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Correctly forecasting groundwater level fluctuations can assist water resource 

managers and engineers in efficient allocation of the regional water needs. Modeling 

such systems based on satellite remotely sensed data may be a viable option to predict 

water table fluctuations. Two types of water table prediction models based on 

Artificial Neural Network (ANN) technology were developed to simulate the water 

table fluctuations at two well sites in Maryland. One was based on the relationship 

between the variations of brightness temperature and water table depth. The other one 

was based on the relationship between the changes of soil moisture and water table 

depth. Water table depths recorded at these two wells, brightness temperature 

retrieved from the Advanced Microwave Scanning Radiometer, and soil moisture 

data produced by the Land Data Assimilation System were used to train and validate 

the models. Three models were constructed and they all performed well in predicting 

water table fluctuations. The root mean square errors of the water table depth 



  

forecasts for 12 months were between 0.043m and 0.047m for these three models. 

The results of sensitivity test showed that the models were more sensitive to the 

uncertainty in water table depth than to that in brightness temperature or in soil 

moisture content. This suggests that for situations where high resolution remotely 

sensed data is not available, an ANN water table prediction model still can be built if 

the trend of the time series of the data, such as brightness temperature or soil moisture, 

over the study site correlates well with the trend of the time series of the ground 

measurement at the study site. An extension of the study to a regional scale was also 

performed at 12 available well sites in Piedmont Plateau, Maryland. Hydrologic soil 

types, LDAS soil moistures, and water table depths at these locations were used in the 

ANN modeling. The root mean square error of one month long water table depth 

forecast was 0.142m. However, the accuracy of the monthly forecast decreases with 

the increase of time. A further study to improve the accuracy of long-term water table 

fluctuation forecast is recommended. 
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Chapter 1:   Introduction 

 

Groundwater contributes greatly to the amount of fresh water in the world. In many 

areas, groundwater is considered a major water source for both drinking and irrigation 

purposes. According to the UNDP (United Nations Development Programme) report, 

about 2 billion people, approximately one-third of the world's population, depend on 

groundwater supplies (UNDP et al., 2000). The United States uses more than 83.3 

billion gallons of fresh groundwater each day for private and public water supplies, 

irrigation, livestock, manufacturing, mining, and other purposes (Hutson et al., 2004). 

In Maryland, the dependence on groundwater as a major fresh water resource is 

significant. Almost one-third of the state’s 5.1 million citizens obtain their drinking 

water from underground sources (GWPC, 1999). In 1995, 0.931 × 10 6 m 3 /d (246 

Mgal/d) of freshwater was withdrawn from groundwater sources in Maryland (Wheeler, 

1995). Approximately 20% of statewide withdrawals were for agricultural uses 

(GWPC, 1999). The importance of groundwater for Marylanders’ daily water needs is 

tremendous. However, the potential capability of groundwater for carrying and 

transporting polluted substances has raised serious concerns for the public. 

Groundwater quality has become an important issue for Maryland. High levels of 

nitrate and pesticides are discovered frequently in groundwater (Ator and Ferrari, 

1997), and this causes serious problems for our environment and human health (Thorpe 

and Shirmohammadi, 2005). Groundwater storage and movement are mainly 

determined by relative water table variations at neighboring locations. Water table 

fluctuation also affects optimal crop production. Therefore, quick and accurate water 
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table prediction in areas under consideration can benefit water resource planners in 

developing better water resource planning, environmental engineers in designing better 

pollution control system, and farmers in developing earlier drainage and irrigation 

scheduling.  

 

Physical models (Upadhyaya and Chauhan, 2001; and Song et al., 2007), water balance 

models (McCarthy and Skaggs, 1991; and Roulet 1991), and statistical regression 

models (Yakowitz, 1976; and Joginder et al, 1981) have been developed in the past to 

simulate water table variation in different areas. However, all of these models need 

extensive observations to perform the modeling. The physically based model also 

requires an explicit relationship between the input and output parameters. The presence 

of errors or uncertainties in the observations will result in errors or deviations in model 

output (Shirmohammadi et al., 2006). In addition to mathematical modeling, Artificial 

Neural Network (ANN) modeling provides another approach to predict water table 

fluctuation. ANN technology was developed around 65 years ago (McCulloch and Pitts, 

1943). Since then, it has been widely used on pattern/speech recognition and 

image/signal processing in a variety of fields (Widrow and Lehr, 1992). The application 

of ANN in hydrology started in the early 1990s (ASCE, 2000). In the late nineties, 

ANN modeling began to be used in the simulation of water table fluctuations at 

different locations (Yang et al, 1997; Yang et al, 2000; Coulibaly et al. 2001; and 

Affandi et al., 2007). These studies indicate that ANN modeling is a convenient tool for 

predicting water table fluctuation, especially in areas where the aquifer system 

information is not available or where the available records are relatively short.  
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The purpose of this study was to develop a quick, easy, and convenient water table 

prediction model, that is based on ANN technology and uses remotely sensed satellite 

data as input to allow farmers, environmental engineers, and water resource planners to 

detect possible water table variations in a timely manner and to manage groundwater 

related issues more efficiently. Two experiments were conducted in this study. The first 

one was to build an ANN water table prediction model at a single well site. In this 

experiment, ANN models were developed to simulate the water table fluctuations at 

two locations in Maryland. Besides the water table records from water table wells at 

these two places, surface brightness temperature retrieved from the Advanced 

Microwave Scanning Radiometer – Earth Observing System (AMSR-E) satellite and 

soil moisture data produced by the Land Data Assimilation System (LDAS) over these 

two locations were used to train and validate the ANN models. The second experiment 

was to extend the ANN water table prediction model to a regional scale. An ANN 

model was developed to simulate the water table fluctuations at multiple locations in 

Piedmont Plateau of Maryland. In addition to water table records and LDAS soil 

moisture data over the selected well sites, the soil data obtained from Natural Resources 

Conservation Service were employed to train and validate the model. Forecast results of 

these two experiments were compared with the observations to evaluate the accuracy of 

their predictions. Statistical analysis was performed on the predictions to investigate the 

model’s performance. In order to perform the water table fluctuation forecast, a method 

to produce future soil moisture and brightness temperature at a well site by using the 

forecast data of climate model is also suggested. 
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Chapter 2:   Background 
 

 

2.1 Literature Review 

 
According to the report published in 2002 by the United Nations Environment 

Programme, about one-third of the world's population lives in countries suffering from 

moderate-to-high water stress and more than half the people in the world could be 

living in severely water-stressed areas by 2032 (UNEP GEO Team, 2002). Water 

shortage has become an urgent issue for the mankind. The total water on the earth is 

about 1,386,000,000 km 3 , of which 35,029,000 km 3  is fresh water. Approximately 

68.7% of the fresh water is locked up in glaciers and icecaps. The total fresh 

groundwater on the Earth is around 10,530,000 km 3  which makes up 30.1% of total 

fresh water (USGS, 2008). Thus, groundwater is a vital water resource on the Earth. It 

plays an important role in the hydrological cycle and has great impact on the natural 

environment. According to a 1998 USGS report (Solley et al., 1998), about 22% of all 

the water used in the United States in 1995 came from groundwater sources. Also, 38% 

of water used for public supplies and 63% of water used for rural domestic and 

livestock depend on groundwater as the major source of water in the United States.  In 

addition, 37% of agricultural water is also supplied by groundwater.  Groundwater 

storage is a major source for both drinking and irrigation. However, the potential water-

quality problems associated with the increasing use of agricultural chemicals in 

groundwater is a serious concern of the public. The capability of groundwater to carry 

and transport polluted substances becomes a major threat to our environment. 

Groundwater storage and movement are primarily affected by the water table changes 
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that have profound effects on agricultural productivity and profitability.  The quantity 

of soil moisture and soil air in the root zone greatly depends on the depth of the water 

table. Ramirez and Finnerty (1996) showed that the inter-annual changes in water table 

elevations had a larger impact on root-zone soil moisture than potential precipitation 

change scenarios. The capillary rise from the water table could substitute directly for 

irrigation water use requirement. 

 

The loss of nitrate from agricultural land into groundwater is one of the major pollution 

problems facing agriculture today. Sarwar and Kanwar (1996) indicated that nitrate 

concentration in the soil water is affected by water table depth.  The nitrate transported 

with infiltrating water to zones conducive to denitrification is enhanced when the water 

table is elevated (Gambrell et al., 1975; Skaggs and Nassehzadeh-Tabrizi, 1982; and 

Kliewer and Gilliam, 1995). Brunet et al. (2008) indicated that the variation of the 

water table modulated the concentrations of both ammonium ion and nitrate: low 

groundwater levels allowed aerobic oxidation but increased water levels reduced the 

production of nitrate. Hefting et al. (2004) pointed out that water table elevation turned 

out to be the prime determinant of the N dynamics and its end product. The water table 

fluctuation controls the movement of groundwater in the soil, which in turn affects the 

transport of pollutants underground. Groundwater fluctuation also affects oxidation-

reduction processes in soils. When the groundwater level rises, air is driven out of the 

soil profile and naturally-occurring salts and other elements are brought to the upper 

zones in the soil profile. This process will affect the characteristics of surface soils 

(Nash et al., 1994), can bring high concentration of salinity and elements closer to the 
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surface, and reduce the available productive region in the soil profile (Schoneman et al., 

1992).  Gundogdu and Aslan (2007) pointed out in an irrigation system management 

study in northwestern Turkey that salinization could become a major hindrance to 

irrigation sustainability if the water table depth continued to decrease in that area. 

Wesseling (1974) reported that reduced oxygen supply to the roots resulting from 

shallow water table depths might hinder crop growth. Therefore, an understanding of 

local water table variation will provide farmers better knowledge to adequately 

maintain water and oxygen in the root zone for favorable crop growth. 

   

Many studies have been performed to examine the effect of water table fluctuation on 

crop yield, water quality, and pollutant transport under different soil, hydrologic, and 

climatic conditions. (Kanwar, 1990; Thomas et al., 1992; Bengtson et al., 1993; Belcher 

and Merva, 1991; Fausey, 1991; Kalita and Kanwar, 1993; and Liaghat and Prasher, 

1996).  Stanley and Clark (1995) studied the influence of reduced water table and 

fertilizer levels on subirrigated tomato production. Guix-Hebrard et al. (2007) studied 

the influence of the spatial variation of water table fluctuations on vine water status. 

Munster et al. (1996) worked on the effect of water table management on the fate of the 

pesticide aldicarb.  Controlled drainage and subirrigation used in the North Carolina 

coastal plains showed a higher yield and lower nutrient loss (Chescheir et al., 1995). 

The quantity of soil moisture and soil air in the root zone greatly depends on the depth 

of the water table and will affect plant growth. These investigations demonstrated that 

the water table needs to be maintained at a suitable level to provide enough water for 

optimal crop production while simultaneously minimizing water quality impacts.  
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Therefore, rapid capability to simulate the fluctuation of the water table is necessary for 

scheduling efficient drainage and irrigation regimes. 

 

Fluctuation of water table depth also has profound impacts on hydrological, 

agricultural, and environmental related issues.  Several different types of numerical 

models, governed by the Boussinesq equation, have been developed to simulate the 

water table variation at different climatic and hydrologic conditions (Lagace et al., 

1982; Singh et al., 1991; Rai and Singh 1992; Teloglou and Zissis, 1997; Rai and 

Manglik, 1999; Manglik and Rai, 2000; Upadhyaya and Chauhan, 2001; and Song et 

al., 2007). Five numerical methodologies have been applied in groundwater modeling: 

finite differences, finite elements, integrated finite differences, the boundary integral 

equation method, and analytic elements (Anderson and Woessner, 1992).  Among 

them, finite difference and finite element methods are more commonly used. However, 

the physically based models require an explicit understanding of the complicated 

input/output relationships and a great amount of meteorological, hydrological, and 

geological data of the study area as inputs (Yang et al., 1996; and Coulibaly, 2001). In 

addition to physically based models, water balance models (Skaggs, 1980, 1982; Hanks 

and Hill, 1980; McCarthy and Skaggs, 1991; and Roulet 1991) and statistical regression 

models (Yakowitz, 1976; and Joginder et al, 1981) have also been applied to predict 

water table fluctuations. However, they both need a large number of observations to 

fulfill the required calculations. In most field applications, the errors in model output to 

some extent are caused by the presence of errors or uncertainties in the input parameter 
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values (Shirmohammadi et al., 2006). Therefore, one has to be cautious about the 

simulation output.  

 

Relative to mathematical modeling, Artificial Neural Network modeling provides an 

alternative method of forecasting the water table variations. The ANN modeling 

technology was first developed by McCulloch and Pitts (McCulloch and Pitts, 1943). 

Since its invention, it has been widely applied in solving problems in a variety of fields 

(Widrow and Lehr, 1992; Fausett, 1994; Haykin, 1999; Lingireddy and Brion, 2005; 

and Rabunal and Dorrado, 2006). The technique of ANN is to mathematically model 

neurons and their connections to simulate the work of the human brain to get a model to 

a level that is able to capture and represent complex input/output relationships. It has 

the ability to learn both linear and non-linear relationships directly from the data being 

modeled. ANN has the advantage of simplicity, flexibility, and accuracy. It does not 

need a thorough understanding of the relationship between the input and output 

parameters and requires only a small amount of data (ASCE, 2000). ANN modeling 

began to be applied to solving hydrological problems in the early nineties (ASCE, 

2000) and has been successfully used in rainfall-runoff modeling (Hsu et al., 1995; 

Sajikumar and Thandavesware, 1999; Gautam, 2000; Rajukar et al., 2002; Jain and 

Sriniyasulu, 2004; Rajukar et al., 2004; Jeong and Kim, 2005; Antar et al. 2006; and Ju 

et al., 2007) and stream flow forecasting (Karunanithi et al., 1994; Ranjan and 

Srinivasan, 1997; Zealand et al., 1999; Dibike and Solomatine, 2001; Kim and Barros, 

2001; Wu et al., 2005; and Srivastava et al., 2006).  
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Shukla et al (1996) investigated the use of ANN as an alternative method to obtain 

solutions to the Boussinesq equation. The study showed that the simulation can be 

performed more rapidly with the application of ANN. It indicates the advantage of 

using ANN as a tool in real-time drainage control. Yang et al. (1996) used simulated 

water table data from DRAINMOD (Skaggs, 1980) to train an ANN model. Their 

results showed that the ANN model could make water table predictions similar to that 

of DRAINMOD. ANN models were also developed to simulate the fluctuations in 

midspan water table depths in agricultural fields in Ottawa, Ontario (Yang et al, 1997) 

and in Woodslee, Ontario (Yang et al, 2000). Daily rainfall and potential 

evapotranspiration were used as inputs in the Ottawa study, whereas rainfall, potential 

evapotranspiration, and irrigation were used as inputs for the Woodslee study. These 

studies indicated that ANN modeling could provide accurate results and require little 

time for training and execution. Coppola Jr. et al. (2004) demonstrated that ANNs 

could provide both excellent prediction capability and valuable sensitivity analyses. 

This could be used to make more appropriate groundwater management strategies. 

Affandi et al. (2007) used ANN to estimate the groundwater level fluctuation in Jakarta, 

Indonesia. Their work showed that an ANN could be used to estimate groundwater 

level fluctuation with relatively few data samples. Coulibaly et al. (2001) also showed 

that the ANN models were effective at predicting monthly groundwater level 

fluctuations in the Gondo aquifer located in the Sahel region. Their study indicated that 

ANN model provided a reliable tool for water table fluctuation modeling in areas where 

aquifer system information or the available records are relatively sparse. These studies 

point out that ANN modeling is an acceptable tool for performing the water table 
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fluctuation predictions, especially in areas where the observations are difficult to obtain 

or where the real-time simulation is needed. However, reliability on ANN simulations 

and their use heavily depends on the type and accuracy of input data in any region. 

With the advances in satellite technology, spatial and temporal data on the landscape 

are becoming more prevalent. Therefore, using remotely collected data such as 

brightness temperature, soil moisture, land use, and other physiographic features may 

be advantageous.  
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2.2 Artificial Neural Network 

 

The Artificial neural network (ANN) is a system that mimics the function of the human 

brain and simulates its learning process. It performs computer-based simulations of a 

living nervous system and works quite differently from conventional computing. The 

human brain consists of about 10 billion neurons (Shepherd and Koch, 1990) that 

process incoming information and provide us with the ability to apply previous 

experiences to our every action. All natural neurons have four basic components, which 

are dendrites, soma, axon, and synapses (Figure 1). Each neuron is linked to a large 

number of its neighboring neurons with varying coefficients of connectivity that 

represent the strengths of these connections through synapses.  The power  of  the  brain  

comes  from  the  number  of  these  basic  components  and  the  multiple  connections 

 

 

                             Figure 1.  Schematic diagram of a biological neuron. 
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between them. Moreover, learning is a result of the modification of the strength of 

synaptic junctions between neurons (Freeman and Skapura, 1991). Basically, a 

biological neuron receives inputs from other sources, combines them in some way, 

performs a generally nonlinear operation on the result, and then outputs the final result. 

Incoming information that reaches the neuron’s dendrites is added up and then 

delivered along the neuron’s axon to the dendrites at its end, where the information is 

passed to other neurons if the stimulation has exceeded a certain threshold.  If the 

incoming stimulation is too low, the information will not be transported any further 

(Nelson and Illingworth, 1991). 

 

The idea of the ANN technique is to mathematically model the neurons and their 

connections to mimic the work of the human brain to get a model that is good at giving 

similar outputs from similar inputs.  An ANN is an information-processing system that 

has certain performance characteristics in common with biological neural networks 

(Fausett, 1994). It has a natural inclination for storing experiential knowledge and 

making it available for use.  The ANN resembles the brain in two respects:  (1) 

knowledge is acquired by the network through a learning process and (2) inter-neuron 

connection strengths known as synaptic weights are used to store the knowledge 

(Haykin, 1999). 

 

The main contribution of ANNs is that they allow very low level programming to solve 

complex problems, especially those that are non-analytical, and/or nonlinear, and/or 

nonstationary, and/or stochastic (Graupe, 1997). ANNs provide an analytical alternative 
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to conventional techniques that are limited by strict assumptions such as normality, 

linearity, and variable independence. Because ANNs can capture many kinds of 

relationships among participating parameters, it allows the user to model phenomena 

quickly and relatively easily which may have been very difficult or impossible to 

explore. Among the many interesting properties of an ANN, the property that is of 

primary significance is the ability of the network to learn from its environment and to 

improve its performance through learning. 

 

The basic unit of ANN, the artificial neuron, simulates the four basic functions of 

natural neurons: input, summation, transfer, and output. However, an artificial neuron is 

much simpler than the biological neuron.  Similar to a biological neuron, each input 

(Xi) to the artificial neuron is multiplied by a connection weight (Wi). All the inputs are 

summed together and fed through an activation function to generate a result. The result 

is then output to other artificial neurons if it is greater than the transmission threshold 

(Figure 2).  

 

                  Figure 2.  Schematic diagram of an artificial neuron. 
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The activation function is usually a nonlinear, bounded, and piece-wise differentiable 

function (Gallant, 1993). The most commonly used one is the sigmoid function which 

is represented by the mathematical relationship 1 / ( 1 + e x−  ). The sigmoid function 

acts as a gate for a node’s output response. The Gaussian function, which is defined as 

e
2x− , acts like a probabilistic output controller. The output response of both sigmoid 

and Gaussian functions is between 0 and 1.  The hyperbolic tangent function, ( 1 - e x2−  

) / ( 1 + e x2−  ), is used when the desired range of output value is between –1 and 1.  It is 

similar to the sigmoid function but can exhibit different learning dynamics during 

training.  

 

An ANN usually has several layers. The first and last layers are the input and output 

layers, respectively.  The rest of layers are the hidden layers.  Each layer consists of a 

different number of nodes (artificial neurons).  Generally, a neural network is 

characterized by its architecture that represents the pattern of the connection between 

nodes, its method of determining the connection weights, and the activation function 

(Fausett, 1994). Figure 3 is a schematic diagram of a three-layer ANN, which has an 

input layer, a hidden layer, and an output layer. The connections among neurons in an 

ANN have profound impact on its operation. A feedforward network can pass the 

outputs only to the next layer. A feedback network allows outputs to be input to 

preceding layers.  A feedlateral connection would send some outputs to inputs of other 

nodes in the same layer.  Recurrent networks are those with closed loops (Nelson and 

Illingworth, 1991). 
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                             Figure 3.  Schematic diagram of a three-layer ANN. 

