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3.2. Classifier Engineering 

The RCNL classifier is implemented in GATE (Cunningham et al. 2002). The General 

Architecture for Text Engineering is developed by the Sheffield Natural Language Processing 

Group at the University of Sheffield and is surrounded by a large community of collaborators 

and users. Next, I describe at a high level the engineering involved in realizing the RCNL 

framework in GATE. In particular, I describe rules for tagging text according to the ontology, 

additional text processing, and the overall text processing activity.  

The parser implements the RCNL ontology to recognize and classify NL micro-

requirements. The patterns used in the tagging of NL text are encoded in RCNL using the 

JAPE (Java Annotation Pattern Engine). For each level, JAPE rules specify how GATE tags 

text with concepts of that level. The rules are organized in a pipeline and executed 

sequentially, from level 0 to level 5. The final output includes qualified (L2) micro-

requirements (L4) that are also classified (L5) according to the rules of McCall+ classifier. 

Any piece of text may have multiple tags generated by rules from multiple levels. 

GATE supports levels 0 and 1 directly, identifying tokens and some parts of speech. The 

RCNL classifier rules augment and extend the native GATE tags to aid processing for 

OSSD projects.  

Rule-Based Tagging 

GATE defines an architecture for executing plugins over NL text. GATE users may develop 

their own plugins; however, GATE provides a variety of plugins for common NLP tasks.  

GATE also provides JAPE (Java Annotation Pattern Engine), a rule-based text-

engineering engine that supports Java and regular expressions. Another benefit of using 

GATE is the annotation indexing and search engine with an advanced graphical user 

interface called ANNIC (Annotations in Context). The analyses of this study use ANNIC 
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for development of rules and inspection of results, and JAPE for rule design and 

implementation. 

JAPE rules specify a left-hand side (LHS) in which the pattern to be matched is defined 

and a right-hand side (RHS) in which the annotation and its features to be created for all 

the discovered instances of the pattern are being specified. Multiple and complex patterns 

can be defined in the LHS of a JAPE rule. Similarly, the RHS of a JAPE rule can be used to 

specify multiple annotations and features to be created for each matching pattern or for 

each matching element of a pattern. 

The current implementation of the grammar-based RCNL classifier consists of over 200 

JAPE rules, not including the rules designed for generating evaluation metrics. To illustrate 

how the grammar-based RCNL ontology is recognized through JAPE rules, I present rules 

from levels 3 and 5. The rules presented here are simplified for clarity.  

A Level 3 Rule 

To illustrate the rule techniques, here is a rule from L3. 

Rule: PotentialSubjectFinder 

( 

   ( 

      {Token.category == PP} | 

      {Token.category == PRP} | 

      {Token.category == "PRPR$"} | 

      {Token.category == "PRP$"} | 

      {L1.category == "Noun"} | 

      {L0.category == "Filename"} | 

      {L0.category == "email"} | 

      {L0.category == "url"} | 

 // ... 

      ({L1.category == "Determiner"} {L1.category == "Noun"}) 

   ) [1,5] 

) 

:SubjectFound 

--> 

 :SubjectFound.L3 = {category = "Subject"} 
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The LHS part of the rule defines a pattern searching for pronouns (as defined in pre-defined 

rules in GATE), or nouns (as defined in L1), or filenames, Url’s, email, (as defined in L0), or a 

determiner followed by a noun (up to 5 instances of this pair). When either one of these is found, 

the text matching the pattern is annotated as an L3 Subject. 

A Level 5 Rule 

Here is an L5 classification rule.  

Rule: L5_Comunicativeness 

( 

   {L4.valid == "Yes",L4_Requirement contains KW_F5C12} 

) 

:L5_ComunicativenessFired 

--> 

 :L5_ComunicativenessFired.Comunicativeness = {category = "F5C12"} 

The LHS part of the rule matches text annotated as L4 (micro-requirement) that contains 

keywords associated with factor 5 and criteria 12 of McCall’s model. The matched text is 

annotated as Communicativeness, which is the label for factor 5, criteria 12.  

