
7

Table of Contents

1. Introduction .. 9

1.1. The Importance of Requirements and of Requirements Traceability .. 12

1.2. Usage Scenarios .. 16

1.3. NL Requirements Discovery .. 17

1.4. NL Requirements Classification... 21

1.5. An Emergent Grammar and Perspective .. 23

1.6. Research Method .. 27

2. Related Research .. 29

2.1. Requirements and Requirements Processes in Open-Source .. 30

2.2. Pattern-Based Analysis of Requirements .. 33

2.3. Requirements Discovery ... 34

2.4. Requirements Classification .. 35

2.5. Software Product Quality and Software Development Project Success 37

3. The Grammar-Based Approach ... 40

3.1. Classifier Design .. 40

Illustrative Text Tagging .. 41

Requirements Parsing Ontology ... 42

3.2. Classifier Engineering .. 47

Rule-Based Tagging ... 47

Auxiliary Text Processing .. 49

4. The Delimiter-Based Approach ... 51

4.1. Classifier Design .. 52

Illustrative Text Tagging .. 52

Requirements Parsing Ontology ... 53

4.2. Classifier Engineering .. 55

Parsing Pipeline ... 55

Rule-Based Tagging ... 57

5. Evaluation and Applications .. 58

5.1. The SourceForge Dataset .. 59

47

3.2. Classifier Engineering

The RCNL classifier is implemented in GATE (Cunningham et al. 2002). The General

Architecture for Text Engineering is developed by the Sheffield Natural Language Processing

Group at the University of Sheffield and is surrounded by a large community of collaborators

and users. Next, I describe at a high level the engineering involved in realizing the RCNL

framework in GATE. In particular, I describe rules for tagging text according to the ontology,

additional text processing, and the overall text processing activity.

The parser implements the RCNL ontology to recognize and classify NL micro-

requirements. The patterns used in the tagging of NL text are encoded in RCNL using the

JAPE (Java Annotation Pattern Engine). For each level, JAPE rules specify how GATE tags

text with concepts of that level. The rules are organized in a pipeline and executed

sequentially, from level 0 to level 5. The final output includes qualified (L2) micro-

requirements (L4) that are also classified (L5) according to the rules of McCall+ classifier.

Any piece of text may have multiple tags generated by rules from multiple levels.

GATE supports levels 0 and 1 directly, identifying tokens and some parts of speech. The

RCNL classifier rules augment and extend the native GATE tags to aid processing for

OSSD projects.

Rule-Based Tagging

GATE defines an architecture for executing plugins over NL text. GATE users may develop

their own plugins; however, GATE provides a variety of plugins for common NLP tasks.

GATE also provides JAPE (Java Annotation Pattern Engine), a rule-based text-

engineering engine that supports Java and regular expressions. Another benefit of using

GATE is the annotation indexing and search engine with an advanced graphical user

interface called ANNIC (Annotations in Context). The analyses of this study use ANNIC

48

for development of rules and inspection of results, and JAPE for rule design and

implementation.

JAPE rules specify a left-hand side (LHS) in which the pattern to be matched is defined

and a right-hand side (RHS) in which the annotation and its features to be created for all

the discovered instances of the pattern are being specified. Multiple and complex patterns

can be defined in the LHS of a JAPE rule. Similarly, the RHS of a JAPE rule can be used to

specify multiple annotations and features to be created for each matching pattern or for

each matching element of a pattern.

The current implementation of the grammar-based RCNL classifier consists of over 200

JAPE rules, not including the rules designed for generating evaluation metrics. To illustrate

how the grammar-based RCNL ontology is recognized through JAPE rules, I present rules

from levels 3 and 5. The rules presented here are simplified for clarity.

A Level 3 Rule

To illustrate the rule techniques, here is a rule from L3.

Rule: PotentialSubjectFinder

(

 (

 {Token.category == PP} |

 {Token.category == PRP} |

 {Token.category == "PRPR$"} |

 {Token.category == "PRP$"} |

 {L1.category == "Noun"} |

 {L0.category == "Filename"} |

 {L0.category == "email"} |

 {L0.category == "url"} |

 // ...

 ({L1.category == "Determiner"} {L1.category == "Noun"})

) [1,5]

)

:SubjectFound

-->

 :SubjectFound.L3 = {category = "Subject"}

49

The LHS part of the rule defines a pattern searching for pronouns (as defined in pre-defined

rules in GATE), or nouns (as defined in L1), or filenames, Url’s, email, (as defined in L0), or a

determiner followed by a noun (up to 5 instances of this pair). When either one of these is found,

the text matching the pattern is annotated as an L3 Subject.