 

 

An important part of the ANN is its ability to learn.  Learning is the process by which a 

neural system acquires ability to carry out certain task by adjusting its internal 

parameters according to some learning scheme (Karayiannis and Venetsanopoulos, 

1993). A neural network learns about its environment through an iterative process of 

adjustments applied to the strength of synaptic junctions between neurons. Learning 

can be either supervised or unsupervised.  Supervised learning requires the pairing of 

each input vector with a target vector representing the expected output.  Once an input 

    Input   

Input Layer 

Hidden Layer 

Output Layer 

 

Weight 

Matrix 1 

Weight 

Matrix 2 

Output 



 

 16 

 

is applied, the difference or error between the output of the network and the target value 

is calculated and fed back through the network.  The connection weights are changed 

according to an algorithm that tends to minimize the error. The network parameters are 

adjusted under the combined influence of the training vector and the error signal.  This 

procedure continues until the error for the entire training set meets the criterion.  

Unsupervised learning is performed in a self-organized manner.  The training set 

consists solely of input vectors.  The training algorithm modifies network weights to 

produce the same pattern of outputs for similar inputs.  This type of training occurs 

without outside instruction. 

 

Basically, learning rules dictate the efficiency of neural network training.  Many 

learning rules have been developed since the invention of the ANN.  Most of them are a 

variation of the Hebb’s rule, which is the best-known and oldest learning rule (Nelson 

and Illingworth, 1991).  The following are several learning rules commonly used: error-

correction learning, Hebbian learning, competitive learning, Boltzmann learning, and 

back-propagation learning.  Error-correction learning is used to train the network to 

obtain the optimized connection weights by minimizing the error between the actual 

output of a neuron in the network and the target response for that neuron.  Hebbian 

learning was introduced by Donald Hebb (Hebb, 1949).  When a neuron receives an 

input from another neuron, the weight between the neurons should be strengthened if 

the neurons on either side of the connection are highly active.  If these two neurons are 

activated asynchronously, then the weight is weakened.  In competitive learning the 

output neurons of a neural network compete among themselves for being the one to be 
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active.  The neuron with the largest output is declared the winner.  Only the winning 

neuron is active at any one time.  Boltzmann learning is a stochastic learning algorithm.  

In a Boltzmann machine, the neurons constitute a recurrent structure, and they operate 

in a binary manner.  A distinctive feature of Boltzmann learning is that it uses only 

locally available observations under two operating conditions: clamped and free-

running.  

 

Back-propagation learning (Werbos, 1974; Parker, 1985; and Rumelhart et al., 1986) is 

now the most widely used tool in the field of ANN (Werbos, 1990; Gallant, 1993). It is 

an effective systematic method for training multilayer ANNs (Wasserman, 1989). The 

mathematical basis for the back-propagation algorithm is the optimization technique 

known as gradient descent (Rumelhart et al., 1986). The training is to minimize the 

total squared error of the output computed by the network. The training of a network by 

the back-propagation method involves three stages: the feedforward of the input 

training pattern, the calculation and back-propagation of the associated error, and the 

adjustment of the weights (Fausett, 1994). The learning progresses by alternately 

propagating forward the activation and propagating backward the errors. Due to its 

competency in ANN applications, a multilayer feedforward backpropagation ANN will 

be developed and applied in this study. 
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2.3 Groundwater in Maryland 

 

Maryland is located on the East Coast of the United States in the Mid-Atlantic region. It 

is between 75.07W and 79.55W longitude, 37.88N and 39.72N latitude. Maryland is 

approximately 402 km (250 miles) long and 145 km (90 miles) wide. It has 25,573.5 

km 2  (9,874 square miles) of land, 1,820.8 km 2  (703 square miles) of rivers and 

streams, and 4,470.3 km 2  (1,726 square miles) of Chesapeake Bay (Walker, 1970). 

Based on the observations from 1971 to 2000, Maryland has an average annual rainfall 

of 103.53 cm (40.76 inches), with July and August normally being the months with the 

highest rainfall. The average annual snowfall is 52.32 cm (20.6 inches), and the average 

annual temperature is 12.83 o C (55.1 o F), with high and low temperatures normally 

occur in July and January, respectively (Maryland at a Glance, 2008). 

 

Maryland has three distinct physiographic provinces. From west to east across the state, 

they are the Appalachian (Appalachian Plateau, Valley and Ridges, and Blue Ridge), 

Piedmont, and Coastal Plain. In the Appalachian Plateau, aquifer material is composed 

of fractured sedimentary rocks. The aquifers in Valley Ridges and Blue Ridge consist 

of fractured metamorphic, igneous, and sedimentary rocks. In the Piedmont region, an 

unconsolidated material, known as regolith, is on top of metamorphic and igneous 

rocks. The water-table aquifer is in the regolith and extends to the underlying bedrock. 

The aquifer in the Coastal Plain is a southeastwardly thickening sequence of sediments 

that consists of sand and gravel inter-layered with silt and clay confining units (USGS, 

2000). In central and western Maryland, because most areas are underlain by crystalline 
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and consolidated layers of rocks, they do not yield large amounts of water to wells. In 

the eastern and southern regions of Maryland, the formation formed mainly by 

unconsolidated deposits consists mostly of sand and gravel; therefore, it is capable of 

providing large quantities of groundwater to the users. The area east of the Chesapeake 

Bay depends almost entirely on groundwater for freshwater supply (Wheeler, 1995).  

 

Groundwater is an important source of fresh water in Maryland. In 1995, 

0.931×10 6 m 3 /d (246 Mgal/d) of freshwater was withdrawn from groundwater sources 

in Maryland. Among them, Anne Arundel County (Coastal Plain Province) had the 

largest groundwater withdrawals, 0.182 × 10 6 m 3 /d (48 Mgal/d). Roughly, about 

875,000 Marylanders (17 percent of the State’s population) withdrew an estimated 

0.276×10 6 m 3 /d (73 Mgal/d) of water from individual house wells for water supply in 

1995 (Wheeler, 1995). In highly developed Montgomery County (Piedmont Province), 

approximately 80,000 residents still rely on groundwater as their source of drinking 

water (Groundwater Indicators, 2001). Moreover, groundwater also plays an important 

role in agricultural, industrial, and commercial water usages. For example, during 1995, 

about 0.216×10 6 m 3 /d (57 Mgal/d) of freshwater was used for irrigating farm crops, 

golf courses, and nursery stock. Of this amount, 0.136×10 6 m 3 /d (36 Mgal/d), about 

63%, was from groundwater sources (Wheeler, 1995). Data in figure 4 present a 

comparison of the percentages of water supply from groundwater sources in 2000 for 

various water sectors in the United States and in Maryland (Hutson et al., 2004). In 

most sectors, the percentages of the groundwater usages in Maryland are higher than 
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that in the United States. This indicates the important contribution of groundwater to 

the fresh water required in Maryland. 
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Figure 4.  Percentage of water supply from groundwater sources for various water   

                 sectors in the United States and Maryland in 2000 (Courtesy Hanna, 2006). 

 

 

Furthermore, pollutants carried by groundwater are considered as serious 

environmental problems in Maryland. Agricultural and urban land-use practices are 

possible sources of nitrate and pesticides to groundwater. High concentrations of nitrate 
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were found in groundwater in most parts of the surficial aquifer, and even in the deep 

part of the aquifer used for water supply. Pesticides used on common crops were found 

at trace concentrations in very shallow groundwater (USGS, 1999). According to the 

Maryland Department of Agriculture report (2001), the total area of farmland in 

Maryland in 2000 was 849,840 ha (2,100,000 acres), making up about 1/3 of the 

Maryland’s land area. Therefore, agriculture is the largest single land use in Maryland. 

Since applied fertilizer and manure are normally potential sources of nitrate that can 

contaminate groundwater, groundwater coming out of cropland could have adverse 

health effects on humans, especially in the rural areas where groundwater is the major 

source of drinking water (Thorpe and Shirmohammadi, 2005). Other studies have also 

shown that nitrate concentrations are higher in groundwater in agricultural areas than in 

urban or forested areas (Ator and Ferrari, 1997). Phillips et al. (1999) have reported that 

groundwater contributed more than half (54 percent) of the total annual flow of streams 

in the Chesapeake Bay watershed, and groundwater nitrate loads contributed nearly half 

(48 percent) of the total nitrogen load to streams. Dillow and Greene (1999) have 

pointed out that the potential nitrate load to the coastal bays from direct discharge of 

groundwater is estimated to be 123,377 kg (272,000 pounds) per year. Nitrate from 

groundwater can also enter the coastal bays by way of base flow to streams that 

discharge to the bay. The potential nitrate load to the bays from the base flow of 

streams is estimated to be 390,997 kg (862,000 pounds) per year. Groundwater is 

certainly a major contributor to the pollution of coastal bays. How to reduce the 

pollutants carried by groundwater into the Chesapeake Bay still remains to be one of 

the major tasks required for the overall Bay clean-up effort. 



 

 22 

 

Groundwater storage and water table depth can be greatly affected by climate changes. 

A study that analyzed 88 years (1917 to 2005) of monthly temperature data from the 

United States Historical Climatology Network showed that there is a 0.06°C/10yr rise 

in Maryland (Collins, 2008). It was also reported that in many part of Maryland 

precipitation has increased by up to 10% over the last century (EPA, 1998). In its Third 

Assessment Report, the Intergovernmental Panel on Climate Change (IPCC) has 

suggested that North America could warm by 1-3 o C over the next century under low 

emission conditions. The warming could be as much as 3.5-7.5 o C for the higher 

emission condition (McCarthy et al., 2001). This warming trend could have a 

significant impact on our water resources. The drier summer conditions could reduce 

groundwater levels and jeopardize the water shortage situation in the areas that depend 

on groundwater as the major water supply. Therefore, early preparation for better 

groundwater monitoring and management is very important. 
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Chapter 3:   Approach 

 

3.1 Theory 
 

Groundwater is recharged by percolation through the unsaturated zone. The fluctuation 

of the water table is determined by the relative rates of recharge versus outflow. The 

extent of vertical variation of the water table is primarily affected by the intensity and 

frequency of local precipitation. A net recharge of groundwater will result in water 

table rise. Inversely, the water table will descend if there is a net discharge of 

groundwater. This relation can be geometrically complex where the profile is 

heterogeneous or anisotropic or where sources and sinks of water are distributed 

unevenly (Hillel, 1982). 

  

Based on the water balance concept, the groundwater recharge can be derived from the 

soil water budget in the vadose zone. The vadose zone refers to the geologic media that 

lie below the surface of the earth but above the water table of the shallowest year-round 

aquifer (Selker et al., 1999). Since the recharge affects the surface position of the 

saturated zone, the water table fluctuation and the soil moisture variation in the vadose 

zone are highly related. The vertical water movement between the vadose zone and the 

unconfined saturated zone in a geologic formation is the primary mechanism that 

results in the water table variation.  

 

Considering the vadose zone as a water storage body, the infiltration across the upper 

boundary is the inflow to the vadose zone. The outflows from the vadose zone include 
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evaporation and transpiration from the upper boundary and groundwater recharge from 

the lower boundary (Figure 5). The one-dimensional water budget in the vadose zone 

may be expressed by equation (1) since the net inflow must equal the change in soil 

water stored in the vadose zone (Stephens, 1996).  
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Figure 5. Schematic diagram of water flow in the vadose zone. I represents infiltration.   

                Ev represents evaporation. Et represents transpiration. R is the groundwater  

                recharge. ∆S represents soil water change in vadose zone. 
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I – Ev – Et – R = ∆S                                                                           ( 1 ) 

 

where,   I is the infiltration from the surface, 

             Ev is the evaporation, 

             Et  is the transpiration, 

             R  is the groundwater recharge, and 

            ∆S  is the soil water change in vadose zone. 

 

The groundwater recharge can then be expressed as  

 

R = I – Ev – Et – ∆S                                                                           ( 2 ) 

 

The infiltration is mainly affected by the water application, antecedent soil moisture, 

soil hydraulic properties, and topography. An approximate solution for vertical 

infiltration into the vadose zone can be demonstrated by the following Philip’s transient 

infiltration equation (Philip, 1957). 

 

i(t) = 
2

1
S t 2/1− + A                                                                             ( 3a ) 

 

Hence, 

 

I = St 2/1  + At                                                                                        ( 3b ) 
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where, i is an instantaneous infiltration rate, 

            I is total infiltration over a specified time interval, 

           S is the sorptivity of the soil,  

            t is time since infiltration began, and  

            A is a coefficient which is a function of hydraulic conductivity and hydraulic         

            diffusivity of the soil.  

 

Since S is only in relation to the initial state of the medium and the imposed boundary 

condition, S is a function of the soil’s initial moisture content and the moisture content 

near saturation (Hillel, 1982). A is equal to saturated hydraulic conductivity if the 

surface water content is saturated after water is applied (Hanks, 1992). The hydraulic 

conductivity can be expressed as a function of soil moisture content in the vadose zone. 

Hence, A is also a function of soil moisture content, which implies that the infiltration 

is a function of the moisture content of the soil. 

 

Generally, evaporation (Ev) and transpiration (Et) are combined together as 

evapotranspiration (ET) which can be expressed as a fraction of the potential 

evapotranspiration. The potential evapotranspiration is the amount of 

evapotranspiration that would occur from a short green crop that fully shades the 

ground, exerts negligible resistance to the flow and is always well supplied with water 

(Stephens, 1996). The relation between evapotranspiration rate and potential 

evapotranspiration rate can be expressed by the following equation. 
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R ET  = Kc (R PET )                                                                                 (4a) 

 

Therefore, 

 

ET =  t 
•

• •

•

R ET   = t  Kc (R PET )                                                                 (4b)                                                                    

 

where R ET  is evapotranspiration rate, R PET  is potential evapotranspiration rate, t is 

elapsed time, and Kc is a crop coefficient which can be represented by the following 

relation ( Jensen et al., 1970). 

 

Kc = Kco ( ln ( 
max

)(100

AW

AW
 + 1)   /  ln 101)                                          ( 5 )     

 

where Kco is the crop coefficient for a field where water is not limiting, AW =  ( θ  - 

θ wp  ) d, and AW max =  ( θ fc  - θ wp  ) d. Here, AW is the available water, θ  is the soil 

moisture content, θ fc  is the moisture content at the field capacity, θ wp  is the moisture 

content at the permanent wilting point, and d is the rooting depth. Kc is hence a 

function of moisture content in the soil, which implies that ET is a function of soil 

moisture content too. 

 

The water change in the vadose zone (∆S ) can be simply expressed as the changes in 

moisture content at all depths in the vadose zone: 
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∆S = −−−−∫∫∫∫ dzz
tD

t )(
0

θθθθ dzz
D

)(∫∫∫∫
0

0
0
θθθθ                                                           ( 6 ) 

 

where 
0
θθθθ (z) and tθθθθ (z) are the vertical soil moisture profiles at time 0 and time t, and 

0
D  and tD  are the thickness of  vadose zone at time 0 and time t. 

 

Based on the above discussion, the groundwater recharge, R, is a function of soil 

moisture content. Therefore, the water table fluctuation is directly related to the 

variation of soil moisture content in the vadose zone. This physical relationship 

provides a foundation to develop an ANN water table prediction model based mainly 

on the historical data of water table fluctuations and soil moisture status in the soil 

profile. 

 

The thermal microwave radiation emitted from the soils strongly depends on the soil 

moisture content. The emission is a function of the radiometer wavelength and the 

distribution of the moisture in the soil (Schmugge et al., 1974). Because of the large 

dielectric contrast between dry soil and wet soil, the microwave brightness temperature 

can be estimated from the dielectric constant as a function of the amount of water in the 

soil. Schmugge (1978) has indicated that there is a correlation of up to 0.9 between the 

microwave brightness temperature and the moisture in the surface layer. Chen et al. 

(1989) pointed out that the emissivity of the ground surface also depends on the soil 

surface structure. They discovered that the increase was more apparent in compacted 

soils (e = 0.915 + 0.052θ ; where e is emissivity, θ  is the volumetric water content) 

than in tilled soils (e = 0.937 + 0.019θ ). 
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Several algorithms have been developed and successfully retrieved soil moisture from 

surface brightness temperature at different spatial and temporal scales. Wang and 

Choudhury (1981) developed an algorithm to estimate moisture content of a bare soil 

from the observed brightness temperature. Their results compared favorably with the 

observations in the top 2 cm layer.  Jackson (1993) presented his soil moisture 

estimation algorithms and a microwave simulation model to obtain surface soil 

moisture from a single wavelength (L band) microwave radiometer. Belisle et al. 

(1997) described an algorithm relating microwave brightness temperature and soil 

moisture status in the upper (10 cm) and lower (greater than 10 cm) soil depths. 

Schmugge (1998) indicated that the microwave emission at the 21 cm wavelength was 

a strong function of surface (0-5 cm) soil moisture and thus could be used to map 

spatial and temporal variations of the moisture content of this soil layer. Crow and 

Wood (2003) showed that the Ensemble Kalman filter was capable of extracting spatial 

and temporal trends in root-zone (40 cm) soil water content from surface brightness 

temperature measurements. Pellarin et al. (2003) developed a technique to retrieve 

surface soil moisture at global scale using a synthetic data set of L-band (1.4 GHz) 

brightness temperature. Narayan et al. (2004) examined existing algorithms for soil 

moisture retrieval from active and passive microwave remote sensors under high 

vegetation water content conditions. They indicated that the algorithms performed 

satisfactorily over the full range of vegetation conditions. All these studies showed a 

strong relationship between surface brightness temperature and soil moisture content. 

This relationship, accompanied by the relationship between soil moisture variation and 
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the water table fluctuation, provides another base to develop an ANN model for water 

table fluctuation prediction depending on the changes in brightness temperature.  
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3.2 ANN model 
 

A multilayer feedforward ANN trained by the backpropagation method will be applied 

in this study. As described in the previous section, the backpropagation training 

algorithm includes feedforward of the input training data, the calculation and 

backpropagation of the associated error for each training pair, and the modification of 

the weights according to the errors. A supervised training is used in the learning 

process. Basically, the training is to build a system that can reach the desired mapping 

between the input data and the target data by applying the technique of artificial 

intelligence. This task is achieved by adjusting the connecting weight between each pair 

of nodes. At the beginning the initial weights will be randomly chosen. However, it is 

important to avoid choices of initial weights that would make it likely that either 

activations or derivatives of activations are zero. It was recommended that a better 

choice of the initial weights should be between  –0.5 to 0.5 (Fausett, 1994). 

 

Each input will be multiplied by the connection weight between the input node and the 

receiving node in the hidden layers or output layer. All the inputs pointing to the same 

receiving node will be summed together. Since the nodes in the hidden layer and the 

output layer may have biases, bias terms are connected to these nodes. These bias terms 

function as weights on connections between nodes and can be regarded as coming from 

units whose output are always one. Therefore, the signal that is received by the node in 

the hidden layer can be expressed as 
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h i (j) = b 0 (j) + ∑
=

n

i 1

x(i) w(i,j)                                                             ( 7a) 

or 

h i (j) = ∑
=

n

i 0

 x(i) w(i,j)                                                                        ( 7b )     

 

where, h i (j) is the signal received by the jth node in the hidden layer,  

            x(i) is the input value pointing to each node in the hidden layer from the ith  

                   node in the input layer, 

            w(i,j) is the connection weight between the ith node in the input layer and the               

                      jth node in the hidden layer, 

             b 0 (j) is a bias term to the jth node in the hidden layer and may be expressed  

                       as  x(0) w(0,j), where x(0)=1, and 

             n  is the number of nodes in the input layer.   

 

 

The selected activation function, f a , such as a sigmoid function, will be applied on h i (j) 

to obtain the output value h o from the jth node. h o  is therefore expressed as 

 

 

h o (j) = f a (h i (j)).                                                                                 ( 8 ) 

 

The flow diagram of equations 7 and 8 is shown in Figure 6.  
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            Figure 6.  Schematic diagram showing the flow pathways of equations 7 and 8. 

