University of Windsor

Scholarship at UWindsor

Electronic Theses and Dissertations

2016

Identitying Suspended Accounts In Twitter

Xiutian Cui
University of Windsor

Follow this and additional works at: https://scholaruwindsor.ca/etd

Recommended Citation

Cui, Xiutian, "Identifying Suspended Accounts In Twitter" (2016). Electronic Theses and Dissertations. 5725.
https://scholaruwindsor.ca/etd/5725

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These
documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative
Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the
copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of
the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please
contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at $19-253-3000ext. 3208.


https://scholar.uwindsor.ca?utm_source=scholar.uwindsor.ca%2Fetd%2F5725&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F5725&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F5725&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/5725?utm_source=scholar.uwindsor.ca%2Fetd%2F5725&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Identifying Suspended Accounts in
Twitter

By
Xiutian Cui
A Thesis
Submitted to the Faculty of Graduate Studies
through the School of Computer Science
in Partial Fulfillment of the Requirements for

the Degree of Master of Science
at the University of Windsor

Windsor, Ontario, Canada

2016

(©2016 Xiutian Cui



Identifying Suspended Accounts in Twitter

by

Xiutian Cui

APPROVED BY:

A. Hussein
Department of Mathematics and Statistics

L. Rueda
School of Computer Science

J. Lu, Advisor
School of Computer Science

May 13th, 2016



DECLARATION OF ORIGINALITY

I hereby certify that I am the sole author of this thesis and that no part of this
thesis has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon
anyones copyright nor violate any proprietary rights and that any ideas, techniques,
quotations, or any other material from the work of other people included in my
thesis, published or otherwise, are fully acknowledged in accordance with the standard
referencing practices. Furthermore, to the extent that I have included copyrighted
material that surpasses the bounds of fair dealing within the meaning of the Canada
Copyright Act, I certify that I have obtained a written permission from the copyright
owner(s) to include such material(s) in my thesis and have included copies of such
copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as
approved by my thesis committee and the Graduate Studies office, and that this thesis

has not been submitted for a higher degree to any other University or Institution.

111



ABSTRACT

Large amount of Twitter accounts are suspended. Over five year period, about
14% accounts are terminated for reasons not specified explicitly by the service provider.
We collected about 120,000 suspended users, along with their tweets and social re-
lations. This thesis studies these suspended users, and compares them with normal
users in terms of their tweets.

We train classifiers to automatically predict whether a user will be suspended.
Three different kinds of features are used. We experimented using Nave Bayes
method, including Bernoulli (BNB) and multinomial (MNB) plus various feature
selection mechanisms (mutual information, chi square and point-wise mutual informa-
tion) and achieved F1=78%. To reduce the high dimensions, in our second approach
we use word2vec and doc2vec to represent each user with a vector of a shot and fixed
length and achieved F1 (73%) using SVM with RBF function kernel. Random forest
works best with F1=74% on this approach.
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CHAPTER 1

Introduction

Twitter is an online social network that provides users to send and read 140-short
messages named "tweets”. It has already become one of the most-visited websites all
over the world. According to alexa.com, Twitter ranks 9th in the world top websites.
About 320 million users sending and reading tweets on Twitter every month and the
total number of registered users has already been over 1 billion [I]. By using tweets,
Twitter now has been considered as one of the fastest way to share information.
Obviously, it also attracts spammers.

Spammers are defined as those who send unsolicited tweets (spam), especially ad-
vertising tweets, as well as repeatedly sending mass duplicate messages [2, [3]. Spam-
mers are usually generated by computers and works automatically. Twitter also faces
the same problem as the war between websites and spammers never ends. Twitter
will suspend users once they detect the behaviors of users abnormally, such as sending
spam or abusing tweets.

So it is important to analyze the suspended users to explore some methods to pre-
dict whether a user is spammer or not. Some approaches have been studied, including
machine learning technologies [4, [5], URL blacklists [6l [7], and some spammer traps
[8, @].

However all these approaches faced some problems. Machine learning approaches
have already been widely used to detect spam email. Compared to classify spammers,
detecting spam email is easy because they can collect a huge number of spam email
and then train a classifier on it. But for detecting spammers, thing changed a lot
because we don’t have a large dataset of spammers. In the work of [4], they collected
only 355 spammers and the authors of [5] collected 77 spammers, which should be
considered too small to draw the whole picture of spammers on Twitter.

Second, machine learning methods are based on the features of spammers. These

features can be content attributes, which are extracted from the tweets sent by users;
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and user account attributes, such as how many friend or follower he has. However,
these features can be easily manipulated by spammers.

Other methods, such as blacklist or traps cannot work well all the time. Spam-
mers can easily avoid blacklists and traps by changing the approach of sending spam
message and the content because it is costless to generate new spammers.

In our work, we analyzed a large number of suspended users and proposed a
spammer prediction method. Unlike the previous work, we collected tweets from
113,347 suspended users during 5 years.

Based on this dataset, we combined the traditional machine learning technologies
and Paragraph Vector word embedding method to mapping tweets into vectors so
that we can predict whether a user will be suspended or not. We tried to classify
them by Naive Bayes classifier on n-gram models derived from the tweets. We also
tried 4 different feature selection methods, Mutual Information, Pointwise Mutual In-
formation, Weighted Averaged Pointwise Mutual Information and x?. These methods
can rank the features by score so that we can know which features are important and
which features are noise. By analyzing the classification results on different selected
features of these feature selection methods, we found that almost half of unigram fea-
tures are noise and 9/10 of bigram features are noise. After removing these features,
we achieved 76.75 % accuracy and 78.54% F1 on using top 10° features selected by
WAPMI.

We also tried different word embedding methods to convert users into vectors. We
tried some classifiers on converted user vectors. When using SVM with RBF function
kernel, we achieved 73.28% accuracy and 73.39% F1 on 1,000 dimension user vector
trained by Paragraph Vector method. Although this result is lower compared to the
result of classification on feature selected n-gram models, this result is useful because
it only depends on a 1,000 dimension vectors.

After analyzing the characteristic of bad words using in suspended users, we found
the number of bad words using users is as twice larger as that number of normal users.
And we also introduced Badscore which can rank words by how close they are from
bad words.

The remainder of this thesis is structured as follows: In chapter II, we review
the previous works on spammer detection in OSNs. In chapter III, we address our
spammer detection method in detail. In chapter IV, we applied our experiments on

twitter suspended users dataset and tried 3 different model to encode words in tweets,
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together with classifications and feature selections on it. Finally, in chapter VI, we

summarize our work and give out the conclusions.



CHAPTER 2

Review of The Literature

In this chapter, we will review some previews studies about suspended users on twit-
ter. By now, there are not many works analyzing the characteristic of suspended
users. The only work we found is proposed by Thomas et al [10]. They collected and
analyzed 1.1 million accounts suspended by Twitter. Their results show that 77%
spammers are suspended in the first day of their tweets, which makes them hard to
form relationships with normal users. Instead, 17% of them use hashtags and 53% of
them use mentions to reach out to normal users.

Other works were focusing on analyzing spammers and trying to find a way to de-
tecting spammers based on the extracted features [4] [IT] or the relationships between
spammers [11], [5].