A Level 5 Rule

Here is an L5 classification rule.

Rule: L5_Comunicativeness

(

 {L4.valid == "Yes",L4_Requirement contains KW_F5C12}

)

:L5_ComunicativenessFired

-->

 :L5_ComunicativenessFired.Comunicativeness = {category = "F5C12"}

The LHS part of the rule matches text annotated as L4 (micro-requirement) that contains

keywords associated with factor 5 and criteria 12 of McCall’s model. The matched text is

annotated as Communicativeness, which is the label for factor 5, criteria 12.

Auxiliary Text Processing

Three auxiliary kinds of text processing are noteworthy. First, list processing presents an

interesting problem. OSSD project texts include technical yet informal communication

containing numerous examples of specifications expressed with lists. Lists typically have an

introductory phrase followed by one or more list items:

<Introductory phrase> [<list item>]+

Sometimes the introductory phrase and each list item are complete micro-requirements.

However, most often the introductory phrase can be classified as a micro-requirement while the

list items are examples or statements that extend the meaning of the introductory phrase. To

address such issues, the L5 tag associated with the introductory phrase is propagated to all the

list items. As such, a list item can have two tags: a tag from parsing the list item, and a tag

100

RTF (from Section 5.7) are computed. Finally, their trends of consecutive windows

(e.g., ΔRDC, ΔRTF) are computed.

4. Correlate requirements factors with project qualities that may relate to project

success

Finally, the derived factors are plotted, correlated, and otherwise compared as part of

the exploration of relationships.

The dataset is comprised of the feature request posts from 16 OSSD projects, as listed

on Table 8. The data collected is grouped in 16 text files (with sizes ranging from 229Kb to

2,304Kb), one for each project. This is the same source of data used to validate RCNL

(Vlas and Robinson 2011; Vlas and Robinson 2012), which simplifies comparison and

ensures validation of the requirements classification.

The analysis of OSSD projects lifecycle requires a time-based analysis of available data

(data windows). We use the included timestamps to determine the duration of each project

and we split up the project files into 6-month long data windows. The analysis of projects

includes within and between project analyses. We explore the evolution of the number of

requirements factors that shape a project’s lifecycle.

Requirements Development Cohesion

Figure 14 shows a stacked graph of requirements variance for 14 projects (two of the projects

did not have twelve 6-month windows). For each project, requirements variance is calculated as

follows:

σREQ ≝ standard deviation (R), where each ri is the

count of requirements of type i
(1)

ΔσREQ ≝ dσREQ /dt = (σREQ1 – σREQ2) / (t2 – t1), where ti ∈ sequential

data windows
(2)

101

Thus, σREQ measures RDC as the variations in count of different requirement types within a

data window. A project period having low σREQ means that developers are dividing the attention

equally among REQ types. In contrast, a project period having high σREQ means that developers

are focusing their attention on a few requirement types. Theory suggests that this occurs during

the exploratory process of learning and innovation. We are interested in ΔσREQ – a large ΔσREQ

suggests a transition in the project requirements cohesion.

The line graph at the top of Figure 14 shows the average σREQ for 14 projects. Notice it

has a negative slope, showing that, over time, projects tend toward equal treatment of

requirement types. A careful analysis of the Figure 12 shows that some projects show

waves of σREQ, revealing cycles of innovation followed by consolidation.

Figure 15 shows a (solid) line graph of KeePass’s σREQ for 13 6-month data windows.

Notice that the wave peaks at points 2, 6, 10 and 12. These suggest innovation in KeePass

Figure 14. Stacked graph of requirements variance with average as line (Top, scaled right).

102

as the developers focus on a few requirements types that are central to new product

features.

The closing of feature requests marks the inclusion of new features in a release of the

software product. In Figure 15, the Closed (dashed) line shows the count of feature

closings. The feature closings line also has wave peaks at 2, 3, 7, 8, 10, and 12. It’s

interesting to note that some Closed wave peaks seemly reflect prior σREQ wave peaks.

Theory suggests that, a successful innovation effort (σREQ peak) results in a subsequent

feature (Closed peak). Moreover, when the team works to close a feature, it devotes less

effort to innovation (assuming a relatively fixed number of developers). Thus, as Closed

increased σREQ decreases.

These relationships between σREQ and Closed seem to hold (roughly) in Figure 15.

Checking for correlation between the σREQ and Closed values using Pearson’s correlation

coefficient gives us ρσ,closed = -0.42, indicating a weak negative correlation. This is

expected given that the theory suggests an inverse, time-shifted weak correlation –

Figure 15. Requirements variance and Closed features (scaled left) with

Downloads (scaled right) for KeePass.

