
Georgia State University
ScholarWorks @ Georgia State University

Computer Information Systems Dissertations Department of Computer Information Systems

8-7-2012

A Requirements-Based Exploration of Open-
Source Software Development Projects – Towards
a Natural Language Processing Software Analysis
Framework
Radu Vlas
Georgia State University

Follow this and additional works at: http://scholarworks.gsu.edu/cis_diss

This Dissertation is brought to you for free and open access by the Department of Computer Information Systems at ScholarWorks @ Georgia State
University. It has been accepted for inclusion in Computer Information Systems Dissertations by an authorized administrator of ScholarWorks @
Georgia State University. For more information, please contact scholarworks@gsu.edu.

Recommended Citation
Vlas, Radu, "A Requirements-Based Exploration of Open-Source Software Development Projects – Towards a Natural Language
Processing Software Analysis Framework." Dissertation, Georgia State University, 2012.
http://scholarworks.gsu.edu/cis_diss/48

http://scholarworks.gsu.edu?utm_source=scholarworks.gsu.edu%2Fcis_diss%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.gsu.edu/cis_diss?utm_source=scholarworks.gsu.edu%2Fcis_diss%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.gsu.edu/cis?utm_source=scholarworks.gsu.edu%2Fcis_diss%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.gsu.edu/cis_diss?utm_source=scholarworks.gsu.edu%2Fcis_diss%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu

1

PERMISSION TO BORROW

In presenting this dissertation as a partial fulfillment of the requirements for an advanced degree from Georgia State

University, I agree that the Library of the University shall make it available for inspection and circulation in

accordance with its regulations governing materials of this type. I agree that permission to quote from, to copy

from, or publish this dissertation may be granted by the author or, in his/her absence, the professor under whose

direction it was written or, in his absence, by the Dean of the Robinson College of Business. Such quoting, copying,

or publishing must be solely for the scholarly purposes and does not involve potential financial gain. It is

understood that any copying from or publication of this dissertation which involves potential gain will not be

allowed without written permission of the author.

RADU E. VLAS

2

NOTICE TO BORROWERS

All dissertations deposited in the Georgia State University Library must be used only in accordance with the

stipulations prescribed by the author in the preceding statement.

The author of this dissertation is:

RADU E. VLAS

Computer Information Systems Department

35 Broad St., NW

Georgia State University

P.O. Box 4015

Atlanta, Georgia 30302-4015

The director of this dissertation is:

WILLIAM N. ROBINSON

Computer Information Systems Department

35 Broad St., NW

Georgia State University

P.O. Box 4015

Atlanta, GA 30302-4015

3

A REQUIREMENTS-BASED EXPLORATION OF OPEN-SOURCE SOFTWARE DEVELOPMENT PROJECTS

– TOWARDS A NATURAL LANGUAGE PROCESSING SOFTWARE ANALYSIS FRAMEWORK

BY

RADU EDUARD VLAS

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree

Of

Doctor of Philosophy

In the Robinson College of Business

Of

Georgia State University

GEORGIA STATE UNIVERSITY

ROBINSON COLLEGE OF BUSINESS

2012

4

Copyright by

Radu Eduard Vlas

2012

5

ACCEPTANCE

This dissertation was prepared under the direction of the RADU E. VLAS Dissertation Committee. It has been

approved and accepted by all members of that committee, and it has been accepted in partial fulfillment of the

requirements for the degree of Doctoral of Philosophy in Business Administration in the J. Mack Robinson College

of Business of Georgia State University.

 H. Fenwick Huss, Dean

DISSERTATION COMMITTEE

Dr. William Robinson

Dr. Balasubramaniam Ramesh

Dr. Duane Truex

Dr. Walt Scacchi

6

ABSTRACT

A REQUIREMENTS-BASED EXPLORATION OF OPEN-SOURCE SOFTWARE DEVELOPMENT PROJECTS

– TOWARDS A NATURAL LANGUAGE PROCESSING SOFTWARE ANALYSIS FRAMEWORK

BY

RADU EDUARD VLAS

JULY 2012

Committee Chair: Dr. William N. Robinson

Major Academic Unit: Computer Information Systems

Open source projects do have requirements; they are, however, mostly informal, text descriptions found in

requests, forums, and other correspondence. Understanding such requirements provides insight into the nature of

open source projects. Unfortunately, manual analysis of natural language requirements is time-consuming, and for

large projects, error-prone. Automated analysis of natural language requirements, even partial, will be of great

benefit. Towards that end, I describe the design and validation of an automated natural language requirements

classifier for open source software development projects. I compare two strategies for recognizing requirements in

open forums of software features. The results suggest that classifying text at the forum post aggregation and

sentence aggregation levels may be effective. Initial results suggest that it can reduce the effort required to analyze

requirements of open source software development projects.

Software development organizations and communities currently employ a large number of software

development techniques and methodologies. This implied complexity is also enhanced by a wide range of software

project types and development environments. The resulting lack of consistency in the software development domain

leads to one important challenge that researchers encounter while exploring this area: specificity. This results in an

increased difficulty of maintaining a consistent unit of measure or analysis approach while exploring a wide variety

of software development projects and environments. The problem of specificity is more prominently exhibited in an

area of software development characterized by a dynamic evolution, a unique development environment, and a

relatively young history of research when compared to traditional software development: the open-source domain.

While performing research on open source and the associated communities of developers, one can notice the same

challenge of specificity being present in requirements engineering research as in the case of closed-source software

development. Whether research is aimed at performing longitudinal or cross-sectional analyses, or attempts to link

requirements to other aspects of software development projects and their management, specificity calls for a flexible

analysis tool capable of adapting to the needs and specifics of the explored context. This dissertation covers the

design, implementation, and evaluation of a model, a method, and a software tool comprising a flexible software

development analysis framework. These design artifacts use a rule-based natural language processing approach and

are built to meet the specifics of a requirements-based analysis of software development projects in the open-source

domain. This research follows the principles of design science research as defined by Hevner et. al. and includes

stages of problem awareness, suggestion, development, evaluation, and results and conclusion (Hevner et al. 2004;

Vaishnavi and Kuechler 2007). The long-term goal of the research stream stemming from this dissertation is to

propose a flexible, customizable, requirements-based natural language processing software analysis framework

which can be adapted to meet the research needs of multiple different types of domains or different categories of

analyses.

7

Table of Contents

1. Introduction .. 9

1.1. The Importance of Requirements and of Requirements Traceability .. 12

1.2. Usage Scenarios .. 16

1.3. NL Requirements Discovery .. 17

1.4. NL Requirements Classification... 21

1.5. An Emergent Grammar and Perspective .. 23

1.6. Research Method .. 27

2. Related Research .. 29

2.1. Requirements and Requirements Processes in Open-Source .. 30

2.2. Pattern-Based Analysis of Requirements .. 33

2.3. Requirements Discovery ... 34

2.4. Requirements Classification .. 35

2.5. Software Product Quality and Software Development Project Success 37

3. The Grammar-Based Approach ... 40

3.1. Classifier Design .. 40

Illustrative Text Tagging .. 41

Requirements Parsing Ontology ... 42

3.2. Classifier Engineering .. 47

Rule-Based Tagging ... 47

Auxiliary Text Processing .. 49

4. The Delimiter-Based Approach ... 51

4.1. Classifier Design .. 52

Illustrative Text Tagging .. 52

Requirements Parsing Ontology ... 53

4.2. Classifier Engineering .. 55

Parsing Pipeline ... 55

Rule-Based Tagging ... 57

5. Evaluation and Applications .. 58

5.1. The SourceForge Dataset .. 59

8

5.2. Experiment Configurations ... 62

5.3. Data Analysis and Results ... 63

5.4. Expert Analysis .. 69

5.5. Benchmarking ... 75

5.6. Configurable Rule-Based Analysis ... 77

5.7. Sensitivity Analysis .. 82

5.8. An Exploration of OSSD Project Characteristics .. 85

Data Collection and Analysis ... 87

Data Analysis and Findings .. 88

Discussion of Exploratory Study Findings ... 94

5.9. A Wave Theory of Requirements Innovation .. 95

Innovation in Software Development ... 98

Methodology and Data Collection .. 99

Requirements Development Cohesion ... 100

Requirements Traceability Focus .. 106

Discussion of the Exploratory Study Findings ... 109

6. Discussion and Conclusions .. 111

7. Appendix ... 114

8. References .. 116

9

Keywords

Requirements engineering, requirements lifecycle, requirements processes, requirements

discovery, requirements classification, natural language processing, text mining, open-source,

open-source software development, software development project success, requirements

innovation.

1. Introduction

The increased attention the open source (OS) phenomenon received in the last over 20 years

and the increased market penetration ability the OS software (OSS) products showed throughout

this timeframe has attracted the interest of researchers (Mockus et al. 2002; Hippel and Krogh

2003). Open-source software development projects can be identified in a wide spectrum of

domains. Open-source researchers identified OS software development (OSSD) and OS adoption

efforts in areas such as Internet or Web infrastructure, networked computer games, higher

education, military computing, and bioinformatics to name only a few (Scacchi and Alspaugh

2008; Scacchi et al. 2009). Research communities started to explore open-source related products

and processes in domains such as economics, law, public policy, geography, art, anthropology,

physics, organization science, biology, management, and information systems (Scacchi et al.

2009). OSSD appears to produce high quality software products with fewer resources and less

complex development processes and organizational structures than more traditional approaches.

In spite of the intrinsic differences between OS and closed source software development, the

natural similarities between the two software development paradigms justifies the possibility of

expanding the coverage and applicability area of findings and artifacts from one to the other.

Consequently, an analysis of OSS management, membership, development lifecycles, and

products may lead to improvements in all software development. Studies of software

requirements provide techniques and procedures for systematically analyzing the software

10

development phenomenon. Therefore, this study adopts a requirements-centered perspective on

OSSD and creates artifacts to aid in the automated analysis of OSSD projects and products. This

thesis represents an initial stage during which I build the grounds required for designing,

developing, evaluating, and proposing a more general software analysis framework with

applicability in all software development and related environments.

Current software development is characterized by a significant increase in complexity in

most of the areas of the software development lifecycle (SDLC). Most of the modern software

products are large and complex. Enterprise-wide software solutions of significant complexity are

widely spread in the business domain while the personal use of computing solutions is

increasingly dominated by multi-generation software and integrated and embedded systems. In

the context of these increasing complexities, automation of analysis and evaluation artifacts

becomes critical. The automation of requirements-based artifacts is especially important because

the complexity of current software systems is directly mirrored in the early SDLC phases (where

requirements play a major role) of the projects developing such software.

Requirements are justified by the underlying goals that contribute to their creation

(Sommerville and Sawyer 1997). In the context of OSSD, developers are also expected

users of the product being developed. They are the stakeholders expressing the needs that

define these goals. Consequently, it may appear that the requirements analysis stage is

absent, given that requirements are generally understood by the developers (Fitzgerald

2006). Nonetheless, Scacchi has identified software informalisms, which are “the

information resources and artifacts that participants use to describe, proscribe, or prescribe

what's happening in a OSSD project” (Scacchi 2009). Scacchi identifies two dozen types of

unstructured software informalisms, which include chats, email, forums, project digests,

11

etc. By analyzing these natural language (NL) artifacts, one can better understand the

requirements, and thus the OSSD phenomenon.

Consider Figure 1, which presents a feature request, a kind of requirement, from the

Feature Tracker of the Password Safe project on SourgeForge. The Password Safe project

has 630 feature requests, 976 bug reports, and thousands of forum posts. In this study, a

feature request refers to a desired piece of functionality of the system being built. These

feature requests can be found in feature requests forums where other types of

communication (technical writing, social conversation elements, stories, etc.) are also

present. Obviously, the communication associated with various OSSD projects is expected

to contain different amounts and types of feature requests and, consequently various

Figure 1. Password Safe feature requests from SourceForge’s Tracker.

12

amounts and types of requirements. OSS feature requests forums are software informalisms

where both future users of the software and current developers post. It is expected that

these two categories of OSS contributors generate distinct types of posts. However, this

study does not differentiate between user generated and developer generated feature

requests. To comprehensively understand the OSSD phenomenon, researchers need to

analyze such data, to identify communication patterns, to discover and classify processes

and various elements of communication. The natural language informalisms identified by

Scacchi are used to manage projects. Their analysis provides insights into the best practices

of OSSD.

1.1. The Importance of Requirements and of Requirements Traceability

The concept of requirements traceability has been defined as “the ability to describe

and follow the life of a requirement, in both a forwards and backwards direction” (Gotel

and Finkelstein 1994). Requirements traceability is a guiding theory in the software

development line of research (Gotel and Finkelstein 1994; Ramesh et al. 1997). The

literature on requirements traceability provides a number of specific suggestions for

performing efficient requirements traceability (Hayes et al. 2006). By following the

lifecycle of requirements, we can follow techniques and infer the strategies of

development. Ideally, we can discover practices that distinguish successful projects from

the unsuccessful ones.

Requirements can be considered from three simple levels:

1. Requirements metrics count individual requirements, including their total

number, individual versions, their classifications, and their trace links (types and

13

numbers, including contribution structures (Gotel and Finkelstein 1997) e.g.,

roles, relationships, responsibilities)

2. Requirements management metrics count collections of requirements, including

requirements snapshots (the collective versions), their temporal relationships, and

trace links (e.g., a snapshot’s association to a code release)

3. Requirements management model (RMM) specifies the associations among

artifacts as well as the process model for the creation and management (Ramesh

and Jarke 2001).

Advanced developers apply all three levels to development (Ramesh 1998). The ultimate

goal of the research stream starting with this study is first to build successively more capable

tools for discovering these concepts from the natural forms found in OSSD, and second to build

successfully more flexible analysis artifacts that exhibit applicability in all software development

and related environments. In so doing, I aim to understand the evolving requirements

management models of OSSD, and to employ flexible and powerful techniques that are

customizable to various datasets and environments.

Precise, empirically derived OSSD RMMs describe current practices, and suggest best

practices for software requirements management. If we had OSSD RMMs at this moment, we

would have been able to answer questions such as the following:

 What types and numbers of requirements are associated with various types of

projects (successful, high quality, secure, etc.)?

 What are common ratios concerning requirements numbers and types, resources,

and release rates?

14

 How do the types of requirements vary with the size or type of software being

developed?

 For a given size or type of software product, which RMMs have the highest

chance of being most successful?

The research presented here represents the initial steps towards performing automated

software requirements discovery and classification, and provides the results of an

exploratory study of OSSD projects based on these analysis techniques. Given an OSSD

project, the developed artifact applies a natural language parsing approach to:

 Identify requirements

 Classify requirements

Application of requirements traceability practices improves the likelihood of software project

success, specifically through improved quality, functionality, and timely releases. Traceability

links record the history of artifact development, from high-level requirements descriptions to the

lower-level programming codes. From the artifact traces, one can infer the development tasks

used to construct the artifacts. A trace link from source code to binary code implies the task of

applying a compiler. A trace link from feature requirement to use case implies the task of use

case specification. Development traces indicate the development process model used. Sometimes

developers apply a process model that varies from their stated process model. Analyzing

development traces reveals the actual process model used. A software tool to aid the discovery,

modeling, and analysis of development traces will help in analyzing software development. If

such a tool were to exist, then it could be applied to existing software projects to aid empirical

studies. For example, according to information systems development (ISD) theory, development

process models vary in their success – some process models work well and others less so

15

depending on a variety of factors, such as project type, personnel, etc. A tool for discovery,

modeling, and analysis of artifact traces will help improve ISD process theory. Discovered

models can be analyzed according to a variety of success factors, such as quality, functionality,

and release patterns.

Requirements discovery is a prerequisite to developing requirements traceability tools.

To date, there is no software tool that can identify and classify requirements from open -

source software informalisms. Open issues include: (1) how is a single requirement

recognized and delimited?, (2) given the text of a requirement, how can it be classified?,

and (3) how is a recognized requirement related to another recognized requirement?

Solving these problems will provide for a software tool that can automatically review

natural text documents and create identified requirements, their classification, and

associated traceability links. Such a software tool is a prerequisite to a comprehensive tool

for discovery, modeling, and analysis of development traces, which in turn will support

empirical analysis of ISD process theory. This study proposes a solution to the first two

issues above and provides the prerequisites for developing a solution to the third problem.

With this introduction, I now present a design-science hypothesis for natural language

requirements discovery:

H1: The automated discovery and classification of requirements contained within software

informalisms of Open-Source Software Development projects can be achieved through the

design of a requirements analysis process and the development of a software artifact to

implement it.

Related research suggests that grammar-based analysis may provide efficient techniques

for the analysis of natural language data. Ideally, a requirements recognizer should work

16

for any natural language document. However, Natural Language Processing (NLP) analyses

perform better when they are customized to a document corpus in which the language is

applied using common forms or idioms. Therefore, the refined design-science hypothesis

below addresses the issues of a language with specialized sub-language as expressed by a

sub-culture (such as OSSD):

H1.1: A multi-layered grammar, varying in domain specificity, can be constructed for the

automated requirements discovery and classification of requirements contained within software

informalisms of Open-Source Software Development projects.

I apply a design science approach to address these objectives. As with any design science

study, a special attention is placed on how well the design works. Therefore, I employ a number

of evaluation and validation methods among which I compare the results of the automated

artifact with the results of an idealized perfect requirements recognizer.

1.2. Usage Scenarios

I present two usage scenarios for the developed artifact, Requirements Classifier for Natural

Language (RCNL), in order to provide context. First, consider usage by an academic, Jane,

studying OSSD. Jane can apply RCNL to OSSD projects to obtain metrics on the quantity and

classification of requirements. Identifying text segments as requirements and their classifications

are open to interpretation, even among experts. Thus, Jane may choose to review the

requirements and the classifications produced by RCNL. She may even alter RCNL rules to suite

her interpretation. Once satisfied with the results, Jane can compare project requirement metrics

and correlate those metrics with success or other factors of interest. Second, consider John, an

analyst for an OSS company. He can apply RCNL to the thousands of forum postings he receives

monthly. By continually monitoring the quantity and classification of requirements posted, he

17

can maintain an overview of the kinds of concerns his users are expressing. In both scenarios,

manual analysis of a vast amount of text is not practical. It is time-consuming and classification

requires expertise, which is too costly. Software, such as RCNL, enables an analyst to get a quick

overview of OSS requirements.

Herein, I describe the design and engineering of two versions of RCNL implementing

two distinct strategies (Section 3 and Section 4), and experiments measuring their

capabilities and applicability (Section 5). The results suggest that the parsing strategies and

toolkit may be useful in classifying requirements in OSSD projects.

The automated requirements classifier is aimed at helping researchers discover patterns and

trends in OSS development. By reviewing many projects with a classifier, a research can gain a

perspective on what kinds of requirements are common. Such observations can be correlated

with other project factors, such as project success, timeliness, or quality. This may lead to advice

of this form: “many successful OSS projects for embedded systems include requirements

classified as X.” Requirements classification may eventually be applied to a project during

development. A project manager may discover, through classification, that there are no

requirements of type X (e.g., security). With such knowledge, the project manager can seek

remedial action.

1.3. NL Requirements Discovery

OSSD requirements take many forms, most of which are represented as natural language text

within software informalisms (Scacchi 2009). For each form, there are many requirements. For

example, the KeePass Password Keeper project has 1,522 feature requests, 923 bug reports, and

thousands of other various forum posts. Cleland-Huang et. al. found that software informalisms

are filled with thousands of requirements, as well as thousands of lines that are not requirements

18

– for example, social communications, code segments, slang, typos, formatting elements etc.

(Cleland-Huang et al. 2006; Scacchi 2009). Therefore, requirements discovery in this context is

first about delimiting each requirement within its source. Once requirements are identified, then

subsequent processing can begin.

Consider three strategies for recognizing software requirements:

1. Grammar-based strategy: The text of the specific software informalism providing the

data is parsed according to a grammar. The grammar defines what text within a sentence

is a software requirement. For example, a Subject-Action-Object (SAO) grammar would

tag each SAO triple at a sentence level as a requirement. This strategy implements the

patterns commonly characterizing formal requirements specifications in which each

requirement is expected to clearly state a subject, an action, and an object. The subject is

the actor in the requirements statement. The action determines the feature being described

in the requirement. The object is the entity being impacted by the action performed by the

actor. For example, let’s consider the following requirement statement from the

phpMyAdmin project: “when […], you should flush [the] table, because

[…].” In this example, the subject is “you” which is used to denote the user of the

software product. The action that should take place is “should flush” and the object

impacted by the action is the “table.” The elements of text preceding and succeeding

this SAO pattern provide additional explanatory context for the action of the requirement.

I consider a grammar-based strategy to provide a targeted, within sentence approach to

requirements discovery in NL data.

2. Delimiter-based strategy: As denoted in the example associated with the grammar-based

strategy above, often an SAO triple is accompanied by explanatory expressions which

19

place the action of the statement in a specific context. Moreover, many times the ideas

that comprise the informal communication on the desired features of a software product

are described over more than one sentence or even paragraph. Therefore,

comprehensively capturing the entire context of a requirement expressed in informal

communication calls for a parsing strategy that crosses over sentence boundaries. In this

strategy, the text is split into segments according to delimiters, which may be keywords

or expressions. The text between the delimiters is tagged as a requirement. Each post in a

Feature Request forum in OSSD commonly addresses one or a small number of ideas or

suggestions. The posts often include a variety of sentences and phrases providing context

to the idea(s) presented. Sometimes, the feature being suggested is not clearly specified

but rather implied or described without being ever expressed in a concise statement.