In 2010, Benevenuto et al. [4] addressed a study on the spammers who focused on
sending spam concluding the trending topics in Twitter. The main method they used
is to collect user profiles and tweets, then classify them into two groups, spammer and
non-spammer, by using Support Vector Machine (SVM). There are four steps in their
approach, crawling user data, labeling users, analyzing the characteristics of tweet
content and user behaviours and using a supervised classifier to identify spammers.

In the same year, Moh et al. [5] analyzed how much information gained from the
friends and followers of one user. They also proposed a learning process to determine
whether or not a user is spammer. There are two steps in this process. The first
step is to train a categorization algorithm to distinguish between spammers and non-
spammers on a set of basic user features. And the second step is to train a classifier
to generate new features, which depend on a user’s followers being spammers or non-
spammers.

In 2012, Ghosh et al. [11] analyzed over 40,000 spammer accounts suspended
by Twitter and found out that link farming is wide spread and that a majority

of spammers’ links are farmed from a small fraction of Twitter users, the social
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capitalists, who are themselves seeking to amass social capital and links by following
back anyone who follows them. And they proposed a ranking system, Collusionrank,

to penalize users from connecting to spammers.

2.1 Approaches

The works which are using machine learning methods to detecting spammers are using
nearly the same approaches. First they collected data from twitter, including tweets,
user account attributes and user relationships. After collecting, they will extract
features from these data and try to train classifiers on the extracted features to see
whether the features can represent the users and how well the classifiers work.

In order to classify the users into spammers and non-spammers, they used su-
pervised classifier. So they need to label one collection that contains spammers and
non-spammers. In this paper they focused on the users who sent the tweets about
trending topic, so they need to build one collection of users who sent topics of (1) the
Michael Jackson’s death, (2) Susan Boyle’s emergence, and (3) the hashtag ”#music-
monday”. 8,207 users have been labeled manually, including 355 spammers and 7,852
non-spammers. They then randomly chose 710 non-spammers to reduce the number
of non-spammers. Thus, the total size of labeled collection is 1,065 users.

To use machine learning algorithms, they then identified the attributes of users.
The attributes are divided into two categories: content attributes and user behavior
attributes. Content attributes are the ones represented in what the users posted.
User behavior attributes are the properties of the users’ acting on Twitter. Both of

these two kinds of attributes are shown in Table [1l
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Category Attribute

number of hashtags per number of words on

each tweet

number of URLs per words

) number of words of each tweet
Content Attributes

number of characters of each tweet

number of URLs on each tweet

number of hashtags on each tweet

number of numeric characters (i.e. 1,2,3)
that appear on the text, number of users

mentioned on each tweet

number of times the tweet has been retweeted
(counted by the presence of " RT @Qusername”
on the text)

number of followers

number of followees

fraction of followers per followees

age of the user account

User Behavior Attributes - -
number of times the user was mentioned

number of times the user was replied to

number of times the user replied someone

number of followees of the users followers

number tweets receveid from followees

existence of spam words on the users screen

name

the minimum, maximum, average, and me-

dian of the time between tweets

number of tweets posted per day and per

week

TABLE 1: User Attributes in Benevenuto’s work

After extracted features, they used SVM to classify user collections with the at-
tributes that they identified in the previous section. The implementation of SVM they
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used in their experiments is provided by libSVM. Each user in the user collection is
presented by a vector of values, which contains the attributes of this user. SVM will
first trains a model from the labeled user dataset, and then applies this model to the
classify the unknown users into two classes: spammers and non-spammers.

In the work [5], the authors used almost same idea of [4] but they introduced a
two steps categorization framework which can classify users not only based on the
content and user behavior attributes, and it also relies on the user’s friendships.
The first step of this framework is to train a model based on manually labelled user
collections. And then one extended attribute set will be generated for each user based
on the predictions provided by the first learner and the user’s position in the social

network. The learner will then be trained on this extended attribute set.

Category Attribute

Friend and Follower Attributes | follower-friend ratio

Basic Attributes number of posts marked as favorites

Friend and Follower Attributes | friends added per day

Friend and Follower Attributes | followers added per day

Basic Attributes account is protected?

Basic Attributes updates per day

Basic Attributes has url?

Basic Attributes number of digits in account name

Friend and Follower Attributes | reciprocity.

TABLE 2: User Attributes in Moh’s work

They extracted an attribute set for each user, which are shown in Table 2 Unlike
the previous works, the authors took the friend follower relationship into consider-
ation. They added some attributes which can measure the social network of users.
For example, the reciprocity is the rate of how likely a user follows his followers. In
practice, spammers tends to follow all the users who follows them. And they also
added some new basic attributes such as the number of digits in account name, which
has been proved useful in classification by Krause et al.[12].

The second step is to compute trust metric based on the classification result of
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first step using extracted attribute set. The authors modified the original formula.

trust metric = Z !
N #users followed

followers

They applied the following modifiers to this formula:

e legit accumulate only the values coming from users who are predicted to be

legitimate users
e capped accumulate only values coming from up to 200 users

1 : 1
Fusers followed X #users followed instead of #users followed

e squared use

They tried the combinations of different classifiers on different steps. Then they
calculated the accuracy, precision, recall, F1, and finally draw a Receiver Operating
Characteristic Curve (ROC curve) to evaluate the test results of each combination.

Unlike these two papers which are focusing on detecting spammers on Twitter, the
work of [I1] studied the link farm formed by spammers on Twitter. The dataset they
used includes a complete snapshot of the Twitter network and the complete history
of tweets posted by all users as of August 2009 [13]. To identify the spammers in this
dataset, they collected the user accounts which are suspended by Twitter. Although
the primary reason for suspension of accounts is spam-activity, the accounts which
are inactive for more than 6 months can also be suspended. One URL blacklist which
contains the most popular URLs in spam tweets has been constructed to confirm
that the suspended users are truly spammers. The authors fetched all the bit.ly or
tinyurl URLs that were posted by each of the 379,340 suspended accounts and found
that 41,352 suspended accounts had posted at least one shortened URL blacklisted
by either of these two shortening services. These suspended accounts were considered
to be spammers.

The authors studied how spammers acquire links to study link farm in Twitter by
analyzing the nodes following and followed by the 41,352 spammers. They defined the
nodes followed by a spammer as spam-targets and the nodes that follow a spammer
as spam-followers. Spam-targets who also follow the spammer are called targeted
followers. After computing the numbers of spammer-targets, spammer-followers and
targeted followers, they found out that the majority (82%) of spam-followers have
also been targeted by spammers. And targeted followers are likely to reciprocate most

links from spammers. Top 100,000 spammer followers (rank based on the number of
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links they created to the spammers) exhibited a reciprocation of 0.8 on average and
created 60% links to the spammers.

The authors also computed the Pagerank of each user in this dataset and found
out that by acquired large farm links from spammer followers, some of the rank of
spammers are very high, 7 spammers rank within the top 10,000 (0.018% of all users)
304 and 2,131 spammers rank within the top 100,000 (0.18% of all users) and 1 million
(1.8% of all users) users according to Pagerank, respectively.

The authors then analyzed the users who willing to reciprocate links from arbitrary
users and the reason why they need to farm links. They plotted how the probability
of a user reciprocating to a link from spammers varies with the user’s indegree and
found out that the lay users, who have low indegree, rarely respond to spammers. On
the other hand, users with high indegree value are more likely to follower a spammer.

