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ABSTRACT 

Head and Neck cancers account for approximately 3.2% of the estimated 

1,660,290 new cancer cases for the year 2013 and roughly 1.9% of cancer-related deaths 

in 2013. In this research, machine learning techniques were employed to predict outcome 

in cancer patients supporting more objective assessment of the treatments, including 

surgery, radiation therapy, or chemotherapy. Selection of features capable of 

distinguishing between the possible outcomes was accomplished by using a highly 

selective cohort of 61 patients with similar treatment and location of the primary 

tumor.  An accuracy of 80.33% (compared to a baseline majority classifier of 60.66%) 

was achieved utilizing this cohort. Further, it is shown that this limited cohort has the 

power to provide valuable information on outcome prediction utilizing as few as four 

features. Feature selection was drawn from both clinical features and quantitative 

imaging features including the site of cancer, primary tumor volume, and race. 
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INTRODUCTION 

Head and Neck cancers account for approximately 3.2% of the estimated 

1,660,290 new cancer cases for the year 2013 and roughly 1.9% of cancer-related deaths 

in 2013. (American Cancer Society, 2013)  Some of the common treatments for head and 

neck cancer include Surgery, Radiation Therapy, Chemotherapy, or a combination of 

these treatments. (National Cancer Institute, 2012) The University of Iowa is one of the 

17 current members of the Quantitative Imaging Network (QIN) (National Institute of 

Health, 2013) with the goal of discovering methods for utilizing image-based 

quantification of response to cancer patient treatments. The practical objective of this 

large-scale effort is improving choices of therapy and treatment for an even broader range 

of cancer types. This thesis focuses specifically on head and neck cancers, including the 

broad categories of nasal cavity and paranasal sinuses, larynx, pharynx, lip and oral 

cavity, salivary gland, and unknown primary head and neck cancers. However, the QIN 

includes many institutions that focus on different types and sites of cancer.  

To date, efforts in using Machine Learning (ML) techniques in the medical field 

have been focused primarily on diagnosis. Early techniques included using 2-D imaging 

to detect features similar to some of the 3-D features that have been extracted by other 

efforts with PET-CT images. (Celebi, Kingravi, Aslandogan, & Stoecker, 2011) Some of 

the more recent efforts have reported using ML to predict survival in cancer patients 

including, but not limited to, a time to event prediction where a time to recurrence or 

death is predicted (Cruz & Wishhart, 2006), or a prediction of survival past a given time 

period (usually years) (Buchner, et al., 2013). The latter can be considered a multi-class 

ML problem, which requires a different set of algorithms and techniques.  

Feature selection is utilized to obtain a set of features that is able to distinguish the 

outcome of the patients. Feature selection also assists in gaining an understanding of the 

relative informativity of factors that are important to outcome prediction. Understanding 
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the factors important to outcome prediction can help clinicians to focus time and energy 

on those factors. Feature selection is also helpful in assisting the evaluation of the 

scalability and effectiveness of ML methods for predicting outcome. Feature selection is 

an integral part of designing a system that is applicable to more than a single problem as 

each different disease, or different site of a cancer can affect predictive power. The 

process of selecting features is not as simple as choosing features that are believed by 

experts to be predictive, though domain knowledge may assist in evaluating the 

effectiveness of the selected features.  

Outcome prediction is one step in attempting to provide a personalized treatment 

plan for each patient. When including treatment data and the PET scan immediately 

following the treatment, an outcome on both the effectiveness of the treatment as well as 

the final outcome in the patient's full cancer treatment may be obtained. When including 

treatment information, classifiers can potentially be used in a clinical decision support 

system. Clinical decision support systems are tools for clinicians to use when attempting 

to treat conditions that may have been seen before in the clinic, or for allowing clinicians 

to see similar patients to a current patient with previously unseen conditions.  

The aim of this study is to discover whether the methods of outcome prediction 

are effective in accurately predicting outcome given only a partial set of the available 

data. The results presented in this thesis are based on a cohort of 147 patients with 

clinical information and images for at least two PET scans; one prior to treatment, and 

one after treatment. The set of patients studied contained 61 patients with cancer 

localized in the pharynx region. An accuracy of 80.33% (compared to a baseline majority 

classifier of 60.66%) was achieved utilizing this reduced cohort of 61 patients. Further, it 

is shown that this limited cohort has the power to provide valuable information on 

outcome prediction with just four to six features. Feature selection includes both clinical 

features and quantitative imaging features including the site of cancer, primary tumor 

volume, and race.  
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BACKGROUND 

Machine Learning 

The methods in this thesis research rely heavily on the use of machine learning 

(ML) techniques. There are two distinct modes for applying an ML approach to a set of 

data -- supervised (Kotsiantis, 2007) and unsupervised learning (Gentleman & Carey, 

2008). Unsupervised learning, or clustering, is a ML technique where the goal is to assign 

labels (or classes) to previously unlabeled data. The unlabeled data is input to an 

algorithm where a data label or class is applied to each of the instances of a dataset. 