103

especially true because some innovations will not be finalized as a product feature, and

thereby create a missing feature peak.

Figure 15 also shows the number of downloads, as a (dashed-dotted) line graph. Just as

waves of innovation (σREQ) lead to subsequent waves of product features (Closed), product

features should lead to subsequent waves of downloads. Again, checking Pearson’s

correlation coefficient gives us ρclosed,downloads = 0.43, indicating a weak positive correlation.

Again, this is expected given that the theory suggests a time-shifted weak correlation –

especially true because some features will not sufficiently interest users to warrant a

download.

Table 10 shows the correlations for the eight projects that had sufficient data (e.g.,

feature-closed statistics) for analysis. The column headings are defined as follows:

 ρσ, closed

Pearson’s correlation coefficient between σREQ and the number of Closed (features)

 ρclosed, downloads

Pearson’s correlation coefficient between the number of Closed (features) and the

number of Downloads

 Features Solved

The number of features requests “solved” through new or modified code (excluding

“duplicate” or “dropped” feature requests)

 Patches Solved

The number of patch requests “solved” through new or modified code (excluding

“duplicate” or “dropped” patch requests)

104

 Closed/ Reqs

The ratio of the number of Closed (features) to the number of discovered requirements

(by the RCNL parser)

 Weekly Downloads

The number of weekly downloads (from Source Forge). Downloads is used as a proxy for

project success because: (1) it represents user interest, and (2) indirectly represents usage,

and (3) provides a quantitative comparable metric for our dataset.

When taken as a whole, with the caveats of time-shifting and failures in the process steps (i.e.,

failure to implement an innovation as a close feature), the Table 10 ρσ, closed and ρclosed, downloads

values suggest that this theory is worth more exploration. Importantly, for our tooling efforts, it

appears that our processing steps (discover, classify, characterize, and correlate) will support

exploration and confirmation of open source development theories through analysis of their

documents.

Table 10. Project correlations for requirements variance, closed features,

downloads, and related project attributes.

Project

Name

ρσ,

closed

ρclosed,

downloads

Features

Solved

Patches

Solved

Closed/

Reqs

Weekly

Downloads

awstats -0.20 -0.40 31% 63% 0.047 714,553

compiere -0.08 -0.18 53% 97% 0.107 114,068

filezilla - - - - - 57,516

fire - - 80% 0% - 31,148

floats - - 28% 100% - 15,214

gallery - 73% 76% 0.136 5,163

keepass -0.40 0.43 79% 99% 0.140 4,169

megamek -0.10 -0.01 82% 98% 0.069 2,073

pcgen - - - - - 1,829

phpgedview -0.40 0.09 49% 89% 0.107 1,550

phpmyadmin -0.26 0.17 77% 92% 0.157 922

popfile - - 88% 97% - 766

sourceforge - - - - - 718

tikiwiki - - 23% 61% - 269

tortoise - - 61% 95% - 216

winmerge 0.06 -0.19 61% 97% 0.161 32

105

Consider AwStats from Table 10. The value of ρclosed,downloads = -0.40 seems to present a

counter example. Let’s also consider Figure 16, which graphs requirements variance,

Closed features, and Downloads for AwStats.

Notice that there are relatively few closed features after data window 10. In comparing

the waves of innovation, indicated by requirements variance (StdDev), with the wave of

closed features, we see that the peaks of innovation are not reflected in subsequent feature

closings. In comparing with other projects, AwStats has the third lowest percentage of

feature requests closed at 31%, where the mean is 60%. It also has the second lowest

percentage of patches solved, at 63% where the mean is 82%. Thus, it seems that AwStats

is an outlier in the development process when compared with the other project s. The

negative ρclosed,downloads correlations of Compiere and WinMerge may be explained in similar

fashion.

Consider mapping ρclosed,downloads onto three values:

 Low = ρclosed,downloads < -0.15

Figure 16. Requirements variance (StdDev) and Closed features (scaled left)

with Downloads (scaled right) for AwStats.

106

 Medium = -0.15 ≤ ρclosed,downloads < 0.15

 High = ρclosed,downloads  0.15

Projects with high ρclosed,downloads are consistent with the σREQ innovation wave theory. The

others may have other factors that prevent innovative features from increasing downloads. Using

the attributes of Table 10 as inputs, we applied decision tree data-mining to derive the following

classification rules:

1. If ρσ, closed > -0.26, then ρclosed,downloads = Low

2. If ρσ, closed ≤ -0.26, and …

a. Closed/Reqs > 0.107 then ρclosed,downloads = High

b. Closed/Reqs ≤ 0.107 then ρclosed,downloads = Medium

These rules cover the 7 projects (having ρσ,closed) with only 1 misclassification. The rules

support the theory in that that ρσ, closed affects ρclosed,downloads. Additionally, these rules suggest that

Closed/Reqs affects ρclosed,downloads. This helps to explain why AwStats, Compiere, and WinMerge

do not have increased downloads with increased feature closing. These aberrant projects have too

small of Closed/Reqs ratio – too many requirements are being considered relative to the number

of features being closed. This suggests that too many requirements ideas being discussed are

reducing the effort to close features.