And the authors also found out that the top link farmers (top 100,000 spam-
followers) sometimes are active contributors instead of spammers. The motivating
factor for such users might be the desire to acquire social capital and thereby, influ-
ence.

The authors proposed Collusionrank, a Pagerank-like approach, to combat link
farming in Twitter. Collusionrank algorithm can also be combined with any ranking
strategy used to identify reputed users, in order to filter out users who gain high
ranks by means of link farming. To evaluating Collusionrank, the authors computed
the Collusionrank scores of all users in the Twitter social network, considering as the
set of identified spammers S, a randomly selected subset of 600 out of the 41,352
spammers.

The result of evaluation showed the effect of ranking spammers of Collusionrank
is great. While more than 40% of the 41,352 spammers appear within the top 20%
positions in Pagerank, 94% of them are demoted to the last 10% positions in Collu-
sionrank. Even when only a small set of 600 known spammers is used, this approach
selectively filtered out from the top positions of Pagerank, most of the unidentified

spammers and social capitalists who follow a large number of spammers.

2.2 Experiments

We compare the results from works [4, 5], which are trying to detect spammers based

on machine learning approaches.
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In [4], they collected all user IDs ranging from 0 to 80 million since August 2009,
which have been considered as all users on Twitter since there is no single user in the
collected data had a link to one user whose ID is greater than 80 million. Finally they
collected 54,981,152 used accounts that were connected to each other by 1,963,263,821
social links, together with 1,755,925,520 tweets. Among those users, there are 8%
accounts were set private and were ignored. The detail description of this dataset can
be found on their project homepage[14].

They then trained SVM based on the features listed in Table [I} Table [3] shows
the confusion matrix of classification result. About 70% of spammers and 96% of
non-spammers were correctly classified. The Micro-F1 (which is calculated by first
computing global precision and recall values for all classes, and then calculating F1)
is 87.6 %.

Predicted
Spammer | Non-spammers
Spammer 70.1% 29.9%
True
Non-spammer 3.6% 96.4%

TABLE 3: Basic classification result in Benevenuto’s work

To reduce the misclassifying of non-spammers, the authors used two approaches.
First is to adjust J parameter in SVM. In SVM, J parameter can be used to give
priority to one class over the other. With the varying of J, the rate of correctness of
classify can be increased to 81.3% (J = 5), with the misclassifying of legitimate users
has been increased to 17.9%.

The second approach they used is to reduce the size of attributes set. By sorting
the attributes by their importance, the authors can remove the non-important at-
tribute and give more weight to the important ones. They used two feature selection
methods, information gain and 2, which are available in Weka. The results of these
two methods are similar and the top 10 attributes in result are same. Table [4f shows
the top 10 result of feature selection. And the result of classification when just using
top 10 attributes instead of all attributes shows that top 10 attributes are enough to

classify the users.

10
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Rank

Attribute

© 00 N O Ot = W N

—
]

fraction of tweets with URLs

age of the user account

average number of URLs per tweet
fraction of followers per followees
fraction of tweets the user had replied
number of tweets the user replied
number of tweets the user receive a reply
number of followees

number of followers

average number of hashtags per tweet

TABLE 4: Top 10 attributes in Benevenuto’s work

The authors of [5] collected the account names of spammers using the web page

twitspam.org, where users can submit the names of suspected spammers. Another

part of spammers were added by the authors during they collected data. They ob-

tained non-spammers from the users they followed. In total they collected one dataset

that contains 77 spammers and 155 non-spammers. And for each user in this dataset,

they also collected the information on up to 200 of their followers.

For there are two steps in classification, the authors tried different combination of

classifiers. Then they calculated the accuracy, precision, recall, F1, and finally draw

a Receiver Operating Characteristic Curve (ROC curve) to evaluate the test results

of each combination. Table Bl and Table [6] show the evaluation metrics for RIPPER

algorithm and C4.5 algorithm.

Metric basic basict+peer peer basic+trust all features
Precision | 0.79  0.80 0.75 0.88 0.84
Recall 0.84 0.83 0.71 0.85 0.85
F1 0.81 0.81 0.73 0.87 0.84
Accuracy | 0.87  0.87 0.82 0.91 0.90

TABLE 5: Evaluation metrics for RIPPER algorithms with the different extended

feature sets in Moh’s work

11
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Metric basic basic+peer peer basic+trust all features
Precision | 0.80 0.81 0.72 0.85 0.86
Recall 0.85 0.79 0.67 0.85 0.86
F1 0.83 0.80 0.69 0.85 0.86
Accuracy | 0.88  0.87 0.80 0.90 0.90

TABLE 6: Evaluation metrics for C4.5 algorithms with the different extended feature

sets in Moh’s work

The authors also tried to measure the information provided by each features. To
do so, the authors calculated the information gain and the chi square values for each
feature in extended feature set.

The authors claimed that using RIPPER in two steps achieved the best perfor-
mance among the combinations of classifiers. And top 10 features ranked by infor-

mation gain and chi square value is shown in Table. [7] and Table. [§

Attribute Information gain
spammers to legit followers 0.48
friend-follower ratio 0.35
friends per day 0.34
trust metric legit. 0.34
trust metric legit. capped 0.29
trust metric 0.29

friend-follower average for friends | 0.27

average protected for followers 0.25
trust metric legit. square 0.24
average protected for friends 0.24

TABLE 7: Top 10 Information gain values for data set extended with RIPPER in
Moh’s work. Added attributes are bold.
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Attribute Chi square value
spammers to legit followers 128.68

friends per day 106.72

trust metric legit. 105.49
friend-follower ratio 101.23

trust metric legit. capped 94.8697

trust metric 88.78
friend-follower average for friends | 81.54

average protected for followers 80.57

trust metric legit. square 79.93

trust metric legit. square capped | 74.99

TABLE 8: Top 10 x? values for data set extended with RIPPER in Moh’s work.
Added attributes are bold.

2.3 Conclusion

Previous works studied a lot of spammers and trained classifier to detect spammers on
Twitter. They found some extracted features based on the content attributes, account
attributes and relationships of users can identify whether users are spammers. The
classifiers they trained based on these features achieved a great results.

They also tried analyzing the structure in suspended users and behaviors of sus-
pended users. They found that the suspended users lack of ways of form the social
relationship with normal users, so they can only rely on mentions or hashtags to
contact with normal users.

However, these works still have their own problems. First is the way they collected
the spammers’ data. The authors of [4] used the data of users who sent the tweets
about trending topics, the authors of [5] used the data from twitspam.org and the
authors of [11] used the data of suspended users who sent tweets including shortened
URL. All the approaches should be considered can only show one part of suspended
users. According to the analysis of our dataset, there are many suspended users
who didn’t send any tweets about trending topics or including shortened URL. And
twitspam.org cannot provide a full list of suspended users because the users on that

website are submitted by other users. In our work, on the other hand, we used the data

13
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of all users who were suspended after 5 years, which can provide more information
and full characteristics of suspended users.