Given these facts, the delimiter strategy considers each forum posting as a discussion

around a limited number of features of interest separated by specific delimiters. Therefore,

each Feature Request post is a requirement if no delimiters are identified within the post.

The identified delimiters determine the number of delimited requirements present in a

Feature Request post.

3. Hybrid strategy: The grammar-based strategy and the delimiter-based strategy represent

distinct approaches and at a different level of detail. Both strategies yield valuable results

and, in order to comprehensively analyze requirements expressed in software

informalisms, one should devise a strategy combining them together. I call such a

strategy a hybrid strategy. First, the delimiter-based approach is applied. Then, each

requirement text is parsed with the grammar-based approach. This allows for the

recognition of an aggregate requirement (the result of a delimiter-based analysis) and its

20

supporting sub-requirements (the results of a grammar-based analysis). Of course, if the

text includes hierarchal requirements numbers, e.g., 1, 1.1, 1.1.1, then such numbers can

be used for requirements groupings – unfortunately, this is less common in the open

source domain.

Unrecognizable text affects how each strategy performs. If the grammar -based approach

completely characterizes the informal text, then grammar-based and delimiter-based

strategies will tag the same text segments as requirements. More commonly, the grammar -

based tagging only partially characterizes the text. Thus, the unrecognized text , preceding

or following an SAO triple for example, will not be tagged as being within a requirement.

Using the delimiter-based strategy can provide a more natural tagging, as recognized by

analysts. Finally, the hybrid strategy provides the best of both – an entire text segment

tagged as a requirement, and its parts are characterized according to a grammar. Herein, I

report on the results of performing requirements discovery and classification on text from

Sourceforge’s Feature Tracker with the grammar-based and the delimiter-based strategies

and on a comparison between a two strategies. The development and evaluation of artifacts

that implement the hybrid strategy is not covered here but considered for future research.

Figure 2 shows the result of applying a grammar-based parsing strategy using the

developed artifact, Requirements Classifier for Natural Language (RCNL). The highlighted

text has been parsed as grammar fragments, recognized as requirements, and classified

according to a requirements ontology (Vlas and Robinson 2011). Notice that some text is

not considered to be part of any requirement, and thus the text is not highlighted. The

seemingly irrelevant text includes the feature identifier (numerical), the UNIX date the

feature was posted (numerical), as well as elements of social communication such as

21

“Thanks in advance for the Developers consideration” (Note the presence of

typos, and poor grammar – one of the prominent challenges in analyzing NL data from

Open Source requirements).

1.4. NL Requirements Classification

Requirements engineering theory specifies measures that can guide the analysis of software

development. For example, one would expect that the specification of a secure operating system

would have many security requirements and of many different types. Their absence would be a

cause for concern. Thus, requirements classification helps requirements management by

determining the presence and proportion of various requirement types.

Requirements classifications provide taxonomies of common kinds of requirements.

Reliability, efficiency, integrity, and usability are common requirements classes. Quality

models, such as McCall (McCall et al. 1977), Boehm (Boehm et al. 1978), IEEE (IEEE),

and ISO (ISO 2001; ISO 2011), specify the characteristics of requirements belonging to a

class. The descriptions of these characteristics can be used to classify requirements.

McCall’s software quality model is probably the most widely accepted model in both

researcher and practitioner communities. McCall’s model organizes a number of

characteristics into a 2-level hierarchy of 23 criteria and 11 factors. The descriptions of

these characteristics can be used to mine words and phrases that are indicative of

requirements belonging to these characteristics. For example, a requirement that includes

the word faster or slow is indicative of a performance requirement. Building on this

perspective, the technique of keyword classification uses libraries of keywords,

expressions, and grammar rules to match against delimited text elements (discovered

requirements). Figure 2 shows and example of requirements classification. The elements of

22

text highlighted are first tagged as requirements based on one of the two implemented

strategies and then classified if containing one or more of the items of the classification

library. In Figure 2 there are few types of requirements highlighted, with some colors

overlapping when a discovered requirement is classified multiple times.

The length of delimited requirements within text has a direct impact on the quality of

the discovery and classification results and, consequently, determines performance criteria

for the associated processes.

1. The shorter the word length of a recognized requirement the less likely the requirement

will be classified, because classification is based on the contained keywords. This leads

to many recognized but unclassified requirements and calls for an efficient classification

method.

Figure 2. Grammar-based recognized Password Safe feature requirements with the

classification color legend at the right.

23

2. The longer the word length of a recognized requirement the more likely the requirement

will be classified. At the same time, having longer recognized requirements leads to an

increased chance of having two or more conceptually unrelated ideas considered as one

requirement. This leads to fewer total recognized requirements, each of which is likely to

be classified at least once. Such a situation calls for an accurate requirements discovery

method.

The issues of requirements recognition (or delimiting) and classification are interrelated. This

raises the issue of what exactly is a natural language requirement? Open source communication

is extremely informal and, therefore, requirements include an unusual amount of extraneous

language and symbols and improper syntax. Most importantly, what kinds of text should be

considered as a requirement for the purpose of requirements management, including recognition

and classification? In this study I address the questions of recognition and classification of

requirements in open source communication.

1.5. An Emergent Grammar and Perspective

The work presented in this thesis aligns with a number of concepts from the linguistics

domain and supports an emergent perspective of the OSSD phenomenon and of the OSS

communication. Following a higher level view described by Chomsky, linguistics presupposes

that a language is generated through the continuous application of the rules of a generative

grammar, and that this process is characterized by the presence of two types of structures, deep

structures and surface structures (Chomsky 1980; Chomsky 1986). Consequently, a language is

never complete. It follows a perpetual route of construction and definition in which new

elements are generated as a result of a socially informed generative process. Therefore, the

Chomskyan linguist perceives the structure of language not as externally derived but as defined

in the language user’s mind (Truex and Baskerville 1998). It develops constantly through

24

communication, in real time (Auer and Pfänder 2011). The OSS language is temporal, emergent

and determined as the outcome of disputes and continuous refining, in a similar manner to the

way a culture is a continuously evolving entity. I adopt this point of view in my study by

acknowledging the nature of the OSS language and the lexical generative transformations used

by the prototypical language user in OSSD (the OSS contributor) for expressing desired

functionality of the software system being constructed.

The academic literature in the field of information systems highlights an inherent dualism

between technology and users. Therefore, information systems researchers often focus on the

implied relationships between humans and objects of the surrounding world. This perspective is

known as the Cartesian worldview and posits that humans understand and act based on mental

representations of the objects in the world (Scada 2004). In my analysis of OSSD requirements

and their presence in OSS informalisms I adopt a perspective consistent with the concept of

emergent grammars and I associate that with both defining elements of the Cartesian perspective:

technology as an object of the world, and users as the human component. OSS communication

exhibits the characteristics of both a technology-determined software development discourse, as

well as a participant-determined social discourse.

The concept of “emergent grammar” has been first described by Paul Hopper as being based

on the fundamental assumption that structures are “unfinished and indeterminate.” It captures the

dynamics of an ongoing process of “languaging” (Hopper 1987; Hopper 1992; Hopper 1998;

Hopper and Traugott 2003; Auer and Pfänder 2011). While describing the emergent systems

viewpoint, Truex et. al. acknowledge the transition from the traditional perspective placing value

on organizational and process stability to the more modern perspective that values flexibility,

dynamicity, and agility (Truex et al. 1999). The goal set they present for information systems

25

development also applies to the OSSD phenomenon since it emphasizes principles that are

generally accepted in open-source:

1. Lengthy analysis and design phases are regarded as poor investments. A higher emphasis

is placed on experience and agility.

2. User satisfaction is never completely achievable as users and their needs change

continuously.

3. The development and capture of abstract requirements (formalized as requirements

documents in traditional closed-source software development) is neither possible nor

attempted. Requirements are emergent as they continuously change and evolve along

with the users who generate them.

4. Complete and unambiguous specifications are ineffectual because the evolving nature of

specifications has to be acknowledged. Organizations and users change, thus any effort

on providing a complete and unambiguous set of specifications would only result in a

continuous investment of resources for reaching a continuously moving objective.

5. The lifespan of a software system is not predetermined or foreseeable. Instead,

information systems evolve continuously to adapt to the changes in their environment.

Since language is regarded as an infinite set of sentences, there is an implied assumption that

these sentences are generated by a grammar, which we call “generative grammar.” Therefore, a

generative grammar assigns structure to sentences. A good generative grammar is defined as one

in which rules and lexical assignment descriptions are “rigorous and sufficiently explicit to

determine how the sentences of the language are characterized by the grammar” (Chomsky 1980;

Truex and Baskerville 1998). As described in the following sections of this thesis, I define and

encode a generative grammar into the development of the analysis artifact.

26

In OSSD, grammar is an emergent entity that is constantly renegotiated by individual users

of the system. Due to this ever changing nature of the grammar of OSS communication, I

develop in this study a library of analysis rules (encoded patterns) for capturing the current state

of this grammar. My efforts are based on the knowledge derived from our understanding of an

“IS idealized stability” and complemented with patterns describing aspects of flexibility and

agility. The agility of information systems development has been coined by Truex et. al. as

“amethodical” (Truex et al. 2000). It supports conflict over consensus, recognizes the values of

attending different voices and interests, accepts bargaining and negotiation as the main way to

develop solutions, and values innovation as the means of achieving adaptability. All these

attributes can also be used to explain and describe the OSSD lifecycle and in general the open-

source approach.

The information systems literature assumes a synchronic perspective although it seems to be

more an idealistic perspective than a truism. Here I implicitly follow same perspective by

focusing on performance as defined in the Chomskyan approach (language use) and adopting the

belief that it is possible to create a precise, unambiguous and concise language of science

(Chomsky 1980; Truex and Baskerville 1998).

In linguistics research, Chomsky was the first to introduce the concepts of “deep structure”

(D-structure) and “surface structure’ (S-structure). The definitions of these two concepts have

been borrowed and used in the ISD domain by numerous researchers. Deep structures are the sets

of rules defining and describing the real-world and the way it functions. Therefore, deep

structures can be regarded in ISD as a lower level concept that can also be used to encode a set of

system requirements. In contrast to this, surface structures are a higher level concept that is

27

concerned with the interface between the software system and the organizational environment

defined by its users (Chomsky 1986; Wand and Weber 1995; Truex and Baskerville 1998).

Surface structures are derived from deep structures through the application of

transformational rules and define the area normally explored by systems analysts (Chomsky

1986). Deep structures are determined by a more fundamental set of rules, phrase structure rules.

A number of information systems studies acknowledge that there currently is a higher focus on

researching surface structures and recommend an increased effort to understand and capture the

underlying concepts and knowledge that generate the surface structures. Specifically, they

emphasize the need to address not only the “what” question, but also “why” and “how” in order

to understand the reasoning and the underlying knowledge that defines deep structures (Leifer et

al. 1994; Truex and Baskerville 1998). I address here this research call and perform an analysis

of OSS communication that is intended to provide the tools and results for further exploring the

OSSD phenomenon.

Following an emergent grammar perspective, the structure of OSS communication is

“unfinished and indeterminate” (Hopper 1987; Auer and Pfänder 2011). Consequently, the aim

of this thesis is not to discover the rules of this grammar (a futile exercise since they

continuously evolve) but to discover and highlight a major part of the emergent grammar used in

OSS communication, as it is characterized by its current state. This study provides an analysis

that defines a number of structured utterances which are OSS specific and “cannot be explained

entirely by the rules of canonical grammar” (Auer and Pfänder 2011).

1.6. Research Method

Much of information systems research follows the behavioral science paradigm, in

which researchers aim to understand phenomena related to the development and use of IS.

In recent years, the design science paradigm has grown. Design science researchers

28

develop IS artifacts and improve their performance. March and Smith specify four

activities (theorize, justify, build, and evaluate) for conducting IS research, with behavioral

science addressing the first two activities and design science addressing the last two

(March and Smith 1995). The activities occasionally apply the same methods, such as a

controlled experiment for behavioral theory justification and for design science artifact

evaluation. The two paradigms are mutually supportive in that the results in one approach

can provide for new research designs in the other (Cao et al. 2006).

Multi-paradigm research represents only about 20% of IS research studies in the 1990s

(Mingers 2003). However, it has been argued that a multi-paradigm research provides for

broader and more conclusive explanations (Cao et al. 2006). This project is design science

research in that I justify, build and evaluate a designed artifact. The design stems from the

general theories of IS development and traceability management, as well as the technical

theories of concept tagging, grammar-based parsing, and classification. This study is a

design science part of a larger multi-paradigm research project. Subsequently, the RCNL

technology will be used to obtain data for a project-level exploration of success and quality

in OSSD, to develop an analysis framework with applicability to all types of software

development, and to develop versions of the analysis framework for other domains . The

goals of this study and of the immediately following studies are to extend IS development

process theory to explain the unique characteristics of OSSD.

This study follows the design science approach defined by Hevner et. al. in developing the

RCNL classifier (Hevner et al. 2004). Design science, as explained by Hevner et. al., provides

seven guidelines for research on designed artifacts. I apply the Hevner et. al. descriptive

approach to design science – developing and then evaluating the design of RCNL using case

29

studies, performance analysis, and argumentation. Additionally, I compare the results of

automated discovery and classification with those generated by an expert.

I have designed, developed, evaluated and applied the RCNL for text-based

requirements analysis. A key element of RCNL is its multi-level ontology, in which the

lower, specific levels apply generic English grammar-based concepts while the upper,

abstract levels apply OSS-specific requirements-based concepts. The RCNL’s flexibility

and ability to be adapted to the specifics of multiple analysis domains resides in its multi -

layered architecture. The empirical application of the RCNL is limited in this study to the

text found in work items of SourceForge’s Feature Tracker which includes a large number

of forum posts (similar to Bugzilla or Jira) (Lintula et al. 2006).

This research study provides five contributions:

1. A grammar-based design of software automation for the discovery and classification

of natural language requirements

2. Two complementary parsing schemes implemented within the design

3. Requirements discovery, classification, and analysis of 30 OSSD projects

4. A project-level requirements-based exploratory analysis of OSSD projects

5. A wave theory of requirements innovation

Together, these contributions provide a path for subsequent studies of OSS

requirements and enable subsequent software tools facilitating automation of requirements

traceability analysis in support of IS development process studies.

2. Related Research

This chapter provides a detailed background review of requirements in the context of open

source software development, an overview of pattern-based analysis used in studies of

30

requirements engineering, concepts of requirements discovery and classification, and

perspectives on software product quality and on software development project success.

2.1. Requirements and Requirements Processes in Open-Source

Requirements represent an essential component of any software development project.

Requirements lifecycle analysis is a challenging task mainly because requirements evolve

continuously along with the evolution of the software development project. At the very bottom

of this continuous change lie social factors (stakeholders’ different views) and technical factors

(production constraints, usage experience, or feedback received) (Anderson and Felici 2002). In

spite of a consistent body of research in this area, requirements evolution models and analysis

methodologies are still providing an incomplete solution to the problem. There are two

challenges defining this situation: first, the large quantity of longitudinal data that must be

collected and analyzed and second, the lack of methodologies to provide real-time support for

analyzing requirements evolution (Jarke and Paulk 1994; van Lamsweerde 2000). If these

circumstances can be overcome, understanding requirements and their evolution can become a

major step towards identifying rare environmental events or towards providing strategies to deal

with environmental changes (Lutz and Mikulski 2003).

In the context of open-source, the common belief is that OSSD projects lack requirements

and their associated requirements processes, at least to the extent seen in closed-source software

development projects. However, OSSD projects do have requirements and requirements

processes. Open-source requirements are mostly informal, lacking a clear, formal organization of

information in well-structured documents (Scacchi 2002; Jensen and Scacchi 2004). Even if

sometimes requirements are clearly described, often times they may be only inferred from or

suggested in text descriptions found in change requests, bug fixes requests, forums, blogs, email

31

exchanges, and other types of electronic communication. Therefore, the open-source

requirements emerge as the result of a dynamic social process of communication among open-

source participants. They go through an evolutionary process of iterative review and

improvement. In this process requirements become generally accepted by all participants and

they start to be regarded as “set” requirements. Further discussion among participants on an

accepted requirement usually results in another step in the refining of its details. No efforts to

document, formalize, or substantiate accepted requirements as formal system requirements have

been identified (Scacchi 2009). The informal component of OS requirements is confirmed by

Lintula who acknowledges the importance of discussion forums as a means of reaching common

understanding and acceptance on open-source requirements (Lintula et al. 2006).

The lack of standardization exhibited by requirements processes and requirements

specification in open-source accounts for, among other factors, the difficulty of analyzing this

domain and the relative scarcity of research studies exploring this area. Consequently, an in-

depth understanding of the nature of OSSD projects and of the presence and evolution of

requirements throughout the entire project lifecycle is limited.

In the process of better understanding the OSS product development, some researchers

focused on defining and analyzing requirements (Scacchi 2002; Noll 2008). Research studies

exploring development processes in open-source concluded that there are no formal processes

similar to the ones closed-source development employs in requirements engineering. However,

Scacchi identified informal processes similar to requirements elicitation, analysis, specification,

validation, and management (Scacchi 2002; Scacchi 2006; Scacchi 2009). These processes have

a significant social component and define the general characteristics of requirements lifecycle in

open-source. In many cases, open-source software projects adopt a post-hoc approach in which

32

requirements take shape after their corresponding implementation in the developed product is

realized.

The ability to better understand open-source requirements and their lifecycle provides

insights into the nature and evolution of open-source projects. Unfortunately, the informal nature

of open-source requirements makes a manual analysis of the natural language text used in open-

source requirements not feasible due to being time-consuming and error-prone, especially in the

case of large projects.

A model to provide a consistent perspective on requirements and their components, and an

associated method for automated analysis of NL requirements are necessary in order to achieve a

comprehensive understanding of and an improved management of open-source requirements and

software development projects. In this research I design, develop, evaluate and apply an

automated (requirements-based) tool for the analysis of software development projects, which

incorporates a model and a method as delineated above. The model, the method, and the

associated tool are designed for the specifics of OSSD projects but their external validity and

level of flexibility allows them to be adapted to meet the specific needs of other domains and

units of analysis as well. The results confirm this flexibility, indicate they can be adapted to

support a full lifecycle analysis, and suggest that they can reduce the effort required to analyze

requirements in OSSD projects.

The method I propose for performing an automated open-source requirements discovery and

classification provides researchers with the means to explore new areas of OSSD (such as project

evolution and success), and practitioners (OSSD project champions, core and peripheral

contributors) with the means to better understand and manage/steer the project towards

increasing the chance of success. In this thesis, I also present studies in which I apply the

33

proposed artifacts. While one of these studies represents the direct applicability of the proposed

artifacts in the context of OSSD, the other is an exploratory analysis of OSSD project success.

2.2. Pattern-Based Analysis of Requirements

The use of patterns for recognizing requirements is an accepted approach in the field of

requirements engineering. A number of researchers proposed in the last part of the 1990s a range

of approaches to analyzing natural language text based on patterns (Rumbaugh 1994; Gamma et

al. 1995; Cockburn 1997; Toro et al. 1999b). Toro et. al. proposes a series of requirements

templates that can help capture requirements. They include linguistic patterns (L-patterns, natural

language commonly used for describing requirements) and requirements patterns (R-patterns,

generic requirements templates) (Toro et al. 1999a). While attempting to bridge between natural

language and formal requirements specifications, Toro’s study reaches a middle ground between

them. The objective of the techniques proposed is to perform a re-specification, rather than

requirements discovery.

Konrad and Cheng propose a set of requirements patterns for embedded systems. Their

work does not address requirements discovery but explores requirements patterns

identification from existing project requirements. They validate the initial patterns by

applying them to two case studies in order to inform future design decisions (Konrad and

Cheng 2002). Also for embedded systems, Denger addresses the problem of requirements

imprecision (Denger et al. 2003). This study uses a pattern-based analysis of existing

requirements in order to identify missing information and to fix the existing

inconsistencies. Similar to the other studies, it explores a specific domain (embedded

systems) and does not address the problem of requirements discovery. However, the

patterns identified are derived from elements of natural language.

34

2.3. Requirements Discovery

A number of researchers highlight the benefits and appropriateness of using NLP

techniques in requirements engineering. On a more general perspective, Kevin Ryan

highlighted in the early 1990s the increased need for NLP analyses as a direct reaction to

the increased complexity of software systems (Ryan 1993). Other authors suggest more

specific uses of NLP. For instance, Sampaio presents a NLP technique based on WMATRIX

for analyzing requirements documents with the intent of identifying elements specific to

Aspect Oriented Software Development (AOSD). Sampaio’s approach can explore both

structured as well as unstructured documents. The identification process is supervised and

controlled by a researcher and generates a structured document. The identification process

is based on frequency analysis and key term extraction (Sampaio et al. 2005).

Ambriola and Gervasi also confirm the use of NLP in the analysis of requirements.

Their tool, CIRCE, is designed to support the analysis of structured documents in which

requirements are expressed through NL text. CIRCE parses input data and applies a number

of modelers in order to present the analyst with rendered (UML-based) views of the model

being analyzed. The user can either validate the output models or decide on the specific use

of the available data (Ambriola and Gervasi 2006).

