Strongly feebly Palais proper G – space

Habeeb Kareem Abdullah

Department of Mathematics College of Education for Girls University of Kufa Ahmed Talip Hussein Department of Mathematics College of Computer Science & Mathematic University of Al –Qadisiya

<u>Abstract</u>

The main goal of this work is to create a general type of proper G – space , namely, strongly feebly Palais proper G – space(st – f – Palais proper G – space) and to explain the relation between st – f – Bourbaki proper and st – f – Palais proper G – space and to study some of examples and propositions of strongly feebly Palais proper G - space.

Introduction:-

Let *B* be a subset of a topological space (X,T). We denote the closure of *B* and the interior of *B* by \overline{B} and \underline{B}° , respectively. A subset *B* of (X, T) is said to be semi – open (s. o) if there exists an open subset *O* of *X* such that $O \subseteq B \subseteq \overline{O}$. The complement of a semi – open set is defined to be semi – closed (s. c) and the intersection of all semi – closed subset of *X* containing *B* is defined to be semi – closure of *B* and denote by \overline{B}^S . The subset *B* of (X, T) is called feebly open (f – open) if there is an open set *U* such that $U \subseteq B \subseteq \overline{U}^S$. The complement of a feebly open set is defined to be a feebly closed (f – closed)[2]. *B* is called \propto - open if $B \subseteq \overline{B}^{\circ}$ and the family T^{∞} of all ∞ - sets in (X,T) is a topology on *X* larger than *T* [8]. We found in [2] that a subset *B* of *X* is f – open if and only if $B \in T^{\infty}$. Section one of this

works, includes some results which are needed in section two.

Section two recalls the definition of Palais proper G – space, gives a new type of Palais proper G – space (to the best of our Knowledge), namely, strongly feebly Palais proper G – space, studies some of its properties and gives the relation between st – f – Bourbaki proper and st – f – Palais proper G – space, where G- space is meant T_2 – space X on which an f – locally f – compact, non – compact, T_2 – topological group G acts continuously on the left.

1. Preliminaries

1.1 Definition [12]:

A subset *B* of a space *X* is called feebly open (f – open) set if there exists an open subset *U* of *X* such that $U \subseteq B \subseteq \overline{U}^S$. The complement of a feebly open set is defined to be a feebly closed (f – closed) set. The collection of all f – open sets in a space *X* is denoted by T^f

1.2 Proposition [1]:

Let X and Y be two spaces. Then $A_1 \subseteq X$ and $A_2 \subseteq Y$ be f – open (f – closed) sets in X and Y, respectively if and only if $A_1 \times A_2$ is f – open(f – closed) in $X \times Y$.

1.3 Definition [6]:

A subset *B* of a space *X* is called feebly neighborhood (f – neighborhood) of $x \in X$ if there is an f – open subset *O* of *X* such that $x \in O \subseteq B$

<u>1.4 Definition [10, 11,13]:</u>

Let *X* and *Y* be spaces and $f: X \rightarrow Y$ be a function, Then:

(i) f is called feebly continuous (f – continuous) function if $f^{-1}(A)$ is an f – open set in X for every open set A in Y.

(ii) *f* is called feebly irresolute (f – irresolute) function if $f^{-1}(A)$ is an f – open set in *X* for every f- open set *A* in *Y*.

1.5 Proposition [1]:

Let $f: X \to Y$ be a function of spaces. Then f is an f - continuous function if, and only if, $f^{-1}(A)$ is an f - closed set in X for every closed set A in Y.

1.6 Proposition [1]:

Let *X* and *Y* be spaces and let $f: X \rightarrow Y$ be a continuous, open function .Then:

- (i) f is f irresolute function.
- (ii) The image of any f open subset of X is an f open set in Y.

1.7 Definition [11,13]:

- (i) A function $f: X \rightarrow Y$ is called strongly feebly closed (st f closed) function if the image of each f closed subset of X is an f closed set in Y.
- (ii) A function $f: X \rightarrow Y$ is called strongly feebly open (st f open) function if the image of each f open subset of X is an f open set in Y.

1.8 Remark [6]:

(i) A function $f:(X, T) \rightarrow (Y,\tau)$ is f – tcontinuous if and only if $f:(X, T') \rightarrow (Y,\tau)$ is continuous.