Second problem is when analyzing the behaviors of suspended users, they didn’t
use full text of tweets. Whether users should be suspended, firstly and mainly is
depending on the tweets they sent. So It is really significant to analyze the tweets
of suspended users. But in their works, they only used some content attributes, such
as number of hashtags per words or number of URLs per words. Such attributes can
be easily manipulated by spammers by simply increasing the percentage of normal
tweets in all tweets they send. What’s more, shortened URL can be hidden by just
remove http protocal header so that the blacklist system cannot detect the tweets
containing urls.

Our work tried to used full text of tweets and large dataset of suspended users to

avoid these problems.
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CHAPTER 3

Dataset

The dataset we used in our experiments is collected by T. Xu et al [I5]. There
are 3,117,750 users’ profile, social relations and tweets in this dataset. They used
4 machines with whitelisted IPs to crawl data by Twitter API. The crawling was
first started with the most popular 20 users reported in [16] and then used snowball
crawling strategy to crawl other users. The crawling period was from Mar. 6 to Apr.
2, 2010.

5 years later, 113,347 users in these dataset were suspended by Twitter. We
randomly sampled 10% (11,334) of suspended users and the same number of normal
users who are not in the suspended user set in the original dataset and combined them
as our dataset. For each user in our dataset, we used regular expression to extract the
tweets from the original dataset, resulting in 4,518,074 tweets from suspended users
and 2,588,032 tweets from non-suspended users. The statistics of tweets of suspended

and normal users are summarized in Table [0l

Suspended Users | Non-Suspended Users

# Users 11,334 11,334

# Tweets 4,518,074 2,688,032

4 Tokens 30,366,927 18,778,909

Vocabulary (# Unique Token) 1,489,281 1,089,437

Average Tweets Length 6.72 7.25

Average URL Rate 12.14% 11.90%
Average Mention Rate 27.43 % 23.39%
Average Hashtag Rate 4.32% 3.89%

TABLE 9: Statistics of tweet dataset

We analyzed some properties of our dataset and compared the results to show the

differences between suspended users and non-suspended users. We started with the
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number of tweets of each user. Fig. [If shows the distribution the count of tweets from
users. They follow power laws for both suspended and normal users. Most users have
one or two tweets. Among suspended users, there are close to one thousand users who
send tweets only once, while there are more than two thousand users who send tweets
only once. Because of the scarcity of the text, these users will be difficult to classify.
There are also some users who sent tweets close to two thousands. The maximal
tweet number is two thousand, because the data are crawled with two thousand as a
limit. Such distributions differ from most text corpora — in corpora such as Reuters
data sets, document lengths follow normal or log-normal distributions, where most
documents have medium length. In our data, most documents have very few tweets.
This will make classification more challenging.

We can also find that suspended users tend to send more tweets, as the slopes
intersect around 10 tweets. There are more suspended users who send tweets more
than 10 times. In average, suspended user send 398.63 tweets, while normal users

send only 228.34 tweets in average.

4
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FIGURE 1: Tweet count distribution. Suspended users tend to have more tweets.

We then moved closer to look at the details of tweets by tokenizing the tweets

into tokens. We distinguished several types of tokens in tweets, which are listed in
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Table We first used regular expression to split every tweet into tokens and then
normalized the word tokens. Tokenization in tweets are different from normal text,

because we need to keep track of urls, hashtags, and user mentioning.

Token Type Description Regular Expression Example
contains
Words characters or [LA-Za-z0-9]+ Sample

digit numbers

an url should
Shortened URL | start with http | http://[-A-Za-z0-9\./]+ | http://t.co/ABcd123
or https

used to mention
Mention Users | other user by Q[_A-Za-z0-9]+ Qtwitter

their username

used to mark
Hashtags keywords or #[-A-Za-20-9]+ #spam

topics in a tweet

TABLE 10: Token Types in Tweets

After tokenizing, we turn all the tokens in lower case, then remove stop words
using the stop word list from [I7]. Stemming is also carried out using Porter2 stem-
ming algorithms [I§]. the program used in the experiment is downloaded from [19].
Stemming converts words into the root form so that different derived words from the
same root will be treated as the same one. For example, after stemming ”making”
and "made”, they will be converted into the root form ”make”.

After normalization, suspended user class contains total number of 30,366,927
tokens. Among them 1,489,281 are distinct. Normal users contain 18,778,909 to-
kens, 1,089,437 are distinct. These two vocabularies share 285,052 unique tokens in
common.

The frequency distribution of tokens is plotted in Fig. 2l In both classes, the
distributions follow Zipf’s law as expected. There are very large number of terms
that occur only once or twice. At the same time, there are also lot of popular terms
that occur frequently. The slope is roughly two, consistent with most other text
corpora. The counts for suspended class is higher because each user has more tweets.

After tokenizing, each tweet has been split into several tokens. We analysed the
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FIGURE 2: Frequency Distribution of Tokens

distribution of number of tokens in tweet. The average number of tokens in tweet
from suspended users is 6.72 and that from non-suspended users is 7.25. Fig.
shows the distribution of number of tokens in tweet. This figure illustrates why the
number of tweets from suspended users is larger than that of non-suspended users.
This larger part is because of the number of short tweets (number of tokens < 10)
from suspended users is much larger than that of normal users. This result and the
result of tweets distribution can draw a conclusion that suspended users tend to send
large number of short tweets. This conclusion can match our assumption that the
main reason of suspending is because these users sending tweets against Twitter Rule,
including abusive actives and spamming activities. Both of these two type of tweets
are usually short on length while large on number to either abusing normal users or
attracting normal users.

Among these tokens, URL, Mention and Hashtag are more special than the other
tokens. The probabilities of occurrences of these 3 types of tokens have been plotted
in Fig. [l We excepted that the probabilities of these 3 types of tokens are very
different between suspended users and non-suspended users as the previous studies

[5, 4]. However, the results in Fig. [4] show that there is no big differences between
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FIGURE 3: Number of Tokens Per Tweet Distribution

suspended and non-suspended users. The average of URL rate, mention rate and

hashtag rate don’t vary too much between these two dataset. The average rates are

listed in Tabel [l

What we can conclude from the analysis of suspended user dataset and non-

suspended user dataset is that when using large, random sampled suspended user

dataset instead of the target focusing crawling dataset in the previous studies, it is

hard to classify users based on the rates of special tokens. The collecting methods that

previous papers used cannot reveal the characteristics of suspending users because

they were only focusing on a small group of users.
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FIGURE 4: Distribution of Special Tokens

Summary we collected tweets of 113,347 suspended users, and tweets of equal
number of normal users to avoid the complexity arising from imbalanced data. there
are a few difference from other text corpora. In tokenization, we need to retain urls,
mentioning, and hashtags. Document lengths follow power law instead of lognormal
distributions. There are many very short documents. This will make classifications

more challenging.
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CHAPTER 4

Classification using N-gram
Models

4.1 Naive Bayes Classifier

In this approach, all the terms are potential features, although we will also need to
select from them for efficiency and performance consideration. This can be further
divided into at least two models, the unigram model and bigram model.

In the unigram model, a document (i.e., all the tweets of a user) is treated as a
bag-of-words. The word position information is discarded, while the count of word
occurrences are retained. This model has the disadvantage that the order of the words
are no longer relevant.