Because there is no known true value, unsupervised learning is useful when looking for 

trends in the data, however this final given clustering is not guaranteed to be a globally 

optimal solution, and may instead be just a single locally optimal solution.  

Supervised ML is a technique that begins with labeled data where each datum is 

assigned to a unique class. Usually, the data is split into a training set and a testing set 

where the training set is used to construct rules or mathematical models that can then 

predict the class labels of the subset of data in the test class (with known, but masked 

labels). Supervised ML uses different mathematical models, called kernels, to build the 

classifiers which predict class labels for the members of the test dataset. The concept of a 

single training set and test set only illustrates the basic structure of the process used for 

constructing and validating classifiers. In practice, it is necessary to repeat the process of 

validation by subdividing the data numerous times. This repeated process is referred to as 

K-fold cross-validation. K-fold cross-validation involves partitioning the data into K sets 

where 1 of the sets becomes the test set and the remaining K-1 sets become the training 

set (Kohavi, 1995). When the value of K is equal to the number of instances (n) in the 

complete dataset, this method is called leave-one-out cross validation (LOOCV). Leave-

one-out cross validation has the advantage of using the largest available training set in 
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order to attempt to classify a single test case, which gives the maximum number of 

instances from which to train. (Kotsiantis, 2007)  

One common performance metric used for evaluating ML systems is area under 

the receiver operating characteristic curve (AUC) (Bradley, 1997). AUC provides a 

measure of the discriminatory power of a classifier for a given dataset. An AUC value of 

0.5 means that the classifier performs no better than the flip of a coin. An AUC value 

greater than 0.5 indicates that a classifier has more discriminatory power than random 

guessing, while an AUC value less than 0.5 indicates a less-than random guessing 

performance of the classifier. In order to calculate an AUC value, both correct and 

incorrect guesses need to be made for each built classifier. Because of this property, no 

AUC metrics are available for LOOCV trials as each has either a correct guess or an 

incorrect guess, but not both.  

In any ML problem, the choice of outcome needs to be made. In cancer, there are 

several different commonly used outcome categories or prognoses. (National Cancer 

Institute, 2012)  The categories used in this study are disease-free survival, recurrence-

free survival, and an optimal survival. Disease-free survival is a patient who is currently 

disease-free or has died from non-cancer related causes. Recurrence-free survival is a 

patient who falls into the disease-free survival outcome, but also has not had any 

recurrence of cancer. Optimal survival is designated as a patient who has been 

recurrence-free, and disease-free for more than 2 years. (Buatti, 2013) The two-year time 

point was chosen, since a recurrence event after the 2-year time point is more likely new 

disease and not a recurrence from the same cancer. For the purposes of this study, the 

optimal survival outcome was selected as the primary outcome class. 
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Machine Learning Algorithms 

Many ML algorithms will be used, so background on each will be included to 

give a general understanding of their use. The ML algorithms used are logistic regression, 

radial basis function network, support vector machine, and random forest. 

Logistic regression (Mitchell, 2010) is a ML algorithm that takes a vector of 

discrete (nominal) and continuous variables and gives a probability of the class given the 

vector of variables. Logistic regression is a generalization of linear regression, which is 

used primarily for predicting binary or multi-class dependent variables. Logistic 

regression generates a linear expression for classification, and the output is a probability. 

The choice of the value within the probabilities that classifies one class versus the other is 

calculated by the classifier. Logistic regression can function with data that is considered 

to be either conditionally independent or conditionally dependent. This property allows 

for many diverse datasets to be considered for classification with a logistic regression 

classifier. Even though it's not used in this study, logistic regression may also utilize a 

multi-class outcome variable.  

The radial basis function network (RBF Network) is a subtype of artificial neural 

network that uses a linear combination of radial basis functions for interpolating the 

function which maps the variables or features to the class. (Broomhead & Lowe, 1998) 

Much like logistic regression, the RBF network outputs a numeric variable, which can 

determine a binary output by selecting a threshold value. The RBF network has the ability 

to group data by means other than a linear separator, for instance a cluster of data may be 

signified by a circular separator. 

Support Vector Machines (SVM) (Hearst, Dumais, Osman, Platt, & Scholkopf, 

1998) employ a single hyperplane which attempts to separate the data. The hyperplane 

used to separate data can be calculated by one of many different kernels, a 2nd order 

polynomial allows for separators to be of a non-linear and non-one-to-one scale. Between 

poly-2 kernels and RBF kernels, separation of data can be optimized as driven by the 
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data. Much like logistic regression, support vector machines also work with two or more 

classes for classification. Support vector machines work well in high-dimensional spaces, 

but if the number of features is much more than the number of samples, the performance 

of the classifier may be poor. The output of the support vector machine is not a 

probability like logistic regression was, but a score for each class or in the binary class 

case, a single score.  

