and the input variable squared prediction error, Q(X), for 

predicting the accuracy of tumor localization models in lung, liver and pancreas cases. 

The impact of this monitoring method on clinical workflow was also evaluated.  

 

 

 

 

 
Figure 7.1 Schematic of proposed improvement to respiratory surrogate-based model monitoring. 
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7.2. Methods 

7.2.1. Data 

A database of Cyberknife SynchronyTM system log files consisting of 130 fractions from 

63 lung cancer patients, 10 fractions from 5 liver cancer patients, and 48 fractions from 

23 pancreas cancer patients was analyzed. The Cyberknife SynchronyTM log files 

included independently measured but concurrent 3D tumor and external marker 

localizations captured once every 3 beams (or an average of 63 sec apart). Tumors were 

localized as the centroid of a set of implanted fiducial markers measured in stereoscopic 

radiographs. Three LED surrogate markers affixed to the torso were localized optically 

by a camera system. The position of the tumor was aligned in time with those of the 

external markers according to the timestamps in the system log files. Each treatment 

fraction dataset consisted of at least 40 (ranging from 40 to 112, median of 61) concurrent 

tumor and external sensor localizations. The data was truncated to include only the 

longest period of uninterrupted treatment in each fraction and to exclude both pre-

treatment image acquisitions and unplanned radiographs acquired during treatment for 

the purpose of repositioning the patient. 

7.2.2. Partial Least Squares (PLS) for Predicting Tumor Positions 

A Partial Least Squares (PLS) model for inferring tumor position from the surrogate 

marker displacements was developed for each treatment fraction, as described in Section 

2.6.2. Tumor position was predicted as BXY ⋅=ˆ  or, from a single new set of 

measurements, znew, as Bzy newnew ⋅=ˆ . The inferential model error, e, was calculated as 
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∑ −= 2)ˆ( newnew yye
,
 the Euclidean distance between PLS-predicted tumor positions 

( newŷ ) and radiographically measured tumor predictions ( newy ). 

7.2.3. Tumor Motion Models and Model Monitoring 

Two PLS models were created for each training dataset: one for prediction and a second 

for monitoring. In our previous work (Section 4.3.1), we have shown that the input 

projection process leads to models that can more accurately predict tumor displacement 

from surrogate marker motion. However, we have found that projecting the inputs 

degrades the ability to monitor the model for tumor-surrogate relationship changes. The 

PLS models differed in their input matrix, X, as follows.  

In either case, the first 10 samples (n = 10) of concurrent surrogate marker and 

tumor localizations in the treatment fraction dataset were used as training data for the 

model. For the monitoring model, X was a 10 × 9 matrix describing the 3D positions of 

three surrogate markers at 10 samples. For the tumor displacement prediction model, X 

was a 10 × 3 matrix in which each column was a one-dimensional (1D) representation of 

the three-dimensional (3D) motion of one of the surrogate markers. These 1D surrogate 

signals were created by orthogonally projecting the surrogate marker displacements 

captured during the training data acquisition period onto a line. This line was defined by 

the displacements’ 3D mean, M, and first principal component vector (Figure 7.2). The 

1D representation for each sample was defined as the distance between the projected 

point and M.  

 



 

 
   85 

 

 
(a) 

 
 

 
(b) 

Figure 7.2 The surrogate marker projection process. (a) Example of 3D surrogate marker motion 

data, including its mean and first principal component vector (blue dot and arrow, respectively) 

and its projection line (dashed). (b) The 1D representation of the 3D data in (a). 

 

 

7.2.4. Respiratory Surrogate Metrics 

Respiratory surrogate data captured during the initial model development period were 

compared to respiratory surrogate data captured over the course of a treatment fraction. 

Using this technique, whether the real-time tumor displacement prediction is occurring 

under conditions described by the model could be determined. Thus, the quality of the 

model can be monitored without stopping treatment to explicitly measure the tumor 

position. 

For each 1 × 3 vector of inputs, zi, at sample i, an associated score vector, 

€ 

ˆ t i , was 

calculated as 

€ 

ˆ t i
T = zi ⋅ ˆ W , where 

€ 

ˆ W  was the compressed weight vector calculated as part 

of the PLS regression process. The scores were then used to calculate the associated 

Hotelling statistic, T2, and input variable squared prediction error, Q(X), for each surrogate 
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marker displacement dataset as described in Section 2.8. The T2 and Q(X) statistics rely on 

measurements of the surrogate markers exclusively and do not utilize gold-standard 

tumor position measurements.  

7.2.5. Performance of Respiratory Surrogate-Based Monitoring 

7.2.5.1. Large Error Detection 

Treatment fraction-specific limits on T2 and Q(X) were calculated and tested for 

€ 

(1−α)  

percentile confidence limits for 

€ 

0 < α <1. The confidence limits were used as control 

limits for T2 and Q(X).   

For T2, confidence limits were determined from ),(
)(
)1( 2

2 AnAF
Ann
AnT −

−

−
= αα , 

where n = 10 was the quantity of training samples used to generate the model, one score 

was used in the PLS model created to monitor the tumor localization model (A = 1), and 

),( AnAF −α  was the upper 

€ 

(100%)⋅ (α)  critical point of the F distribution with (A, n – 

A) degrees of freedom.  

Confidence limits on Q(X) were calculated through the Jackson-Mudholkar 

formula,51 

€ 

Qα = θ1 1−
θ2h0(1− h0)

θ1
2 +

zα 2θ2h0
2

θ1

% 

& 
' 
' 

( 

) 
* 
* 

1/ h0

, in which 

€ 

zα  is the upper 

€ 

(100%)⋅ (α)  

critical point of the normal distribution, 

€ 

θ j = λi
j

i=A +1

m

∑ , n = 10, 

€ 

h0 =1− 2θ1θ3
3θ2

2 , and λi is the 

ith eigenvalue of 

€ 

(ˆ z new,i − znew,i)
T (ˆ z new,i − znew,i). 
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The ability of T2 and Q(X) to predict whether a tumor displacement prediction is 

accurate to within 3 mm was evaluated for each α. Prediction of large (>3 mm) errors 

was based on whether T2 or Q(X) exceeded the treatment fraction-specific confidence 

limits and was validated against radiographic measurements. To evaluate the 

performance of the method, sensitivity and specificity were explored under various 

conditions. Sensitivity measured the proportion of errors >3 mm that was detected. 

Specificity represents the proportion of errors <3 mm that was identified as likely to be 

<3 mm. Sensitivity and specificity were determined for: (1) T2 confidence limit; (2) Q(X) 

confidence limit; and (3) the union of results from T2 confidence limit and Q(X) 

confidence limit, in which the method predicts large error if either T2 or Q(X) exceeds its 

respective confidence limit threshold. Receiver operating characteristic (ROC) analysis 

was performed to evaluate sensitivity versus specificity at any confidence limit between 

0% and 100%. Matlab code written to implement this analysis is included in Appendix B. 

In addition to the surrogate marker measurements concurrent with the tumor 

displacement, the utility of past surrogate marker measurements was evaluated for data 

up to 10 sec prior to the surrogate marker-based tumor localization. For this multiple 

measurement method, the proportion of T2, Q(X), or T2∪Q(X) values in the testing period 

that exceeded the confidence limit(s) was calculated. A threshold value for predicting 

large inferential model errors (for example, at least 10% of the measurements during the 

5 sec prior to the tumor localization) was selected to maximize specificity at the target 

sensitivity.  
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7.2.5.2. Time to Error and Time to Alarm 

For each treatment fraction and monitoring method, the times from the end of the training 

dataset to the first large error (time to error) and to the first confidence limit-based 

indication of large error (time to alarm) were determined. Results were compared to the 

timing of images captured by the Cyberknife SynchronyTM system to validate its own 

model during the treatment.  

7.2.5.3. Effect of Tumor Site 

Results were stratified by tumor site for lung (130 fractions) and pancreas (48 fractions) 

cases, using 2 sec of surrogate marker data preceding the tumor localization. 

7.3. Results 

7.3.1. Large Error Detection 

The T2 and Q(X) statistics were able to indicate such phenomena as large errors associated 

with gradual decreases in inferential model accuracy and transient surrogate marker 

tracking errors. All three confidence limit tests, T2, Q(X), and T2∪Q(X), were predictive of 

large errors. Sensitivity and specificity varied with confidence limit selection, with 

increasing sensitivity associated with decreased specificity (Figure 7.3). T2∪Q(X) was 

associated with specificity 1-2% higher than either T2 or Q(X) alone at 90-95% sensitivity 

(Table 7.1). 

Neither T2 nor Q(X) increased monotonically, and T2 in particular varied cyclically 

with phase of respiration (Figure 7.4). Incorporating 2 sec of past measurements of 
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surrogate marker displacements improved model monitoring performance for Q(X) and 

T2∪Q(X). For 95% sensitivity, the best specificity for T2∪Q(X) was achieved by requiring 

that 5% of T2∪Q(X) values acquired over the past 3 sec exceed the confidence limit 

threshold.  

 

 

 
Figure 7.3 Receiver operator characteristic (ROC) curves showing ability to predict localization 

errors exceeding 3 mm for various confidence levels. 
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Table 7.1 Summary of monitoring performance for all tumor sites at 90% and 95% sensitivity. 

Method Sensitivity Specificity Time to alarm 

mean st. dev. 

T2 90% 23% 6.0 min 8.8 min 

Q(X) 90% 24% 7.6 min 9.9 min 

T2 ∪ Q(X) 90% 24% 7.2 min 9.8 min 

T2 95% 13% 4.0 min 8.1 min 

Q(X) 95% 14% 4.6 min 8.1 min 

T2 ∪ Q(X) 95% 15% 5.3 min 8.2 min 

 

 

 

7.3.1. Time to Error and Time to Alarm 

For the inferential modeling method used in this study, the mean (± standard deviation) 

time from the last tumor localization to an error >3 mm was 12 ± 12 min for those 

fractions in which errors >3 mm. This mean time excludes the 6% of fractions in which 

no tumor position prediction error was >3 mm.   