Thus, n-gram models are introduced. In n-gram models, a document is represented
as a set of n-grams, where an n-gram is a consecutive sequence of terms with length n.
Although in theory we can use tri-gram, or even 4-gram, in practice bigrams are most
often used. Unlike unigram model, bigram model can carry a little information of
word ordering. This is because when converting tweets into bigrams, the consecutive
two words will be converted into one bigram.

In both unigram and bigram models, the feature size is very large, in the order
of 10%. Most classification methods can not run on such high dimension. Hence we
experiment with Naive Bayes classifiers.

There are two different Naive Bayes classifiers, i.e., Multinomial Naive Bayes
Model (MNB) and Bernoulli Naive Bayes Model (BNB). The difference between
these two models is that Multinomial Model takes the number of occurrences into
consideration while Bernoulli Model only considers weather a term occurs in user’s

tweets or not.
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4. CLASSIFICATION USING N-GRAM MODELS

These two models are based on Bayes’ theorem [20],

P(B|A)P(A)
P(B)

where P(A) and P(B) are the probabilities of A and B; P(A|B) is a conditional
probability of observing event A given that B is true; P(B|A) is the probability of

P(A|B) =

observing event B given that A is true.
Hence, the probability of a user being suspended can be computed by,

P(cs)P(wq|we, ...wy,, ¢s) P(wa|ws, ..y, ¢s)...P(wy|cs) P(cs)

P(cslwy, wa, ... wy,) = P(wi,ws, ..., wy)
,Wa, ..., Wy

where ¢, is the event that user is suspended and w, is the kth word in tweets from
this user. After training, P(ws,ws,...,w,) will be constant. So the probability
P(cs|wy, ws, ..., w,) is only depended on the prior probability P(c,) and the likeli-
hood P(cs)P(wy|ws, ... wy, cs) P(wa|ws, ... wp, ¢s)...P(wy|cs). If using the assumption
that the probability of each word are independent, which means the occurrences of
words are not replying on others, P(w;|wy, ...wy,, cs) = P(w;|cs), we can simplify the

formula based on this assumption,

P(cs|wy, wa, ...;w,) o P(e,) [[ Pltile)

1<k<ngq

So the classification result can be comparison of classes ¢ which can maximize the

probability P(c|wy,ws, ..., w,).

4.1.1 Multinomial Naive Bayes Model

In Multinomial Model, the class of a user can be determined by the following formula:

¢ = argmax P(c) H P(tg|c)

ceC 1<hSny

where c is the classified class of this user, C' contains two classes: Suspended User
and Normal User, ng is the number of tokens in user d, P(c) is the probability of this
user occurring in class ¢ and P(t|c) is the probability of token ¢; occurring in a user
of class c.

Users will be converted into vectors by their tweets under MNB. For example,

there are two users whose tweets listed below:

1. User 1
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4. CLASSIFICATION USING N-GRAM MODELS

(a) This is a sample tweet. see this: http://bitly.com/abc Quser

(b) This is another tweet. #somehashtag
2. User 2
(a) This tweet contains some different words.

will be converted into two vectors by using unigram model:

S1=(1,1,1,3,1,1,1,2,2,0,0,0,0)
S =(0,0,0,0,1,0,0,0,1,1,1,1,1)
The vocabulary and converting details are shown in Table. [T} All the words in this

table are normalized so that they might be different from the original words in the

tweets.

Unigram # in User 1 | # in User 2
#somehashtag 1 0

Quser

anoth
see
this
sampl
http://bitly.com/abc
a
is
tweet
word
differ

so1e

O O O O NN - FH =B W =
_ = ===, O O O = O O O

contain

TABLE 11: Example of Unigram User Vectors

We estimated P(c) and P(t;|c) by Maximum Likelihood Estimate (MLE).

N,

P(C) = W
1.

Pligle) = 72
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where N, is the number of users in this class ¢, N is the total number of users,
T.; is the number of occurrences of token ¢ in class ¢ and T, is the total number of
tokens that occur in class ¢. In our cases, the number of suspended users and normal
users are the same, so P(c) = 0.5. Laplace smoothing was used here to eliminate the
condition that the number of token occurrence is 0, which is to add 1 to each term
occurrences in the formula of P(tx|c):
T +1
P(tyle) = T+ |V|
where |V is the size of vocabulary. Algorithm [1] illustrates how we train the Multi-

nomial Model and use it to classify a user.

Procedure 1 Train Multinomial Naive Bayes Model and Classify Users

Input: labelled user feature map set U, class set C'

Output: multinomial naive bayes model M N B_M odel
1: procedure TRAIN_MULTINOMIAL_NB_MODEL
2: V «+ EXTRACT_TOKENS(U)
for c € C do
N¢: + COUNT_USER-IN_CLASS(U, c¢)
MNB_Model.cls Prob|c] + log(‘Nﬁ)
for t € V do
T.t + COUNT_.TOKENS_IN_.CLASS(U, ¢, t)
T. + COUNT_TOKENS(U, c)
M N B_Model.clsFeatureProb[c][t] <+ log( ZZ;C-:—TVI\ )
10: end for
11: end for
12: return M N B_Model

13: end procedure

Input: trained multinomial naive bayes model M N B_Model, unclassified user feature map wu, class set C
Output: classified class ¢ for u

1: procedure CLASSIFY_BY_MULTINOMIAL_NB_-MODEL

2: for c € C do

3: score[c]+ = M NB_Model.clsProb|c]
4: for k,v € u do
5: if k € MNB_Model.clsFeatureProblc|] then
6: score[c]l+ = M N B_Model.clsFeatureProb|c|[k] * v
T end if
8: end for
9: end for
10: return arg max, . ¢ scorelc|

11: end procedure

4.1.2 Bernoulli Naive Bayes Model

Bernoulli Naive Bayes Model, on the other hand, uses the boolean model in which

the value of a token in user feature map in depending on whether this token occurs
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in the tweets this user posted. The value of a token is 1 if the token occurs, otherwise
it is 0. For example, the previous users will be converted into:

Sy =(1,1,1,1,1,1,1,1,1,0,0,0,0)
Sy =1(0,0,0,0,1,0,0,0,1,1,1,1,1)
The formula of classifying a user under Bernoulli Model is,

¢ = argmax P(c) H P(tele)® (1 — P(ty]e) ")
ceC 1<k<|V|

where z; is the boolean expression of whether token i occurs in the tweets of this user.