Random forest (Breiman, 2001) is a specific type of ensemble ML algorithm. In a 

random forest classifier, N decision tree classifiers are made with the intent that the data 

is run through all of these N classifiers and the final class for an example is based on one 

of a number of mechanisms. A few examples of the determination of the final class are a 

weighted average of the individual decision trees, or a voting majority of the individual 

decision trees. A random forest classifier is able to quickly and effectively process a 

dataset, and they work well with unbalanced or missing data, however random forests 

tend to over-fit the given training data.  

PET Imaging 

Positron Emission Tomography (PET) Imaging was used in conjunction with 

Computed Tomography (CT) imaging for diagnosis and progression of cancer for the 

patients. PET uses on an injected radioisotope, in the case of this study 18C-

fluorodeoxyglucose (FDG). FDG emits a positron that interacts with an electron in the 

body. That electron interaction emits two gamma rays that are detected by the PET 

detectors. The resulting image from a PET scan can be seen in Figure 1, for this patient, 

the tumor is located in the base of tongue. PET imaging is quantified by counting the 

number of coincident gamma ray hits in a specified amount of time (Society of Nuclear 

Medicine and Molecular Imaging). With the addition of CT, the hits that lie along a line 

between the two detectors that measured the coincident hit provide the ability to better 

calculate the location of the event. When run in conjunction with a CT scan, standardized 
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uptake values (SUV) may be calculated based on the gamma ray count, injected dose, and 

patient weight (Thie, 2004). The SUVs are used to calculate the tumor activity, and 

spatial metrics such as tumor volume. A common use of SUV is determining whether or 

not a tumor is benign or malignant. In general, an SUV of 2.5 is the cutoff between 

benign and malignant, but institutions may choose a different cutoff value. In the data 

used in this paper, the determination of benign or malignant was not made in favor of 

simply using the values obtained by the scan.   

 

 

Figure 1: Example of the output of a PET-CT scan 
for one of the patients in the study, 
Arrow points to the location of the 
tumor. 
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METHODS 

In this chapter the data, tools, and principle modes of analysis will be described, 

beginning with the source and repository of clinical data followed by the description of 

the goals and means of determining the predictive power of this data to contribute to 

improved clinical cancer care. A persistent contribution of this work is the establishment 

of a computational pipeline beginning with data extraction from an anonymized local 

research database, followed by feature selection, construction and tuning of a predictive 

classifier, and finally validation, and performance assessment.  

Data Selection: Clinical Feature Pool 

Clinical data was entered by clinicians into an anonymized local research database 

using a web front-end interface. Clinical information about each patient was entered 

directly from the clinical notes. The clinical features available to the classifier can be 

found in Table 1. Features that had categorical values list the possible values, while 

features with quantitative/continuous values give a range of the minimum to maximum 

value observable for the corresponding feature. The features in Table 1 are common to all 

datasets, and have identical values and ranges for all datasets that use these values. 

Features that were PET-specific in the clinical features (specifically PET hottest node 

maximum SUV, and PET maximum SUV) were the values provided by the clinicians 

reading (evaluating) the images at the time of the scan. PET status was indicated for each 

of the provided PET Scans, though only pre-treatment PET scans were used for the 

analyses reported here.   
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Table 1: Available clinical features 

 Feature Range or Possible Values 

Age at Diagnosis (years) 20.36 - 79.54 

Chewing Tobacco Use Yes, No, Former 

Type of Diabetes  No, Insulin-Dependent, Non-Insulin-Dependent 

Differentiation Poor, Moderate, Well, Undifferentiated, In Situ,  

Not Available 

Type of Drinker No, Social, Significant 

Site of Cancer Tonsil, Oropharynx, Base of Tongue, Pyriform Sinus, 

Nasopharynx, Hypopharynx 

Cancer State 2, 3, 4a, 4b 

Node-Stage 0, 1, 2a, 2b, 2c, 3 

Tumor-Stage 2, 3, 4, 4a, 4b 

Gender Male, Female 

Height (cm) 135-200 

Previous Radiation Yes, No 

Prior Malignancies No, Prior Head & Neck, Prior Other 

Race Caucasian, Unknown, Asian, Native American 

Smoker Yes, No, Former 

Weight (kg) 37-174 

Body Mass Index 16.5-49.8 

PET Hottest node SUV Max 0-25.4 

PET Maximum SUV 0-37 

PET Status Abnormal, Normal, Equivocal 

 

Dataset Selection: Quantitative Image Metric Pool 

After clinical data was entered into the database, one of three tracers extracted the 

3D PET-CT scans from the image database to perform tracings of the primary tumor for 

each of the patients in the dataset. Once the primary tumor region of interest (ROI) was 

selected and saved, analysis was performed on the PET scan to generate the quantitative 

indices in Table 2. In the PET modality, measures of uptake of glucose in tumors are 

referred to as standardized uptake values (SUV) and are a measure or count of radioactive 

decay from the radioactive tracers injected into the body normalized by weight. In 

addition to quantitative data from the primary tumor, automated localization and 
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segmentation of the aorta, cerebellum, and liver was performed on each PET scan to 

produce a mean SUV for those areas for normalization of the tumor-specific values.  

Table 2: Table of the quantitative indices and ranges calculated for the primary tumor for 
each of the different tracers. 