Requirements Traceability Focus

Traceability plays an important role in project management. As we show next, more

emphasis on traceability than on operability may further explain why AwStats, Compiere, and

WinMerge appear to have aberrant development practices.

 By following a trace, developers improve their understanding of the project and its

evolution. During testing, developers will trace from test cases back to requirements as part

107

of verification. Although open source methodologies rarely tout traceability – for system

integration for example – they do promote the benefits of unit testing, which requires

simple, direct traceability from test case to code.

Our analysis reveals that open source has a greater emphasis on operability than on

traceability. Both Figure 17 and Figure 18 show that KeePass and AwStats have more

operability requirements than those addressing traceability. However, there is an interesting

difference in the graphs. Notice that graphs of operability and traceability become closer

around the 11
th

 6-month data window for AwStats – for their developers, traceability

becomes nearly as important as operability.

Figure 19 shows this distinction more clearly by graphing the ratio of

operability/traceability for KeePass, AwStats, Compiere, and WinMerge (in this study, RDF

is the ratio of operability/traceability). Notice that the ratio increases substantially at point

11 for AwStats, while KeePass is mostly constant throughout the development. The other 2

projects, Compiere and WinMerge, similarly have points where their ratio raises above

Figure 17. Evolution of Operability and Traceability in KeePass.

108

their average. Thus, the 3 projects that have ρclosed, downloads > 0 (and thus seem inconsistent

with the σREQ innovation theory) all have spikes in their operability/traceability ratio. When

this distinction is considered, the theory is consistent with the data set.

Figure 18. Evolution of Operability and Traceability in AwStats.

Figure 19. The operability/traceability ratio for four projects.

109

This increased emphasis on traceability is consistent with those projects that fail to

convert many new requirements into implemented features. In terms of the preceding

metrics:

 ρσ, closed is weakly positive, indicating difficulty in converting innovations (σREQ)

into closed features

 Closed/ Reqs is low (with Closed low), indicating more emphasis on discussing

requirements rather than on implementing them

 Operability/traceability has spikes (with operability low and traceability high),

indicating that traceability, and thus understanding the development and evolution,

has become an issue

 ρclosed,downloads < 0 (with Closed low and Downloads low), indicating users are not so

interested in downloading the newly implemented features

Together, these suggest that, at some point, these projects have difficulty converting abstract

requirements innovation (σREQ) into delivered functionality (Closed high and Downloads high).

Discussion of the Exploratory Study Findings

The previous sections summarize our preliminary analysis of 16 OSSD projects using NL

requirements parsing and RCNL classification. We began this analysis to show how the RCNL

can be used to analyze relationships among open-source documents. Because of this analysis,

we have come to posit the σREQ innovation theory, which conjectures a sequential, wave-like

process from requirements innovation (σREQ) to closing features to increased downloads.

Consequently, we believe that we have shown how RCNL can aid in theory formation.

The σREQ innovation theory remains a conjecture until more data can be analyzed and

more formal modeling of the time-shifted process correlations can be done. Additionally,

110

underlying assumptions should be validated. For example, it should be validated that

increased σREQ activity results in increased innovation, rather than simply more randomized

requirements. Likewise, it should be validated that increased operability/traceability spikes

(with operability low and traceability high) is indicative of developers having trouble

converting feature requests into closed features. Such detailed validation may require a

grounded theory approach to analyzing the meaning of the underlying artifacts. In the

meantime, however, RCNL does provide some indication that these assumptions hold based

on its prior validation.

This article demonstrates how a NL requirements parsing and RCNL classification can be an

aid to understanding what open source developers are doing through analyses of their documents.

The work assumes a requirements engineering perspective: requirements are in the topmost

critical factors for project success, thus their analysis provides insight into a project’s success.

The work looks at requirements qualities to assess project qualities in the early or middle part of

its lifecycle. The approach assumes four common steps:

1. Discover open source requirements

2. Classify open source requirements

3. Characterize trends of the classified requirements into requirements factors

4. Correlate requirements factors with project qualities that may relate to project

success

The resulting correlations provide insights into how open source developers do their work.