(ii) A function $f: (X, T) \to (Y, \tau)$ is f – irresolute if and only if $f:(X, T^f) \to (Y, \tau^f)$ is continuous.

<u>1.9 Definition [2]:</u>Let X and Y be spaces. Then a function $f: X \to Y$ is called a st – f – homeomorphism if:

(i) f is bijective.

(ii) f is f – continuous.

(iii) f is st -f - closed (st -f - open).

<u>1.10 Proposition[6]:</u> Every homeomorphism is st – f – homeomorphism.

1.11 Proposition [1]:

Let X, Y be spaces and $f: X \rightarrow Y$ be a homeomorphism function. Then f is a st -f - closed function.

1.12 Definition [2]:

Let $(\chi_d)_{d \in D}$ be a net in a space *X* and $x \in X$. Then :

- i) $(\chi_d)_{d\in D}$ f converges to x (written $\chi_d \xrightarrow{f} x$) if $(\chi_d)_{d\in D}$ is eventually in every f neighborhood of x. The point x is called an f limit point of $(\chi_d)_{d\in D}$, and the notation $"\chi_d \xrightarrow{f} \infty"$ is mean that $(\chi_d)_{d\in D}$ has no f convergent subnet.
- ii) $(\chi_d)_{d \in D}$ is said to have x as an f cluster point [written $\chi_d \alpha$ x] if $(\chi_d)_{d \in D}$ is frequently in every f neighborhood of x.

1.13 Proposition[6]:

Let $(\chi_d)_{d\in D}$ be a net in a space (X, T) and x_o in X. Then $\chi_d \alpha x_o$ if, and only if, there exists a subnet $(\chi_{dm})_{dm\in D}$ of $(\chi_d)_{d\in D}$ such that $\chi_{dm} \xrightarrow{f} x_o$.

1.14 Remark:

Let $(\chi_d)_{d\in D}$ be a net in a space (X, T) such that $\chi_d \overset{f}{\alpha} x, x \in X$ and let A be an f – open set in X which contains x. Then there exists a subnet $(\chi_{dm})_{dm\in D}$ of $(\chi_d)_{d\in D}$ in A such that $\chi_{dm} \overset{f}{\longrightarrow} x$.

<u>1.15 Proposition [1]:</u> Let X be a space, $A \subseteq X$ and $x \in X$. Then $x \in \overline{A}^{\mathcal{F}}$ if and only if there exists a net $(\chi_d)_{d \in D}$ in A and $\chi_d \xrightarrow{f} X$.

1.16 Remark [5]: Let *X* be a space. Then:

(i) If $(\chi_d)_{d \in D}$ is a net in *X*, $x \in X$ such that $\chi_d \xrightarrow{f} x$ then $\chi_d \rightarrow x$.

(ii) If $(\chi_d)_{d \in D}$ is a net in *X*, $x \in X$ such that $\chi_d \alpha$ *x* then $\chi_d \alpha x$.

(iii) If $(\chi_d)_{d \in D}$ is a net in X, $x \in X$. Then $\chi_d \xrightarrow{f} x$ in (X, T) if, and only if, $\chi_d \rightarrow x$ in (X,

 T^{f}), and $\chi_{d} \alpha x$ in (*X*, T) if and only if $\chi_{d} \alpha x$ in (*X*, T^{f}).

<u>1.17 Proposition[6]</u>: Let $f: X \rightarrow Y$ be a function, $x \in X$. Then:

(i) *f* is f – continuous at *x* if and only if whenever a net $(\chi_d)_{d \in D}$ in *X* and $\chi_d \xrightarrow{f} x$ then $f(\chi_d) \longrightarrow f(x)$.

(ii) *f* is f – irresolute at *x* if and only if whenever a net $(\chi_d)_{d \in D}$ in *X* and $\chi_d \xrightarrow{f} x$ then $f(\chi_d) \xrightarrow{f} f(x)$.

1.18 Definition [11]:

A subset A of space X is called f - compact set if every f - open cover of A has a finite sub cover. If A=X then X is called an f - compact space.

<u>1.19 Proposition [1]:</u> A space (X, T) is an f – compact space if and only if every net in X has f – cluster point in X.

1.20 Proposition [1]:

Let X be a space and F be an f – closed subset of X. Then $F \cap K$ is f – compact subset of F, for every f – compact set K in X.

