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Abstract

The variability of exchange rate, especially the unexpected rapid
increase and decrease, has a significant effect on the national economy of
any country. Iraq is no exception; therefore, the accurate prediction of
Iraqi dinar exchange rate with respect to the US dollar is a crucial matter
that affects the planning processes to secure economic stability in Iraq. This
thesis aims to compare the spectral analysis methodology with the artificial
neural networks methodology in terms of the prediction of Iraqi dinar
exchange rate with respect to the US dollar within a ten-year time period
that extends from 30/01/2004 to 30/12/2014. In this comparison, mean
square error MSE, mean absolute error MAE and mean absolute percentage
error MAPE were used as statistical criteria to compare the two
methodologies. The results show that the neural network methodology is
better than the spectral analysis methodology to predict the exchange rate

of Iraqi dinar with respect to the US dollar.
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Chapter One

| ntroduction and Literature
Review



1. Introduction and Literature Review

(1-1) Introduction

Recently, the interest has increased in analyzing the time seri@s for
certain phenomenomnd predicting its future values based on the past
observations of the phenomenon. The fluctuation that occursersenes is
usually analyzed in the time domain. However, there are some vagiation
that occur in some phenomena due to hidden periodicitegscdnnot be
detected in the time domain. Therefore, the analysis of the pleeoonis
performed in the frequency domain using the spectral analysis doéilgy.

In addition, the analysis in the time domain is normally performed usirg B

- Jenkins approach, which provides good predictionsn&fali time series
only. However, some time series consists of linear and nearli
components or only nonlinear component, which makes the cpoedi
process more difficult and complicated. Therefore, the use of neural
network methodology is considered a proper choice to modetyibés of
series since this methodology offers the ability to analymalimear
relationship in the data.

The exchange rate is a phenomenon that is characterized ly rapi

sometimes unexpected, variations. These variations have cagnigffects

on the Iragi national economy, which makes the accurate predaftguch
variations play an important role in securing the econotaiilgy of Irag.
Therefore, the analysis of this phenomenon using the neuralonket
methodology in the time domain and the spectral analysisoohgtigy in

the frequency domain is a crucial and necessary matter to obtalreshe
model to represent the data and provide accurate predictions.

This thesis consists of three chapters. The first chaptesiste of four
sections that include the introduction, research problem, resegexdtivd
and a review for the previous literature related to the thesis tope.
second chapter consists of three sections. The basic cont¢pte series
and Box-Jenkins methodology are explored in the first sectfothis
chapter. In the second section, the basic principles of speciahlse
methodology are explored, which include periodogram, spectrum, and
spectrum estimation methods. The third section includes definitioaurél
network and its componentss well as the training algorithms of the
network, the backpropagation algorithm in particular.
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The last chapter of the thesis consists of three sections. Theefitgin
presents an introduction about Iragi Dinar exchange rate aghsdt3$
Dollar in addition to the data table. In the second sectienrah network
methodology has been applied on the exchange rate data tthéirukst
prediction model while the spectral analysis methodology kas hpplied
on the same data in the third section to find harmonic mbdeképresents
the significant harmonic components in the data. The thirdoseictcludes
conclusions and recommendations of the researcher.

(1-2) The Research Objective

This research aims at building two models using two difteren
methodologies, the first methodology is the artificial newmgtworks to
build the first model whereas the second one is the speotaigks to build
the second model in order to predict the Iragi Dinar exchangewrl
respect to the US Dollar and comparing the two models relpmiSE,
MAE and MAPE as statistical criteria to perform the comparison.

(1-3) Literature Review

In ( 2001) [3], the author conducted a comparison between twtioeo
available spectral methods and three generalized methods itaskeof
univariate, in addition to two suggested methods. Theicghpn was
performed on bivariate autoregressive model by applying simonlati
experiments of different sample sizes. The author concluded tkat th
suggested method is better compared with the other estimatibilodaean
the context of multi spectrum smoothing where the absokiltes\of eigen
values is more than (0.5) for all sample sizes.

In (2001) [22], the authors used the ANN methodology to renkewab
energy problems especially the modeling of the solar energy (®ellar
steam generation plant). The backpropagation algorithm wak taskain
the network which consisted of more than one hidden layex.data was
processed and scaled down to the fit in the period [-1,+1]mwddiows for
better training results. This approach proved that the ANNvigee
competitive results in this field comparing to the other techniques.

In (2003) [63, a comparison was conducted between the Autoregressive
Integrated Moving Average (ARIMA) model and the Artificial Neural
Networks (ANN) model in prediction. The data that was usethis work
consists of three sets: sunspot, Canadian lynx and BriishdPUS Dollar
exchange rateA hybrid methodology, combine ARIMA and ANN, was
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used by usingsingle hidden layer feedforward network with logistic
activation function in the hidden layefhere was no rule to choose the
number of the nodes in the hidden layer in this work. The M&D MSE
criteria was used in the comparison between the ARIMA, ANN, and the
hybrid models. The results showed that the hybrid modeliggdvmore
precise results.

In (2003) [29] the authors used the Elman Jordan Recurrent Network to
predict the exchange rate of the US dollar and four other cuegergwiss
Franc, Europeans Money (EURO), Japanese Yen, and the Great Britain
Pound (GBP). The data was reprocessed by using the normalizatango
in order to remove the data correlation before applying tita tb the
network. They used 100 nodes in the hidden layer and tratitogctivation
function in both the hidden layer and the output layer, and e¢kalts
showed that the neural network was successful in prediction.

In (2004) [4], the author studied the problem of determiningbst
estimation of spectral density that is consistent witb &ctual spectral
density function to describe the behavior of nucleic acid chain of gty
beings. Based on simulation error square mean and simulatiotutabso
errors mean as criteria, the author concluded that Parzen weight fuection
better that than Priestley weight function, Kaiser weight tfanc and the
rest of the other functions that were used to determine thecbasistent
estimation of the spectral density function.

In (2004) [23], a comparison study of three training algorithms was
conducted to predict the exchange rate of the AustralianaDollhese
algorithms were: Standard Backpropagation SBP, Scaled Conjugated
Gradient SCG, and Backpropagation with Bayesian Regularization BPR.
The data were collected from the Reserve Bank of Australia between 1991-
2002. The data were divided into two set; training set (500 obssTspand
testing set (65 observations). The stopping criteria wereet@ebn 5000-
10000 iterations. The network was designed in 30 differestgds with
different weights and learning parameters based on the MAE and the
normalized means square error NMSE. The results showed that the SCG
algorithm provided better prediction results than the otheritigus, and
the retraining of the network by using new data is a gootbapp to obtain
precise prediction. The results also showed that the conwergénhe SBP
algorithm was highly dependent on the learning rate amanthmentum. In
addition, the number of the nodes in the hidden layer had a high effect on the
behaviour of the network and it was calculated by trial and error.
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In (2004 [27] conducted a comparison study between the Seasonal
Autoregressive Integrated Moving Average (SARIMA) model and the
Artificial Neural Networks (ANN) model in the prediction ofrée sets of
data: Airline, Tourist and Nottem Data. The Automatic Relevance
Determination (ARD) approach was used to identify the inputabées of
the neural networks. The neural network was trained by usneg
backpropagation with Levenberg-Marquard optimization technigjuimear
activation function was used in the output layer, while Htiyperbolic
tangent activation function was used in the hidden layer. Basd¢ldemean
euclidean distanceriteria MED, the results showed that the ARD-based
method was better than the SARIMA-based method in prediction.

In (2005) [5], the author studied the two stages of identiGoaand
diagnostic checking of Box-Jenkins methodology. He compates t
identification tools with the rank selection criteria arlte tdiagnostic
checking tests based on the concept of simulation. The author dedc¢hat
each of ACF, PACF, and inverse autocorrelation function IACF works
properly in identifying and determining the rank of model lMPA&nd model
AR(1) while it cannot determine the rank of model ARMA(1,1). In &oidl;
the author found that IACF can give more accurate results than PACF, and
that the suggested extended sample inverse autocorrelation functioGEESIA
method is better than extended sample autocorrelation danESACF in
identifying the ARMA (1,1) model.

A comparison study f§ was conducted in (2005) to compare the
SARIMA model and the ANN model in the prediction of the dation and
real data. The feedforward neural network was used with the
backpropagation with Levenberg-Marquard optimization technigueain
the network, the logistic activation function in the teddayer and identity
activation function in the output layer. Four models were thalsed on the
type of the data that was applied to the network. The ficstein(O) was
built by using the original time series, the second m{d€) was built by
using the series after removing the trend, the third model (DS) wiadp
the series after removing the seasonal component, the fourth (BddzE)
was built by the series after removing both the trend and ¢hsorb
component. Based on the root mean square error RMSE, MAPE and MAE,
the results showed that the network model with DTDS dataded\better
results and did better than the SARIMA model in prediction. The regsits a
showed that the network model was affected by the type afataewhether
it has trend component or seasonal component or bothreBudts also
showed that it is necessary to remove both trend compondnsemsonal
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component from the data before applying it to the netwedabse these
two components can lead to bad results if they still exist in the data.

In (2007) [52], the authors conducted a comparison between an
approximate conditional-mean ACM-type filter algorithm and robeast
square RLS filter algorithm in terms of cleaning time series by ratagto
obtain a robust spectral density estimator. Based on the sonutasults,
they concluded that the ACM- filter algorithm is better. Then, tygylied
the competitive method on actual heart rate variability measureafent
diabetes patients.

A comparisonbetween four methods was conducted in (20(&],
which included curve fitting, Box-Jenkins, ANN, and extrapofatigith
periodic function to predict the wind speed in the atmogphEre data was
collected between 1992 and (2001) from the Indian costabistat the
ANN approach, the feedforward network was used with error
backpropagation algorithm to train the network in additionthe data
preprocessing by using the normalized formula. The logistic #ciiva
function was used in the hidden layer and the error trighodetvas used to
find the number of nodes in the hidden layer. Based on the st sgyuare
error RMSE criterion, both ANN and Box-Jenkins filed to prethetwind
speed. However, the extrapolation using periodic curve fitting was better and
showed a better precision in prediction.

In (2009) [16] , the authors introduced a test called pegi@ho
coefficient of variation test (PCOV) that is based on spectralysinal
technique to check the consistency of periodogram ordinatesgtiout
different sections resulted from broken sample record. The purpdbe o
check was to assess the weak stationarity, and the applicatiorerasned
using simulated and experimental data. The results showed hbat t
suggested test can be considered as a useful tool foraxpjoanalysis of
time series.

In (2010) [55], four types of networks were considered in a comparison
study to predict the daily closing price of the IBM stock. The networks:were
Backpropagation Network BPN, Layer Recurrent Network LRN, Radial
Basis Network RBN, and Generalized Regression Network GRN. Tthe da
that was used covered the period frd80 to (1992 and it was obtained
from http://robjhndman.com. The data was divided into training(#@%o),
and the 30% was considered for testing. In the BPN, the backjptapag
algorithm was used to train the network. The training iterations number is set



http://robjhndman.com/

to 3000 and the number of nodes in the hidden layer was increasesiure

that the RMSE decreased. When the optimal number of nodes hrdtten

layer was identified, the model was further enhanced by chatiggngalue

of the learning rate and the momentum. The authors found that wh
increasing the number of nodes in the hidden layer, the RMSEdstar
decrease and then back to increase again, and the same happened when
increasing the number of the input variables, and this can leeadjeed for

all the sets of data.

A hybrid model of the ANN was suggested in (20[Z%]. This model
included Box-Jenkins model which is known as the ARIMAdsiofor
prediction. Real data was used in the training consisifntipfree groups:
Sunspot, Canadian Lynx and British Pound/US Dollar exchange rate. The
one-step-ahead forecasting was used. The authors compareddivnépl
four models: ARIMA, ANN, Zhang’s Hybrid and proposed model. In this
hybrid model, the model consisted of the application of ARIM#del for a
group of data by using Box-Jenkins methodology and thenresiduals
were applied to the network. The ARIMA model was implemented imgus
EVIEWS software and the network was implemented by using MALA
The Sunspot data was represented by the AR(9), and the Canadian Lynx was
represented by AR(12), and the British Pound data was represgntied b
Random Walk Model. Based on the MSE values for the testing setch
group of data, the results showed that the suggesteddhylmdel is better
than the other models in prediction.

A comparison was conducted by[4n (2011 between neural network
model and the Hidden Markov model to predict the Nigerian darei
exchange rate vs three different currencies: EURO, Yen and the GBP. The
data were set of 800 observations that was downloadedtferfamous
currency exchange website www.oanda.com. The Multi-Layer Perceptron
Network was used with three hidden layers and learning ratel0f The
Backpropagation algorithm was used to train the neural netwhsk.data
set was divided into three categories: 500 observatioagraming set, 200
observations as a validation set, and 100 observatiaasuged as a testing
set. Based on the MSE criterion for the forecast error, the results showed that
the prediction efficiency was 81% while the Hidden Markov was .69%
MATLAB software was used in this work.

In (2012) [19], the author developed a statistical methodolognabdyze
non-stationary categorical time series in frequency domain through a
spectral envelope tool that relies on summarizing informditamm spetrum
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matrix and easily displaying the understood information. Iditexh, the
author suggested Tree-Based Adaptive Segmentation (TBAS) method to
estimate the spectral envelope based on Piecewise stationary prodets m
where the application was performed on simulated and real dateeduits
showed that this methodology can work quite well in gxgngentation and
correctly divide the DNA sequence into coding and noncodatgience.
Moreover, this methodology provides the solution of the spleghalysis of
nonstationary time series.

In (2012) [20], the authors investigated testing problems fortigpec
densities of timeseries with unequal sampé&zes. They concluded that the
natural approach to use periodogram-based distances for tegtothesis
about different spectras has not turned out to be very pragnikie to the
inconsistency of the periodogram.

In (2013) [4], the authors studied the stationary processes using unequa
sample sizes where they introduced theoretical detailed framewddst
equality of spectral densities in bivariate case. Then, thegrglered their
approach to the m-dimensional case and apply it on clusterciahame
series data with different sample lengths.

In (2014)[36], the authors made a comparison between three different
approaches of prediction that included ANN, Ramirez-Verduzco and
Knothe-Steidley method. Biodiesel Kinematic Viscosity data, istng of
150 samples, was used. The ANN was used, and the backpropagé#tion
Levenberg-Marquard optimization technique was used to trainetweork.

The hyperbolic tangent activation function was used enhidden layer and
the linear activation function was used in the output layee Kidden layer
with four nodes was also used. The data, set of 73 samplesiwdasl dnto
three main sets: training set 70%, testing set 15%, and ft6%he
validation. Based on the MSE as a performance function, thésr@saled
that the ANN is superior to the other approaches in prediction.

In (2015) [&], the author studied the problem of determining the number
of differences required tstationary time series. He conducted a conspari
between unit root tests, ADF and P.P, and stationary tests, KirISSVa
The application was performed through the simulation usliffgrent
sample sizes. The results showed similarity in the resulgebat ADF and
P.P, and between LM and KPSS tests for all sample sizes. In addigon, t
results showed that the increase in sample size leads tmatgttime series



for ADF and P.P test while the increase of sample size has lower affect o
stationarity of the series for KPSS and LM tests.

In (2016) [12], the authors optimized the averaged periodogram
methodology, which relies on Fast Fourier transform, to estipateer
spectral density of electrical activity signals in the atmosphgrsuggesting
a satisfactory method to choose the optimal number of segnenbe
averaged.
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The Theoretical Side

2.1 Time Series Analysis
(2-1-1) Time Series [7,37, 59]

Time series is sequential independent observations for a ncertai
phenomenon during a specific time interval. Time series can be classifie
into two main categories as follow:

1- Continuous Time Series

In this type of time series, the observations are continwgtbstime and
can be represented in the following formula:

{Y; :teT and T is continuous set}
2- Discrete Time Series

In this type of time series, the observations are recorded et fime
intervals that can be either minutes, hours, days, monthspreear even
years. This type of time series, the discrete time series, can be regmasent
the following formula:

{Y;: teT and T is discrete set}

It is important to note that the observations of the disctiene series are
recorded at equal intervals.