Another group of researchers from the Italian academia, Fantechi and Spinicci, propose

an artifact for improving requirements quality. Their study describes a semi-automated

process for reducing inconsistencies in requirements documents. Their proposed process is

another example of the use of NLP techniques in the analysis of requirements. Phrasys, a

NLP-based software environment, is used for phrase and sentence extraction. The proposed

technique processes structured requirements documents and identifies SAO triples in order

35

to analyze interactions between entities (Fantechi and Spinicci 2005). Another researcher

who uses the SAO pattern is Leonid Kof. He also uses SAO patterns for analyzing

structured requirements documents. His goals are to identify associations between terms

and to construct domain taxonomies (Kof 2005).

An approach to requirements discovery and classification that is not using only formal

requirements documents is the one presented in a study of non-functional requirements

(NFR) by Jane Cleland-Huang and her co-authors. This study uses a semi-automated

technique for identification and classification of requirements from both structured and

unstructured documents. The NFR classification process proposed has three stages: mining

phase, classification phase, and application phase. In the mining phase, the authors perform

term extraction based on a training set for identification of keywords. The classification

phase enhances this process by performing a sentence extraction and a NFR classification

from the available documents based on three resources: the terms extracted during the first

phase, a document of unclassified software requirements specifications, and unstructured

documents listing potential NFRs. Third phase is the one when the user determines the

applicability of the results outputted by the software artifact. This semi-automated method

requires significant researcher intervention and control throughout the entire process. The

proposed artifacts are designed for the specifics of a combination of formal closed-source

requirements documents and test data. Moreover, the analysis techniques employed are not

NLP-based but statistical (Cleland-Huang et al. 2006)

2.4. Requirements Classification

Requirements have been traditionally classified as either functional (FR) or non-functional

(NFR), even though some researchers consider this classification to be too broad (Bass et al.

36

1998). While adopting this perspective, researchers refer to FR as goals (or hard goals, or

behavioral requirements), and to NFR as soft goals (Mylopoulos et al. 1999; van Lamsweerde

2007). Functional requirements are concerned with specifying particular features of the system to

be developed. Therefore, a complete set of FR should comprehensively describe the functionality

of the new system. Non-functional requirements are concerned with two areas: (1) properties that

affect the system as a whole (such as usability, portability, maintainability, or flexibility), and (2)

quality attributes (such as accuracy, response time, reliability, robustness, or security) (Chung et

al. 1999; Moreira et al. 2002). Some variations to it include the listing of security concerns under

FR, adding supportability under NFR, or specifying sub-categories of these two (Grady 1992).

Additional requirements classifications start from an agent-based perspective informing

the V-model of requirements. In this approach requirements are listed as user-stakeholder,

system, sub-system, or component requirements (Broy and Stauner 1999; Weber and

Weisbrod 2003; Hull et al. 2005). From a goal-orientation perspective, goals are identified

and analyzed based on the agents that can achieve them. From an agent-oriented

perspective, the agents are identified and analyzed based on the goals they need to achieve

(van Lamsweerde 2007).

Requirements classifications are often times based on various taxonomies of common

types of technologies, or their detailed and specific characteristics . More common

requirements classes are reliability, efficiency, integrity, and usability, to name only few.

These requirements types and other similar to them are commonly derived from more

general product quality models, or from more specific software quality models. Among the

quality models that are widely accepted within both the practitioners’ and researchers’

domains one can mention McCall’s (McCall et al. 1977), Boehm’s (Boehm et al. 1978),

37

IEEE (IEEE), and the series of ISO quality models (ISO 2001; ISO 2011). The quality

factors included in these models have been often used by researchers for building

taxonomies of requirements while the descriptions of these factors have been used to derive

classification rules, patterns, and principles.

2.5. Software Product Quality and Software Development Project Success

An important aspect of software development lifecycle is project success. While this concept

seems simple and intuitive, there is little agreement as to what constitutes software quality or

project success (Pinto and Slevin 1987). Traditionally, projects were perceived as successful

when they met time, budget, and performance goals. Obviously “success” is more than meeting

budget and deadlines. TAM (Davis 1989; Venkatesh et al. 2003) posits that perceived usefulness

and perceived ease of use determine an individual's decision to use a system, which in turn

determines that project’s success. Taking into consideration that different groups of stakeholders

have different views on success, other dimensions have been defined as determinants of a

project’s success: project efficiency, impact on customer, business success, and preparing for the

future (Shenhar et al. 1997). DeLone and McLean identified six dimensions of success: “systems

quality” which measures technical success, “information quality” which measures semantic

success, and “use,” “user satisfaction,” “individual impacts,” and “organizational impacts” which

measure effectiveness success (DeLone and McLean 2003). The quality of information, system,

and service leads to higher user satisfaction, which leads to user’s intention to use the product,

and certain net benefits occur.

In the last few decades, the importance of business related aspects on the success of the

development lifecycle has been constantly highlighted. Along with this, we can note an

increasing emphasis being placed on not only the developers of products and services and on the

38

development processes but also on the users and on the efficiency of the communication between

users and developers. In the context of software development, the essential role the users play in

the success of a system’s development and its subsequent use has been recognized constantly

since the dominance of modern software development methodologies, such as the series of

methods grouped under the umbrella term of agile development. Along these lines, researchers

underlined the importance of requirements as a result of user-developer communication and a

determinant of project success: "requirements are essential for creating successful software

because they let users and developers agree on what features will be delivered in new systems”

(Wiegers 2003). Early user involvement has been related to higher requirements quality.

Empirical studies confirmed this and showed that involving users and customers as sources of

information is related to project success (Kujala et al. 2005). The relationship between

requirements quality and project success is also explored by Hooks and Farry (Hooks and Farry

2001). They show that the two variables are positively correlated. Dvir summarizes these

findings by stating that user involvement in the development of requirements is positively and

significantly correlated with the overall success of a project (Dvir 2003; Dvir 2005). Therefore,

requirements and their evolution represent two of the essential attributes of software

development projects and require a special attention in studies on project success.

Although the open-source domain attracted in the recent years an increasing number of

researchers exploring a wide array of areas, the impact of requirements and their associated

processes on OSSD remains an under-explored area of research. The OS areas studied by

researchers include aspects of social networking analysis, or exploring related areas such as

psychology-based perspectives on the OS participants, the economic impact of OS, laws and

policies affecting the OS domain, organizational participation in the OS phenomenon,

39

applicability and use of OS products in various domains and industries, and NLP-based analysis

techniques. A number of studies explored OSSD projects and their associated development

processes while adopting a requirements-based perspective (Scacchi 2002; Noll 2008; Scacchi

2009). Current findings are limited to acknowledging the existence of requirements and their

associated processes (elicitation, analysis, specification and modeling, validation, and

management) in open-source projects (Scacchi 2009). While requirements processes received

slightly more attention from a research community apparently focused more on social

networking analysis and participant involvement, the end product of OSSD projects, the software

product itself and elements that are part of its development lifecycle received a slightly less

consistent attention. One important concept that is worth further investigation is represented by

open-source requirements and their impact on the quality of OS software products and on the

success of OSSD projects.

One way these objectives can be approached is by considering quality to be a main

independent variable in a model predicting success and by extending the assumption of quality

from the requirement level to the software product level and subsequently to the project level

(DeLone and McLean 1992; Crowston et al. 2003). Wiegers’ and Dvir’s findings that software

project success is determined by project’s requirements support such a perspective (Wiegers

2003; Dvir 2005). In the exploratory study following the design of an automated requirements

discovery and classification artifact, I explore the concept of requirements quality by classifying

open source requirements through a mapping to a generally accepted software quality model,

such as McCall’s (McCall et al. 1977). Therefore, McCall’s 23 software quality criteria

determine the taxonomy of 23 types used to classify open-source requirements (see Appendix).

The objective of this study is to explore characteristics of OSSD projects by studying the impact

40

of open-source requirements on the dimensions of success from the IS success model proposed

by De Lone and McLean. Specifically, I explore the indirect impact open-source requirements

exhibit on project success (via characteristics of system use and indicators of user satisfaction).

I place requirements-related information that I obtain from using the RCNL tool in the context of

other OSSD project related measures and I discover a set of patterns through reasoning and

logical inference. For the validation of these findings, I extract and analyze additional OSSD

project level information. The findings are validated when they are confirmed by the project

characteristics identified in the additional information collected.

3. The Grammar-Based Approach

3.1. Classifier Design

I follow the principles of a design science research (Hevner et al. 2004) to develop the RCNL

classifier for the grammar-based strategy. It embodies the theory of a pattern-based approach to

discovering requirements from real natural-language. As described above in Section 1.3, the

grammar-based strategy proposes the within sentence pattern-based analysis of natural language

text. This approach is focused on the use of the SAO (Subject-Action-Object) pattern for

requirements discovery. The implementation of this perspective results in proposing a multi-level

ontology, in which the lower levels are based on the English grammar specific to informal

communication while the upper levels are requirements-based and adapted to the specifics of

OSSD. The RCNL ontology is realized in an implementation that uses a multi- level GATE

(General Architecture for Text Engineering) parser (Cunningham et al. 2002). I apply the Hevner

et. al. (Hevner et al. 2004) descriptive approach to design science – developing and then

evaluating the design of RCNL using scenarios and argumentation.

41

OSSD project data are a central problem to discovery and classification. The data

sources are real unstructured natural language text. For OSSD project texts, this means that

most of the text does not conform to English grammar. In fact, nearly all the texts are

fragments containing many typos, misspellings, technical writing, elements of social

communication, and idioms (e.g., text smileys).

To address these characteristics of the data sources, the classifier is a type of weak

ontology-based information extraction (OBIE) system. Such systems work well for parsing

and tagging fragments of unstructured natural language text (Wimalasuriya and Dou 2010).

The ontology is comprised mostly of grammar-based concepts, except for the last level that

contains the requirements classification concepts.

I validate the classifier using two methods. First, I apply the classifier to a variety of

data sources and measure its classification quality. Such classification scenarios guide the

design and development of the classifier. Second, I compare the classifier’s results with

those of a human expert. I report of these validation efforts in Section 5. Next, I illustrate

discovery and classification with an example, and then present the discovery and

classification ontology.

Illustrative Text Tagging

Figure 3 illustrates the tagging of a sentence from the data collected from one of the data

sources (feature requests for the PasswordSafe project) using the RCNL grammar-based

requirements parsing ontology. For illustrative purposes, the text selected is well-structured,

follows the general rules of the English language and does not contain typos, misspellings,

technical writing, or other elements of informal communication that would distract from the

explanatory purpose of this example. The tags from first two levels (level 0 and level 1) are not

42

shown or shown selectively, because they are mostly common parts of speech (POS) tags and in

order to avoid complexity and confusion. For clarity purposes, only the tagging of those pieces

of text that would suffer subsequent annotation and participate in pattern matching is highlighted

for these first two levels.

Figure 3 shows that the recognized requirement (L4 – SAO triple) is comprised of a

qualifier (L2 – Preference) followed by subject, action, and object tags from L3. The entire

statement is tagged as a classified requirement (L5 – Classified SAO triple). In informal

communication in open-source often only pieces of statements result in being tagged as L5

patterns due to the presence of extraneous text. In the grammar-based analysis, the within

sentence recognized requirements are labeled micro-requirements.

Requirements Parsing Ontology

The grammar-based RCNL ontology for OSSD projects includes six levels, as

summarized in Table 1. The first two levels contain common natural language grammar

concepts – tokens and POS. The next three levels contain concepts of logical statements –

qualifications, entities comprising micro-requirements (subjects, actions, and objects), and

Figure 3. Text tagged with the grammar-based requirements ontology.

43

recognized micro-requirements (SAO triples, SAO extensions, and SAO atomic elements) .

The final level 5 contains the classification concepts. Although the levels are numbered

from 0 through 5, each level may be only partially dependent on the lower levels. For

example, level 4 characterizes subject-action-object triples using information from all

previous levels while level 3 characterizes SAO elements comprising micro-requirements

based on information from levels 0 and 1 only (no information from level 2 is used in level

3).

Table 1. The grammar-based RCNL requirements parsing ontology.

RCNL

Level

Level Name Description Elements covered

L0 Token Defines basic elements of

text commonly included in

all types of communication.

Word, punctuation, symbol, list,

filename, sentence, email

address, url, phrase, syntactical

separator

L1 POS Defines most common

Parts-of-Speech (POS)

elements.

Adjective, adverb, verb,

conjunction, preposition,

determiner, negation, noun

L2 Qualification Identifies expressions

defining a context that can

indicate a requirement.

Belief, certainty, necessity,

preference, qualifier, quantifier,

qualifying phrase

L3 Entities Identifies the three basic

elements of a requirement.

Subject(S)/actor, action(A)/verb,

object (O)

L4 Micro-

Requirement

Discovers parts of text

identified as micro-

requirements.

SAO triples, SAO extensions,

SAO atomic elements

L5 Classification Classifies pieces of text

identified at previous level

and elements of lists.

SAO triples, SAO extensions, list

items and introductory phrases

The first two levels are common to all NL parsing systems. Level 0 (L0) concepts

include words, punctuation, as well as idioms common to OSSD projects, such as email

address, URLs, and file reference. It also includes concepts such as various symbols, list

delimiters, sentences, phrases, and various syntactical separators. Level 1 (L1) concepts are

44

the common English parts of speech (POS), such as adjectives, adverbs, verbs,

conjunctions, prepositions, determiners, negations, and nouns.

Level 2 (L2) concepts are qualifiers, such as beliefs, certainties, necessities,

preferences, and various qualifying and quantifying expressions. These mostly depend on

specific words identified in level 0, but may also depend on the POS of level 1 (e.g.,

determiners, deictic words, quantifiers, numerals, modals, negating expressions, etc.).

Let’s consider the following text from the dataset (from feature request posts of the

AWStats project):

I think this is great if awstats html tag can calculate ROI ...

The keyword “think” indicates the presence of an expression of belief. Any beliefs,

preferences, expressions of certainty or necessity, or quantifiers or qualifiers that

potentially modify a micro-requirement are tagged at L2. Such expressions usually

introduce a micro-requirement.

Level 3 (L3) concepts are simply subject, action, and object. Subject is not simply a

noun, but an actor (person, object, entity, or concept). The actor may execute some action

on an object. The action is expressed through a verb or set of verbs defining the desired

course of events. The object of this action can be any entity or set of entities in the

environment impacted by the performing of the action.

The analysis of requirements through the lenses of a structured approach built on the

subject-action-object (SAO) triple is not new. Fantechi and Spinicci use this approach for

analyzing interactions among entities in a semi-automated process of reducing

requirements inconsistencies in structured requirements documents (Fantechi and Spinicci

2005). Leonid Kof is also using the SAO pattern, but in his case the objective is to develop

domain taxonomies out of formal requirements documents (Kof 2005; Kof 2007). In the

45

grammar-based RCNL ontology, L3 patterns discover all subjects, actions, and objects

present in text that can potentially be part of a micro-requirement.

A subject-action-object assertion is the concept of Level 4 (L4). Adjectives, adverbs,

and other elements may be involved, but level 4 represents the central micro-requirements

statement. Often, a level 4 micro-requirement is qualified by a level 2 expression as shown

before.

In informal communication it is not uncommon for the actor of a statement or for the

objects impacted by the action of the statement to be inferred rather than specifically

mentioned. This is achieved through the use of deictic words and represents some of the

exceptions that are considered in L4. Since the existence of a subject and object in text is

optional, let’s try to exemplify this situation with an example. The following text (from the

dataset) is tagged as two L4 requirements (separate by the “, but”).

Keep the current view of top keywords, but add a new option to display

the following information.

The L4 patterns can reference the other levels. In fact, the qualifier tags of L2 often

introduce the L4 micro-requirement. This example (from the dataset) illustrates this

situation:

I want to see when I get more visitors, and be able to compare my

traffic to other days.

The expression “I want” (L2) qualifies the micro-requirement (L4) that it introduces.

Finally, level 5 (L5) concepts are the domain specific classification of the level 4

statements. I have designed two L5 classifiers:

1. Standard classifier based exclusively on McCall’s quality model (I call this McCall

classification or McCall)

46

2. Extended classifier based on McCall’s quality model and enhanced with libraries of

patterns encoding OSSD-specific attributes (I call this McCall+ classification or

McCall+)

McCall’s model specifies 23 quality criteria for software. These concepts are

represented in L5. In particular, I specify rules for recognizing the 23 quality criteria in the

pieces of text that are annotated in L4 as micro-requirements. I aimed to accurately capture

the quality model as specified by McCall (McCall et al. 1977).

In addition to the classification rules directly derived from McCall’s quality model, I

specified my own classification rules for the 23 quality criteria. In particular, these extend

the McCall’s classification rules to recognize concepts and terms unmentioned in the

McCall specification. I call these the OSSD extensions of McCall’s model, or McCall+.

The McCall OSSD extensions are based on two sources. First, the NLP literature for

requirements parsing suggests keywords and parsing strategies – in particular, Cleland-

Huang’s study on non-functional requirements (Cleland-Huang et al. 2006). Second,

analysis of NL associated with OSSD projects suggests further keywords and parsing

strategies. In particular, I iteratively extend the RCNL parser, and test it on sample data,

until I reach a consistent level of correct classification. Additionally, I make use of the

SensAgent online dictionary for gathering all synonyms who are properly describing the

same meaning as the original classification keyword or expression (www.sensagent.com).

The Appendix section includes illustrative classifications. Here, I report on only the

McCall+ classifications, because of their significantly better classification efficiency over

the McCall classifications.

http://www.sensagent.com/

47

3.2. Classifier Engineering

The RCNL classifier is implemented in GATE (Cunningham et al. 2002). The General

Architecture for Text Engineering is developed by the Sheffield Natural Language Processing

Group at the University of Sheffield and is surrounded by a large community of collaborators

and users. Next, I describe at a high level the engineering involved in realizing the RCNL

framework in GATE. In particular, I describe rules for tagging text according to the ontology,

additional text processing, and the overall text processing activity.

The parser implements the RCNL ontology to recognize and classify NL micro-

requirements. The patterns used in the tagging of NL text are encoded in RCNL using the

JAPE (Java Annotation Pattern Engine). For each level, JAPE rules specify how GATE tags

text with concepts of that level. The rules are organized in a pipeline and executed

sequentially, from level 0 to level 5. The final output includes qualified (L2) micro-

requirements (L4) that are also classified (L5) according to the rules of McCall+ classifier.

Any piece of text may have multiple tags generated by rules from multiple levels.

GATE supports levels 0 and 1 directly, identifying tokens and some parts of speech. The

RCNL classifier rules augment and extend the native GATE tags to aid processing for

OSSD projects.

Rule-Based Tagging

GATE defines an architecture for executing plugins over NL text. GATE users may develop

their own plugins; however, GATE provides a variety of plugins for common NLP tasks.

GATE also provides JAPE (Java Annotation Pattern Engine), a rule-based text-

engineering engine that supports Java and regular expressions. Another benefit of using

GATE is the annotation indexing and search engine with an advanced graphical user

interface called ANNIC (Annotations in Context). The analyses of this study use ANNIC

48

for development of rules and inspection of results, and JAPE for rule design and

implementation.

JAPE rules specify a left-hand side (LHS) in which the pattern to be matched is defined

and a right-hand side (RHS) in which the annotation and its features to be created for all

the discovered instances of the pattern are being specified. Multiple and complex patterns

can be defined in the LHS of a JAPE rule. Similarly, the RHS of a JAPE rule can be used to

specify multiple annotations and features to be created for each matching pattern or for

each matching element of a pattern.

The current implementation of the grammar-based RCNL classifier consists of over 200

JAPE rules, not including the rules designed for generating evaluation metrics. To illustrate

how the grammar-based RCNL ontology is recognized through JAPE rules, I present rules

from levels 3 and 5. The rules presented here are simplified for clarity.

A Level 3 Rule

To illustrate the rule techniques, here is a rule from L3.

Rule: PotentialSubjectFinder

(

 (

 {Token.category == PP} |

 {Token.category == PRP} |

 {Token.category == "PRPR$"} |

 {Token.category == "PRP$"} |

 {L1.category == "Noun"} |

 {L0.category == "Filename"} |

 {L0.category == "email"} |

 {L0.category == "url"} |

 // ...

 ({L1.category == "Determiner"} {L1.category == "Noun"})

) [1,5]

)

:SubjectFound

-->

 :SubjectFound.L3 = {category = "Subject"}

49

The LHS part of the rule defines a pattern searching for pronouns (as defined in pre-defined

rules in GATE), or nouns (as defined in L1), or filenames, Url’s, email, (as defined in L0), or a

determiner followed by a noun (up to 5 instances of this pair). When either one of these is found,

the text matching the pattern is annotated as an L3 Subject.

A Level 5 Rule

Here is an L5 classification rule.

Rule: L5_Comunicativeness

(

 {L4.valid == "Yes",L4_Requirement contains KW_F5C12}

)

:L5_ComunicativenessFired

-->

 :L5_ComunicativenessFired.Comunicativeness = {category = "F5C12"}

The LHS part of the rule matches text annotated as L4 (micro-requirement) that contains

keywords associated with factor 5 and criteria 12 of McCall’s model. The matched text is

annotated as Communicativeness, which is the label for factor 5, criteria 12.

Auxiliary Text Processing

Three auxiliary kinds of text processing are noteworthy. First, list processing presents an

interesting problem. OSSD project texts include technical yet informal communication

containing numerous examples of specifications expressed with lists. Lists typically have an

introductory phrase followed by one or more list items:

<Introductory phrase> [<list item>]+

Sometimes the introductory phrase and each list item are complete micro-requirements.