For this dataset, the mean time to alarm for the Cyberknife Synchrony system was 

1.1 min. For T2 and Q(X) values giving the highest specificity at 90% sensitivity (Table 

7.1), the mean times from training data to indication of large errors (mean time to alarm) 

for T2, Q(X), and T2∪Q(X) were 6.0 min, 7.6 min, and 7.2 min, respectively. In 5% of 

fractions, the error never exceeded 3 mm. However, there were no fractions for which 

neither T2 nor Q(X) did not exceed the confidence limit threshold for at least one set of 

surrogate marker measurements.  
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(a) 

 
(b) 

 
(c) 

Figure 7.4 Example of (a) T2, (b) Q(X), and (c) tumor localization error versus time elapsed since 

the training data. In (a) and (b), horizontal dashed lines represent control limits, and times in 

which the control limit is exceeded are shaded red. In (c), the horizontal dashed line represents 

a 3 mm error limit, and radiographic tumor localizations errors are indicated at t = 0.8 min and t 

= 1.8 min by circled x’s (⊗). It is likely that localization errors exceed 3 mm from 0.3 to 0.5 

min and after 0.9 min, but radiographic validation is only possible at two moments over this 2 

min period. 
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7.3.2. Effect of Tumor Site 

There was no significant difference between lung and pancreas cases in time to alarm 

(Figure 7.5). The specificities for each site were equal to the specificities for the pooled 

lung, liver, and pancreas results at 90-95% sensitivity given in Table 7.1 (above). 

 

 

 
Figure 7.5 Comparison of mean time to alarm for lung and pancreas results using 2 sec of data. 

 

 

 

 

7.4. Discussion 

The results of this study establish the feasibility of using confidence limits on T2 and Q(X) 

statistics of respiratory surrogate measurements in online monitoring of the accuracy of 

real-time respiration-induced tumor motion models. The T2 and Q(X) statistics were able 

to indicate whether inferential model errors exceeded 3 mm with high sensitivity. For 
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95% error prediction sensitivity, specificity was 15%, and the mean time to alarm was 5.3 

min. Modest improvements in specificity were achieved by combining T2 and Q(X) results 

and by expanding the input to include the previous 3 sec of respiratory surrogate data.  

Real-time motion management systems rely on rapid, accurate tumor localization. 

For respiratory surrogate-based systems, current clinical practice is to establish a model 

before beginning treatment and then either to assume that the model will remain valid or 

to periodically validate the model according to some pre-established schedule. If the 

gold-standard radiographic tumor localizations are too sparse, large targeting errors may 

occur in the interim. Conversely, radiographic images captured while the model remains 

accurate result in exposure to unnecessary ionizing radiation and extend the duration of 

the treatment fraction. Seppenwoolde et al. found that the timing of gold-standard image-

based tumor localizations determines the accuracy of the model but that the patient-

specific benefit of increasing the imaging frequency varies widely.18 The method 

described by this study is a novel, knowledge-based technique for timing image 

acquisitions used to update respiratory surrogate tumor motion models by relying 

exclusively on surrogate measurements. 

Applying a confidence limit-based threshold made it possible to detect errors >3 

mm with a high degree of sensitivity (>90%). As shown in the ROC curves of Figure 7.4, 

varying α led to a tradeoff between sensitivity and specificity. In the context of this 

application, sensitivity refers to the probability that a large error will be detected by the 

confidence limit method. Thus, in this dissertation, we have focused on parameters 

leading to high (90-95%) sensitivity and decreased (13-24%) specificity. Low specificity 
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indicates an increased rate of false positives. In this application, false positives 

correspond to unnecessary image acquisitions. To investigate the impact of this relatively 

low specificity on clinical workflow, we have described the time to alarm for 90-95% 

sensitivity.  

The mean time to alarm for 90-95% sensitivity was 4-8 min, representing a four- 

to eight-fold decrease in image acquisition frequency over the Cyberknife SynchronyTM 

method. Because there was considerable variability in the time to errors >3 mm, 

acquiring images at a preselected regular interval often would result in missing large 

errors. For this dataset, the Cyberknife SynchronyTM system localized the tumor via 

radiographs every third beam delivered, with a mean interval of 63 sec between image 

acquisitions. The current version of the Cyberknife SynchronyTM software allows the 

operator to select a constant time interval of up to 2.5 min between radiographic image 

acquisitions. This maximum time interval for the Cyberknife SynchronyTM system is 

more than double the average frequency of the proposed T2∪Q(X) method.  

This study determined the performance of respiratory surrogate monitoring for 

predicting PLS-based tumor localization errors. This method can be extended to other 

tumor displacement inferential approaches to minimize the imaging frequency of existing 

systems, thereby decreasing treatment interruptions and overall patient in-room time. 

Through monitoring, this method also has the potential to increase the targeting accuracy 

of any real-time motion compensation device, including radiation gating systems. 

Berbeco et al. has concluded that gating margins based on a single simulation session at 

the beginning of the treatment may not be enough to evaluate residual motion of a gated 
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treatment.21 Respiratory surrogate monitoring through T2 and Q(X) can detect increases in 

residual motion during the treatment, allowing the clinicians to pause treatment to collect 

images when necessary to ensure that tumor motion is in accordance with the internal 

margin for the plan. 

In many cases, the Hotelling statistic (T2) and the input variable squared 

prediction error (Q(X)) both exceeded confidence limit thresholds together, a result 

commonly seen in process control monitoring through these metrics.49 However, the 

statistics did not always indicate alarm concurrently. In some cases T2 indicated large 

error first, but in other cases Q(X) indicated large error first. As a result, combining the 

metrics resulted in a slight increase in performance of the method. Mathematically, T2 

and Q(X) are independent. Their concurrent increase is indicative of a common cause: 

some change in the tumor-surrogate relationship. Transient and long-term changes in the 

tumor-surrogate relationship have been described by Ozhasoglu et al. (2002), 

Seppenwoolde et al. (2002), Hoisak et al. (2004), and Ionsascu et al. (2007) and are 

manifested as shifts in the phase offset between tumor and surrogate motion, baseline 

drifts in tumor position or surrogate signal, or other complex behavior leading to lapses in 

correlation. Our previous work has shown that the tumor-surrogate relationship changes 

during most treatment fractions (Chapter 5). 

The method described in this study resembles statistical process control (SPC) 

monitoring utilized in chemical process control applications.49,51,82 However, in classical 

SPC, metrics are derived directly from the model that is being monitored. By contrast, in 

this method separate models for monitoring and for tumor displacement prediction were 
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created. For optimal tumor localization accuracy, it was necessary to project surrogate 

marker data from 3D to 1D (Chapter 4). This reduction in input dimensionality from m = 

9 to m = 3 reduced the number of scores available for calculating T2, which uses scores 1 

to A, and Q(X), which uses scores A+1 to m. As a result, reducing input dimensionality 

from 9 to 3 decreased the specificity, and consequently the time to alarm, for a given 

sensitivity. For instance, by utilizing the 3D (9 input) marker data for monitoring, at 95% 

sensitivity the mean time to alarm increased from 2-4 min to 4-8 min.  

Neither T2 nor Q(X) increased monotonically over time. The T2 statistic was cyclic 

in nature, increasing during certain phases of respiration, and both T2 and Q(X) were 

associated with some degree of noise. In the future, it may be possible to reduce this 

periodicity by carefully selecting training data encompassing a wide range of respiratory 

phases. It was possible to improve specificity for Q(X) and T2∪Q(X) by considering time 

trends in T2 and Q(X) values. Utilizing multiple surrogate marker data samples (1-3 sec of 

data from 26 Hz measurements) helped to overcome the effects of both noise and training 

data selection.  

7.5. Conclusions 

In this work, we present a novel approach to determining tumor position prediction errors 

in real time and from measurements of external marker respiratory surrogates 

exclusively. In a large cohort of lung, liver, and pancreas cases, the T2 and Q(X) statistics 

can predict whether tumor localization error exceeds 3 mm with 95% sensitivity and 15% 

specificity and a mean time to alarm of 5.3 min. The mean time to alarm for 90-95% 

sensitivity was 4-8 min, representing a four- to eight-fold decrease in image acquisition 
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frequency over the Cyberknife SynchronyTM method. Thus, this approach has the 

potential to reduce imaging frequency and, consequently, imaging dose during 

respiratory-surrogate-guided treatments. Results did not differ by tumor site.  
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CHAPTER 8: Maintaining Tumor Targeting Accuracy in Real-Time 

Tumor Motion Compensation Systems for Respiration-

Induced Tumor Motion 

 

 

8.1. Introduction 

To ensure accuracy over the course of treatment, respiratory surrogate models of tumor 

motion can be rebuilt during the fraction from new training data.18 Few studies have 

explored how best to update respiratory surrogate models to compensate for changes in 

the tumor-surrogate relationship. Seppenwoolde et al., concluded that updating the model 

quickly after the tumor-surrogate relationship had changed can reduce overall residual 

error over the course of a fraction.18 However, imaging the tumor to collect data for 

updating the model as frequently as Seppenwoolde et al. described, every 5-25 sec, may 

not be practical, as each image acquisition imparts non-therapeutic ionizing radiation.  

In a previous chapter (Chapter 7), we evaluated a method for determining when to 

update a respiratory surrogate model without directly measuring tumor position. That 

initial study demonstrated the feasibility of monitoring respiratory surrogate models 

through external measurements alone, without explicitly measuring tumor position. 

However, further study is needed to determine how the model accuracy and the frequency 
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of model updates for the surrogate monitoring method compare to that of either error-

based methods or methods in which the model is updated at arbitrary intervals.  

The purpose of this study was to evaluate the impact of timing model updates 

based on respiratory surrogate monitoring. A database of concurrent radiographic tumor 

localizations and respiratory surrogate measurements from a large cohort of lung and 

pancreas cancer patients was analyzed retrospectively. The cases we considered for 

determining when to update a model were: (1) never, (2) when surrogate model-based 

tumor localization error exceeded 3 mm, (3) at each gold-standard tumor localization 

(once per minute), and (4) when either T2 or Q(X) exceeded preset confidence limits.  

8.2. Methods 

8.2.1. Data 

A database of Cyberknife SynchronyTM system log files was analyzed. 121 treatment 

fractions of lung tumor motion data from 61 patients and 45 treatment fractions of 

pancreas tumor motion data from 23 patients were considered. Each log file consisted of 

two sets of recordings that were aligned using system-recorded timestamps: (1) 

intermittent measurements of tumor position, as localized through identification of the 

centroid of 2-3 implanted fiducial markers in stereoscopic radiographs; and (2) frequent 

(26 Hz) measurements of the positions of each of three LED markers affixed to a form-

fitting vest. Stereoscopic radiographs were captured once every three beams for a mean 

frequency of approximately once per minute. From these datasets we were able to extract 
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concurrent internal (tumor) and external (marker) localizations at each radiographic 

measurement. 

8.2.2. Tumor Motion Prediction 

For each treatment fraction, a regression model was created to predict tumor positions, Y, 

from the external marker data, R. The initial model was created from the first 6 

radiographic tumor localizations in each treatment fraction.  

As described in Section 2.6.2, the SIMPLS Partial Least Squares (PLS) regression 

algorithm was used to develop the respiratory surrogate tumor motion models. Three one-

dimensional PLS inputs were derived from external surrogate data, one for each of the 

three external surrogate markers, as described in Section 4.2.3.1.  