1.21 Definition [1]:

(i) A subset A of space X is called f - relative compact if A is f - compact. (ii) A space X is called f - locally f - compact if every point in X has an f - relative compact f - neighborhood.

1.22 Definition [2, 13, 8]:

Let $f: X \rightarrow Y$ is a function of spaces. Then:

- (i) f is called a feebly compact (f compact) function if $f^{-1}(A)$ is a compact set in X for every f compact set A in Y.
- (ii) f is called a strongly feebly compact(st f compact) function if $f^{-1}(A)$ is an f compact set in X for every f compact set A in Y.

2 - Strongly Feebly Bourbaki Proper Action

<u>2.1 Definition [4]:</u> A topological transformation group is a triple (G,X,φ) where G is a T_2 – topological group, X is a T_2 – topological space and $\varphi : G \times X \to X$ is a continuous function such that:

(i) $\varphi(g_1, \varphi(g_2, x)) = \varphi(g_1g_2, x)$ for all $g_1, g_2 \in G$, $x \in X$.

(ii) $\varphi(e, x) = x$ for all $x \in X$, where *e* is the identity element of *G*.

We shall often use the notation g.x for $\theta(g,x)$ g.(h,x)=(gh).x for $\theta(g, \theta(h,x))=$ $\theta(gh,x)$. Similarly for $H \subseteq G$ and $A \subseteq X$ we put $HA = \{ga | a \in H, a \in A\}$ for $\varphi(H, A)$. A set A is said to be invariant under G if GA = A.

2.2 Remark [2]:

Let *X* be a *G* – space and $x \in X$. Then:

(i) The function φ is called an action of G on X and the space X together with φ is called a G – space (or more precisely left G – space).

(ii) A set $A \subseteq X$ is said to be invariant under G if GA = A.

<u>2.3 Definition [2]:</u> Let X and Y be two spaces. Then $f: X \rightarrow Y$ is called a strongly feebly proper (st – f - proper) function if :

(i) f is f – continuous function.

(ii) $f \times I_Z: X \times Z \rightarrow Y \times Z$ is a st -f - closed function, for every space Z.

<u>2.4 Proposition [2]</u>: Let X, Y and Z be spaces, $f: X \rightarrow Y$ and g: $Y \rightarrow Z$ be two st -f - proper function, such that f is an f - irresolute function. Then $gof: X \rightarrow Z$ is a st -f - proper function.

<u>2.5 Proposition [2]</u>; Let $f_1: X_1 \rightarrow Y_1$ and $f_2: X_2 \rightarrow Y_2$ be two function. Then $f_1 \times f_2: X_1 \times X_2 \rightarrow Y_1 \times Y_2$ is st – f- proper function if and only if f_1 and f_2 are st – f – proper functions.

<u>2.6 Proposition[6]:</u> Let $f: X \rightarrow P = \{w\}$ be an f – continuous function on a space X. Then f is a st – f – proper function if and only if X is an f – compact, where w is any point which dose not belongs to X.

<u>2.7 Lemma</u>: Every f – continuous function from an f – compact space into a Hausdorff space is st – f- closed.

<u>2.10 Proposition</u>: Let $f_1: X \rightarrow Y_1$ and $f_2: X \rightarrow Y_2$ be two st -f proper functions. If X is a Hausdorff space, then the function $f: X \rightarrow Y_1 \times Y_2$, $f(x) = (f_1(x), f_2(x))$ is a st -f-proper function.

<u>2.11 Proposition [2]</u>: Let *X* and *Y* be tow spaces and $f: X \rightarrow Y$ be an f – continuous, one to one function. Then the following statements are equivalent:

(i) f is a st -f - proper function.

(ii) f is a st -f - closed function.

(iii) f is a st – f – homeomorphism of X onto f – closed subset of Y.

2.12 Proposition [2]:

Let *X* and *Y* be spaces and $f: X \rightarrow Y$ be an f – continuous function, such that $f^{-1}(\{y\})$ is an f – closed subset of *X*, $\forall y \in Y$. Then the following statements are equivalent: (i) *f* is a st – f – proper function.

(ii) f is a st – f – closed function and $f^{-1}(\{y\})$ is an f – compact set, for each $y \in Y$.

(iii) If $(\chi_d)_{d \in D}$ is a net in X and $y \in Y$ is an f – cluster point of $f(\chi_d)$, then there is an

f – cluster point $x \in X$ of $(\chi_d)_{d \in D}$ such that f(x) = y.