 

 

The output value will then be directed to either the nodes in the next hidden layer if 

there is more than one hidden layer in the model or the output nodes if there is only one 

hidden layer in the system. In case of having more than one hidden layer, the outputs 

from nodes in the current hidden layer will act as inputs to the nodes in the next hidden 

layer. The procedures described in equations (7) and (8) will be repeated until there is 

no more hidden layer left. The output from the nodes in the last hidden layer will go to 

the nodes in the output layer. The signal received by the output nodes may be expressed 

as 

 

y i (k) = b h (k) + ∑
=

m

j 1

 h o (j) w(j,k)                                                      ( 9a )  
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or 

 

y i (k) = ∑
=

m

j 0

 h o (j) w(j,k)                                                                    ( 9b ) 

  

where, y i (k) is the signal received by the kth node in the output layer, 

            h o (j) is the output value from the jth node in the last hidden layer, 

            w(j,k) is the connection weight between the jth node in the last hidden layer   

                       and the kth node in the output layer, 

            b h (k) is a bias term to the kth node in the output layer and may be expressed 

                      as h o (0) w(0,k), where h o (0) = 1, and 

            m  is the number of nodes in the hidden layer. 

 

 

The y i (k) value will then be fed into a selected activation function, f a , to get the 

output. The output value from each node in the output layer is expressed as 

 

 

y o (k) = f a (y i (k)).                                                                                ( 10 ) 

 

The flow diagram of equations 9 and 10 is shown in Figure 7. 
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          Figure 7.  Schematic diagram showing the flow pathways of equations 9 and 10. 

 

 

The error between this output value and the target value at each output node will then 

be calculated and propagated back to adjust the weights. The error at the kth output 

node is e(k) = t(k) - y o (k), where t(k) is the target value (or observation) at the kth 

output node. Since gradient descent is the mathematical basis for the backpropagation 

algorithm (Rumelhart et al., 1986), this error correction training is hence to minimize 

the total squared error of the output computed by the network. An index of performance, 

2
1 e 2 (k), can be defined to represent the squared error of the output (Haykin, 1999). The 

instantaneous value of the total error for the output layer may then be expressed as 

 

ξ  = 
2
1 ∑

=

m

k 1

e 2 (k)                                                                                 ( 11 ) 
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The weight correction terms, ∆w(j,k), are defined as 

  

∆w(j,k) = - α
),( kjw∂

∂ξ
 

         = α e(k) f a

' ( y i (k)) h o (j)                                                    ( 12 ) 

 

where, α  is a predefined learning rate. 

 

By letting  

δ (k) = e(k) f a

' ( y i (k)),                                                                      ( 13 )   

the weight correction terms, ∆w(j,k), for the weights between the last hidden layer and 

the output layer may be calculated from the following equation: 

∆w(j,k) = α δ (k) h o (j)                                                                      ( 14 )        

 

This procedure will be repeated until it reaches back to the first hidden layer. The 

correction term, ∆w(i,j), for weight can then be derived as shown in equation 15. 

 

∆w(i,j) = α δ (j) x(i)                                                                          ( 15 )        
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The correction of the bias terms follows the same procedure as that for the weight 

correction. These correction values will then be added to the previous weight and bias 

to start another cycle of training. The training is completed when the error in the output 

reaches the desired criterion. 
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3.3 Data Acquisition 

 

Water table depth, brightness temperature, soil moisture content, and hydrologic soil 

type are the essential elements used as input data to train and execute the ANN water 

table prediction models. Except for the brightness temperature data which is only used 

in the single well ANN modeling study, the other parameters are used in both single 

well and regional scale ANN modeling studies. These data are obtained from different 

sources and processed with the use of different types of softwares, such as ArcView 

and GrADS (Grid Analysis and Display System), and Fortran codes (see Appendix A). 

The satellite and model generated data are then validated by recorded ground data for 

their correctness. These are explained in the following sections.  

 

3.3.1 Water Table Depth 

 

Water table depth is the vertical distance from ground surface to the water table. The 

relative variation of water table depths in an area determines the direction of ground 

water movement in that area. Water table depth is the primary parameter that is 

involved in this study. In order to carry out this research, several criteria are set to filter 

out the groundwater wells that do not qualify for this study. First, the groundwater level 

data must be from water table wells to account for the assumption of water balance in 

the vadose zone of an unconfined aquifer. Second, the selected groundwater wells need 

to have continuous records over the same time frame as that of the other input 
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parameters. Third, for regional scale multiple wells ANN modeling, the selected wells 

need to be spatially and geologically distributed.  

 

There were 345 groundwater wells in Maryland that recorded the groundwater level in 

a variety of locations (USGS, 2001). The wells that provide groundwater level 

information for unconfined aquifers are shown in Figure 8. The names of these water 

table wells, the geological formations where these wells are located, and the longitude, 

latitude, and surface elevation of each well are shown in Table 1 (provided by Wendy 

McPherson of USGS). The water table data were downloaded from USGS NWISWeb 

(http://waterdata.usgs.gov/nwis/gw).            

 

Figure 8.  Locations of water table wells for unconfined aquifers in the state  

                 of Maryland. 
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Table 1.  Names, formations, longitudes, latitudes, and altitudes of Maryland  

                Water table wells. 

 
 

 
 

Well Name Aquifer Longitude Latitude Altitude 

   
(
o

W) (
o

N) 
     (m) 

1 AA Ad 108 Upper Patapsco aquifer in the Patapsco Formation 76.6497 39.1756 23.87 

2 AA Ad 110 Upper Patapsco aquifer in the Patapsco Formation 76.6497 39.1756 23.6 

3 AA Bf     3 Upper Patapsco aquifer in the Patapsco Formation 76.4822 39.1625 6.21 

4 BA Cd  26 Baltimore Gneiss 76.645 39.5247 146.3 

5 BA Ce  21 Loch Raven Formation 76.5717 39.5172 163.37 

6 BA Ea   18 Woodstock Granite 76.8569 39.3458 149.66 

7 BA Ec  43 Baltimore Gneiss 76.7222 39.3847 152.4 

8 CA Db  65 Brandywine Formation 76.5872 38.5378 48.56 

9 CA Fc  13 Choptank-St. Mary's undivided 76.5081 38.3947 14.46 

10 CH Bg  12 Calvert Formation 76.8081 38.6294 45.63 

11 CH De  45 Alluvium and Nanjemoy Formation 76.9231 38.4908 13.65 

12 CH Ee  16 Ravens Crest Formation 76.9339 38.3508 12.19 

13 CL Bf    1 Prettyboy Schist 76.85 39.6106 284.38 

14 CL Ec  75 Prettyboy Schist 77.09 39.3831 167.64 

15 CO Bc    1 Pensauken Formation 75.8458 39.0592 16.46 

16 FR Bd  96 Catoctin Metabasalt 77.4633 39.6258 350.52 

17 FR Cg    1 Ijamesville Formation 77.2325 39.5322 182.88 

18 FR Df  35 Sama Creek Metbasalt 77.3178 39.4214 173.74 

19 GA Ag   1 Pocono Formation 78.9714 39.6714 771.14 

20 GA Bc   1 Hampshire Formation 79.3175 39.6303 736.09 

21 GA Fa  29 Conemaugh Formation 79.4525 39.2533 880.87 

22 GA Fa  34 Conemaugh Formation 79.4294 39.2608 797.97 

23 GA Fa  38 Conemaugh Formation 79.4333 39.2503 816.86 

24 GA Fb  25 Conemaugh Formation 79.4122 39.2583 771.14 

25 GA Fb  30 Conemaugh Formation 79.41 39.2536 839.72 

26 GA Ga  16 Conemaugh Formation 79.4469 39.2389 819.91 

27 HA Bd  31 Baltimore Gabbro Complex 76.2667 39.6506 140.21 

28 HA Ca  23 Loch Raven Formation 76.5072 39.5328 143.26 

29 HA Dd  91 Talbot Formation(?) 76.2508 39.4558 6.01 

30 HA Dd  92 Talbot Formation(?) 76.2508 39.4558 6.11 

31 HA De 198 Talbot Formation(?) 76.2192 39.4719 5.77 

32 HO Bd    1 Morgan Run Formation 76.9492 39.3194 192.02 

33 HO Cd  79 Loch Raven Formation 76.9308 39.2458 137.88 

34 HO Ce  38 Sykesville Formation 76.9 39.1669 131.06 

35 KE Bc 185 Pensauken Formation in the Columbia aquifer 76.0844 39.2806 25.02 

36 KE Cb 101 Kent Island Formation in the Columbia aquifer 76.2394 39.2133 9.49 

37 KE Dc   89 Kent Island Formation  in the Columbia aquifer 76.1425 39.1072 1.38 

38 KE Dc   91 Aquia Formation 76.1425 39.1072 1.41 

39 MO Cc  14 Ijamesville Formation 77.3783 39.2206 170.69 

40 MO Eh  20 Loch Raven Formation 76.9583 39.0761 123.44 

41 PG Bc  16 Patuxent Formation 76.9375 39.0308 57.91 

42 QA Ec    1 Kent Island Formation in the Columbia aquifer 76.1814 38.9656 6.1 
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43 SO Cf    2 Kent Island Formation  in the Columbia aquifer 75.6353 38.1044 6.1 

44 TA Bf  74 Pensauken Formation in the Columbia aquifer 75.9919 38.8783 12.8 

45 WA Ac   1 Romney Formation 78.1764 39.6983 134.11 

46 WA Bk   25 Tomstown Dolomite 77.575 39.6475 240.79 

47 WA Ch 106 Conococheague Limestone 77.7717 39.5706 158.5 

48 WA Ci   82 Conococheague Limestone 77.7283 39.5672 152.4 

49 WA Dj    2 Weaverton Formation 77.6208 39.4844 326.14 

50 WI Ce   13 Pensauken Formation in the Columbia/ Salisbury  aquifer 75.5892 38.3639 2.13 

51 WI Ce 204 Pensauken Formation in the Columbia/ Salisbury  aquifer 75.5983 38.4011 8.53 

52 WI Cf      3 Pensauken Formation in the Columbia/ Salisbury  aquifer 75.5189 38.3436 13.65 

53 WI Cf 147 Pensauken Formation in the Columbia/ Salisbury  aquifer 75.5792 38.4081 12.75 

54 WI Cg  20 Parsonsburg Sand  in the  Columbia aquifer 75.4436 38.3914 20.73 

55 WO Ae  25 Beaverdam Sand in the Columbia aquifer 75.295 38.4392 12.19 

56 WO Bg   1 Sinepuxent Formation in the Columbia aquifer 75.1233 38.3394 3.05 

57 WO Bg  45 Beaverdam Sand in the Columbia aquifer 75.1625 38.3994 3.05 

58 WO Bh  84 Beaverdam Sand  in the Columbia aquifer 75.0722 38.3708 1.52 

 

 

 

 

Among these wells, two water table wells (BA Ea 18 and FR Df 35), both in the 

Piedmont region, have recorded daily water table depths for a time span of several 

years. Therefore, they were selected to be used in the single well ANN modeling study. 

For the regional scale study, thirteen available water table wells in the Piedmont region 

were chosen. Except for the two wells mentioned above, these water table wells do not 

provide regular daily water table depth measurements but only sporadic measurements 

each month. The data at each well were linearly interpolated to obtain the water table 

depth on the first day of each month at that well for the ANN modeling.  
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3.3.2 Brightness Temperature Data 

 

The brightness temperature retrieved from the observation of the Advanced Microwave 

Scanning Radiometer – Earth Observing System (AMSR-E) is used in the single well 

ANN modeling study. AMSR-E was launched on board the NASA EOS Aqua satellite 

on May 4, 2002 (NSIDC, 2008). AMSR-E provides global passive microwave 

measurements of terrestrial, oceanic, and atmospheric variables. The AMSR-E Level 

2A product (AE_L2A) contains brightness temperatures at six frequencies: 6.9 GHz, 

10.7 GHz, 18.7 GHz, 23.8 GHz, 36.5 GHz, and 89.0 GHz. The footprint sizes of the 

observations are 56 km, 38 km, 24 km, 21 km, 12 km, and 5.4 km in diameter, 

respectively. The brightness temperature resampled at 89.0 GHz vertical (V) field with 

a footprint size of 5.4 km in diameter was selected to be used for this study. The 

monthly mean brightness temperature at the well site was computed by averaging the 

daily observations which fall inside a circle with a radius of 2.75km from the well site 

for each month. The surface air temperature obtained from the Maryland State 

Climatologist Office (MSCO, 2008) was compared with the brightness temperature at 

Owings Mills (39.41N, 76.79W) in Baltimore County, Maryland to check the usability 

of AMSR-E brightness temperature. Figure 9 shows their comparison for the period 

from September 2002 to September 2004. The trends of these two time series show a 

very good match with a correlation coefficient of 0.895. This supports the use of 

AMSR-E brightness temperature data obtained from the National Snow and Ice Data 

Center (Ashcroft and Wentz, 2006) in this study. 
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Time Series of Brightness Temperature and Surface Air Temperature

240

250

260

270

280

290

300

310

Sep-02 Nov-02 Jan-03 Mar-03 May-03 Jul-03 Sep-03 Nov-03 Jan-04 Mar-04 May-04 Jul-04 Sep-04

T
e

m
p

e
ra

tu
re

 (
K

)

Brightness Temperature Surface Air Temperature

 
 

 

 

Figure 9.  Comparison of the monthly surface air temperature and the brightness  

                  temperature at Owings Mills (39.41N, 76.79W) in Baltimore County,  

                  Maryland for the period from September 2002 to September 2004. 

 

 

 

 

3.3.3 Soil Moisture Data 

 

High-resolution satellite remotely sensed soil moisture data with several years of 

coverage would be optimal for this research. However, such information is not 

available for this study area.  Therefore, the soil moisture data produced by the Land 

Data Assimilation System (LDAS) was used in this study.  
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The LDAS is a real-time, hourly, distributed, uncoupled, land surface simulation 

system. (Mitchell et al., 1999). This system is forced with real time output from 

numerical prediction models, satellite data, and terrestrial or space-based precipitation 

data.  Model parameters are derived from the existing high-resolution vegetation and 

soil coverage. The forcing fields are observed hourly gage/radar precipitation and 

observed GOES-based satellite-derived surface solar insolation (Mitchell et al., 2000).  

The LDAS uses a 4-dimensional data assimilation modeling process to integrate past 

forecasts with observations to improve performance.  The satellite-derived land-surface 

fields, such as soil moisture, skin temperature, snow, and vegetation density and 

greenness are included in the assimilation to produce accurate soil moisture data at 

different depths. The output of LDAS includes energy balance components, water 

balance components, evaporation components, surface water variables, and subsurface 

state variables. This LDAS produces its output at a higher spatial resolution and a 

longer temporal coverage which is essential in the training of ANN model. Soil 

moisture output from LDAS can be either hourly total soil column (0-200cm) moisture 

or hourly layered soil moisture at the layers of 0-10cm, 10-40cm, and 40-200cm. The 

data produced by North American Land Data Assimilation System (NLDAS), which is 

a subsystem of LDAS, was used here. The NLDAS runs in near real-time on an 1/8
th

 

degree grid. The spatial coverage is from 25 o N to 53 o N in latitude and from 125 o W 

to 67 o W in longitude.  The temporal coverage ranges from October, 1996 through 

December, 2001 (Mitchell et al., 2000). 
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In order to examine the correctness of LDAS soil moisture, the LDAS soil moisture 

data was validated by the soil moisture measurements of Soil Climate Analysis 

Network (SCAN). SCAN is a nationwide network operated by the Natural Resources 

Conservation Service (NRCS, 2008). Its primary role is to provide soil and climate 

information at each SCAN site in a near real-time situation. The soil moisture is 

collected by a dielectric constant measuring device. Typical measurements are at 2, 4, 

8, 20, and 40 inch of depth. SCAN sites generally reside on the agricultural areas of the 

United States. There are two SCAN sites in Maryland. One site is in Howard County, 

Maryland (39.25 o N, 76.92 o W), which operated from October 1, 1994 through 

December 19, 1998. The other site is in Prince George’s County, Maryland (39.02 o N, 

76.85 o W) and has been operating since October 30, 2001. The recorded soil moisture 

at the Howard County site is used to validate the LDAS soil moisture data. Figure 10 is 

a comparison of LDAS 0 – 10cm soil moisture and SCAN topsoil (at 5cm) soil 

moisture in Howard County, Maryland for the period of May 1997 through December 

1998. These two time series show similar trends (r = 0.68) and both catch the high and 

low consistently. This suggests that the use of LDAS soil moisture data in this study is 

acceptable. The soil moisture data were downloaded from the LDAS website (LDAS, 

2008). Then, they were processed using the Grid Analysis and Display System 

(GrADS). The soil moisture data at a grid location that was closest to the well site was 

used for model training at that well site. 
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Comparison of Soil Moisture at 39.25N, 76.92W (in Howard County, MD)
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Figure 10.  Comparison of time series of LDAS soil moisture and SCAN soil   

                   moisture at 39.25 o N, 76.92 o W in Howard County, MD. 

 

 

 

3.3.4 Soil Data 

 

For the single well ANN modeling, the soil data is not required. But, for the multiple 

wells ANN modeling at regional scale, the geological characteristics at different well 

sites need to be taken into consideration. Since the algorithm of this multiple ANN 

modeling is based on the variation of water storage in the vadose zone, the soil data 

need to be included in the modeling.  
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Coarse-textured soils such as sandy soils tend to have larger pores but smaller 

porosities.  Fine-textured soils like clay soils have very small pores but larger 

porosities. These different types of soils, in terms of texture, respond to moisture 

holding capacity differently. A sandy soil will drain water quickly, but a clay soil will 

absorb more water and become waterlogged. The ANN water table prediction modeling 

at a regional scale is different from that at a single well site because several well sites 

which might have different soil types are involved. Different soil textural types could 

result in different water preserving capabilities at different locations, which would 

introduce different relationships between soil moisture change and water table 

fluctuation at different well sites. Therefore, the soil types at these different well sites 

need to be taken into account when doing a regional scale ANN water table prediction 

modeling.   

 

Soil data were obtained from the Soil Data Mart of Natural Resources Conservation 

Services, Department of Agriculture. The soil information of each county in the 

Piedmont region was downloaded from the website. The well sites within each county 

were then located on the county soil map by using the Geographic Information System 

software ArcView. The soil information at the well location was then retrieved from the 

soil database with the help of ArcView. Figure 11 shows the soil map of Baltimore 

County, Maryland. The locations of four water table wells are pointed  out  on  the  map.  

The soil data at each water table well is assigned a hydrological soil type according to 

the Estimated Physical and Chemical Properties of Natural Soils Groups of Maryland 
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(Appendix C) provided by Maryland Department of Planning (1973). The hydrological 

soil type is then used as input for the ANN model. 

 

Figure 11.  Soil map and the groundwater well locations in Baltimore County,  

                   Maryland. 

  BA Ea 18 

  BA Ec 43 

  BA Cd 26 

  BA Ce 21 
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3.4 ANN Water Table Prediction Model 

 

Currently, there are many companies that produce artificial neural network software 

based on different ANN algorithms. The prices of ANN products range from several 

hundred dollars, such as the one produced by Logical Designs, to several thousand 

dollars, such as the one produced by Math Works. The ANN software that is based on a 

multilayer feedforward backpropagation algorithm, can be executed on a personal 

computer, and is priced around several hundred dollars is an ideal choice to perform 

this study.  

 

The neural modeling system, Qnet 2000 (Qnet 2000), produced by Vesta Services Inc. 

was selected to build the ANN model in this study. Qnet 2000, which offers advanced 

network design features for creating complex networks, uses highly optimized 

backpropagation training algorithms, and is designed to run on a PC with a 32-bit 

operating system, fully satisfies the selection criteria. A feedforward three-layer 

backpropagation ANN with sigmoid function as the activation function is used to train 

the model. 

  

First, single well ANN model will be trained to predict the water table fluctuation at 

selected locations. These ANN models are based on the relation between brightness 

temperature changes and water table variations or between soil moisture changes and 

water table variations at a well site. Only local brightness temperatures and water table 

measurements or local soil moisture contents and water table measurements are 
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involved in the training. The ANN model will be validated by data from a different 

time period at the same location. The forecasted water table fluctuation will then be 

compared with the groundwater level records to examine its accuracy. This portion of 

the study provides a site-dependent model to predict water table variation at the 

selected sites. 

 

The second part of this study is an extension of the study in the first portion. An ANN 

model that is used to predict regional scale water table variation will be developed. At 

each time step, the training data includes hydrological soil type, current monthly mean 

column soil moisture content, subsequent monthly mean column soil moisture content, 

current water table measurement, and water table measurement of the next time step. 