8.2.3. Model Monitoring and Updates 

8.2.3.1. Analysis of Respiratory Surrogate Marker Data 

The relative motion of the external respiratory surrogate markers was characterized 

during the model training period and then, to monitor the model, was re-evaluated over 

the course of the treatment fraction. The T2 and Q(X) statistics were utilized as described 

in Section 2.8. If either T2 or Q(X) exceeded control limits determined from the 6 training 

data samples, the instantaneous tumor localization error was assumed to be greater than 3 

mm. In the testing data captured after the 6 training data samples, the surrogate-based 

metrics were calculated from measurements of the surrogate markers exclusively and did 

not utilize additional image-based measurements of tumor position. 
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8.2.3.2. Updating the Tumor Displacement Model 

To update the tumor displacement model at time t0, a new model was trained on the six 

tumor localizations captured prior to t0. The new model was applied to all respiratory 

surrogate marker positions in the dataset captured after t0. 

8.2.3.3. Model Update Timing 

The tumor localization accuracy of the respiratory surrogate models was evaluated for 

four possible update timing methods. Each method was tested against 20 min of data 

following the initial 6-sample training dataset. 

8.2.3.3.1. Never Update 

Currently, despite possible intra-fraction tumor-surrogate relationship changes, most 

clinics do not update respiratory surrogate models during gating procedures. To simulate 

this case, we applied the initial model based on the first 6 measurements in the treatment 

fraction to the entire 20 min testing dataset.  

8.2.3.3.2. Always Update 

To evaluate the opposite extreme, we updated the model at each tumor localization 

(separated by an average of 63 sec) in the log files. Specifically, 1 sec after a radiographic 

tumor localization, the 6 most recent measurements were used to train a new model 

predicting tumor motion from external marker positions. This predictive model was then 

applied to predict tumor position up to the next update, 1 sec after the next radiographic 

tumor localization.  
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8.2.3.3.3. Error-Based Update 

The Cyberknife SynchronyTM system is an example of a device that periodically captures 

radiographs in order to validate its respiratory surrogate model. The radiographically 

measured tumor position is compared to the model-predicted tumor position. If the 

difference (the localization error) exceeds a user-set threshold such as 3 mm,8 the model 

is updated. To simulate this process, a new model was created each time the localization 

error exceeded 3 mm. An updated model was applied to data acquired 1 sec after the each 

tumor localization error was greater than 3 mm.  

8.2.3.3.4. Respiratory Surrogate-Based Update 

Rather than base the decision of whether to update a model on gold-standard tumor 

localizations, the respiratory surrogate method is based on external measurements alone. 

The T2 and Q(X) values were evaluated for each set of surrogate marker measurements. If 

either T2 or Q(X) of a sample exceeded the 70th percentile T2 or Q(X) confidence limit, then 

a new model was created from the previous 6 localizations. This model was applied to 

data in the fraction following 1 sec after either T2 or Q(X) exceeded its confidence limit 

threshold.  

8.3. Results 

The update timings differed considerably across the four methods. More frequent updates 

did not always correspond to more accurate tumor motion prediction (Figure 8.1). 
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8.3.1. Model Errors 

Tumor localization errors (mean ± standard deviation) for never, surrogate-based, error-

based, and always update schema were 2.4 ± 1.2 mm, 1.9 ± 0.9 mm, 1.9 ± 0.8 mm, and 

1.7 ± 0.8 mm, respectively (Figure 8.2). For never, surrogate-based, error-based, and 

always update methods, respectively, 7%, 3%, 3%, and 3% of tumor position prediction 

errors exceeded 5 mm, and 26%, 14%, 11%, and 13% exceeded 3 mm (Figure 8.3). Error 

distributions for update schema other than never-update did not differ significantly from 

one another (t-test, p>0.05). However, the never-update tumor localization errors were 

significantly larger (t-test, p<0.05) than those of the other update methods.  
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Figure 8.1. Timing of model updates for the four update methods in a representative treatment 

fraction. Updates are indicated by “x”s at the appropriate time. Results for this fraction for each 

method are summarized at right.  

 

 

 

 

 

 
Figure 8.2. Mean and standard deviation (error bars) tumor position predition errors over 20 min 

for each update method. There is no significant difference (p>0.05) between results for surrogate-

based, error-based, and always update methods. 
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Figure 8.3. Incidence of large (>3 mm and >5 mm) errors for each update method.  

 

 

 

 

 

8.3.2. Update Timing 

The median numbers of updates over the course of 20 min were 0, 4, 9, and 24 for never, 

surrogate-based, error-based, and always update schema, respectively (Figure 8.4). There 

were significant (t-test, p<0.05) differences in quantities of updates between each of the 

four methods. 24% of the tumor localizations associated with an error-based update were 

also associated with a surrogate-based update, and 55% of tumor localizations that were 

associated with surrogate-based updates corresponded to simultaneous error-based 

updates. 
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Figure 8.4. Numbers of model updates per 20-min fraction for each update method. 

 

 

 

8.3.1. Site-Specific Results 

Neither mean error nor number of updates was significantly associated with tumor site 

(lung vs. pancreas, two-way ANOVA, p>0.05). 

8.4. Discussion 

This study evaluated the hypothesis that intelligent model update timing can lead to an 

accurate model while limiting model update frequency. The results of this study indicated 

that more frequent updates do not guarantee a more accurate model. While any update 

method resulted in smaller tumor localization errors than no updates at all, errors were 

not significantly different across the three update methods (surrogate-based, error-based, 
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or always update). This lack of difference in tumor localization performance came about 

despite large differences in the mean number of updates in 20 min: 4, 9, and 24 for the 

surrogate-based, error-based and always updates methods, respectively. 

The prediction accuracy of respiratory surrogate-based tumor localization models 

degrades over the course of a treatment fraction (Chapters 4-5). In Chapter 7, we 

concluded that the T2 and Q(X) were able to predict large respiratory surrogate model 

errors with high sensitivity (95%) but limited specificity (15%). In this chapter, we have 

shown that instantaneous error may not be the best way to decide whether to update a 

model. By updating the model each time a localization error exceeded the threshold of 3 

mm, many updates were carried out without significant improvement to mean model 

accuracy. Over the coursed of a fraction, the surrogate method was associated with more 

localization errors >3 mm than the error-based method (14% vs. 11% of localizations), 

but for both methods only 3% of errors were >5 mm. Despite no improvement in error, 

the error-based method required more than twice as many updates as the surrogate-based 

method. This result is in agreement with Seppenwoolde et al., who also concluded that 

more frequent updates do not necessarily lead to a more accurate model.18  

In both the error-based and the surrogate-based update methods, parameters can 

be selected to trade off between tumor localization error and number of updates. For 

error-based updates, 3 mm was used as the threshold, because it has been cited as a 

clinically utilized error threshold for the Cyberknife Synchrony system.18 The surrogate 

metrics’ confidence limits were set to the 70th percentile expected value, such that the 

accuracy was not significantly different than the error-based method. This allowed us to 
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compare number of updates for the two methods when localization errors were equal. For 

either technique, a larger localization error tolerance would necessitate fewer updates. 

In this work, the number of updates was evaluated for 20 min of data. For many 

modern treatments, beam-on time is less than 20 min, but in-room time can be longer. At 

our institution, the patient is usually on the couch for about 20 min for conventionally 

fractionated treatments and for about 30 min for stereotactic body radiotherapy 

treatments. In practice, model update implementation would be implemented differently 

on each system, but it is likely that the process of capturing images for new model-

building data during an update would take some time, potentially extending the duration 

of the treatment fraction. A shorter treatment would require fewer updates. Thus, even 

with respiration monitoring, it is important to complete a treatment fraction, including the 

setup process, as quickly as possible.  

The surrogate-based monitoring method explored in this study was applied to PLS 

respiratory surrogate models. The T2 and Q(X) metrics are based on the scores developed 

as part of the PLS regression process. However, it would be possible to monitor any 

multiple-input respiratory surrogate model through these metrics. In particular, because 

the PLS output is very similar to that of the Cyberknife SynchronyTM system (Chapter 4), 

it is likely that the surrogate-based monitoring method evaluated in this study would be 

equally effective for the Cyberknife SynchronyTM tumor localization algorithm. In any 

real-time tracking technology,18-19 accurate tumor localization is essential, and a 

knowledge-based method for model update timing could improve system performance. 

This type of monitoring would also benefit gating technologies.21,60 Berbeco et al. and 
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Cai et al. have shown that breath-to-breath variations even in the relatively stable end-

exhale position necessitate use of an internal margin for gated treatments.21,83 

The surrogate-based timing uses respiratory surrogate measurements alone. By 

contrast, the error-based method requires concurrent respiratory surrogate measurements 

and radiographic images to validate the model directly. For this work, to allow validation 

of the method, updates were limited to the moments at which gold-standard tumor 

localizations were available (about once per minute). However, because the surrogate 

method does not require internal localization, it has the potential to give early warnings 

of large errors by checking for updates at the surrogate measurement rate (26 Hz in this 

dataset). Further study is needed to determine how to best implement surrogate-based 

monitoring when high-frequency surrogate data is available. 

8.5. Conclusions 

With no model updates, mean tumor localization errors were 2.4 mm, and 26% of errors 

exceeded 3 mm. With the update methods, mean errors were reduced to 1.7-1.9 mm, and 

11-14% of errors exceeded 3 mm. Differences in errors between surrogate-based, error-

based, and always update methods were not significant, but the number of updates in a 

fraction varied considerably with update method. On average, the surrogate method 

required 44% as many updates as the error method and 17% as many updates as the 

always-update method.  
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CHAPTER 9: Understanding the Performance of Control Limit-Based 

Monitoring of Respiratory Surrogate Tumor Motion 

Models  

 

9.1. Introduction 

The surrogate-based monitoring technique described in Chapters 7 and 8 is associated 

with poor specificity when tuned to high sensitivity. The consequence of low specificity 

is frequent model updates that interrupt treatment. Our surrogate-based monitoring 

technique consists of placing control limits on variables derived from model inputs, 

which in this case are the respiratory surrogate signals. This technique51 is used widely in 

industrial applications with a high degree of predictive value. It is not immediately clear 

why high specificity cannot be achieved along with high sensitivity in this application. 