The P(c) and P(tx|c) can be estimated under Bernoulli Model like this,

Ne
P(C) = W
Ne

P(tple) = =

Ne

where N, is the number of users in class ¢ whose tweets contain token t. We also
smoothed the formula of P(t;|c):

th + 1
P(t =
(telc) N2
Algorithm [2] illustrates how we train the Bernoulli Model and use it to classify a user.
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Procedure 2 Train Bernoulli Naive Bayes Model and Classify Users
Input: labelled user feature map set U, class set C
Output: bernoulli naive bayes model BN B_M odel
1: procedure TRAIN_BERNOULLI_NB_MODEL
2: BNB_Model.V + EXTRACT_TOKENS(U)
for c € C do
N, + COUNT_USER_IN_CLASS(U, ¢)
MNB_Model.cls Problc] + log(‘Nﬁ)
for t €« BNB_Model.V do
Nt + COUNT_USERS_CONTAINING_-TOKEN_IN_CLASS(U, ¢, t)

Nep+1
BN B_Model.clsFeatureProb[c|[t] < pey

end for
10: end for
11: return BN B_Model

12: end procedure

Input: trained bernoulli naive bayes model BN B_Model, unclassified user feature map u, class set C'
Qutput: classified class ¢ for u

1: procedure CLASSIFY_BY_BERNOULLI_NB_MODEL

2: for c € C do

3: score[c]+ = BN B_Model.cls Prob|c]
4: for t € BNB_Model.V do
5: if t € u.keys then
6: scorelc]+ = log(BN B_Model.clsFeatureProb|c][t])
T else
8: scorelc]+ = log(1 — BN B_Model.clsFeatureProb|c|[t])
9: end if
10: end for
11: end for
12: return arg max ¢ score[c]

13: end procedure

4.2 Evaluation and Confusion Matrix

To evaluate the result of classification, we used N-fold cross validation. First divided
the dataset into N folds, which are same size. And then run N times of validation on
the datasets that one fold is used as test dataset and other folds are used as training
dataset.

We used confusion matriz to visualize the result of cross validation. Table
shows the confusion matrix of 2 classes cross validation result, TP represents the
number of suspended users that are classified as suspended users, F'P represents the
number of suspended users that are classified as normal users, FP represents the
number of normal users that are classified as suspended users and F'N represents the
number of normal users that are classified as normal users. We can compute accuracy

or F1 value using confusion matrix as well.
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Classified
Suspended User | Normal User
Suspended User TP FN
Actual Class
Normal User FP TN

TABLE 12: 2 Classes Confusion Matrix Example

) B TP+ TN
Y = TP Y FP+ FN + TN
TP
|l = ———
Recall = 755N
b TP
recitsion = TP + FP
Pl 9« Precision + Recall

Precision X Recall

These 4 parameters can measure the result of classification. Accuracy can measure
the total accuracy rate of classification of suspended users and non-suspended users;
recall shows the rate of how many users who are actually should be suspended will be
suspended; precision can measure the precision of classifier on predicting suspending;

F1 illustrates the overall performance of this classifier.

4.3 Feature Selection

When using n-gram language model, the main problems we face is the huge size of
feature set, leading to a lot of time spending on training and testing. We can use
feature selection algorithms to reduce the size of feature set. Another benefit we can
get is that using feature selection can remove the irrelevant features, also known as
noise features.

To remove the noise features and improve the result of classification, we used
several feature selection algorithms: Mutual Information (MI), Pointwise Mutual
Information (PMI), Weighted Average Pointwise Mutual Information (WAPMI) and
Chi Square (x?). We computed the scores of each feature by these feature selection

algorithms and then sort them by the scores.
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Mutual Information, which is also called Information Gain, can measure how much
information contribution of a token during the classification. We computed Mutual

Information by the following formula,

P(U=¢,C=ce.)
Z Z P =¢,C = ec) 10g2 P(U — 6t)P(C = ec)

et€l,0e.€1,0

where e, is a boolean variable representing whether term ¢ occurs in user’s tweets and
e. is a boolean variable that represents whether user is in class c¢. In our experiments,
we let e, = 1 represent the user is suspended and e, = 0 represent user is normal
user. We can also use MLE to estimate the probabilities P(U = ¢;,,C = e.), P(U =
er), P(C =e.):

Netec
PU=¢€,C=¢e.) = N
~ Net
P(U = et) = N
A N,
P(C =e¢,) ==X
(€ =e) ="

where N,y,q is the number of users that match condition cond. For example Ny; is
the number of users that match two condition: ¢ occurs in these users’ tweets and all
of these users are suspended. The formula of mutual information can be converted

by using MLE estimation

Nll NN11 N(]1 NN01

MI(t,c) = 1 1
( Y C) N Og2 Nl_N.l + N Og2 NO.N.l
Nig NNy | Noo N Nog

I I
TN BN N, TN BN,

The variable meanings in this formula are listed in Table [I3] We applied adding-
one smooth to Ni1, Ny1, Nig and Nyg to eliminate the problems that these numbers

can be 0.
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Variable Meaning

N1 the number of suspended users whose tweets contain term ¢

No the number of suspended users whose tweets don’t contain term ¢

Nio the number of non-suspended users whose tweets contain term ¢

Noo the number of non-suspended users whose tweets don’t contain term ¢
Ny the number of users whose tweets contain term ¢

N4 the number of suspended users

Ny, the number of users whose tweet don’t contain term ¢

Ny the number of non-suspended users

N the number of total users in both suspended user set and normal user set

TABLE 13: Meaning of N.ynq

However, when the token frequency is imbalanced between suspended users and
non-suspended users, although the number of suspended users (N ;) and the number of
non-suspended users are similar, we will still be facing the problem that the feature
selection method will have more probability to select the features from suspended
users than select from non-suspended users. We will show the result in experiment
section about this. In order to solve this problem, we used token frequency instead
of number of users. The definitions of Ny; and Njg, which now are the frequency
of this feature occurring in suspended user dataset and the frequency of this feature
occurring in non-suspended user dataset, remain similar to the original definitions.

And we can compute Ng; and Ny by,

Not = Ni— Nn
NOO = N.O - NIO

where N is the sum up of total feature frequency in suspended users and N is
the sump up of total feature frequency in non-suspended users.

Expected value of feature frequency of ¢ in class ¢ can be computed by,
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By = N x P(t) x P(c) _ Nlj.VN.l
Ey = N x P(t) x (1— P(c)) _ NINN.O
Ep = N x (1= P(t)) x P(c) _ N(;VNJ
Eop = N x (1= P(t)) x (1 - P(c)) _ NoNN.o

So the formula of MI can be simplified to,

MI(t,c) = Z Z N;\}EC log, getec

et€{0,1} ec€{0,1}

We can easily figure out when 1) the frequency of this feature is high in both
suspended users and non-suspended users; 2) the frequency of this feature is different
between suspended users and non-suspended users slightly, MI will give this feature
a high score. The first condition can prove to increase P(U = e;,C' = e.) = Ne,.,/N
and the second condition can make gef’”
selected by MI.

Pointwise Mutual Information is a little different from MI because MI is focusing

increase. So together this feature will be

etec

on the average of all the events while PMI only is focusing on the single events:

PU =eC =e,)

(U=¢)P(C = ec)|

PMI(t,c)= > | og, —

ec.€{0,1}

Nie
= 3 g
ec€{0,1} lec

Compared to the formula of MI, PMI only depends on the frequency difference
between suspended users and non-suspended users, which is measure by 2. So unlike
that MI will select those popular features in both datasets, PMI will focus on the rare
words instead.