Auxiliary Text Processing 

Three auxiliary kinds of text processing are noteworthy. First, list processing presents an 

interesting problem. OSSD project texts include technical yet informal communication 

containing numerous examples of specifications expressed with lists. Lists typically have an 

introductory phrase followed by one or more list items: 

<Introductory phrase> [<list item>]+ 

Sometimes the introductory phrase and each list item are complete micro-requirements. 

However, most often the introductory phrase can be classified as a micro-requirement while the 

list items are examples or statements that extend the meaning of the introductory phrase. To 

address such issues, the L5 tag associated with the introductory phrase is propagated to all the 

list items. As such, a list item can have two tags: a tag from parsing the list item, and a tag 
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RTF (from Section 5.7) are computed. Finally, their trends of consecutive windows 

(e.g., ΔRDC, ΔRTF) are computed.  

4. Correlate requirements factors with project qualities that may relate to project 

success 

Finally, the derived factors are plotted, correlated, and otherwise compared as part of 

the exploration of relationships.  

The dataset is comprised of the feature request posts from 16 OSSD projects, as listed 

on Table 8. The data collected is grouped in 16 text files (with sizes ranging from 229Kb to 

2,304Kb), one for each project. This is the same source of data used to validate RCNL 

(Vlas and Robinson 2011; Vlas and Robinson 2012), which simplifies comparison and 

ensures validation of the requirements classification.  

The analysis of OSSD projects lifecycle requires a time-based analysis of available data 

(data windows). We use the included timestamps to determine the duration of each project 

and we split up the project files into 6-month long data windows. The analysis of projects 

includes within and between project analyses. We explore the evolution of the number of 

requirements factors that shape a project’s lifecycle.  

Requirements Development Cohesion 

Figure 14 shows a stacked graph of requirements variance for 14 projects (two of the projects 

did not have twelve 6-month windows). For each project, requirements variance is calculated as 

follows: 

 
σREQ ≝ standard deviation (R),    where each ri is the 

count of requirements of type i 
( 1 ) 

 
ΔσREQ ≝ dσREQ /dt = (σREQ1 – σREQ2) / (t2 – t1),  where ti ∈ sequential 

data windows 
( 2 ) 
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Thus, σREQ measures RDC as the variations in count of different requirement types within a 

data window. A project period having low σREQ means that developers are dividing the attention 

equally among REQ types. In contrast, a project period having high σREQ means that developers 

are focusing their attention on a few requirement types. Theory suggests that this occurs during 

the exploratory process of learning and innovation. We are interested in ΔσREQ – a large ΔσREQ 

suggests a transition in the project requirements cohesion.  

The line graph at the top of Figure 14 shows the average σREQ for 14 projects. Notice it 

has a negative slope, showing that, over time, projects tend toward equal treatment of 

requirement types. A careful analysis of the Figure 12 shows that some projects show 

waves of σREQ, revealing cycles of innovation followed by consolidation.   

Figure 15 shows a (solid) line graph of KeePass’s σREQ for 13 6-month data windows. 

Notice that the wave peaks at points 2, 6, 10 and 12. These suggest innovation in KeePass 

 
Figure 14. Stacked graph of requirements variance with average as line (Top, scaled right). 
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as the developers focus on a few requirements types that are central to new product 

features.  

The closing of feature requests marks the inclusion of new features in a release of the 

software product. In Figure 15, the Closed (dashed) line shows the count of feature 

closings. The feature closings line also has wave peaks at 2, 3, 7, 8, 10, and 12. It’s 

interesting to note that some Closed wave peaks seemly reflect prior σREQ wave peaks. 

Theory suggests that, a successful innovation effort (σREQ peak) results in a subsequent 

feature (Closed peak). Moreover, when the team works to close a feature, it devotes less 

effort to innovation (assuming a relatively fixed number of developers). Thus, as Closed 

increased σREQ decreases.   

These relationships between σREQ and Closed seem to hold (roughly) in Figure 15. 