The purpose of this study was to develop a better understanding of mechanisms 

underlying the performance of a respiratory surrogate-based monitoring technique for 

maintaining real-time tumor localization model accuracy. Through increasingly complex 

respiratory surrogate and tumor motion simulations, we evaluated measurement 

precision, period variations, amplitude variations, gross patient motion, and end-exhale 

position variations as possible phenomena contributing to poor specificity in this 

monitoring technique. We confirmed these results in data from 5 lung cancer patients 

who underwent a total of 13 magnetic resonance imaging sessions. 
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9.2. Methods 

9.2.1. Patient Data 

9.2.1.1. Dynamic Magnetic Resonance Imaging  

Five lung cancer patients undergoing radiation therapy at the University of Maryland 

Medical Center Department of Radiation Oncology underwent magnetic resonance (MR) 

imaging as part of an ongoing Institutional Review Board-approved study. The scans 

took place during three stages of the participants’ radiation therapy treatments.  The first 

scan took place 1-2 weeks prior to the start of the treatments. For patients undergoing 

conventionally fractionated radiation therapy, a second scan took place between the 5th 

and 11th treatments and a third scan took place between the 15th and 21th treatments. For 

patients undergoing hypo-fractionated radiation therapy, a second scan took place 

between the 1st and 2nd treatments, and a third scan took place between the 2nd and last 

treatments. One of the five patient-volunteers completed only the first imaging session, 

and the other four completed all the three imaging sessions. 

Images of the tumor were acquired on a 1.5 T MR imager (Manetom Avanto, 

Siemens, Erlangen, Germany) using a TrueFISP sequence (200 images, 5 sagittal slices, 8 

mm slice thickness, interleaved acquisition, TE 1.29 ms, TR 2.57 ms, 60° flip angle, 

matrix 176 × 256 matrix, in-plane spatial resolution of 1.6-2.2 mm in each direction, 

1028 bandwidth, 500 s total acquisition time). The field of view was selected to 

encompass the thorax and was centered at the tumor position in the medial-lateral 

dimension.  
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The slice of the imaging volume passing through the approximate center of the 

tumor was utilized to localize the tumor in the anterior-posterior (AP) and the superior 

inferior (SI) directions. This image slice was acquired once every 2.5 s, and 200 frames 

were captured in each scan session. The tumor was localized in each frame by finding the 

centroid of a bounding box around the tumor (Figure 9.1).  

In addition to drawing the box circumscribing the tumor, the tumor was also 

contoured in one image set by three individuals. The centroid of the contour was 

compared to the centroid of the box in each frame. The difference between contour 

centroid position and box centroid position was of the same magnitude as inter-observer 

contouring variation in the same dataset. 
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Figure 9.1. Tumor localization (box) in a sagittal slice through the tumor. 

 

 

9.2.1.2. Respiratory Surrogate Measurements Captured During Imaging 

Prior to each scan, five spherical reflective markers were affixed to the abdomen in an arc 

configuration about the umbilicus. The reflective markers were tracked by a stereoscopic 

infrared camera system (Polaris Spectra, NDI, Waterloo, Ontario). The camera system 

(Figure 9.2) calculates the position of each marker in three dimensions from concurrent 

images captured through two lenses.  
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Figure 9.2. Stereoscopic camera system in position at the MR scanner. 
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The respiratory surrogate marker positions were logged by in-house-developed 

software (Labview, National Instruments, Austin, Texas). The software polled the camera 

system for 3D marker positions at a rate of 30 Hz, parsed the camera system’s response, 

and logged the 5 marker positions. Simultaneously, the software sent voltage pulses 

through a DT9800 USB Function Module for Data Acquisition (Data Translation, 

Marlboro, MA). The 100-ms pulses were initiated every 500 ms and were sent to the 

scanner through its electrocardiogram input hardware. The scanner was programmed to 

acquire one image slice per pulse. In addition, to synchronize the computer with the 

scanner, the software began polling the camera system for marker positions as the first 

voltage pulse was initiated.  

The camera system utilized in this study sometimes reports more positions than 

there are markers. This is an artifact of the system’s image analysis software, which is 

unable to correctly localize all of the markers when any two markers are coplanar with 

the two camera lenses (Figure 9.3). Instead, two “phantom” marker positions are 

reported in addition to the positions of the two real markers. Because of the arrangement 

of the markers inside the scanner bore and the position of the camera near the subject’s 

feet, the phantom markers were always significantly superior and inferior, respectively, to 

the set of real markers. Thus, the phantom markers were easily identified by plotting all 

marker data in an imaging session and drawing a box around the real markers (Figure 

9.4). The phantom markers were excluded from subsequent analyses. 
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Figure 9.3. Phantom marker artifact of the stereoscopic camera system. The system is unable to 

distinguish between the real and phantom markers when two real markers are coplanar with the 

two camera lenses. The dashed purple and red lines are parallel to the solid purple and red lines, 

respectively, and the phantom marker positions are reported at the intersections of the purple and 

red lines. 



 

 
   117 

 

 

    
 

   (a)      (b) 

 

 
 

(c) 

 

Figure 9.4. Respiratory surrogate marker data processing for patient #1 imaging session #1.  

(a) Unsorted surrogate marker data. (b) Surrogate marker data replotted after automated sorting. 

On this plot, the user selects a box around the data known to be associated with true (non-

phantom) marker data. (c) Phantom marker data circled on the sorted marker plot. 
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The tracking camera’s marker localization algorithm does not associate the 

markers in one set of images with those of another. As a result, the markers’ positions are 

not reported in the same order for every sample (Figure 9.4). For this study, the entire 

marker position dataset for each imaging session was sorted retrospectively using k-

means clustering. The k-means clustering algorithm separates the marker positions into k 

clusters such that the total sum of the distances between each marker position and the 

associated cluster’s centroid is minimized.84 The algorithm begins with k initial points, 

which for this study were the k marker positions reported by the camera at a single 

sample. One-by-one, each point in each of the other samples was then assigned to the 

cluster whose centroid was closest to that marker position; the cluster’s centroid position 

was updated as each point was added to the cluster. After assigning each reported marker 

position to a cluster, the algorithm continues to move points between clusters until the 

sum of the distances cannot be decreased further. The success of the k-means clustering 

was confirmed by visual inspection and by counting the missing samples for each marker. 

To account for setup errors in 2 of the 13 imaging sessions, marker datasets in which 

more than 1% of points were missing were not used to predict tumor displacement. 

After sorting, the mean-centered surrogate marker positions were orthogonally 

projected onto a line calculated from each surrogate marker’s positions recorded during 

the training data period. The line passed through the origin, and its direction was given by 

the first principal component of the marker position matrix. The first principal component 

vector was given by the first eigenvector of the data’s covariance matrix. Each projected 
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surrogate marker position was defined as the distance from the position of the projected 

point on the line to the origin. 

Each tumor position was determined from an image slice that was acquired over 

the course of 450 ms. Thus, for patient data, 15 surrogate marker positions were captured 

during each image acquisition period. The projected respiratory surrogate positions 

corresponding to each image slice, therefore, were taken as the average of the 15 values 

captured during the slice acquisition period. 

9.2.2. Respiratory Surrogate Models of Tumor Displacement 

9.2.2.1. Training Datasets 

Respiratory surrogate models can be created from a “training” dataset of concurrent 

tumor and respiratory surrogate marker positions. Training datasets were created from the 

first 30 sec of the 500 sec-long datasets. In the patient data, training datasets were created 

at 0.4 Hz (the maximum possible frequency for the images captured 2.5 sec apart) and at 

a 0.1 Hz rate. In simulations, training datasets were created at sampling rates of 0.1 Hz to 

30 Hz.  

9.2.2.2. Partial Least Squares (PLS) Regression  

For each imaging session, partial least squares (PLS) regression was used to fit linear, 

multivariate models that estimate tumor position from respiratory surrogate marker data 

as described in Section 2.6.2. The model was applied to a testing dataset consisting of the 

subsequent respiratory surrogate marker data in the imaging session. For patients, the 
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testing data was sampled at 0.4 Hz. For simulations, the testing data was sampled at 30 

Hz. Tumor positions were predicted from respiratory surrogate measurements at these 

testing points to determine tumor localization errors. Errors reported are the Euclidean 

distance between the two-dimensional true tumor position (MR image-measured tumor 

position or simulated tumor position) and the two-dimensional position predicted by the 

model.  

9.2.3. Monitoring Respiratory Surrogate Models of Tumor Displacement 

9.2.3.1. Control Limits for Monitoring Respiratory Surrogate Models  

Control limits on Hotelling’s T2 statistic and the input variable squared prediction error, 

Q(X), were created for each model as described in Section 2.8. The T2 and Q(X) values 

were determined for each data point in the testing dataset. When either T2 or Q(X) 

exceeded the control limits determined from T2 or Q(X) values in the training dataset, 

errors were predicted to be large.  

9.2.3.2. Performance of the Monitoring Technique 

Performance of the monitoring technique can be measured as the sensitivity and the 

specificity in detecting errors greater than 3 mm. Sensitivity was given by the number of 

errors correctly predicted to be greater than 3 mm divided by the total number of errors 

that were actually greater than 3 mm. Specificity was given by the number of errors 

correctly predicted to be less than 3 mm divided by the total number of errors that were 

actually less than 3 mm. 



 

 
   121 

 

Control limits on T2 and Q(X)
 were 99.9th percentile expected values of T2 and Q(X)

 

except where otherwise noted. In these exceptions, the control limits were selected 

retrospectively such that the sensitivity for predicting errors greater than 3 mm was 95%. 

To find the control limit resulting in 95% sensitivity, the sensitivity was determined for a 

variety of control limits. The optimal control limit for 95% sensitivity was determined 

iteratively. Because sensitivity and specificity are dependent upon one another, keeping 

sensitivity constant makes it possible to directly compare monitoring performances 

through a single variable: specificity. 

9.2.4. Simulations 

A series of simulations were performed in order to form an understanding of the results in 

the patient data. For each simulation dataset, two-dimensional tumor motion and the 

three-dimensional motion paths of each of 5 respiratory surrogate markers affixed to the 

torso were simulated. Like the patient datasets, simulated datasets were 500 sec in 

duration. Except where otherwise noted, the simulated data was sampled at 30 Hz.  