(2-1-2) Autocovariance Function [7,10,37,59]
This function is represented by the symipplbnd defined as follows:
Vi = COV(Wi,W;iyi) : k =number of lags 2-1)
= E[(W; — 1) Wy — )] (2-2)
Where u = E(W;) forallt

To estimate the autocovariance function of a time sélesonsisted of N
observations, the following formula is used:

1¢ _ _
=57 ) (We = W) Wy = W) 2-3)

where W = %Zlg’ﬂ W,



(2-1-3) Autocorrelation Function (ACF) [7,10,37,59,47]
This function is represented by the symppland defined as follows:
COV (W, Wy i)

= : k=01.2,.. 2—-4
Pk Var W Var Weep) =9
Yk
= Yr iy
- 2-5)

where y, = Var (W,) forallt

To estimate the autocorrelation function for a time sétiesonsisted of N
observations, the following formula is used:

=gt 2-6)
_ SN, = D) Wy = W) -

{LV=1(Wt - W)Z
where r, = pi

The equation (2-6) is called the sample autocorrelation fun8#g@F. The
properties of the Autocorrelation Function are:

a) py is an even function and symmetric about the lag zero.
l.e. pr = p_i

b) po =1
c) lpkl =1

(2-1-4) Partial Autocorrelation Function (PACF) [7,10,37,47,59]

This function is an indicator that shows the relation betweemn
variablesW, andWW,,, after removing the effect of all the variables between

them W1, Wiz, oo, Wegge—1)-

By using Durbin method, the partial autocorrelation functiom ¢
represented as follow:

k
Pk+1 — Zj:l PkjPr+1-j

1- ?:1 PrjPj

Pr+1k+1 = (2-8)
and

10



Ok+1,j = Pikj — P k+1Prk+1-j + k=0 , j=12,..,k (2-9)

In order to estimate the partial autocorrelation function fomme tseries
consisted of N observations, the following formula is used:

k ol
Th+1 — Zj:l PrjTk+1-j

—_Vk 5
1 j=1PKjTj

¢k+1,k+1 = (2-10)

and

Ok+1,j = Prj — Prsrk+1Pri+1—; + k=0, j=12,..k (2-11)

It is important to know that the plot of against the lag k, anfl, against the
lag k is called correlogram.

(2-1-5) Stationarity [7,10,37,47,59,60]

The time series is called stationary if the data is oscillgfingtuating)
around a certain level without any increasing or decreasing treihas. T
stationarity can be classified into two types:

1- Strictly Stationary

The time series can be called as strictly stationary if tiné ppobability
distribution for any set of observations in not affected by the shift of the time
interval either forward or backward, which means:

Pr(thr Weyr e th) = Pr(Wt1+ki Wi, +ks oo th+k)
Where

t, = time

2- Weakly Stationary

The time series is called weakly stationary if meet the following
conditions:

EW,) =u (2-12)
Var (W) = EW, — w)* =y, (2-13)
COV(Wy, Wepy) = E{(W, — ) (Wegy — ] = ¥ie (2-14)
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(2-1-6) Time SeriesModels [37, 59]
The time series models are classified into three main types:
1- Autoregressive Modde AR(p)

The stationary time series can follow the autoregressive mddileo
order p if it can be written in terms of its past observatibns, W;_,, ..
W;_, and the random errar, as shown below:

*9

Wt = a1Wt_1 + azwt_z + -+ ath_p + ut (2 - 15)
Wt = 5'):1 ath_j + ut (2 - 16)
where

a; . jth Autoregressive parameters and j= (1, 2, ... ,p)

W, Deviation of the original time series from its mean
u,: Random errory,~N(0,0?)

The autoregressive model of the order p, which is denoted by Ad{p),
be written in terms of the backshift operator L as shown below:

where a, (L) = (1 — a4 L' — ayL? — -+ — @, LP) and LPW, = W,_,,

The stationary condition of the AR(p) is that the roots ef ¢guation
a,(L) = 0 should lie outside the unit circle.

The properties of the AR(p) are:

A)EW,)=0 (2-18)
2
B) Var (W,) = Ou 2 —19)
1=aipy —azps = — appy
C) Yk = a1¥k—1 + A¥k—2 + -+ QpVi—p k=1 (2-20)
D) pr = a1pr-1 + a2px—2 + -+ Appr—p rk=>1 (2-21)

In practice, it can be recognized if the time series follows the AR(p
model or not through the behaviour of the SACF and the SPACFeviher
SACF of the AR(p) model is gradually decreasing in an expthent
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sinusoidal way according to the sigma-= (al, as, ...,ap) to approach zero,
while the SPACF of the AR(p) cut off after the lag p.

2- Moving Average Model MA(Q)

The stationary time seridg; can follow the general moving average of
the order q if it can be written in the form of its past random errors asvfoll

We=ur — By Upq — Py — -+ — ,Bqut—q (2 —22)
Wt = _22:1 ﬁ‘rut—‘c + Uyt (2 - 23)
where

B.: " moving average parameters ane (1, 2, ... ,q)

the moving average model of an order q, MA(qQ), can be written irstefm
the backshift operator as follow:

Wy = Bq(L)u, (2 —24)

Where B,(L) = (1 — gL' — B,L? — -+ — B,L7)

The invertible condition of the MA(g) model is that the roofstlte
equations, (L) = 0 should lies outside the unit circle.

The properties of the MA(q) model are:

AEW) =0 (2 —25)
B) Var W,) = (14 B+ Bz + -+ p2)a? (2 —26)
Vv, = | B+ BiBirs + BaBrsz + -+ BiegBq)oil s k = 1,2,...q
) Y = .
0 tk>q
(2 -27)
(—ﬁk+ﬁ1ﬁk+1+ﬁzﬁk+2+"'+ﬁk—qﬁq) c k=12
D) py = [ 1+ 2+ p5++ 2 oo q (2 —28)
0 tk>q

In practice, it can be recognized if the time series follties MA(Q)
model or not through the behaviour of the SACF and the SPACF where
the SACF of the MA(g) model is cut off after the lag g, while the SPACF of
the MA(Q) gradually decreasing in an exponential or sinusoicay w

according to the sign#l = (B4, B, ..., B,) to approach zero.
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3- Autoregressive Moving Average Model ARMA(p,Q)

There are many time series that cannot be represented by thetAR or
MA models, so that there is a need to use the mixed modes ttated the
Autoregressive Moving Average Model.

It can be said that the stationary time serids follows the
Autoregressive Moving Average Model of order (p,q) if it cannioiten in
terms of its past observations and its past random errors as shown below:

W =W+ a Wi g + -+ apWip + Uy — By Upoq — Bollp—p — =
_.Bqut—q (2-29)
W :Z?zl ajWe_j — ZZ=1 Brur—r + U (2 -30)

The Autoregressive Moving Average Model of order (p,q), which istéen
by ARMA(p,q) can be written in terms of the backshift operator asvsh
in the formula below:

a’p(L)Wt = B4 (L)ug (2-31)

The stationary condition of the ARMA(p,q) model matches the
stationary condition of the AR(p) model, while the invertiblediton of
the ARMA(p,q) model matches the invertible condition of the MA(q) model.

The properties of the ARMA(p,q) model are:

AEW) =0 (2 —32)
B) ¥k = a1¥k-1 + @o¥k2 + -+ Q¥  kZq+1 (2-33)
Cpr = A1pp-1+ AP+ -+ Appr—p kZq+1 (2-34)

Both the SACF and the SPACF of the ARMA(p,q) decay gradually either in
an exponential or sinusoidal way.

(2-1-7) Autoregressive Integrated Moving Average Mode
ARIMA(p,d,q) [7,10,37,47]

Majority of real time series; are not mean stationary. In order to
transform those time series to the stationary status, the difference of an order
d (normally d = 1 or d = 2) is calculated for those series. For thatrehso
ARIMA model of the order (p,d,q) is used to represent the difference
stationary series. The ARIMA(p,d,q) can be defined by the following
formula:
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a,(L)(1 = L)%Y, = B,(L)u, (2 —35)
a, (LYW, = B, (L)u, (2 —36)
where

W, = (1 —-L)%,, d=Degree of difference Y,= Original time series
(2-1-8) Box — Jenkins Methodology [7,10,17,37,59]

Box — Jenkins methodology, which was first produced by G. E. &uk
G. M. Jenkins in 1970, is considered as one of the statistical tablsath be
used to build a model for the time series and predict the ioasathat will
happen in the future based on the patterns variations that aj@peried in
the past intervals. One of the characteristics of this methggagothat it
does not require the assumption of the independence betweenatibssy
but it make use of the correlation between observations thribwagARIMA
models which has the ability to invert lots of the real time series.

Box — Jenkins Methodology consists of four repetitive steps:
1- Step one: Modd Identification (Selection of an Initial Model)

The identification stage is the most important stage thated to analyse
the time series, in which the model that will be usedepresent the
stationary data will be chosen. In this step, it will be diegiwhether the
time series is stationary or not. This can be done in many ways:

A) Plot Time Series[7]

Plotting the raw data of the time series is very importanidcoder the
outlier points, seasonality and trends whether it is increasimgcreasing.
The time series is called stationary if there are no outlier poirdtsnan
fluctuations around certain level.

B) Correlogram Checking [10]

The time series can be checked whether it is mean stationary by not
checking the correlogram for the raw data and especially the SACF. If the
autocorrelation coefficientre not significantly differerfrom zero after the
first and the second lags then the time series is considered mean stationary.

C) Tests Application [38,59, 60]

The following test can be used to check if the time seriesti®sary or
not:
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a. Portmanteau Test

b. Augmented Dickey Fuller Test (ADF)

c. Phillips— Perron Test (P.P)

d. Kwiatkowski— Phillips— Schmidt- Shin Test (KPSS)

Augmented Dickey Fuller test will be considered in this work.

The ADF is one of the unit root tests that is used tolctiex non-stationary
in any time series and find the degree of differences by finti@egquumber
of roots that equal to 1 which represents the differences thegguged to

transform the time series to the stationary status.

The statistic test ADF, representeylt,, is defined in the formula below:

¢
tr = —— (2-37)
¢ SE(D)
where
(=a—-1 : a= ?:1 a; and { is least squares estimator for

The statistic test;, is used to examine the following hypothesis:
Hy,: { =0 (i.e. there is a unit root and the series is non stationary )
against

H, : { <0 (i.e.there is no unit root and the series is stationary )

for the following three models:

K
AYt - (Yt—l + Zﬁ[ AYt + ut (2 - 38)
=1
K
AY; =0y + (Y4 + Zﬁ, AY; + u, i )y = constant (2 —39)
=1

k
AY; =0y + it + (Y4 + z 9; AY; +up ¢ 1) = constant (2 — 40)

I=1

where 9, = =37, a : I=12,..k
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If the value of the test statistig, is greater than the critical value, it can be
concluded that the raw data is stationary.

If the above-mentioned methods are applied and they are foundettie¢hat
time series is stationary then the model of the time seriesecafebtified

by comparing the SACF and the SPACF of the time series with the
behaviour of the ACF and the PACF as shown in the table below:

Table (2-1)
Behaviour of Theoretical ACF and PACF for Stationary Process[37]
M odel ACF PACF
MA(Q) Cuts off after lag g Exponential decay arar

damped sinusoid

Exponential decay anak

AR(p) damped sinusoid Cuts off after lag p
Exponential decay anak Exponential decay arar
ARMA(p.q) damped sinusoid damped sinusoid

However, If the above-mentioned methods are applied and it isiédun
that the time series is non-stationary then the difference skties is taken
in order to make the time series mean stationary and the Box-Cox
transformation will be applied as follow:

Y2

A

where A is the transformation parameter to make the series variance
stationary .

2- Step two: Parameter Estimation (Estimation the Model Coefficients)
[59]

To estimate the ARIMA model, we can use one of the following methods
of estimating:

The Moments Method

The Ordinary Least Square Method

The Conditional Maximum Likelihood Method
The Exact Maximum Likelihood Method

T(Y) = (2 —-41)
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we will use that the exact maximum likelihood method as follows:

If the stationary time serie®/; follow AR(1) modelthen the maximum
likelihood function of this series is written as follow:

_N 1
L=_2nc2) 2(1—a?)z«

-1
exp [E ((1 —a> )W + YN (W, — ‘1’1Wt—1)2)] (2 — 42)
0 In(L)
=0
0a
~ N N
—&, X
1_&205+ZWtWt_1_alet2_1=0 (2_43)
' t=2 t=3

by solving (2-43), we have the exact maximum likelihoodnestr as
follows:

N -2 Z{EV=2 WtWt—l
N-1 Itvzs Wt2—1
3- Step three: Diagnostic Checking (Analysing the Residuals) [17]

Before using the model for prediction, it is crucial to cheekrdiiability
of the model to represent the data by testing the compatibilitye model.
This can be done by applying the available data to the modekhem
checking the estimated residuals which represent the white noise.

&\1=

(2 — 44)

The check can be done by using one of the following approaches
A- Correlogram Check for Residuals

If the autocorrelation coefficients of the residuals are lied imithe
period %%) , which means that the autocorrelation coefficients of the
residuals are not significantly different from zero, then it can lektbat the
residuals represent the white noise.

B- Portmanteau Tests (Goodness of Fit Tests) [17,37]

The importance of the Portmanteau Tests is that they are used to check all
of the autocorrelation coefficients in a small group rather thacking ever
one of them individually. Each group normally has 20 or 24 lags.

The Portmanteau tests are used to check the hypothesis:
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Hy: p,=0 forall J]=1.2,..,h
against

Hy: p;#0 forsome ] =12,..,h
where h is the number of lags

The Portmanteau tests include:

1- Box — Pierce Test
This test is suggested in 1970 by Box and Pierce and it is defined as:

h
Opp = Nz r? (2 — 45)
J=1

whereQzp~x?%(h — g) and g is the number of estimated parameters in the
model.

If the P-value of the test statistig, is greater than the significant level,
this leads to the conclusion that the residuals represent ttevase.

2- Ljung-Box (Modified Box — Pierce) Test

This test is suggested in 1978 by Ljung and Box and it is written as
follow:

1
N—h

h
Qus = NN +2) ) (=) 77 (2 - 46)
J=1

whereQ.z~x*(h — g)
If Q.5 > x%(h— g) then the alternative hypothegis is accepted.

The test9)zp, andQ,z can be applied in the first step of Bexdenkins by
applying g = 0.
4- Step four: Forecasting

After successfully passing the three steps then the model is ready for
prediction and can be written as follow:

19



Wt('e) = E(Wiyn)
= E(Wiyp-q) + -+ ap+dE(Wt+{’—p—d) — B1E(Ueto—1) —
T ,BqE(ut+f—q) + E(upsp) (2—-47)
Where? is the interval that will be predicted.
(2-1-9) Model Selection Criteria[5,17,37,60]

The aim to analyse the time series by using Baenkins methodology
Is to find the uniqgue model that will represent the data. tRat reason,
certain criteria to choose the right model is suggested as follow:

1- Information Criterion of Akaike
This criterion (AIC) is calculated as follow:

1w L) 2
AIC = Ln NZut +39 (2 — 48)

t=1

2- Bayesian Information Criterion
This criterion (BIC) is calculated as follow:

1 L\ Ln(N)
BIC = Ln NZut + N Y (2-49)

t=1

This criterion is denoted by SC sometimes because it was suggested by
Schwarz in 1978.

3- Hannan — Quinn Criterion
This criterion (H-Q), which was suggested by E. J. Hannan and B. J.
Quinn in 1979, is calculated as follow:

H-0Q=1In (%; a,%) + ZL"(L]:(N))g (2 — 50)
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2.2 Spectral Analysis
(2-2-1) Spectral Analysis

The variations in time series of specific phenomenon are usaralysed in
the time domain using the autocorrelation function. However, detnaa

series contain some variations that rely on the frequency. dlgsansuch
series, the spectral analysis methodology is utilized, wimalyses the time
series in the frequency domain using the spectrum. The spectrtimeo
series is a distribution of the series variance as a functibreaqpiency. The
goal of spectral analysis is to study and estimate the spectrum.