Checking for correlation between the σREQ and Closed values using Pearson’s correlation 

coefficient gives us ρσ,closed = -0.42, indicating a weak negative correlation. This is 

expected given that the theory suggests an inverse, time-shifted weak correlation – 

 
Figure 15. Requirements variance and Closed features (scaled left) with 

Downloads (scaled right) for KeePass. 
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especially true because some innovations will not be finalized as a product feature, and 

thereby create a missing feature peak. 

Figure 15 also shows the number of downloads, as a (dashed-dotted) line graph. Just as 

waves of innovation (σREQ) lead to subsequent waves of product features (Closed), product 

features should lead to subsequent waves of downloads. Again, checking Pearson’s 

correlation coefficient gives us ρclosed,downloads = 0.43, indicating a weak positive correlation. 

Again, this is expected given that the theory suggests a time-shifted weak correlation – 

especially true because some features will not sufficiently interest users to warrant a 

download.  

Table 10 shows the correlations for the eight projects that had sufficient data (e.g., 

feature-closed statistics) for analysis. The column headings are defined as follows: 

 ρσ, closed 

Pearson’s correlation coefficient between σREQ and the number of Closed (features) 

 ρclosed, downloads 

Pearson’s correlation coefficient between the number of Closed (features) and the 

number of Downloads 

 Features Solved 

The number of features requests “solved” through new or modified code (excluding 

“duplicate” or “dropped” feature requests) 

 Patches Solved 

The number of patch requests “solved” through new or modified code (excluding 

“duplicate” or “dropped” patch requests) 
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 Closed/ Reqs 

The ratio of the number of Closed (features) to the number of discovered requirements 

(by the RCNL parser) 

 Weekly Downloads 

The number of weekly downloads (from Source Forge). Downloads is used as a proxy for 

project success because: (1) it represents user interest, and (2) indirectly represents usage, 

and (3) provides a quantitative comparable metric for our dataset. 

When taken as a whole, with the caveats of time-shifting and failures in the process steps (i.e., 

failure to implement an innovation as a close feature), the Table 10 ρσ, closed and ρclosed, downloads 

values suggest that this theory is worth more exploration. Importantly, for our tooling efforts, it 

appears that our processing steps (discover, classify, characterize, and correlate) will support 

exploration and confirmation of open source development theories through analysis of their 

documents.  

Table 10. Project correlations for requirements variance, closed features, 

downloads, and related project attributes. 

Project 

Name 

ρσ, 

closed 

ρclosed, 

downloads 

Features 

Solved 

Patches 

Solved 

Closed/ 

Reqs 

Weekly 

Downloads 

awstats -0.20 -0.40 31% 63% 0.047 714,553  

compiere -0.08 -0.18 53% 97% 0.107 114,068  

filezilla - - - - - 57,516  

fire - - 80% 0% - 31,148  

floats - - 28% 100% - 15,214  

gallery  - 73% 76% 0.136 5,163  

keepass -0.40 0.43 79% 99% 0.140 4,169  

megamek -0.10 -0.01 82% 98% 0.069 2,073  

pcgen - - - - - 1,829  

phpgedview -0.40 0.09 49% 89% 0.107 1,550  

phpmyadmin -0.26 0.17 77% 92% 0.157 922  

popfile - - 88% 97% - 766  

sourceforge - - - - - 718  

tikiwiki - - 23% 61% - 269  

tortoise - - 61% 95% - 216  

winmerge 0.06 -0.19 61% 97% 0.161 32  
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Consider AwStats from Table 10. The value of ρclosed,downloads = -0.40 seems to present a 

counter example. Let’s also consider Figure 16, which graphs requirements variance, 

Closed features, and Downloads for AwStats.  

Notice that there are relatively few closed features after data window 10. In comparing 

the waves of innovation, indicated by requirements variance (StdDev), with the wave of 

closed features, we see that the peaks of innovation are not reflected in subsequent feature 

closings. In comparing with other projects, AwStats has the third lowest percentage of 

feature requests closed at 31%, where the mean is 60%. It also has the second lowest 

percentage of patches solved, at 63% where the mean is 82%. Thus, it seems that AwStats 

is an outlier in the development process when compared with the other project s. The 

negative ρclosed,downloads correlations of Compiere and WinMerge may be explained in similar 

fashion.  