This article presents a case study of this approach, which posits the theory that

innovations expressed as requirements appear as a wave (in quantity) that is reflected in a

subsequent wave of feature closures, that is reflected in a subsequent wave of product

111

downloads. Developers that stumble over one of these steps will likely see a reduction in

product downloads. This theory is consistent with the dataset of 16 OSSD projects, but

remains a conjecture for more comprehensive analysis. The small sample size demands

further analysis.

6. Discussion and Conclusions

This dissertation contributes to research and practice of OSSD. A systematic method for

discovery and classification of requirements in OSSD projects is currently not available. Such a

method enables important improvements, such as: (1) better understanding of open-source

requirements, their types and lifecycles, and (2) better understanding of project scope, goals, and

overall project direction. Such understanding in turn leads to better understanding and

improvement of both OSSD project, but also more traditional software development. Moreover,

the set of artifacts designed, developed and proposed in this dissertation (method, model, and

tool) are specifically created as flexible and highly adaptable artifacts since they comprise a

software analysis framework with potential future applicability in a wide set of domains. This

framework is currently customized to meet the specific characteristics of OSSD but its

requirements-based NLP analysis techniques and its architecture can be adapted to the specifics

of other software development environment or methodology.

This research study provides few specific contributions:

1. A grammar-based design of software automation for the discovery and classification

of natural language requirements

2. Two alternative parsing schemes implemented within the design

3. Requirements discovery, classification, and analysis of 30 OSS projects

112

4. An exploratory study on the impact of requirements types and evolution on OSSD

project success

5. A conjecture wave theory of requirements innovation

Together, 1 and 2 above affirm hypothesis H1.1: A multi-layered grammar, varying in

domain specificity, can be constructed for the automated requirements discovery and

classification of requirements contained within software informalisms of Open-Source

Software Development projects. In total, these contributions provide a path for subsequent

empirical studies of OSS requirements and enable subsequent software tools facilitating

automation of requirements traceability analysis in support of IS development process

studies. The RCNL classifier provides a solution to existing industry problems and an

alternative to existing methods that require substantial input from the researcher. The

RCNL classifier runs autonomously. However, users and researchers may choose to

customize rules from the top-most layers of the six-layer ontology to work most effectively

with new datasets. Although I did develop and test it on a large SourceForge dataset, it may

be that other OSS data or traditional software artifacts require changes to the lower levels

of the parser (levels L0 through L2 in Table 1 and Table 2). To adapt the RCNL classifier to

another quality model (other than McCall), only level 5 (L5) rules must be modified.

The adapting of the RCNL classifier to various domains and datasets is possible due to

its highly customizable nature. However, I acknowledge the unstable nature of the

emergent grammar used in the OSS communication that I analyze in this study.

Consequently, I recognize that the artifacts developed here provide only a snapshot in the

evolution of the OSSD language. The continuous use of these artifacts even in the same OS

environment might require a continuous adaptation to the ever changing attributes of the

113

domain analysis. Similarly, the RCNL tool can be applied to traditional requirements

documents only after a customization designed to capture the specifics of that domain is

accomplished. Most closed source documents have clearly delineated requirements, with

few classifications. The RCNL classifier can be used to identify incomplete or incorrect

requirements specifications, extend existing requirements classifications, or provide new

classifications where they do not exist.

Future work has two main directions. First, I will continually refine the parsing rules to

improve the quality of the recognition and classification. This will be achieved largely

through detailed analysis of partially correct and missing tags in the analyzed dataset.

Another improvement direction is represented by capturing part of the context surrounding

a grammar-based requirement. This will be achieved through the implementation of

reference resolution techniques (Mitkov 1998; Li et al. 2004; Mala and Uma 2006). Other

two areas of improvement are the automation of data collection process through the use of

data integration platforms such as KNIME, and the enhancing of the NL analysis through

the use of machine learning techniques. Second, I will extend the data to include structured

text. Feature requests, bug reports, and other tracked work items have a variety of

structured attributes including: author, data, version, references (links), etc. I believe such

structured data can be used to increase the recognition and classification quality. With

access to the structured data, I plan to extend the work to analyze traceability relationships,

such as contributions, evolution, and the interrelation between requirements and code.

Fourth, I will customize the artifacts proposed by this dissertation and apply them to

analyses in new domains, such as state-level IT governance policies, and evolution of

technological innovation in social media.

114

7. Appendix

Illustrative classifications of micro-requirements discovered.

Micro-requirement Classification

Best way would be to configure a program via KeePass options

and only link that program within the password entry.

C8 – Access control

C9 – Access audit

C17 - Expandability

… when a new version of Firefox would be installed in a different

directory, I only had to change the path once

C13 – Simplicity

C17 - Expandability

I would like to be able to manage icons used for KeePass entries,

maybe even import icons from system dlls.