The water table measurement of the next time step is used as the target, while the rest 

of the parameters are used as inputs in the training. These data are gathered from all 

selected wells in the Piedmont Plateau, Maryland. The ANN model will then be 

validated by data from a different time period. The forecasted results will be evaluated 

by comparing the predicted water table fluctuations with the groundwater level records 

at different sites in Maryland. 
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Chapter 4:   Single Well ANN Water Table Prediction   

                     Modeling 

 

 
Two water table wells (BA Ea 18 and FR Df 35, see Figure 12), both in the Piedmont 

Plateau, that record daily water table depths for a time span of several years are used in 

this single well ANN water table prediction modeling study. BA Ea 18 is located in 

Baltimore County, MD (39.35N, 76.86W) in the Woodstock Quartz Monzonite local 

aquifer. The land-surface elevation is 149.66 meters (491 feet) above mean sea level.    

Figure 12.  Locations of the two water table wells for single well ANN modeling  

– BA EA 18 in Baltimore County, MD and FR DF 35 in Frederick  

County, MD. 

 

 

FR Df 35 

 BA Ea 18 
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It has recorded monthly mean water table data from October 1999 through September  

2007. FR Df 35 is located in Frederick County, MD (39.42N, 77.32W) in the Urbana 

Formation local aquifer. The land-surface elevation is 173.74 meters (570 feet) above 

mean sea level. It provides monthly mean water table measurements for the period from 

February 2004 to September 2006. Both wells have some months without monthly 

mean data. 
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4.1 Model Training and Results 

 

The first attempt in the development of an ANN model for water table prediction 

utilized monthly mean brightness temperature and monthly mean water table depth as 

the primary input. The time series of water table depth and of brightness temperature at 

well BA Ea 18 from September 2002 through September 2004 indicates that there is no 

clear correlation (r = -0.17) between them (Figure 13). However, comparing the time 

series of water table depth change with that of brightness temperature for the same time 

period shows that they follow a similar trend (r = 0.53), as is depicted in Figure 14. A 

similar relationship was obtained for well site FR Df 35. The time series of water table 

depth and of brightness temperature (Figure 15) are not correlated well (r = 0.05), but 

the time series trends are very similar (r = 0.56) between water table depth change and 

brightness temperature (Figure 16). Therefore, using monthly mean water table change 

and monthly mean brightness temperatures as the input for the ANN model training at 

both well sites is a reasonable approach for this ANN water table prediction study. 

 

 

A three-layer feedforward backpropagation ANN with five input nodes in the input 

layer and three hidden nodes in the hidden layer was selected for building the model. 

The number of hidden nodes selected here was based on results from several test runs. 

The model with three hidden nodes produced better results than that from other number 

of hidden nodes. The sigmoid function was used as the activation function. The 

monthly mean brightness temperature gathered by AMSR-E satellite and the monthly 

mean  water  table depth  at  BA Ea 18  were  used  as input  data.  Figure 17  shows the  
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Time Series of Water Table Depth and Brightness Temperature at BA Ea 18
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Figure 13.  Time series of the water table depth and brightness temperature at well  

                   site BA Ea 18 in Baltimore County, MD (r = -0.17). 

Time Series of Water Table Depth Change and Brightness Temperature at BA Ea 18
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Figure 14.  Time series of the water table depth change and brightness temperature  

                   at well site BA Ea 18 in Baltimore County, MD (r = 0.53). 
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Time Series of Water Table Depth and Brightness Temperature at FR Df 35
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Figure 15.  Time series of the water table depth and brightness temperature at well  

                   site FR Df 35 in Frederick County, MD (r = 0.05). 
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Figure 16.  Time series of the water table depth change and brightness temperature at  

                   well site FR Df  35 in Frederick County, MD (r = 0.56). 
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structure of this three layer ANN model, which uses the previous month’s brightness 

temperature, the current month’s brightness temperature, the water table depth change 

in these two months, the current month’s water table depth, and the subsequent month’s 

brightness temperature as inputs. These parameters are all contained in the input file. 

The output is the predicted subsequent month’s water table depth. Another file 

containing the measured water table depth for the subsequent month is used as the 

target file.  

 

 

 

 

 
 

Figure 17.  Schematic diagram of a three layer ANN model which uses previous  

                    brightness temperature (BT1), current brightness temperature (BT2),  

                    water table depth change (WT2 – WT1), current water table depth  

                    (WT2), and subsequent brightness temperature (BT3) as input. The  

                    output is the prediction of the water table depth (WT3). 
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The model was trained with the monthly mean data over the period of November 2002 

through April 2004. The training outputs reached a minimum root mean square error of 

0.058m after 350,000 iterations (Figure 18). This ANN model (BA_BT_WT) was 

selected as the water table prediction model at well site BA Ea 18. The connection 

weights between the input layer nodes and the hidden layer nodes and between the 

hidden layer nodes and the output layer node of the model are shown in Table 2a and 

Table 2b, respectively. 
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Figure 18.  The ANN model training at well site BA Ea 18 reached a minimum root  

                   mean square error of 0.058m after 350,000 iterations. 
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Table 2a.  Connection weights between input layer nodes and hidden layer nodes   

                  of Figure 17 for ANN model BA_BT_WT are shown in this table. The  

                  weight of bias input for each hidden layer node is also shown here. 

 

Input Layer Node Hidden Layer Node Weight 

      

1 1 -0.62529 

2 1 3.97492 

3 1 -0.33996 

4 1 1.69158 

5 1 0.32933 

  1 (bias input) -4.07365 

      

1 2 0.42674 

2 2 -0.9809 

3 2 0.44079 

4 2 -2.04207 

5 2 0.01082 

  2 (bias input) 2.22069 

      

1 3 0.14678 

2 3 2.22005 

3 3 -1.39967 

4 3 -3.62859 

5 3 0.99287 

  3 (bias input) 0.64362 

 

 

 

Table 2b.  Connection weights between hidden layer nodes and output layer node   

                  of Figure 17 for ANN model BA_BT_WT are shown in here. The weight  

                  of bias input for the output layer node is also shown in this table. 

 

Hidden Layer Node Output Layer Node Weight 

      

1 1 4.80523 

2 1 -2.02508 

3 1 -3.46757 

  1 (bias input) 2.02535 
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The time series of the training output of the model matches the time series of the 

observation at this well site (Figure 19). A scatter diagram of model training output 

against the observed water table depths is also shown in Figure 20. This ANN model 

was validated by comparing the model’s output with the observed data over the period 

of May 2004 through October 2004. The validation output resulted in a root mean 

square error of 0.107m. The validated water table prediction model’s performance was 

examined for its forecast capability for the period of November 2002 to October 2003.  
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Figure 19.  Comparison of the model predicted water table depths during ANN  

                    training with the observations at well site BA Ea 18. 
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Scatter Plot of Model Output and Observation at BA Ea 18
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Figure 20.  The scatter diagram of the model predicted water table depths during  

                   ANN training against the observed water table depths at well site BA Ea  

                   18. 

 

 

 

 

Except using the predicted water table depth as the input for the subsequent month, the 

rest of the inputs remained unchanged in the forecast simulations. The comparison 

between the forecasted and the observed water table depths is shown in Figure 21. The 

absolute difference between the forecasted and the observed water table depths changes 

from 0.025m for the first month to 0.116m for the 12
th

 month. The root mean square 

error of the forecast for 12 months was found to be 0.043m. 
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Comparison of Prediction and Observation at BA Ea 18
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Figure 21.  Comparison of the forecasted water table depths (using  model  

                   BA_BT_WT) and the observed data at well site BA Ea 18. The  

                   forecast has a RMS error of 0.043m. 

 

 

 

For the purpose of comparison, the same type of model training was conducted in 

Frederick County, MD at well site FR Df 35. The ANN model structure was the same 

as that used for BA Ea 18 site. The model (FR_BT_WT ) was trained with the monthly 

mean brightness temperature and water table depth over the period from March 2005 to 

August 2006. The training output came to a minimum root mean square error of 0.04m 

after 350,000 iterations (Figure 22). Table 3a and Table 3b are the connection weights 

between the input layer nodes and the hidden layer nodes and between the hidden layer 

nodes and the output layer node used for this model. The comparison of the time series 
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of water table depth resulting from the training phase of the ANN model and the 

observed  
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Figure 22.  The ANN model training at well site FR Df 35 reached a minimum root  

                   Mean square error of 0.04m after 350,000 iterations. 
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Table 3a.  Connection weights between input layer nodes and hidden layer nodes   

                  of Figure 17 for ANN model FR_BT_WT are shown in this table. The  

                  weight of bias input for each hidden layer node is also shown in this   

                  table. 

 

Input Layer Node Hidden Layer Node Weight 

      

1 1 -1.41744 

2 1 -4.15786 

3 1 0.91901 

4 1 11.88938 

5 1 -2.23375 

  1 (bias input) -2.78621 

      

1 2 -2.66123 

2 2 -4.82916 

3 2 -0.27544 

4 2 6.56021 

5 2 -3.10731 

  2 (bias input) 4.6746 

      

1 3 4.21234 

2 3 3.84454 

3 3 1.03323 

4 3 -0.97458 

5 3 1.02484 

  3 (bias input) -1.12654 

 

 

 

Table 3b.  Connection weights between hidden layer nodes and output layer node   

                  of Figure 17 for ANN model FR_BT_WT are shown in this table. The  

                  weight of bias input for the output layer node is also shown here. 

 

Hidden Layer Node Output Layer Node Weight 

      

1 1 6.34815 

2 1 -7.56729 

3 1 4.01383 

  1 (bias input) -0.97243 
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water table depth is shown in Figure 23. It demonstrates a good match between these 

two time series. Figure 24 is the scatter diagram of the model’s output during training 

against the observed data. Results indicate almost perfect correlation between these two 

data sets, thus indicating the ANN model’s ability in predicting water table depth for 

the conditions of this study.  This ANN model is thus used as the water table prediction 

model for this well site. Validation using available data from September 2006 through 

November 2006 has a root mean square error of 0.089m, indicating a very reasonable 

performance by the model. Using the validated model, the forecast run was performed 

over the period from March 2005 to February 2006.  
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Figure 23.  Comparison of the model predicted water table depths during ANN  

                    training with the observations at well site FR Df 35. 
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Scatter Plot of Model Output and Observation at FR Df 35
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Figure 24.  The scatter diagram of the model predicted water table depths during  

                   ANN training against the observed water table depths at well site  

                   FR Df 35. 

 

 

The absolute error was found to be 0.009m and 0.039m for the first month and 12
th

 

month, respectively. The root mean square error over the 12 months’ forecast was 

determined to be 0.044m, indicating a highly accurate forecasting. Figure 25 shows the 

time series comparison of the forecasted and the observed water table depth for the 

same well site, FR Df 35.  Again, this relationship indicates the accuracy of the ANN 

model’s predictions. 
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Comparison of Prediction and Observation
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Figure 25.  Comparison of the forecasted water table depths (using model  

                   FR_BT_WT) and the observed data at well site FR Df 35. The  

                   forecast has a RMS error of 0.044m. 

  

 

The second attempt in the development of an ANN model for water table prediction 

utilized monthly mean soil moisture content and monthly mean water table depth as 

input. Figure 26 shows time series of the monthly mean water table depth and LDAS 

monthly mean column (0-200cm) soil moisture content at well site BA Ea 18 in 

Baltimore County, MD from October 1999 to December 2002. Basically, a water table 

rise comes with a wet period when soil is moist. A dry period in which soil moisture is 

low is always associated with a drop in the water table. There is a good correlation (r = 

-0.65) between these two parameters.  
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Time Series of Water Table Depth and Soil Moisture Content
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Figure 26.  Time series of the water table depth and soil moisture content at well  

                   BA Ea 18 in Baltimore County, MD (r = -0.65). 

 

 

 

After trial and error test, a three-layer feedforward backpropagation ANN with three 

nodes in the input layer, two nodes in the hidden layer, and one node in the output layer 

was used to build the model. The sigmoid function was selected as the activation 

function. The structure of this ANN model is depicted in Figure 27. The three input 

nodes are current monthly mean soil moisture, current monthly mean water table depth, 

and subsequent monthly mean soil moisture. The output node is the predicted water 

table depth. LDAS monthly mean column (0-200cm) soil moisture and measured water 

table depth were used in the input. 
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Figure 27.  Schematic diagram of a three layer ANN model using current soil  

                   moisture content, current water table depth, subsequent soil moisture  

                   content as input. The output is predicted water table depth. 

 

 

The model was trained with the monthly mean data over the period of November 2000 

through December 2002. After 400,000 iterations, the training output reached a 

minimum root mean square error of 0.059m (Figure 28). This ANN model 

(BA_SM_WT) was hence selected as the water table prediction model. The connection 

weights between the input layer nodes and the hidden layer nodes and between the 

hidden layer nodes and the output layer node of the model are shown in Table 4a and 
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Table 4b, respectively. The comparison of the model predicted water table depth  

during  ANN  training  with  the 
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Figure 28.  The ANN model training at well site BA Ea 18 reached a minimum root  

                   mean square error of 0.059m after 400,000 iterations. 
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Table 4a.  Connection weights between input layer nodes and hidden layer nodes   

                  of Figure 27 for ANN model BA_SM_WT are shown in this table. The 

                  weight of bias input for each hidden layer node is also shown here. 

 

Input Layer Node Hidden Layer Node Weight 

      

1 1 0.16162 

2 1 -2.49647 

3 1 0.19332 

  1 (bias input) 1.44859 

      

1 2 -2.46467 

2 2 5.66167 

3 2 -3.16399 

  2 (bias input) 4.42196 

 

 

 

Table 4b.  Connection weights between hidden layer nodes and output layer node   

                  of Figure 27 for ANN model BA_SM_WT are shown in this table. The  

                  weight of bias input for the output layer node is also shown here. 

 

Hidden Layer Node Output Layer Node Weight 

      

1 1 -5.99023 

2 1 3.67721 

  1 (bias input) 0.04375 

 

 

 

observation is shown in Figure 29. They match very well except in the last three 

months when the water table is low. The scatter plot of the training output against the 

observation is shown in Figure 30. This ANN model was then validated by comparing 

the model’s output with the observed data over the period from November 1999 

through October 2000. The root mean square error of the validation output was 0.069m.  
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Comparison of Model Output and Observation at BA Ea 18
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Figure 29.  Comparison of the model predicted water table depths during ANN  

                    training with the observations at well site BA Ea 18. 
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Figure 30.   The scatter diagram of the model predicted water table depths during  

                    ANN training against the observed water table depths at well site  

                    BA Ea 18. 
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A forecast simulation was conducted for the period from January 2001 to December 

2001 to investigate its forecast strength. A comparison of the forecast with the 

observation is shown in Figure 31. The absolute difference between the forecasted and 

the observed water table depths changes from 0.044m for the first month to 0.089m for 

the 12
th

 month. The root mean square error of the forecast over 12 months is 0.047m. 
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Figure 31.  Comparison of the forecasted water table depths (using model  

                   BA_SM_WT) and the observed data at well site BA Ea 18. The forecast  

                   has a RMS error of 0.047m. 
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Chapter 5:   Regional Scale ANN Water Table Prediction      

                     Modeling 

 
 

Thirteen water table wells (Table 5) located in Piedmont Plateau, Maryland (Figure 32) 

were selected for the regional scale water table prediction modeling study. Most of 

them only provide sporadic measurements at different days in each month. In order to 

consistently model the water table fluctuations using the relationship between soil 

moisture content and water table depth, the water table depths at each well were 

linearly interpolated to obtain the water table depth on the first day of each month at 

that well for the ANN modeling. Figure 33 is an example of the comparison of the time 

series of the recorded and interpolated water tables for the period from 1994 through 

2002 at the well site HO Bd 1 in Howard County, Maryland.   

 

Table 5.  Names of the thirteen water table wells used in this regional scale study,  

                the aquifers that these wells located, and their longitudes, latitudes, and  

                surface elevations. 
 

 

Number Well Name Aquifer  Longitude 
(W) 

Latitude 
(N) 

Altitude (m) 

      

4 BA Cd  26 Baltimore Gneiss 76.645 39.5247 146.3 

6 BA Ea   18 Woodstock Granite 76.8569 39.3458 149.66 

7 BA Ec  43 Baltimore Gneiss 76.7222 39.3847 152.4 

17 FR Cg    1 Ijamesville Formation 77.2325 39.5322 182.88 

18 FR Df  35 Sama Creek Metbasalt 77.3178 39.4214 173.74 

27 HA Bd  31 Baltimore Gabbro Complex 76.2667 39.6506 140.21 

28 HA Ca  23 Loch Raven Formation 76.5072 39.5328 143.26 

32 HO Bd    1 Morgan Run Formation 76.9492 39.3194 192.02 

33 HO Cd  79 Loch Raven Formation 76.9308 39.2458 137.88 

34 HO Ce  38 Sykesville Formation 76.9 39.1669 131.06 

39 MO Cc  14 Ijamesville Formation 77.3783 39.2206 170.69 

40 MO Eh  20 Loch Raven Formation 76.9583 39.0761 123.44 

41 PG Bc  16 Patuxent Formation 76.9375 39.0308 57.91 
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Figure 32.  Distribution of the water table wells in Piedmont Plateau, Maryland  

                   (between two green lines). 
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Recorded and Interpolated Water Table at Howard County, MD (HO Bd 1)
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Figure 33.  Time series of recorded and interpolated water tables at HO Bd 1 in  

                   Howard County, MD from 1994 to 2002. 

 

 

 

The time series of water table depth changes between the first day of consecutive 

months and the time series of monthly mean soil moisture variations at 0 – 200cm of 

soil layer were compared at these thirteen available water table well sites. Figure 34 is 

the time series of water table depth changes and soil moisture content variations for the 

months of November 1996 through October 2000 at water table well BA_CD_26 in the 

Piedmont Plateau. The time series of water table depth changes and soil moisture 

content variations at the other 12 water table well sites are placed in Appendix C.  

Basically,  there is an inverse correspondence  between  the  changes  in  
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Monthly Variation in Water Table Depths and Soil Moisture Contents (at BA_Cd_26)

-4

-3

-2

-1

0

1

2

3

4

Nov-96 Mar-97 Jul-97 Nov-97 Mar-98 Jul-98 Nov-98 Mar-99 Jul-99 Nov-99 Mar-00 Jul-00

W
T

D
 C

h
a
n

g
e
 (

m
)

-4

-3

-2

-1

0

1

2

3

4

S
M

 C
h

a
n

g
e
 (

x
1
0
0
k
g

/M
**

2
) 

  

monthly water table depth change monthly soil moisture change

 

 

Figure 34.  Time series of the water table depth changes and soil moisture content                 

                    variations for the months of November 1996 through October 2000 at  

                    water table well BA_CD_26 in Piedmont Plateau, Maryland.                                                                                                    

                 

 

water table depths and the changes in soil moisture contents. The correlation coefficient 

of the water table depth change of the first days of consecutive months and the monthly 

mean soil moisture variations at 0 – 200cm of the soil layer at each of the thirteen 

individual water table wells for the same period of time are shown in Table 6. Except 

wells HO Bd 1 and HO Ce 38, the absolute correlation coefficients are above 0.5. The 

highest correlation coefficient is -0.789 at well HA Ca 23. 
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Table 6.  Correlation coefficient of the water table depth changes of the first days  

                of consecutive months and the monthly mean soil moisture variations  

                for each individual water table well in the Piedmont Plateau, Maryland. 
 

Well Name 
Correlation 
Coefficient 

BA Cd  26 -0.655 
BA Ea   18 -0.620 
BA Ec  43 -0.666 
FR Cg    1 -0.541 
FR Df  35 -0.657 
HA Bd  31 -0.696 
HA Ca  23 -0.789 
HO Bd    1 -0.338 
HO Cd  79 -0.524 
HO Ce  38 -0.494 
MO Cc  14 -0.726 
MO Eh  20 -0.725 
PG Bc  16 -0.651 

 

 

 

 

The correlation coefficients between monthly mean soil moisture variations and water 

table depth changes of the first days of consecutive months at different soil layers for 

all available thirteen water table wells in  Piedmont Plateau are shown  in  Table 7.  In 

 

 

Table 7.  Correlation coefficients between monthly soil moisture variations and water  

                table changes of the first days of consecutive months at different soil layers. 

 

                            Soil Moisture Layer (cm)             Correlation Coefficient 

 

                                          0 - 10                                            -0.446 

 

                                          0 - 40                                            -0.455 

 

                                          0 - 100                                          -0.522 

 

                                          0 - 200                                          -0.530   
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general, there exists a negative correlation between these two parameters for all the 

layers involved. This demonstrates that a decrease in the water table depth, which 

means a rise of the water table, is associated with the increase in soil moisture content 

in each of the four soil layers, and vice versa.  