However, most often the introductory phrase can be classified as a micro-requirement while the

list items are examples or statements that extend the meaning of the introductory phrase. To

address such issues, the L5 tag associated with the introductory phrase is propagated to all the

list items. As such, a list item can have two tags: a tag from parsing the list item, and a tag

50

propagated from the introductory phrase. List classification processing occurs in L5 at the same

time with the regular classification of micro-requirements.

A second auxiliary text processing involves the checking for micro-requirement

containership. It is possible, but rare, that a micro-requirement is fully contained inside

another micro-requirement. When found, a final finishing rule re-annotates micro-

requirements to indicate that only the larger micro-requirement should be considered for

classification. This avoids double annotating and double classifying same piece of text.

The last auxiliary text processing generates metrics for evaluating the analysis and the

rules. These include:

 Tokens covered: Total number of tokens in text covered by the text annotated as micro-

requirements.

 Sentences covered: Total number of sentences in text including text annotated as micro-

requirements.

 Micro-requirements tagged: Total number of micro-requirements discovered

 Classifications created: Total number of classifications created

 Requirements classified: Total number of discovered micro-requirements that are classified

Figure 4 shows the RCNL classifier as implemented in GATE. The screen image shows

text tagged as micro-requirement, and two classifications, Operability (factor 5, criteria

10) and StorageEfficiency (factor 3, criteria 7). The image shows how the OSS

documents are referenced as GATE’s Language Resources, at the left. Below that are the

Processing Resources, which provide the syntactic and rule-based processing components

for the pipeline processing of the documents.

51

4. The Delimiter-Based Approach

As in the case of the grammar-based strategy, the development of the RCNL classifier for the

delimiter-based strategy also follows the principles of a design science research (Hevner et al.

2004). A similar pattern-based approach to discovering requirements from real natural-language

is used in this strategy. As described above in Section 1.3, the delimiter-based strategy proposes

the within posting pattern-based analysis of natural language text. This second approach is based

on the discovery of semantic delimiters for requirements discovery. The implementation of this

perspective results in proposing a multi-level ontology similar to the one proposed for the

Figure 4. The RCNL classifier as implemented in GATE.

52

grammar-based strategy. The RCNL ontology is also realized in an implementation that uses a

multi-level GATE parser (Cunningham et al. 2002).

In addition to the validation methods mentioned in previous section, which I also use

for the delimiter-based parser, in this research I also consider an evaluation in which I

compare the accuracy and efficiency of the two strategies. However, the two strategies are

not to be considered mutually exclusive but complementary, as detailed in Section 1.3.

Next, I illustrate discovery and classification with an example, and then present the

discovery and classification ontology.

4.1. Classifier Design

Illustrative Text Tagging

Figure 5 illustrates the tagging using the RCNL requirements parsing ontology of a sample

posting from the Feature Request forum of KeePass Password Keeper project. For illustrative

purposes, the text is well-structured and simple and few segments of text are omitted. For

instance, parts describing the desired functionality are omitted as well as the signature of the

posting author. The tags from first three levels (L0, L1, and L2) are not shown, because they are

mostly common tags used in the annotation of basic elements of text, or do not play an important

role in this example.

Figure 5 shows how a concept separator (L3, “also”) is used to separate a feature

request posting into two topics. Due to this separation, the posting is split up into two

macro-requirements (L4). Note that first macro-requirement includes a sentence delimiter

(the punctuation symbol at the end of the sentence) as well as first part of the subsequent

sentence. This is expected behavior for the delimiter-based strategy. Both annotated macro-

53

requirements are tagged as a classified requirement (L5) is a classification pattern is

recognized within their boundaries.

Requirements Parsing Ontology

The RCNL ontology for the delimiter-based approach is designed on the same principles as

the RCNL ontology for the grammar-based approach. Table 2 summarizes the six levels of the

RCNL ontology for the delimiter-based approach. Although the levels are numbered from 0

through 5, each level may be only partially dependent on the lower levels. For example, Level 3

characterizes concept separators using information from Levels 0, 1, and 2. Level 4 identifies

parts of a posting that describe a desired new feature using information from level 3 only. The

first three levels and the classification level (L5) include same grammar and requirements-

oriented concepts as in the first strategy and offer same results and benefits.

Figure 5. Text tagged with the delimiter-based requirements ontology.

54

Table 2. The delimiter-based RCNL requirements parsing ontology.

RCNL

Level

Level Name Description Elements covered

L0 Token Defines basic elements of

text commonly included in

all types of communication.

Word, punctuation, symbol, list,

filename, sentence, email

address, url, phrase, syntactical

separator

L1 POS Defines most common

Parts-of-Speech (POS)

elements.

Adjective, adverb, verb,

conjunction, preposition,

determiner, negation, noun

L2 Qualification Identifies expressions

defining a context that can

indicate a requirement.

Belief, certainty, necessity,

preference, qualifier, quantifier,

qualifying phrase

L3 Concept

Separators

Identifies pieces of text

separating logical concepts.

Semantic separators

L4 Macro-

Requirement

Discovers parts of text

identified as macro-

requirements.

Sets of statements delimited by

concept separators (L3)

L5 Classification Classifies pieces of text

identified at previous level

and elements of lists.

Macro-requirements (L4)

The delimiter-based parsing strategy relies on discovering concept separators in Level

3. They indicate that the discussion on a desired piece of functionality concludes and the

discussion on a new desired feature starts. Level 3 patterns are comprised of words and

expressions. Punctuation symbols are not considered to be semantic separators but only

grammatical separators.

Level 4 provides a basic parsing of feature requests postings for tagging the amount of

text between the beginning of the posting and first concept separator, or between two

consecutive concept separators, or between last concept separator and the end of the

posting as macro-requirement.

The delimiter-based recognizer relies on tokens and parts of speech to recognize macro-

requirement delimiters at the feature request posting level. Consequently, a delimiter-based

requirement can include multiple micro-requirements. If the requirement in Figure 3 were all the

55

text in a posting, then it would also be recognized as a macro-requirement. However, if it were

included with other statements, such as in the case presented in Figure 5, with intervening

delimiters, then each set of delimited statements would be recognized as a macro-requirement.

The delimiter-based recognizer mostly considers each posting to the SourceForge Feature

Tracker as a macro-requirement. There are a few exceptions, in which keywords (e.g., first,

second, third ..., conversely, addition to) separate a post into more than one requirement. As the

results of applying the RCNL classifier to open-source projects show in the next sections, there is

an average of less than 2 macro-requirements per posting.

4.2. Classifier Engineering

The implementation of the RCNL classifier under the delimiter-based strategy follows uses

the same resources and technologies as the implementation for the grammar-based strategy. The

implementation environment is GATE, and the rule encoding engine is JAPE.

Parsing Pipeline

Figure 6 illustrates how the RCNL rules are executed within GATE and the distinction

between the implementations of the two strategies. The process begins with a NL resource,

which is processed through a series of special purpose programs, or plugins. Pre-processing

includes five stages followed by Named Entity (NE) Transducers, as shown in Figure 6. NE

transducers are plugins that call on specific parsing pipelines comprised of JAPE rules designed

by the researcher. The five pre-processing plugins perform the following tasks:

1. Language resources are converted into GATE format.

2. An English Tokenizer plugin identifies tokens within the text provided. These tokens are

basic elements of text, such as words, punctuation, spaces, etc.

56

3. A Sentence Splitter plugin identifies and annotates pieces of text corresponding to

sentence and paragraph structures.

4. A POS Tagger plugin identifies Parts-Of-Speech in the text. POS are elements such as

adjectives, adverbs, nouns, verbs, conjunctions, etc.

5. A Morphological Analyzer plugin identifies each token’s lemma and affix. I use this

plugin in the analysis because it provides stemming capabilities to the NLP analysis.

The analysis following pre-processing is completed with using Named Entity Transducers

and runs the RCNL JAPE rules on the pre-processed data. Discovery and classification in the

grammar-based analysis is comprised of around 200 JAPE rules, while in the delimiter-based

analysis it is comprised of around 120 JAPE rules.

Figure 6. Text tagged with the delimiter-based requirements ontology.

57

I design, develop, and organize the sets of JAPE rules for discovery, classification, and

evaluation separately from each other. While discovery is distinct between the two

strategies, classification rules are the same in both approaches. Finally, a third set of rules

post-processes the analysis results preparing measures of interest for the evaluation

process.

Rule-Based Tagging

The current implementation of the RCNL classifier for the delimiter-based strategy

includes JAPE rules of significantly higher complexity than in the case of the

implementation for the grammar-based approach. To illustrate how the RCNL ontology is

recognized through JAPE rules in the delimiter-based strategy, I present two simplified

rules from Levels 3 (concept separator) and 4 (macro-requirement discovery).

A Level 3 Rule

To illustrate the rule techniques for the delimiter-based approach, here is a rule from L3.

Rule: macro_separator_prekeyword2_ext

Priority: 20

(

 ({SK2_ext within Sentence}) :seppreK2ext

 (({!Split, Token within Sentence}) [0,1000]) :restofsentence

 {Split}

)

:macroseppreKW2extFired

-->

 :seppreK2ext.Separator_Prekeyword2_ext = {category = "Macro

Requirement Separator Pre-Keyword Extend"}

The LHS part of the rule describes a pattern searching for a separator keyword of type 2

(SK2) within a sentence, followed by a number of tokens different from a custom defined set of

delimiters, followed by one of the custom defined separators. In a simpler explanation, this rule

is searching for a specific type of concept separator placed anywhere but at the end of a sentence.

When the entire pattern matches, only the keyword of type 2 will be tagged for further

processing, leaving the rest of the sentence not tagged.

58

A Level 4 Rule

Here is a (slightly simplified) L4 discovery rule.

Rule: req_body

Priority: 20

(

 {!Micro_req_separator, NLI within Posting}

 |

 (({Micro_req_separator}) [0,1])

 (({!Micro_req_separator, Token.string != "#", Token within Posting})

[1,10000])

)

:reqbodyFired

-->

 :reqbodyFired.Macro_Requirement = {category = "Posting-

Based_Requirement", rule = "req_body”

}

The LHS of the rule matches a pattern comprised of either a Numbered List Item (NLI)

within a sentence as defined in level 0 (L0), or a sequence of up to 10000 tokens not including

separators or posting delimiters. It is important to note here that all separators and annotations

used in this rule are defined in rules corresponding to previous levels of the RCNL ontology.

5. Evaluation and Applications

Having created a requirements classifier for the unstructured and typo-rich NL text of OSSD

projects, I applied a number of validation methods to assess it. Additionally, I implemented two

strategies for OSSD requirements discovery classification and assessed their characteristics.

 Which strategy classifies the most text?

 Which strategy is most consistent with the way a human analyst would annotate

requirements within the text?

 Is there any value in running both strategies, i.e., the hybrid approach?

To answer these questions, I first consider a glass-box evaluation method. In particular, I run

the RCNL classifier on a variety of pilot data segments and inspect output’s quality in order to

improve the design of the classifier. These iterations continue until I reach saturation, meaning

59

that I reach marginal improvement over previous feedback iterations. Second, I consider a back-

box evaluation method. Specifically, I use the RCNL classifier on a large dataset of OSSD

project data and measure tool’s computational performance. Third, I consider an intrinsic

evaluation of the RCNL tool. For this method, I compare the automated classification generated

by the classifier to that of a human expert. As a result of this comparison I generate a set of

evaluation measures that are well-established in the field of information retrieval (IR) and NLP

and then interpret the measures. Fourth, I use the developed artifacts for conducting a

requirements-based exploratory study of OSSD projects. In this study I explore OSSD project

level characteristics such as project type and success, and propose a wave theory of innovation in

OSSD. Next sections present the experiments associated with the evaluation and exploratory

efforts mentioned here.

5.1. The SourceForge Dataset

Like many researchers in OSSD, I selected SourceForge projects for data collection (Lintula

et al. 2006). SourceForge provides access to over 324,000 OSSD projects and over 3.4 million

registered user’s activities, as of June 2012. I decided to take advantage of the enhanced online

access offered to the SourceForge dataset by the Department of Computer Science &

Engineering at Notre Dame University through the SourceForge Research Data Archive (SRDA)

(Madey ; Gao et al. 2007). In particular, I processed the May 2011 data from SourceForge.

I narrowed the dataset to substantial projects that actively use requirements. I define

this as:

1. Having more than 4 developers

2. Having more than 5,000 downloads

3. Having more than 600 feature requests posts

60

After a review of the project data, Biet-O-Matic was removed because it is entirely

German NL text and the classifier’s rules are designed for processing exclusively English

NL data. The result is a dataset comprised of 30 projects (see Table 3) with an average size

of 4,962 sentences or 110,517 tokens. While the project with the longest history and the

most active community is SourceForge.net (over 5,200 feature requests posts), the total

number of downloads indicates phpMyAdmin as the most popular (almost 6 million

downloads). In terms of project contributors, Tiki Wiki CMS Groupware is the project with

the largest set of contributing members (over 130). The Matplotlib project had many spam

posts, perhaps the result of a virus on a contributor’s computer. In order to avoid a

significant skewing effect on the results of the analysis, I manually removed all spam

postings and analyzed the remaining data of the project.

61

Table 3. The dataset of OSSD projects.

Project Name
Contributors

(>=4)

Downloads

(>=5000)

Feature

Requests

Posts

(>=600)

Tokens Sentences

SourceForge.net 17 72,595 5212 534,484 24,554

Gallery 11 2,124,290 2194 210,574 9,229

KeePass Password Safe 8 129,001 1486 141,052 6,733

FileZilla 8 3,770,280 1335 126,220 5,789

phpMyAdmin 9 5,908,777 1317 153,744 6,580

PhpGedView 9 39,023 1218 135,540 6,041

WinMerge 5 586,110 1189 116,259 5,415

POPFile - Automatic Email

Classification
5 452,133 1061 120,836 5,433

Arianne RPG 13 198,415 1033 98,760 4,429

MegaMek 18 181,061 1025 120,013 5,166

Tiki Wiki CMS Groupware 138 308,746 879 114,262 5,408

AWStats 5 585,317 861 105,795 4,217

Scintilla 10 402,190 805 92,019 4,281

Matplotlib (spammed) 5 17,022 752 11,947 490

floAt's Mobile Agent 14 1,274,217 725 58,240 2,665

Compiere ERP + CRM Business

Solution
30 805,876 724 64,421 2,937

TortoiseCVS 16 661,084 724 75,510 3,396

JabRef 17 35,794 716 74,978 3,490

Gutenprint - Top Quality Printer

Drivers
28 896,429 704 49,890 2,475

Fire 11 710,644 701 54,142 2,413

SW Test Automation Framework 7 56,216 686 98,950 3,831

EGroupware Enterprise

Collaboration
23 421,201 671 63,709 2,868

more.groupware 13 225,301 666 64,523 3,375

MediaWiki 25 96,189 638 76,111 3,208

Windows Installer XML (WiX)

toolset
8 120,634 637 77,272 3,150

ScummVM 25 1,140,520 630 80,467 2,907

Slash 8 108,533 618 95,123 3,889

Password Safe 8 207,386 616 56,681 2,598

Tcl 34 1,378,095 611 193,868 9,764

OSCARMcMaster 13 6,447 603 50,112 2,123

62

 Min 5 6,447 603 11,947 490

 Max 138 5,908,777 5,212 534,484 24,554

Average 18.0 763,984 1,035 110,517 4,962

5.2. Experiment Configurations

The analysis considered uses experimental configurations to process and evaluate each

project from the dataset:

1. Requirements recognition based on (a) the grammar-based parser, and (b) the delimiter-

based parser

2. Requirements classification based on (a) only McCall’s quality model and (b) the

extensions to McCall’s quality model, called McCall+

The computational performance analysis of the RCNL classifier considers the time to

recognize and classify requirements using the two strategies:

 Grammar-based strategy averages 463.5 tokens processed per second, which amounts to

about 3.97 minutes for an average size project in the dataset (project size determined as

the total number of tokens). The JAPE rules that are part of the grammar-based

implementation of the RCNL classifier are many, but relatively simple. Consequently,

they process quickly due to limited memory and computational demands.

 Delimiter-based strategy averages 211.0 tokens processed per second, which amounts to

about 8.73 minutes for an average size project in the dataset (project size determined as

the total number of tokens). The JAPE rules that are part of the delimiter-based

implementation of the RCNL classifier are few and relatively complex. Consequently, the

processing time is longer due to the greater memory and computational demands.

Note that neither grammar is a simple context-free grammar as found in most programming

languages. The parser applies knowledge of English language terms and grammar. Naturally,

63

classification takes the most time. The results are obtained on a 3.2 GHz computer running

Windows 7. Database retrieval of the features, storage of the results, and evaluation processing

are not considered in these numbers. The performance analysis shows that both strategies offer

reasonable computational times to project leaders interested in receiving support from the

automated requirements discovery and classification tool.

All JAPE rules implemented in the RCNL classifier are organized in a manner showing

concern for modularity and separation of functional characteristics. This, along with having all

JAPE rules controlled by a flexible custom configuration, provides the researcher with the ability

to turn JAPE rules on and off for conducting custom analyses. The experiments, described next,

enable or disable various rules to determine their contribution to the classifier’s performance.

5.3. Data Analysis and Results

The results of the analysis on the dataset of 30 OSSD projects show that the grammar-based

strategy discovers an average of 7,304 micro-requirements per project compared to the 1,607

macro-requirements per project discovered using the delimiter-based strategy. As Table 4 shows,

the grammar-based strategy identifies more requirements per project because it discovers all

SAO triples within text. In contrast, the delimiter-based strategy identifies, on average, a little

more than one requirement delimiter for every other Feature Tracker post. On average, the

delimiter-based strategy identifies 1.62 macro-requirements per Feature Tracker post (see Table

5). The delimiter-based strategy includes all the text of each post, thus text coverage for the

delimiter-based strategy is, by definition, 100 percent. In contrast, the grammar-based strategy

excludes text that does not conform to the SAO patterns used by the parser; thus, its sentence

coverage averages only 84.3 percent. This is an expected result if we consider the density of

elements of social communication that are present in the informal open-source communication.

64

Table 4. Requirements recognition using the two strategies.

Project

SAO-based
Delimiter-

based

Sentences

covered

Micro-

Requirements

discovered

Macro-

Requirements

discovered

1 SourceForge.net 83.4% 35,107 7,368

2 Gallery 85.7% 13,910 3,139

3 KeePass Password Safe 83.9% 9,712 2,295

4 FileZilla 85.3% 8,551 1,853

5 phpMyAdmin 83.5% 9,689 2,124

6 PhpGedView 87.4% 8,982 2,074

7 WinMerge 87.7% 8,116 1,932

8 POPFile - Automatic Email Classification 87.2% 8,258 1,681

9 Arianne RPG 90.0% 7,331 1,557

10 MegaMek 86.9% 8,008 1,668

11 Tiki Wiki CMS Groupware 83.8% 7,824 1,703

12 AWStats 80.8% 6,166 1,493

13 Scintilla 84.3% 6,304 1,444

14 matplotlib 81.6% 685 184

15 floAt's Mobile Agent 85.2% 3,950 1,007

16 Compiere ERP + CRM Business Solution 86.1% 4,505 1,108

17 TortoiseCVS 86.9% 5,390 1,196

18 JabRef 83.2% 4,954 1,171

19 Gutenprint - Top Quality Printer Drivers 80.8% 3,192 903

20 Fire 87.3% 3,784 930

21 SW Test Automation Framework 86.6% 6,056 1,306

22 EGroupware Enterprise Collaboration 86.2% 4,440 1,065

23 more.groupware 83.0% 4,495 1,089

24 MediaWiki 87.4% 5,033 1,078

25 Windows Installer XML (WiX) toolset 85.7% 4,777 980

26 ScummVM 86.6% 4,448 944

27 Slash 88.2% 6,307 1,241

28 Password Safe 88.0% 3,911 976

29 Tcl 65.9% 11,794 1,810

30 OSCARMcMaster 70.4% 3,432 883

 Average 84.3% 7,304 1,607

65

Table 5. Additional results of the automated discovery and classification process.

Project Micro /

Macro

Macro /

Posting

Micro /

Posting

Micro

Classified

/ Posting

Macro

Classified

/ Posting

1 SourceForge.net 4.76 1.44 6.85 3.80 1.30

2 Gallery 4.43 1.42 6.31 3.69 1.32

3 KeePass Password Safe 4.23 1.54 6.50 4.23 1.41

4 FileZilla 4.61 1.43 6.58 4.05 1.34

5 phpMyAdmin 4.56 1.49 6.78 4.28 1.39

6 PhpGedView 4.33 1.67 7.23 4.21 1.50

7 WinMerge 4.20 1.62 6.79 4.03 1.45

8 POPFile - Automatic Email

Classification

4.91 1.57 7.72 4.32 1.42

9 Arianne RPG 4.71 1.47 6.94 3.47 1.32

10 MegaMek 4.80 1.61 7.73 4.37 1.50

11 Tiki Wiki CMS Groupware 4.59 1.55 7.14 4.03 1.40

12 AWStats 4.13 1.71 7.08 3.69 1.41

13 Scintilla 4.37 1.77 7.71 4.45 1.56

14 Matplotlib 3.72 1.75 6.52 3.69 1.43

15 floAt's Mobile Agent 3.92 1.37 5.36 3.12 1.27

16 Compiere ERP + CRM Business

Solution

4.07 1.51 6.12 3.88 1.41

17 TortoiseCVS 4.51 1.61 7.24 4.25 1.36

18 JabRef 4.23 1.62 6.86 4.17 1.43

19 Gutenprint - Top Quality Printer

Drivers

3.53 1.29 4.56 2.82 1.12

20 Fire 4.07 1.30 5.29 2.99 1.22

21 SW Test Automation Framework 4.64 1.90 8.83 5.30 1.75

22 EGroupware Enterprise

Collaboration

4.17 1.55 6.44 3.87 1.43

23 more.groupware 4.13 1.44 5.95 3.47 1.30

24 MediaWiki 4.67 1.67 7.82 4.17 1.43

25 Windows Installer XML (WiX)

toolset

4.87 1.52 7.42 4.47 1.39

26 ScummVM 4.71 1.53 7.23 4.13 1.41

27 Slash 5.08 1.62 8.22 4.52 1.47

28 Password Safe 4.01 1.55 6.22 4.12 1.42

29 Tcl 6.52 2.97 19.33 7.70 2.32

30 OSCARMcMaster 3.89 2.24 8.69 4.28 1.85

 Average 4.45 1.62 7.31 4.12 1.44

66

Consider the Compiere ERP project as an example. The analyzed text has 64,421

tokens. The tokens comprise 2,937 sentences, 86.1% of which are recognized by RCNL as

including one or more requirements statements (micro-requirements), according to the

grammar-based parser. The remaining text is unrecognized by the grammar-based parser,

often because it is code segments, social tags, etc. In contrast, the delimiter-based parser

considers all of the text within a post to belong to one or more macro-requirements.