C1 – Traceability

C2 – Completeness

C6 – Execution efficiency

C7 – Storage efficiency

C9 – Access audit

C10 – Operability

C19 - Modularity

Perhaps the ability to manage icons will be included in a future

release

C2 – Completeness

C6 – Execution efficiency

C7 – Storage efficiency

Plus I'd like to have a USB memory stick that could open the KDB

file too.

C7 – Storage efficiency

C12 - Communicativeness

… the first match is automatically selected C3 – Consistency

C4 – Accuracy

C6 – Execution efficiency

C10 – Operability

C13 – Simplicity

… a plot that is being created using pdf backend it would be great

if the url argument actually created a clickable html link.

C1 – Traceability

C10 – Operability

I tried to compile the package with python 2… C15 - Instrumentation

It should either be documented and [namespace export]ed, or

should be changed to look like a private command.

C8 – Access control

C11 – Training

C12 – Communicativeness

C17 - Expandability

Please make it possible to search in the notes field and jump to the

first matching entry (using ctrl-f).

C1 – Traceability

C3 – Consistency

C6 – Execution efficiency

C9 – Access audit

C10 – Operability

C16 – Self-descriptiveness

The most common approach is when there is a single-sign-on

system on the back end but multiple entry points.

C2 – Completeness

C3 – Consistency

C6 – Execution efficiency

C9 – Access audit

C18 – Generality

C19 - Modularity

117

Cockburn, A. (1997). "Using Goal-based Use Cases." Journal of Object–Oriented

Programming 10: 56-62.

Crowston, K., H. Annabi and J. Howison (2003). Defining Open Source Software Project

Success. Proceedings of the 24th International Conference on Information Systems.

Crowston, K., J. Howison and H. Annabi (2006). "Information Systems Success in Free and

Open Source Software Development: Theory and Measures." Software Process:

Improvement and Practice (Special Issue on Free/Open Source Software Processes.) 11(2):

123-148.

Cunningham, H., D. Maynard, K. Bontcheva and V. Tablan (2002). GATE: An Architecture

for Development of Robust Hlt Applications. Proceedings of the 40th Annual Meeting on

Association for Computational Linguistics (ACL'02), Philadelphia, Association for

Computational Linguistics.

Davis, F. D. (1989). "Perceived usefulness, perceived ease of use, and user acceptance of

information technology." MIS Quarterly 13(3): 319-339.

DeLone, W. H. and E. R. McLean (1992). "Information Systems Success: The Quest for the

Dependent Variable." Information Systems Research 3(1).

DeLone, W. H. and E. R. McLean (2003). "The DeLone and McLean Model of Information

Success: A Ten-Year Update." Journal of Management Information Systems 19(4): 9-30.

Denger, C., D. Berry and E. Kamsties (2003). Higher Quality Requirements Specifications

through Natural Language Patterns. Proceedings of the IEEE International Conference on

Software: Science, Technology & Engineering (SwSTE’03), IEEE Computer Society.

Dvir, D. (2003). "An empirical analysis of the relationship between project planning and

project success." International Journal of Project Management 21(2): 89-95.

Dvir, D. (2005). "Transferring projects to their final users: The effect of planning and

preparations for commissioning on project success." International Journal of Project

Management 23(4): 257-265.

Edwards, M. L., M. Flanzer, M. Terry and J. Janda (1995). RECAP: a requirements

elicitation, capture and analysis process prototype tool for large complex systems .

Proceedings of the First IEEE International Conference on Engineering of Complex

Computer Systems (ICECCS'95), Fort Lauderdale, Florida, IEEE Computer Society.

Elazhary, H. H. (2010). "REAS: An Interactive Semi-Automated System for Software

Requirements Elicitation Assistance." International Journal of Engineering Science and

Technology 2(5): 957-961.

120

Kof, L. (2005). "An Application of Natural Language Processing to Domain Modelling:

Two Case Studies." International Journal of Computer Systems Science & Engineering

20(1): 37-52.

Kof, L. (2007). Scenarios: Identifying Missing Objects and Actions by Means of

Computational Linguistics. Proceedings of the 15th IEEE Requirements Engineering

Conference.

Konrad, S. and B. H. C. Cheng (2002). Requirements Patterns for Embedded Systems.

Proceedings of the IEEE Joint International Conference on Requirements Engineering

(RE'02), IEEE Computer Society.

Krogh, G. v. and E. v. Hippel (2006). "The promise of research on open source software."

Management Science 52(7).