 

The absolute correlation coefficient between the water table changes and the soil 

moisture variations increases with the soil layer thickness. It reaches an absolute 

maximum of 0.53 when the soil moisture change in the layer of 0 - 200cm is compared 

with the water table depth variation. This higher correlation suggests that using the soil 

moisture content of 0 – 200cm soil column is better for this study. Besides soil moisture 

content, there exist some other factors such as soil type, land use, and land cover at the 

water table well sites that might affect the water table depth variations. Since the soil 

moisture is measured beneath the ground surface, the land use and land cover on the 

surface at each well site are not considered at this stage. Hydrologic soil type which 

directly affects the storage of water in the soil is the parameter (in addition to soil 

moisture content and water table depth) taken into the ANN model to represent the 

geological characteristics at each well site. 
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5.1 Model Training and Results 

 

A three-layer feedforward backpropagation ANN with four nodes in the input layer, 

two nodes in the hidden layer, and one node in the output layer was used to build the 

regional scale ANN model. Basically, there was no significant difference in the results 

that caused by the use of other number of hidden nodes in the test runs. The sigmoid 

function was used as the activation function. The structure of this ANN model is 

depicted in Figure 35. The three input nodes are monthly mean soil moisture content of 

the previous month, water table depth on the first day of the current month, and 

monthly mean soil moisture content of the current month. The output is the predicted 

water table depth on the first day of the subsequent month. The monthly mean soil 

moistures produced by NLDAS and the recorded water table depths obtained from 

USGS were used in the modeling. 

 

The model was trained for the period of November 1996 through October 2000 using 

data from all thirteen available well sites with soil moisture contents from four different 

soil layers, 0 – 10cm, 0 – 40cm, 0 – 100cm, and 0 – 200cm. Figure 36 shows the RMS 

errors of the training outputs at different iterations for the model training at four 

different soil layers. Results indicated that the model trained with soil moistures from 0 

– 200cm soil layer had the smallest RMS errors at different iterations relative to that 

from the other layers. The associated RMS errors decreased as the number of iterations 

increased. After 50,000 iterations, the training output reached a root mean square error 

of 0.351m, where not much change observed after that point. Table 8 shows the RMS  
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Figure 35.   Schematic diagram of a three layer ANN model using hydrologic soil  

                     type, monthly mean soil moisture content of the previous month, water  

                     table depth on the first day of the current month, and monthly mean soil  

                     moisture content of the current month as input. The output is the predicted  

                     water table depths on the first days of the subsequent month.  
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RMS error vs Iteration
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Figure 36.  The RMS errors versus the number of iterations for the ANN training  

                   with soil moistures at four different layers. 

 

 

 

 

 

errors of training outputs and the correlations between training outputs and observations 

for training at different soil depths at 50,000 iterations. Overall, that the model which 

trained with soil moisture content of 0 – 200cm soil stratum has a RMS error of 0.351m 

and a correlation coefficient of 0.997 is the best choice for this study. 
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Table 8.  The RMS errors of training outputs and the correlations between training   

                outputs and observations for ANN model training at different soil depths at  

                50,000 iterations. 

 

 
Soil Layer (cm) RMS Error (m) Correlation 

Coefficient 

   

0 - 10 0.384 0.996 

   

0 - 40 0.382 0.996 

   

0 - 100 0.370 0.997 

   

0 - 200 0.351 0.997 

 

 

 

The RMS error of the training outputs, as well as the correlation coefficient between 

training outputs and observations at each well site, are listed in Table 9. While at most 

of the well sites the training outputs have RMS errors less than 0.22m, three well sites 

have RMS errors around 0.4m, and one well site, MO Cc 14, had a RMS error of 

0.865m. The exceptionally high RMS error at MO Cc 14 attracted attention for a 

further investigation. Most of the correlation coefficients between the training outputs 

and the observations at the well sites are above 0.9. Only at three well locations, the 

correlation coefficients are a little less than 0.9. 
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Table 9.  The RMS errors of training outputs and the correlation coefficients between  

                training outputs and observations at the 13 well sites. 

 

Well Name RMS 
error (m) 

Correlation 
Coefficient 

      

BA Cd 26 0.203 0.971 

BA Ea 18 0.223 0.967 

BA Ec 43 0.120 0.874 

FR Cg 1 0.397 0.891 

FR Df 35 0.399 0.953 

HA Bd 31 0.430 0.925 

HA Ca 23 0.117 0.961 

HO Bd 1 0.285 0.969 

HO Cd 79 0.208 0.977 

HO Ce 38 0.209 0.933 

MO Cc 14 0.865 0.895 

MO Eh 20 0.215 0.938 

PG Ec 16 0.154 0.971 

 

 

 

A validation run was performed on the model with the data from all thirteen well sites 

for the period from November 2000 to October 2001. The overall RMS error of the 

validation outputs was 0.282m. The RMS error at each individual well site is listed in 
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Table 10. The RMS errors are less than or around 0.3m at most of the well sites except 

at MO Cc 14, which has a RMS error of 0.66m. 

 

 

 

Table 10.  The RMS errors of validation outputs at each individual well site (13 wells  

                  run). 

 

Well Name RMS error 
(m) 

    

BA Cd 26 0.203 

BA Ea 18 0.142 

BA Ec 43 0.110 

FR Cg 1 0.277 

FR Df 35 0.337 

HA Bd 31 0.258 

HA Ca 23 0.099 

HO Bd 1 0.277 

HO Cd 79 0.242 

HO Ce 38 0.195 

MO Cc 14 0.660 

MO Eh 20 0.243 

PG Ec 16 0.162 
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The high RMS errors of the model training and validation outputs at well MO Cc 14 

pointed out that the accuracy of the model outputs at this well site was questionable. 

This may have caused by the inaccurate input data at MO Cc 14 or by other factors that 

might have strong influence on the water table fluctuation at this particular site. An 

ANN model with the same structure, but trained by excluding the data at MO Cc 14, 

was therefore constructed. This ANN model, a Regional Water Table Depth Prediction 

Model (Regional_WTDP), was trained by using the recorded water table depths and the 

NLDAS generated soil moisture at 0 – 200cm layer at the twelve available well sites. 

Fifty thousand iterations were performed during the training. The RMS error of model 

training outputs improved from 0.351m to 0.26m. The correlation coefficient between 

the training outputs and the observation also showed a small improvement, from 0.997 

to 0.998. The scatter plot of the model outputs against the observations at the 12 wells 

is showed in Figure 37, which suggests a good correlation between the model output 

and the observation. Table 11a and Table 11b are the connection weights between the 

input layer nodes and the hidden layer nodes and between the hidden layer nodes and 

the output layer node used for this model. 

 

The model outputs during ANN training were compared with the observations at each 

individual well site. Figure 38 is an example of the comparison at well BA Cd 26. The 

comparisons at the rest of well locations are displayed at Appendix D. In general, the 

match between the training outputs and the observations are very good for all the 

locations. The RMS error of the training outputs and the correlation coefficient between 
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Scatter Diagram of Model Training Output Against Observation
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Figure 37.  The scatter diagram of the model predicted water table depths from ANN  

                    model training against the observed water table depths at all 12 wells. 

 

 

 

 

 

Table 11a.  Connection weights between input layer nodes and hidden layer nodes  

                    of Figure 35 for ANN model Regional_WTDP are shown here. The  

                    weight of bias input for each hidden layer node is also shown here. 

 

Input Layer Node Hidden Layer Node Weight 

      

1 1 0.02005 

2 1 0.45966 

3 1 5.44681 

4 1 -0.42208 

  1 (bias input) 0.07445 

      

1 2 -0.01734 

2 2 -0.27782 

3 2 -4.06683 

4 2 0.42545 

  2 (bias input) 4.12543 
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Table 11b.  Connection weights between hidden layer nodes and output layer node   

                    of Figure 35 for ANN model Regional_WTDP are shown in this table.  

                    The weight of bias input for the output layer node is also shown here. 

 

Hidden Layer Node Output Layer Node Weight 

      

1 1 5.2695 

2 1 -6.45252 

  1 (bias input) 0.81234 
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Figure 38.  Comparison of the model predicted water table depths during ANN  

                    training with the observations at well site BA Cd 26. 
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training outputs and observations at each well site are listed in Table 12. Except at three 

well sites,  FR Cg 1,  FR Df 35,  and HA Bd 31,  the RMS errors are a little more than 

0.4m, and the values at the rest of the well locations are around or below 0.22m. At 

most well sites the correlation coefficients are above 0.9, except at BA Ec 43 and FR 

Cg 1 where the correlation coefficients are around 0.88. 

 

 

Table 12.  The RMS errors of training outputs and the correlation coefficients  

                  between training outputs and observations at the 12 well sites. 

 

Well Name RMS error 
(m) 

Correlation 
Coefficient 

      

BA Cd 26 0.182 0.979 

BA Ea 18 0.210 0.970 

BA Ec 43 0.126 0.878 

FR Cg 1 0.421 0.876 

FR Df 35 0.424 0.946 

HA Bd 31 0.432 0.924 

HA Ca 23 0.116 0.962 

HO Bd 1 0.221 0.981 

HO Cd 79 0.173 0.984 

HO Ce 38 0.143 0.970 

MO Eh 20 0.217 0.937 

PG Ec 16 0.125 0.979 
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The model was validated by running the model on the data from all twelve well sites 

for the period from November 2000 to October 2001. The scatter diagram of the 

validation outputs against the observations at the 12 wells is displayed in Figure 39. 

The RMS error of the validation outputs is 0.206m. The validation outputs were 

compared with the observations at each individual well site. Figure 40 shows the 

comparison  at  well  BA Cd 26.  The  comparisons  at  the  rest  of  the  well sites  are  

 

 

Scatter Diagram of Validation Output Against Observation
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Figure 39.  The scatter diagram of the model predicted water table depths from ANN  

                    model validation run against the observed water table depths at all 12   

                    wells. 
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Comparison of Validation Output and Observation at BA Cd 26
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Figure 40.  Comparison of the model predicted water table depths during the  

                    validation run with the observations at well site BA Cd 26. 

 

 

displayed in Appendix E. The RMS error at each individual well site is listed in Table 

13. At most of the well sites the RMS errors are less than or around 0.25m except at FR 

Df 35, which has a RMS error of 0.366m. By excluding the data at MO Cc 14 for the 

model training, the overall RMS error of model validation outputs improved from 

0.282m to 0.206m. The correlation coefficient between the training outputs and the 

observation also improved slightly, from 0.998 to 0.999. 
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Table 13.  The RMS errors of validation outputs at each individual well site (12 wells  

                  run) 

 

. 

Well Name RMS error (m) 

    

BA Cd 26 0.154 

BA Ea 18 0.115 

BA Ec 43 0.118 

FR Cg 1 0.274 

FR Df 35 0.366 

HA Bd 31 0.258 

HA Ca 23 0.095 

HO Bd 1 0.216 

HO Cd 79 0.194 

HO Ce 38 0.146 

MO Eh 20 0.238 

PG Ec 16 0.116 

 

 

 

A forecast simulation was conducted for the period from November 2001 to April 2002 

at each individual well site using this ANN model to investigate its forecast capability. 

The forecast results at each of these 12 well locations are shown in Table 14. The 

differences between forecasted and observed water table depths are displayed in the last 
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column of Table 14. In general, the absolute difference increases with the increase of 

forecast time. Except at FR_Df_35 and HA_Ca_23, the absolute differences for the first 

month of other sites are equal to or less than 0.18m. Table 15 shows the monthly RMS 

errors of the six forecast months for all the well sites. The RMS error increases from 

0.142m of the first month to 0.614m of the sixth month. It clearly shows that the 

forecast error in the previous month has a huge influence on the accuracy of the 

forecast of water table depth for the subsequent month. 

 

 

 

Table 14.  The monthly forecast results for the period from November 2001 to April  

                  2002 at each individual well site. Month 1 is November 2001. Month 6 is  

                  April 2002. 

 

Well Name Month Observed WTD Predicted WTD Difference 

    (m) (m) (m) 

          

BA_Cd_26 1 11.80 11.70 -0.10 

  2 12.02 11.83 -0.18 

  3 12.19 11.77 -0.42 

  4 12.31 11.74 -0.57 

  5 12.39 11.88 -0.51 

  6 12.45 12.10 -0.35 

          

BA_Ea_18 1 7.72 7.55 -0.18 

  2 7.88 7.59 -0.29 

  3 7.99 7.37 -0.61 

  4 8.06 7.23 -0.83 
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Table 14.  (continued) 

  5 8.11 7.32 -0.79 

  6 8.13 7.48 -0.65 

          

BA_Ec_43 1 1.11 1.04 -0.06 

  2 1.09 1.03 -0.05 

  3 1.10 0.85 -0.25 

  4 1.01 0.78 -0.23 

  5 1.06 0.91 -0.15 

  6 1.09 1.05 -0.04 

          

FR_Cg_1 1 12.43 12.46 0.03 

  2 12.45 12.59 0.14 

  3 12.39 12.51 0.12 

  4 12.03 12.47 0.44 

  5 11.97 12.52 0.55 

  6 12.03 12.64 0.61 

          

FR_Df_35 1 18.97 18.67 -0.30 

  2 19.09 18.53 -0.56 

  3 19.26 18.24 -1.02 

  4 19.17 18.01 -1.15 

  5 19.17 17.93 -1.24 

  6 19.32 17.92 -1.40 
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Table 14.  (continued) 

HA_Bd_31 1 5.53 5.48 -0.04 

  2 5.47 5.54 0.07 

  3 5.55 5.40 -0.15 

  4 5.08 5.36 0.28 

  5 4.95 5.52 0.57 

  6 4.89 5.74 0.86 

          

HA_Ca_23 1 2.76 2.54 -0.21 

  2 2.80 2.45 -0.35 

  3 2.85 2.21 -0.65 

  4 2.78 2.05 -0.73 

  5 2.83 2.07 -0.76 

  6 2.84 2.12 -0.72 

          

HO_Bd_1 1 12.64 12.50 -0.14 

  2 12.85 12.63 -0.22 

  3 12.92 12.56 -0.37 

  4 13.12 12.50 -0.62 

  5 13.20 12.63 -0.57 

  6 13.28 12.86 -0.42 

          

HO_Cd_79 1 8.77 8.61 -0.16 

  2 8.95 8.67 -0.28 

  3 9.08 8.55 -0.53 
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Table 14.  (continued) 

  4 9.18 8.47 -0.71 

  5 9.22 8.59 -0.63 

  6 9.22 8.78 -0.44 

          

HO_Ce_38 1 11.31 11.29 -0.02 

  2 11.40 11.38 -0.02 

  3 11.46 11.28 -0.18 

  4 11.50 11.20 -0.30 

  5 11.51 11.33 -0.18 

  6 11.48 11.53 0.06 

          

MO_Eh_20 1 4.50 4.56 0.06 

  2 4.52 4.60 0.09 

  3 4.60 4.51 -0.09 

  4 4.34 4.47 0.13 

  5 4.33 4.61 0.28 

  6 4.60 4.77 0.17 

          

PG_Bc_16 1 7.63 7.56 -0.07 

  2 7.71 7.62 -0.09 

  3 7.77 7.54 -0.23 

  4 7.81 7.50 -0.31 

  5 7.83 7.62 -0.20 

  6 7.85 7.78 -0.07 
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Table 15.  The monthly RMS errors of water table depth forecast at all 12 well sites. 

Month 1 2 3 4 5 6 

RMS error(m) 0.142 0.246 0.467 0.599 0.615 0.614 
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Chapter 6:   Discussion 

 

6.1  Single Well Modeling 

 

Two ANN water table prediction models, BA_BT_WT and FR_BT_WT, using 

brightness temperature and water table depth change as input were created. Generally, 

both models performed very well in predicting water table variation. The root mean 

square errors of the model predicted water table depths during ANN training ranged 

from 0.04m for FR_BT_WT to 0.058m for BA_BT_WT at different well sites. An 

experiment that used brightness temperature and water table depth only for model 

training was performed, but the results were not acceptable. It indicates that the 

relationship between input parameters, as mentioned previously, plays a key factor for 

the success of this type of modeling. The third ANN model (BA_SM_WT) that utilized 

soil moisture content and water table depth as input had a root mean square error of 

0.059m for the model training output. It is compatible with that of BA_BT_WT. The 

root mean square errors of the twelve month’s water table depth forecasts were 

determined as 0.043m, 0.044m, and 0.047m for BA_BT_WT, FR_BT_WT, and 

BA_SM_WT, respectively. Compared with the study of Coulibaly et al. (2001) who 

used a recurrent neural network to simulate the water table fluctuations and whose 1
st
 

month’s prediction had a root mean square error ranging from 0.39m to 0.54m at four 

well sites, these results are very encouraging. 
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Sensitivity tests were performed for models BA_SM_WT and BA_BT_WT at the 

Baltimore County well site. BA_SM_WT was tested for the period of January 2001 

through December 2001. The monthly mean soil moisture contents remained the same 

for all cases. But, the initial water table depth was inputted with -5%, -2.5%, 2.5%, or 

5% of error for each case of this experiment. After 12 months of model run, the root 

mean square errors for the monthly predicted output for these four cases were found to 

be 0.201m, 0.125m, 0.12m, and 0.281m respectively. They are higher than the 0.047m 

of root mean square error for the 12 months long forecast, which started without initial 

error, for the same time period. The results showed that the predictions started to 

converge after 6 months  of  run  for  all  cases  (Figure 41).  Although  they  
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Figure 41.  Comparison of the predicted monthly water table depths generated by  

                    running ANN model BA_SM_WT with different errors on initial water  

                    table depths (WTD). 
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did not fully converge within 12 months, results indicate that the influence of the initial 

error on the input water table depth dissipated after several months of forecasting. A 

similar test was conducted at the same well site for the period of November 2002 

through October 2003 for model BA_BT_WT. The monthly mean brightness 

temperature remained the same for all cases. The initial water table depth was fed into 

the model with -5%, -2.5%, 2.5%, or 5% of error for each of these four testing cases. 

The root mean square errors of the 12 months’ prediction for these four cases are 

0.121m, 0.068m, 0.061m, and 0.085m respectively. They are higher than 0.043m of the 

12 months long forecast. The convergence of the predictions occurred at the beginning 

of the forecast  (Figure 42),  and  they  completely  converged after 5  
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Figure 42.  Comparison of the predicted monthly water table depths generated by  

                    running ANN model BA_BT_WT with different errors on initial water  

                    table depths (WTD). 
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months of forecast. This again shows the advantage of applying the ANN model on the 

long term water table fluctuation forecast. The root mean square errors of models 

BA_BT_WT and BA_SM_WT are shown in Figure 43. The RMS error of 

BA_SM_WT is larger than that of BA_BT_WT at every test. This might be due to the 

higher correlation between the soil moisture content and the water table depth, which 

makes the model more sensitive to the change in soil moisture content.  
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Figure 43.  Root mean square errors of 12 months’ predicted water table depths  

                    generated by models BA_BT_WT and BA_SM_WT at different initial  

                    water table depth errors.   
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The sensitivity test on brightness temperature was also conducted for model 

BA_BT_WT. The test was performed over the period from November 2002 through 

October 2003. Four cases, each with -10K, -5K, 5K, or 10K of initial brightness 

temperature error, were tested. The monthly mean water table depth remained the same 

for each month. The results showed that there is no significant difference among these 

four predictions (Figure 44), suggesting that this model is much more sensitive to the 

water table depth error than to the brightness temperature error.  
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Figure 44.  Comparison of the predicted monthly water table depths generated by  

                    running ANN model BA_BT_WT with different errors on initial  

                    brightness temperature (BT). 
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Another sensitivity test was performed for model BA_SM_WT for the period from 

January 2001 through December 2001 by only changing the initial soil moisture 

content. For each case, -10%, -5%, 5%, or 10% of error was added onto the initial soil 

moisture content. The comparison of the predicted water table depth of these four tests 

and the forecast is shown in Figure 45. It shows that the convergence of these 

predictions occurs at the very beginning and there exists no significant difference 

among these predictions after 6 months of run. The root mean square errors of the 

monthly  predicted  water  table  depth  are  0.05m,  0.044m, 0.058m,  and 0.076m for  
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Figure 45.  Comparison of the predicted monthly water table depths generated by  

                    running ANN model BA_SM_WT with different errors on initial soil   

                    moisture content (SM). 
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each of these four cases, respectively. Except for the second case, they all have higher 

root mean square errors than that of the forecast. Results of the above four experiments 

clearly indicate that the water table depth error, if it exists, is the major factor that 

would affect the prediction. The influence of the initial brightness temperature error is 

the least important. 
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6.2 Regional Scale Modeling  

 

An ANN water table prediction model, Regional_WTDP, using hydrologic soil type, 

NLDAS soil moisture content in 0 – 200cm, and water table depth at 12 selected well 

locations as input was created. The root mean square error of the predicted water table 

depths during ANN model training was 0.26m. The RMS error for each individual well 

site range from 0.116m at HA Ca 23 to 0.432m at HA Bd 31, with most well sites 

around or below 0.22m. Clearly, the accuracy of the regional scale water table 

prediction is not as good as that of the single well water table prediction. The 

percentage influence of input parameters on the model output (Table 16) indicated that 

the predicted water table depth was very sensitive to the current water table depth 

(85.44%). The antecedent soil moisture and subsequent soil moisture play similar roles 

on the prediction, whereas the hydrologic soil type is the least important in affecting the 

model output. Comparing the water table depth (see Table 14) and the well site 

elevation (see Table 5) with the RMS error of model training output (Table 12) at each 

well site, there appears to be no clear effect from either parameter on the prediction. 