2.13 Remark [2]:

(i) The function φ is called an action of G on X and the space X together with φ is called a G – space (or more precisely left G – space).

(ii) The subspace $\{g.x | g \in G\}$ is called the orbit (trajectory) of x under G, which denoted by Gx [or $\gamma(x)$], and for every $x \in X$ the stabilizer subgroup G_x of G at x is the set $\{g \in G / gx = x\}$.

(iii) The continuous function $l_g: G \to G$ defined by $y \to gy$ is called the left translation by g. This function has inverse l_g^{-1} which is also continuous, moreover l_g is a homeomorphism. Similarly all right translation $r_g: G \to G$ are homeomorphism for every $g \in G$.

(iv) $Ag = r_g(A) = \{ag: a \in A\}; Ag$ is called the left translate of A by g, where $A \subseteq G$, $g \in G$. (v) $gA = l_g(A) = \{ga: a \in A\}; gA$ is called the right translate of A by g, where $A \subseteq G$, $g \in G$.

<u>2.14 Proposition</u>: Let G be a topological group and $(g_d)_{d \in D}$ be a net in G. Then:

(i) If $g_d \xrightarrow{f} e$, where *e* is identity element of *G*, then $gg_d \xrightarrow{f} g$ (or $g_d g \xrightarrow{f} g$) for each $g \in G$.

(ii) If $g_d \xrightarrow{f} \infty$, then $gg_d \xrightarrow{f} \infty$ (or $g_d g \xrightarrow{f} \infty$) for each $g \in G$.

(iii) If $g_d \xrightarrow{f} \infty$, then $g_d^{-1} \xrightarrow{f} \infty$.

<u>2.15 Proposition:</u> If (G, X, φ) is a topological transformation group, then φ is f – irresolute.

<u>2.16 Definition [6]:</u> A *G* – space *X* is called a strongly feebly Bourbaki proper *G* – space (st – f – proper *G* – space) if the function θ : $G \times X \rightarrow X \times X$ which is defined by $\theta(g, x) = (x, g.x)$ is a st – f – proper function.

2.17 Example:

The topological group $Z_2 = \{-1, 1\}$ [as Z_2 with discrete topology] acts on the topological space S^n [as a subspace of R^{n+1} with usual topology] as follows:

1. $(x_1, x_2, ..., x_{n+1}) = (x_1, x_2, ..., x_{n+1})$

 $-1. (x_1, x_2, \dots, x_{n+1}) = (-x_1, -x_2, \dots, -x_{n+1})$

Since Z_2 is f – compact, then by Proposition (2.6) the constant function $Z_2 \rightarrow P$ is a st – f – proper. Also the identity function is a st – f – proper, then by Proposition (2.4) the proper function of $Z_2 \times S^n$ into $P \times S^n$ is a st – f – proper.

Since $P \times S^n$ is homeomorphic to S^n , then by Proposition (1.10) $P \times S^n$ is a st -f - homeomorphic to S^n . Thus by Proposition (2.11) the st -f – homeomorphism of $P \times S^n$ onto S^n is st -f – proper. Since $Z_2 \times S^n \to P \times S^n$ is continuous and open function, then by Proposition (1.6.i) $Z_2 \times S^n \to P \times S^n$ is f – irresolute. Then by Proposition (2.4) the composition $Z_2 \times S^n \to S^n$ is a st -f – proper. Let φ be the action of Z_2 on S^n . Then φ continuous, one to one function so φ is f – continuous function. Since S^n is T_2 – space, then by Lemma (2.7) φ is a st – f – closed. Then by Proposition (2.11) φ is a st – f – proper function. Thus by proposition (2.10) $Z_2 \times S^n \to S^n \times S^n$ is a st – f – proper G- space.

2.18 Proposition [6]:

Let *X* be a *G* – space then the function θ : *G*×*X*→*X*×*X* which is defined by $\theta(g, x) = (x, g.x)$ is continuous function and $\theta^{-1}(\{(x, y)\})$ is closed in *G*×*X* for every $(x, y) \in X \times X$.

3 – Strongly feebly Palais proper action:

From now on, in this section by G – space we mean a completely regular topological T_2 – space X on which an f – locally f – compact, non – compact, T_2 – topological group G continuously on the left (always in the sense of st – f - Palais proper G – space). Now, in this section, definitions, propositions, theorems and Examples of a strongly feebly Palais proper G - space [st – f - Palais proper G – space] are given as well as the relation between st – f – Bourbaki proper and st – f – Palais proper G – space is studied.