Kujala, S., M. Kauppinen, L. Lehtola and T. Kojo (2005). The role of user involvement in

requirements quality and project success. Proceedings of the 13th IEEE International

Conference on Requirements Engineering, Helsinki University of Technology, Finland,

Software Business & Engineering Institute.

Leifer, R., S. Lee and j. Durgee (1994). "Deep Structures: Real Information Requirements

Determination." Information and Management 27(5): 1-27.

Li, K., R. Dewar and R. Pooley (2004). Requirements capture in natural language problem

statements, Heriot-Watt University.

Lintula, H., T. Koponen and V. Hotti (2006). Exploring the Maintenance Process through

the Defect Management in the Open Source Projects - Four Case Studies. Proceedings of

the International Conference on Software Engineering Advances (ICSEA'06), Como, Italy,

IEEE Computer Society.

Lutz, R. R. and I. C. Mikulski (2003). "Operational Anomalies as a Cause of Safety-

Critical Requirements Evolution." The Journal of Systems and Software 65(2): 155-161.

Lyytinen, K. and G. M. Rose (2003). "The disruptive nature of information technology

innovations: the case of internet computing in systems development organizations." MIS

Quarterly 27(4): 557-595.

Madey, G. The SourceForge Research Data Archive (SRDA), University of Notre Dame.

Mala, G. and G. Uma (2006). Automatic Construction of Object Oriented Design Models

(UML Diagrams) from Natural Language Requirements Specification. Proceedings of the

Pacific Rim International Conference on Artificial Intelligence (PRICAI) 2006: Trends in

Artificial Intelligence, Springer Berlin / Heidelberg.

121

Manning, C. and H. Schütze (1999). Foundations of Statistical Natural Language

Processing. Cambridge, MA, MIT Press.

Mansfield, E. (1983). "Long waves and technological innovation." The American Economic

Review 73(2): 141-145.

March, S. T. and G. F. Smith (1995). "Design and natural science research on information

technology." Decision Support Systems 15(4): 251-266.

McCall, J. A., P. K. Richards and G. F. Walters (1977). Factors in Software Quality. New

York, Rome Air Development Center, Air Force Systems Command.

Mingers, J. (2003). "The paucity of multimethod research: a review of the information

systems literature." Information Systems Journal 13(3): 233-249.

Mitkov, R. (1998). Robust pronoun resolution with limited knowledge. Proceedings of the

36th Annual Meeting of the Association for Computational Linguistics (ACL '98),

Association for Computational Linguistics.

Mockus, A., R. T. Fielding and J. D. Herbsleb (2002). "Two Case Studies of Open Source

Software Development: Apache and Mozilla." ACM Transactions on Software Engineering

and Methodology 11(3): 309-346.

Moreira, A., J. Araújo and I. Brito (2002). Crosscutting Quality Attributes for

Requirements Engineering. Proceedings of the 14th International Conference on Software

Engineering and Knowledge Engineering Conference (SEKE '02), Ischia, Italy, Association

for Computing Machinery (ACM).

Mylopoulos, J., L. Chung and E. Yu (1999). "From Object-Oriented to Goal-Oriented

Requirements Analysis." Communications of the ACM 42(1): 31-37.

Noll, J. (2008). Requirements Acquisition in Open Source Development: Firefox 2.0. Open

Source Development, Communities and Quality, IFIP International Federation for

Information Processing: 69-79.

Pinto, J. K. and D. P. Slevin (1987). "Critical factors in successful project implementation."

IEEE Transactions Engineering Management EM-34(1): 22–27.

Ramesh, B. (1998). "Factors Influencing Requirements Traceability Practice."

Communications of the ACM 41(12): 37-44.

Ramesh, B. and M. Jarke (2001). "Toward reference models for requirements traceability."

IEEE Transactions on Software Engineering 27(1): 58-93.

Ramesh, B., C. Stubbs, T. Powers and M. Edwards (1997). "Requirements traceability:

Theory and practice." Annals of Software Engineering 3(1): 397-415.

122

Rijsbergen, C. J. V. (1979). Information Retrieval, Wiley Subscription Services, Inc., A

Wiley Company.

Rumbaugh, J. (1994). "Getting started: Using use cases to capture requirements." Journal

of Object–Oriented Programming 7: 8-8.

Ryan, K. (1993). The Role of Natural Language in Requirements Engineering. Proceedings

of the IEEE International Symposium on Requirements Engineering, San Diego, CA, IEEE

Computer Society.

Sampaio, A., N. Loughran, A. Rashid and P. Rayson (2005). Mining Aspects in

Requirements. Early Aspects 2005: Aspect-Oriented Requirements Engineering and

Architecture Design Workshop. Chicago, Illinois.