(2-2-2) Harmonic Analysis [7,10]

Let W;, where (t = 1,2,3,...), be a time series that consists of a cosine wave
with a specific amplitude, it is possible to write the simdslomodel of the
series in the following formula:

W = G cos(At + ) + u; (2 -51)
Where

G: Amplitude

¢: Phase

A: Frequency

u,. Purely stationary process

The resulted wave from the sinusoidal model shown in equdfiebl)
fluctuates around zero mean while the high points of the wavesesisethe
peaks while the low points represent the troughs. The vertisende
between the zero and any peak or between the zero and any trough
represents the amplitude. It is worth mentioning that tetanice between
two subsequent peaks or troughs represents the wave lsogthlled the
period, which is usually referred to as P and can be definéxa ifollowing
formula:

P = ! 2—-52

This means that the wave length is the reverse of the frequency. It isg@ossibl
to write the model in equation (251) in the following formula:

W, = G[cos(At) cos(d) — sin(At) sin(¢p)] + u; (2-53)
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W, = Acos(At) + B sin(At) + u; (2 -54)
Where A = Gcos(¢) ) B = —G sin(¢)

The part A cos(At) + B sin(At)] represents the harmonic component of the
seriesiW, while the equation (2 54) is called the harmonic model.

(2-2-3) Analysis of Harmonic Moded [7,9, 13]

If the time seried/; consists of more than one harmonic component, its
harmonic model is defined in the following formula:

W, = G;cos(A;t + d;) + u; :i=012,..,h (2 —55)
W, = A;cos(A;t) + B;sin(A4;t) +u, :i=0,12,..,h (2-56)
Where Ai = Gi COS((I)i) , Bi = _Gi Sin(q)i)

By estimating each od; andB; by the least squares method, we can obtain
the following:

n
W,=¢& + Z[Ej cos(4;t) + 0, sin(4;t)] + u, (2 —-57)
=1
Wherefo = AO , E] = A] and .Q] = Bj ] = 1,2, e h

The equation (2- 57) is called Fourier series representation wijlds

called Fourier frequencies or standard frequencies and can be defihed
following formula:

J .
A= Znﬁ j=12,..,h (2-58)

From (2- 58), we conclude that the value of frequency depends on the
sample size.

If the number of observation of/; is odd, then the harmonic model can be
written as in (2- 57) whereh= % while &, &; andf2; which represents the

least squares estimators 4§, A;and B; can be calculated for the model
shown in (2- 57) by using the following formulas:
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1 N
A, :Nz (2 — 59)
t=1
N

Z f cos()tjt) (2 -60)

=1

z W, sin(4;t) (2 -61)

Where j=12,..,h

If the number of observations of the series is even, the harmael raf
the series can be written in the following formula

h-1
W, =¢& + Z[Ej cos(4;t) + £ sin(4;t)] + &, cos(A,0) +u, (2 — 62)

j=1
Where h =g and &, ¢, ¢;, £; can be calculated using the following
formulas :

So=Ag=W (2 -63)
N
.2
§ =4 = Nz W, cos(4;t) (2-64)
t=1
N
.2
&= Ay =2 ) W, (-1 (2 - 65)
t=1
2
=— > W, sin(4t) (2 - 66)
N; ‘ J

Where j=12,..,h—1
By using (2- 55) and (2- 57), we obtain the following:
f] COS(Ajt) + .Q] Sln()l,]t) = Gi COS(Ait + (I)l) (2 — 67)

and from that, we can obtain the estimated amplitude of"tharjmonic by
using the following formula:
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éf:‘/sz-l'ﬂjz (2 - 68)

In addition, we can obtain the estimated phase of'tt@jmonic by using
the following formula:

_ =

¢; =tan™t | — (2 —-69)
$j

where

._{1,2, ., h if Nisodd

11,2,...,h—1 if N is even

(2-2-4) Periodogram Analysis[7,30, 39, 40]

Periodogram is a tool that is used to analyse time seriesahsistof sine

and cosine waves with different frequencies. The importance of the
periodogram comes from its capability in searching for higquerodicities

and examining the randomness of time series. The periodogram can be
defined by a plot of the intensitiesi]] against the frequencief. The

values of intensities can be calculated using the following formulas

1- If the number of observations of the series is odd ,then
N .
1) =5 +97) = j=12..h (2 -70)
1- If the number of observations of the series is even ,then
N .
1) =2(F+07)+1) = j=12.,h-1 2-171)

Wherel (1) = N&7

There are other equivalent formulas to define the periodogram buaithey
different as shown below:

N 2
il;t
t=1

wherej = 1,2,...,h —1

(2 —172)

1
1(%) =N

and
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N 2 N 2
(%) = niN (%Z W, cos(Ajt)> + (%z W, sin(/ljt)> (2 —-73)

wherej = 1,2, ...,h

The difference in defining the periodogram between researchers comes from
the use of negative frequencies or the use of cyclic frequenciesddnsite
the angular frequencids= 2nrf.

(2-2-5) The Search for Hidden Periodicities [7]

It was explained irf2-2-4) that the periodogram is used to search for hidden
periodicities (systematic sinusoidal components) by examihmdptlowing
hypothesis:

Hy: Wy =0+,

against

Hy: W, =& + & cos(At) + 2 sin(4;t) + u,

To examine the hypotheses above, one of the following tests can be utilized.

(2-2-5-1) Fisher’s Test [7,39,40,47]
This test was first derived by Fisher in 1929. The tiedissic for this test is
given by the following formula :

I (Ay)
— A7 2 — 74
ST I) (2-74)
Where
IW(Aqy) = max{1(%;)} i j=12,.,m (2-175)

and m=h ifI(4;) is defined as in (2 70) or m=h-1 ifl(4,) is defined as in
(2-71).

If the calculated value of T is less than the critical valyg,{,), the null
hypothesis should be accepted meaning that the time series represent
Gaussian white noise, which means that there is no hidden iperiod
component in the time series. It is worth mentioning thidiel critical value

is not available for all m values, it can be calculated ugiegfollowing
formula:
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P(T > baipha) = alpha (2 —76)
Where P(T > baipna) = m(1 — bgipne)™ ! and
alpha = significant level

(2-2-5-2) Cumulative Periodogram Test [7,13,30]
In 1966, Bartlett explained that the cumulative periodogram &dn in
uncovering the hidden periodicities (periodic randomness). tars be
performed by calculating the following test statistic:

j=11(%)
Z;'nﬂl(’lj)

Where the value of m and the calculation f;) can be chosen in the same

way of Fisher test.

After calculatingC(4;), which is usually referred to as the normalized
cumulative periodogram, Kolmogorov smirnov test is applied by
determining its limits as follow:

The middle line, so called theoretical line, showgtted from (0,0) to (=,

1), then the upper and lower limits should be plotted as thedugh the
following formulas

c(A) = :1=12,..,m (2-177)

Upper limit = theoretical line +Ki‘/l_—r’2’“‘ (2-78)
Lower limit = theoretical line % (2-79)

WhereK ;;,n, Can be determined by using table-(2)

Table (2-2)
Coefficients for Calculating Approximate Probability Limitsfor
Cumulative Periodogram Test[7]

alpha 0.01 0.05 0.10 0.25

K aipha 1.63 1.36 1.22 1.02

If the value ofC(4,) lies outside the two limits, lower and upper limits, we
conclude that the time series contain hidden periodic sinusmdgbonent.
However, if the value of (4,) lies between the two limits, we conclude that
the data do not contain periodic randomness.
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(2-2-6) Selection of Har monic Model

In general, the harmonic model consists of one or more harmonic
components, which all should be significant. Therefore, afteulzing the
periodogram using the formulas in {270) or (2— 71) according to the
number of the series observations and after ensuring thatnhpktedic
components exist in the data using one of the two égtisined in (2-2-5),
it is necessary to determine the number of significant harnoomnponents
that consist the model. To do that, one of the followwg methods can be
followed:

1. Method one: [13,59]
Application of K statistic:
(N =3) 1)
©2x(y)
j#k
Where theF, statistic follows theF distribution with two degrees of
freedom (N-3) and 2.
F,, statistic can examine the following hypotheses:

k=12,..,m (2 — 80)

Hy: & =14 =0
against
H : & +0 or 2, #0

By comparing the calculated, with the critical F;pnq(2,N — 3) , we can
accept the alternative hypothesis iBH;;,,,,(2, N-3), which means that the
harmonic component Kk is significant.

2. Method TWO: [2,7,59]
The contribution percentage of the harmonic component in the variance is
calculated using the following formula:
A) If the number of observations of the stationary time series ds the
following formula should be used
~2
H.C.V.= 4 100 :j=12,..,h (2 — 81)

2
Oy

Where
N
2 1 TaY
oy = NZ(Wt — )
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B) If the number of observations of the stationary time series is, ¢he
following formula should be used:

G?
H.C.V.=2—’2*100 :j=12,..,h—1 (2 —82)

Ow

Where
h

while the contrlbutlon percentage of the harmonic compojsdnican be
calculated using the following formula:

G‘Z
H.C.V.=— 100 (2 — 83)

Ow
After calculating H.C.V values, it shouloe ranked descending. Then, the
statistic F;,, shown in method one, should be applied on the harmonic
components that have contribution percentage equal to or more than 95%.

(2-2-7) Spectrum [10,13,47]

The spectrum is a tool that is used to analyse time seriks fnequency
domain. This tool can explain the variance distributionimietseries in
specific domain of frequencies. The spectrum is mathematically dedsed
shown below:

Kintchine and Wiener explained that for each stationary randomegso
with autocovariance functiog,, there is a monotically increasing function
F(A) that satisfy the equation

T

Vi = j cos(Ak)d F(4) (2 -84)
0
This equation is called the spectral distribution equation.
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By looking at (2— 84), we can find that the physical interpretation of the
spectral distribution function is thaf (1) represents the contribution to the
variance of the series, which is accounted for by frequencies innge (@,

A). This function can satisfy the following conditions:

1- FA) =0 fori<o0 (2 —85)

2- F(n) = o (2 —86)
Because this function is monotically increasing, it is pdsddoanalyse it to
two functionsF; (1) andF, (1) Where

F(A) = Fi(D) + F,(A) (2 —87)

where F; (1) is a non-decreasing continuous function &) is a non-
decreasing step function.

This analysis is similar to Wold decomposition wherél) is related to the
indereministic component of the process aRdA) is related to the
deterministic component of the process. Consequently, for purely
indeterministic processes, we can §efl) = 0. As a resultF(4) will be
continuous function g0, t] for indeterministic discrete time series.

By deriving F(A) with respect to A at (0, m), it is possible to obtain the
spectrum, referred to @g1), as shown in the following formula

d
g =—FQA) (2 — 88)

By substitution of (2- 88) in (2— 84), we can obtain

Vi = ] cos(Ak) g(A) d(A) 2 - 89)
0

The formula in (2-89) represents the spectral representation for
autocovariance function.

By reversing the above relationship, we can get

1 © .
g(z)=;zyke—lﬁk 0<l<m (2 - 90)

k=—c0

From (2— 90), we find that the spectrum represents Fourier transfotheof
autocovariance function. In addition, becaygas an even function, it is
possible to write (2 90) in the following formula:
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Yo+ 2 z Vi cos(Ak) ] (2-91)

k=1

1
g ==

There are several formulas to define the spectrum that differs among each
other by the constant multiple and the range of the definitigr(O¥.

The most common definition of the spectrum is

1 < .
g(/1)=% z yee M i —mg<A<nm (2-92)
k=—o
which can be obtained by reversing the following relationship:

T

Y = j etk g(2) d(2) 2 - 93)

-1
The characteristics of the spectrum

1- g(A) is a continuous real-valued non-negative function
el gD =9A)
2- g(A) is periodic with perio@m
lL.e.g(l) = g(A+ 2m)
3- g(4) is a symmetric even function
i.e.g(d) =g(-41)
4- [* g d@) = yo (2 - 94)

This means that if the spectrum is plotted, the fourth ctearaceans that
the total area under the spectrum curve represents the process variance.
(2-2-8) Spectrum of ARMA Models [47, 56, 59]

Let y,, where k = 041, *2,..., a sequence of autocovariancies. Thus, the
autocovariance generating function can be defined in the fatlow
formula:

Y= > yelt (2 -95)

k=—o0
by comparing equation (295) with equation (2 92), we can obtain
1 ,
_ —il _
9 =5-y(e™) (2 - 96)
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If W; is indeterministic stationary time series with a zero meanpissible
to write it using Wold representation in the following formula:

Wo=pWu © YO =) Yy . =1 (297
i=0

In addition, the autocovariance generating function for this seamsbe
defined by the following formula

y(L) = o p(L)P(UL™) (2-98)
and by assuming that the ser&sfollow ARMA model, we can obtain
ap(L)Wt = ﬁq (Lu, (2-99)
and by comparing equation {209) with equation (2 97), we obtain
Bq(L)
L) = 2—-100
) = 20 ( )

and by substituting equation {2L00) in equation (2 98), we obtain
, Bg(L) B (L™

y(L) = o 0, @y (2-101)
and thus
, I; (e—ixl)

") = g2 | =% 2 — 102
Y(e ) Oy a, (e—l/l) ( 0 )
and by substituting equation {21.02) in equation (2 96), we obtain

1 I (e—m)
- 2 q —
g(l) - 27_[ Uu ap(e_i/‘{) (2 103)

The formula in (2- 103) represent the spectrum of the model ARMA (p,q).

(2-2-9) The Relationship Between the Spectrum and the Autocorrelation
Function [7,10]

Most of the time, it is useful to use the normalized forrthefspectrum that
can be obtained as shown below

g

2
Oy

AQD) = (2 —104)
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and by using equation (292), we obtain

1

1+22pk cos(/lk)] < A<m (2 -105)
k=1

A(A) is often referred to as the normalized spectrum or the spectsatyden
function WherefonA(A) d. = 1 which means thatl(1) has the same
characteristics of the ordinary probability density function.

(2-2-10) M ethods of Spectrum Estimation [10]

Spectral analysis is a name that is given to the methods ofrispec
estimation or the spectral density function. There are several asetho
including:

1- TheFirst Method [59]

By using function (2- 92), we can obtain the spectrum estimator of the time
series W, that consists of N observations as shown in the fofigwi
formulas:

(N-1)
G = — D et (2 - 106)
2m k=—(N-1)
G == [co + 22N ¢ cos(Ak) ] (2 - 107)

Where equation (2 107) is called the sample spectrum.

2- The Second Method [7]
It is possible to rewrite equation {270) of the periodogram as follow:

N
I(4) = £l (§a — i) (€ + i2) (2 -108)

N
(%) = > didy (2 -109)

Whered; is the complex conjugate dj. By using the values &f;, £2; from
(2-60) and (2- 61), we obtain
N

d, = %Z W, [cos(At) — i sin(A0)]

2 N
t=1
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2 ¢ o
d/l = NZ(Wt - W)e‘““ (2 - 110)
t=1

N
2 o
d; =NZ(W5—W)6+““ 2 —111)
t=1

and by substituting equation {2110) and (2- 111) in equation (2 109),
we obtain

2 N N B B . \
I(2) = NZ Z(Wt —W) (W; — W) e~ 140 (2 -112)
t=1 t=1
Since
N—-k
Cx = z (W — W) (Wesk — W)
t=1

The transformation k £ — ¢ transforms equation (2112) into

(N-1)
I =2 z c, e ¥ (2 -—113)
k=—(N-1)
N-1
I(A) =2 c0+22ckcos(/1k)] m<A<m (2-114)
k=1

and by comparing equation {2114) with equation (2 107), the spectrum
estimator as a function of the periodogram can be given ifiotlosving
formula:

1
g =1 (2 —115)

3- TheThird Method: Smoothing [47, 59]

The spectrum estimator that were obtained using thedimdtthe second
method is unbiased estimator, yet not consistent. To obtaionsistent
estimator of the spectrum, it is possible to smooth the pegradh or the
spectrum sample in the frequency domain.