Feature 

graduate student 

Range 

medical student 

Range doctor Range 

Background Mean SUV 0.49 - 1.05 0.55-1.32 0.17 - 4.09 

Mean SUV 3.84 - 11.97 3.65-10.67 3.19 - 11.53 

Metabolic Tumor Volume 1946 - 701792 1946 - 711907 10036 - 696520 

Peak SUV 4.10 - 29.18 4.10 - 29.18 4.07 - 29.127 

Maximum SUV 4.19 - 29.44 4.19 - 29.44 4.19 - 29.44 

Volume (mm3) 506.9 - 77070.4 506.9 - 82554.6 2999 - 75811 

 

The final dataset compiled for each of the three tracers includes the clinical 

features and the quantitative indices for the individual tracer. In total, each dataset has 61 

instances and 30 features; 10 quantitative features from each image, 17 clinical features 

from the patient's first visit to the clinic and 3 additional clinical features for each PET 

scan. For the results presented here, only the pre-treatment PET scan was included.  

Feature Selection 

Using Weka, which has already implemented many ML techniques (Hall, et al., 

2009), a logistic regression model was used to perform a sequential forward feature 

selection on each of the entire 61 patient datasets, as illustrated in Figure 1. Logistic 

regression was selected because it is better suited for multi-value nominal features, and 

its flexibility in assuming that features within the set of features can be either independent 

from, or dependent upon each other. (Mitchell, 2010) Experimental validation was 

performed using multiple classifiers, as each of the classifiers yield a different insight to 

the overall predictability of the set of selected features. 
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The flowchart in Figure 2 represents the protocol used for serial selection of best-

performing features in compiling the set for experimental validation with the different 

ML kernels. This method is followed for each tracer's dataset. These datasets for tracers 

include the common clinical features, as well as the quantitative values from the tracings 

performed by the tracer. The features from each dataset were then separated with the 

desired outcome followed by 10 iterations of a 10-fold cross-validation classification by 

logistic regression. Ten iterations were performed to give a After the classifiers were 

built, the accuracy of the classifiers was used to either select the best performing feature, 

add it to the remainder of the features, or terminate the selection of additional features 

once the overall accuracy and performance ceased to improve. 

Feature Set Validation 

Feature sets were iteratively evaluated utilizing five different classifiers. A 

LOOCV analysis was conducted to provide results for comparison. For each dataset, both 

the set of selected features and the set of all available features were processed by the 

Figure 2:  Flowchart of the sequential forward feature selection procedure where 
inputs included demographic, clinical, and quantitative features  

Clinical Data 

from 61 

patients 

Quantitative 

Indices from 

Tracers 

Separation of each 

Individual Feature and 

the outcome for each 

patient 

Classification of 

each feature 

combination 

Selection of the 

best unselected 

feature based on 

Accuracy 

Addition of best 

feature to the previous 

best features 

No Accuracy 

Improvement: 

Feature set complete 
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LOOCV analysis pipeline. Each set of features was processed by the same set of 

classifiers (including the majority classifier). Comparisons between the selected image-

based features and all features were not performed, because each tracer used a different 

protocol to identify the image features. For instance, the graduate student and medical 

student selected regions of interest and a threshold between the background and tumor, 

while the doctor selected center points and had regions automatically filled in. However 

both the set of selected features from the sequential forward feature selection and the set 

of all available features were compared to the majority classifier.  

Power Analysis 

A power analysis was performed to evaluate whether increasing the sample size 

(of patients/cases) or decreasing intersample variance would increase the performance of 

the ML model. With data readily available, a post hoc power analysis was performed on 

all features for each tracer to determine future predictability with possible changes in the 

number of samples or intersample variance. For each of the features, four analyses were 

performed. Two analyses changed only the number of samples, keeping the interclass 

variation unchanged. The equation used for power is below. 

 

zPower= -1.96+
|σyes- σno|

√
stdevyes

nyes
+

stdevno
nno

  (1) 

In the first analysis, the total number of samples was doubled, keeping the 

distribution of outcome unchanged. The second analysis increased the sample size, but 

created equal samples of optimal survival or not. The third analysis changed only the 

intersample variance of the values within the data while keeping the number of samples 

constant. For power analysis, this third change should give the same power value as 

doubling the sample size. The fourth analysis changed both the number of samples and 

interclass variation of the samples. Alternately, it may be that a change (lowering) in 

interclass variation is sufficient, or that a combination of both is needed to obtain higher 
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accuracies in classification. A 95% confidence interval was selected for analysis to 

compute power using a significance of p < 0.05, this is the -1.96 value in the equation 

above. (Thomas, 1997) 

 