Once a segment of text is recognized as a requirement (micro or macro), it is passed to

the classifier, which attempts to classify it according to a specified ontology. The same

classifier applies to both grammar-based (micro) requirements and delimiter-based (macro)

requirements. Some requirements remain unclassified by either strategy. This occurs when

the classifier cannot match the given requirements text with a classification rule. The

difference between strategies is that the grammar-based requirements are shorter segments

with length varying between SAO-length and sentence-length, while the delimiter-based

(macro) requirements are mostly post-length requirements, usually including few

sentences. The length of requirements has a direct impact on classification efficiency. Table

6 presents the classification efficiency of McCall+ for the two strategies implemented as

well as an efficiency comparison between McCall and McCall+ for the grammar-based

strategy. McCall+ (the extended McCall classification) provides classifications per

requirement at an average rate of 2.4 and 4.2 for grammar-based and delimited-based

requirements, respectively. This is expected because the longer-length delimiter-based

requirements have more words, and thus a higher likelihood of matching more than one

classification. Conversely, the grammar-based requirements have fewer words and thus, on

average, they match fewer classifications. While comparing the classification efficiency of

67

the two classifiers (McCall and McCall+), one can clearly note that the extensions to the

standard McCall model did improve classification – 57.53% is much better than 26.42%.

Table 6. Average number of classifications per discovered requirement.

Project

Grammar

-based

Delimiter

-based

Classification coverage

(grammar-based)

McCall+ McCall+ McCall McCall+

1 SourceForge.net 2.2 4.2 19.21% 50.08%

2 Gallery 2.3 4.3 22.96% 52.12%

3 KeePass Password Safe 2.7 4.9 31.92% 63.46%

4 FileZilla 2.4 4.3 29.77% 60.11%

5 phpMyAdmin 2.4 4.6 25.07% 61.61%

6 PhpGedView 2.3 4.1 23.36% 56.45%

7 WinMerge 2.5 4.2 22.05% 58.25%

8
POPFile - Automatic Email

Classification
2.2 4.3

27.04% 58.54%

9 Arianne RPG 2.2 3.6 28.82% 61.84%

10 MegaMek 2.5 4.6 29.75% 60.74%

11 Tiki Wiki CMS Groupware 2.4 4.2 34.83% 65.00%

12 AWStats 2.2 3.5 25.84% 56.50%

13 Scintilla 2.5 4.3 20.45% 53.35%

14 Matplotlib 2.2 3.7 28.22% 56.54%

15 floAt's Mobile Agent 2.3 3.9 28.28% 58.38%

16
Compiere ERP + CRM Business

Solution
2.6 4.4

25.64% 49.27%

17 TortoiseCVS 2.5 4.3 37.10% 66.30%

18 JabRef 2.5 4.5 26.12% 58.21%

19
Gutenprint - Top Quality Printer

Drivers
2.2 3.6

31.86% 63.24%

20 Fire 2.3 4.0 22.31% 55.92%

21 SW Test Automation Framework 2.5 4.3 25.78% 57.80%

22 EGroupware Enterprise Collaboration 2.3 4.1 23.47% 57.17%

23 more.groupware 2.4 4.1 20.12% 54.95%

24 MediaWiki 2.2 4.0 25.01% 55.40%

25 Windows Installer XML (WiX) toolset 2.6 5.0 28.19% 60.01%

26 ScummVM 2.4 4.3 17.67% 39.80%

27 Slash 2.2 4.2 26.11% 56.45%

28 Password Safe 2.7 4.9 26.98% 58.72%

29 Tcl 2.4 3.7 34.04% 60.25%

30 OSCARMcMaster 3.3 3.4 24.48% 59.33%

 Average 2.4 4.2 26.42% 57.53%

68

The analysis includes a number of metrics in addition to the ones presented and which

are associated with the delimiter-based requirements (macro-requirements) and with the

grammar-based requirements (micro-requirements). These metrics are presented in Table 5

and Table 6 and we can draw interesting inferences from them.
1

1. A feature request posting for the selected projects averages 1.62 macro requirements.

(There is an average of more than 0.5 delimiters that split a post into more than one

macro-requirement.)

2. On average, there are 4.45 times more micro-requirements than macro-requirements. (An

aggregate macro-requirement contains 4.45 sub-requirements.)

3. On average, there are 4.2 classifications per macro-requirement and 1.4 per micro-

requirement. This means that Feature Tracker posts refer to more than one of McCall’s

criteria, but each sub-requirement addresses (slightly more than) one criteria.

4. On average, there are 1.73 more classifications per requirement using the delimiter-based

analysis than the grammar-based analysis. (The greater word length in an aggregate

requirement increases the likelihood of matching classification keywords and phrases.)

5. The amount of text (token-level measure) recognized as a requirement is 100% for the

delimiter-based analysis (by definition) and averages 66% for the grammar-based

analysis (see (Vlas and Robinson 2011) for details). (Delimiter-based macro-

requirements cover, by definition, all the text of a Feature Tracker post.)

As no artifact and no analysis are perfect, the RCNL classifier also has its limitations. The

grammar-based strategy generates a number of false positives if a more general view of the OSS

communication is considered. While all discovered micro-requirements correspond to the

1 The results of the automated analysis provided many metrics. Among them are the counts of requirements for each classification, and the

total number of classifications created per project and per project interval (183 days long). The projects averaged 6,788 total classifications and
395 new classifications each 183 days. Such analysis and other similar analyses are enabled by the automated classification.

69

versions of the SAO triple that the analysis considers, some of them can be considered to be false

positives, such as elements of social communication, or sentences describing less important

details of a major feature request, or restatements of the perceived value of a piece of

functionality. This is natural given that the grammar-based strategy, due to its very nature,

cannot capture any part of the context surrounding a micro-requirement. Therefore, a hybrid

parsing strategy may be best. It can characterize an aggregate requirement and its supporting

sub-requirements. However, a hybrid parsing strategy is not part of the scope of this research and

is considered for the continuation of it.

5.4. Expert Analysis

To evaluate the two parsing strategies, I employ established techniques for performance

evaluation of natural language processing tools in the fields of Information Extraction (IE) and

Information Retrieval (IR) (Rijsbergen 1979; Frakes and Baeza-Yates 1992; Manning and

Schütze 1999). The evaluation measures I use are precision, recall, and F-measure. Precision is

usually expressed as a percentage value and represents the ratio of the correctly identified

elements to the total number of identified elements. In other words, precision measures how

many of the items identified by the automated classifier are correctly identified items. A high

precision percentage is specific to a tool capable of identifying mostly correct items. Any

mistake made by a tool in identifying correct items decreases the precision percentage. Recall is

usually expressed as a percentage value and represents the ratio of correctly identified elements

to the total number of correct elements in the dataset. In other words, recall measures how many

of the items in the dataset are identified by the automated classifier. A high recall percentage is

specific to a tool capable of identifying most of the correct items in the available dataset. Any

correct item in the dataset that a tool doesn’t identify will decrease the recall percentage.

70

Given the definitions for precision and recall, it is clear that achieving either 100% precision or

100% recall is easy. A tool can have 100% precision when it makes no mistakes. Therefore, a

tool that identifies no items will have perfect precision. Similarly, a tool can have 100% recall

when it identifies all correct items in a dataset. Therefore, 100% recall can be achieved by

designing a tool that identifies everything from a dataset. Better precision can be achieved at the

expense of recall, while better recall can be achieved at the expense of precision. The most

appropriate way to evaluate a tool’s efficiency is by using precision, recall, and a weighted

measure of them. F-measure (sometimes called F-score) provides this weighted average

(Rijsbergen 1979).

F – measure = ((β
2
 + 1) x P x R) / ((β

2
 x P) + R)

where β indicates the weighting of precision and recall, P represents precision, and R represents

recall. In the evaluation, precision and recall receive equal weighting, thus β is set to 1.

Precision, recall, and F-measure can only be calculated if a key is available for providing an

example of the ideal discovery and classification result. This key is called a gold (or golden)

standard (or key) in the IR literature and represents the benchmark against which a tool’s output

is compared. A gold standard is normally created by experts in the field and is the result of

successive passes through a sample data in order to improve its quality. Here, I define a

requirements engineering expert as a professional with 5 or more years of experience in the field

of requirements engineering. Ideally, a gold standard provides a perfect, error-free sample result.

The gold standard I use for evaluation is created by a requirements expert and provides the

output of an ideal, error-free requirements discovery and classification process. Producing a gold

standard requires an expert and time, and thus is very costly in practice. It is impractical to have

71

an expert identify and classify thousands of requirements. However, a gold standard for sampled

data allows for the accurate evaluation of an automated tool.

I calculate precision, recall, and F-measure as a result of comparing a gold standard to the

output of the RCNL tool. For the grammar-based strategy, I randomly select 25 data segments

from the 515 data segments in the dataset. Then, I randomly extract a short text sample (between

1 and 4 postings long) from each selected data segment. These 25 randomly selected sample

texts are manually tagged with annotations corresponding to micro-requirements and the 23

classification types from McCall+. The expert tagged and classified at an average rate of 515.22

tokens per hour. At this rate, the RCNL tool is about 3,239 times faster than the human expert.

The expert tagging process for the grammar-based strategy is designed to annotate sentence level

requirements defined as a SAO pattern and the associated extending patterns (e.g. adjectives,

qualifying phrases, secondary phrases, quantifying expressions, etc.). The delimiter-based gold

standard is developed in a similar manner and is created at an average of 1,695.93 tokens per

hour. At this rate, the RCNL tool is about 448 times faster than the human expert. These

processing effort results are explained by two factors. First, as indicated in Section 5.2, the

RCNL processing time for a grammar-based analysis is shorter than the one for a delimiter-based

analysis due to the complexity and memory requirements of the processing (JAPE) rules. Second,

the human effort required for the identification of requirements at the forum post level is

naturally less than the one required for the identification of requirements at the sentence level,

due to the level of detail associated with these two tasks. Consequently, the automated

requirements discovery and classification with the RCNL tool is significantly faster than a

human expert, especially in the case of a grammar-based approach.

72

To evaluate against a standard, first I post-process RCNL’s output. I add at the end of

the analysis pipeline a number of JAPE rules for labeling and grouping previously created

annotations into annotations of interest for the evaluation process. In a second phase of

post-processing, I add the annotations from the gold standard to a separate annotation set in

the output of the RCNL tool. Last, I configure and execute the Corpus Quality Assurance

(CQA) plugin, which is a GATE tool for computing evaluation measures. CQA computes

recall, precision, and F-measure by comparing the RCNL’s output to a key – the

annotations imported from the gold standard. In our context, recall is most important

because I want to find the requirements, after which further processing may occur.

The results of the gold standard analysis are summarized in Table 7. The last three

columns show recall, precision, and F-measure. The middle four columns show specifically

how the gold standard compares to the automated output of the RCNL tool. The “Process”

column indicates which process’ resulting annotations are being considered in the

computing of the evaluation measures: (1) requirements discovery (identification of micro -

requirements or macro-requirements in the dataset), (2) requirements classification (the

classification of the identified requirements), or (3) requirements discovery and

classification (the identification and classification of micro-requirements or of macro-

requirements). The “Annotations Evaluated” column clarifies this context by indicating

specifically which annotations are used to compute the evaluation measures. The results

depict an efficient discovery process (F-measure of 83% for grammar-based requirements

discovery). They also indicate a less efficient classification process (F-measure of 29% for

classification). A number of factors explain these evaluation results.

73

First, the classification process is designed starting from McCall’s model. McCall’s

quality model was developed in 1977 when information systems were different from

today’s information systems. This model might not reflect current open-source users’

perceptions of quality accurately. Second, when there is a mismatch between a gold

standard requirement and the output of the automated tool, cascading mismatches occur – a

missed gold standard requirement also misses the associated gold standard classifications

(averaging 2.4 for grammar-based strategy and 4.2 for delimiter-based strategy). Third, the

semantic content is significantly determined by the overall context provided in the entire

posting. The grammar-based strategy performs the analysis at a sentence level. Thus, much

of this context is not available, and therefore, some classifications are absent.

When combining discovery and classification into one comprehensive evaluation effort,

there are 24 annotations grouped together as one composite annotation. (See Discovery &

Classification in Table 7). The instances within text of these 24 annotations represent the

sum of the instances corresponding to micro-requirement and to the 23 classification

criteria. For example, there are 104 matches for discovery and classification (second row),

which corresponds to the sum of 69 matches from discovery (first row) and the 35 matches

from classification (third row). Because discovery and classification (second row) lists the

combined values of discovery (first row) and classification (third row), it is also expected

that the effectiveness (expressed through recall, precision, and F-measure) of it would be

between those of the two processes it is comprised of (discovery and classi fication). More

precisely, it is significantly closer to the effectiveness of classification because in the

combined evaluation the classification process contributes 23 annotations whereas the

discovery process contributes only one annotation.

74

Table 7. Expert comparison measures.

Strategy Process

Annotations

R
ec

a
ll

P
re

ci
si

o
n

F
-

M
ea

su
re

Evaluated Matching

Only in

Gold

Standard

Only

in

Output

Overlapping

G
ra

m
m

a
r-

b
a
se

d

D
is

co
v
er

y

Micro-

Requirement
69 22 74 168 0.92 0.76 0.83

D
is

co
v
er

y
 &

C
la

ss
if

ic
at

io
n

Micro-

Requirement

and 23

Classification

Criteria

104 342 455 274 0.52 0.45 0.49

C
la

ss
if

ic
at

io
n

23

Classification

Criteria

35 320 381 106 0.31 0.27 0.29

D
el

im
it

er

-b
a
se

d

D
is

co
v
er

y

Macro-

Requirement
189 14 72 136 0.96 0.82 0.88

Overall, the results are encouraging. Although there are no other tools in either the

researchers’ or practitioners’ domain to provide the exact same type of analyses, I note the

similarity between these results and those from a 2006 study by Cleland-Huang, Settimi,

Zou, and Solc (Cleland-Huang et al. 2006). In their study, Cleland-Huang et. al. explore

approaches to non-functional requirements’ (NFRs) discovery and classification. First, they

start with exploring whether a pre-defined fixed set of keywords can be efficient in

classifying NFRs. Their findings include recall between 61% and 80% and precision

between 40% and 57% but also highlight a shortcoming of this approach – the difficulty of

finding accepted sources of keywords for specific types of NFRs. My study identifies same

challenge. Consequently, Cleland-Huang et. al. develop a NFR-Classifier that includes a

75

mining phase for keyword extraction from a training set. The extracted indicator terms are

ranked and determine the two alternate extraction methods considered: (1) top K terms

selected and (2) all terms selected for each NFR type. When top-15 terms are used, the

classification of different NFR types exhibits different efficiency levels. Recall ranges

between 51% and 98% (with an overall recall of 77%) while precision ranges between 19%

and 37% (with an overall precision of 25%). My approach to classification is also keyword

based but I use a different, pattern-based approach to requirements discovery. While I

acknowledge the distinct characteristics of the two studies, it is important to also note the

similarity of the evaluation values. My recall ranges between 31% and 96% while precision

ranges between 27% and 82%. I conclude that the two studies implement distinct

approaches and complement each other while proposing similarly efficient tools.

5.5. Benchmarking

Following the evaluation and assessment of RCNL tool’s performance and accuracy, I

explored the possibility of comparing RCNL’s behavior against that of a market leader tool

designed for performing same type of analyses. A number of artifacts have been proposed by the

research or practice communities for the automatic or semi-automatic analysis of requirements.

The great majority of these tools are designed to process data from a dataset of already elicited

but not completely or properly specified requirements. Among the 18 tools that I studied, the

most well-known and comprehensive tools are Requirements Elicitation, Capture and Analysis

Process (RECAP), the Conceptual Modeling Environment/Process Implementation Methodology

(ACME/PRIME), the First Requirements Elucidator Demonstration (FRED), or Requirements

Elicitation Assistance System (REAS) (Edwards et al. 1995; Feblowitz et al. 1996; Kasser 2004;

Elazhary 2010). In spite of their complexity and relative popularity, none of these tools can be

76

used to perform analyses similar to the ones enabled by the RCNL tool (requirements discovery

and classification over informal, fully unstructured, NL communication texts).

Another tool studied is AbstFinder. This is an interesting example of the way NLP

techniques can be used in the analysis of requirements-rich and informal textual data

(Goldin and Berry 1994). However, AbstFinder does not compare to RCNL since it is a tool

that provides minimal requirements elicitation support. Another example of the way NLP

techniques can be used in the process of requirements discovery is provided by the

Requirements Elicitor proposed in 2006 by Mala and Uma (Mala and Uma 2006). Their

tool implements a set of 12 syntactic structures based on the SVO (subject-verb-object)

pattern. The RCNL tool implements a wider set of SVO/SAO structures. Requirements

Elicitor does not compare to RCNL because it is specifically designed to support the

transformation of normalized sentences into message records. Therefore, it does not include

the processing abilities of RCNL.

The most similar tool to RCNL is the one designed by Cleland-Huang, Settimi, Zou and

Solc (Cleland-Huang et al. 2006). They propose a tool for detection and classification of

requirements with application to early aspects of software development projects. In spite of

the apparent similarity to RCNL, Cleland-Huang’s design exhibits a number of major

differences. First, the analysis process is semi-automated requiring extensive researcher

intervention for module customization, and data pre-processing and post-processing.

Second, it has a narrower scope because it is designed to discover and classify only NFRs,

while RCNL can not only process all types of requirements but also be adapted to various

types of NLP-based analyses. Third, analysis techniques used by Cleland-Huang et. al. in

their design are statistical whereas RCNL is based on NLP techniques. Fourth, it is

77

designed for and has been tested on closed-source data and test data. RCNL is currently

configured for the specifics of OSSD projects communication. Fifth, the analysis dataset

requires pre-processing that converts and stores data into a database format of a specific

type and configuration. RCNL tool can be fed the analysis data in the form of un-processed

text files, the format in which current OSSD project communication is available. In spite of

the differences highlighted here, the study by Cleland-Huang, Settimi, Zou and Solc has

findings that include recall between 61% and 80% and precision between 40% and 57% for

the discovery phase, which is aligned with this study’s findings. Their classification

efficiency when top-15 terms are used shows a recall ranging between 51% and 98% (with

an overall recall of 77%) and a precision ranging between 19% and 37% (with an overall

precision of 25%). This numbers are also in line with the findings of this study.

Concluding, despite the large number of requirements engineering tools available, there

currently is no comparison tool for RCNL. All available tools exhibit characteristics which

makes them significantly distinct from the RCNL classifier, thus making a benchmarking

effort not possible at this moment.

5.6. Configurable Rule-Based Analysis

One of the objectives of this dissertation is, as mentioned before, to design, develop,

evaluate, and propose a flexible rule-based analysis environment for NL text that can be

used in a variety of domains and for analyzing a large spectrum of NL data. This can only

be achieved if the analysis artifacts are highly configurable. The RCNL classifier and the

requirements parsing ontologies it implements are specifically designed and developed to

exhibit such behavior and to provide the researcher with a configurable rule-based analysis

environment. This feature of the proposed artifacts distinguishes them from all the

requirements engineering tools described in the previous section (Section 5.6. –

78

Benchmarking) and pictures the RCNL classifier and its associated ontology as a unique

proposition for both the researchers and practitioners in the OSSD area.

The grammar-based and the delimiter-based requirements parsing ontologies (see Table

1 in Section 3, and Table 2 in Section 4, respectively) are designed as layered architectures

in order to allow easy intervention. For instance, a researcher interested in analyzing data

other than informal NL text will need to adapt rules corresponding to levels 0 and 1 of the

requirements parsing ontology. A researcher interested in running an analysis other than

requirements-based will need to modify rules corresponding to levels 3 and 4 of the

requirements parsing ontology. Similarly, a requirements-based analysis for closed-source

software development will require intervention at level 2 of the requirements parsing

ontology. Lastly, a different classification model or approach requires intervention only at

level 5 of the ontology.