Scacchi, W. (2002). "Understanding the Requirements for Developing Open Source

Software Systems." IEEE Proceedings - Software 149(1): 24-39.

Scacchi, W. (2006). Understanding Free/Open Source Software Evolution. Software

Evolution and Feedback: Theory and Practice. J. F. R. a. D. P. e. N.H. Madhavji. New York,

John Wiley and Sons, Inc.: 181-206.

Scacchi, W. (2009). Understanding Requirements for Open Source Software. Design

Requirements Engineering – A Multi-disciplinary perspective for the next decade. K.

Lyytinen, P. Loucopoulos, J. Mylopoulos and W. Robinson. Berlin, Springer-Verlag: 467-

494.

Scacchi, W. and T. Alspaugh (2008). Emerging Issues in the Acquisition of Open Source

Software within the U.S. Department of Defense. The 5th Annual Acquisition Research

Symposium.

Scacchi, W., K. Crowston, G. Madey and M. Squire (2009). Envisioning National and

International Research on the Multidisciplinary Empirical Science of Free/Open Source

Software.

Scada, J. (2004). Cartesian Metaphysics: The Scholastic Origins of Modern Philosophy.

Cambridge, Cambridge University Press.

Shenhar, A. J., D. Dvir and O. Levy (1997). "Mapping the dimensions of project success."

Project Management Journal 28(2): 5-13.

Sommerville, I. and P. Sawyer (1997). Requirements Engineering: A Good Practice Guide,

Wiley.

Stamelos, I., L. Angelis, A. Oikonomou and G. L. Bleris (2002). "Code Quality Analysis in

Open Source Software Development." Information Systems Journal 12(1): 43-60.

123

Toro, A. D., B. B. Jimenez, M. T. Bonilla, R. Corchuelo, A. R. Cortés and J. Pérez (1999a).

Expressing Customer Requirements Using Natural Language Requirements Templates and

Patterns. Proceedings of the 3rd IMACS/IEEE International Multiconference on: Circuits,

Systems, Communications and Computers (CSCC’99), Athens, IEEE Computer Society.

Toro, A. D., B. B. Jimenez, A. R. Cortés and M. T. Bonilla (1999b). A Requirements

Elicitation Approach Based in Templates and Patterns. Proceedings of the Workshop de

Engenharia de Requisitos [Requirements Engineering Workshop] (WER 1999).

Truex, D. and R. Baskerville (1998). "Deep Structure or Emergence Theory: Contrasting

Theoretical Foundations for Information Systems Development." Information Systems

Journal 8: 99-118.

Truex, D., R. Baskerville and H. Klein (1999). "Growing Systems in Emergent

Organizations." Communications of the ACM 42(8): 117-123.

Truex, D., R. Baskerville and J. Travis (2000). "Amethodical Systems Development: The

Deferred Meaning of Systems Development Methods." Accounting, Management and

Information Technologies(10): 53-79.

van Lamsweerde, A. (2000). Requirements Engineering in the Year 00: A Research

Perspective. Proceedings of the 2000 International Conference on Software Engineering,

ICSE 2000, Limerick, Ireland.

van Lamsweerde, A. (2007). Goal-Orientation in Requirements Engineering. Requirements

Engineering - From System Goals to UML Models to Software Specifications, Wiley: 259-

286.

Venkatesh, V., M. G. Morris, G. B. Davis and F. D. Davis (2003). "User acceptance of

information technology: Toward a unified view." MIS Quarterly 27(3): 425-478.

Vlas, R. E. and W. Robinson (2012). "A Pattern-Based Method for Requirements Discovery

and Classification in Open-Source Software Development Projects." Journal of

Management Information Systems 28(4): 11-38.

Vlas, R. E. and W. N. Robinson (2011). A Rule-Based Natural Language Technique for

Requirements Discovery and Classification in Open-Source Software Development

Projects Proceedings of the Hawaii International Conference on Software Systems (HICSS-

44), HI, USA, IEEE.

Wand, Y. and R. Weber (1995). "On the Deep Structure of Information Systems."

Information Systems Journal 5(3): 203-223.

Weber, M. and J. Weisbrod (2003). "Requirements Engineering in Automotive

Development: Experiences and Challenges." IEEE Software 20(1): 16-24.

124

Wiegers, K. E. (2003). Software Engineering. Redmont, Washington, Microsoft Press.

Wimalasuriya, D. C. and D. Dou (2010). Components for Information Extraction:

Ontology-based Information Extractors and Generic Platforms. Proceedings of the 19th

ACM International Conference on Information and Knowledge Management (CIKM '10),

Association for Computing Machinery (ACM).