Simulated Analysis 

In an effort to get a preliminary result from the power analysis, data was 

simulated in a manner to match the potential change in both number of samples and 

intersample variance. The simulation was taking the data that was already captured and 

used and either copying the data for more instances or changing values of data in a equal 

manor to reduce the deviation for those values. Based on the power analysis performed 

previously, all three tracer's data was combined in a manner to create a dataset that 

provides the closest dataset to the dataset that was modeled by the power analysis. After 

instances in all three datasets with no quantitative imaging indices were removed (three 

from the yes class, two from the no class) a weighted average of all three tracers was 

calculated. The weighting was 4:2:1 for the doctor, medical student, and graduate student 

respectively. This meant that the doctor was weighted twice as much as the medical 

student, who was weighted twice as much as the graduate student based on expertise and 

experience in the head and neck region. After the weighted average dataset was 

calculated, Figure 3, then processed through an operation of reducing the standard 

deviation by dividing the difference between the value for the example and the mean for 

its class by two. This last operation did not change the mean value per class, only the 

interclass standard deviation was modified. After the dataset was built, it was put through 

the same sequential forward feature selection as the original datasets, it was then run 

through the experimental validation. An additional dataset was created by duplicating all 

of the examples effectively doubling the number of examples in the dataset.   
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Figure 3:  Flowchart of the makeup of the simulated dataset, 
which normalizes the data from all 3 tracers' 
datasets 
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RESULTS 

Each of the tracer datasets were processed by an identical pipeline to produce the 

list of the top performing features as outlined in the previous section. Features were 

selected based on their relative performance when combined with previously selected 

features using a 10-run 10-fold cross-validation logistic regression model. If there was a 

tie between two features, the feature with a higher AUC (Area under the ROC Curve) 

was selected. Between the three different datasets when trying to predict the optimal 

survival outcome, commonly selected features included tumor site and whether or not the 

patient had diabetes (and which type they had). Tumor volume was a selected feature for 

both the medical student and the graduate student, but not the doctor. While the accuracy 

during feature selection was important to the process of selecting features, the values 

obtained would be invalid for using as a final measure of the performance for a given set 

of features. Performance in feature selection is invalid for measuring overall performance 

for a given feature set because each iteration of the selection process uses the same data 

subset partitions. Therefore, there is a tendency to over-fit to those specific partitions.  

Feature Selection 

Table 3 provides an overview of the features that were selected, the overall 

accuracy and for which tracer the feature was selected for.  The number indicates the 

order of selected features for the given tracer. The highest accuracy indicates the accuracy 

achieved with all selected features for the tracer. Table 3 also shows which features are 

indicative across all tracers and what order that feature was selected for all tracers.  

Cancer site and diabetes were selected by all 3 tracers where drinker, background SUC 

and tumor mean SUV were selected by only one tracer.   
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Table 3: Features with feature at which the given feature was selected 

Feature graduate student medical student doctor 

Cancer Site 1 1 1 

Race 2  2 

Height 3  3 

Diabetes 4 3 4 

Tumor Volume 5 2  

Weight 7 4  

Drinker  5  

Background SUV  6  

Tumor Mean SUV 6   

Highest Accuracy 80.48%±15.18 81.57%±16.13 78.74%±14.73 

 

Figure 4 shows the percent change in accuracy from the majority class based on 

the number of features selected.  The selected features are listed above in Table 5 with the 

value of the highest accuracy being the last point for each of the tracer's graphs.  The 

doctor and the graduate student match exactly for the first four points as the first four 

features selected by both are the same and have the same order.  The graduate student 

then goes on to select more features, the doctor does not.  Since all three tracers had a 

different number of selected features, the lines stop for each tracer after all selected 

features were completed.  Since all first selected features were the same, the first point 

was the same for all 3 tracers.   
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Feature Set Validation 

In addition to utilizing a 10-run, 10-fold cross-validation for feature selection, a 

leave-one-out cross validation (LOOCV) was performed in order to test the validity of the 

feature selection that was performed using multiple classifiers. While logistic regression 

shows significant improvement with the set of selected features, other classifiers had 

similar significant increases in accuracy with the same sets of features. There were two 

major comparisons to be made for this dataset; the first comparison was with only the 

selected features against the majority classifier, and the second was with no feature 

selection against the majority classifier. With these two comparisons, the effectiveness of 

the feature selection could be tested. Both of these comparisons are presented in Table 4.  

Figure 4: Plot of percent increase in accuracy vs the 
number of features selected for the tracers 
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Table 4: Classifier performance for each tracer 

Classifier/Features graduate student medical student doctor 

Support Vector Machine (LOOCV) 

Majority Classifier 60.66% 60.66% 60.66% 

No Feature Selection 59.02% 59.02% 59.02% 

Selected Features 73.77% * 68.85% * 72.13% * 

Logistic Regression (LOOCV) 

Majority Classifier 60.66% 60.66% 60.66% 

No Feature Selection 42.62% 44.26% 42.62% 

Selected Features 77.05% * 80.33% * 78.69% * 

RBF Network (LOOCV) 

Majority Classifier 60.66% 60.66% 60.66% 

No Feature Selection 64.43% 63.61% 61.64% 

Selected Features 73.11% 70.49% 75.25% * 

Random Forest (25) (LOOCV) 

Majority Classifier 60.66% 60.66% 60.66% 

No Feature Selection 57.38% 61.48% 58.36% 

Selected Features 74.26% 73.44% 72.30% 

NOTE: in table * indicates p<0.05 when compared to Majority Classifier 

 

The data in Table 4 show that the doctor’s annotations, which only had features 

common to all datasets as the selected features, was the only dataset to have significance 

from the majority classifier with the RBF network. The random forest classifier yielded 

no significant increase over the majority classifier.  
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Table 5: List of features selected and the number of occurrences of that feature being 
selected out of the three possible datasets. 