3.1 Definition:

Let X be a G – space. A subset A of X is said to be feebly thin (f – thin) relative to a subset B of X if the set ((A, B)) = { $g \in G / gA \cap B \neq \phi$ } has an f – neighborhood whose closure is f – compact in G. If A is f – thin relative to itself, then it is called f – thin.

3.2 Remark:

The f – thin sets have the following properties:

(i) Since $(gA \cap B) = g(A \cap g^{-1}B)$ it follows that if A is f – thin relative to B, then B is f – thin relative to A.

(ii) Since $(gg_1A \cap g_2B) = g_2(g_2^{-1}g g_1A \cap B)$ it follows that if *A* is f – thin relative to *B*, then so are any translates *gA* and *gB*.

(iii) If A and B are f – relative thin and $K_1 \subseteq A$ and $K_2 \subseteq B$, then K_1 and K_2 are f – relatively thin.

(iv) Let X be a G – space and K_1 , K_2 be f – compact subset of X, then ((K_1 , K_2)) is f – closed in G.

(v) If K_1 and K_2 are f – compact subset of G – space X such that K_1 and K_2 are f – relatively thin, then $((K_1, K_2))$ is an f – compact subset of G.

Proof:

The prove of (i), (ii), (iii) and (v) are obvious.

(iv) Let $g \in \overline{((K_1, K_2))}^f$. Then by Proposition (1.16) there is a net $(g_d)_{d \in D}$ in $((K_1, K_2))$ such that $g_d \xrightarrow{f} g$. Then we have net $(k_d^1)_{d \in D}$ in K_1 , such that $g_d k_d^1 \in K_2$, since K_2 is f - compact, then by Theorem (1.14) there exists a subnet $(g_{d_m} k_{d_m}^1)$ of $(g_d k_d^1)$ such that $g_{d_m} k_{d_m}^1 \xrightarrow{f} k_o^2$, where $k_o^2 \in K_2$. But $(k_{d_m}^1)$ in K_1 and K_1 is f - compact, thus there is a point $k_o^1 \in K_1$ and a subnet of $k_{d_m}^1$ say itself such that $k_{d_m}^1 \xrightarrow{f} k_o^1$, Theorem (1.14). Then by Proposition (1.18.ii) $g_{d_m}k_{d_m}^1 \xrightarrow{f} gk_o^1 = k_o^2$, which mean that $g \in ((K_1, K_2))$, there fore $((K_1, K_2))$ is f – closed in G.

3.3 Definition:

A subset S of a G – space X is a feebly small (f – small) subset of X if each point of X has f – neighborhood which f – thin relative to S.

3.4 Theorem:

Let *X* be a G – space. Then:

(i) Each f – small neighborhood of a point x contains an f – thin neighborhood of x.

- (ii) A subset of an f small set is f small.
- (iii) A finite union of an f small sets is f small.
- (iv) If *S* is an f small subset of *X* and *K* is an f compact subset of *X* then *K* is f thin relative to *S*.

Proof:

i) Let *S* is an f – small neighborhood of *x*. Then there is an f – neighborhood *U* of *x* which is f – thin relative to *S*. Then ((*U*, *S*)) has f – neighborhood whose closure is f – compact. Let $V = U \cap S$, then *V* is f – neighborhood of *x* and ((*V*, *V*)) \subseteq ((*U*, *S*)), therefore *V* is *V* is f – thin neighborhood of *x*.

ii) Let *S* be an f – small set and $K \subseteq S$. Let $x \in X$, then there exists an f – neighborhood *U* of *x*, which is f – thin relative to *S*. Then $((U, K)) \subseteq ((U, S))$, thus ((U, K)) has f – neighborhood whose closure is f – compact. Then *K* is f – small.

iii) Let $\{S_i\}_{i=1}^n$ be a finite collection of f – small sets and $y \in X$. Then for each i there is f – neighborhood K_i of y such that the set $((S_i, K_i))$ has f – neighborhood whose closure is f – compact. Then $\bigcup_{i=1}^n ((S_i, K_i))$ has f – neighborhood whose closure is f – compact. But $((\bigcup_{i=1}^n S_i, \bigcap_{i=1}^n K_i)) \subseteq \bigcup_{i=1}^n ((S_i, K_i))$, thus $\bigcup_{i=1}^n S_i$ is an f – small set.