 

 

Table 16.  The percentage influence of input parameters on the model output. 

 

Hydrologic Antecedent  Current Water Subsequent 
Soil Type Soil Moisture Table Depth Soil Moisture 

0.34% 6.53% 85.44% 7.69% 
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The model was built based on the available data at 12 well sites in Piedmont Plateau, 

Maryland. The data of well MO Cc 14 was available but not included in the input for 

the model training because of its higher RMS error of the model training output. 

Comparing with Figure 37 which came from the model training output of 12 wells run, 

a higher model outputs spread from 8m to 12m area are associated with the use of  the  

data  at  MO Cc 14  (Figure 46). Not counting data at well MO Cc 14  makes  a  

significant  
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Figure 46.  A scatter diagram of the model training output against the observation.  

                   Data from 13 well sites, including well MO Cc 14, were used in the input.  

                   A higher model outputs spread from 8m to 12m area are associated with  

                   the use of data at MO Cc 14. 
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improvement in the modeling results, which improves the overall RMS error of model 

training outputs from 0.351m to 0.26m. The error in the measured data or other factors 

that are not included in the model, such as lateral flow, might be possible reasons that 

cause the high root mean square error at MO Cc 14. 

 

Except for wells FR Cg 1, FR Df 35, and HA Bd 31, which have RMS errors of training 

output around 0.4m, at the rest of the well sites the RMS errors of the training output 

are less than 0.22m. Wells FR Cg 1 and FR Df 35 are in Frederick County, MD and are 

very close to the other geologic region. Well HA Bd 31 is in Harford County, MD and 

is very close to the northern end of the Piedmont geologic region of Maryland. More 

data are needed to investigate the causes that result in the high RMS error at these three 

well sites. 

 

Seven wells, BA Cd 26, BA Ec 43, FR Cg 1, HA Bd 31, HO Ce 38, MO Eh 20, and PG 

Bc 16 have the difference between forecast and observation less than 0.1m for the first 

month. Four wells, BA Ea 18, HA Ca 23, HO Bd 1, and HO Cd 79 have the difference 

around or less than 0.2m. FR Df 35 has a difference up to 0.3m. The RMS error of the 

forecast of the first month for these 12 well sites was 0.142m. Compared with the 

results of the single site study of Coulibaly et al. (2001), this model performed well on 

predicting one month’s water table variation at a regional scale. The RMS error, 

however, increased as the forecast time became longer. The error in the predicted water 

table depth of the current month was carried over to the next month’s prediction. This 

dramatically increased the inaccuracy of the prediction in the following month. The 
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uncertainty in the measured data is another concern. The satellite remotely sensed data 

still has some limitation in the accuracy of its measurements. The continuous long term 

daily recorded water table is only available for a few well sites. A much accurate high 

resolution satellite remotely sensed data and more well sites with daily water table 

depth recording capability definitely would improve the modeling results. 

 

The effect of the range of input data in the model training on the prediction was 

investigated. Table 17 shows the maximum and minimum values of water table depth 

data used in the model training, the initial water table depth data used for the forecast, 

and the absolute difference between the first month’s forecast and the observation at 

each well site. Among these 12 well sites, at five well sites the initial water table depth 

for the forecast run at each single well site is larger than the maximum water table 

depth used in the model training at that well site. Among these five well sites, the 

absolute difference between the first month’s forecast and the observation at BA Ea 18, 

FR Df 35 and HA Ca 23 are around or above 0.18m and that at FR Cg 1 and HA Bd 31 

are smaller than 0.04m. For the other seven well sites, the initial water table depth for 

the forecast run at each well site is in the range of minimum and maximum input water 

table depths, and the absolute difference between the first month’s forecast and the 

observation is less than 0.16m. This indicates that a better forecast would be achieved if 

the value of initial water table depth in the forecast run is in the range of the input water 

table depths used in the training of the model. On the other hand, if the initial water 

table depth in the forecast is out of the range of the input water table depths used in the 

model training, the occurrence of a larger error in the forecast is possible.  
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Table 17.  Maximum and minimum values of water table depth (WTD) data  

                  used in the model training, initial water table depth data used for  

                  the forecast, and the absolute difference between the first month’s  

                  forecast and the observation at each well site.  

 

Well Name 
Maximum 
WTD (m) 

Minimum 
WTD (m) 

Initial WTD for 
Forecast (m) 

Absolute 
Difference (m) 

BA Cd 26 12.20 9.18 11.8 0.1 
BA Ea 18 7.54 4.63 7.72 0.18 

BA Ec 43 1.11 0.65 1.11 0.06 
FR Cg 1 12.27 9.57 12.43 0.03 

FR Df 35 18.43 13.87 18.97 0.3 
HA Bd 31 5.30 0.81 5.53 0.04 
HA Ca 23 2.69 1.27 2.76 0.21 

HO Bd 1 12.83 9.22 12.64 0.14 
HO Cd 79 9.09 5.87 8.77 0.16 

HO Ce 38 11.43 9.39 11.31 0.02 

MO Eh 20 4.94 2.94 4.5 0.06 

PG Ec 16 7.76 5.79 7.63 0.07 
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6.3 Determine Future Brightness Temperature and Soil Moisture 

 

In order to apply the ANN water table prediction model on water table forecast, future 

monthly brightness temperature and soil moisture at the study site are needed. A 

method to produce future brightness temperature and soil moisture is hence proposed 

here. The idea is to derive the two future parameters based on the output of the climate 

forecast model. Currently, there exist several climate models that can forecast 

meteorological parameters at different temporal and spatial resolutions. One of them is 

the Climate Forecast System (CFS) (Saha et al., 2006) developed by the Environmental 

Modeling Center at the National Centers for Environmental Prediction (NCEP). The 

Climate Forecast System is a fully coupled ocean–land–atmosphere dynamical seasonal 

prediction system. The atmospheric component of the CFS is a lower-resolution version 

of the Global Forecast System based upon the meteorological primitive equations. It 

was the operational global weather prediction model at NCEP during 2003. The oceanic 

component is the GFDL (Geophysical Fluid Dynamics Laboratory) Modular Ocean 

Model version 3 (MOM3) (Pacanowski and Griffies 1998), which is a finite difference 

version of the ocean primitive equations under the assumptions of Boussinesq and 

hydrostatic approximations. The land component is the NOAH (NCEP, Oregon State 

University, Air Force, and Hydrologic Research Lab – National Weather Service) Land 

Surface Model, which applies finite-difference spatial discretization methods to 

numerically integrate the governing equations of the physical processes of the soil-

vegetation-snowpack medium (NASA, 2008). The CFS became operational at NCEP in 

August 2004. Recently, four CMIP (Coupled Model Intercomparison Project) T126L64 
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runs (Thiaw and Saha, 2007), CMIP1, CMIP2, CMIP3, and CMIP4, were completed. 

These four runs cover the time period from January 1, 1984 to December 31, 2101. The 

data can be obtained at http://cfs.ncep.noaa.gov/cmip126/monthly (NCEP CFS, 2008). 

The outputs of these forecast runs contain atmospheric pressure level data, surface flux 

data, and ocean data. Among them, monthly surface temperature, monthly soil 

temperatures at 0 – 10cm and 10 – 200cm, and monthly soil moistures at 0 – 10cm and 

10 – 200cm are produced at 384 x 190 grid points.  

 

Although a higher resolution data is not available at this time, the required data at the 

study well site still can be obtained with the help of ANN modeling. Based on the 

historical data, an ANN model can be built to correlate the data, such as monthly soil 

moisture, at the four grid points around a well site with that at the well site (Figure 47). 

Once the ANN model is constructed, the future data, such as monthly soil moisture, at 

the well site can be produced from this ANN model using the forecasted data from the 

climate model. Utilizing this method, the monthly surface temperature, monthly soil 

temperatures at 0 – 10cm and 10 – 200cm, and monthly soil moistures at 0 – 10cm and 

10 – 200cm at a specific well site can be obtained. 

 

Ogawa et al. (2006) showed that the thermal infrared emissivity increase was found to 

be qualitatively correlated with an increase in AMSR derived soil moisture in some of 

their  study  regions.   In  the  study  of  Chen  et  al.  (1989),  they  indicated  that  the  
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Figure 47.  Using the meteorological forecast data at the grid points, A, B, C, and D,  

                   around the well site, the needed data at the well site can be obtained by  

                   running the ANN model. 

 

emissivity could be expressed as a function of surface moisture. Pan et al. (2000) 

indicated that different types of land covers have their own characteristic emissivity. 

Vegetation, surface roughness and water content are the main factors affecting land 

emissivity. Assuming that the soil type does not change with time at a well site, soil 

moisture and surface vegetation are the only two time-dependent parameters that have 

great influence on the emissivity. Although surface vegetation varies with time, it may 

approximately be assumed to be constant for each month. This means that for each 

month in a year the emissivity at a specific well site can be expressed as a function of 

soil moisture only. A regression equation based on the historical data at that well site 

may be developed to calculate the emissivity for each month in a year.  Once the soil 

A D 

B C 

Well 
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moisture content of a future month at a well site is determined by the ANN model using 

the forecasted data, the emissivity can then be determined as well. 

   

Finally, the microwave brightness temperature at a well site can be related to the soil 

temperature through the emissivity as: 

T B  = e T soil    (Schmugge, 1990), 

where, T B  is the brightness temperature, T soil  is the soil temperature, and e is the 

emissivity. The brightness temperature at the well site may then be calculated by the 

derived emissivity and the forecasted soil temperature. 
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Chapter 7:   Conclusions 

 

Three single well water table depth prediction models which are based on ANN 

technology were constructed for two locations in Maryland. The successful application 

of satellite data on building these models for water table fluctuations prediction is very 

encouraging. The forecast capability of these three models at a single well site is 

reliable. An extension of the study to a regional scale was also performed in the area of 

Piedmont Plateau, Maryland. The results of one month long prediction are acceptable. 

A network of groundwater distribution can therefore be formed a month ahead, which 

can be used to determine the groundwater movement earlier. However, the accuracy of 

the monthly prediction decreases with the increase of time. More data are needed for a 

further study to improve the accuracy of water table fluctuations prediction in a longer 

time frame. 

 

ANN technique does provide a very good way to quickly and accurately construct a 

water table prediction model, when even if there is only a small amount of available 

data. However, the performance of these ANN models, in general, benefits from better 

correlations among the input parameters and the target parameter. A use of suitable 

parameters in the model is a key to the success of ANN modeling. In addition, the 

range of the values of the training data, such as water table depth, is crucial on the 

water table prediction. The forecast might lose its accuracy if the value of the input data 

is out of the range of the data that trained the model. 
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The results of sensitivity test showed that the models were more sensitive to the 

uncertainty in water table depth than to that in brightness temperature or in soil 

moisture content. This implies that an ANN water table prediction model still can be 

built once the trend of the time series of the observed data, such as brightness 

temperature or soil moisture, at a place that is the closest to the study site correlates 

well with the measurements at the study site, even if high resolution remotely sensed 

data is not available. However, in order to improve the accuracy of prediction, observed 

data with higher spatial and temporal resolution are still highly required. 

   

The capability of being able to correctly predict water table fluctuations at a well site is 

the advantage of using these ANN water table prediction models. These ANN models 

can be applied to run past data at a well site to fill up the missing period of the water 

table depth measurements. This can provide a much more complete data sets for water 

resource research. Moreover, with the help of a climate forecast model, the future soil 

moisture and brightness temperature over a study site can be derived. These data can be 

used for the ANN water table prediction model to conduct the water table fluctuation 

forecast. This can provide farmers, water resource planners, and environmental 

engineers a better way to foresee the possible water table variation and groundwater 

movement in order to take necessary action in a more efficient way. 
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Chapter 8:   Suggestions for Further Study 

 
Being able to apply satellite data in the ANN water table prediction modeling is the 

advantage of this study. However, limited by the availability of higher resolution 

satellite remotely sensed soil moisture data, the assimilated soil moisture data was used, 

in stead, to perform the ANN water table prediction modeling. Once the data is 

available, a further study that uses satellite observed soil moisture data in the modeling 

is recommended.  

  

This study was conducted in the Piedmont Plateau, Maryland. It was indicated that the 

impact on the forecast from the different soil types in this area was not significant in the 

regional scale modeling. It is suggested to extend this study to include other 

physiographic provinces of Maryland in the model to evaluate the model’s prediction 

capability in a region with larger geological diversity. It is showed that the model is 

more sensitive to the water table depth than to other parameters. An extension of the 

model to include Maryland Eastern Shore could provide an opportunity to examine how 

the model would respond in the shallow water table area.  

 

Single well model showed excellent prediction capability in this study. It is 

recommended to include more well sites in the study when it becomes available. The 

forecasted water table depths at these well sites can be used to construct a groundwater 

flow system. Based on this system, the moving direction and the total amount of 

pollutants transported in the groundwater can then be estimated. This could provide us 

a better chance to protect the environment.  
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Appendices 

  
Appendix A.   GrADS and Fortran Codes for Data Preparation 
 
 
 
1. An example of GrADS format control file for LDAS data 
 
 
dset ./%y4%m2%d2/%y4%m2%d2%h2.mosaic.grb 

index ./199610.idx 

undef 9.999E+20 

options template 

title mosaicexplicit.grb 

*  produced by grib2ctl v0.9.12.5p26 

dtype grib 0 

ydef 224 linear 25.063000 0.125 

xdef 464 linear -124.938000 0.125000 

tdef 744 linear 00Z01oct1996 1hr 

zdef 6 levels 

20099 16003 10099 4099 3002 1001 

vars 43 

ACONDsfc  0 174,1,0  ** Aerodynamic conductance [m/s] 

ACPCPsfc  0 63,1,0  ** Convective precipitation [kg/m^2] 

ALBDOsfc  0 84,1,0  ** Albedo [%] 

ARAINsfc  0 132,1,0  ** Rainfall (unfrozen precipitation) [kg/m^2] 

ASNOWsfc  0 131,1,0  ** Snowfall (frozen precipitation) [kg/m^2] 

AVSFTsfc  0 138,1,0  ** Average surface temperature [K] 

BGRUNsfc  0 234,1,0  ** Baseflow-groundwater runoff [kg/m^2] 

CCONDsfc  0 181,1,0  ** Canopy Conductance [m/s] 

CNWATsfc  0 223,1,0  ** Plant canopy surface water [kg/m^2] 

DLWRFsfc  0 205,1,0  ** Downward long wave flux [W/m^2] 

DSWRFsfc  0 204,1,0  ** Downward short wave flux [W/m^2] 

EVBSsfc  0 199,1,0  ** Direct evaporation from bare soil [W/m^2] 

EVCWsfc  0 200,1,0  ** Canopy water evaporation [W/m^2] 

EVPsfc  0 57,1,0  ** Evaporation [kg/m^2] 

GFLUXsfc  0 155,1,0  ** Ground heat flux [W/m^2] 

LAIsfc  0 182,1,0  ** Leaf area index [1] 

LHTFLsfc  0 121,1,0  ** Latent heat flux [W/m^2] 

MSTAVtot 0 207,112,20099,0 ** Moisture availability [%] 200cm Total Column 

MSTAVroot 0 207,112,4099,0 ** Moisture availability [%] Root Zone, 0-40cm 

NLWRSsfc  0 112,1,0  ** Net long wave (surface) [W/m^2] 

NSWRSsfc  0 111,1,0  ** Net short wave (surface) [W/m^2] 

PRESsfc  0 1,1,0  ** Pressure [Pa] 

SBSNOsfc  0 173,1,0  ** Snow sublimation [W/m^2] 
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SHTFLsfc  0 122,1,0  ** Sensible heat flux [W/m^2] 

SNODsfc  0 66,1,0  ** Snow depth [m] 

SNOHFsfc  0 229,1,0  ** Snow phase-change heat flux [W/m^2] 

SNOMsfc  0 99,1,0  ** Snow melt [kg/m^2] 

SNOWCsfc  0 238,1,0  ** Snow cover [%] 

SOILM1 0 86,112,1001,0 ** Soil moisture content [kg/m^2] Layer 1, 0-10cm 

SOILM2 0 86,112,3002,0 ** Soil moisture content [kg/m^2] Layer 2, 10-40cm 

SOILM3 0 86,112,16003,0 ** Soil moisture content [kg/m^2] Layer 3, 40-200cm 

SOILMtot 0 86,112,20099,0 ** Soil moisture content [kg/m^2] Total Column, 200cm 

SOILMroot 0 86,112,4099,0 ** Soil moisture content [kg/m^2] Root Zone, 0-40cm 

SOILMtop1m 0 86,112,10099,0 ** Soil moisture content [kg/m^2] Top 1 Meter, 0-

100cm 

SPFHsfc  0 51,1,0  ** Specific humidity [kg/kg] 

SSRUNsfc  0 235,1,0  ** Surface runoff [kg/m^2] 

TMPsfc  0 11,1,0  ** 2 Meter Temp. [K] 

TRANSsfc  0 210,1,0  ** Transpiration [W/m^2] 

TSOILdlr  0 85,112,1001  ** Deep Soil temp. [K] 

UGRDsfc  0 33,1,0  ** u wind [m/s] 

VEGsfc  0 87,1,0  ** Vegetation greenness [%] 

VGRDsfc  0 34,1,0  ** v wind [m/s] 

WEASDsfc  0 65,1,0  ** Liq Equivalent Accum. snow [kg/m^2] 

ENDVARS 

 
 
 
 
 
2. An example of GrADS format control file for LDAS subsetted soil   
    moisture data 

 
 

dset LDAS_9602_MD.grd 

undef 9.999E+20 

title mosaicexplicit.grb 

*  produced by grib2ctl v0.9.12.5p26 

ydef 17 linear  37.813 0.125 

xdef 37 linear -79.563 0.125 

tdef 54792 linear 00Z01oct1996 1hr 

zdef 1 levels 62099 

vars 6 

SOILM1 0 86,112,1001,0 ** Soil moisture content [kg/m^2] Layer 1, 0-10cm 

SOILM2 0 86,112,3002,0 ** Soil moisture content [kg/m^2] Layer 2, 10-40cm 

SOILM3 0 86,112,16003,0 ** Soil moisture content [kg/m^2] Layer 3, 40-200cm 

SOILMtot 0 86,112,20099,0 ** Soil moisture content [kg/m^2] Total Column, 200cm 

SOILMroot 0 86,112,4099,0 ** Soil moisture content [kg/m^2] Root Zone, 0-40cm 
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SOILMtop1m 0 86,112,10099,0 ** Soil moisture content [kg/m^2] Top 1 Meter, 0-

100cm 

ENDVARS 

 
 
 
 
 
3. An example of the GrADS script used to extract data from LDAS  
    hourly soil moisture dataset at a well site 
 
 
'open LDAS_9602_MD.ctl' 

'set fwrite AA_Ad_108.dat' 

'set gxout fwrite' 

'set grads off' 

'set x 24' 

'set y 12' 

'set z 1' 

i=1 

while (i<54793) 

'set t 'i 

'd SOILMtot' 

i=i+1 

endwhile 

return 

 
 
 
 
 
4. An example of the GrADS script used to extract data from LDAS  
    hourly soil moisture dataset at a well site for each year 