Seppenwoolde et al. showed that most tumors move through space in a pattern 

that most closely resembles a cosine to the fourth power curve.47 Upon evaluation of the 

patient data collected for this study, it was apparent that the respiratory surrogate signals 

were also shaped like cosine to the fourth power curves (Figure 9.5). Each breath was 

simulated as one period of a cosine to the fourth curve for both the respiratory surrogate 

marker motion and the tumor motion. 
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(a) 

 
(b) 

Figure 9.5. The five respiratory surrogate marker datasets projected onto one dimension in (a) a 

patient dataset showing gross patient motion, amplitude variations, period variations, and 

measurement noise but no baseline variations, and (b) a simulated dataset incorporating all sources 

of variation.  
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In each set of simulations, respiratory surrogate signals (X) and tumor motion (Y) 

for individual respiratory cycles were simulated as follows: 
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where Xi,j represents the j dimension of the motion of respiratory surrogate marker i, Yk 

represents the k dimension of tumor motion, T(t) is a function describing the periods of 

each respiratory cycle, and A(t) is a function that scales the data associated with each 

respiratory cycle by a constant value. Mi,j(t), Gi,j(t), Ei,j(t), and Dj(t) are functions 

simulating measurement error, gross patient motion, respiratory surrogate marker end-

exhale position variations, and tumor drift, respectively. These functions will be defined 

in later sections. In each simulation, unless otherwise noted, Ai,j = 1 mm, T = 3.3 sec, 

Mi,j(t) = 0 mm, Gi,j(t) = 0 mm, Ei,j(t) = 0 mm, and Dj(t) = 0 mm. Xi,SI was designed to be 

larger in magnitude than Xi,AP and Xi,ML to match the patient data (Table 9.1). Directions 

of motion are given in patient coordinates: superior-inferior (SI), anterior-posterior (AP), 

and medial-lateral (ML). 100 datasets were simulated for each experiment. 
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Table 9.1. Respiratory cycle measurements for a randomly selected surrogate marker in the first 
imaging session for each patient 

 
 

Patient ID 

Magnitude of surrogate 

marker motion (mm) 

Magnitude of surrogate 

marker motion (mm) 

Mean 

period 

(sec) 

St. dev 

period 

(sec)  SI ML AP SI ML AP 

1 8.7 2.1 1.9 1.3 0.4 0.3 3.4 0.3 

2 6.0 2.0 3.0 2.2 0.6 1.3 3.2 1.1 

3 5.3 1.3 2.4 1.1 0.2 0.4 3.6 0.4 

4 4.0 2.5 2.8 1.0 0.7 0.7 3.4 0.6 

5 5.1 0.8 1.3 0.7 0.2 0.2 2.7 0.4 

Average 5.8 1.7 2.3 1.3 0.4 0.6 3.3 0.6 
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9.2.4.1. Basic Simulations 

To establish a baseline of performance for a simple simulation dataset, the modeling and 

monitoring techniques were tested for the default values of Ai,j = 1 mm, T = 3.3 sec, 

Mi,j(t) = 0 mm, Gi,j(t) = 0 mm, Ei,j(t) = 0 mm, and Dj(t) = 0 mm.  

9.2.4.2. Variations in Waveform Period and Amplitude 

To simulate breath-to-breath variations in the respiratory surrogate and tumor motion 

data, the five datasets described by Equations 1-5 were generated one respiratory cycle at 

a time. Periods and amplitudes were constant over individual respiratory cycles such that 

T(t) = Tn and A(t) = An for t from the beginning to the end of respiratory cycle n. Because 

the mean ± standard deviation period of the respiratory cycles in the patient dataset was 

3.3 sec ± 0.6 sec (Table I), the period for each respiratory cycle of index n was calculated 

as Tn = 3.3+ 0.6 ⋅ rT  sec, where rT was a random variable with a normal distribution and a 

standard deviation of 1 sec. Similarly, each amplitude scaling factor was calculated as 

An =1+ 0.25 ⋅ rA , where rA was random variable with a normal distribution and a standard 

deviation of 1. The factor of 0.25 in this expression was included so that the amplitude 

variations would match the average ratio of the standard deviation of surrogate marker 

magnitude to the mean surrogate marker magnitude in each direction (Table 9.1).  

9.2.4.3. Measurement Noise 

To evaluate the effect of finite precision in the respiratory surrogate signals and in the 

image-based tumor localizations, random noise was added to the equations in the form of 
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Mi,j(t). The values at each sample were calculated as Mi, j =
rM
3

 for respiratory surrogate i 

and
 
Mt,k = rM  for tumor motion, where rM was a normally distributed random variable 

with a standard deviation of 1 mm. Noise of a standard deviation of 0.3 mm in the 

respiratory surrogate measurements approximates the errors in the patient dataset (Figure 

1). The magnitude of the noise in the tumor positions, with a standard deviation of 1 mm, 

was approximately equal to the inter-observer variability for localizing the tumor in the 

MR images. 

9.2.4.4. Gross Patient Motion 

Gross patient motion caused by conscious muscle movements or gradual muscle 

relaxation is apparent in patient datasets in which there are concurrent baseline shifts in 

respiratory surrogate signals and tumor motion traces. This type of event was simulated 

by adding a logistic curve defined as 
)250(

,
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5
−−+

⋅
= t

iG
ji e

r
G  to the respiratory surrogate 

marker signals, where rG,j was a random variable with a uniform distribution on the open 

interval from 0 to 1, and by adding 
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)1(3
−−+

−⋅
= t

k

k e
G  to the tumor motion traces.  

9.2.4.5. End-Exhale Variations 

While the end-exhale respiratory surrogate marker position tends to be more stable than 

the end-inhale position, the end-exhale position is not constant.6 To simulate realistic 

end-exhale variations, the end-exhale positions from a patient dataset were duplicated in 

the simulated datasets. For each simulated respiratory cycle, 
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Ei, j (t) =
xi,n+1 − xi,n

t(Tn + t0 )− t(t0 )
⋅ t + xi,n , where xi,n is the position of i at end-exhale for respiratory 

cycle number n, t(t0) is the time at the start of simulated respiratory cycle number n, and 

Tn is the period of simulated respiratory cycle number n. The resulting dataset 

incorporates end-exhale variations without creating discontinuities in the signals (Figure 

9.5). The end-exhale positions were based on a patient dataset that had a gradual drift in 

the end-exhale positions but did not include any sudden, large baseline shifts like those 

simulated in Section 9.2.4.4. 

9.2.4.6. Drift in Tumor Position 

In the patient data, gradual drifts in tumor position occurred independently from drifts in 

respiratory surrogate signals. Consequently, tumor position drifts were simulated 

independently from respiratory surrogate signal variations. Gradual drifts in tumor 

position were simulated as a linear 1-2 millimeter drift in each direction of tumor motion 

over the 500 sec simulated. Specifically, ttDSI ⋅−= 004.0)(  and ttDAP ⋅= 002.0)( . 

9.2.4.7. Intermittent Sampling 

Datasets incorporating all of the sources of variation described above (period variations, 

amplitude variations, measurement errors, respiratory surrogate end-exhale variations, 

tumor drift, and gross patient motion) were developed. In these simulations, tumor drift, 

gross patient motion, and end-exhale variations were included in datasets at a probability 

of 23%, 23%, and 46%, respectively, to match the incidences observed in patient data. 

Results were calculated for training datasets 30 sec in duration and with sampling rates of 
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0.1 Hz, 0.4 Hz, 1 Hz, and 15 Hz to simulate tumor localization rates possible in various 

imaging systems. 

9.2.4.8. Averaging Across Acquisition Periods  

In the patient dataset, the tumor localizations were acquired in images captured over a 

period of 0.45 sec. During that time, 13 respiratory surrogate marker position samples 

were captured. Therefore, to match tumor positions with respiratory surrogate marker 

positions, it was necessary to average the higher frequency surrogate marker data over the 

image acquisition period. The intermittent sampling simulations (Section 9.2.4.7) at 0.1 

Hz, 0.4 Hz, and 1 Hz were repeated with the additional averaging step applied such that 

each surrogate marker position and each tumor position were calculated as the average of 

data captured over 0.45 sec.  

9.3. Results 

9.3.1. Imaging Study Results 

9.3.1.1. Surrogate Marker Tracking 

Because of setup errors involving the positions of the markers on the abdomen and the 

arrangement of the patients’ clothing, the camera failed to reliably track a few surrogate 

markers during the course of the study. One surrogate marker from one imaging session 

and two surrogate markers from a second imaging session were excluded from the 

analyses for this reason. In these two imaging sessions, tumor localization models were 

based upon 3 and 4 of the surrogate markers, respectively. 
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9.3.1.2. Motion Patterns 

Amplitude variations, period variations, and measurement noise were present in all 13 

imaging sessions. While end-exhale variations were observed in every respiratory 

surrogate dataset, end-exhale variations greater than 2 mm were less common. Gradual 

drifts of at least 2 mm in the end-exhale positions, like those simulated in Section 9.3.2.5, 

were present in 6 of the 13 respiratory surrogate datasets. Rapid shifts of at least 2 mm 

within 10 sec, such as those simulated in Section 9.2.4.4, were visible in 3 of the 13 

respiratory surrogate datasets.  

In low-pass filtered image-based tumor localization data, gradual baseline shifts 

of at least 2 mm, like those simulated in Section 9.2.4.6, were present in 3 of the 13 

datasets. No rapid (<10 sec) 2 mm shifts were visible in any of the 0.4 Hz tumor 

localizations datasets. 

9.3.1.3. Tumor Localization Model and Monitoring 

Although respiratory surrogate model-predicted tumor localizations were validated at 0.4 

Hz, applying the PLS model of tumor motion to individual respiratory surrogate marker 

positions yielded realistic tumor motion curves (Figure 9.6). For 0.4 Hz and 0.1 Hz 

training datasets, the mean ± standard deviation PLS model tumor localization errors in 

the testing data were 1.5 mm ± 1.0 mm and 1.9 mm ± 1.7 mm, respectively (Table 9.2). 

Given a sensitivity of 95%, the specificities for detection of errors greater than 3 mm 

were 8% for the 0.4 Hz training data and 17% for the 0.1 Hz training data.  
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Figure 9.6. Tumor localizations (predictions) based on either a single set of respiratory surrogate 

marker positions (continuous blue lines) or the average of respiratory surrogate marker positions 

recorded over the course of 450 msec (450-msec-long red horizontal lines). 

 

 

 

Table 9.2. Modeling and model monitoring performance for patient datasets 

Training data 

sampling rate 

(Hz) 

Mean error 

(mm) 

St. dev. 

error (mm) Sensitivity Specificity 

0.4 1.5 1.0 95% 8% 

0.1 1.9 1.7 95% 17% 
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9.3.2. Simulation Study Results 

9.3.2.1. Baseline Simulation Results 

For the baseline simulations in which no sources of variation were included, all tumor 

localization errors were less than 0.1 mm. Specificity was 100% (no large errors were 

predicted by the monitoring technique), and sensitivity could not be quantified, because 

no errors exceeded 3 mm. 

9.3.2.2. Variations in Waveform Period and Amplitude 

The respiratory surrogate models were able to predict tumor displacement to within less 

than 0.1 mm at every sample when simulated data included period variations, amplitude 

variations, or a combination thereof. Specificity was 100%, and sensitivity could not be 

quantified, because no errors exceeded 3 mm. 