iv) Let *S* be an f – small set and *K* be f – compact. Then there is an f – neighborhood U_k of *K*, $\forall k \in K$, such that U_k is f – thin relative to *S*. Since $K \subseteq \bigcup_{k \in K} U_k$.i.e., $\{U_k\}_{k \in K}$ is f – open cover of *K*, which is f – compact, so there is a finite sub cover $\{U_{k_i}\}_{i=i}^n$ of $\{U_k\}_{k \in K}$, since $((U_{k_i}, S))$ has f – neighborhood whose closure is f – compact, thus $((\bigcup_{i=1}^n U_{k_i}, S))$ so is . But $((K,S)) \subseteq ((\bigcup_{i=1}^n U_{k_i}, S))$ therefore *K* is f – thin relative to *S*.

3.5 Definition:

A G – space X is said to be a strongly feebly Palais proper G - space (st – f – Palais proper G – space) if every point x in X has an f – neighborhood which is f – small set.

3.6 Examples:

(i) The topological group $Z_2=\{-1, 1\}$ act on itself (as Z_2 with discrete topology) as follows:

 $r_1.r_2 = r_1 r_2 \qquad \forall r_1, r_2 \in \mathbb{Z}_2.$

for each point $x \in \mathbb{Z}_2$, there is an f – neighborhood which is f – small U of x where $U=\{x\}$, i.e., for any point y of Z₂, there exists an f – neighborhood V of y such that $V=\{y\}$ and $((U, V)) = \{r \in \mathbb{Z}_2 \mid rU \cap V \neq \phi\} = \mathbb{Z}_2$, then ((U, V)) has f – neighborhood whose closure is compact.

(ii) $R - \{0\}$ be $f - \text{locally } f - \text{compact topological group (as } R - \{0\} \text{ with discrete topology) acts on the completely regular Hausdorff space } R^2 \text{ as follows:}$

 $r.(x_1, x_2) = (rx_1, rx_2)$, for every $r \in \mathbb{R} - \{0\}$ and $(x_1, x_2) \in \mathbb{R}^2$.

Clear \mathbb{R}^2 is $(\mathbb{R} - \{0\})$ – space. But $(0,0) \in \mathbb{R}^2$ has no f – neighborhood which is an f – small. Since for any two f – neighborhoods *U* and *V* of (0,0) then $((U,V)) = \mathbb{R} - \{0\}$. Since R is not compact, then R is not f – compact. Thus \mathbb{R}^2 is not a st – f – Palais proper $(\mathbb{R} - \{0\})$ – space.

3.7 Proposition:

Let *X* be a G – space . Then:

- (i) If X is st f Palais proper G space , then every f compact subset of X is an f small set.
- (ii) If X is a st -f Palais proper G space and K is an f compact subset of X, then ((K,K)) is an f compact subset of G.

Proof:

i) Let A be a subset of X such that A is f - compact. Let $x \in X$, since X is a st - f - proper G - space then there is an f - neighborhood of x U which is f - small. Then for every $a \in A$ there exists a neighborhood U_a which is f - small, then $A \subseteq \bigcup_{a \in A} U_a$, since A is

f – compact, then there exists $a_1, a_2, ..., a_n \in A$ such that $A \subseteq \bigcup_{i=1}^n U_{a_i}$, Thus by Theorem

(3.4.iii.ii) *A* is an f – small set in *X*.

ii) Let X be a st -f - proper G - space and K is f - compact, then by (i) K is an f - small subset of X, and by Theorem (3.4.iv) K is f - thin, so ((K,K)) has f - neighborhood whose closure is f - compact. Then by Remark (3.2.ix) ((K,K)) is f - closed in G. Thus ((K,K)) is f - compact.

<u>3.8 Definition</u>: Let X be a G – space and $x \in X$. Then $J^f(x) = \{y \in X: \text{ there is a net } (g_d)_{d \in D} \text{ in } G \text{ and there is a net } (\chi_d)_{d \in D} \text{ in } X \text{ with } g_d \xrightarrow{f} \infty \text{ and } \chi_d \xrightarrow{f} X \text{ such that } g_d x \xrightarrow{f} Y \} \text{ is called feebly first prolongation limit set of } x.$

3.9 Proposition:

Let *X* be a *G* – space. Then *X* is a st – f – Bourbaki proper *G* – space if and only if $J^{f}(x) = \phi$ for each $x \in X$.