The periodogram smoothing in the frequency domain is performed by
smoothing the periodogram locally in the neighboring targitsiencyA;

by using the weighting functio¥y (1;) as follow:
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) =" W@)a, - k) (2-116)

Where
my represents the number of frequencies used in the smoothing; and

represents Fourier frequencies whilg,(4;) satisfies the following
conditions:

1- Z?:\im,\, Vy(4) =1
2- Vy(4) = Vy(—=4y)
3- limp e 2™ V(1) =0

i:—mN

Vy(4;) is called the spectral window.
It is also possible to smooth the sample spectrum usegaime method but
using the following formula

av(x) = j Va3~ x)dx 2 - 117)

Where x represents the frequencies inn(-m) while Vy(x) satisfies the
following conditions:

a- ffﬂ Vy(x)dx =1
b- Vy(x) = Vy(—x)
C- Aljlgo%ffn V2 (x)dx =0

it is worth mentioning that the spectral window is also defined as Kernel.
It is also possible to smooth the spectrum in the timeadlomnsing the lag
window by applying the weighting function on the samgl#ocovariances
as shown in the following formula:

(N-1)
1 .
B =5 Z D(9)cy e~ (2 - 118)
7Tk:—(zv—1)

The weights of the weighting function are selected in a ptopal way
with the lag magnitude k. The weighting function is defined by the fatigwi
formula:

D) =D (%) (2 —119)

Where M is called the truncation point, and its value dependseosample
size N.
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The weighting function is often derived from a bounded eveniragous
functionD(y) where it satisfies the following conditions:

a|D(y)l =1

b- D(0) =1

c- D(y) = D(-y)

d- D(y) =0 : lyl <1

The weighting functiorD (9) is defined as the lag window, which is related
to the spectral window), (1) by the following formula:

V() = 21:=_MDN (9)e—itk (2 —120)

From equation (2- 120), we can find that the spectral window represents
Fourier transformation to the lag window. Thus, it is pdesib obtain the
lag window by reversing Fourier of the spectral window as shown below:

Vs
Dy(9) = j VyDe*dr 1 k=0,F1,%2,..,FM (2 —-121)

-1

The most frequently used windows are:

A- The Rectangular (Truncated) Window
The rectangular window is defined by the following formula
1 9| <M
R — —

DN(19)—|O 1ol o (2 —122)
WhereM < N — 1 and M is called the window parameter.
The rectangular spectral window can be obtained by using equ&i—
120) as shown in the following formula
1 sin(A(M 4+ (1/2
yey = L SinG0M +1/2))

2 sin(4/2)
The rectangular spectral window is also defined as Dirichlet Kerrfeejer
Kernel.

(2 —123)

B- Bartlett’s (Triangular) Window
Bartlett’s lag window is defined by the following formula

1—-|9|/M 9 <M

0 191 > M (2 — 124)
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While the Bartlett’s spectral window is obtained by the following formula :

1 sin(AM/2)
Vi () = 2rM  sin(4/2) (2-125)

C- The Blackman — Tukey window
The Blackman- Tukey window is defined by the following formula:

1—28+ 26cos(md/M) 9 <M
T _ _
DN(ﬁ)—‘O 19> M (2—-126)
Where0 < 6§ < 25

While the Blackman— Tukey spectral window can be obtained using
function (2— 120) as shown in the following formula:

Vi) = sV (2 - %) + (1= 28)VEQ) + 8V (2 + %) (2 — 127)

If 6 = 0.23, the Blackman Tukey window is called the Tukeyhumming
or the humming window.

D- Parzen Window
Parzen lag window is defined by the following formula:

1-6/M)* +6(l6]/M)° : 9] < (M/2)
DE®) = |2(1 — |9]/M)? t(M/2)< |9 <M  (2-128)

0 |9 > M
While the Parzen spectral window can be obtained using equati 120)
as shown in the following formula:

3 [ sin(AM /4) r

VP = (2 —129)

8tM3 |(1/2)sin(1/2)

4- The Fourth Method[10, 35, 59]

Based on equation (2 103), it is possible to estimate the spectrum for
ARMA models as follow:

a- The Spectrum of AR (1) Modd

The spectrum estimation of AR (1) model can be obtained utiag

following formula:
G(L) = L ! 2 — 130
I =%m % T+ a2 — 2@, + cos(h) ( )
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The spectrum shape of AR (1) model reliesagnsignal. Ifa; > 0, the
spectrum is dominated by low frequency components. Howevey, <f O,
the spectrum is dominated by high frequency components.e~{@ur 1)
shows the spectrum of AR (1) model when> 0.

g(1)
5 a>0
E
D
2
o _ 1 T
Frequency
Figure (2-1)

Spectrum of AR(1) [59]

b- The Spectrum of MA (1) Mod€
The spectrum estimation of MA (1) model can be obtained utieg
following formula:

g = i o2 (1+ pZ — 2B, cos(d)) (2 —131)

The spectrum shape of MA (1) model also reliegorsignal. If3; > 0, the
spectrum is dominated by low frequency components. Howivgy, < 0,
the spectrum is dominated by high frequency components. Hauwe)
shows the spectrum of MA (1) model whén> 0.
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g(1)
: B >0
£
&
0 A 7T
Frequency
Figure (2-2)

Spectrum of MA(1) [59]
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2.3 Artificial Neural Networks

(2-3-1) Artificial Neural Networ ks Definition

The Atrtificial Neural Network (ANN) is a computational technique
designed to mimic the human brain behaviour in order to perform a
particular task. ANN processes information in parallel througlspecial
processing units called nodes or neurons. The importance\df i& its
ability to learn and model linear and nonlinear relationshipsusing
previous examples of both inputs and/or outputs of the relationships.

One of the main functions of the ANN is to understand the prdoess
which the human brain processes and analyses informattolsains the
data features by learning, differentiation, recognising, and makes adle of
of these features in order to build a mathematical model whicdpizble of
analysing data and then predicting outputs.

ANN is used in different fields starting from medicine wherss itised
for disease diagnosis and early warnings for instance.

(2-3-2) Artificial Neural Network Structure [15, 65]
In general, the ANN consists of three levels:

1- Input Leve
This level consists of one layer called the input layer, which stsnsf a
number of units called the input units.

2- Hidden Leve
This level consists of one layer or more called the hidden layexs)y E
hidden layer has its own processing units called the hidden nodes.

3- Output Leve

This level consists of one layer called the output layer. This layerst®ns
of a number of processing units called the output nodes.

These three levels are connected to each other by a connectmughstr
called the weights that connects each level to the next oopselagvel. The
processing units, which is called neurons or nodes, casfstgto parts as
shown in figure (2-3):
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neuron

net input output
S
&> >3
summation function activation function
b

*Figure (2-3)
Artificial Neuron
a: Summation Function

This function collects the input signals to the nodespans it in a linear
combination in order to produce one signal called the nettias shown
below:

S =X1V1 + XU, + -+ XpVUp
= Y5 % (2-132)

Where

S: net input

v; . input variable

x; : weights

Normally, a bias node is added to the inputs nodes, and thexiceq (2-
132) can be written as:

s=X5,xv+b : (2-133)
where b represents the bias.
*Work of theresearcher
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b: Activation Function

This function represents the second part of the processiguvhich is a
mathematical formula that can be linear or nonlinear. This function
processes the net input (s) and then produces the outthg pfocessing
node in a range that fits with the limits of the activationctiom of that
node. The importance of the activation function is to prevenoutput of
the processing node and then then output of the particular faym
exceeding the limits of the activation function and reachigh kialues that
can stop the learning process or the overall net to be collapskedrzl
activation function is used only in the hidden layers and the output layer, and
it is sometimes called transformation or squashing.

In theory, every continuous function can be considered an activation
function if it is differentiable but in practice every bounded, nticady
increasing and differentiable function can be used as an aativfatigtion
[11].

The commonly used activations functions in the processing nodes are:

1- Linear Function
g(s)=s (2-134)
g (s)=1

L
Figure (2-4)

Linear Function
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2- Sigmoid Function
1

g(s)=1+e_s 0<g(s)<1 (2—-135)
9(s) = g(s)(1 —g(s))
1
o _'l:) -
-1
L
Figure (2-5)
Sigmoid Function
3- Hyperbolic Function
eS —e~S
g(s) = P -1<g(s)<1
g(s) =1-g%()
1

(2—-136)

Figure (2-6)
Hyperbolic Function
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It is important to mention that the activation functionthe input layer
has nothing to do with the input signal and there is no processing apthe i
layer of the neural network. The only function of the input lay¢o collect
the input and pass it to the next layer (hidden layer). The number of the input
units matches the number of the input variables of the neural network.

(2-3-3) Artificial Neural Networks Architecture [15,53,65]

The architecture of the artificial neural networks means how thesnode
form the layers of the network and the layers are connected to each other.
The ANN can be classified according to the number of the laggyswo
main types:

(2-3-3-1) Single Layer Networks[15,53]

This type of ANN has only input and output layers, which reetuat
there is no hidden layer. This type of ANN has one layer of isitjiat
connects the input and the output layers. When applying phe signalv;
to this type of ANN, the output signal will be calculated as follow:

z; = 9(s;)
=g(X%ix v+ b;) : i=12,..,n (2 -137)

This type of ANN is used to solve the problem of pattetassification.
Perceptron and Adaline are types of this ANN. Figure (2-7) showsiniyée-
layer ANN.
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inputs weights neurons of output

—®

input level output level
*Figure (2-7)
Single-Layer Artificial Neural Networ k

(2-3-3-2) Multi-Layer Networks [15,65]

This type of ANN consists of three levels: the input letiegé hidden
level and the output level. The hidden level can be one hiddenofbgedes
or more. This type of ANN has the ability to solve compleXbfams that
cannot be solved by the single layer network. The reason for thiag is
existence of the hidden level that contains one or more hidgens that
gives the ANN more ability and flexibility to model the retaiship between
the inputs and the outputs. This type of ANN takes muctertime to learn
than the single layer ANN, but it gives much more powerful nsothen the
single layer ANN.

*Work of the researcher
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When applying input to this type of ANN, the out is calculated as follow:
Zmtl = gmtl(xmtizm 4 pm+ly . m=20,12,..,N (2—-138)

Where:

N: number of hidden layers

Z™* output vector of the layer m+1

g™*: activation function of the layer m+1

b™: bias vector of the layer m+1

X™% weights matrix of the layer m+1

Z° =V, and V is the input vector.

The multi-layer network is shown in figure (2-8) below:
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*Figure (2-8)
Multi-layer Artificial Neural Network

*Work of the researcher
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(2-3-4) Training Algorithms[15, 28,45, 65]

The training in ANN means adjusting the values of the weight$
biases in the network, and this process is sometimes daketearning
process. The main aim of the training is to teach the netwatk gpecific
tasks.

The training algorithms are divided into three main categories:

(2-3-4-1) Supervised Training [15,65]

During the supervised training, the training data is apagetivo pairs of
vectors: the first pair is the input vector and the secomdip#he desired
vector. When the input vector is applied to the network, AINN starts
comparing the output of the network with the desired data.ANM then
uses the comparison result (error) to update the weights oketherk and
the biases in order to reduce the error or the difference betweaetitiork
output and the desired output.

The error is calculated as follow
Error = target output actual output (2-139)
Perceptron learning rule is an example of the supervised training.

(2-3-4-2) Unsupervised Training [15,45]

The unsupervised learning is used when there is only am wegtor and
there is no output vector. In this case, the ANN will figowe the properties
of the input values and then stimulate its nodes and vegelgdged on the
training algorithm and the input vectors.

There some types of ANN that uses this type of training siscHamming
Network. The unsupervised training sometimes called the cdimpet
training.

(2-3-4-3) Reinforcement (Graded) Training [15, 28]

This type of training is considered an intermediate traifong between
the supervised and unsupervised training. Data is aplidie network in
this type of training as an input vector only, exactly as enuhsupervised
training, and then the training algorithm is applied Wwh& considered the
performance indicator as mentioned in the supervised training.tyije of
training is not commonly used, and it is used in corgystems applications
and the self-organising neural training.
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(2-3-5) Hebb Learning Rule [15,53, 65]

Hebb learning rule is the first rule that had been useaito tihe ANN in
1949, proposed by Donald Hebb to train the network aaghtathe weights
of it. The linear associator is one of the networks that aieed by the
Hebb Learning Rule as shown in figure below:

Inputs Linear Layer

N R
IV S Z
Rx1 X ﬂx1| 74 nx
nxRk
EAUZRN "

Z=purelin( Xv)

Figure (2-9) [15]
Linear Associator

After applying the input vector V for the linear associator, then the output
vector Z is calculated as follow:
Z=XV (2-140)
where
X : weights matrix
The output vector can also be obtained as follow:
Z; = 5-?:1 xij Uj (2'141)

It can be concluded from equation (2-141) that the weightsowvect
represents the connection between the input vector V and tiet eector
Z. This explains the Hebb’s postulate: “if two neurons on either side of a
synapse are activated simultaneously, the strength of the synds
increase . This mean that if both Z; and \{ are positive then Xshould
increase. Thus, the mathematical expression of the Hebb’s postulate will be:
x(i? = x{)jld +1fi(ziq)9;(vjq) (2-142)
Where
vjq - represents th&jelement in the input vector; V
Z;, - represents th&'ielement in the input vector, Z

M : positive constant called the learning rate
fi g : activation functions
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for simplification, equation (2-142) can be written as:

xi = xi"jld + 1ziqVjq (2-143)
From equation (2-143), it can be concluded that the change weihét is

not only increased when both@hd \f are positive, but also increased when
both of them are negative, and then decreased when they have differen
polarity (one is positive and the other is negative).

Hebb’s Rule is classified into two types:
(2-3-5-1) Unsupervised Hebb Learning Rule [15, 53]

Equation (2-143) is considered as a definition to thebHBle for
unsupervised learning because this method does not requinef@myation
about the desired output. This rule can be written in vector form as:
Xnew = xeold 4 z vl (2-144)
Where n was assumed to be 1 for simplification.

(2-3-5-2) Supervised Hebb Learning Rule [15, 65]

The supervised Hebb Learning was obtained by replacing tineonket
output in equation (2-143) by the desired output as follow:

new
X

P = xP + diqvjg (2-145)
Where 1 is assumed to be 1 for simplification.

Equation (2-145) can be re-written in a vector notation:

Xxnew = xold + d vl (2-146)

If (input/output) pairs, 1, di}, { v2, do}, ..., { vo, dg}, was applied to the
neural network assuming that the initial weights equaei@ so equation
(2-146) can be re-written as follow:

X =32 dvl (2-147)
and equation (2-147) can be written in matrix form
X =DV’ (2-148)

WhereD =[d; d,... dg] is the desired output, and
V=[v: v,...vq] is the input vector.

If v, is an input to the network, then the output vector is:
ZzZ = Xvk

Q

— T

= quvq vy
q=1
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Q
= Z d, (vivy) (2 -149)
q=1

Now there are two cases:
Case 1: if the vector, are orthonormal then:

z=d, (2 - 150)

This means that the output of the network matches the desitguat,owhich
means that Hebb’s rule will produce the correct output for every input.

Case 2: if the vectorsy, are not orthonormal then:

Q
z=d, + Z VIV (2 —151)
q*k

Where the second term on the right hand side of equd&fon 161)
represents the error which means that Hebb’s rule will not produce the right
output in this case.

One of the methods that are used to reduce the error causedimyuthe
variables in case of the non-orthogoisahe Pseudoinverse rule as follow:

A+ = (ATA) AT (2 — 152)

Where A represents the Pseudoinverse of the matrix A. The importance of
this rule is to decrease the performance index:

Q
H(X) = Z I d, — Xv, II? (2 —153)
q=1

When the input vectons, are non-orthogonal, by solving the equation
XV=D>D (2 — 154)
by using the pseudoinverse rule to find the weights matrix

One of the main problem of the Hebb’s Rule is that it leads to high
weights. There are some ways that can be followed to reduce the weights:

a- Make the learning rate lower than 1 as follow
Xxnew = xold + nd v n<1 (2 —155)
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b- Add a decay term that makes the learning rate behave like a
smoothing filter
X" = (1 —-y)X°" +nd,v} (2 —156)

If y = 0 then Hebb’s rule will be a standard rule, and if y = 1 then Hebb’s

rule will forget the old input patterns and only remember riiost recent

patterns, so that the y is normally a positive constant with a value of less

than 1 to prevent the weights from a non-bounded increment.

Equation(2 — 155) can be re-written by replacing the desired output by the

difference between the actual output and the desired output as follow:
Xnew = xold 4+ qn(d, — z,)v} (2-157)

Equation(2 — 157) is called the Delta Rule, which is working to reduce the
mean square error and then provide results similar to the peeacdks
results.