Consider mapping ρclosed,downloads onto three values: 

 Low  = ρclosed,downloads <  -0.15 

 
Figure 16. Requirements variance (StdDev) and Closed features (scaled left) 

with Downloads (scaled right) for AwStats. 
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 Medium = -0.15 ≤ ρclosed,downloads <  0.15 

 High = ρclosed,downloads  0.15 

Projects with high ρclosed,downloads are consistent with the σREQ innovation wave theory. The 

others may have other factors that prevent innovative features from increasing downloads. Using 

the attributes of Table 10 as inputs, we applied decision tree data-mining to derive the following 

classification rules: 

1. If ρσ, closed > -0.26, then ρclosed,downloads  = Low 

2. If ρσ, closed ≤ -0.26, and … 

a. Closed/Reqs > 0.107 then ρclosed,downloads  = High 

b. Closed/Reqs ≤ 0.107 then ρclosed,downloads  = Medium 

These rules cover the 7 projects (having ρσ,closed) with only 1 misclassification. The rules 

support the theory in that that ρσ, closed affects ρclosed,downloads. Additionally, these rules suggest that 

Closed/Reqs affects ρclosed,downloads. This helps to explain why AwStats, Compiere, and WinMerge 

do not have increased downloads with increased feature closing. These aberrant projects have too 

small of Closed/Reqs ratio – too many requirements are being considered relative to the number 

of features being closed. This suggests that too many requirements ideas being discussed are 

reducing the effort to close features.  

 

Requirements Traceability Focus 

Traceability plays an important role in project management. As we show next, more 

emphasis on traceability than on operability may further explain why AwStats, Compiere, and 

WinMerge appear to have aberrant development practices.  

 By following a trace, developers improve their understanding of the project and its 

evolution. During testing, developers will trace from test cases back to requirements as part 
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of verification. Although open source methodologies rarely tout traceability – for system 

integration for example – they do promote the benefits of unit testing, which requires 

simple, direct traceability from test case to code.  

Our analysis reveals that open source has a greater emphasis on operability than on 

traceability. Both Figure 17 and Figure 18 show that KeePass and AwStats have more 

operability requirements than those addressing traceability. However, there is an interesting 

difference in the graphs. Notice that graphs of operability and traceability become closer 

around the 11
th

 6-month data window for AwStats – for their developers, traceability 

becomes nearly as important as operability. 

Figure 19 shows this distinction more clearly by graphing the ratio of 

operability/traceability for KeePass, AwStats, Compiere, and WinMerge (in this study, RDF 

is the ratio of operability/traceability). Notice that the ratio increases substantially at point 

11 for AwStats, while KeePass is mostly constant throughout the development. The other 2 

projects, Compiere and WinMerge, similarly have points where their ratio raises above 

 

Figure 17. Evolution of Operability and Traceability in KeePass. 
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their average. Thus, the 3 projects that have ρclosed, downloads > 0 (and thus seem inconsistent 

with the σREQ innovation theory) all have spikes in their operability/traceability ratio. When 

this distinction is considered, the theory is consistent with the data set. 

 

Figure 18. Evolution of Operability and Traceability in AwStats.  

 
Figure 19. The operability/traceability ratio for four projects. 
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This increased emphasis on traceability is consistent with those projects that fail to 

convert many new requirements into implemented features. In terms of the preceding 

metrics: 

 ρσ, closed is weakly positive, indicating difficulty in converting innovations (σREQ) 

into closed features  

 Closed/ Reqs is low (with Closed low), indicating more emphasis on discussing 

requirements rather than on implementing them 

 Operability/traceability has spikes (with operability low and traceability high), 

indicating that traceability, and thus understanding the development  and evolution, 

has become an issue 

 ρclosed,downloads < 0 (with Closed low and Downloads low), indicating users are not so 

interested in downloading the newly implemented features 

Together, these suggest that, at some point, these projects have difficulty converting abstract 

requirements innovation (σREQ) into delivered functionality (Closed high and Downloads high).  