<u>Proof:</u> \Rightarrow Suppose that $y \in J^f(x)$, then there is a net $(g_d)_{d \in D}$ in G with $g_d \xrightarrow{f} \infty$ and there is a net $(\chi_d)_{d \in D}$ in X with $\chi_d \xrightarrow{f} x$ such that $g_d\chi_d \xrightarrow{f} y$, so $\theta((g_d,\chi_d))=(x_d, g_d\chi_d) \xrightarrow{f} (x, y)$. But X is a st -f - Bourbaki proper, then by Proposition (2.12) there is $(g, x_1) \in G \times X$ such that $(g_d, x_d) \alpha$ (g, x_1) . Thus $(g_d)_{d \in D}$ has a sub net (say itself). such that $g_d \xrightarrow{f} g$, which is contradiction, thus $J^f(x) = \phi$

 $\leftarrow \text{Let } (g_d, \chi_d)_{d \in D} \text{ be a net in } G \times X \text{ and } (x, y) \in X \times X \text{ such that } \theta((g_d, \chi_d)) = (\chi_d, g_d\chi_d) \alpha(x, y), \text{ so } (\chi_d, g_d\chi_d)_{d \in D} \text{ has a sub net, say itself, such that } (\chi_d, g_d\chi_d) \xrightarrow{f} (x, y), \text{ then } \chi_d \xrightarrow{f} x \text{ and } g_d\chi_d \xrightarrow{f} y. \text{ Suppose that } g_d \xrightarrow{f} \infty \text{ then } y \in J^f(x), \text{ which is contradiction }. \text{ Then } X \in J^f(x), \text{ which is contradiction } X \in J^f(x), \text{ which is contradiction } X \in J^f(x), \text{ which is contradiction } X \in J^f(x), \text{ then } \chi_d \xrightarrow{f} X \in J^f(x), \text{ which is contradiction } X \in J^f(x).$

there is $g \in G$ such that $g_d \xrightarrow{f} g$, then $(g_d, \chi_d) \xrightarrow{f} (g, x)$ and $\theta(g, x) = (x, y)$. Thus by Proposition (2.18) and Proposition (2.12) X is a st – f – Bourbaki proper G – space.

3.10 Proposition:

Let *X* be a *G* – space and *y* be a point in *X*. Then *y* has no f – small whenever $y \in J^{f}(x)$ for some point $x \in X$.

Proof:

Let $y \in J^f(x)$, then there is a net $(g_d)_{d \in D}$ in G with $g_d \xrightarrow{f} \infty$ and a net $(\chi_d)_{d \in D}$ in X with $\chi_d \xrightarrow{f} x$ such that $g_d \chi_d \xrightarrow{f} y$. Now, for each f – neighborhood S of y and every f – neighborhood U of x there is $d_o \in D$ such that $\chi_d \in U$ and $g_d \chi_d \in S$ for each $d \ge d_o$, thus $g_d \in ((U,S))$, but $g_d \xrightarrow{f} \infty$, thus ((U,S)) has no f – compact closure . i.e., S is not an f – small neighborhood.

3.11 Proposition:

Let *X* be a st – f – Palais proper *G* – space. Then $J^{f}(x) = \phi$ for each $x \in X$. <u>Proof:</u>

Suppose that there exists $x \in X$ such that $J^f(x) \neq \phi$, then there exists $y \in J^f(x)$. Thus there is a net $(g_d)_{d\in D}$ in G with $g_d \xrightarrow{f} \infty$ and a net $(\chi_d)_{d\in D}$ in X with $\chi_d \xrightarrow{f} X$ such that $g_d\chi_d \xrightarrow{f} Y$. Since X be a st -f -proper G -space, then there is an f -small (f -thin) f neighborhood U of x. Thus there is $d_o \in D$ such that $g_d\chi_d \in U$ and $\chi_d \in U$ for each $d \ge d_o$, so $g_d \in ((U,U))$, which has an f - compact closure , therefore $(g_d)_{d\in D}$ must have an f convergent subnet , which is a contradiction. Thus $J^f(x) = \phi$ for each $x \in X$.