(2-3-6) Least Mean Square (LM S) Algorithm [15,28, 65]

This algorithm is an example of the supervised training and it
considered as an introduction to the back propagation algoriffhis
algorithm was proposed in 1960 by Widrow-Hoff so thas &kmown also as
a Widrow-Hoff algorithm. The LMS algorithm is considered as more
powerful and more applicable than the perceptron algorithm.

When applying the input vectors and the targeted vectqraies{v; ,d;}, {

Vo, &b} ... {vg.do} to the ANN and calculating the network output, then the
LMS algorithm starts updating the weights of the network thuce the
mean square error. The LMS algorithm can be applied to many networks
such as the Adaptive Linear Neural Network which istemitas ADALINE

and has a basic structure that matches the perceptron excephdhat
ADLINE has a linear activation function as shown in figure below
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Input Linear Neuron
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Z=purelin(X v+b)

Figure (2-10) [15]
Adaptive Linear Neural Network

The output of the ADALINE can be calculated as follow:
z=gXv+b)

=Xv+b (2 — 158)

The weights and biases of the ADALINE can be updated by udit§
algorithm.
By using the vectors

P = [117] , Y = [ 1bx] : 11X = [xl,l X1,2 ...xl’R]T

Where:

P = the input vector

Y = the parameters vector (weights and biases)

The performance index (mean square error) can be written as:
H(Y) = E[e?]

= E[(d - Y"P)?] (2 — 159)

The main idea of the LMS algorithm is to estimate the mean square e
H(Y) by:
H(Y) = (d(k) — z(k))?

=e?(k) (2 — 160)
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where the expectation of error squared in equd2on 159) is replaced by
the squared error in each iteration k as shown in equ&ien1 60).

The gradient estimate, or what is called as the stochastic mgacsn be
estimated as follow:

VH(Y) = Ve?(k) (2 -161)

The first element R ofVe?(k) are derivatives of the weights, and R+1 of
Ve?(k) are derivatives of the biases which means:

[Ve*(K)]; = e?(k) :j=12,..,R

axl,j

- 2e(k)%e(k) (2 - 162)

0
[Ve? K)grs1 = b e?(k)

= 2e(k) (k) (2 —163)
where
T e(k) = —v; (k) (2 — 164)
9
el =—-1 (2 —-165)

Thus, the gradient of the mean square error can be written as:
VH(Y) = Ve?(k)

= —2e(k)P(k) (2 — 166)

By substituting the value of the estimated gradient in teepgst descent
algorithm which has the following formula:

Y1 =Y — gy (2-167)
Where

We get
Yiii =Y, + 2ne(®)P (k) (2 — 168)
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1xX(k+1) = ;x(k) + 2ne(k)v(k) (2-169)
b(k + 1) = b(k) + 2ne(k) (2-170)

Both equationg2 — 169) and(2 — 170) represent the LMS algorithm for
updating the weights and the biases for any ANN withglsi layer
(including ADALINE). If ANN with single layer has more than ondpu
node, then the LMS algorithm can be written as:

x(k+1) = ;x(k) + 2ne;(Kv(k) (2—-171)

Where k) is the I" element at the iteration k
The LMS algorithm can be also written in a matrix form:
X(k+1) =X(k) + 2ne(k)v} (2 -173)

b(k +1) = b(k) + 2ne(k) (2-174)

The LMS algorithm normally known as delta rule or an Apprate
Gradient Descent Algorithm.

(2-3-7) Backpropagation Algorithm [15,53, 65]

The Backpropagation Algorithm is considered a generalizatiothef
Least Mean Square algorithm, and it is used to train the -taydr
networks. This algorithm is sometimes called the steepestede
backpropagation algorithm because it is an approximation oftdepest
descent algorithm. The Backpropagation Algorithm (BP or SDBP) is
considered one of the most commonly used algorithms anadinthe
supervised training algorithms in neural networks [2d]. The training of
the neural networks by using the BP algorithm has three main stages:

(2-3-7-1) Forward Propagation Stage [15, 53]

In this stage, the inputs are applied to the network amdviights are
randomly generated with small values in addition to idengfyire learning
rate within a period (0,1). The data is processed starting fromphbelayer
then the hidden layer(s) and ending at the output layer. Thesimp the
node (i) can be described as:

nm—l
s = z Xz 4 b (2 —175)
=1

Where " represents the number of the nodes in the hidden layer (m-1).
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The weights are adapted by using steepest descent algaritigpproximate
the mean square error as follows:

xM(k+1) = x(k) — 1 q (2 —176)

m
6xi, i

-~

b™(k + 1) = b™(k) —n——H (2 -177)

ob™

Because the error is indirect function of the weights in the hitien,
the chain rule is used to calculate the partial derivatives:

aﬁ—aﬁxam (2-178)
0x/'; ~ 9sm ax{,”jsi
d Jd 0

T
Il

A X~ s 217
ab " T g5 X ( %)

Based on the definition of the inputs in equati@nr- 175), we get
d d

ax—mSlm = Z]Tn_l , Spm Sim =1 (2 - 180)
L] l
by set
oM = J H 2 —181
i _aslrn ( )

Whered™ is the sensitivity of thél to changes in thé"ielement of the net
input at layer m.

By using equation§2 — 180) and(2 — 181), the equationg2 — 178) and
(2 —179) can be written as follow:

H=¢6"z""! (2 —182)

m
axi, f

H=s" 2183

oo 1 = 8 ( )

By substituting equatiorf2 — 182) and (2 — 183) in the equationg2 —
176) and(2 — 177) respectively, the final formula of to update the weights
and biases can be written as follow:

x4+ 1) = x5 (k) — néf" 2" (2 — 184)

bk + 1) = b™(k) —n 6™ (2 — 185)

55



Equation (2 — 184) and (2 — 185) can be written in a matrix form as
follows:

X"(k+1) = X"(k) —né™(z™ )T (2 —186)

b™(k +1) = b™(k) — né™ (2 -187)

where

am—aﬁ—aﬁ aﬁ aH‘T 2 —188
T osm T |9s!t T Qs " 9s™y ( )

(2-3-7-2) Backward Propagation Stage [15, 65]

The sensitivity is calculated in this stage starting froenl#st layer and
backward to the hidden layer(s) and ending at the input layer. This
calculation is based on the errors of the output layer and thétaéigat are
calculated in the forward propagation. This process is called the
backpropagation since it describes the recurrent relationshgrewtne
sensitivity at the layer m is calculated based on the tsatysat the layer
m+1. In order to describe the recurrent process, the Jacobian madtrix wi
size ' x "™ is defined as:
as™+tl  gsl"

asm sl

where i=12,..,nmt! ) j=1.2,..,nm

nm

m+1
asi — d me+1 m+bm+1

65}" ds; £

= xlr’r]l g'm(sjm) (2 - 189)
Where
CORFETACY 2~ 190)

The Jacoblan matrix can then be written as:

aS_msm+1 — Xm+1cm(sm) (2 — 191)

WhereG™(s™) is a diagonal matrixhx n” and the main diagonal elements
are:
g™ (s™) : j=1,2,..,n™
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by using the chain rule, the recurrent relation can be written mmataix
form:

oM = Gm(sm)(Xm+1)T6m+1 (2 _ 192)
Where m=1,2,...,M-1

It is clear that the sensitivity™ is calculated starting from the last layer and
ending at the first layer:
6M N 6M—1 e = 61

The sensitivity at the last layer (output layer) is calculated as follows:
d

o = sl
_ 90 T
= as{”e e
— d nM 2
= @Z;ﬂ(dj - z)
= ~2(d; ~ 2)4" (sl (2~ 193)
Where
: d
gM(sM) = 22 gM(sM) (2 —194)
Equation(2 — 193) can be written as a matrix form:
M = =26M(s")(d — z) (2 —195)

(2-3-7-3) Weights Adaptation Stage [53, 65]

After the forward and backward propagation, the process of adapting
weights and biases is started based on the results of the prewiostsges:

X™(k + 1) = X™(k) + AX™(k) (2 — 196)
Where AX™ (k) = —né™(z™ )T
b™(k + 1) = b™(k) + Ab™ (k) (2 - 197)

Where Ab™ (k) = —né™

By using momentum filter, the weights and biases can be adapted as:follows
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X" (k + 1) = X™(k) + yAX™(k — 1) — (1 — y)nd™(z™ )T (2 — 198)
b™(k + 1) = b™(k) + yAb™(k — 1) — (1 — y)né™ (2 — 199)

Where0 <y <1

(2-3-8) Criteria of Model Selection [59]

The following criteria are used to compare between the models tsechoo
the best model to represent the data.

1- Mean Square Error (MSE)
N

1 ~ N2
MSE = NZ(Wt - W) (2 —200)
t=1

Where

N: number of observations

W, the real observations

W,: the estimated observations

2- Mean Absolute Error (MAE)

N
1 _
MAE = Nzlwt_ 74 (2 —-201)
t=1

3- Mean Absolute Percentage Error (MAPE)

N —~
MAPE = 12 We — Wi
B Nt_1 W,

(2 —202)
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3. The Application Side
(3-1) Data Set

The exchange rate can be defined as a number of units of a certain
currency that is exchanged with one unit of another currency.diticay
the exchange rate can also be defined as the value of two different currencies
that is obtained from the relationship between them. For exathpléraqi
dinar is the national currency in Iraq, which is strongly relatethe US
dollar at a certain exchange rate as the federal budget of lracet drad)S
dollar. The exchange rate between the Iraqi Dinar and the US Dollar
witnessed many fluctuations during the 1990s because of dhend the
conflicts afterwards. The exchange rate has a high levempbrtance
because the national economic is highly dependent on it.

The inside economic balance represents the nearly fixed pricesawith
slight economic growth, while the outside economic balance repsetent
ratio between the outcome or external payments and the generakinico
other words, the economic balance represents the general commercial
exchange with the outside world and the move of capital from and to Iraq.

Under the golden pricing system, the exchange rate between any tw
currencies is counted based on the golden value of each cucenpared
to the other currency. This system helps to limit the fluainath exchange
rates to the minimum levels with very little tolerance basetherprice of
the gold which is semi-constant

After the independence of the currency value from gold, the egehan
rates witnessed high fluctuation rates, and they become hdghbndent on
the interest rate, economic growth and many other factors.

The exchange rate data of the Iraqgi dinar and the US dollar has been
gathered from the Central Bank of Iraq from 30/01/2004 to 30/12/2014.

During this study, we have used R and SPSS software to analyse the data.

59



Table (3-1)

Exchange Rate of Iraqgi Dinar vs US Dollar

Month | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014
1 1467 | 1453 | 1483 | 1323 | 1224| 1179| 1185| 1185| 1206 | 1226 | 1222
2 1409| 1459 | 1480| 1299| 1225| 1178 | 1185| 1185| 1236 | 1231 | 1222
3 1423| 1469 | 1480| 1290| 1222 | 1178 | 1185| 1185| 1240 | 1255| 1222
4 1443 | 1474 | 1481 | 1284 | 1216| 1179| 1185| 1187 | 1263 | 1267 | 1218
5 1462 | 1473 | 1485| 1275| 1212 | 1187 | 1185| 1196| 1250 | 1270 | 1222
6 1460 | 1468 | 1485| 1269 | 1205| 1180| 1185| 1197 | 1241 | 1237 | 1213
7 1463 | 1476 | 1486 | 1261 | 1202| 1184 | 1185| 1197 | 1253 | 1218 | 1214
8 1463 | 1480 | 1488 | 1253 | 1196| 1184 | 1185| 1199| 1248 | 1209 | 1213
9 1463 | 1481 | 1488 | 1249| 1188 | 1183 | 1185| 1200 | 1228 | 1211 | 1204
10 1463 | 1475| 1486 | 1245| 1185| 1183 | 1185| 1200| 1200 | 1220 | 1207
11 1463 | 1477 | 1467 | 1240| 1183 | 1183 | 1188 | 1200 | 1207 | 1218 | 1200
12 1462| 1479 | 1394 | 1216| 1180| 1185| 1195| 1218| 1222 | 1222 | 1205
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(3-2) Artificial Neural Network M ethodology

The success of designing artificial neural network dependshen
understanding of the problem that needs to be solvedidentifying the
input variables that are required to build the network for predictiopgses.

It is commonly known that the data collection process dependthe
problem that needs to be solved, while in neural networlgmlethe data
collection depends on the training algorithm that will bedus train the
neural network. If the training algorithm is one of the supedialgorithms
then these is a need to have both the input and owapaut ldowever, if the
training algorithm is unsupervised algorithm then no riedthve the output
data where the input data will be enough.

(3-2-1) Identifying the Input Nodes

The most important aspect of designing neural netwarks identify the
nodes that are required in each level. The number of input roOtessame
as the number of the input variables. In the case of causal protbdms
such as the regression problems, it is easy to identify tnberof the input
nodes where it will be the same as the number of the inputbliesia
However, in time series data there is no rule to identifyirthat variables.
For this reason, the BexJenkins methodology will be applied to choose the
input variables.

e Applying Box — Jenkins M ethodology
1- Modd I dentification
In this stage, the time seri&gsis plotted for the data of the Iraqi
Dinar exchange rate according to the US dollar as shown iref(@ur
1)
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Figure (3-1)
Exchange Rate of Iraqgi Dinar vs US Dollar

By examining figure (3-1), it is clearly shown that the time sdages
not fluctuating or oscillating around a certain level, andas a
general decreasing trend that proves the time s&riés not mean
stationary and not variance stationary.

It is also clearly shown in figure (3-2) below that the SAEBlowly
exponentially decreasing toward zero and is not cut off after the
second lag or the third lag which also means that e $eeries is not
mean stationary.
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Correlogram of Y

Sample: 1 132
Included observations: 132

Autocorrelation  Partial Correlation AC PAC Q-Stat Prob

|

W00~ &N e o b=

0.982 0982 130.20 0.000
0.964 0.000 256.73 0.000
0.943 -0.101 378.76 0.000
0.920 -0.067 49584 0.000
0.895 -0.081 &O07.38 0.000
0.869 -0.015 713.39 0.000
0.844 0.012 814.07 0.000
0.818 0.002 90557 0.000
0.792 -0.037 995.78 0.000
10 0.764 -0.062 10845 0.000
11 0.735 -0.061 1163.5 0.000
12 0.704 -0.058 1236.6 0.000
0.673 -0.011 1304.0 0.000
14 0642 -0.022 13657 0.000
19 0.609 -0.044 14217 0.000
16 0.574 -0.064 14719 0.000
17 0.539 -0.022 1516.7 0.000
18 0.506 0024 15564 0.000
19 0473 -0003 15915 0.000
20 0.441 -0.004 16222 0.000
21 0407 -0.059 16486 0.000
22 0374 -0.031 1671.0 0.000
23 0.339 -0.052 1689.7 0.000
24 0.304 -0.030 1704.9 0.000

I g . I WP I - T - B — T v I = B 1 I

B 11111] 1]

]

Figure (3-2)
Correlogram of the Original Time SeriesY;

The non-stationarity of the time seri&s has also been proved by
applying the ADF, P.P, KPSS tests as shown in table (3-2) below
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Table (3-2)

Tests Results of the Original Time SeriesY;,

Test Critical
Test Model Statistic Values p-Value
without constant -0.837279 -1.943304 0.3514
With constant -0.979861 -2.883756 0.7591
ADF With constant and time
trend -1.307575 -3.444756 0.8817
without constant -1.397307 -1.943304 0.1504
With constant -1.46627 -2.883756 0.5477
P.P With constant and time
frend -1.200101 -3.444756 0.9059
With constant 0.937165 0.643000
KPSS| With cor][ite?]rét and time 0.277682 0.146000

By checking the P-value in table (3-2) for the three modelseotetsts ADF
and P.P, the null hypothesis is accepted which means thérté series;
has a unit root and this means that the time series is non-stationary.

By comparing the value of the test statistic with the criticalevah table (3-
2) for the two estimated models in the KPSS test, thenalteenative
hypothesis is accepted which means that the time sérnigsion-stationary.