Discussion of the Exploratory Study Findings 

The previous sections summarize our preliminary analysis of 16 OSSD projects using NL 

requirements parsing and RCNL classification.  We began this analysis to show how the RCNL 

can be used to analyze relationships among open-source documents.  Because of this analysis, 

we have come to posit the σREQ innovation theory, which conjectures a sequential, wave-like 

process from requirements innovation (σREQ) to closing features to increased downloads.  

Consequently, we believe that we have shown how RCNL can aid in theory formation. 

The σREQ innovation theory remains a conjecture until more data can be analyzed and 

more formal modeling of the time-shifted process correlations can be done. Additionally, 
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underlying assumptions should be validated. For example, it should be validated that 

increased σREQ activity results in increased innovation, rather than simply more randomized 

requirements. Likewise, it should be validated that increased operability/traceability spikes 

(with operability low and traceability high) is indicative of developers having trouble 

converting feature requests into closed features. Such detailed validation may require a 

grounded theory approach to analyzing the meaning of the underlying artifacts. In the 

meantime, however, RCNL does provide some indication that these assumptions hold based 

on its prior validation. 

This article demonstrates how a NL requirements parsing and RCNL classification can be an 

aid to understanding what open source developers are doing through analyses of their documents. 

The work assumes a requirements engineering perspective: requirements are in the topmost 

critical factors for project success, thus their analysis provides insight into a project’s success.  

The work looks at requirements qualities to assess project qualities in the early or middle part of 

its lifecycle.  The approach assumes four common steps: 

1. Discover open source requirements 

2. Classify open source requirements 

3. Characterize trends of the classified requirements into requirements factors 

4. Correlate requirements factors with project qualities that may relate to project 

success 

The resulting correlations provide insights into how open source developers do their work.  

This article presents a case study of this approach, which posits the theory that 

innovations expressed as requirements appear as a wave (in quantity) that is reflected in a 

subsequent wave of feature closures, that is reflected in a subsequent wave of product 
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downloads. Developers that stumble over one of these steps will likely see a reduction in 

product downloads. This theory is consistent with the dataset of 16 OSSD projects, but 

remains a conjecture for more comprehensive analysis. The small sample size demands 

further analysis. 

 

6. Discussion and Conclusions 

This dissertation contributes to research and practice of OSSD. A systematic method for 

discovery and classification of requirements in OSSD projects is currently not available. Such a 

method enables important improvements, such as: (1) better understanding of open-source 

requirements, their types and lifecycles, and (2) better understanding of project scope, goals, and 

overall project direction. Such understanding in turn leads to better understanding and 

improvement of both OSSD project, but also more traditional software development. Moreover, 

the set of artifacts designed, developed and proposed in this dissertation (method, model, and 

tool) are specifically created as flexible and highly adaptable artifacts since they comprise a 

software analysis framework with potential future applicability in a wide set of domains. This 

framework is currently customized to meet the specific characteristics of OSSD but its 

requirements-based NLP analysis techniques and its architecture can be adapted to the specifics 

of other software development environment or methodology.  

This research study provides few specific contributions: 

1. A grammar-based design of software automation for the discovery and classification 

of natural language requirements 

2. Two alternative parsing schemes implemented within the design 

3. Requirements discovery, classification, and analysis of 30 OSS projects 
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4. An exploratory study on the impact of requirements types and evolution on OSSD 

project success 

5. A conjecture wave theory of requirements innovation 

Together, 1 and 2 above affirm hypothesis H1.1: A multi-layered grammar, varying in 

domain specificity, can be constructed for the automated requirements discovery and 

classification of requirements contained within software informalisms of Open-Source 

Software Development projects. In total, these contributions provide a path for subsequent 

empirical studies of OSS requirements and enable subsequent software tools facilitating 

automation of requirements traceability analysis in support of IS development process 

studies. The RCNL classifier provides a solution to existing industry problems and an 

alternative to existing methods that require substantial input from the researcher. The 

RCNL classifier runs autonomously. However, users and researchers may choose to 

customize rules from the top-most layers of the six-layer ontology to work most effectively 

with new datasets. Although I did develop and test it on a large SourceForge dataset, it may 

be that other OSS data or traditional software artifacts require changes to the lower  levels 

of the parser (levels L0 through L2 in Table 1 and Table 2). To adapt the RCNL classifier to 

another quality model (other than McCall), only level 5 (L5) rules must be modified.  