Although MI and PMI can measure how strong the relationship between feature
and the class is, there are 2 problems in them. First is that they all treat the fea-
tures as independent random variables when they estimate the probability of features
occurring in tweets. However, in real tweets the features (words) are not indepen-
dent. This kind of estimation loses the relationship between features. Second is that

when classifying using probability, such as using Multinomial Naive Bayes to classify
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the tweets, the conditional probability usually is computed by merging all of tweets
together as a large tweet. This will give the words in longer tweet a larger weight.
In 2005, K Schneider et al [21] proposed a weighted algorithm for computing point-
wise mutual information. They added the weight to pointwise mutual information to
reduce the bias of giving longer tweet large score. WAPMI of token ¢ in class ¢ can

be computed by,

WAPMI(t, ¢) = ZC dZD agp(t]d) log, ]%

where d is the tweet that contains token ¢, D, is the set of tweets in class c. p(t|d)

is the conditional probability of ¢, which is computed by,

n(t, d)
|d|
where n(t, d) is the frequency of token ¢ occurring in tweet d and |d| is the total size

of tweet d.

p(tld) =

oy is the weight of token t. The authors gave 3 different weighting method in [21],

which are:

o ag = p(c) X |d|/ ) 4ep, |d|. Each tweet has been given a weight correlation to
their length |d|.

o ag =1/ .- |c[. This will give tweets in the same class an equal weight.

e ay=1/(|D.| x|C|). This will give equal weight to the classes by normalization

by class size.

x? is another feature selection method which can measure the relationship between
the token and class. The lower the y? score is, the token and class are more inde-
pendent to each other. x? can be computed by the deviation between the excepted

frequency and the observed frequency of token ¢ in class c.

_ 2
Xz(t,c) = Z Z (NetecEe 6Eetec)

er€{0,1} ece{0,1}

where e, e., N, e. are same as the formula of MI.
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4. CLASSIFICATION USING N-GRAM MODELS

4.4 Experiments

We first tried unigram and bigram model using two different Naive Bayes classifi-
cation, Multinomial and Bernoulli models. All the tweets have already been split
by regular expression. Then stop words have been removed and all the tokens have
been normalized in the previous section. So the only thing we need to do to convert
tweets into vectors is to generate unigrams and bigrams and count the frequency. For
Multinomial model, each location in the vector is the frequency of the gram of this
location; for Bernoulli model, each location in the vector is 1 if the gram occurring
in the tweets of this user. The dimension of word vectors using unigram is 2,293,666
and the dimension of word vectors using bigram is 17,485,806.

All these processes have been done by C++ so that we can manually control the
memory and achieve a better performance. When implementing, we used a feature-
frequency dictionary in memory because the matrix of user vectors are so sparse.
We tested Multinomial Naive Bayes classifier and Bernoulli Naive Bayes classifier on
processed dataset. Table and |15 show the result of 10-fold cross validation of
these two classification models on unigram and bigram model. Fig. [5]and [ show the

variant of classifiers during 10 runs.
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FIGURE 5: Accuracy for BNB and MNB. Both unigram and bigram models are
tested.
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FIGURE 6: F1 for BNB and MNB. Both unigram and bigram models are tested.

The tables show that bigram model outperforms unigram model when using MNB
classifier both on accuracy and F1. However the results of MNB are not good enough.
This is because the probabilities of grams in both classes is similar. Fig. [7| shows the
comparison of probabilities on each unigram feature in different classes. The red dots
in this figure represent the probability of this unigram feature in suspended class is
higher than it in non-suspended class and the blue dots represent the probability of
this unigram feature in suspended class is lower than that in non-suspended class.
The subplots in this plot indicate top 103, 10*, 10° and all unigram features sorted
by the probability. In top 10 features, the probabilities of 680 features in suspended
class is higher. This number in top 10% is 5,952, in top 10° is 71,223 and in all the
features is 1,318,360. This number is surprisingly high, resulting in if a normal user
send a tweet in which all words are from top 10° unigram features, this user will be

classified as suspended user on a extremely high probability.
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4. CLASSIFICATION USING N-GRAM MODELS

Model | No. TP | FN | FP | TN | Precision | Recall Acc F1

MNB |1 1002 | 132 | 849 | 285 | 54.13 % | 88.36 % | 56.75 % | 67.14 %
MNB |2 986 | 148 | 851 | 283 | 53.67 % | 86.95 % | 55.95 % | 66.37 %
MNB |3 996 | 138 | 876 | 258 | 53.21 % | 87.83 % | 55.29 % | 66.27 %
MNB |4 978 | 156 | 845 | 289 | 53.65 % | 86.24 % | 55.86 % | 66.15 %
MNB |5 961 | 172 | 851 | 282 | 53.04 % | 84.82 % | 54.85 % | 65.26 %
MNB |6 975 | 158 | 872 | 261 | 52.79 % | 86.05 % | 54.55 % | 65.44 %
MNB |7 985 | 148 | 846 | 287 | 53.80 % | 86.94 % | 56.13 % | 66.46 %
MNB |8 967 | 166 | 818 | 315 | 54.17 % | 85.35 % | 56.58 % | 66.28 %
MNB |9 992 | 141 | 867 | 266 | 53.36 % | 87.56 % | 55.52 % | 66.31 %
MNB | 10 977 | 156 | 861 | 272 | 53.16 % | 86.23 % | 55.12 % | 65.77 %
MNB | Total | 9819 | 1515 | 8536 | 2798 | 53.49 % | 86.63 % | 55.66 % | 66.15 %
BNB |1 341 | 793 | 210 | 924 | 61.89 % | 30.07 % | 55.78 % | 40.47 %
BNB |2 387 | 747 | 178 | 956 | 68.50 % | 34.13 % | 59.22 % | 45.56 %
BNB |3 385 | 749 | 193 | 941 | 66.61 % | 33.95 % | 58.47 % | 44.98 %
BNB |4 401 | 733 | 209 | 925 | 65.74 % | 35.36 % | 58.47 % | 45.99 %
BNB |5 365 | 768 | 197 | 936 | 64.95 % | 32.22 % | 57.41 % | 43.07 %
BNB |6 385 | 748 | 189 | 944 | 67.07 % | 33.98 % | 58.65 % | 45.11 %
BNB |7 380 | 753 | 190 | 943 | 66.67 % | 33.54 % | 58.38 % | 44.63 %
BNB |8 395 | 738 | 195 | 938 | 66.95 % | 34.86 % | 58.83 % | 45.85 %
BNB |9 380 | 753 | 222 | 911 | 63.12 % | 33.54 % | 56.97 % | 43.80 %
BNB | 10 384 | 749 | 189 | 944 | 67.02 % | 33.89 % | 58.61 % | 45.02 %
BNB | Total | 3803 | 7531 | 1972 | 9362 | 65.85 % | 33.55 % | 58.08 % | 44.46 %

TABLE 14: Unigram Classification Result
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Model | No. TP FP | FN TN | Precision | Recall Acc F1