In order to achieve the stationary in variance, the Box-Cox trangfamis
applied as given in the equation (2-41) wh&r®. This means that the

logarithmic transform of the time serigs has been calculated in order to be
variance stationary and then the first difference is taken r dodbe mean

stationary.

To test the stationary of transformed data, we checked the correlogram of the

transformed serie®/, = (1 — L)(Log(Y; ))as shown in figure (33), where
we notice that SACF is cut off after the first lag which meansth®atime
seriesl; is mean stationary.
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Correlogram of W

Sample: 1 132
Included observations: 131

Autocorrelation Partial Correlation

AC

PAC

Q-Stat

Prob

_ - = = = I F.'

24

0.372
0147
-0.044
0.063
0.022
-0.092
-0.009
0.039
01271
0.100
0113
0.07v7
-0.016
-0.003
0.030
-0.032
-0.048
-0.040
0.023
0.024
-0.019
-0.031
-0.030
0.023

0.372
0.010
0.118
0.135
-0.031
-0.144
0.115
0.034
0.058
0.069
0.056
-0.002
-0.068
0.040
0.052
-0.103
0.009
0.006
-0.020
0.047
-0.062
-0.027
0.003
0.021

18.583
21.499
21.759
22295
22360
23.530
23.541
23.755
25.863
27317
29172
30.033
30.073
30.074
30.207
30.358
30.707
30.958
31.037
31.492
31.549
31.701
31.847
31.933

0.000
0.000
0.000
0.000
0.000
0.001
0.001
0.003
0.002
0.002
0.002
0.003
0.005
0.0a7
0.011
0.016
0.022
0.029
0.040
0.049
0.065
0.083
0.103
0.125

Figure (3-3)

Correlogram of the Transformed Time Series W,
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The ADF, P.P, and KPSS tests have been applied to the Hériasd the
results are shown in table (3-3):

Table (3-3)
Tests Results of the Transformed Time Series W,
Test Critical
Test Model Statistic Values | P-Vaue
without constant -8.18208 -1.943304 | 0.0000
With constant -8.197312 | -2.883756 | 0.0000
ADF With tant and ti
g O TC] 8149873 | -3.444756 | 0.0000
without constant -8.344295 | -1.943304 | 0.0000
pp With constant -8.382012 | -2.883756 | 0.0000
With constantand time| g 343330 | -3.444756 | 0.0000
With constant 0.214289 0.643000
KPSS | With cor][f(te?]rét and time 0.098436 0.146000

By checking the P-value in table (3-3) for the three models of the tests ADF
and P.P, the alternative hypothesis is accepted which means that the time
seriesl; has no unit root (there is no need to take further differences) which
means that it is stationary.

By comparing the value of the test statistic with the criticalevah table (3-
3) for the two estimated models in the KPSS test, then théypdthesis is
accepted which means that the time sdiliess stationary.

After checking the stationarity of the time sefiés the figure (3-3) has
been checked again in order to identify the model. Basedeoethavior of

the SACF and the SPACF, the ARIMA (1,1,1) model has been recognized
and identified as a primary model to represent the data.
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2- Parameters Estimation
In this stage, the suggested primary model has been estinyatieel Exact
Maximum Likelihood Estimation method. Some models have been
suggested which are very close to the primary model ARIMA(1,1,0),
ARIMA(2,1,0), ARIMA(2,1,2), ARIMA(2,1,1), ARIMA(1,1,2) and ARIMA
(0,1,1) model as showen in table (3-4) .

To select the best model to represent the data, we calculated alteha cri
including AIC, H-Q, BIC, MSE, MAE and MAPE of each estimated model
as shown in table (35).

Table (3-4)
Estimated Parametersof ARIMA(p,d,q) Models
ARIMA Parameters P-Value
a, -0.180371 0.1145
a, -0.501118 4.14e-06
(2.1.2) B4 0.635411 1.28e-015
B, 0.834250 7.00e-034
a, -0.332391 0.0773
(1,1,2) B, 0.836455 4.24e07
B, 0.515426 4.44e-09
(1,1,0) a, 0.431265 6.57e-08
a, 0.404445 0.0293
(1,1.1) B4 0.0338880 0.8672
a, 0.866848 0.5128
(2,1,1) a, -0.227888 0.6809
B, -0.412057 0.7584
(0,1,1) B, 0.0347870 3.32e05
(2.1.0) a, 0.443303 5.82e-013
o a, -0.0253968 0.7719
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Table (3-5)
Estimated Criteriaof ARIMA(p,d,q) Models

ARIMA| AIC | H-Q | BIC | MSE | MAE | MAPE

(2.1,2) | -856.127| -850.285| -841.751 8'2321'5' 0.005552| 0.077613
(L1.2) |-855.403 -850.733 -843.905 > *13%%7 0.00549 | 0.076745
(L1,0) | -850.17 | -847.833 -844.419 >3°2°%7 0.005308| 0.07414
(111) | -848.21 | -844.705 -839.585 > o0 | 0.005307|0.074141
(2.1,1) | -846.496| -841.823 -834.996 8'8526'5' 0.005339] 0.074591
(0.1.1) | -845.428| -843.092 -839.678 /3751 0.0054473 0.076101
(2.1.0) | -848.239| -844.734 -839.614 > 207~ 0.005309| 0.074167

by checking the P-value of the estimated parameters for every model in
table (34), the following models have not been considered:

ARIMA(2,1,0), ARIMA(2,1,2), ARIMA(2,1,1) ARIMA(L,1,2),
ARIMA(L,1,1).

The reason for not considering the above models is because theyohwve s
non-significant parameters.

Based on the value of the criteria in table (3-5) for ARIMA (1,1,0) and
ARIMA (0,1,1) model, the ARIMA (1,1,0) model has been chosen as the
best model to represent the time series. It is also notédhinaestimated
results in table (3-4) shows that the ARIMA (1,1,0) model sasisthe
stationary condition |oy| = |0.431265] < 1.

3- Diagnostic Checking

In this stage, both SACF and SPACF have been calculated and
plotted for the residuals series of the ARIMA(1,1,0) model as shown
figure (3-4) and table (3-6) below:
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Figure (3-4)

Correlogram of Residuals
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Table (3-6)
Autocorrelation Coefficients of the Residuals

Re=sidual autocorrelation function
&% &% & indicate significance at the 1%, 5%, 10% lewvels
using standard error 1/T"0.5

LAE ACF BLCF G-=tat. [p-value]
1 -0.0s611 -0.0611
2 0.0356 0.0320 0.6711 [0.413]
3 -0.1le28 = -0.1585 = 4.,2781 [0.118]
4 0.0954 0.0785 £5.5278 [0.137]
5 0.0436 0.0636 5.7807 [0.215]
6 -—-0.1304 -0.1823 * 8.1607 [0.148]
7 0.0123 0.0269 8.1820 [0.225]
& -0.0017 0.0213 8.1824 [0.317]
] 0.0%962 0.0384 9.5039 [0.302)
10 0.0208 0.05598 9.5669 [0.387)
11 0.0669 0.0837 10.2172 [0.422)
1z 0.0562 0.0626 10.6781 [0.471]
13 -0.0584 -0.0579 11.1820 [0.513]
14 -0.0114 -0.0075 11.2015 [0.594]
15 0.0535 0.0941 11.7331 [0.&28)
le -0.032%9 -0.0635 11.8971 [0.687]
17 -0.0238 -0.0230 12.0331 [0.742]
g8 -0.0434 0.0033 12.3232 [0.T80]
15 0.0185 -0.0419 12.3764 [0.827)
20 0.0718 0.0548 13.1848 [0.829]
21 -0.0372 -0.0248 13.4037 [0.859]
22 -0.0138 -0.0360 13.4342 [0.893]
23 -0.0387 -0.0221 13.650% [0.913]
24 0.0503 0.0165 14.0623 [0.925]

It is shown in figure(3-4) that all the autocorrelation coefficients of
the residuals are not significantly different from zero and tiey |

within the period _(\%6 : j#) at significance level of alpha = 0.05.

This means that the residuals represent white noise.
The Ljung— Box test has been applied in this stage as well and the
results are shown in table (3-7) below:
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Table (3-7)
Resultsof Ljung-Box Test

Ljung-Box Statistic (Q,5) | x*>(df = 23, alpha = 0.05) | P-value
14.0 23 35.172 0.9251

By checking the P-value of the test statistic, the null hyptthe accepted
which means that the residuals represent the white noise.

Based on the Box Jenkins methodology to represent the time series of the
Iragi Dinar exchange rate against the US Dollar, it can be catthindt the
neural network input variable is tlfg_; variable which means that the input
level of the neural network has only one node.

(3-2-2) Identifying the Output Nodes

The output node is set to be only one because the gmapredict one
stepa head. The backpropagation algorithm has been chosen tohtain t
neural network so that the input variable is set torhe and the output
variable is set to bg.

(3-2-3) Data Processing

It is rare to feed the neural network with both input antbuwtudata
directly, and normally the data is being processed and Soeateden lower
bound and upper bound(] showed that the data processing is essential to
simplify the learning of the neural networks and meet the reqamtof
the training algorithm. Accordingto [63], showed that the data
preprocessing helps avoid the calculations problems.

The commonly used formula to preprocess data is:

v —min(V) b
max(V) — min(V) *

f@w) = (c—b)

Where:
c, b : constants

V: data vector
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Usually, b = 0 and ¢ = 1 which results in normalized formi¢d scale the
data to be between 0 and 1. Another adjusted normalized formulbecan
done by setting b = -1 and ¢ = 1 which scale the data teteén -1 and
+1.

There are other formulas such as the standardized formula thathscdbdd
between -1 and +1, and the simple formula that scales the dataehe®w
and 1.

(3-2-4) Activation Functions Selection

It is important to choose the activation functions beforeyapgplany data
to the network in order to choose the right preprocessing formula fdatae
before applying it to the network.

There is no standard rule to choose the activation funcitiotise hidden
layer or the output layer of the network. Bot9,BR] and [6,62] chose a
specific activation function for each node in the layer. However, the majority
of the networks have one type of activation function forral nodes in a
certain layer. Most papers reported the use of the logistic tumati the
hidden layer, while in the output layer the linear function wasl wghen the
training algorithm is conducted for classification.

The non-linear activation functions are normally used whentréiaing
algorithm is used for prediction. [21] showed that tha-hear activation
function is more efficient for financial data. Because there is no aule t
choose the activation function, five models have been designed ing$iss. th

First Model: hyperbolic activation function for the hidden layedes and
sigmoid activation function for the output layer node.

Second Model: sigmoid activation function for the hidden layetes and
sigmoid activation function for the output layer node.

Third Model: hyperbolic activation function for the hiddexyer nodes and
Identity activation function for the output layer node.

Forth Model: sigmoid activation function for the hiddexydr nodes and
Identity activation function for the output layer node.

Fifth Model: hyperbolic activation function for the hiddexryér nodes and
hyperbolic activation function for the output layer node.
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In tables (3-8) to (3-12), the data processing formula is sedbas the
activation function in the output layer.

The models are shown in tables (3-8) to (3-12):

Table (3-8)
First Model: ANN(1)

Activation Function Hyperbolic tangent
for Hidden Layer
Activation Function Siamoid
for Output Layer 9
Data Preprocessing Nor malized
Formula
Number Number
of of
Hidden M SE MAE MAPE Hidden M SE MAE MAPE
Nodes Nodes
1 355.3003 13.8103 1.0669 6 244.4384 10.8591| 0.8442
2 239.2133 10.7915| 0.8421 7 240.6842 10.4926| 0.8174
3 314.3509 12.3766, 0.96 8 320.4959 12.2783 0.9625
4 363.1231] 14.0481 1.0874 9 268.5468 11.936|0.9279
5 299.6979 12.6116| 0.9751| 10 276.1918 11.8453 0.9259
Table (3-9)
Second Model: ANN(2)
Activation Function Siamoid
for Hidden Layer 9
Activation Function Siamoid
for Output Layer g
Data Eg?ﬁ:ﬁ;ng Normalized
Number Number
of of
Hidden MSE MAE MAPE Hidden M SE MAE MAPE
Nodes Nodes
1 308.7995 12.6732] 0.98 6 400.6688 13.8814| 1.0779
2 399.0621] 14.5312| 1.0978 4 366.3151] 14.5746| 1.1027
3 337.6484 12.7363 1.0029 8 272.8888 9.5703|0.7261
4 246.7104 10.5956| 0.8088 9 297.0384 12.5679 0.9652
5 256.438| 11.5061| 0.8838| 10 272.4871 11.658|0.9101
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Table(

3-10)

Third Model: ANN(3)

Activation Function for Hvperbolic tangent
Hidden Layer yp 9
Activation Function for | dentit
Output Layer y
Data Preprocessing Nor malized
Formula
Number Number
of Hidden M SE MAE MAPE | of Hidden M SE MAE MAPE
Nodes Nodes
1 177.339| 7.6599| 0.5865 6 184.5194 8.0842| 0.6196
2 173.3501 7.6115| 0.5843 7 196.4128 8.754 | 0.6751
3 198.175| 8.6334| 0.6629 8 179.8835 7.9118| 0.6056
4 183.9683 8.0917| 0.6195 9 182.1894 7.9497| 0.6101
5 183.2493 7.9365| 0.6103 10 184.5148 8.1362| 0.6227
Table (3-11)
Forth Model: ANN(4)
Activation Function for . .
Hidden Layer Sigmoid
Activation Function for | dentity
Output Layer
Data Prepr ocessing Normalized
Number Number
of Hidden MSE MAE MAPE | of Hidden M SE MAE MAPE
Nodes Nodes
1 211.7407} 9.3136| 0.7118 6 182.8886 8.0308| 0.6238
2 222.3407, 9.6718| 0.7421 7 198.721 | 8.6888| 0.6715
3 185.2495 8.2581| 0.6293 8 181.8466 7.9717| 0.6123
4 195.651 | 8.7934| 0.6728 9 220.4262 9.1451| 0.7009
5 191.5193 8.686 | 0.6657 10 185.0319 8.1435| 0.6259
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Table (3-12)
Fifth Mode: ANN(5)

Activ:’ic’i;;r:e:‘ulr:‘:/t;:n for Hyperbolic tangent
Activation function for Hvoerbolic tangent
output layer P : 8
Data preprocessing Adjusted normalized
formula
Number Number
of MSE MAE MAPE of MSE MAE MAPE
Hidden Hidden
Nodes Nodes
1 29 .7304 | 12.72 1|0.9971 3070 1 |12.5 3| 0.992
2 1 3.2 22 . 717 [ 0. 709 7 2 4.4 11.752 | 0.9224
3 175. 4 322 0. 452 2 7. 135]11.5292 | 0. 99
4 274.034 | 11.7 73 |0.91 2 9 2 1.4044 | 11.74 0.923
5 2 3.57 11.974 | 0.9335 10 304.3154 | 12. 22 |1.0107
Table (3-13)
Minimum Values of the Criteria
Number of Number of Number of
Model ,\'\:'SE Hidden ,\'\/’I”ANE Hidden MMA'g‘E Hidden
Nodes Nodes Nodes
ANN(1) | 239.2133 2 10.4926 4 0.8174 7
ANN(2) | 246.7104 4 9.5703 8 0.7261 8
ANN(3) | 173.3501 2 7.6115 2 0.5843 2
ANN(4) | 181.8466 8 7.9717 8 0.6123 8
ANN(5) | 175.6466 3 8.3228 3 0.6452 3

(3-2-5) Identifying the Number of the Hidden Layers

In theory, a neural network with one hidden layer and enough nurhber o
nodes in this layer, can estimate any continuous function Hthjever, in
practice, the neural network is normally trained by using odédeni layer,
and if the target is not achieved then it will be traingdibing two hidden
layers. Many studies showed that any neural network with thaire four
hidden layers will not get better results so that the madekble (3-8) to
table (3-12) will be designed with one hidden layer.
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(3-2-6) I dentifying the Number of the Hidden Nodes

There is no specific rule to choose the number of the nodees mdten
layer. However, the common approach to choose the number of theinode
the hidden layer is the error and trial approach where the waprocess
starts with small number of nodes in the hidden layer andttigenumber is
increased as the mean square error decreases. In addition, there are some
formulas that were suggested by researchers to identify the nuityer o
nodes in the hidden layer according to the number of the input nodes (R):

1- Number of hidden nodes = R [62]
2- Number of hidden nodes = 2R [62]
3- Number of hidden nodes = 2R +1 [65]
4- Number of hidden nodes = R/2 [62]
) (Bt—l ) Xe
5- Number of hidden nodes—= [27]
Bi+2
Where
B; : number of input nodes
B; : size of the training data
€ <0.125
6- Number of hidden nodesps/B; B, [43]
Where

B, : the number of the output nodes
S : multiplication factor

In this work, the formulas 1, 2 and 3 that are mentionedealdrave been
used in the models in tables (3-8) to table (3-12). Intiaigithe error and
trial method has been used to choose between 4 to 10 nodes for every model.