 
 

'open LDAS_1996_MD.ctl' 

'set fwrite AA_Bf_3_1996.dat' 

'set gxout fwrite' 

'set grads off' 

'set x 26' 

'set y 12' 

'set z 1' 

i=1 

while (i<2209) 

'set t 'i 

'd SOILMtot' 



 

 119 

 

i=i+1 

endwhile 

return 

'open LDAS_1997_MD.ctl' 

'set fwrite AA_Bf_3_1997.dat' 

'set gxout fwrite' 

'set grads off' 

'set x 26' 

'set y 12' 

'set z 1' 

i=1 

while (i<8761) 

'set t 'i 

'd SOILMtot' 

i=i+1 

endwhile 

return 

'open LDAS_1998_MD.ctl' 

'set fwrite AA_Bf_3_1998.dat' 

'set gxout fwrite' 

'set grads off' 

'set x 26' 

'set y 12' 

'set z 1' 

i=1 

while (i<8761) 

'set t 'i 

'd SOILMtot' 

i=i+1 

endwhile 

return 

'open LDAS_1999_MD.ctl' 

'set fwrite AA_Bf_3_1999.dat' 

'set gxout fwrite' 

'set grads off' 

'set x 26' 

'set y 12' 

'set z 1' 

i=1 

while (i<8761) 

'set t 'i 

'd SOILMtot' 

i=i+1 

endwhile 

return 

'open LDAS_2000_MD.ctl' 
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'set fwrite AA_Bf_3_2000.dat' 

'set gxout fwrite' 

'set grads off' 

'set x 26' 

'set y 12' 

'set z 1' 

i=1 

while (i<8785) 

'set t 'i 

'd SOILMtot' 

i=i+1 

endwhile 

return 

'open LDAS_2001_MD.ctl' 

'set fwrite AA_Bf_3_2001.dat' 

'set gxout fwrite' 

'set grads off' 

'set x 26' 

'set y 12' 

'set z 1' 

i=1 

while (i<8761) 

'set t 'i 

'd SOILMtot' 

i=i+1 

endwhile 

return 

'open LDAS_2002_MD.ctl' 

'set fwrite AA_Bf_3_2002.dat' 

'set gxout fwrite' 

'set grads off' 

'set x 26' 

'set y 12' 

'set z 1' 

i=1 

while (i<8761) 

'set t 'i 

'd SOILMtot' 

i=i+1 

endwhile 

return 
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5. An example of the Fortran code used to generate monthly mean soil  
    moisture dataset from LDAS hourly soil moisture dataset at a well site 
 
 

     program readSM 

 

     integer irec 

     real*4 TSoilMoisture, SoilMoisture 

 

        iu = 10 

        iv = 20 

 

     open(iu,file='PG_Bc_16.dat',form='unformatted', & 

              access='direct',recl=4) 

 

     open(iv,file='PG_Bc_16_mean.txt') 

 

      irec = 0 

 

      do iy = 1996, 2002 

 

      im = 1 

 

      if (iy .eq. 1996) im = 10 

 

      do m= im, 12 

 

      TSoilMoisture = 0.0 

 

      if(m .eq. 1) nday=31 

      if(m .eq. 2) nday=28 

      if(m .eq. 2 .and. iy .eq. 2000) nday=29 

      if(m .eq. 3) nday=31 

      if(m .eq. 4) nday=30 

      if(m .eq. 5) nday=31 

      if(m .eq. 6) nday=30 

      if(m .eq. 7) nday=31 

      if(m .eq. 8) nday=31 

      if(m .eq. 9) nday=30 

      if(m .eq. 10) nday=31 

      if(m .eq. 11) nday=30 

      if(m .eq. 12) nday=31 

 

      ntime = 24 * nday 

 

      ltime = 0 
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      do n=1,ntime 

 

       irec = irec + 1 

 

       read (iu,rec=irec) SoilMoisture 

 

       if (SoilMoisture .gt. 9.0E+20) ltime = ltime + 1 

       if (SoilMoisture .gt. 9.0E+20) go to 121 

 

       TSoilMoisture = TSoilMoisture + SoilMoisture 

 

121    continue 

 

       end do 

 

       print*,'ltime = ',ltime 

 

       TSoilMoisture = TSoilMoisture / (24.0 * nday  - ltime) 

 

       write(iv,*) TSoilMoisture 

 

       end do 

 

       end do 

 

       stop 

       end 

 
 
 
 
6. An example of the Fortran code to generate water table on the first  
    day of each month at selected well site 
 
 

   program readWT 

 

        integer iday(80) 

        integer id1(12),id2(12),jday(12) 

        real    rw(80),rd(80),wt(80) 

 

        iu = 10 

        iv = 20 

 

        open(iu,file='57_WO_Bg_45.txt') 

        open(iv,file='57_WO_Bg_45_use.txt') 
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      id1(1)=1 

      id1(2)=32 

      id1(3)=60 

      id1(4)=91 

      id1(5)=121 

      id1(6)=152 

      id1(7)=182 

      id1(8)=213 

      id1(9)=244 

      id1(10)=274 

      id1(11)=305 

      id1(12)=335 

 

      id2(1)=1 

      id2(2)=32 

      id2(3)=61 

      id2(4)=92 

      id2(5)=122 

      id2(6)=153 

      id2(7)=183 

      id2(8)=214 

      id2(9)=245 

      id2(10)=275 

      id2(11)=306 

      id2(12)=336 

 

      nn = 1 

 

111   continue 

 

      read(iu,*,end=222) a,b,iday(nn),wt(nn) 

 

      nn = nn + 1 

 

      go to 111 

 

222   continue 

 

      do iy = 1, 8 

 

      if(iy .eq. 1) im1=1 

      if(iy .eq. 1) im2=4 

 

      if(iy .eq. 2) im1=4 

      if(iy .eq. 2) im2=16 
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      if(iy .eq. 3) im1=16 

      if(iy .eq. 3) im2=28 

 

      if(iy .eq. 4) im1=28 

      if(iy .eq. 4) im2=40 

 

      if(iy .eq. 5) im1=40 

      if(iy .eq. 5) im2=52 

 

      if(iy .eq. 6) im1=52 

      if(iy .eq. 6) im2=64 

 

      if(iy .eq. 7) im1=64 

      if(iy .eq. 7) im2=76 

 

      if(iy .eq. 8) im1=76 

      if(iy .eq. 8) im2=77 

 

      it = 0 

 

      do kk=1,77 

      rw(kk)=0.0 

      rd(kk)=0.0 

      end do 

 

      do im = im1, im2 

 

       it = it + 1 

 

       rw(it) = wt(im) 

       rd(it) = iday(im) 

 

      end do 

      if(iy .eq. 1) then 

          rd(1) = 244 + rd(1) 

          rd(2) = 274 + rd(2) 

          rd(3) = 305 + rd(3) 

          rd(4) = 335 + rd(4) 

      end if 

 

      if(iy .eq. 1) go to 888 

 

      if(iy .eq. 5) then 

          rd(1) = rd(1) - 31 

          rd(2) = rd(2) 

          rd(3) = 31 + rd(3) 
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          rd(4) = 60 + rd(4) 

          rd(5) = 91 + rd(5) 

          rd(6) = 121 + rd(6) 

          rd(7) = 152 + rd(7) 

          rd(8) = 182 + rd(8) 

          rd(9) = 213 + rd(9) 

          rd(10) = 244 + rd(10) 

          rd(11) = 274 + rd(11) 

          rd(12) = 305 + rd(12) 

          rd(13) = 335 + rd(13) 

      end if 

 

      if(iy .eq. 5) go to 888 

 

          rd(1) = rd(1) - 31 

          rd(2) = rd(2) 

          rd(3) = 31 + rd(3) 

          rd(4) = 59 + rd(4) 

          rd(5) = 90 + rd(5) 

          rd(6) = 120 + rd(6) 

          rd(7) = 151 + rd(7) 

          rd(8) = 181 + rd(8) 

          rd(9) = 212 + rd(9) 

          rd(10) = 243 + rd(10) 

          rd(11) = 273 + rd(11) 

          rd(12) = 304 + rd(12) 

          rd(13) = 334 + rd(13) 

 

888   continue 

 

      if(iy .eq. 1 .or. iy .eq. 5) go to 333 

 

      do ii = 1, 12 

 

       jday(ii) = id1(ii) 

 

      end do 

 

      go to 555 

 

333   continue 

 

      do ii = 1, 12 

       jday(ii) = id2(ii) 

      end do 
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555   continue 

 

      jm = 1 

      km = 12 

 

      if( iy .eq. 1) jm = 10 

 

      if( iy .eq. 8) km = 1 

 

      do jj = jm, km 

 

      ll = 1 

 

660   continue 

 

      if (jday(jj) .ge. rd(ll) .and. jday(jj) .le. rd(ll+1)) go to 666 

 

      ll = ll + 1 

 

      go to 660 

 

666   continue 

 

 

      if( jday(jj) .eq. rd(ll) ) go to 771 

      if( jday(jj) .eq. rd(ll+1))  go to 772 

 

 

      x1 = 1.0*jday(jj) - rd(ll) 

 

      x2 = rw(ll+1) - rw(ll) 

 

      x3 = rd(ll+1) - rd(ll) 

 

      watertable = rw(ll) + (x1 * x2) / x3  

 

      go to 775 

 

771   continue 

 

      watertable = rw(ll) 

 

      go to 775 

 

772   continue     
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      watertable = rw(ll+1) 

 

775   continue 

 

      write(iv,30) watertable 

30    format(f8.2) 

 

      end do 

      end do 

      stop 

      end 

 
 
 
 
 
7. An example of the HDF script used to dump brightness temperature,  
    latitude, and longitude from AMSR-E data set 
 
 
dump data from July 1 through July 31 2004 

 

 

hdp dumpsds -i 7 -d -o temp.01.dat -b 

06459_01302_AMSR_E_L2A_BrightnessTemperatures_V08_200407011804_A.hdf 

cat temp.01.dat > AMSR_E_L2A_Latitude_200407011804_A_index.grd 

rm temp.01.dat 

hdp dumpsds -i 8 -d -o temp.02.dat -b 

06459_01302_AMSR_E_L2A_BrightnessTemperatures_V08_200407011804_A.hdf 

cat temp.02.dat > AMSR_E_L2A_Longitude_200407011804_A_index.grd 

rm temp.02.dat 

hdp dumpsds -n "89.0V_Res.5A_TB_(not-resampled)" -d -o temp.01.dat -b 

06459_01302_AMSR_E_L2A_BrightnessTemperatures_V08_200407011804_A.hdf 

cat temp.??.dat > AMSR_E_L2A_89.0V_Res.5_200407011804_A_index.grd 

rm temp.??.dat 

 

         . 

         . 

         . 

         . 

         . 

 

hdp dumpsds -i 7 -d -o temp.01.dat -b 

06459_01302_AMSR_E_L2A_BrightnessTemperatures_V08_200407311804_A.hdf 

cat temp.01.dat > AMSR_E_L2A_Latitude_200407311804_A_index.grd 

rm temp.01.dat 
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hdp dumpsds -i 8 -d -o temp.02.dat -b 

06459_01302_AMSR_E_L2A_BrightnessTemperatures_V08_200407311804_A.hdf 

cat temp.02.dat > AMSR_E_L2A_Longitude_200407311804_A_index.grd 

rm temp.02.dat 

hdp dumpsds -n "89.0V_Res.5A_TB_(not-resampled)" -d -o temp.01.dat -b 

06459_01302_AMSR_E_L2A_BrightnessTemperatures_V08_200407311804_A.hdf 

cat temp.??.dat > AMSR_E_L2A_89.0V_Res.5_200407311804_A_index.grd 

rm temp.??.dat 

 

 
 
 
 
8. An example of a satellite remote measuring time file for monthly  
    brightness temperature data processing 
 
 
Jul2004.txt 

 

 

200407011752 

200407021657 

200407031740 

200407041823 

200407051727 

200407061811 

200407071715 

200407081758 

200407091703 

200407101746 

200407111650 

200407111829 

200407121734 

200407131817 

200407141721 

200407151805 

200407161709 

200407171752 

200407181657 

200407191740 

200407201823 

200407211727 

200407221811 

200407231715 

200407241758 

200407251703 
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200407261746 

200407271650 

200407271829 

200407281734 

200407291817 

200407301721 

200407311804 

 
 
 
 
 
9. An example of the Fortran code used to generate daily brightness  
    temperature data set 
 
 

      program write_BT_data 

 

 

      real*4     bt,xlon,xlat 

      integer*2  ibt 

      character*12  cday(60) 

      character*60  Lon_file, Lat_file, BT_file 

       

 

      open (8, file='Jul2004.txt') 

 

      iday = 0 

 

      do nday=1,60 

 

         read(8,*,end=222) cday(nday) 

 

         iday = iday + 1 

 

      end do 

 

222   continue 

 

      close(8) 

 

      open(50,file='AMSR_E_L2A_V_BA_Ea_Jul2004_day.txt') 

 

111     format(a12,3f8.2) 

 

      lrecl = 4 
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      lrecm = 2 

 

      do nnn = 1, iday 

 

      Lon_file = 'AMSR_E_L2A_Longitude_'//cday(nnn)//'_A_index.grd'  

 

      Lat_file = 'AMSR_E_L2A_Latitude_'//cday(nnn)//'_A_index.grd' 

 

      BT_file  = 'AMSR_E_L2A_89.0V_Res.5_'//cday(nnn)//'_A_index.grd' 

 

      open(10, file= Lon_file,ACCESS='DIRECT', RECL=lrecl, & 

               FORM='UNFORMATTED', status='old') 

 

      open(20, file= Lat_file,ACCESS='DIRECT', RECL=lrecl, & 

               FORM='UNFORMATTED', status='old') 

 

      open(30, file= BT_file,ACCESS='DIRECT', RECL=lrecm, & 

               FORM='UNFORMATTED', status='old') 

 

      irec = 1 

 

      nt = 486*300 

 

      do i=1, nt 

        read(10,rec=irec,iostat=ios) xlon 

 

        if(ios .ne. 0) then  

 

           go to 333 

 

        end if 

 

        read(20,rec=irec) xlat 

 

        read(30,rec=irec) ibt 

 

        bt = ibt * 0.01 + 327.68 

 

        if (bt .eq. 0.0) go to 888 

 

        dlat2 = abs(abs(xlat) - abs(39.3458)) 

 

        dlon2 = abs(abs(xlon) - abs(76.8569)) 

 

        if (dlat2 .le. 0.025 .and. dlon2 .le. 0.0325) write(50,111) cday(nnn), xlon, xlat, bt 
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888     continue 

 

        irec = irec + 1 

 

      end do 

 

333   continue 

 

      close(10) 

 

      close(20) 

 

      close(30) 

 

      end do 

 

      stop 

 

      end 
 

 
 
 
 
10. An example of script to concatenate files together  
 
 
cat_Jul2004 
 

 

cp AMSR_E_L2A_Latitude_200407011752_A_index.grd AMSR_E_L2A_Latitude_Jul2004.grd 

cat AMSR_E_L2A_Latitude_200407021657_A_index.grd >> AMSR_E_L2A_Latitude_Jul2004.grd 

cat AMSR_E_L2A_Latitude_200407031740_A_index.grd >> AMSR_E_L2A_Latitude_Jul2004.grd 

cat AMSR_E_L2A_Latitude_200407041823_A_index.grd >> AMSR_E_L2A_Latitude_Jul2004.grd 

cat AMSR_E_L2A_Latitude_200407051727_A_index.grd >> AMSR_E_L2A_Latitude_Jul2004.grd 

cat AMSR_E_L2A_Latitude_200407061811_A_index.grd >> AMSR_E_L2A_Latitude_Jul2004.grd 

cat AMSR_E_L2A_Latitude_200407071715_A_index.grd >> AMSR_E_L2A_Latitude_Jul2004.grd 

cat AMSR_E_L2A_Latitude_200407081758_A_index.grd >> AMSR_E_L2A_Latitude_Jul2004.grd 

cat AMSR_E_L2A_Latitude_200407091703_A_index.grd >> AMSR_E_L2A_Latitude_Jul2004.grd 

cat AMSR_E_L2A_Latitude_200407101746_A_index.grd >> AMSR_E_L2A_Latitude_Jul2004.grd 

cat AMSR_E_L2A_Latitude_200407111650_A_index.grd >> AMSR_E_L2A_Latitude_Jul2004.grd 

cat AMSR_E_L2A_Latitude_200407111829_A_index.grd >> AMSR_E_L2A_Latitude_Jul2004.grd 

cat AMSR_E_L2A_Latitude_200407121734_A_index.grd >> AMSR_E_L2A_Latitude_Jul2004.grd 

cat AMSR_E_L2A_Latitude_200407131817_A_index.grd >> AMSR_E_L2A_Latitude_Jul2004.grd 

cat AMSR_E_L2A_Latitude_200407141721_A_index.grd >> AMSR_E_L2A_Latitude_Jul2004.grd 

cat AMSR_E_L2A_Latitude_200407151805_A_index.grd >> AMSR_E_L2A_Latitude_Jul2004.grd 

cat AMSR_E_L2A_Latitude_200407161709_A_index.grd >> AMSR_E_L2A_Latitude_Jul2004.grd 

cat AMSR_E_L2A_Latitude_200407171752_A_index.grd >> AMSR_E_L2A_Latitude_Jul2004.grd 

cat AMSR_E_L2A_Latitude_200407181657_A_index.grd >> AMSR_E_L2A_Latitude_Jul2004.grd 

cat AMSR_E_L2A_Latitude_200407191740_A_index.grd >> AMSR_E_L2A_Latitude_Jul2004.grd 
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cat AMSR_E_L2A_Latitude_200407201823_A_index.grd >> AMSR_E_L2A_Latitude_Jul2004.grd 

cat AMSR_E_L2A_Latitude_200407211727_A_index.grd >> AMSR_E_L2A_Latitude_Jul2004.grd 

cat AMSR_E_L2A_Latitude_200407221811_A_index.grd >> AMSR_E_L2A_Latitude_Jul2004.grd 

cat AMSR_E_L2A_Latitude_200407231715_A_index.grd >> AMSR_E_L2A_Latitude_Jul2004.grd 

cat AMSR_E_L2A_Latitude_200407241758_A_index.grd >> AMSR_E_L2A_Latitude_Jul2004.grd 

cat AMSR_E_L2A_Latitude_200407251703_A_index.grd >> AMSR_E_L2A_Latitude_Jul2004.grd 

cat AMSR_E_L2A_Latitude_200407261746_A_index.grd >> AMSR_E_L2A_Latitude_Jul2004.grd 

cat AMSR_E_L2A_Latitude_200407271650_A_index.grd >> AMSR_E_L2A_Latitude_Jul2004.grd 

cat AMSR_E_L2A_Latitude_200407271829_A_index.grd >> AMSR_E_L2A_Latitude_Jul2004.grd 

cat AMSR_E_L2A_Latitude_200407281734_A_index.grd >> AMSR_E_L2A_Latitude_Jul2004.grd 

cat AMSR_E_L2A_Latitude_200407291817_A_index.grd >> AMSR_E_L2A_Latitude_Jul2004.grd 

cat AMSR_E_L2A_Latitude_200407301721_A_index.grd >> AMSR_E_L2A_Latitude_Jul2004.grd 

cat AMSR_E_L2A_Latitude_200407311804_A_index.grd >> AMSR_E_L2A_Latitude_Jul2004.grd 

 
 
 
 
 
11. An example of the Fortran code used to generate daily brightness  
      temperature data at a well site 
 
 
      program write_BT_data 

 

 

      real*4     bt,xlon,xlat 

      integer*2  ibt 

 

      lrecl = 4 

      

      lrecm = 2 

 

      open(10, file='AMSR_E_L2A_Longitude_Jul2003.grd',ACCESS='DIRECT',   

               RECL=lrecl, FORM='UNFORMATTED', status='old')  

      open(20, file='AMSR_E_L2A_Latitude_Jul2003.grd',ACCESS='DIRECT',  

               RECL=lrecl, FORM='UNFORMATTED', status='old') 

      open(30, file='AMSR_E_L2A_89.0V_Res.5_Jul2003.grd',ACCESS='DIRECT',  

               RECL=lrecm, FORM='UNFORMATTED', status='old') 