The adapting of the RCNL classifier to various domains and datasets is possible due to 

its highly customizable nature. However, I acknowledge the unstable nature of the 

emergent grammar used in the OSS communication that I analyze in this study. 

Consequently, I recognize that the artifacts developed here provide only a snapshot in the 

evolution of the OSSD language. The continuous use of these artifacts even in the same OS 

environment might require a continuous adaptation to the ever changing attributes of the 
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domain analysis. Similarly, the RCNL tool can be applied to traditional requirements 

documents only after a customization designed to capture the specifics of that domain is 

accomplished. Most closed source documents have clearly delineated requirements, with 

few classifications. The RCNL classifier can be used to identify incomplete or incorrect 

requirements specifications, extend existing requirements classifications, or provide new 

classifications where they do not exist.  

Future work has two main directions. First, I will continually refine the parsing rules to 

improve the quality of the recognition and classification. This will be achieved largely 

through detailed analysis of partially correct and missing tags in the analyzed dataset. 

Another improvement direction is represented by capturing part of the context surrounding 

a grammar-based requirement. This will be achieved through the implementation of 

reference resolution techniques (Mitkov 1998; Li et al. 2004; Mala and Uma 2006). Other 

two areas of improvement are the automation of data collection process through the use of 

data integration platforms such as KNIME, and the enhancing of the NL analysis through 

the use of machine learning techniques. Second, I will extend the data to include structured 

text. Feature requests, bug reports, and other tracked work items have a variety of 

structured attributes including: author, data, version, references (links), etc. I believe such 

structured data can be used to increase the recognition and classification quality. With 

access to the structured data, I plan to extend the work to analyze traceability relationships, 

such as contributions, evolution, and the interrelation between requirements and code. 

Fourth, I will customize the artifacts proposed by this dissertation and apply them to 

analyses in new domains, such as state-level IT governance policies, and evolution of 

technological innovation in social media.  
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7. Appendix 

 

Illustrative classifications of micro-requirements discovered. 

Micro-requirement Classification 

Best way would be to configure a program via KeePass options 

and only link that program within the password entry. 

C8 – Access control 

C9 – Access audit 

C17 - Expandability 

… when a new version of Firefox would be installed in a different 

directory, I only had to change the path once 

C13 – Simplicity 

C17 - Expandability 

I would like to be able to manage icons used for KeePass entries, 

maybe even import icons from system dlls. 

C1 – Traceability 

C2 – Completeness 

C6 – Execution efficiency 

C7 – Storage efficiency 

C9 – Access audit 

C10 – Operability 

C19 - Modularity 

Perhaps the ability to manage icons will be included in a future 

release 

C2 – Completeness 

C6 – Execution efficiency 

C7 – Storage efficiency 

Plus I'd like to have a USB memory stick that could open the KDB 

file too. 

C7 – Storage efficiency 

C12 - Communicativeness 

… the first match is automatically selected C3 – Consistency 

C4 – Accuracy 

C6 – Execution efficiency 

C10 – Operability 

C13 – Simplicity 

… a plot that is being created using pdf backend it would be great 

if the url argument actually created a clickable html link. 

C1 – Traceability 

C10 – Operability 

I tried to compile the package with python 2… C15 - Instrumentation 

It should either be documented and [namespace export]ed, or 

should be changed to look like a private command. 

C8 – Access control 

C11 – Training 

C12 – Communicativeness 

C17 - Expandability 

Please make it possible to search in the notes field and jump to the 

first matching entry (using ctrl-f). 

C1 – Traceability 

C3 – Consistency 

C6 – Execution efficiency 

C9 – Access audit 

C10 – Operability 

C16 – Self-descriptiveness 

The most common approach is when there is a single-sign-on 

system on the back end but multiple entry points. 

C2 – Completeness 

C3 – Consistency 

C6 – Execution efficiency 

C9 – Access audit 

C18 – Generality 

C19 - Modularity 
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