9.3.2.3. Measurement Precision Limitations 

When measurement errors were simulated in the form of noise added to the respiratory 

surrogate signals and tumor positions, the tumor localization errors increased. For the 

simulated magnitude of measurement precision errors, tumor localization errors (mean ± 

standard deviation) increased to 1.3 mm ± 0.0 mm, and only 1% of errors exceeded 3 

mm. Specificity was 99% and sensitivity was 1%. 

To induce large errors and in order to better understand the effect of measurement 

noise, results were also determined for a case in which the measurement noise was tripled 

in each direction. With measurement noise of this magnitude, 39% of errors exceeded 3 
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mm. For this hypothetical larger measurement noise, the tumor localization error 

increased to 3.8 mm ± 2.0 mm, and sensitivity and specificity were 0% and 100%, 

respectively.  

9.3.2.4. Gross Patient Motion 

When gross patient motion was simulated, the mean ± standard deviation of tumor 

localization errors was 5.5 mm ± 2.8 mm. The sensitivity and specificity were 100% and 

83%, respectively. The specificity was 100% except during the transition period when the 

shift was in progress. 

9.3.2.5. End-Exhale Variations 

As compared to the baseline simulations, varying the position of the respiratory surrogate 

markers at end-exhale had the effect of increasing tumor localization error while 

decreasing both sensitivity and specificity. The mean ± standard deviation error was 5.1 

mm ± 2.3 mm, sensitivity was 89%, and specificity was 90%.  

9.3.2.6. Drift in Tumor Position 

As compared to baseline simulations, applying a drift in the tumor motion had the effect 

of increasing the tumor localization error to 2.2 mm ± 1.2 mm. No errors exceeded 3 mm, 

so sensitivity could not be measured, and specificity was 100%.  

In order to better understand the effect of tumor position drift, results were also 

determined for a case in which the tumor position drift was tripled in each direction. For 

this hypothetical larger tumor drift, while 79% of errors exceeded 3 mm, no large errors 
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were detected by the monitoring technique. Sensitivity and specificity were 0% and 

100%, respectively.  

9.3.2.7. Intermittent Sampling 

For simulations including phase variations, amplitude variations, end-exhale variations, 

phase offsets, measurement errors, and gross patient motion, results for 0.1 Hz to 30 Hz 

training data sampling rates and 95% sensitivity are given in (Table 9.3). With the 

exception of 30 Hz, specificity increased from 36% to 64% as training data sampling rate 

increased from 0.1 Hz to 15 Hz. Specificity for 30 Hz sampling was 57%. Tumor 

localization error did not vary significantly with training data sampling rate. 

9.3.2.8. Averaging Across Acquisition Periods  

The effect of averaging over the acquisition period varied with training data sample 

frequency (Table 9.4). For 0.1 Hz, 0.4 Hz, and 1 Hz, the specificities were 38%, 60%, 

and 62%, respectively. 
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Table 9.3. The effect of sampling rate on modeling and model monitoring performance  
for simulations incorporating all sources of cycle-to-cycle variation 

 
Training data 

sampling rate 

(Hz) 

Control 

limits 

Mean 

error 

(mm) 

St. dev. 

error 

(mm) Sensitivity Specificity 

30 79% 4.3 3.4 95% 57% 

15 85% 4.3 3.2 95% 64% 

1 89% 4.4 3.5 95% 53% 

0.4 94.5% 4.3 3.4 95% 41% 

0.1 95% 4.4 3.3 95% 36% 

 
 

 

 

Table 9.4. Modeling and model monitoring performance for acquisition-time averaged training 
data  

 
Training data 

sampling rate 

(Hz) 

Control 

limits 

Mean error 

(mm) 

St. dev. 

error (mm) Sensitivity Specificity 

1 85% 4.3 3.7 95% 62% 

0.4 85.3% 3.9 3.3 95% 60% 

0.1 95% 4.3 4.1 95% 38% 
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9.4. Discussion 

In this work, we have evaluated the effects of measurement errors, period variations, 

amplitude variations, end-exhale variations, tumor drift, and gross patient motion on the 

performance of a control limit-based respiratory surrogate model monitoring technique. 

Respiratory cycle amplitude and period variations had no effect on monitoring 

performance. With measurement noise or tumor drifts alone, specificities were 99-100% 

and sensitivities were 0-1%. Gross patient motion was detected with sensitivity of 100% 

and specificity of 97%. For end-exhale variations, sensitivity was 97%, and specificity 

was 57%. In simulations that incorporated all sources of signal variations, specificity 

increased monotonically from 33% at 0.1 Hz to 69% at 30 Hz when sensitivity was 95%. 

In the patient data, specificity also increased with sampling rate, but the magnitude of the 

specificities were lower (8% and 17% for 0.1 Hz and 0.4 Hz, respectively) than the 

specificities in the simulations.  

 

The period and amplitude variations did not impact the tumor localization errors and 

therefore were not relevant to the control limit monitoring technique. Tumor localization 

errors increased when variations were not consistent between input and output signals. 

For instance, end-exhale variations in the respiratory surrogate signals could lead to large 

errors, which were detected with sensitivity of 97% and specificity of 57%. At the other 

end of the spectrum, measurement noise-induced errors and tumor drift went undetected, 

because they were not associated with changes in respiratory marker signal patterns.  
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When designing training datasets for tumor displacement models, it is tempting to 

draw upon common engineering techniques such as the Nyquist-Shannon sampling 

theorem, which specifies a minimum sampling rate for reconstructing a signal. However, 

for this application there is no need to reconstruct the analog signals. Instead, the 

sampling rate need only be high enough to fully characterize the relationship between 

tumor motion and respiratory surrogate signals. In this study, we found no significant 

difference in tumor localization errors for 30-sec training datasets sampled at 30 Hz to 

0.4 Hz. However, the control-limit-based monitoring performance varied considerably 

across this range of frequencies; there were half as many false alarms in the prediction of 

large tumor localization errors at the highest sampling rate, 30 Hz, as compared to the 

lowest sampling rate, 0.1 Hz.  

The tumor localizations in this study were based on dynamic MR data captured at 

0.4 Hz. In future work, we plan to collect dynamic MR data at 2 Hz by reducing the 

acquisition volume from 5 slices to 1. It may also be possible to localize the tumor at a 

rate of up to 15 Hz using x-ray fluoroscopy, but the poor soft tissue contrast of 

fluoroscopic imaging may preclude its use without first implanting radio-opaque markers 

in the tumor, a procedure that results in pneumothorax in as many as 38% of patients.85 

Still, fluoroscopic imaging may be more practical in the application of these techniques, 

because modern radiation treatment machines are equipped with x-ray imaging systems.  

In this study, sagittal image slices were analyzed such that superior-inferior (SI) 

and anterior-posterior (AP) tumor motion could be measured. Depending on the tumor 

geometry in each patient-volunteer, it is possible that the tumor position in the sagittal 
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slice is not a perfect representation of the instantaneous SI and AP displacement of the 

tumor centroid. This effect is likely to be small, because out-of-plane motion through the 

imaging slice would be in the medial-lateral (ML) direction, which is rarely larger in 

magnitude than a few millimeters, which was smaller than the spacing between slices.47 

Every effort was made to ensure that the simulation datasets were representative 

of patient data. The distribution of measurement errors, period variations, and amplitude 

variations was equal to that measured in the patient population. Gross patient motion, 

end-exhale variations, and tumor drift were each based upon a single imaging session and 

were simulated at the incidence (probabilities of 0.23, 0.46, and 0.23, respectively) seen 

in the patient data. The averaging inherent in MR data in which images are acquired over 

450 msec was simulated as well. The averaging step had little if any effect on either 

tumor localization accuracy or monitoring method performance. 

The simulation results were qualitatively in agreement with the patient data. 

However, specificities simulations that incorporated all types of cycle-to-cycle variations 

were larger than those in the patient data. This may have been a consequence of the 

timing of respiratory cycle variations. For instance, the simulated gross patient motion 

was modeled halfway through the 500-sec simulations, and the gross patient motion 

sometimes happened later in the imaging sessions. The gross patient motion had the 

effect of increasing the error detection specificity for the session as a whole and would 

have increased the specificity in the simulation datasets. 

Tachibana et al. have also described a technique for detecting surrogate-based 

tumor localization errors from optically tracked markers.86 They have created a system 
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that optically tracks a marker affixed to the chest for the sole purpose of detecting 

baseline position shifts of the chest wall. In the surrogate data control limit technique that 

we have explored in this study, baseline shifts in surrogate marker motion are not 

identified. However, gross patient motion is detected consistently; the technique 

identifies large errors associated with baseline shifts with 100% sensitivity and 97% 

specificity. 

This study illuminates the reasons underlying poor specificity in this respiratory 

surrogate model monitoring technique. Because measurement precision is a factor, some 

improvement can be expected by improving the signal-to-noise ratio in either the 

respiratory surrogate measurements or the tumor localizations. Both measurement errors 

and variations in the end-exhale respiratory surrogate positions, which may not be 

associated with corresponding tumor position variations, can trigger false alarms. For this 

reason, it is important to look for trends in the T2 and Q(X) statistics. As described in 

Chapter 7, specificity for identifying large tumor localization errors can be improved by 

evaluating all respiratory surrogate data captured over the past 1-3 sec rather than using a 

single set of respiratory surrogate measurements. Unfortunately, it may not be possible to 

detect tumor drifts caused by internal tissue settling using respiratory surrogates alone. 

9.5. Conclusions 

Control-limit-based monitoring was successful during gross patient motion and end-

exhale variations but not with tumor drifts or errors induced by measurement noise. 

Period and amplitude variations occurring concurrently in tumor and respiratory 

surrogate signals did not affect errors or monitoring performance. The specificity of the 
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monitoring technique increased with increasing training dataset tumor localization rate. 

Simulation results were in qualitative agreement with patient results. 
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CHAPTER 10: Conclusions 

 

10.1. Main Objective 

We have completed the main objective of this dissertation by developing novel 

techniques for modeling respiration-induced tumor motion from external surrogate 

measurements of respiration. Two patents are pending on these techniques. 

 

Patent Applications: 

1. D’Souza, W.D., Zhang, H.H., and Malinowski, K.T. Techniques for 

compensating movement of a treatment target in a patient. US Patent Application 

13/172,010, filed June 2011. Patent Pending.  

2. D’Souza, W.D., Malinowski, K.T., and McAvoy, T.J. A method for monitoring 

he accuracy of tissue motion prediction from surrogates. U.S. Provisional Patent 

Application 61/506,667, filed July 2011. Patent Pending. 