The “divide et impera” (divide and conquer) approach is a well-known and accepted

development approach in software development. It is used by software developers for

creating software systems with a focus on modularity, as a means of offering improved

flexibility, adaptability, expandability, and maintainability. The implementation of the two

requirements parsing ontologies into a software analysis tool (the RCNL classifier) follows

the “divide et impera” principles of developing a modular architecture. Each entity from

each of the levels of the requirements parsing ontology is implemented in the software tool

with a separate pattern or set of patterns. In certain cases, multiple distinct patterns and

their corresponding JAPE rule files are created for same entity from the ontology in order

to propagate the modularity-oriented focus downwards at the entity development level. A

79

clear separation of patterns of interest is continuously maintained throughout the entire

design of the artifacts.

The patterns considered are encoded in the RCNL classifier as JAPE rules, as described

in Section 3.2 and Section 4.2. Although a JAPE rule file can contain any number of JAPE

rules, out of a total of 135 JAPE rule files created for the grammar-based strategy, 104 of

them contain only one JAPE rule. Similarly, only 5 of the 20 JAPE rules files created for

the delimiter-based strategy contain more than one JAPE rule. Most of the JAPE rule files

that contain more than one JAPE rule (usually only 2 or 3 rules) do so because of

functional reasons. For instance, the use of priority rule firing cannot be avoided with

designing a sequential rule firing alternative.

The requirements-based analysis of NL text is performed by the RCNL tool in GATE

through the execution of a sequential rule processing pipeline. The researcher loads the

desired analysis plugins into the created pipeline. As described in Section 4.2, some o f the

available plugins are predefined in GATE while others (named entity transducers – NE

transducers) allow the specification of custom designed JAPE rules. Figure 7 presents the

example of an execution pipeline created for performing requirements discovery based on

the delimiter-based strategy. An execution pipeline can contain any number of NE

transducers, which allows for a modular development and execution of JAPE rules. NE

transducers implement a different grammar in order to load special types of JAPE files

designed for batch processing of JAPE rule files. I call these files “main processing

resources” or MPR. Figure 8 presents the example of a NE transducer used for loading the

MPR file designed for requirements discovery under the delimiter-based strategy. Note that

the contents of the loaded MPR file are being displayed in the right-hand side pane. In this

80

example, the delimiter-based requirements discovery MPR includes 20 JAPE rule files

listed in the order in which they should be executed over the data corpus.

This modular architecture of processing resources allows for an easy handling and

modification of analysis rules and the associated patterns. A researcher interes ted in

exploring the individual impact of a certain rule or set of rules , or interested in testing

variations to a designed NL analysis has a number of alternatives available for achieving

this objective:

1. Modify the MPR file stored on his/her computer (permanent change), and re-

initialize the associated NE transducer.

2. Modify the content of the MPR within the right-hand side pane shown in Figure 8

(temporary change within the analysis environment for analysis and testing

purposes; the MPR file is not updated).

Figure 7. An execution pipeline for delimiter-based requirements discovery.

81

3. Create new analysis pipelines that load different plugins or plugins that are

configured in a different manner (note the bottom right pane in Figure 7 for an

example of plugin configuration settings).

4. Modify JAPE rule files stored on his/her computer (permanent change) and re-

initialize the associated NE transducers.

5. Modify the content of JAPE rule files within the right-hand side pane shown in

Figure 8 (temporary change within the analysis environment for analysis and testing

purposes; the JAPE rule files are not updated).

The details presented in this section of the requirements-based analysis of NL text

supported by the RCNL classifier and the ontologies it implements portray a highly

configurable analysis environment. This contributes to proposing to the academic domain a

Figure 8. An execution pipeline for delimiter-based requirements discovery.

82

flexible tool that can efficiently be used in analyses of not only open-source

communication but also other NL data sources. Next two sections in this dissertation show

ways in which the RCNL tool can support different types of evaluation efforts and

exploratory studies of OSSD.

5.7. Sensitivity Analysis

RCNL’s ability to support highly customizable analyses in which various processing rules

can be turned on and off enables a one-way sensitivity analysis of different patterns considered

in the requirements parsing ontology. During this evaluation process, the researcher can assess

the impact certain rules have on the tool’s output.

For the one-way sensitivity analysis I selected 3 of the most complete and representative data

windows from the dataset of OSSD projects. First, as highlighted in Sections 5.8 and 5.9,

KeePass Password Keeper is indicated as potentially one of the most successful OSSD project

from the dataset. Among the 13 segments of 6 months of data (data windows) for KeePass, I

selected data window 3 because its analysis generates all types of annotations included in the

requirements-based NL analysis. Second data window selected is phpMyAdmin’s data windows

12. It also includes all types of annotations generated by the analysis despite being a data

window characterized by less amount of communication. KeePass and phpMyAdmin are also

selected because they have a relatively high requirements coverage ratios and stand out in the

exploratory study presented in Section 5.8 as projects with a clearly defined focus which has a

significant impact on the type of requirements they have (security-related features and database-

related features respectively). Third data window selected is from the SourceForge.net project

(data window 13) because this project provides largest data windows and is characterized by a

relatively low requirements coverage ratio at the same time. The data window files selected from

83

KeePass, phpMyAdmin, and SourceForge.net are of size 82Kb (largest KeePass data window),

28Kb, and 115Kb respectively.

During the sensitivity analysis I tested the impact of 3 rules or sets of rules on the

requirements discovery ability of the RCNL tool and 3 rules or sets of rules on the requirements

classification ability of the RCNL tool. Table 8 presents the rules an rule sets tested, the analysis

measure considered for assessing their impact, as well as the results of the one-way sensitivity

analysis for the 3 data windows. The percentage change listed in last three columns represents

the change recorded after turning off the rules.

Table 8. One-way sensitivity analysis results.

Rule or Rule Set Focus
Analysis

Measure

KeePass

Change (%)

phpMyAdmin

Change (%)

SourceForge

Change (%)

Filename, email, URL,

technical writing

R
eq

u
ir

em
en

ts

d
is

co
v
er

ed
 0.54% 0.46% 0.83%

Smileys -0.08% 0.00% 0.06%

L2 - Qualification

expressions
3.57% 1.83% 3.21%

Complete List

C
la

ss
if

ic
at

io
n
s

cr
ea

te
d

-4.08% -1.49% -3.83%

List item -8.34% -8.04% -8.27%

Classification

enhancements (McCall+)
-68.98% -65.48% -69.82%

At the lower level of analysis, common NL processing of informal communication involves

tagging of tokens and parts-of-speech. This corresponds to levels 0 and 1 in the requirements

parsing ontology. Here, I test the additions I make to the NL analysis provided by GATE.

Specifically, I test the impact of annotating filenames, email addresses, specifications of URLs,

and various types of technical writing. The results of the sensitivity analysis show that these

types of elements of NL text have a low but consistent impact (less than 1% change but

consistently positive change) on the results of the RCNL tool. The positive change in the number

84

of discovered requirements when these rules are turned off is explained by the role these

technical pieces of text play as delimiters of text, or delimiters within an SAO triple. The tagging

of text labeled as “smiley” has a very weak impact on the output of the tool. This highlights the

difficulty of correctly interpreting the role played by elements of social conversation (delimiting

effect or not) in open source communication.

At level 2 of the requirements parsing ontology I tested the composite effect of 5

qualification rules on the output of the RCNL tool. The 5 rules tested are the ones used for

tagging expressions in text indicating preferences, beliefs, necessities, certainties, and

suggestions. Qualification expressions of this type are numerous in NL text in open source and

they have a significant and decreasing impact on the final number of requirements discovered.

Qualification expressions contribute to the recognizing of qualifying phrases which can extend

the text coverage of the already discovered requirements. This adds parts of the existing context

surrounding a NL statement and generates a more lenient tagging style. Consequently, this might

result in merging together discovered requirements with small text coverage and low proximity

to each other. Therefore, tagging of qualification expressions results in an overall decrease of the

total number of requirements discovered but, at the same time, contributes to an increase of the

average text coverage of discovered requirements. This result is consistent across all 3 data

windows used even though phpMyAdmin exhibits a weaker impact.

While testing the impact of rules on the requirements classification ability of the artifact, I

first focused on lists and list items recognized in text. They receive a separate attention during

classification, as described in the “Auxiliary Text Processing” Section. Complete lists are

defined as an introductory phrase followed by a number of list items. During the classification

process, the classification of an introductory phrase is extended to the entire list. Consequently,

85

turning off the tagging of pieces of text as lists naturally results in a decrease of the total number

of classifications created during the classification process. The “Auxiliary text Processing”

Section also explains that individual list items are classified if they contain a classification

expression. Consequently, turning off the rules responsible for annotating list items results in a

lower number of classifications being created during the classification process. The significant

difference shown in Table 8 in percentage change between complete lists and list items is

determined by the proportion of lists and list items in text. First, there is a larger number of list

items because each list will include few list items or more. Second, in NL text not all lists have

an introductory phrase and this leads to annotating only list items while there is no list

recognized.

Last sensitivity testing considered is comparing classification efficiency between McCall and

McCall+ classification. As described in Section 5.3 and shown in Table 6, the enhancements to

classifying requirements based only on McCall’s model result in more than doubling the

classification efficiency. Here, the results show that turning off all classification enhancements

generate over 60% less classifications. This is consistent with the results from Table 6 and

confirms the importance of the classification enhancements.

A one-way sensitivity testing of rules from level 3 (entity) or level 4 (requirement) of the

requirements parsing ontology is not possible because turning off any rules at these levels will

render the RCNL classifier unusable. All rules in levels 3 and 4 are required for discovering

requirements and they build on each other. Therefore, turning any of them off will generate zero

requirements discovered.

5.8. An Exploration of OSSD Project Characteristics

The literature on open-source requirements is limited to either the associated processes or to

the analysis of only parts of individual projects. Her, I explore the relationships exiting between

86

open-source requirements and characteristics of open-source projects (such as type, and software

project success). I first develop a requirements-based taxonomy of OSSD project types and

discover patterns linking between this taxonomy and project success. I also propose a

classification of requirement types based on their representativeness in OSSD projects. This

highlights the importance of various types of requirements in OSSD projects and helps identify

exceptions determined by the specific area addressed by each project. Finally, I investigate the

lifecycle of 16 OSSD projects and discover and discuss patterns of evolution for a number of

requirements types.

Project success has been extensively explored in the literature on classical software

development and has often been explained through the quality of the software product.

According to Wiegers, a software project’s success is mainly determined by characteristics

associated with that project’s requirements (Wiegers 2003). Studies that link success and

software quality factors concluded that many OSSD projects are successful (Stamelos et al. 2002;

Crowston et al. 2006). The success of open-source projects has also been acknowledged and

studied in a wide variety of industries (Scacchi and Alspaugh 2008; Scacchi et al. 2009). This

research differentiates itself from the existing literature on open-source by exploring the

relationship between open-source requirements (e.g. requirements types, distribution, evolution)

and OSSD project success.

Currently, there is a limited understanding of what types of requirements are present in

OSSD projects. There is also a lack of studies exploring open source requirements and project

lifecycle from a less process-oriented or participant-oriented perspective and with a higher

emphasis on design and architecture-related characteristics. Another knowledge gap in open-

source research is represented by the lack of methods and tools for the early estimation of open-

87

source software project success. This exploratory study comes to address these knowledge gaps

and to propose the means to advance knowledge in this area.

Data Collection and Analysis

I select a set of 16 SourceForge projects (see Table 9) identified by a more strict selection

criteria (more than 4 developers, more than 5000 downloads, and more than 700 feature request

postings). The dataset includes projects that can be considered to be among most active and

successful because they are selected based on the number of participants, the number of

downloads, and the number of feature request posts.

Table 9. Selected OSSD projects for the exploratory study.

No. Project Name No. Project Name

1 AWStats 9 PCGen

2 Compiere 10 phpGedView

3 FileZilla 11 phpMyAdmin

4 Fire 12 POPFile

5 Float's 13 SourceForge

6 Gallery 14 TikiWiki

7 KeePass 15 Tortoise

8 MegaMek 16 WinMerge

Data collection uses the online access offered by Notre Dame University to SourceForge data

through the SourceForge Research Data Archive (SRDA) (Gao et al. 2007). Data collected is

organized in 16 text files, one for each project. Each of the project files contains all feature

request posts associated with that specific project, and listed in chronological order. The

timestamp for each posting is also included in the data files.

The analysis of OSSD projects lifecycle requires a time-based analysis of data. I use the

included timestamps to determine the duration of each project and I split up the project files into

6 months long data windows. The length of the last data window in each project is between 3

months and 9 months in order to include all feature requests postings available. For each data

88

window created, I process feature requests with the RCNL tool in order to discover and classify

them. The results associated with last data window in each project might be slightly skewed

upward or downward as a result of the different time length of the data window. The analysis of

results takes into account this aspect.

The requirements-based analysis of OSSD projects lifecycle includes within project analysis

and cross-project analysis. I explore the evolution of the number of requirements as a factor who

shapes a project’s lifecycle. I start with an analysis of the evolution of the overall number of

requirements. This helps identify main patterns of project evolution. Next, I analyze the

evolution of individual types of requirements throughout the duration of a project and identify

patterns of requirements types’ evolution. I also identify patterns of evolution for groups of

requirements types. In the next step of analysis, I correlate requirements results with project-

level attributes. Here I compare patterns of evolution across projects and discover the

relationships between project type and type of evolutionary pattern. Finally, I place all patterns

of evolution discovered in a broader project-level context in order to validate them. This more

general context is constructed from additional project information such as project type and

description, number of positive recommendations and awards, release dates and types,

percentage of feature requests solved, and number of downloads. I collect this information from

SourceForge.

Data Analysis and Findings

The set of requirements-based analyses I consider generate a number of interesting results.

First I plot the overall number of requirements discovered per data window for the entire

duration of the 16 projects. The resulting graphs indicate the existence of taxonomy of open-

source project lifecycle types. I identify 3 main types: bell-shaped, half bell-shaped, and unstable.

89

I further classify the unstable type of projects as either “double-spiked” or “full unstable”

projects. Figure 9 presents examples of these project types. In the dataset of 16 OSSD projects, 4

projects are of type “a” (bell-shaped), 3 projects are of type “b” (half bell-shaped), 6 projects are

of type “c” (unstable: double-spiked), and 3 projects are of type “d” (unstable: full unstable).

The apparently unusual and unpredictable variations in the number of requirements per data

window for a project can be explained by various events in the lifecycle of the projects. In order

to explore this relationship, I extract information on the number and date of all types of software

releases and on the number of new features implemented in these releases. On a plot of the

number of new features released, one can find an expected behavior – OSSD projects’ lifecycles

are continuously influenced by and react to the behaviors of communities surrounding them.

Figure 10 presents the case of the KeePass project.

Figure 9. Taxonomy of OSSD project types.

90

During first 3 years of the project (first 6 data windows), the number of desired features

mentioned in project community’s discussions (requirements identified in feature requests – blue

line) is not matched by the number of features included in the project releases (red line). This

suggests two effects: (1) an accumulation of desired features, and (2) a general discontent of the

project community, which reflects in a decline of the number of feature requests being posted.

Beginning of the 4
th

 year marks a significant change as a large number of features is released.

This seems to indicate an attempt to implement those features corresponding to the accumulation

of requests from the first 3 years of the project. This also reactivates the interest of the

community and fuels new discussions on the feature requests posting board. Therefore, the

number of requirements discovered seems to be on a slightly positive trend. It can be assumed

that the implementation of a large numbers of features in data windows 7 through 10 allowed the

KeePass team to catch up with the requests for features. This explains the matching trends

exhibited by the number of requirements discussed in feature request postings and the number of

features released for the last part of the project’s lifecycle. KeePass’ lifecycle highlights a three-

step evolutionary pattern that is also exhibited by other projects in the dataset. In step 1, the

Figure 10. Evolution of features released and requirements for KeePass.

91

project does not release enough features to cover for the amount of discussion in the project

community. Step 2 indicates a move towards project maturity and is defined by a continuous

effort to implement the accumulated number of features requested through frequent major

releases. In Step 3, the project is mature and capable of matching current requests for new

features.

The taxonomy of requirements types includes 23 criteria which are classified as “high

representativeness (HR),” “medium representativeness (MR),” or “low representativeness (LR).”

These three types are defined based on their associated percentage out of the total number of

requirements within project. It should be mentioned here that requirements discovery and

classification is performed using the grammar-based strategy, and thus, all discovered and

classified requirements are within sentence micro-requirements. It can be found that 4 criteria

consistently rank as HR, 7 criteria consistently rank as MR, and 12 criteria consistently rank as

LR. These findings are presented in Figure 11. It is important to note here that project focus has

an impact on the type of requirements that are normally classified as LR or MR within the

project. For instance, KeePass is a password manager system and, therefore, access control

(criteria 8) and access audit (criteria 9) are criteria that are essential to its success. Consequently,

these two criteria are dominant among the types of requirements present the project.

PhpMyAdmin is a database related project and storage efficiency (criteria 7) is one of its main

concerns. These exceptions are highlighted in Figure 11.

92

An inspection of distinct requirements types throughout a project’s lifecycle identifies few

interesting patterns of evolution. First, we note a decrease in project activity (volume of postings

in feature requests forums) immediately after a spike in traceability (criteria 1). The need to trace

back requirements and other various characteristics of software during testing is well-known.

Thus, increases of traceability can indicate an increase in testing activities. This is normally

associated with the preparation of new major releases. With every major release, a large portion

of the existing feature requests is addressed and the volume of discussion on feature requests

forums is expected to decrease. We also note that traceability tends to become increasingly

important towards the end of a project, sometimes surpassing other leading types of requirements.

This is justified by the natural increase of testing activities in the last stages of software projects.

For example, in the PCGen project, expandability (criteria 17) is one of the leading types in the

first part, but traceability (criteria 1) is represented more than expandability in the second part.

Similarly, access control (criteria 8) is a leading type during first part of KeePass project, while

Figure 11. Taxonomy of requirements across OSSD projects.

93

storage efficiency (criteria 7) is a leading type during first part of Compiere project. In the last

part, traceability (criteria 1) surpasses access control (criteria 8) and storage efficiency (criteria

7), respectively, in these two projects. Figure 12 presents these trends.

Figure 13 presents a summary of main project-level information collected. This information

includes few rough proxies for success. I sorted the set of 16 projects by the average number of

weekly downloads reported by SourceForge. While none of these indicators provides a complete

image of success, they complement each other for distinguishing more successful projects from

the less successful ones. It can be concluded that Filezilla, KeePass, phpMyAdmin, and

MegaMek, are among the most successful projects while Fire, and TikiWiki, are among the least

successful projects. The four projects indicated as successful are of type “a” (bell-shaped) or type

“c” (unstable: double-spiked). In contrast, the two projects identified as unsuccessful are of type

“d” (unstable: full-unstable) and type “b” (half bell-shaped). The 2 unsuccessful projects exhibit

a common behavior with regards to the taxonomy of within project requirements

representativeness. Two of the successful projects exhibit an unusually high percentage of

requirements types specific to their focus areas (KeePass – accessibility, phpMyAdmin – data

storage and administration). One of the other successful projects (MegaMek, a turn-based board

game) shows high percentages of modularity and simplicity requirements. This is explained by

Figure 12. Evolution of traceability and other leading requirements types for

PCGen, KeePass and Compiere projects.

94

the need for a simpler, modular architecture that games normally require in order to be able to

offer expandability and flexibility over time.

 Discussion of Exploratory Study Findings

This study presents the initial findings of a requirements-based analysis of a dataset of 16

OSSD projects. The findings include patterns of evolution for OSSD projects and for specific

types of requirements identified in the study. The patterns are validated through logical reasoning

and with additional information collected from SourceForge. Final findings determine an initial

set of characteristics separating most successful projects from the less successful ones. This

study’s findings represent only an initial step towards achieving a more comprehensive

Figure 13. Project-level information.

95

understanding of the relationships between the evolution of design and architecture elements and

the success of OSSD projects. Further research is needed to validate and expand on these

findings. OSSD project leaders can benefit from the results of this study by obtaining a means of

determining if a project falls outside of the set of patterns commonly exhibited by successful

projects or not.

A number of limitations characterize this initial exploratory study. First, the discovery of

requirements in postings of feature requests is not an error-proof process. Similarly, the RCNL-

based classification of requirements leaves some of them not classified and thus not contributing

to the analysis. In spite of these limitations, I consider the positive evaluation results of the

RCNL tool to justify its use in this study. The dataset consists of 16 OSSD projects that are

selected based on criteria indicating success. While the selection criteria are not considered in the

academic literature to be more than rough proxies of success, replicating this analysis on a larger

dataset that includes less successful OSSD projects and projects from other domains is

recommended and can yield interesting findings.

5.9. A Wave Theory of Requirements Innovation

This study demonstrates how the RCNL tool can aid in theory building. From its application

to 16 OSSD projects, I conjecture a simple wave theory of requirements innovation: innovations

expressed in requirements appear as a wave that is reflected in a subsequent wave of features that

is reflected in a subsequent wave of product downloads.

Project managers face questions similar to the following. Given a project in the early or

middle part of its lifecycle, should more resources be provided to contribute to the project’s

success? Should a new tactic be applied to fix the project? Alternatively, should de-

escalation be attempted because the project is trending toward failure? One might be

tempted to apply conventional analysis to answer these questions. For example, comparing

96

a COCOMO II nominal profile against the actual resources can reveal that a project has too

short a schedule with too few resources. Such analysis, however, is inappropriate for OSSD

projects, whose resource model is not represented in conventional software models like

COCOMO II.