Feature Number of datasets where feature was selected 

Site of Cancer 3 

Diabetes 3 

Race 2 

Height 2 

Tumor Volume 2 

Weight 2 

Drinker 1 

Background SUV 1 

Tumor Mean SUV 1 

Table 5 provides a list of all selected features and the number of datasets in which 

that feature was selected by the feature selection process. Notably, tumor volume which 

is a dataset-specific feature, was selected by more than one dataset. Site of cancer, which 

Figure 5: Breakdown of outcome by site, good outcome (2-years cancer-free with 
no recurrence) in blue, and bad outcome in red. 
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was selected in all three datasets, had many possible values, and can be seen in Figure 5. 

Also seen in Figure 5 is that the four rarest sites have only one outcome class. 

Power Analysis 

A power analysis as described earlier was performed on each tracer's available 

quantitative features. This analysis used a 95% confidence interval, post hoc, using the 

current data from the tracers as the source for mean and standard deviation values. The 

objective of this power analysis was to determine the potential usefulness of enhanced 

data (a larger total dataset size or an improved S/N ratio) in improving classifier 

performance. In Table 6, the steps are shown which were used to produce different values 

of power by artificially changing parameters. When either increasing the number of 

instances and decreasing the intersample variance in the samples, there is an increase in 

power. When both changes occur together, the power increases more than with either 

factor considered alone. Indeed this is a reasonable expectation for features such as tumor 

volume, as it is likely that both effects will occur together.  

Table 6: Power Analysis Example with Tumor Volume 

Change from observed results graduate student medical student doctor 

No Change 45.2% 40.6% 50.2% 

Double Instances / Half Variation 73.9% 68.3% 79.4% 

Normalize Instances 67.2% 61.9% 73.0% 

Half Variation Double Instances 95.7% 93.1% 97.6% 

 

By doubling the number of instances per feature, or doubling the size of the study, 

two of the features achieved a power greater than 80%. These two features were weight 

and body mass index, which are common to all three datasets. Further analyses included 

normalization of the number of samples for each of the possible outcomes. In the 

unbalanced dataset, the majority classifier contains 37 instances while the minority class 
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contains 24 instances. This power analysis normalizes the number of instances for both 

outcome classes to be 47 instances, rather than the 37 or 24 instances for the majority and 

minatory class respectively, while keep the intersample variance constant. 

Table 7: Change in Power for the doctor's features 

Feature 

Empirical 

Power 

Power with ½ intersample variance and 

2x instances 

Weight 70.76% 99.89% 

Height 28.99% 80.30% 

Body Mass Index (BMI) 53.06% 98.27% 

Aorta Mean SUV 4.77% 8.46% 

Cerebellum Mean SUV 3.93% 5.96% 

Liver Mean SUV 7.75% 18.82% 

Peak SUV 4.83% 8.63% 

Maximum SUV 4.57% 7.84% 

Metabolic Tumor Volume 29.99% 81.88% 

Tumor Volume 50.24% 97.57% 

 

Table 7 provides an example of some of the selected features and their power 

values for the doctor's tracings of the images, in the second column is the power of the 

feature at the time of analysis. In the final column is the power of the feature with the 

standard deviation reduced by one-half and the number of instances doubled. The first 

three features (weight, height and BMI) are common to all three datasets, while the last 

four features are specific to each individual tracer. The middle three features, aorta, 

cerebellum and liver mean standardized uptake value (SUV) are Peak SUV, maximum 

SUV, metabolic tumor volume, and tumor volume are all metrics that are indicated by 

clinicians and clinical notes. The medical student, on top of the features common to all 

tracer, had an increase in power for metabolic tumor volume (99.20%), tumor volume 

(99.82%), and mean SUV (87.97%) indicated to provide power to analysis. The graduate 

student had metabolic tumor volume (97.9%), background mean SUV (93.81%), and 
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tumor volume (99.94%) increase to a high power on top of the common features, weight, 

height, and BMI.  

Simulated Analysis 

Table 8 provides the results of the sequential forward selection for the dataset that 

contains the duplicated examples from the dataset that contains the reduced interclass 

standard deviation after weighted averaging. With an overall accuracy of 90.07% from a 

Majority Classifier of 58.94%, this is the largest increase in accuracy of any dataset after 

feature selection. While some of this accuracy can be attributed to simply duplicating the 

examples and the classifiers possibly having a duplicate example.  