 

The following specific objectives were addressed in this dissertation: 
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10.1.1. Specific Objective #1: Identify Sources of Error in Multivariate 

Respiratory Surrogate Tumor Localization Models  

For tumors that move with respiration, there is a body of literature describing and 

benchmarking individual algorithms for predicting tumor displacement from respiratory 

surrogate signals. However, each study describes an algorithm’s performance under a 

specific set of conditions, and no study performed outside of this dissertation work has 

systematically identified factors that contribute to the accuracy of respiratory surrogate 

models of tumor motion.  

 

Factors contributing to surrogate model accuracy include: 
 

1. Variations between individual patients 

2. Tumor position measurement precision 

3. Respiratory surrogate signal measurement precision 

4. Correlation between tumor motion and surrogate signals 

5. Modeling algorithm design (investigated further in Specific Objective #2) 

6. Training data timing (investigated further in Specific Objective #3)  

 
 

The factor that most impacted respiratory surrogate model accuracy was timing. 

Tumor localization errors 20 minutes after the training data were collected were twice as 

large as errors captured during the first 2 minutes after the training data were collected. 

The precise effect of timing varies from one individual to the next. However, within 30 

min, the typical length of time that a patient spends in a radiation treatment room for a 
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single radiotherapy session, surrogate model accuracy degrades significantly in over 60% 

of patients. 

10.1.2. Specific Objective #2: Develop and Validate an Algorithm for Predicting 

Tumor Position from Mutliple Surrogates of Respiration 

In order to develop an algorithm for predicting tumor displacement from multiple 

surrogates of respiration, a series of multivariate regression techniques were evaluated for 

this application. To our knowledge, our group was the first to apply partial least squares 

(PLS) regression to the problem of tumor motion modeling. We evaluated our PLS 

models of tumor motion under a variety of conditions and benchmarked PLS against 

other regression techniques such as ordinary least squares (OLS) regression. PLS was 

more accurate for tumor tracking than OLS. In general, OLS regression has a tendency to 

over-fit the training data at the expense of prediction accuracy. PLS was more effective, 

because its compression step generates latent variables from the original set of respiratory 

surrogate signal inputs in a way that combines correlated signals and separates out the 

input variance that is not correlated with tumor variance.  

The accuracy of the PLS regression models was improved by projecting each 

three-dimensional respiratory surrogate motion dataset onto a single dimension before 

regressing on the data. The projection step increased the correlation between surrogate-

based inputs and tumor motion by increasing the signal to noise ratio in the surrogates.  

 
Final tumor localization algorithm: 

 
1. Capture images of the tumor while collecting respiratory surrogate data. 
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2. Localize the tumor in each image to obtain a set of tumor positions (Y). 

3. Orthogonally project the three-dimensional respiratory surrogate motion onto the 

line defined by the data’s first principal component to obtain respiratory surrogate 

signals (X). 

4. Apply PLS to calculate a multivariate regression model (Y = X ⋅B  with regression 

coefficient matrix B) defining tumor displacement as a function of respiratory 

surrogate marker signals. 

5. Apply the regression model to new surrogate marker data to predict tumor 

displacements without capturing additional images of the tumor. 

 
 
Although the main focus of this work was real-time tumor displacement 

prediction, we were able to apply this technique successfully in a second radiation 

therapy application. 4D CT data is often collected prior to radiation treatment in order to 

obtain an estimate of the range of tumor motion during free breathing. However, the 

labor-intensive and time-consuming nature of analyzing the multiple (usually 8-12) 

volumetric images in a 4D CT dataset precludes many clinics from utilizing 4D CT data. 

We proposed and validated a technique in which manually contouring all ten of the image 

datasets could be avoided by instead combining three manually contoured image sets 

with the easily identified positions of anatomical surrogates of respiration such as the 

carina. The net effect of this technique was that analyzing 4D CT datasets could be 

completed more quickly, making it possible for more patients to have access to 4D CT 

technology. The surrogate model-predicted tumor centroid position matched the contour-
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based centroid position to within an average error of 1 mm in each direction, a magnitude 

within the contouring certainty of the CT images.87  

10.1.3. Specific Objective #3: Develop and Validate Methods of Monitoring 

Changes in Respiratory Surrogate Model Accuracy 

The main factor precluding clinicians from utilizing respiratory surrogate models of 

tumor motion is a lack of confidence in the models themselves. In current clinical 

practice, the variations in tumor position are estimated prospectively in order to develop a 

treatment plan that balances the risk to healthy tissues with the goal of tumor control. 

Hypothetically, devices that adjust treatment according to the instantaneous tumor 

position can deliver radiation to a smaller volume to spare the healthy tissue. However, 

this more precise treatment can miss the tumor either partially or altogether if the tumor 

localization is not sufficiently accurate.   

 We have developed a technique by which the respiratory surrogate model 

accuracy can be monitored through external (respiratory surrogate) measurements alone, 

without capturing images of the tumor to directly validate the model. In this technique, 

control limits are placed on statistical process control metrics that evaluate the relative 

respiratory surrogate positions and their relationship to the model created at the start of 

treatment. Using this method, we have been able to achieve high sensitivity (95%) and 

moderate specificity (8-17%) in patient datasets. The characteristics of the data used to 

train the model, including image sampling rate and measurement precision, significantly 

impact the performance of the monitoring technique. It is possible to improve specificity 

by a factor of 2 to 3 if the training data tumor positions are captured fluoroscopically (30 
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Hz) rather than through dynamic magnetic resonance imaging (0.4 Hz). Still, in its 

current form, the method can be used to reduce model update frequency considerably 

(more than a factor of 2) over clinically available technologies. 

 
Final respiratory surrogate monitoring algorithm: 

 
1. Develop a PLS model (Y = X ⋅B  with regression coefficient matrix B) relating 

three-dimensional respiratory surrogate marker positions (X) to three-dimensional 

tumor positions (Y).  

2. Calculate T2 and Q(X) for each training data sample used to develop the PLS 

model in (1). 

3. Calculate α-percentile limits on T2 and Q(X) for some α that has been selected to 

achieve the desired sensitivity for the relevant imaging modality.  

4. Calculate T2 and Q(X) for each new respiratory surrogate measurement and 

compare to control limits. 

5. When T2 and Q(X) exceeds a control limit in the majority of samples collected over 

3 sec, develop a new tumor localization model (Section 10.3) with new training 

data.  

10.2. Significance and Future Work 

The novel techniques for modeling tumor motion and monitoring those models that have 

been developed in the course of this work are patent-pending. These techniques have the 

potential to improve patient outcomes by reducing radiation-induced side effects while 

improving tumor control.  
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The techniques described here will be incorporated into a product19,88 at the center 

of a new startup company, Immovations Medical. Future work will involve further 

refining the monitoring technique as well as integrating the technologies described in this 

dissertation into a tumor motion-compensating patient support system. 
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APPENDIX A:  Institutional Review Board Approval 

 

Department of Radiation Oncology 
22 South Greene Street 
Gudelsky Tower, Ground Floor 
Baltimore, MD 21201 
 

 
DATE:  October 23, 2009 
 
TO:   Warren D’Souza, PhD 

Principal Investigator 
 
FROM:       William Regine, MD 
  Chairman, Department of Radiation Oncology; 
  Suzanne Grim, MS 
  Acting Chair, Technology Research Review Committee 
 
SUBJECT: GCC 0943: Dynamic MRI for Lung Tumor Motion and Lung Function 
 
 
The above-mentioned protocol is now approved by the Technology Research Review 
Committee. 
 
 
Once the protocol is opened, accrual rates will be monitored to ensure that the study will be 
successful in reaching its scientific objectives.  Protocols that are not accruing at a 
satisfactory rate may be closed. 
 
 
DSM level recommended by the CRC: 

 X     Routine ____ High ____ Highest ____ Special __ External 

 
 
 
        ___     
William Regine, MD 
Chair, Department of Radiation Oncology    Date 
 
        ___     
Steven Feigenberg, MD     
Director Clinical Research,       Date 
Department of Radiation Oncology     
 
        ___     
Suzanne Grim, MS       Date 
Acting-Chair,  
Technology Research Review Committee   
 
 
Cc:     Ritesh Kataria, MS 

 

 



 

 
   148 

 

APPENDIX B:  Selected Matlab Code 

B.1  parseExternalData 

% parseExternalData.m 
% 
% This script parses the MRI study's Polaris Spectra 
% log files. Results are saved in a subdirectory. 
% 
% Kathleen Malinowski 
% December 14, 2011 
 
clear 
clc 
colors = 'bgrmkcybgrmkcy'; 
 
% collect external marker file names 
DIR = dir('/data/home/kmalinowski/data_MRI/external_motionscans'); 
 
% process all external marker files 
for filei = 3:length(DIR) 
    close all 
 
    % load tracking data  
    C = csvread(['/data/home/kmalinowski/data_MRI/external_motionscans/' ... 
        DIR(filei).name],5,0); 
 
    % begin to parse filename and data 
    external.patientID = str2double(DIR(filei).name(4:5)); 
    external.sessionID = str2double(DIR(filei).name(13)); 
    external.t         = C(:,1); 
    external.tsec      = (external.t-external.t(1))*1/60; 
    external.markeroutofvolume = C(:,2:4:end); 
    Xunsrt = C(:,3:4:end); Yunsrt = C(:,4:4:end); Zunsrt = C(:,5:4:end); 
 
    %%% apply k-means clustering to sort columns into marker order 
    % list all points in an nx3 vector 
        allpoints = []; 
        for i = 1:size(Xunsrt,2) 
            pointsListi = [Xunsrt(:,i) Yunsrt(:,i) Zunsrt(:,i)]; 
            allpoints   = [allpoints; pointsListi]; 
        end 
    % find a line of data in which there are no failed tracking 
    % points to use as a starting point for the cluster analysis 
        linei = 1; 
        foundline = 0; 
        while foundline==0 
            if min(absXunsrt(linei,:)))>0  
                foundline=1; 
            else 
                linei = linei+1; 
            end 
        end 
    %initial condition for k-means clustering 
        ismissngpts = (min(min(Xunsrt))==0); 
        initpts = zeros(ismissngpts,3); 
        for i = 1:size(Xunsrt,2) 
            initpts(end+1,:) = [Xunsrt(linei,i) Yunsrt(linei,i) Zunsrt(linei,i)]; 
        end 



 

 
   149 

 

        numclusters = size(Xunsrt,2)+ismissngpts; 
    %apply algorithm 
        clstri = kmeans(allpoints,numclusters,'start',initpts); 
 