(3-2-7) Data Partitioning

Before applying it to the neural network, the data is divided two
groups called: the training data and the testing data. Thengadata is
normally bigger than the testing data and it is usethéyeural network to
learn the patterns. The size of the testing data is normallywd @@ of the
overall size of the data. The testing data is used to check ititg afbthe
neural network to learn the patterns of the {é&gd.
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The models in tables (3-8) to (3-12) has been designed wiginang data
set of sizes 100% of the raw data which means that the alfilihe neural
network will be examine based on the training data set only.

(3-2-8) Training

After identifying the requirements of the neural network, the itrgin
process is then started. The main goal of the training progessfind the
optimal weights that produce the lowest error which meanslaivest
difference between the output of the neural network and the desitpdt.
The training process requires the following parameters to be sahitial
weights, the learning rate and the momentum. Setting the iniggjhts
values is the first thing to do in the training process mormally they are
randomly set to small valuekl5] showed that the initial weights based on
the type of the neural network. For multi-layer neural networles,irhial
weights are chosen to be between -0.5 and +0.5 if the traiatagsdt are
within the period [-1, +1]15].

The initial weights have been randomly set for every model in the tables
(3-8) to (3-12) by using SPSS software.

The learning rate 1 and the momentum y are normally set in a random way
where 0 <n <1 and 0 <y < 1. Initially, the learning rate is set to 0.5 and the
momentum is set to 0.9 for all the models in tables (3-8-i®).

When the training process starts to find the optimal weigjitse should be
a termination criterion to stop the process and below are some of them:

1- Time
2- Relative Cyclic Error
The relative cyclic error is the error allowed in every iterationd a
when the calculated error is equal to or less than the cyatic then
the training process will stop.
3- Number of Iterations
There should be a realistic number of iteration which is nornsaily
to be 10000 iterations. However, some researcher reported to 3000
iterationg55] and 5000 iteration23].
All the three above-mentioned criteria have be used to stop the trairafig
of the models that are mentioned in tables (3-8) to (3-12) wtherame is
set to 15 minutes, the cyclic error is set to 0.0001 anththemum number
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of iterations is set to 10,000 iteration. When one of the critemaitions is
met, the training process will be stopped.

(3-2-9) Implementation

All the models that are mentioned in tables (3-8) to (3-12p Haeen
implemented and then the MSE, MAE, and MAPE have been calculated for
each model.

Comparing the ability of the models in tables (3-8) to (Bib2extract the
minimum value of the MSE, MAE, and MAPE to the five models inetabl
(3-13), it can be seen that the minimum value of the MSE, MAE anBBA
Is in the third model in table (3-10) regardless of the ramalb the hidden
nodes.

Further checking the table (3-10), it can be seen that theab#@gation
function in the hidden layer is the hyperbolic tangent adtimatunction,

and of the output layer is the linear activation function. Thius suitable

data preprocessing approach is the normalized formula. Regarding the
number of the nodes in the hidden layer, it can be seen from table (3-10) that
the minimum values oMSE, MAE, and MAPE appear when the number of
the nodes in the hidden layer are 2. This means that the sieconda of
choosing the number of the nodes in the hidden layer is successful.

Based on the third model in table (3-10) with 2 nodes in the hidden layer, the
value of the momentum was changed while the learning rate arudhttre
model requirements are fixed in order to set the right value ef th
momentum that is suitable for the learning rate of 0.5 asrsiowable (3-

14)
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Table (3-14)

Values of the Criteria During Momentum Change and Fixed L ear ning

Rate
Learning Momentum Time M SE

Rate

0.5 0.9 0:00:00.09| 173.3501
0.5 0.8 0:00:00.08 | 184.3754
0.5 0.7 0:00:00.05| 171.2072
0.5 0.6 0:00:00.05| 170.5924
0.5 0.5 0:00:00.17 | 188.2508
0.5 0.4 0:00:00.37 | 180.5767
0.5 0.3 0:00:00.08 | 173.5609
0.5 0.2 0:00:00.03| 171.6374
0.5 0.1 0:00:00.09 | 197.1893

From table (3-14), it is clearly shown that the best momemaioe is 0.6
based on the MSE criterion, and the value of the momentum effetit® on
training time where this time reaches its maximum value when th
momentum was 0.2, while in momentum 0.6 the least MSE carhievad

in a suitable time.

Based on the results that are obtained previously, the data has been divided
into two sets: the training set and the testing set as mentiotedalen(3-15)
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Table (3-15)

Values of the Criteria When Data Partitioning

Training Data Testing Data M SE
100 0 173.3501
90 10 184.357
80 20 183.1978
70 30 180.9971
60 40 188.8886
50 50 179.1047
40 60 198.5476
30 70 189.0676
20 80 204.1265
10 90 185.3909

From table (3-15), it can be seen that the lowest error can be achaseztl b
on the MSE when the training set is 100% of the overall datée vitne
maximum MSE is achieved when the training set is 20% of the overall data.

Based on the results of the final model with hyperbolic tangetivation
function for the hidden layer and linear activation function fa dlitput
layer in addition to a momentum of 0.6, the final model has been used in two
cases: the first one where the data was not processed, and the sereo
when the data was processed using the normalized preprocessmdafo

and the results are shown in table (3-16).

Table (3-16)

Values of Criteriafor Final Model with and without Processing

Final Model MSE MAE | MAPE

Without Processing 13345.0652| 99.8602| 7.5583

With Processing by Normalized 170.5924 | 7.5583 | .5800
Formula

By checking the above table and based on the values of the MSE ali\
MAPE, it can be found that criteria is highly increased when rdnaimg
data is not processed which means that the data shoulddesged before
being applied to the network.
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Applying the last model, the optimal weights and biaseslaers in table

(3-17) that gives the lowest MSE = 170.5924, MAE = 7.5588 MAPE =
0.5800.

Table (3-17)
Final Values of Weights and Biases

Hidden Layer Weights and Biases | Output layer Weights and Biases

X714 254 x7 4 207

X1, 974 X3, 1.102
b} -.441 b> 275

bl -.187

81



90= wnuaWwop

0= ajel buiulea

00001 = uoneisyl Jo JaquinN

L0000 = lo1a 2249
uonehodoidyoeg = wyuobje Buueap
pazijeuwlop = elnwuoy Buissasoid ejeq

Rnuap) =6 = 1afe| ndine Joj uonauny uoReARIY

yabuey 2ijoqiadiH uw_.m = 1afe| uappiy Joj uonauny uoReARY

Figure (3-5)
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(3-3) Spectral Analysis

The Spectral Analysis is approach based on analyzing thenstatidata
in the frequency domain, so that the most important stép generate the
frequencies of the stationary time series. Based on the stattomargeries
W, that resulted from BoxJenkins methodology (3-2-1), the Fourier
frequencies have been generated by using the formula (2-58joas in
table (3-18) where 65 standard frequencies have been generatesebihea
number of observations of th. is odd.

(3-3-1) Search for Hidden Periodicities

The use of the spectral analysis to build harmonic modep@sent the
data, mainly depends on the existence of the periodicities ¢ham
components) hidden in the stationary data. So that trectaet of the
hidden periodicities in the data is a crucial step that gowdrether to use
the spectral analysis or not.

In order to detect the hidden periodicities in thg time series, the
periodogram has been calculated by using the forif%0) as shown in
table (3-18) and figure (3 where both ¢; and Q; have been estimated by
using formula (2-60) and (2-61) respectively

In addition to that, the wave length of thé time series has been calculated
by using the formula (2-52) as shown in table (3-18) below:
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Table (3-18)

Periodogram Analysis of W,

j Frequency Period §j 0; Amplitude Phase Periodogram
1 | 0.04796325| 20.8492975| 7.079433e34 | -3.307630603 | 0.0033825436] 1.35994424 | 7.494249634
2 | 0.09592649| 10.4246488| 1.431931eB3 | 2.602334e33 | 0.0029702810 -1.06776213| 5.778783e04
3 | 0.14388974| 6.9497658 | -1.660042603 | 2.361398603 | 0.0028865100| 0.95806557 | 5.457421e04
4 | 0.19185299| 5.2123244 | -1.057219633 | -1.432414603 | 0.0017803154| -0.93497568| 2.076037&04
5 | 0.23981623| 4.1698595 | 6.907379eB4 | -1.340426633 | 0.0015079326] 1.09497412| 1.489379€34
6 | 0.28777948| 3.4748829 | 8.760026€B4 | 2.201576€33 | 0.0023694553 -1.19210338| 3.677379€34
7 | 0.33574273| 2.9784711 | -1.694825633 | 1.152857e33 | 0.0020497585 0.59732830| 2.751989€04
8 | 0.38370597| 2.6061622 | -7.703295604 | -2.223622e03 | 0.0023532748| -1.23730538| 3.627326€04
9 | 0.43166922| 2.3165886 | 1.112947eB4 | 6.335595605 | 0.0001280644] -0.51751207| 1.074232636
10 | 0.47963247| 2.0849298 | -7.756589604 | 3.382998e33 | 0.0034707814] 1.34541046| 7.890342€34
11 | 0.52759571| 1.8953907 | -1.071563e33 | 2.255256€33 | 0.0024968837 1.12723366| 4.083551€34
12 | 0.57555896| 1.7374415| 1.226869633 | -2.036024633 | 0.0023770990 1.02848120| 3.701143e34
13 | 0.62352221| 1.6037921 | 1.523896e03 | -1.452157633 | 0.0021049983 0.76129763| 2.902317&34
14 | 0.67148545| 1.4892355 | -2.849056693 | 5.581426€34 | 0.0029032121) 0.19345444| 5.520760e34
15 | 0.71944870| 1.3899532 | -3.324620633 | -3.815690634 | 0.0033464453 -0.11427072| 7.335146€34
16 | 0.76741195| 1.3030811 | -6.058610635 | -6.516940634 | 0.0006545042 -1.47809570| 2.805862€35
17 | 0.81537519| 1.2264293 | 3.992304e34 | 1.720010e33 | 0.0017657352 -1.34272555| 2.04217304
18 | 0.86333844| 1.1582943 | -5.347976eB4 | 1.077578e33 | 0.0012029894] 1.11011643| 9.47905135
19 | 0.91130169| 1.0973314 | -3.786098e34 | -1.707657603 | 0.0017491249 -1.35261267| 2.003932e34
20 | 0.95926493| 1.0424649 | 3.652009634 | -1.827602e33 | 0.0018637327| 1.37356885| 2.275142eQ4
21 | 1.00722818| 0.9928237 | -2.190613eB4 | 5.006453e84 | 0.0005464737| 1.15833728| 1.956050€35
22 | 1.05519143| 0.9476953 | -2.440567eA3 | -1.415041634 | 0.0024446655| -0.05791519| 3.9145356Q4
23 | 1.10315467| 0.9064912 | -1.399170603 | -1.496164633 | 0.0020484589 -0.81888554| 2.748501eQ4
24 | 1.15111792| 0.8687207 | 6.120694€34 | -3.864795604 | 0.0007238752| 0.56321041| 3.432169€35
25| 1.19908117| 0.8339719 | -1.507334e03 | 7.399063eB4 | 0.0016791421] 0.45631752| 1.846784el4
26 | 1.24704441] 0.8018961 | -1.252173e03 | -8.397729eB4 | 0.0015076987| -0.59075700| 1.488917&l4
27 | 1.29500766| 0.7721962 | 2.24846333 | -1.856158603 | 0.0029156316] 0.69011101| 5.568095€Q4
28 | 1.34297091| 0.7446178 | 1.040600633 | -1.651796633 | 0.0019522497| 1.00862326 | 2.496388eQ4
29 | 1.39093415| 0.7189413 | -1.153633€03 | -1.196109633 | 0.0016617904] -0.80347318| 1.808813eH4
30 | 1.43889740| 0.6949766 | -2.000057e03 | -1.215087e4 | 0.0020037445 -0.06067807| 2.629820e04
31 | 1.48686065| 0.6725580 | -1.684346€04 | 2.189918e04 | 0.0002762746) 0.91516007| 4.999460e06
32 | 1.53482389| 0.6515405 | 1.661626633 | 3.536203eQ4 | 0.0016988374] -0.20968754| 1.890362e4
33 | 1.58278714| 0.6317969 | 1.703586635 | -1.653322633 | 0.0016534096| 1.56049267 | 1.79061564
34 | 1.63075039| 0.6132146 | -1.036664e03 | -2.648826603 | 0.0028444593 -1.19775397| 5.299571e4
35| 1.67871363| 0.5956942 | 8.291315604 | -5.393994e04 | 0.0009891465 0.57676847| 6.408590e05
36 | 1.72667688| 0.5791472 | 2.320018e04 | 5.888433e04 | 0.0006328991] -1.19547665| 2.623676e05
37 | 1.77464012| 0.5634945 | 3.076818eB4 | -1.367872603 | 0.0014020490] 1.34954405| 1.28756104
38 | 1.82260337| 0.5486657 | 7.966094634 | -1.493402633 | 0.0016925823| 1.08077200| 1.876467€d4
39 | 1.87056662| 0.5345974 | 3.951427eR4 | -2.576959e04 | 0.0004717467) 0.57789160| 1.457669e05
40 | 1.91852986| 0.5212324 | -3.668132605 | -3.362969604 | 0.0003382915| -1.46215162| 7.495895606
41 | 1.96649311| 0.5085195 | 2.758703e04 | -7.867621eB4 | 0.0008337260| 1.23355143| 4.552899605
42 | 2.01445636| 0.4964118 | -3.849164€35 | -3.839125604 | 0.0003858373| -1.47086878| 9.751014636
43 | 2.06241960| 0.4848674 | 1.228237é33 | -5.733382e04 | 0.0013554644) 0.43673462| 1.203421ed4
44 | 2.11038285| 0.4738477 | -4.790360604 | -4.077087e05 | 0.0004807679 -0.08490562| 1.513953605
45 | 2.15834610| 0.4633177 | -5.107497604 | -6.366272e04 | 0.0008161859| -0.89467013| 4.363344605
46 | 2.20630934| 0.4532456 | 1.210339603 | -7.011997&05 | 0.0012123689| 0.05786945| 9.627441605
47 | 2.25427259| 0.4436021 | 2.256535é04 | -3.054342eR4 | 0.0003797493 0.93450455| 9.445724606
48 | 2.30223584| 0.4343604 | -1.495696€34 | -1.186235604 | 0.0001908994 -0.67051872| 2.386990636
49 | 2.35019908| 0.4254959 | 1.096871e03 | -3.403344eB04 | 0.0011484568 0.30085888| 8.639142&05
50 | 2.39816233| 0.4169860 | 5.478249eD4 | -2.295263e04 | 0.0005939650, 0.39675844| 2.310803ed5
51 | 2.44612558| 0.4088098 | 3.180891eB4 | -5.428895604 | 0.0006292135 1.04079514| 2.593208e05
52 | 2.49408882| 0.4009480 | -3.528393eh4 | 6.147261eQ4 | 0.0007087904 1.04973040| 3.290614€35
53 | 2.54205207| 0.3933830 | 3.334777634 | 8.110359e84 | 0.0008769188 -1.18069359| 5.036862e35
54 | 2.59001532| 0.3860981 | 2.075319603 | 3.923407eB4 | 0.0021120793 -0.18684569| 2.921876€04
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55 | 2.63797856| 0.3790781 | 1.148417&33 | -1.121643603 | 0.0016052868 0.77360450| 1.687899€34
56 | 2.68594181| 0.3723089 | -5.626839e34 | -4.030420604 | 0.0006921387| -0.62157207| 3.137817&35
57 | 2.73390506| 0.3657771 | 1.820756€03 | -1.943188e04 | 0.0018310956/ 0.10632180| 2.196157&04
58 | 2.78186830| 0.3594706 | 1.727725e03 | -5.538987e04 | 0.0018143426| 0.31024183| 2.156155604
59 | 2.82983155| 0.3533779 | 1.556185e34 | -1.921047633 | 0.0019273403 1.48996571| 2.433090e34
60 | 2.87779480| 0.3474883 | 3.654281eé34 | 3.333941634 | 0.0004946608 -0.73959027| 1.602715€35
61 | 2.92575804| 0.3417918 | 1.150607e33 | 1.125550603 | 0.0016095833 -0.77439011| 1.696947&34
62 | 2.97372129| 0.3362790 | 1.726059603 | -2.961115604 | 0.0017512740, 0.16989970| 2.008859e04
63 | 3.02168454| 0.3309412 | 1.081432eB3 | -1.309441e03 | 0.0016982730, 0.88047699| 1.889106€04
64 | 3.06964778| 0.3257703 | -3.246632604 | 8.699341635 | 0.0003361161] 0.26179988| 7.399799€06
65 | 3.11761103| 0.3207584 | 1.507766633 | -1.383658604 | 0.0015141012] 0.09151244| 1.501589e34
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Figure (3-6)
Periodogram

It is clear from figure (3-6) that the changes in periodogram d@reandom,
and they have a certain pattern. It is also noted from figurg &b table
(3-18) that there are three distinctive peaks at the frequencies:

A, = 0.04796325
Ao = 0.47963247
A5 = 0.71944870
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this indicates that there is a periodic in the data. lera@ get more precise
results, the Fisher test has been conducted, which is igifermula (2-74),
and the result is:

T =0.05961395

And because there is no critical value for Fisher test at h =h68, the
critical value has been calculated by using formula (2-78ipatficant level
alpha = 0.05 and the result is:

baipha = 0.1059853503

By comparing the critical valub,;,,, Wwith the Fisher statistic T, then the

null hypothesis is accepted which means that the dataed¥tls random
and there is no hidden periodicities.