Table 8: Feature Selection with duplicate examples and half interclass standard deviation 

Feature Accuracy AUC 

Majority Classifier 58.94% ± 4.10% 0.50 ± 0.00 

Tumor Volume 72.08% ± 10.16% 0.78 ± 0.15 

Cancer Site 82.02% ± 9.74% 0.88 ± 0.10 

Node Stage 84.64% ± 10.32% 0.90 ± 0.09 

Metabolic Tumor Volume 90.07% ± 8.44% 0.95 ± 0.08 

 

Table 9 provides the selected features using the sequential forward feature 

selection using the reduced interclass standard deviation of the dataset with weighted 

averages. This dataset contains no duplicate examples and still provides a higher accuracy 

than any of the individual datasets. The AUC is also about on par with the AUC of the 

medical student, which was the highest performing of the three tracers.  
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Table 9: Feature Selection with half interclass standard deviation and no duplicate 
examples 

Feature Accuracy AUC 

Majority Classifier 58.94% ± 4.10% 0.50 ± 0.00 

Tumor Volume 71.13% ± 16.01% 0.75 ± 0.21 

Cancer Site 81.40% ± 14.85% 0.89 ± 0.15 

Drinker 82.93% ± 15.27% 0.87 ± 0.19 

Tumor Mean SUV 84.13% ± 15.53% 0.86 ± 0.20 

Previous Radiation 84.30% ± 15.43% 0.87 ± 0.20 

 

Table 10 provides the results from validation of the selected features compared to 

all features for both datasets from the simulated analysis data. The dataset containing 

duplications will be guaranteed to have the instance being tested in the training data with 

LOOCV, so the results are skewed for the dataset containing duplicates. For the dataset 

without duplicates, such as Table 3, an observation can be made that the feature selection 

gives a higher performance than the dataset with no feature selection. In the simulated 

datasets, logistic regression still holds the highest accuracy, and only Support Vector 

Machine and logistic regression have significant increases from the majority classifier. 
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Table 10: Classifier performance for the two created simulated datasets 

Classifier/Features Accuracy without Duplicates Accuracy with Duplicates 

Support Vector Machine (LOOCV) 

Majority Classifier 58.93% 58.93% 

No Feature Selection 58.93% 81.96% * 

Selected Features 69.64% * 78.57% * 

Logistic Regression (LOOCV) 

Majority Classifier 58.93% 58.93% 

No Feature Selection 66.07% 100.00% * 

Selected Features 83.93% * 91.07% * 

RBF Network (LOOCV) 

Majority Classifier 58.93% 58.93% 

No Feature Selection 62.32% 99.91% * 

Selected Features 72.86% 98.93% * 

Random Forest (25) (LOOCV) 

Majority Classifier 58.93% 58.93% 

No Feature Selection 61.79% 92.86% * 

Selected Features 69.64% 82.14% * 

NOTE: in table * indicates p<0.05 when compared to Majority Classifier 
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DISCUSSION 

This study suggests that feature selection is an important step that will be helpful 

for this and other datasets in the future. The features selected by the doctor contain no 

dataset-specific quantitative imaging information. While all three tracers used the same 

program to perform the tracings, each tracer used a slightly different protocol when doing 

so. The doctor and graduate student were both able to use clinical notes to guide and 

verify the location of the primary tumor. Both the graduate student and the medical 

student selected the tumor by selecting a point in the tumor and expanding a region to 

cover the entire tumor and then manually choosing the threshold between the background 

and the tumor on the PET scan. The doctor selected points representing the center of the 

tumor. The region of interest was automatically selected by an algorithm that was 

integrated into the software used for selection. All tracers were required to select a 

background region of similar tissue for later normalization. All regions of interest were 

then segmented and indices calculated in the same manner for all three tracers and 

uploaded to the local clinical research database.  

As each tracer used a slightly different protocol to select the primary tumors, the 

comparisons between the different tracers are challenging. The data used in the study was 

a subset of a larger set of data with more cancer sites. In this dataset, the site is limited to 

the pharyngeal region including tonsil, base of tongue, pyriform sinus, nasopharynx and 

hypopharynx. The tumor staging was also limited to stages 2, 3, 4a, and 4b as these sites 

and stages have similar treatment protocols. While the treatment and post-treatment 

information was not used for predicting an outcome, the selectivity of the data used 

assisted in limiting some of the variables that were not used for prediction. This 

selectivity of the data also results in a bias in data, as there are no examples of patients 

with a stage lower than 2, nor is there an instance of cancer site in a region other than the 

pharynx. Looking at Table 2, a distinction between the minimum and maximum of the 
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data corresponding to the 3 different methods can be made. This is most notably seen in 

the volume calculations, metabolic tumor volume and tumor volume, where the doctor's 

minimum values are an order of magnitude greater than the volume values of either the 

graduate student or medical student.  