    % re-sort the points into a new matrix 
    clstriRshp = reshape(clstri,size(Xunsrt,1),size(Xunsrt,2)); 
    sorted = zeros(size(clstriRshp,1),size(clstriRshp,2)*3);     
    for line = 1:size(Xunsrt,1) 
        for cluster = (ismissngpts+1):numclusters 
            ci = find(clstriRshp(line,:)==cluster); 
            if length(ci)==1 
                sorted(line,((cluster-1-ismissngpts)*3+1): ((cluster-1-ismissngpts)*3... 
                    +3)) = [Xunsrt(line,ci) Yunsrt(line,ci) Zunsrt(line,ci)]; 
            elseif length(ci)>1 
                %do not record either point. (This error checking code was 
                %added for 1 instance of this error in patient #3 scan #1) 
                fprintf('Warning: point uncategorized (see m-file line 73) ... 
                    in patient %i scan %i\n',... 
                    external.patientID,external.sessionID); 
            end 
        end 
    end     
    mkrX = sorted(:,1:3:end); mkrY = sorted(:,2:3:end); mkrZ = sorted(:,3:3:end); 
 
    % find the false markers by selecting the five markers in an arc across the abdomen 
    for mkri=1:size(mkrX,2) 
        figure(30) 
        set(gcf,'Color',[1 1 1]); set(gca,'FontSize',16) 
        hold on 
        plot(mkrZ(:,mkri),mkrY(:,mkri),['x' colors(mkri)],'MarkerSize',10) %top view plot 
        hold off 
        xlabel('SI'); ylabel('ML') 
    end 
    title('select a rectangle around the real markers') 
    rect = getrect(30); 
    false = [find(mkrZ(linei,:)<rect(1)) find(mkrZ(linei,:)>(rect(1)+rect(3)))]; 
 
    % plot to verify visually 
    figure(30) 
    hold on 
    plot(mkrZ(linei,false),mkrY(linei,false),'or','MarkerSize',20,'LineWidth',2) 
    title('phantom markers') 
    pause(.5) 
 
    external.realmarkers = setdiff(1:size(mkrX,2),false); 
    L = zeros(1,length(external.realmarkers)); 
    for mkri=external.realmarkers 
 
        % find and count missing datapoints 
        datai = setdiff(1:length(mkrX(:,mkri)),find(mkrX(:,mkri)==0)); 
        L(mkri)=length(datai); 
    end 
 
    % finish parsing and save processed data     
    external.numMarkers  = length(markers); 
    external.markerX = mkrX(:,markers); 
    external.markerY = mkrY(:,markers); 
    external.markerZ = mkrZ(:,markers); 
    external.markerXdirection = 'SI'; 
    external.markerYdirection = 'ML'; 
    external.markerZdirection = 'AP'; 
    save(['externaldataProcessed/extData_pat' num2str(external.patientID) 'scan' ... 
          num2str(external.sessionID)],'external'); 
    clear external 
     
end 
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B.2  func_projectData 

% function [R n m] = func_projectData(X,trainingi) 
% 
% X: a cell array in which each cell is an nx3 
%    matrix of positions. 
% training i: a vector of indices from which to 
%             calculate the projection line 
% n,m: The equation of the line is [x,y,z] = n*t+m 
% 
% Orthogonally project 3D external surrogate data 
% positions onto a single dimension. The projection  
% line is in the direction of the first principal  
% component of the 3D data and also passes through  
% the mean position of the data. 
% 
% Kathleen Malinowski 
% January 2, 2012 
%  
% (modified from original func_projectData file  
% in the SPC follow-up directory) 
 
    for i=1:length(X) 
        % projection lines - based on data acquired during training image acquisitions 
          [n{i} m{i}] = func_lineFinder(X{i}(trainingi));         
        % project external marker positions at image acquisition timepoints  
          R{i} = (X{i}-repmat(m{i},size(X{i},1),1))*n{i}; 
    end 
end 
 

B.3  func_lineFinder 

function [n m] = func_lineFinder(X) 
% Fits a line to an array of datapoints.  
% The equation of the line is [x,y,z] = n*t+m 
% 
% X = NxM array of datapoints 
% m = 1xM mean position of input data 
% n = Mx1 first principal component defining direction of line 
% 
% Kathleen Malinowski 
% May 30, 2011 
 
    m = mean(X,1);        %mean of input data 
    coeff = princomp(X);  %principle components 
    n = coeff(:,1);       %unit vector, direction of the line 
end 
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B.4  applyPLSandSPC 

% applyPLSandSPC.m 
% 
% Apply statistical process control model monitoring  
% methods. SPC results are derived from 3D input data   
% and models are built on 1D input data. 
% 
% Kathleen Malinowski 
% June 10, 2011 
 
clear 
clc 
close all 
DIR = dir('data_tumorMotionResults/'); 
 
% set parameters 
qtyTrainPts = 10; 
qtyLV = 4; 
maxe = 3; 
T2perc = .99;Qperc  = .99; 
 
% initialize variables     
alldata.T2ok=[];alldata.Qok=[];alldata.eok =[];alldata.pat=[]; 
alldata.frac=[];time2.e=zeros(0,1); time2.u = zeros(0,1); 
for i = 1:3 
    sitedata{i}.T2ok = []; sitedata{i}.Qok = []; sitedata{i}.eok = []; 
end 
 
for fileid = 3:length(DIR); 
    load(['data_tumorMotionResults/' DIR(fileid).name]) 
    load([fileparts(cd) '/data_MarkerFiles/' cybdata.sessionID 'markerext.mat'])     
    traini = 1:qtyTrainPts; 
    ti = find(cybdata.t>markerextt(1),1):find(cybdata.t<markerextt(end); 
    t      = cybdata.t(ti,1,'last')); 
    if length(t)>length(traini) 
 
        % collect input (intermittent X, high-frequency mvect) and output (Y) data 
        Y        = cybdata.internalFiducial(ti,1,'last'),:); 
        mvect{1} = markerext1; mvect{2} = markerext2; mvect{3} = markerext3; 
        testi    = (qtyTrainPts+1):size(Y,1); 
        X = [cybdata.externalMarker1 cybdata.externalMarker2 cybdata.externalMarker3]; 
 
        % project marker motion onto 1D 
        [R rContinuous] = func_projectData(mvect,markerextt,cybdata,traini,t); 
        r=[R{1} R{2} R{3}]; 
 
        % apply PLS 
        [model3D validation3D] = func_spcPLS_presetLV_v2(X(testi,:),... 
                                  X(traini,:),Y(traini,:),qtyLV); 
        [model1D validation1D] = func_spc_PLS_v2(r(testi,:),r(traini,:),Y(traini,:)); 
        errs = sum((Y(testi,:)-validation1D.pred{2}).^2,2).^(1/2); 
 
        % T^2 
        tsqsTrain = model3D.tsqs; 
        tsqsTest  = validation3D.tsqs{1,1}; 
        tsqcl = tsqlim(model3D,T2perc); 
        outoftsqlim = find(tsqsTest>tsqcl); 
 
        % Q(X) 
        QTrain = model3D.ssqresiduals{1,1}; 
        QTest  = validation3D.ssqresiduals{1,1}; 
        rescl = residuallimit(model3D,Qperc); 
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        outofreslim = find(QTest>rescl); 
 
        [sens,spec,T2OK,QOK,eOK]=func_pp_v1(tsqsTest,tsqcl,QTest,rescl,errs,maxe); 
 
        % collect all results 
        alldata.T2ok(end+1:end+length(T2OK))=T2OK; 
        alldata.Qok(end+1:end+length(QOK))  =QOK; 
        alldata.eok(end+1:end+length(eOK))  =eOK; 
        alldata.pat(end+1:end+length(eOK))  =ones(1,length(eOK))*cybdata.patientNum; 
        alldata.frac(end+1:end+length(eOK)) =ones(1,length(eOK))*cybdata.fractionNum; 
    end 
end 
 
[alldata.sens_t2 alldata.spec_t2] = func_calcss(alldata.T2ok,alldata.eok); 
[alldata.sens_q  alldata.spec_q]  = func_calcss(alldata.Qok,alldata.eok); 
[alldata.sens_u  alldata.spec_u]  = func_calcss( ~or(~alldata.T2ok,~alldata.Qok),... 
                                      alldata.eok); 
 
 

B.5  func_pp_v1 

function [sens,spec,T2OK,QOK,eOK]=func_pp_v1(tsqsTest, tsqcl, QTest, rescl, errs, thresh) 
%  
% This function processes the tsqsTest, QTest, and errs results 
% from the SPC study to determine the predictive power of the 
% SPC monitoring technique. 
% 
% Kathleen Malinowski 
% June 14, 2011 
 
    T2OK = (tsqsTest<=tsqcl); 
    QOK  = (QTest<=rescl); 
    eOK  = (errs<=thresh);     
    [sens.T2 spec.T2]       = func_calcss( T2OK,eOK); % sensitivity and specificity T^2 
    [sens.Q spec.Q]         = func_calcss( QOK,eOK);  % sens. and spec Q(X) 
    [sens.UNION spec.UNION] = func_calcss( ~or(~T2OK,~QOK),eOK); % sens and spec T^2UQ(X) 
end 
 
 
     

B.6  func_calcss 

function [sens spec] = func_calcss(varOK,eOK) 
% 
% calculates the sensitivity and specificity 
% from “varOK” by aligning the T^2 and Q(X)  
% pass/fail to the error pass/fail 
% 
% Kate Malinowski 
% February 22, 2010 
 
    TP = length(find(and(~varOK,~eOK))); 
    FP = length(find(and(~varOK, eOK))); 
    TN = length(find(and( varOK, eOK))); 
    FN = length(find(and( varOK,~eOK))); 
    sens = TP/(TP+FN); 
    spec = TN/(TN+FP); 
end 
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APPENDIX C:  Selected Labview Code 

C.1  Main Program for Spectra Tracking During MR Study 

Spectra_trackandrecord_v7.vi 
Based on Labview Standard State Machine  

C.1.1 Front Panel  
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C.1.2  Block Diagram 

C.1.2.1  Full Block Diagram 
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C.1.2.3 States in Case Structure of Block Diagram Main Loop 

 



 

 
   156 

 

C.2  Data Logging Code 

C.2.1  Log File Creation 

Spectra_logdata_init.vi 

C.2.1.1 Front Panel 

 

C.2.1.2 Block diagram 
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C.2.2  Logging During Tracking 

Spectra_one_datapoint.vi 

C.2.2.1 Front Panel 

 

C.2.1.2 Block Diagram 
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C.3  Transformation from Quaternion to Cartesian Coordinates 

Spectra_logdata_init.vi 

C.2.1  Front Panel 

 

C.2.2  Block Diagram 
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