One could look to the models of open source researchers, who have made some

progress towards linking project qualities with project success. Such works, summarized in

Section 2.5, are preliminary. They depend on directly observable metrics, such as number

of developers, number of bugs, number of patches, etc. There has been less effort applied

to understanding the meaning of what open source developers do. Are they working

coherently toward a commonly understood project release? Or are they thrashing about

without a coherent theme? Successful OSSD projects transition through three common

steps to produce a new themed release: innovate, improve, and deploy (Gamma and Beck

2004; Fitzgerald 2006).

This study is exploring techniques aimed to understand what open source developers

are doing through analyses of their documents. Parsing techniques are applied to

understand documents in terms of pre-defined models, such as models of requirements or

distributed collaboration. These analyses may help us to address questions, such as the ones

above.

In the work presented herein, I assume a requirements engineering perspective:

requirements are in the topmost critical factors for project success, thus their analysis

provides insight into a project’s success. I look to requirements qualities to assess project

qualities in the early or middle part of its life cycle.

The approach we demonstrate herein is to:

97

1. Discover OSSD requirements

2. Classify OSSD requirements

3. Characterize trends of the classified requirements into requirements factors

4. Correlate requirements factors with project qualities that may relate to project

success

This work demonstrates the approach to steps 3 and 4 through an analysis case study.

This exploratory work is designed to test the viability of the approach. Moreover, it is

difficult to assess its effectiveness, in part, because OSSD project success is poorly

defined, as are the requirements factors associated with success.

This study shows how OSSD projects can be analyzed according to two aggregated

temporal requirements qualities in order to provide an indication of project success. The

two main requirements factors considered are:

1. Requirements development cohesion (RDC)

This measures the variations in count of different requirements types being

developed within a period. A project period having low RDC means that developers

are dividing the attention equally among all requirements types. In contrast, a project

period having high RDC means that developers are focusing their attention on a few

requirements types.

2. Requirements traceability focus (RTF)

This measures the relative emphasis that developers place on traceability compared

to other requirements qualities. A project period having high RTF indicates that

developers are trying to understand a project. In contrast, a project period having low

98

RTF indicates that developers are focusing their attention other activities,

presumably including product innovation.

These factors are obtained directly through natural open source artifacts. We believe that they

have implications for the OSSD project success, as illustrated next through the analysis of 16

OSSD projects. The case-study demonstration of the four-step approach to NL open source

analysis led to the conjecture of a simple wave theory of requirements innovation:

Innovations expressed in requirements appear as a wave that is reflected in a subsequent

wave of features (in software), that is reflected in a subsequent wave of product downloads.

Developers that stumble over one of these steps will likely see a reduction in product

downloads.

This theory is consistent with the dataset of 16 OSSD projects, but remains a conjecture for

more comprehensive analysis.

Innovation in Software Development

In software projects, innovation is a prerequisite for success. Much IS research on innovation

considers the open-source paradigm (Hippel and Krogh 2003; Krogh and Hippel 2006),

organization (Lyytinen and Rose 2003), or IT field as a whole. This leads to longitudinal effects,

such as diffusion patterns (e.g., S-curve) (Bejan and Lorente 2011). More generally,

technological innovation has been considered an exploratory process of integrating previously

enumerated design elements (Jantsch 1967). Some have suggested that innovation can be

modeled as decade long waves of innovation followed by lapses in innovation (Mansfield 1983).

Here, we are more interested in how a small open-source team innovates. Thus, the

team and the individual are the units of study. Innovation in small teams may reflect

innovation of the larger organization or field. In particular, small team innovation may

99

occur in waves. Following the approach of Jantsch, we assume that teams innovate by

exploring and then integrating previously enumerated elements (Jantsch 1967). However,

assuming the team has limited resources (i.e., members) they alternate between innovation

and other project activities (Berkhout and van der Duin 2007). This results in a sequence of

small innovation waves, many of which are realized as software features. For this case

study, we assume that the innovative exploration occurs at the requirements -level, and is

subsequently realized in the software through implemented features. We look for such

innovation by looking for evidence of exploratory requirements development – the

specification of requirements that appear to be innovative. Such requirements are

integrative in that they reference multiple types of requirements.

Methodology and Data Collection

The methodological approach to theory building from SourceForge project data we

demonstrate herein has four steps:

1. Discover open source requirements

Use RCNL to identify requirements in open source documents. In particular, we limit

our search to the NL text found in the Feature Request forum of each project on

Source Forge.

2. Classify requirements

Use RCNL to classify requirements. RCNL uses an extended McCall’s model of 23

requirement qualities (McCall et al. 1977).

3. Characterize trends of the classified into requirements factors

The longitudinal project data is divided into data windows, (w1, w2, …, wn). The

requirements in each window are classified. Then, derived factors, such as RDC and

100

RTF (from Section 5.7) are computed. Finally, their trends of consecutive windows

(e.g., ΔRDC, ΔRTF) are computed.

4. Correlate requirements factors with project qualities that may relate to project

success

Finally, the derived factors are plotted, correlated, and otherwise compared as part of

the exploration of relationships.

The dataset is comprised of the feature request posts from 16 OSSD projects, as listed

on Table 8. The data collected is grouped in 16 text files (with sizes ranging from 229Kb to

2,304Kb), one for each project. This is the same source of data used to validate RCNL

(Vlas and Robinson 2011; Vlas and Robinson 2012), which simplifies comparison and

ensures validation of the requirements classification.

The analysis of OSSD projects lifecycle requires a time-based analysis of available data

(data windows). We use the included timestamps to determine the duration of each project

and we split up the project files into 6-month long data windows. The analysis of projects

includes within and between project analyses. We explore the evolution of the number of

requirements factors that shape a project’s lifecycle.

Requirements Development Cohesion

Figure 14 shows a stacked graph of requirements variance for 14 projects (two of the projects

did not have twelve 6-month windows). For each project, requirements variance is calculated as

follows:

σREQ ≝ standard deviation (R), where each ri is the

count of requirements of type i
(1)

ΔσREQ ≝ dσREQ /dt = (σREQ1 – σREQ2) / (t2 – t1), where ti ∈ sequential

data windows
(2)

101

Thus, σREQ measures RDC as the variations in count of different requirement types within a

data window. A project period having low σREQ means that developers are dividing the attention

equally among REQ types. In contrast, a project period having high σREQ means that developers

are focusing their attention on a few requirement types. Theory suggests that this occurs during

the exploratory process of learning and innovation. We are interested in ΔσREQ – a large ΔσREQ

suggests a transition in the project requirements cohesion.

The line graph at the top of Figure 14 shows the average σREQ for 14 projects. Notice it

has a negative slope, showing that, over time, projects tend toward equal treatment of

requirement types. A careful analysis of the Figure 12 shows that some projects show

waves of σREQ, revealing cycles of innovation followed by consolidation.

Figure 15 shows a (solid) line graph of KeePass’s σREQ for 13 6-month data windows.

Notice that the wave peaks at points 2, 6, 10 and 12. These suggest innovation in KeePass

Figure 14. Stacked graph of requirements variance with average as line (Top, scaled right).

102

as the developers focus on a few requirements types that are central to new product

features.

The closing of feature requests marks the inclusion of new features in a release of the

software product. In Figure 15, the Closed (dashed) line shows the count of feature

closings. The feature closings line also has wave peaks at 2, 3, 7, 8, 10, and 12. It’s

interesting to note that some Closed wave peaks seemly reflect prior σREQ wave peaks.

Theory suggests that, a successful innovation effort (σREQ peak) results in a subsequent

feature (Closed peak). Moreover, when the team works to close a feature, it devotes less

effort to innovation (assuming a relatively fixed number of developers). Thus, as Closed

increased σREQ decreases.

These relationships between σREQ and Closed seem to hold (roughly) in Figure 15.

Checking for correlation between the σREQ and Closed values using Pearson’s correlation

coefficient gives us ρσ,closed = -0.42, indicating a weak negative correlation. This is

expected given that the theory suggests an inverse, time-shifted weak correlation –

Figure 15. Requirements variance and Closed features (scaled left) with

Downloads (scaled right) for KeePass.

103

especially true because some innovations will not be finalized as a product feature, and

thereby create a missing feature peak.

Figure 15 also shows the number of downloads, as a (dashed-dotted) line graph. Just as

waves of innovation (σREQ) lead to subsequent waves of product features (Closed), product

features should lead to subsequent waves of downloads. Again, checking Pearson’s

correlation coefficient gives us ρclosed,downloads = 0.43, indicating a weak positive correlation.

Again, this is expected given that the theory suggests a time-shifted weak correlation –

especially true because some features will not sufficiently interest users to warrant a

download.

Table 10 shows the correlations for the eight projects that had sufficient data (e.g.,

feature-closed statistics) for analysis. The column headings are defined as follows:

 ρσ, closed

Pearson’s correlation coefficient between σREQ and the number of Closed (features)

 ρclosed, downloads

Pearson’s correlation coefficient between the number of Closed (features) and the

number of Downloads

 Features Solved

The number of features requests “solved” through new or modified code (excluding

“duplicate” or “dropped” feature requests)

 Patches Solved

The number of patch requests “solved” through new or modified code (excluding

“duplicate” or “dropped” patch requests)

104

 Closed/ Reqs

The ratio of the number of Closed (features) to the number of discovered requirements

(by the RCNL parser)

 Weekly Downloads

The number of weekly downloads (from Source Forge). Downloads is used as a proxy for

project success because: (1) it represents user interest, and (2) indirectly represents usage,

and (3) provides a quantitative comparable metric for our dataset.

When taken as a whole, with the caveats of time-shifting and failures in the process steps (i.e.,

failure to implement an innovation as a close feature), the Table 10 ρσ, closed and ρclosed, downloads

values suggest that this theory is worth more exploration. Importantly, for our tooling efforts, it

appears that our processing steps (discover, classify, characterize, and correlate) will support

exploration and confirmation of open source development theories through analysis of their

documents.

Table 10. Project correlations for requirements variance, closed features,

downloads, and related project attributes.

Project

Name

ρσ,

closed

ρclosed,

downloads

Features

Solved

Patches

Solved

Closed/

Reqs

Weekly

Downloads

awstats -0.20 -0.40 31% 63% 0.047 714,553

compiere -0.08 -0.18 53% 97% 0.107 114,068

filezilla - - - - - 57,516

fire - - 80% 0% - 31,148

floats - - 28% 100% - 15,214

gallery - 73% 76% 0.136 5,163

keepass -0.40 0.43 79% 99% 0.140 4,169

megamek -0.10 -0.01 82% 98% 0.069 2,073

pcgen - - - - - 1,829

phpgedview -0.40 0.09 49% 89% 0.107 1,550

phpmyadmin -0.26 0.17 77% 92% 0.157 922

popfile - - 88% 97% - 766

sourceforge - - - - - 718

tikiwiki - - 23% 61% - 269

tortoise - - 61% 95% - 216

winmerge 0.06 -0.19 61% 97% 0.161 32

105

Consider AwStats from Table 10. The value of ρclosed,downloads = -0.40 seems to present a

counter example. Let’s also consider Figure 16, which graphs requirements variance,

Closed features, and Downloads for AwStats.

Notice that there are relatively few closed features after data window 10. In comparing

the waves of innovation, indicated by requirements variance (StdDev), with the wave of

closed features, we see that the peaks of innovation are not reflected in subsequent feature

closings. In comparing with other projects, AwStats has the third lowest percentage of

feature requests closed at 31%, where the mean is 60%. It also has the second lowest

percentage of patches solved, at 63% where the mean is 82%. Thus, it seems that AwStats

is an outlier in the development process when compared with the other project s. The

negative ρclosed,downloads correlations of Compiere and WinMerge may be explained in similar

fashion.

Consider mapping ρclosed,downloads onto three values:

 Low = ρclosed,downloads < -0.15

Figure 16. Requirements variance (StdDev) and Closed features (scaled left)

with Downloads (scaled right) for AwStats.

106

 Medium = -0.15 ≤ ρclosed,downloads < 0.15

 High = ρclosed,downloads 0.15

Projects with high ρclosed,downloads are consistent with the σREQ innovation wave theory. The

others may have other factors that prevent innovative features from increasing downloads. Using

the attributes of Table 10 as inputs, we applied decision tree data-mining to derive the following

classification rules:

1. If ρσ, closed > -0.26, then ρclosed,downloads = Low

2. If ρσ, closed ≤ -0.26, and …

a. Closed/Reqs > 0.107 then ρclosed,downloads = High

b. Closed/Reqs ≤ 0.107 then ρclosed,downloads = Medium

These rules cover the 7 projects (having ρσ,closed) with only 1 misclassification. The rules

support the theory in that that ρσ, closed affects ρclosed,downloads. Additionally, these rules suggest that

Closed/Reqs affects ρclosed,downloads. This helps to explain why AwStats, Compiere, and WinMerge

do not have increased downloads with increased feature closing. These aberrant projects have too

small of Closed/Reqs ratio – too many requirements are being considered relative to the number

of features being closed. This suggests that too many requirements ideas being discussed are

reducing the effort to close features.

Requirements Traceability Focus

Traceability plays an important role in project management. As we show next, more

emphasis on traceability than on operability may further explain why AwStats, Compiere, and

WinMerge appear to have aberrant development practices.

 By following a trace, developers improve their understanding of the project and its

evolution. During testing, developers will trace from test cases back to requirements as part

107

of verification. Although open source methodologies rarely tout traceability – for system

integration for example – they do promote the benefits of unit testing, which requires

simple, direct traceability from test case to code.

Our analysis reveals that open source has a greater emphasis on operability than on

traceability. Both Figure 17 and Figure 18 show that KeePass and AwStats have more

operability requirements than those addressing traceability. However, there is an interesting

difference in the graphs. Notice that graphs of operability and traceability become closer

around the 11
th

 6-month data window for AwStats – for their developers, traceability

becomes nearly as important as operability.

Figure 19 shows this distinction more clearly by graphing the ratio of

operability/traceability for KeePass, AwStats, Compiere, and WinMerge (in this study, RDF

is the ratio of operability/traceability). Notice that the ratio increases substantially at point

11 for AwStats, while KeePass is mostly constant throughout the development. The other 2

projects, Compiere and WinMerge, similarly have points where their ratio raises above

Figure 17. Evolution of Operability and Traceability in KeePass.

108

their average. Thus, the 3 projects that have ρclosed, downloads > 0 (and thus seem inconsistent

with the σREQ innovation theory) all have spikes in their operability/traceability ratio. When

this distinction is considered, the theory is consistent with the data set.

Figure 18. Evolution of Operability and Traceability in AwStats.

Figure 19. The operability/traceability ratio for four projects.

109

This increased emphasis on traceability is consistent with those projects that fail to

convert many new requirements into implemented features. In terms of the preceding

metrics:

 ρσ, closed is weakly positive, indicating difficulty in converting innovations (σREQ)

into closed features

 Closed/ Reqs is low (with Closed low), indicating more emphasis on discussing

requirements rather than on implementing them

 Operability/traceability has spikes (with operability low and traceability high),

indicating that traceability, and thus understanding the development and evolution,

has become an issue

 ρclosed,downloads < 0 (with Closed low and Downloads low), indicating users are not so

interested in downloading the newly implemented features

Together, these suggest that, at some point, these projects have difficulty converting abstract

requirements innovation (σREQ) into delivered functionality (Closed high and Downloads high).

Discussion of the Exploratory Study Findings

The previous sections summarize our preliminary analysis of 16 OSSD projects using NL

requirements parsing and RCNL classification. We began this analysis to show how the RCNL

can be used to analyze relationships among open-source documents. Because of this analysis,

we have come to posit the σREQ innovation theory, which conjectures a sequential, wave-like

process from requirements innovation (σREQ) to closing features to increased downloads.

Consequently, we believe that we have shown how RCNL can aid in theory formation.

The σREQ innovation theory remains a conjecture until more data can be analyzed and

more formal modeling of the time-shifted process correlations can be done. Additionally,

110

underlying assumptions should be validated. For example, it should be validated that

increased σREQ activity results in increased innovation, rather than simply more randomized

requirements. Likewise, it should be validated that increased operability/traceability spikes

(with operability low and traceability high) is indicative of developers having trouble

converting feature requests into closed features. Such detailed validation may require a

grounded theory approach to analyzing the meaning of the underlying artifacts. In the

meantime, however, RCNL does provide some indication that these assumptions hold based

on its prior validation.

This article demonstrates how a NL requirements parsing and RCNL classification can be an

aid to understanding what open source developers are doing through analyses of their documents.

The work assumes a requirements engineering perspective: requirements are in the topmost

critical factors for project success, thus their analysis provides insight into a project’s success.

The work looks at requirements qualities to assess project qualities in the early or middle part of

its lifecycle. The approach assumes four common steps:

1. Discover open source requirements

2. Classify open source requirements

3. Characterize trends of the classified requirements into requirements factors

4. Correlate requirements factors with project qualities that may relate to project

success

The resulting correlations provide insights into how open source developers do their work.

This article presents a case study of this approach, which posits the theory that

innovations expressed as requirements appear as a wave (in quantity) that is reflected in a

subsequent wave of feature closures, that is reflected in a subsequent wave of product

111

downloads. Developers that stumble over one of these steps will likely see a reduction in

product downloads. This theory is consistent with the dataset of 16 OSSD projects, but

remains a conjecture for more comprehensive analysis. The small sample size demands

further analysis.

6. Discussion and Conclusions

This dissertation contributes to research and practice of OSSD. A systematic method for

discovery and classification of requirements in OSSD projects is currently not available. Such a

method enables important improvements, such as: (1) better understanding of open-source

requirements, their types and lifecycles, and (2) better understanding of project scope, goals, and

overall project direction. Such understanding in turn leads to better understanding and

improvement of both OSSD project, but also more traditional software development. Moreover,

the set of artifacts designed, developed and proposed in this dissertation (method, model, and

tool) are specifically created as flexible and highly adaptable artifacts since they comprise a

software analysis framework with potential future applicability in a wide set of domains. This

framework is currently customized to meet the specific characteristics of OSSD but its

requirements-based NLP analysis techniques and its architecture can be adapted to the specifics

of other software development environment or methodology.

This research study provides few specific contributions:

1. A grammar-based design of software automation for the discovery and classification

of natural language requirements

2. Two alternative parsing schemes implemented within the design

3. Requirements discovery, classification, and analysis of 30 OSS projects

112

4. An exploratory study on the impact of requirements types and evolution on OSSD

project success

5. A conjecture wave theory of requirements innovation

Together, 1 and 2 above affirm hypothesis H1.1: A multi-layered grammar, varying in

domain specificity, can be constructed for the automated requirements discovery and

classification of requirements contained within software informalisms of Open-Source

Software Development projects. In total, these contributions provide a path for subsequent

empirical studies of OSS requirements and enable subsequent software tools facilitating

automation of requirements traceability analysis in support of IS development process

studies. The RCNL classifier provides a solution to existing industry problems and an

alternative to existing methods that require substantial input from the researcher. The

RCNL classifier runs autonomously. However, users and researchers may choose to

customize rules from the top-most layers of the six-layer ontology to work most effectively

with new datasets. Although I did develop and test it on a large SourceForge dataset, it may

be that other OSS data or traditional software artifacts require changes to the lower levels

of the parser (levels L0 through L2 in Table 1 and Table 2). To adapt the RCNL classifier to

another quality model (other than McCall), only level 5 (L5) rules must be modified.

The adapting of the RCNL classifier to various domains and datasets is possible due to

its highly customizable nature. However, I acknowledge the unstable nature of the

emergent grammar used in the OSS communication that I analyze in this study.

Consequently, I recognize that the artifacts developed here provide only a snapshot in the

evolution of the OSSD language. The continuous use of these artifacts even in the same OS

environment might require a continuous adaptation to the ever changing attributes of the

113

domain analysis. Similarly, the RCNL tool can be applied to traditional requirements

documents only after a customization designed to capture the specifics of that domain is

accomplished. Most closed source documents have clearly delineated requirements, with

few classifications. The RCNL classifier can be used to identify incomplete or incorrect

requirements specifications, extend existing requirements classifications, or provide new

classifications where they do not exist.

Future work has two main directions. First, I will continually refine the parsing rules to

improve the quality of the recognition and classification. This will be achieved largely

through detailed analysis of partially correct and missing tags in the analyzed dataset.

Another improvement direction is represented by capturing part of the context surrounding

a grammar-based requirement. This will be achieved through the implementation of

reference resolution techniques (Mitkov 1998; Li et al. 2004; Mala and Uma 2006). Other

two areas of improvement are the automation of data collection process through the use of

data integration platforms such as KNIME, and the enhancing of the NL analysis through

the use of machine learning techniques. Second, I will extend the data to include structured

text. Feature requests, bug reports, and other tracked work items have a variety of

structured attributes including: author, data, version, references (links), etc. I believe such

structured data can be used to increase the recognition and classification quality. With

access to the structured data, I plan to extend the work to analyze traceability relationships,

such as contributions, evolution, and the interrelation between requirements and code.

Fourth, I will customize the artifacts proposed by this dissertation and apply them to

analyses in new domains, such as state-level IT governance policies, and evolution of

technological innovation in social media.

114

7. Appendix

Illustrative classifications of micro-requirements discovered.

Micro-requirement Classification

Best way would be to configure a program via KeePass options

and only link that program within the password entry.

C8 – Access control

C9 – Access audit

C17 - Expandability

… when a new version of Firefox would be installed in a different

directory, I only had to change the path once

C13 – Simplicity

C17 - Expandability

I would like to be able to manage icons used for KeePass entries,

maybe even import icons from system dlls.