The results of the feature selection show the potential promise of imaging features 

that may be helpful in predicting outcome based on clinical and quantitative imaging 

data. For two of the datasets selected, the volume of the tumor was shown to be a 

predictive feature, which is indicative of the tumor size being a predictive feature of the 

outcome for patients with head and neck cancer. Other selected imaging features (from 

Table 5) include the background mean standardized uptake value (SUV), and the primary 

tumor mean SUV. The background SUV has the potential to be a term for which all mean 

SUVs are normalized against along with the aorta, cerebellum and liver mean SUVs that 

were automatically located, segmented and analyzed by C. Bauer et al. (Bauer, et al., 

2012). While many features selected may appear to be obvious, some features, such as 

weight, height, diabetes, and drinker may appear counter-intuitive to experienced 

oncologists. As with the site of cancer, seen in Figure 5, many of the listed features have 

a tendency to have values with a small number of examples – each with the same 

outcome. Indeed, they look similar to Hypopharynx as seen in Figure 5, where it is the 

minority class and it can add a small number of properly classified cases. The quality of 

the completed tracings may be a factor affecting the accuracy of the findings, since the 

graduate student and medical student do not have as much domain knowledge as the 

radiation oncologist (doctor) and the radiation oncologist did not perform the full tracing 

procedure. The major question with the graduate student and medical student are whether 

the imaging indices are appropriately labeled. No validation of tracing location has been 

performed, and for this reason no cross-dataset comparisons were made. 

The experimental validation adds credence to using the SVM classifier with the 

logistic regression feature selection. However, the random forest classifier had no 
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significant improvement over a simple majority classifier. With the selected features, 

performance was similar to the performance on the RBF network, as seen in Table 4, for 

the graduate student and medical student. Logistic regression experimental validation 

showed significant accuracy improvements over the majority classifier when using a set 

of selected features. Of the four algorithms evaluated, two (SVM and logistic regression) 

demonstrated significant improvements after performing feature selection.  

One of the pitfalls of working with clinical data is the potential for inconsistent 

data quality. Much time has been spent in attempting to validate the data that was 

manually entered into the local research database. With a pre-existing model for the 

determination of cancer prognosis with the staging system (when stage was not present in 

the list of selected features) questions as to the validity of the feature selection process 

arose. There was a data bias intrinsic to the dataset, where outcome segregation of cancer 

stages was found to be similar to the outcome segregation of tonsil and base of tongue in 

Figure 5. While this bias does not reflect what is seen throughout the whole clinic, it 

represents the population of subjects that would be analyzed in this manner to obtain 

quantitative imaging indices. In the study, there is a bias towards patients that have higher 

stage cancers, as lower stage cancers are generally not imaged. The dataset also contained 

less instances of patients who had more severe cancers, as the instances with the higher 

cancer severity rarely had post-treatment PET scans. As a result, the instances that were 

included in the dataset had a better outcome percentage than was clinically observed 

because they had a post-treatment PET scan. 

The power analysis provides some insight into the future direction of the 

predictability of the dataset with more data, and with data that is more coherent and 

consistent. With the already reduced set of patients from the original sample of patients, it 

is likely that more patients will be added later. Many features that were analyzed for 

power had a large increase in power by doubling the number of instances for both classes 

or by halving the interclass variance. The features common to all three tracers (weight, 
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height, and BMI), either double in power or obtain a power value close to 100%. For the 

common features, doubling the number of instances provided a doubling effect for the 

power. With a decrease in inter-sample variance, there was more power observed in the 

quantitative imaging features and even more power with an increase in the number of 

instances along with the decrease in inter-sample variance. The feature selection and 

power analysis showed that tumor volume was both important in predicting the optimal 

outcome in the study, and a very powerful feature for separating the two classes. Weight 

was another feature that was selected during feature selection and very powerful as 

indicated by the power analysis and was the most powerful of all of the features before 

modification of instance number or interclass variance with a power of 70.76%. For the 

doctor, the least powerful quantitative imaging feature was the tumor mean SUV, though 

the power doubled with changes in the number of instances and interclass variance. All 

features showed an increase in power when increasing the number of samples, which 

indicated that more samples would assist in increasing the future significance of the 

features. With a higher significance in the features based on power, the predictability of 

outcome with classifiers will likely be increased as the classifiers will be able to 

advantage of the increased separation of the outcome classes.  

The simulated data analysis provided some validation to the power analysis. 

While the dataset that contained duplicate instances which were a leak of the final 

outcome, especially with LOOCV, the reduction in interclass standard deviation was 

sufficient to increase the accuracy beyond values obtained by the individual tracers. 

Similar features were selected in the simulated dataset to what was selected in the 

individual tracer's dataset. Tumor volume and cancer site were both selected in both the 

simulated dataset and in most of the tracer's individual datasets. The changes made in the 

simulated datasets only affected the quantitative imaging features specific to the tracers, 

which accounts for only 6 of the 29 total features. Though the changes only affected 6 of 

the features, some of the unaffected features continued to provide an increase in accuracy 
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that was more than had previously been achieved in the individual tracer's datasets. The 

accuracy of the dataset containing duplicates was indicative of the possibilities of the 

classifier with the sequential forward selection results presented in Table 8, while the 

dataset containing no duplicates was indicative of what some increased attention to the 

data, most specifically the image tracings, could do to assist in current outcome 

prediction. 
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