Due to the results conflicts between the periodogram andgsherRest, the
cumulative periodogram test has been applied by calculdtengumulative
periodogram by using the formula (2-77) as shown in tg&E9) and then
apply the Kolmogorov Smirnov test by plotting the th&oet line from the
point (0,0) to the point (7, 1). The upper limit and lower limit have also been
plotted by using the formulas (2-78) and (2-79) respegtiasl shown in
figure (3-6).
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Cumulative Periodogram of W,

Table (3-19)

| | Frequency | Cumulative | | Frequency | Cumulative
Periodogram Periodogram

1 [ 0.04796325 | 0.05662134 34| 1.63075039 | 0.78135100
2 [0.09592649 | 0.10028182 35| 1.67871363 | 0.78619289
3 10.14388974 | 0.14151430 36| 1.72667688 | 0.78817516
4 10.19185299 | 0.15719940 37| 1.77464012 | 0.79790307
5 [0.23981623 | 0.16845211 38| 1.82260337 | 0.81208035
6 |0.28777948 | 0.19623583 39| 1.87056662 | 0.81318167
7 10.33574273 | 0.21702796 40| 1.91852986 | 0.81374800
8 |0.38370597 | 0.24443351 41 1.96649311 | 0.81718786
9 [0.43166922 | 0.24451467 42| 2.01445636 | 0.81792458
10| 0.47963247 | 0.30412862 431 2.06241960 | 0.82701679
11]0.52759571 | 0.33498110 441 2.11038285 | 0.82816063
12| 0.57555896 | 0.36294436 45 2.15834610 | 0.83145727
13]0.62352221 | 0.38487226 46 | 2.20630934 | 0.83873110
14| 0.67148545 | 0.42658329 47| 2.25427259 | 0.83944475
15[ 0.71944870 | 0.48200256 481 2.30223584 | 0.83962509
16| 0.76741195 | 0.48412247 49 2.35019908 | 0.84615223
17| 0.81537519 | 0.49955171 50 | 2.39816233 | 0.84789811
18| 0.86333844 | 0.50671342 51| 2.44612558 | 0.84985736
19 0.91130169 | 0.52185374 52| 2.49408882 | 0.85234352
20| 0.95926493 | 0.53904314 53| 2.54205207 | 0.85614902
21 1.00722818 | 0.54052100 54| 2.59001532 | 0.87822469
22| 1.05519143 | 0.57009651 55| 2.63797856 | 0.89097729
23(1.10315467 | 0.59086227 56 | 2.68594181 | 0.89334800
24(1.15111792 | 0.59345538 57 | 2.73390506 | 0.90994064
25(1.19908117 | 0.60740840 58| 2.78186830 | 0.92623105
26 | 1.24704441 | 0.61865762 59| 2.82983155 | 0.94461378
27| 1.29500766 | 0.66072628 60 | 2.87779480 | 0.94582468
28 1.34297091 | 0.67958725 61| 2.92575804 | 0.95864564
29 1.39093415 | 0.69325339 62| 2.97372129 | 0.97382318
30| 1.43889740 | 0.71312249 63| 3.02168454 | 0.98809596
31| 1.48686065 | 0.71350021 64 | 3.06964778 | 0.98865504
32| 1.53482389 | 0.72778247 65| 3.11761103 | 1.00000000
33(1.58278714 | 0.74131112
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Figure (3-7)

Cumulative Periodogram of W,

From figure (3-7), it is clear that the cumulative periodogram lies eutsel
upper limit which means that the serig¢% is not random and has hidden
periodic components. Based on the cumulative periodogramsreswultthe
periodogram plot, it is concluded that the seWgsis not random and it has
hidden harmonic components.

(3-3-2) Choosing the Har monic M odel

After checking that there are hidden harmonic componéptsstatistic
was calculated using formula {280), as shown in table (320), in order to
find the significant harmonic components in the harmonic model.
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Table (3-20)

F, Statistic Application Results

k Frequency F-Statistic k Frequency F-Statistic

1 0.04796325 3.841263532 | 34 1.63075039 2.669436583
2 0.09592649 2.921839197 | 35 1.67871363 0.311388428
3 0.14388974 2.752365939 | 36 1.72667688 0.127117126
4 0.19185299 1.019842640 | 37 1.77464012 0.628702526
5 0.23981623 0.728369720 | 38 1.82260337 0.920394664
6 0.28777948 1.828973830 | 39 1.87056662 0.070561791
7 0.33574273 1.358951182 | 40 1.91852986 0.036266160
8 0.38370597 1.803378278 | 41 1.96649311 0.220910593
9 0.43166922 0.005194758 | 42 2.01445636 0.047184775
10 0.47963247 4.057155804 | 43 2.06241960 0.587240968
11 0.52759571 2.037417789 | 44 2.11038285 0.073289431
12 0.57555896 1.841133116 | 45 2.15834610 0.211682804
13 0.62352221 1.434848268 | 46 2.20630934 0.468935871
14 0.67148545 2.785700301 47 2.25427259 0.045706437
15 0.71944870 3.754928909 | 48 2.30223584 0.011544125
16 0.76741195 0.135962744 | 49 2.35019908 0.420481252
17 0.81537519 1.002945982 | 50 2.39816233 0.111931911
18 0.86333844 0.461655906 | 51 2.44612558 0.125638041
19 0.91130169 0.983876631 | 52 2.49408882 0.159510775
20 0.95926493 1.119362529 | 53 2.54205207 0.244482597
21 1.00722818 0.094722730 | 54 2.59001532 1.444736099
22 1.05519143 1.950520308 | 55 2.63797856 0.826708920
23 1.10315467 1.357191961 | 56 2.68594181 0.152086419
24 1.15111792 0.166390435 | 57 2.73390506 1.079846238
25 1.19908117 0.905629647 | 58 2.78186830 1.059851496
26 1.24704441 0.728141247 | 59 2.82983155 1.198527339
27 1.29500766 2.810633769 | 60 2.87779480 0.077591585
28 1.34297091 1.230307102 | 61 2.92575804 0.831197742
29 1.39093415 0.886751384 | 62 2.97372129 0.986333087
30 1.43889740 1.297400132 | 63 3.02168454 0.926683895
31 1.48686065 0.024183504 | 64 3.06964778 0.035800975
32 1.53482389 0.927308872 | 65 3.11761103 0.734409593
33 1.58278714 0.877707418
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By comparing the statisti€, for every harmonic component with the critical
value of the distribution F at a degree of freedom (2,128 obtain three
significant harmonic components at the frequentied,, and1,s because

the calculated F at these frequencies are greater than the critical value
F(2,128) = 3.00 so that the alternative hypothesis is accegitetdese
frequencies only.

The harmonic model to represent the data offthean be written as follow:
Wt‘ = 2121'10’15[51 COS(Alt) + "Ql Sln(llt)] + Uy where t = 1, 2, cees N
(3-3-3) Check the Suitability of Har monic M odel

It is assumed that the residuals of the harmonic modgluaiety random
and are not containing hidden periodic component, and to dhatkhe
following tests are applied on the residuals series:

1- Calculate and plot the SACF of the residuals and then applljtimg—
Box test by using the formula (2-46) and this is showhgire (3-7),
table (3-21), and table (3-22) respectively.

Table (3-21)
Autocorrelation Coefficients of Residuals
L ag=k SACF=r1y L ag=k SACF=r1y
1 0.120 13 -0.053
2 0.058 14 -0.043
3 -0.101 15 -0.036
4 0.089 16 -0.100
5 0.061 1 -0.114
6 -0.127 18 -0.057
7 -0.048 19 0.014
8 0.001 20 0.077
9 0.081 21 0.011
10 0.036 22 -0.003
11 -0.007 23 -0.041
12 0.093 24 -0.031
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Autocorrelation Function for Residuals

Table (3-22)
Box-Ljung Test

(Q15)

x*(df = 18,alpha = 0.05)

p-value

25.244

2. 9

0.392

From figure (3-8) and table (3-22),it can be concluded that the

residualgepresent the white noise

2- The Fisher test has been applied to the residual seriesiby the
formula (2-74) and the results is T = 0.05270805. by comparingathe
of the statistic T with the critical valug,,,,, = 0.1059853503, it can be
concluded that the residuals are not containing any hiddendferio

component.

3- The cumulative periodogram test has been applied to theéuadsiby
using the formula (2-77) as shown in table (3-23). Then tHeé&gorov

Smirnov has been applied as shown in figure (3-9).
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Table (3-23)
Cumulative Periodogram of Residuals

| Frequency Cu_mulative | Frequency Cu_mulative

Periodogram Periodogram
1 0.04796325 0.002456905 34 1.63075039 0.642122953
2 0.09592649 0.049364103 35 1.67871363 0.649462408
3 0.14388974 0.086998336 36 1.72667688 0.653215022
4 0.19185299 0.097763410 37 1.77464012 0.660930585
5 0.23981623 0.104318645 38 1.82260337 0.673069633
6 0.28777948 0.127416094 39 1.87056662 0.678540542
7 0.33574273 0.142645394 40 1.91852986 0.681636745
8 0.38370597 0.164689285 41 1.96649311 0.682242938
9 0.43166922 0.166435225 42 2.01445636 0.686899243
10 0.47963247 0.168892129 43 2.06241960 0.710910509
11 0.52759571 0.209350655 44 2.11038285 0.711466656
12 0.57555896 0.232573413 45 2.15834610 0.717534644
13 0.62352221 0.260324792 46 2.20630934 0.724477876
14 0.67148545 0.305013206 47 2.25427259 0.730865416
15 0.71944870 0.307470111 48 2.30223584 0.732205159
16 0.76741195 0.310084383 49 2.35019908 0.734456228
17 0.81537519 0.320399035 50 2.39816233 0.741049085
18 0.86333844 0.325930308 51 2.44612558 0.748517399
19 0.91130169 0.335472151 52 2.49408882 0.760232087
20 0.95926493 0.359116209 53 2.54205207 0.762898112
21 1.00722818 0.359307275 54 2.59001532 0.803427931
22 1.05519143 0.384229510 55 2.63797856 0.825174296
23 1.10315467 0.410139975 56 2.68594181 0.832473328
24 1.15111792 0.413911360 57 2.73390506 0.852261452
25 1.19908117 0.423220586 58 2.78186830 0.893125736
26 1.24704441 0.429838196 59 2.82983155 0.906569946
27 1.29500766 0.468594839 60 2.87779480 0.907918926
28 1.34297091 0.508039434 61 2.92575804 0.920170941
29 1.39093415 0.522508111 62 2.97372129 0.957748156
30 1.43889740 0.551785197 63 3.02168454 0.967072495
31 1.48686065 0.555959171 64 3.06964778 0.972255970
32 1.53482389 0.579790583 65 3.11761103 1.000000000
33 1.58278714 0.595965747
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Figure (3-9)
Cumulative Periodogram of Residuals

From figure (3-9), it can be concluded that the residuals are ndatiiogt
any hidden harmonic component. This proves the efficiency dfahmonic
model to represent the data.

By comparing the spectral analysis methodology and the neatafork
methodology in prediction of the exchange of the Iraqi diwsarthe US
Dollar, it can be clearly seen that the neural network methodaolggtter
than the spectral analysis methodology according to the three critena bel

Table (3-24)
Comparison between Artificial Neural Networks and Spectral Analysis
M ethodology M SE MAE MAPE
Artificial Neural Networks 170.5924 7.5583 .5800
Spectral Analysis 394.7326 11.2156 .81900
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(3-4) Conclusions and Recommendations
(3-4-1) Conclusions
The following conclusions have been discovered:

1- The series of the exchange rate (raw data) is not mean
stationary as seated in figures (3-1) and (3-2) respectively.

2- The raw data is not variance stationary as shown in figure
(3-1) and table (3-2).

3- The criterion AIC tends to overestimate the models while
the BIC criterion successfully identifies the best model t
represent the data as stated in table (3-5).

4- The Box-Jenkins methodology showed that the best model
to represent the data is the ARIMA(1,1,0) model .

5- Based on the MSE, MAE, and MAPE, the best activation
function among all is the hyperbolic tangent activation fonct
for the hidden layer, and the linear activation function for the
output layer as stated in table (3-13) .

6- The best way to choose the number of the hidden nodes in
the hidden layer that consists of one hidden layer is to choose
the second formula (2R) as stated in (3-2-6) and in table (3-10).

7- In the neural networks methodology, if the sample size is
small then it is not preferable to split the data into two ipos
(training set and testing set) as stated in table (3-15).

8- There is no specific rule to choose the value of the
momentum and the learning rate, so that it is preferred to start
with more than one value and then decide which one is the best
because the value of the momentum affects the training time
and the cyclic error as stated in table (3-14).

9- Processing the data before applying it to the network is
crucial and needs to be done in advance as stated in table (3-
16).

94



10- The best neural network model to predict the exchange rate
of the Iraqi Dinar vs the US Dollar is the design with hyperbolic
activation function in the hidden layer, linear activation
function in the output layer, 2 nodes in the hidden layer,
learning rate = 0.6, momentum = 0.5, and with weights and
biases as shown in table (3-17).

11- The stationary exchange rate series contains hidden
periodicities as stated in figures (3-5) and (3-6) respectively.

12- The Fisher test fails in detecting the hidden periodic
component in the exchange rate series which is clearly shown in
section (3-3-1) .

13- The statistical approaches aim at helping the specialist in
financial and banking science to make the proper decisions that
achieve the desired interest and promoting their business
management.

14- The artificial neural networks methodology is better than
the spectral ananlysis methodology in making accurate
predictions on the exchange rate of the Iragi dinar against the
USdollar.
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(3-4-2) Recommendations

1- Comparing the backpropagation networks and the Jordan or Elman
networks in predicting the exchange rate.

2- Appling the hybrid methodology to predict the exchange. rEten
comparing the hybrid model and the pure neural network ntodel
choose the best.

3- Conducting a research on choosing the truncation potheispectral
windows and the lag windows as show in (2-2-10) in ordestimate
a consistent spectrum.

4- We recommend obtaining of the advanced statistical approaghes b
the specialists in financial and banking science to stidybehavior
of the exchange rate, to build future predictions and to makesiprop
decisions.
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