In general, the definition of a st -f - Palais proper G - space implies that st -f - Bourbaki proper G - space, which is review in following proposition.

3.12 Proposition:

Every st -f - Palais proper G - space is st -f - Bourbaki proper G - space. <u>Proof:</u>

By Propositions (3.11) and (3.9).

The converse of Propositions (3.12), is not true in general as the following example shows.

3.13 Example:

Let *G* be a topological group where *G* is not f - locally f - compact, then *G* is acts on itself translation. The map $\theta: G \times G \rightarrow G \times G$, which is defined by $\theta(g_1, g_2) = (g_2, g_1g_2)$, $\forall (g_1, g_2) \in G \times G$ is a st -f - homeomorphism, hence it is st -f - Bourbaki proper *G* - space. But it is not st -f - Palais proper *G* - space, because *G* is not f - locally f - compact. <u>3.14 Lemma:</u> Let *X* be an f - locally f - compact *G* - space. Then $J^f(x) = \phi$ for each $x \in X$ if and only if every pair of points of *X* has f - relatively thin f - neighborhood.

3.15 Proposition:

Let X be an f – locally f – compact G – space. Then the definition of st – f – Palais proper G – space and the definition st – f – Bourbaki proper G – space are equivalent.

Proof:

The definition of st - f – Palais proper G – space implies to the definition st - f – Bourbaki proper G – space. by Propositions (3.12).

Conversely, let X be a st -f - Bourbaki proper G - space, then by Proposition (3.9) $J^f(x) = \phi$ for each $x \in X$. Let $x \in X$, we will how that x has a f - small f - neighborhood. Since X is f - locally f - compact, then there is a f - compact f - neighborhood U_x of X, we claim that U_x is an f - small f - neighborhood of x. Let $y \in X$, we may assume without loss of generality, that U_y is an f - compact f - neighborhood of y such that U_x and U_y are f - relative thin i.e., ((U_x, U_y)) has f - compact closure, by Lemma(3.14). therefore U_x is an f - small f - neighborhood of x. Thus X is st -f - Palais proper G - space.

REFERENCES

[1] AL-Badairy, M. H. ,"on Feebly proper Action" . M.Sc. ,Thesis, University of Al-Mustansiriyah,(2005).

[2] Alyaa , Y.K. , "On Strongly Feebly proper Function", M.Sc., Thesis, University of Kufa,(2008).

[3] Bredon, G.E., "Introduction to compact transformation Groups" Academic press, N.Y., 1972.

[4] Galdas, MGeorgiou, D.N. and Jafari, S. ,"Characterizations of Low separation axiom via α -open sets and α -closer operator", Bol. Soc. paran. Mat., SPM, Vol. (21), (2003). [5] Habeeb K. A. and Ahmed T. H." Feebly Limit Sets" *University of Al* – *Muthana*(2010)

[6] Habeeb K. A. and Ahmed T. H." Strongly feebly Bourbaki proper Actions" University

of Al - Muthana(2010)

[7] Jankovic, D. S. and Reilly, I.L.," On semi – separation properties", Indian J. pur Appl. Math. 16(9), (1985), 957 – 964.

[8] Maheshwari, S. N. and Tapi, U. "On α – irresolute mappings" ,Ann. Univ. Timisoara S. sti. math. 16 (1978), 173 – 77.

[9] Maheshwari, S. N. and Thakur, S.S. "On α – irresolute mappings" ,Tamkang math. 11 (1980), 209 – 214.

[10] Maheshwari, S. N. and Thakur, S.S. "On α – compact spaces", Bulletin of the Institute of Mathematics, Academia Sinica, Vol. 13, No. 4, Dec. (1985), 341 – 347.

[11] Navalagi, G.B., "Definition Bank in General Topology", (54) G (1991).

[12] Navalagi, G.B., "Quasi α – closed , strongly α – closed and weakly α – irresolute mapping", National symposium Analysis and its Applications, Jun. (8 – 10), (1998).

[13] Njastad , O., "On some classes of nearly open sets", pacific J. Math., 15 (1965), 961 – 970.

[14] Reilly, I.L. and Vammanamurthy, M.K.," On α – continuity in Topological spaces", Acta mathematics Hungarica, 45, (1985), 27 – 32.

[13] Saddam, J.S.," On Strongly proper Actions", M.Sc., Thesis, University of Al-Mustansiriyah,(2000).