C1 – Traceability

C2 – Completeness

C6 – Execution efficiency

C7 – Storage efficiency

C9 – Access audit

C10 – Operability

C19 - Modularity

Perhaps the ability to manage icons will be included in a future

release

C2 – Completeness

C6 – Execution efficiency

C7 – Storage efficiency

Plus I'd like to have a USB memory stick that could open the KDB

file too.

C7 – Storage efficiency

C12 - Communicativeness

… the first match is automatically selected C3 – Consistency

C4 – Accuracy

C6 – Execution efficiency

C10 – Operability

C13 – Simplicity

… a plot that is being created using pdf backend it would be great

if the url argument actually created a clickable html link.

C1 – Traceability

C10 – Operability

I tried to compile the package with python 2… C15 - Instrumentation

It should either be documented and [namespace export]ed, or

should be changed to look like a private command.

C8 – Access control

C11 – Training

C12 – Communicativeness

C17 - Expandability

Please make it possible to search in the notes field and jump to the

first matching entry (using ctrl-f).

C1 – Traceability

C3 – Consistency

C6 – Execution efficiency

C9 – Access audit

C10 – Operability

C16 – Self-descriptiveness

The most common approach is when there is a single-sign-on

system on the back end but multiple entry points.

C2 – Completeness

C3 – Consistency

C6 – Execution efficiency

C9 – Access audit

C18 – Generality

C19 - Modularity

115

Grammar-based strategy – false positives and non-requirements.

False positives Non-requirements

…a user wants… Good God!

This can only have usability advantages. …just extra work …

…possible options should be… Regards[,] mb277

…asked somewhere already, but I cannot see a feature request. Like this exemple:

Therefore this is a low-prio bug but bothering in practice. …can squeeze this in.

McCall’s 23 software quality criteria.

No. Criteria No. Criteria

1 Traceability 13 Simplicity

2 Completeness 14 Conciseness

3 Consistency 15 Instrumentation

4 Accuracy 16 Self-descriptiveness

5 Error tolerance 17 Expandability

6 Execution efficiency 18 Generality

7 Storage efficiency 19 Modularity

8 Access control 20 Software-system independence

9 Access audit 21 Machine-independence

10 Operability 22 Communication commonality

11 Training 23 Data commonality

12 Communicativeness

116

8. References

Ambriola, V. and V. Gervasi (2006). "On the Systematic Analysis of Natural Language

Requirements with CIRCE." Automated Software Engineering 13: 107-167.

Anderson, S. and M. Felici (2002). Quantitative Aspects of Requirements Evolution.

Proceedings of the 26th Annual International Computer Software Conference, COMPSAC

2002, Oxford, England, IEEE Computer Society Press.

Auer, P. and S. Pfänder (2011). Constructions: Emerging and Emergent, Walter de Gruyter.

Bass, L., P. Clements and R. Kazman (1998). Software Architecture in Practice. Reading,

MA, Addison Wesley.

Bejan, A. and S. Lorente (2011). "The constructal law origin of the logistics S curve."

Journal of Applied Physics 110.

Berkhout, A. J. and P. A. van der Duin (2007). "New ways of innovation: an application of

the cyclic innovation model to the mobile telecom industry." International Journal of

Technology Management 40(4): 294-309.

Boehm, B. W., J. R. Brown, H. Kaspar, M. Lipow, G. J. MaCleod and M. J. Merritt (1978).

Characteristics of Software Quality. New York, North-Holland.

Broy, M. and T. Stauner (1999). "Requirements Engineering for Embedded Systems."

Informationstechnik und Technische Informatik 41(2): 7-11.

Cao, J., J. M. Crews, M. Lin, A. Deokar, J. K. Burgoon and J. F. Nunamaker Jr (2006).

"Interactions Between System Evaluation And Theory Testing: A Demonstration of the

Power of a Mulitfaceted Approach to Systems Research." Journal of Management

Information Systems 22(4): 207-235.

Chomsky, N. (1980). On Cognitive Structures and Their Development. Language and

Learning: The Debate Between Jean Piaget and Noam Chomsky. M. Piatelli Palmarini.

London, Routledge and Kegan Paul.

Chomsky, N. (1986). Knowledge of Language: Its Nature, Origin and Use New York,

Prager.

Chung, L., B. A. Nixon, E. Yu and J. Mylopoulos (1999). Non-functional Requirements in

Software Engineering. Boston, Springer.

Cleland-Huang, J., R. Settimi, X. Zou and P. Solc (2006). The Detection and Classification

of Non-Functional Requirements with Application to Early Aspects. Proceedings of the

14th IEEE International Requirements Engineering Conference (RE'06), IEEE Computer

Society.

117

Cockburn, A. (1997). "Using Goal-based Use Cases." Journal of Object–Oriented

Programming 10: 56-62.

Crowston, K., H. Annabi and J. Howison (2003). Defining Open Source Software Project

Success. Proceedings of the 24th International Conference on Information Systems.

Crowston, K., J. Howison and H. Annabi (2006). "Information Systems Success in Free and

Open Source Software Development: Theory and Measures." Software Process:

Improvement and Practice (Special Issue on Free/Open Source Software Processes.) 11(2):

123-148.

Cunningham, H., D. Maynard, K. Bontcheva and V. Tablan (2002). GATE: An Architecture

for Development of Robust Hlt Applications. Proceedings of the 40th Annual Meeting on

Association for Computational Linguistics (ACL'02), Philadelphia, Association for

Computational Linguistics.

Davis, F. D. (1989). "Perceived usefulness, perceived ease of use, and user acceptance of

information technology." MIS Quarterly 13(3): 319-339.

DeLone, W. H. and E. R. McLean (1992). "Information Systems Success: The Quest for the

Dependent Variable." Information Systems Research 3(1).

DeLone, W. H. and E. R. McLean (2003). "The DeLone and McLean Model of Information

Success: A Ten-Year Update." Journal of Management Information Systems 19(4): 9-30.

Denger, C., D. Berry and E. Kamsties (2003). Higher Quality Requirements Specifications

through Natural Language Patterns. Proceedings of the IEEE International Conference on

Software: Science, Technology & Engineering (SwSTE’03), IEEE Computer Society.

Dvir, D. (2003). "An empirical analysis of the relationship between project planning and

project success." International Journal of Project Management 21(2): 89-95.

Dvir, D. (2005). "Transferring projects to their final users: The effect of planning and

preparations for commissioning on project success." International Journal of Project

Management 23(4): 257-265.

Edwards, M. L., M. Flanzer, M. Terry and J. Janda (1995). RECAP: a requirements

elicitation, capture and analysis process prototype tool for large complex systems .

Proceedings of the First IEEE International Conference on Engineering of Complex

Computer Systems (ICECCS'95), Fort Lauderdale, Florida, IEEE Computer Society.

Elazhary, H. H. (2010). "REAS: An Interactive Semi-Automated System for Software

Requirements Elicitation Assistance." International Journal of Engineering Science and

Technology 2(5): 957-961.

118

Fantechi, A. and E. Spinicci (2005). A Content Analysis Technique for Inconsistency

Detection in Software Requirements Documents. Proceedings of the Workshop em

Engenharia de Requisitos [Requirements Engineering Workshop] (WER2005), Porto,

Portugal.

Feblowitz, M., S. Greenspan, H. Reubenstein and R. Walford (1996). ACME/PRIME:

requirements acquisition for process-driven systems. Proceedings of the 8th International

Workshop on Software Specification and Design (IWSSD '96), Schloss Velen, Germany,

IEEE Computer Society.

Fitzgerald, B. (2006). "The Transformation of Open Source Software." MIS Quarterly

30(3): 587-598.

Frakes, W. B. and R. S. Baeza-Yates (1992). Information Retrieval: Data Structures and

Algorithms. Eaglewood Cliffs, New Jersey, PTR Prentice-Hall, Inc.

Gamma, E. and K. Beck (2004). Contributing to Eclipse: principles, patterns, and plug-ins,

Addison-Wesley Professional.

Gamma, E., R. Helm, R. Johnson and J. Vlissides (1995). Design patterns : Elements of

reusable object - oriented software. Reading, MA, Addison-Wesley.

Gao, Y., M. V. Antwerp, S. Christley and G. Madey (2007). A Research Collaboratory for

Open Source Software Research. Proceedings of the First International Workshop on

Emerging Trends in FLOSS Research and Development (FLOSS '07), Minneapolis, MN,

IEEE Computer Society.

Goldin, L. and D. M. Berry (1994). AbstFinder, a prototype abstraction finder for natural

language text for use in requirements elicitation: design, methodology, and evaluation .

Proceedings of the First International Conference on Requirements Engineering, Colorado

Springs, CO, IEEE Computer Society.

Gotel, O. and A. Finkelstein (1997). Extended requirements traceability: results of an

industrial case study. Proceedings of the Requirements Engineering, 1997., Third IEEE

International Symposium on.

Gotel, O. C. Z. and C. W. Finkelstein (1994). An analysis of the requirements traceability

problem. Proceedings of the First International Conference on Requirements Engineering,

Colorado Springs, CO, IEEE Computer Society.

Grady, R. (1992). Practical Software Metrics for Project Management and Process

Improvement. Englewood Cliffs, NJ, Prentice Hall.

Hayes, J. H., A. Dekhtyar and S. K. Sundaram (2006). "Advancing Candidate Link

Generation for Requirements Tracing: The Study of Methods." IEEE Transactions on

Software Engineering 32(1): 4-19.

119

Hevner, A. R., S. T. March, J. Park and S. Ram (2004). "Design Science in Information

Systems Research." MIS Quarterly 28(1): 75-105.

Hippel, E. v. and G. v. Krogh (2003). "Open Source Software and the "Private-Collective"

Innovation Model: Issues for Organization Science." Organization Science 14(2): 209-223.

Hooks, I. F. and K. A. Farry (2001). Customer-Centered Products: Creating Successful

Products Through Smart Requirements Management, Amacom.

Hopper, P. J. (1987). "Emergent Grammar." Berkeley Linguistics Society 13: 139-157.

Hopper, P. J. (1992). Discourse: emergence of grammar. International Encyclopedia of

Linguistics. Oxford University Press, Oxford. W. Bright: 364-367.

Hopper, P. J. (1998). Emergent grammar. The new psychology of language: Cognitive and

functional approaches to language structure. M. Tomasello. 1: 155-176.

Hopper, P. J. and E. C. Traugott (2003). Grammaticalization, Cambridge Univ Pr.

Hull, E., K. Jackson and J. Dick (2005). Requirements Engineering. London, Springer.

IEEE (1998). IEEE Standard for a Software Quality Metrics Methodology, IEEE. IEEE

Std 1061-1998.

ISO (2001). Software Engineering - Product Quality, ISO. ISO/IEC 9126.

ISO (2011). Systems and Software Engineering - Systems and Software Quality

Requirements and Evaluation (SQuaRE) - System and Software Quality Models, ISO.

ISO/IEC 25010.

Jantsch, E. (1967). Technological forecasting in perspective: A framework for technological

forecasting. Organization for Economic Co-Operation and Development. Paris.

Jarke, M. and K. Paulk (1994). "Requirements Engineering in 2001: (virtually) managing a

changing reality." Software Engineering Journal: 257-266.

Jensen, C. and W. Scacchi (2004). Data mining for software process discovery in open

source software development communities. Proceedings of the First International

Workshop on Mining Software Repositories, Edinburgh, Scotland, IEEE Computer Society.

Kasser, J. E. (2004). "The First Requirements Elucidator Demonstration (FRED) tool."

Systems Engineering 7(7): 243-256.

120

Kof, L. (2005). "An Application of Natural Language Processing to Domain Modelling:

Two Case Studies." International Journal of Computer Systems Science & Engineering

20(1): 37-52.

Kof, L. (2007). Scenarios: Identifying Missing Objects and Actions by Means of

Computational Linguistics. Proceedings of the 15th IEEE Requirements Engineering

Conference.

Konrad, S. and B. H. C. Cheng (2002). Requirements Patterns for Embedded Systems.

Proceedings of the IEEE Joint International Conference on Requirements Engineering

(RE'02), IEEE Computer Society.

Krogh, G. v. and E. v. Hippel (2006). "The promise of research on open source software."

Management Science 52(7).

Kujala, S., M. Kauppinen, L. Lehtola and T. Kojo (2005). The role of user involvement in

requirements quality and project success. Proceedings of the 13th IEEE International

Conference on Requirements Engineering, Helsinki University of Technology, Finland,

Software Business & Engineering Institute.

Leifer, R., S. Lee and j. Durgee (1994). "Deep Structures: Real Information Requirements

Determination." Information and Management 27(5): 1-27.

Li, K., R. Dewar and R. Pooley (2004). Requirements capture in natural language problem

statements, Heriot-Watt University.

Lintula, H., T. Koponen and V. Hotti (2006). Exploring the Maintenance Process through

the Defect Management in the Open Source Projects - Four Case Studies. Proceedings of

the International Conference on Software Engineering Advances (ICSEA'06), Como, Italy,

IEEE Computer Society.

Lutz, R. R. and I. C. Mikulski (2003). "Operational Anomalies as a Cause of Safety-

Critical Requirements Evolution." The Journal of Systems and Software 65(2): 155-161.

Lyytinen, K. and G. M. Rose (2003). "The disruptive nature of information technology

innovations: the case of internet computing in systems development organizations." MIS

Quarterly 27(4): 557-595.

Madey, G. The SourceForge Research Data Archive (SRDA), University of Notre Dame.

Mala, G. and G. Uma (2006). Automatic Construction of Object Oriented Design Models

(UML Diagrams) from Natural Language Requirements Specification. Proceedings of the

Pacific Rim International Conference on Artificial Intelligence (PRICAI) 2006: Trends in

Artificial Intelligence, Springer Berlin / Heidelberg.

121

Manning, C. and H. Schütze (1999). Foundations of Statistical Natural Language

Processing. Cambridge, MA, MIT Press.

Mansfield, E. (1983). "Long waves and technological innovation." The American Economic

Review 73(2): 141-145.

March, S. T. and G. F. Smith (1995). "Design and natural science research on information

technology." Decision Support Systems 15(4): 251-266.

McCall, J. A., P. K. Richards and G. F. Walters (1977). Factors in Software Quality. New

York, Rome Air Development Center, Air Force Systems Command.

Mingers, J. (2003). "The paucity of multimethod research: a review of the information

systems literature." Information Systems Journal 13(3): 233-249.

Mitkov, R. (1998). Robust pronoun resolution with limited knowledge. Proceedings of the

36th Annual Meeting of the Association for Computational Linguistics (ACL '98),

Association for Computational Linguistics.

Mockus, A., R. T. Fielding and J. D. Herbsleb (2002). "Two Case Studies of Open Source

Software Development: Apache and Mozilla." ACM Transactions on Software Engineering

and Methodology 11(3): 309-346.

Moreira, A., J. Araújo and I. Brito (2002). Crosscutting Quality Attributes for

Requirements Engineering. Proceedings of the 14th International Conference on Software

Engineering and Knowledge Engineering Conference (SEKE '02), Ischia, Italy, Association

for Computing Machinery (ACM).

Mylopoulos, J., L. Chung and E. Yu (1999). "From Object-Oriented to Goal-Oriented

Requirements Analysis." Communications of the ACM 42(1): 31-37.

Noll, J. (2008). Requirements Acquisition in Open Source Development: Firefox 2.0. Open

Source Development, Communities and Quality, IFIP International Federation for

Information Processing: 69-79.

Pinto, J. K. and D. P. Slevin (1987). "Critical factors in successful project implementation."

IEEE Transactions Engineering Management EM-34(1): 22–27.

Ramesh, B. (1998). "Factors Influencing Requirements Traceability Practice."

Communications of the ACM 41(12): 37-44.

Ramesh, B. and M. Jarke (2001). "Toward reference models for requirements traceability."

IEEE Transactions on Software Engineering 27(1): 58-93.

Ramesh, B., C. Stubbs, T. Powers and M. Edwards (1997). "Requirements traceability:

Theory and practice." Annals of Software Engineering 3(1): 397-415.

122

Rijsbergen, C. J. V. (1979). Information Retrieval, Wiley Subscription Services, Inc., A

Wiley Company.

Rumbaugh, J. (1994). "Getting started: Using use cases to capture requirements." Journal

of Object–Oriented Programming 7: 8-8.

Ryan, K. (1993). The Role of Natural Language in Requirements Engineering. Proceedings

of the IEEE International Symposium on Requirements Engineering, San Diego, CA, IEEE

Computer Society.

Sampaio, A., N. Loughran, A. Rashid and P. Rayson (2005). Mining Aspects in

Requirements. Early Aspects 2005: Aspect-Oriented Requirements Engineering and

Architecture Design Workshop. Chicago, Illinois.

Scacchi, W. (2002). "Understanding the Requirements for Developing Open Source

Software Systems." IEEE Proceedings - Software 149(1): 24-39.

Scacchi, W. (2006). Understanding Free/Open Source Software Evolution. Software

Evolution and Feedback: Theory and Practice. J. F. R. a. D. P. e. N.H. Madhavji. New York,

John Wiley and Sons, Inc.: 181-206.

Scacchi, W. (2009). Understanding Requirements for Open Source Software. Design

Requirements Engineering – A Multi-disciplinary perspective for the next decade. K.

Lyytinen, P. Loucopoulos, J. Mylopoulos and W. Robinson. Berlin, Springer-Verlag: 467-

494.

Scacchi, W. and T. Alspaugh (2008). Emerging Issues in the Acquisition of Open Source

Software within the U.S. Department of Defense. The 5th Annual Acquisition Research

Symposium.

Scacchi, W., K. Crowston, G. Madey and M. Squire (2009). Envisioning National and

International Research on the Multidisciplinary Empirical Science of Free/Open Source

Software.

Scada, J. (2004). Cartesian Metaphysics: The Scholastic Origins of Modern Philosophy.

Cambridge, Cambridge University Press.

Shenhar, A. J., D. Dvir and O. Levy (1997). "Mapping the dimensions of project success."

Project Management Journal 28(2): 5-13.

Sommerville, I. and P. Sawyer (1997). Requirements Engineering: A Good Practice Guide,

Wiley.

Stamelos, I., L. Angelis, A. Oikonomou and G. L. Bleris (2002). "Code Quality Analysis in

Open Source Software Development." Information Systems Journal 12(1): 43-60.

123

Toro, A. D., B. B. Jimenez, M. T. Bonilla, R. Corchuelo, A. R. Cortés and J. Pérez (1999a).

Expressing Customer Requirements Using Natural Language Requirements Templates and

Patterns. Proceedings of the 3rd IMACS/IEEE International Multiconference on: Circuits,

Systems, Communications and Computers (CSCC’99), Athens, IEEE Computer Society.

Toro, A. D., B. B. Jimenez, A. R. Cortés and M. T. Bonilla (1999b). A Requirements

Elicitation Approach Based in Templates and Patterns. Proceedings of the Workshop de

Engenharia de Requisitos [Requirements Engineering Workshop] (WER 1999).

Truex, D. and R. Baskerville (1998). "Deep Structure or Emergence Theory: Contrasting

Theoretical Foundations for Information Systems Development." Information Systems

Journal 8: 99-118.

Truex, D., R. Baskerville and H. Klein (1999). "Growing Systems in Emergent

Organizations." Communications of the ACM 42(8): 117-123.

Truex, D., R. Baskerville and J. Travis (2000). "Amethodical Systems Development: The

Deferred Meaning of Systems Development Methods." Accounting, Management and

Information Technologies(10): 53-79.

van Lamsweerde, A. (2000). Requirements Engineering in the Year 00: A Research

Perspective. Proceedings of the 2000 International Conference on Software Engineering,

ICSE 2000, Limerick, Ireland.

van Lamsweerde, A. (2007). Goal-Orientation in Requirements Engineering. Requirements

Engineering - From System Goals to UML Models to Software Specifications, Wiley: 259-

286.

Venkatesh, V., M. G. Morris, G. B. Davis and F. D. Davis (2003). "User acceptance of

information technology: Toward a unified view." MIS Quarterly 27(3): 425-478.

Vlas, R. E. and W. Robinson (2012). "A Pattern-Based Method for Requirements Discovery

and Classification in Open-Source Software Development Projects." Journal of

Management Information Systems 28(4): 11-38.

Vlas, R. E. and W. N. Robinson (2011). A Rule-Based Natural Language Technique for

Requirements Discovery and Classification in Open-Source Software Development

Projects Proceedings of the Hawaii International Conference on Software Systems (HICSS-

44), HI, USA, IEEE.

Wand, Y. and R. Weber (1995). "On the Deep Structure of Information Systems."

Information Systems Journal 5(3): 203-223.

Weber, M. and J. Weisbrod (2003). "Requirements Engineering in Automotive

Development: Experiences and Challenges." IEEE Software 20(1): 16-24.

124

Wiegers, K. E. (2003). Software Engineering. Redmont, Washington, Microsoft Press.

Wimalasuriya, D. C. and D. Dou (2010). Components for Information Extraction:

Ontology-based Information Extractors and Generic Platforms. Proceedings of the 19th

ACM International Conference on Information and Knowledge Management (CIKM '10),

Association for Computing Machinery (ACM).

	Georgia State University
	ScholarWorks @ Georgia State University
	8-7-2012

	A Requirements-Based Exploration of Open-Source Software Development Projects – Towards a Natural Language Processing Software Analysis Framework
	Radu Vlas
	Recommended Citation

	tmp.1342561350.pdf.QChP6