 

      open(51,file='AMSR_E_L2A_V_BA_Cd_Jul2003.txt') 

      open(52,file='AMSR_E_L2A_V_BA_Ea_Jul2003.txt') 

      open(53,file='AMSR_E_L2A_V_BA_Ec_Jul2003.txt') 

      open(54,file='AMSR_E_L2A_V_FR_Cg_Jul2003.txt') 

      open(55,file='AMSR_E_L2A_V_FR_Df_Jul2003.txt') 

      open(56,file='AMSR_E_L2A_V_HA_Bd_Jul2003.txt') 

      open(57,file='AMSR_E_L2A_V_HA_Ca_Jul2003.txt') 

      open(58,file='AMSR_E_L2A_V_HO_Bd_Jul2003.txt') 

      open(59,file='AMSR_E_L2A_V_HO_Cd_Jul2003.txt') 

      open(60,file='AMSR_E_L2A_V_HO_Ce_Jul2003.txt') 
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      open(61,file='AMSR_E_L2A_V_MO_Cc_Jul2003.txt') 

      open(62,file='AMSR_E_L2A_V_MO_Eh_Jul2003.txt') 

      open(63,file='AMSR_E_L2A_V_PG_Bc_Jul2003.txt') 

 

      irec = 1 

 

      nt = 486*300*50 

 

      do i=1, nt 

 

        read(10,rec=irec,iostat=ios) xlon 

 

        if(ios .ne. 0) then  

           stop 

 

        end if 

 

        read(20,rec=irec) xlat 

        read(30,rec=irec) ibt 

 

        bt = ibt * 0.01 + 327.68 

 

        if (bt .eq. 0.0) go to 888 

 

111     format(3f8.2) 

 

        dlat1 = abs(abs(xlat) - abs(39.5247)) 

        dlon1 = abs(abs(xlon) - abs(76.6450)) 

 

        if (dlat1 .le. 0.025 .and. dlon1 .le. 0.0325) write(51,111) xlon, xlat, bt 

        

        dlat2 = abs(abs(xlat) - abs(39.3458)) 

        dlon2 = abs(abs(xlon) - abs(76.8569)) 

 

        if (dlat2 .le. 0.025 .and. dlon2 .le. 0.0325) write(52,111) xlon, xlat, bt 

 

        dlat3 = abs(abs(xlat) - abs(39.3847)) 

        dlon3 = abs(abs(xlon) - abs(76.7222)) 

 

        if (dlat3 .le. 0.025 .and. dlon3 .le. 0.0325) write(53,111) xlon, xlat, bt 

 

        dlat4 = abs(abs(xlat) - abs(39.5322)) 

        dlon4 = abs(abs(xlon) - abs(77.2325)) 

 

        if (dlat4 .le. 0.025 .and. dlon4 .le. 0.0325) write(54,111) xlon, xlat, bt 
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        dlat5 = abs(abs(xlat) - abs(39.4214)) 

        dlon5 = abs(abs(xlon) - abs(77.3178)) 

 

        if (dlat5 .le. 0.025 .and. dlon5 .le. 0.0325) write(55,111) xlon, xlat, bt 

 

        dlat6 = abs(abs(xlat) - abs(39.6506)) 

        dlon6 = abs(abs(xlon) - abs(76.2667)) 

 

        if (dlat6 .le. 0.025 .and. dlon6 .le. 0.0325) write(56,111) xlon, xlat, bt 

 

        dlat7 = abs(abs(xlat) - abs(39.5328)) 

        dlon7 = abs(abs(xlon) - abs(76.5072)) 

 

        if (dlat7 .le. 0.025 .and. dlon7 .le. 0.0325) write(57,111) xlon, xlat, bt 

 

        dlat8 = abs(abs(xlat) - abs(39.3194)) 

        dlon8 = abs(abs(xlon) - abs(76.9492)) 

 

        if (dlat8 .le. 0.025 .and. dlon8 .le. 0.0325) write(58,111) xlon, xlat, bt 

 

        dlat9 = abs(abs(xlat) - abs(39.2458)) 

        dlon9 = abs(abs(xlon) - abs(76.9308)) 

 

        if (dlat9 .le. 0.025 .and. dlon9 .le. 0.0325) write(59,111) xlon, xlat, bt 

 

        dlat10 = abs(abs(xlat) - abs(39.1669)) 

        dlon10 = abs(abs(xlon) - abs(76.9000)) 

 

        if (dlat10 .le. 0.025 .and. dlon10 .le. 0.0325) write(60,111) xlon, xlat, bt 

 

        dlat11 = abs(abs(xlat) - abs(39.2206)) 

        dlon11 = abs(abs(xlon) - abs(77.3783)) 

 

        if (dlat11 .le. 0.025 .and. dlon11 .le. 0.0325) write(61,111) xlon, xlat, bt 

 

        dlat12 = abs(abs(xlat) - abs(39.0761)) 

        dlon12 = abs(abs(xlon) - abs(76.9583)) 

 

        if (dlat12 .le. 0.025 .and. dlon12 .le. 0.0325) write(62,111) xlon, xlat, bt 

 

        dlat13 = abs(abs(xlat) - abs(39.0308)) 

        dlon13 = abs(abs(xlon) - abs(76.9375)) 

 

        if (dlat13 .le. 0.025 .and. dlon13 .le. 0.0325) write(63,111) xlon, xlat, bt 

 

888     continue 
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        irec = irec + 1 

 

      end do 

 

      stop 

      end 

 
 
 
 
 
12. An example of the Fortran code used to generate monthly mean  
      brightness temperature data at a well site 
 
 
      program write_BT_month_data 

 

 

      real*4     bt,xlon,xlat 

      integer*2  ibt 

 

      lrecl = 4 

      lrecm = 2 

 

      open(10, file='AMSR_E_L2A_Longitude_Jul2004.grd',ACCESS='DIRECT',  

               RECL=lrecl, FORM='UNFORMATTED', status='old') 

      open(20, file='AMSR_E_L2A_Latitude_Jul2004.grd',ACCESS='DIRECT',  

               RECL=lrecl, FORM='UNFORMATTED', status='old') 

      open(30, file='AMSR_E_L2A_89.0V_Res.5_Jul2004.grd',ACCESS='DIRECT',  

               RECL=lrecm, FORM='UNFORMATTED', status='old') 

 

666     format(3f8.2) 

 

      open(51,file='AMSR_E_L2A_V_BA_Cd_Jul2004_M.txt') 

      open(52,file='AMSR_E_L2A_V_BA_Ea_Jul2004_M.txt') 

      open(53,file='AMSR_E_L2A_V_BA_Ec_Jul2004_M.txt') 

      open(54,file='AMSR_E_L2A_V_FR_Cg_Jul2004_M.txt') 

      open(55,file='AMSR_E_L2A_V_FR_Df_Jul2004_M.txt') 

      open(56,file='AMSR_E_L2A_V_HA_Bd_Jul2004_M.txt') 

      open(57,file='AMSR_E_L2A_V_HA_Ca_Jul2004_M.txt') 

      open(58,file='AMSR_E_L2A_V_HO_Bd_Jul2004_M.txt') 

      open(59,file='AMSR_E_L2A_V_HO_Cd_Jul2004_M.txt') 

      open(60,file='AMSR_E_L2A_V_HO_Ce_Jul2004_M.txt') 

      open(61,file='AMSR_E_L2A_V_MO_Cc_Jul2004_M.txt') 

      open(62,file='AMSR_E_L2A_V_MO_Eh_Jul2004_M.txt') 
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      open(63,file='AMSR_E_L2A_V_PG_Bc_Jul2004_M.txt') 

 

      sbt01 = 0.0 

      nbt01 = 0 

 

      sbt02 = 0.0 

      nbt02 = 0 

 

      sbt03 = 0.0 

      nbt03 = 0 

 

      sbt04 = 0.0 

      nbt04 = 0 

 

      sbt05 = 0.0 

      nbt05 = 0 

 

      sbt06 = 0.0 

      nbt06 = 0 

 

      sbt07 = 0.0 

      nbt07 = 0 

 

      sbt08 = 0.0 

      nbt08 = 0 

 

      sbt09 = 0.0 

      nbt09 = 0 

 

      sbt10 = 0.0 

      nbt10 = 0 

 

      sbt11 = 0.0 

      nbt11 = 0 

 

      sbt12 = 0.0 

      nbt12 = 0 

 

      sbt13 = 0.0 

      nbt13 = 0 

 

      irec = 1 

 

      nt = 486*300*30 

 

      do i=1, nt 
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        read(10,rec=irec,iostat=ios) xlon 

 

        if(ios .ne. 0) then 

           go to 999 

        end if 

        read(20,rec=irec) xlat 

        read(30,rec=irec) ibt 

 

        bt = ibt * 0.01 + 327.68 

 

        if (bt .eq. 0.0 .or. bt .lt. 250.0) go to 888 

 

        dlat1 = abs(abs(xlat) - abs(39.5247)) 

        dlon1 = abs(abs(xlon) - abs(76.6450)) 

 

        if (dlat1 .le. 0.025 .and. dlon1 .le. 0.0325) go to 101 

 

        dlat2 = abs(abs(xlat) - abs(39.3458)) 

        dlon2 = abs(abs(xlon) - abs(76.8569)) 

 

        if (dlat2 .le. 0.025 .and. dlon2 .le. 0.0325) go to 102 

 

        dlat3 = abs(abs(xlat) - abs(39.3847)) 

        dlon3 = abs(abs(xlon) - abs(76.7222)) 

 

        if (dlat3 .le. 0.025 .and. dlon3 .le. 0.0325) go to 103 

 

        dlat4 = abs(abs(xlat) - abs(39.5322)) 

        dlon4 = abs(abs(xlon) - abs(77.2325)) 

 

        if (dlat4 .le. 0.025 .and. dlon4 .le. 0.0325) go to 104 

 

        dlat5 = abs(abs(xlat) - abs(39.4214)) 

        dlon5 = abs(abs(xlon) - abs(77.3178)) 

 

        if (dlat5 .le. 0.025 .and. dlon5 .le. 0.0325) go to 105 

 

        dlat6 = abs(abs(xlat) - abs(39.6506)) 

        dlon6 = abs(abs(xlon) - abs(76.2667)) 

 

        if (dlat6 .le. 0.025 .and. dlon6 .le. 0.0325) go to 106 

 

        dlat7 = abs(abs(xlat) - abs(39.5328)) 

        dlon7 = abs(abs(xlon) - abs(76.5072)) 
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        if (dlat7 .le. 0.025 .and. dlon7 .le. 0.0325) go to 107 

 

        dlat8 = abs(abs(xlat) - abs(39.3194)) 

        dlon8 = abs(abs(xlon) - abs(76.9492)) 

 

        if (dlat8 .le. 0.025 .and. dlon8 .le. 0.0325) go to 108 

 

        dlat9 = abs(abs(xlat) - abs(39.2458)) 

        dlon9 = abs(abs(xlon) - abs(76.9308)) 

 

        if (dlat9 .le. 0.025 .and. dlon9 .le. 0.0325) go to 109 

 

        dlat10 = abs(abs(xlat) - abs(39.1669)) 

        dlon10 = abs(abs(xlon) - abs(76.9000)) 

 

        if (dlat10 .le. 0.025 .and. dlon10 .le. 0.0325) go to 110 

 

        dlat11 = abs(abs(xlat) - abs(39.2206)) 

        dlon11 = abs(abs(xlon) - abs(77.3783)) 

 

        if (dlat11 .le. 0.025 .and. dlon11 .le. 0.0325) go to 111 

 

        dlat12 = abs(abs(xlat) - abs(39.0761)) 

        dlon12 = abs(abs(xlon) - abs(76.9583)) 

 

        if (dlat12 .le. 0.025 .and. dlon12 .le. 0.0325) go to 112 

 

        dlat13 = abs(abs(xlat) - abs(39.0308)) 

        dlon13 = abs(abs(xlon) - abs(76.9375)) 

 

        if (dlat13 .le. 0.025 .and. dlon13 .le. 0.0325) go to 113 

 

        go to 888 

 

101     continue 

 

        sbt01 = sbt01 + bt 

        nbt01 = nbt01 + 1 

 

        go to 888 

 

102     continue 

                                                            

        sbt02 = sbt02 + bt 

        nbt02 = nbt02 + 1 
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        go to 888 

 

103     continue 

 

        sbt03 = sbt03 + bt 

        nbt03 = nbt03 + 1 

 

        go to 888 

 

104     continue 

 

        sbt04 = sbt04 + bt 

        nbt04 = nbt04 + 1 

 

        go to 888 

 

105     continue 

 

        sbt05 = sbt05 + bt 

        nbt05 = nbt05 + 1 

 

        go to 888 

 

106     continue 

 

        sbt06 = sbt06 + bt 

        nbt06 = nbt06 + 1 

 

        go to 888 

 

107     continue 

 

        sbt07 = sbt07 + bt 

        nbt07 = nbt07 + 1 

 

        go to 888 

 

108     continue 

 

        sbt08 = sbt08 + bt 

        nbt08 = nbt08 + 1 

 

        go to 888 

 

109     continue 
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        sbt09 = sbt09 + bt 

        nbt09 = nbt09 + 1 

 

        go to 888 

 

110     continue 

 

        sbt10 = sbt10 + bt 

        nbt10 = nbt10 + 1 

 

        go to 888 

 

111     continue 

 

        sbt11 = sbt11 + bt 

        nbt11 = nbt11 + 1 

 

        go to 888 

 

112     continue 

 

        sbt12 = sbt12 + bt 

        nbt12 = nbt12 + 1 

 

        go to 888 

 

113     continue 

 

        sbt13 = sbt13 + bt 

        nbt13 = nbt13 + 1 

 

 

888     continue 

 

        irec = irec + 1 

 

      end do 

 

999   continue 

 

      abt01 = sbt01 / nbt01 

      abt02 = sbt02 / nbt02 

      abt03 = sbt03 / nbt03 

      abt04 = sbt04 / nbt04 

      abt05 = sbt05 / nbt05 

      abt06 = sbt06 / nbt06 
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      abt07 = sbt07 / nbt07 

      abt08 = sbt08 / nbt08 

      abt09 = sbt09 / nbt09 

      abt10 = sbt10 / nbt10 

      abt11 = sbt11 / nbt11 

      abt12 = sbt12 / nbt12 

      abt13 = sbt13 / nbt13 

 

      write(51,666) abt01 

      write(52,666) abt02 

      write(53,666) abt03 

      write(54,666) abt04 

      write(55,666) abt05 

      write(56,666) abt06 

      write(57,666) abt07 

      write(58,666) abt08 

      write(59,666) abt09 

      write(60,666) abt10 

      write(61,666) abt11 

      write(62,666) abt12 

      write(63,666) abt13 

 

      stop 

      end 
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Appendix B.   Hydrologic Soil Group of Maryland (Courtesy Maryland  

                        Department of Planning) 

 

SOIL TEXTUR HYDGRP 

A1,A1a,A1b,A1c  loamy sand; sand, sandy loam  A  

A2  sand  A  

B1,B1a,B1b,B1c  
silt loam,loam, fine sandy loam, sandy 

loam, silty clay loam, clay loam,silty 

clay, clay  
B  

B2,B2a,B2b, B2c  
silt loam, loam, gravelly loam, clay 

loam,silty clay loam  
C  

B3  
clay, silty clay, silt loam, loam,loamy 

sand  
C  

C1,C1a,C1b,C1c  
silt loam, loam, shaly silty loam, shaly 

loam, channery loam, channery silt 

loam, sandy loam  
C  

C2  silty clay loam, silty clay, clay  C  

D1,D1a,D1b, D1c  
shaly silt loam, shaly loam, silty clay 

loam, silty clay  
C-D  

E1, E1a,E1b  
sandy loam, sandy clay, loam, loamy 

sand, sand  
C  

E2,E2a,E2b  
silt loam, loam, silty clay loam, fine 

sandy loam, sandy clay loam  
C  

E3, E3a, E3b  silt loam, loam, silty clay loam  C  

F1  loamy sand, sand  D  

F2  
sandy loam, fine sandy loam, sandy clay 

loam, loam, loamy sand  
D  

F3  
silty clay loam, silty clay, clay, loam, 

silt loam  
D  

G1,G1a  
silt loam, loam, fine sandy loam, sandy 

loam, silty clay loam  
B-C  

G2  
silt loam, silty clay loam, silty clay, fine 

sandy loam, sandy loam, loam, muck  
D  

G3  variable  N/A  

H1,H1a,H1b,H1c  
Too variable to rate. Determine the specific soil series name from 

detailed 

 soil map and use the information for the group that the series is in.  

H2,H2a,H2b,H2c  
Too variable to rate. Determine the specific  soil series name from 

detailed soil map and use the information for the group that the series is 

in.  
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Appendix C.   Comparison of Time Series of Water Table Change and Soil  

                         Moisture Variation at the 13 Well Sites in Piedmont Plateau, MD 

 

Monthly Variation in Water Table Depths and Soil Moisture Contents (at BA_Cd_26)
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Monthly Variation in Water Table Depths and Soil Moisture Contents (at BA_Ea_18)
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Monthly Variation in Water Table Depths and Soil Moisture Contents (at BA_Ec_43)
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Monthly Variation in Water Table Depths and Soil Moisture Contents (at FR_Cg_1)
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Monthly Variation in Water Table Depths and Soil Moisture Contents (at FR_Df_35)
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Monthly Variation in Water Table Depths and Soil Moisture Contents (at HA_Bd_31)
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Monthly Variation in Water Table Depths and Soil Moisture Contents (at HA_Ca_23)
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Monthly Variation in Water Table Depths and Soil Moisture Contents (at HO_Bd_1)
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Monthly Variation in Water Table Depths and Soil Moisture Contents (at HO_Cd_79)
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Monthly Variation in Water Table Depths and Soil Moisture Contents (at HO_Ce_38)

-4

-3

-2

-1

0

1

2

3

4

Nov-96 Mar-97 Jul-97 Nov-97 Mar-98 Jul-98 Nov-98 Mar-99 Jul-99 Nov-99 Mar-00 Jul-00

W
T

D
 C

h
a
n

g
e
 (

m
)

-4

-3

-2

-1

0

1

2

3

4

S
M

 C
h

a
n

g
e
 (

x
1
0
0
k
g

/m
**

2
)

monthly water table depth change monthly soil moisture change

 
 

 



 

 148 

 

Monthly Variation in Water Table Depths and Soil Moisture Contents (at MO_Cc_14)
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Monthly Variation in Water Table Depths and Soil Moisture Contents (at MO_Eh_20)
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Monthly Variation in Water Table Depths and Soil Moisture Contents (at PG_Bc_16)
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Appendix D.   Comparison of Training Outputs and Observations at 12  

                         Available Wells in Piedmont Plateau, Maryland 

 

Comparison of Model Output and Observation at BA Cd 26
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Comparison of Model Output and Observation at BA Ea 18
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Comparison of Model Output and Observation at BA Ec 43
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Comparison of Model Output and Observation at FR Cg 1
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Comparison of Model Output and Observation at FR Df 35
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Comparison of Model Output and Observation at HA Bd 31
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Comparison of Model Output and Observation at HA Ca 23
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Comparison of Model Output and Observation at HO Bd 1
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Comparison of Model Output and Observation at HO Cd 79
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Comparison of Model Output and Observation at HO Ce 38
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Comparison of Model Output and Observation at MO Eh 20
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Comparison of Model Output and Observation at PG Ec 16
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Appendix E.   Comparison of Validation Outputs and Observations at  

                        12 Available Wells in Piedmont Plateau, Maryland 

 

Comparison of Validation Output and Observation at BA Cd 26
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Comparison of Validation Output and Observation at BA Ea 18
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Comparison of Validation Output and Observation at BA Ec 43
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Comparison of Validation Output and Observation at FR Cg 1

0

2

4

6

8

10

12

14

16

Nov-00 Dec-00 Jan-01 Feb-01 Mar-01 Apr-01 May-01 Jun-01 Jul-01 Aug-01 Sep-01 Oct-01

W
a
te

r 
T

a
b

le
 D

e
p

th
 (

m
)

Observation Validation Output
 

 

 



 

 158 

 

Comparison of Validation Output and Observation at FR Df 35
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Comparison of Validation Output and Observation at HA Bd 31
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Comparison of Validation Output and Observation at HA Ca 23
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Comparison of Validation Output and Observation at HO Bd 1
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Comparison of Validation Output and Observation at HO Cd 79
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Comparison of Validation Output and Observation at HO Ce 38
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Comparison of Validation Output and Observation at MO Eh 20
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Comparison of Validation Output and Observation at PG Bc 16
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