MNB |1 1066 68 923 211 53.59 % | 94.00 % | 56.31 % | 68.27 %
MNB |2 1070 64 924 | 210 53.66 % | 94.36 % | 56.44 % | 68.41 %
MNB |3 1061 73 935 199 53.16 % | 93.56 % | 55.56 % | 67.80 %
MNB |4 1066 68 936 198 53.25 % | 94.00 % | 55.73 % | 67.98 %
MNB |5 1057 76 916 217 53.57 % | 93.29 % | 56.22 % | 68.06 %
MNB |6 1056 70| 944 189 52.80 % | 93.20 % | 54.94 % | 67.41 %
MNB |7 1070 63 910 223 54.04 % | 94.44 % | 57.06 % | 68.74 %
MNB |8 1064 69 921 212 53.60 % | 93.91 % | 56.31 % | 68.25 %
MNB |9 1056 77 | 939 194 52.93 % | 93.20 % | 55.16 % | 67.52 %
MNB | 10 1065 68 934 199 53.28 % | 94.00 % | 55.78 % | 68.01 %
MNB | Total | 10631 | 703 | 9282 | 2052 | 53.39 % | 93.80 % | 55.95 % | 68.04 %
BNB |1 227 | 907 | 145 989 61.02 % | 20.02 % | 53.62 % | 30.15 %
BNB |2 281 853 | 109 | 1025 | 72.05 % | 24.78 % | 57.58 % | 36.88 %
BNB |3 270 864 | 129 | 1005 | 67.67 % | 23.81 % | 56.22 % | 35.23 %
BNB |4 285 849 | 117 | 1017 | 70.90 % | 25.13 % | 57.41 % | 37.11 %
BNB |5 269 864 | 116 | 1017 | 69.87 % | 23.74 % | 56.75 % | 35.44 %
BNB |6 277 | 856 | 118 | 1015 | 70.13 % | 24.45 % | 57.02 % | 36.26 %
BNB |7 275 858 | 112 | 1021 | 71.06 % | 24.27 % | 57.19 % | 36.18 %
BNB |8 272 861 | 124 | 1009 | 68.69 % | 24.01 % | 56.53 % | 35.58 %
BNB |9 276 857 | 137 | 996 66.83 % | 24.36 % | 56.13 % | 35.71 %
BNB | 10 291 842 | 114 | 1019 | 71.85 % | 25.68 % | 57.81 % | 37.84 %
BNB | Total | 2723 | 8611 | 1221 | 10113 | 69.04 % | 24.03 % | 56.63 % | 35.65 %

TABLE 15: Bigram Classification Result

And in both tables we can find out that Bernoulli model works really bad on

unigram and bigram models. According to the testing formula of Bernoulli model,

¢ = argmax P(c) H P(tile)™ (1 = P(tele) =)

1<k<|V|

ceC

, the rare words are important parameters here. If the number of rare words in a class

is significant higher than that in another class, because of each rare word that is not

occurring in user’s tweets will contribute a 1 — P(t) to the total value, the result of

classifying will more likely to be the class with more rare words. For example, if user

frequency of words in class A is (3,2,2), while this frequency of words in class B is

36



4. CLASSIFICATION USING N-GRAM MODELS

(2,1,1). Supposing the number of users in both dataset is 4. And the testing case

only contains the first word in training dataset. We can compute the probabilities:

4 3 2 2
= log - 4 log — + log(1 — -) + log(1 — — =—1.
ca =log g + 0g + log( 4) + log( 4) 67
4 2 1 1
cg = logg + logz + log(1 — é_l) + log(1 — Z) =—1.27

So the testing case will be labelled as class B. In our dataset, the number of rare
words in non-suspended user dataset is much smaller than that of suspended user
dataset. To be more precisely, the total user frequency of words of which the user
frequency is less than 5 in suspended user dataset is 1,638,942 while that number
in non-suspended user dataset is 1,195,925, which is the reason why BNB classifier

tends to classify users into non-suspended user.

4.4.1 Feature Selection

We also performed MI, PMI, WAPMI and x? feature selection methods on the N-
Gram models. In order to analyse the relationship between the size of selected feature
set and the performance of classification, We run 10-fold cross validation on the whole
dataset. We first divided the whole dataset into 10 subdatasets equally and for each
running of validation, 9 of 10 sub datasets has been merged as training dataset and
the rest one has been used as testing dataset. The training dataset will be split into
tokens and the tokens will be normalized. We then counted Ni1, Nig, Ng1 and Ny
for each unigram and bigram generated based on the tokens of training dataset.

We first tried MI based on the count of users who sent tweets containing the
grams. We found that the result of MI is not good because it tends to select the
features from suspended users rather than non-suspended users. In order to solve the
problem that the feature selection method will have more probability to select the
features from suspended users than select from non-suspended users, we used token
frequency instead of number of users. We changed the definitions of Nj; and Nyg to
the total frequency of this feature occurring in the whole suspended user dataset and
non-suspended user dataset. We then run experiments based on the token frequency
instead of user frequency and computed the score for each feature. The formulas of

these feature selection methods listed below,
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4. CLASSIFICATION USING N-GRAM MODELS

MI(t, c) = Z Z N]e\tfec log, gﬁtec

et€{0,1} ec€{0,1}

Nlec
PMI(t,c)= > |log, B
ec€{0,1} ¢
t
WAPMI(t, ) = > Y agp(tld) log, p(t, )
(T deD, p(t)p(c)

et€{0,1} ec€{0,1}

where oy in WAPMI is defined as p(c) x |d|/ > cp. |d].

Table |16] to [23] show the details of results of these 4 feature selection algorithms
on both unigram and bigram models. In these tables, STF represents normalized
token frequency in suspended user dataset, NTF represents token frequency in non-
suspended user dataset, SUF represents user frequency in suspended uses dataset and
NUF represents user frequency in non-suspended user dataset. We normalized the

token frequency in suspended user dataset by,

TSUS endae
STF =, suspended

Tnonfsuspended

where ¢, is the token frequency in suspended user dataset, Tsyspended @0d Thon—suspended
are the total token frequency in suspended and non-suspended user datasets. We

highlighted some distinguished grams in suspended class.
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4. CLASSIFICATION USING N-GRAM MODELS

No Feature STF NTF | SUF | NUF Score

1 rt 239386.37 | 318635 | 4499 | 3340 | 2.10 x 10~*

2 flight 2064.22 10172 | 1252 | 856 | 1.13 x 1074

3 #tb 2497.10 10961 | 341 | 283 | 1.10 x 1074
4 lol 141102.19 | 104816 | 4958 | 2931 | 0.97 x 10~*

5 uk 2600.99 9561 906 | 590 | 0.81 x 10~*

6 htm 149.03 3292 142 99 |0.71x107*

7 http://uk 0.00 2494 0 1 070 x 107"

8 prodotti 0.62 2467 1 ]0.69x10*

9 nuovi 1.86 2473 2 2 0.69 x 1074
10 snarf 2727.76 8 14 7 0.61 x 1074
11 gue 2618.31 8212 155 | 135 | 0.58 x 10~*
12 cheap 1387.07 5804 | 1065 | 672 | 0.56 x 1074
13 blog 13046.39 | 23263 | 2105 | 1424 | 0.54 x 1074
14 eu 29941.07 | 18141 | 537 | 436 | 0.52 x 10~*
15 cc 672.82 4048 | 301 | 246 |0.52x 1074
16 love 137609.47 | 111429 | 7411 | 5006 | 0.50 x 10~*
17 | Qcutie_jessica05 0.00 1674 0 1 0.47 x 1074
18 frekk 27380.28 | 16684 | 2876 | 1476 | 0.47 x 10~*
19 @mike_tizzal 0.62 1661 1 2 0.47 x 1074
20 ga 4498.86 10485 | 634 | 490 | 0.46 x 1074
21 #gagavmas 2.47 1657 2 0.46 x 1074
22 @nike 1980.12 0 3 0 0.45 x 1074
23 fifty8 0.00 1589 0 0.45 x 1074
24 en 16877.37 | 27085 | 1018 | 875 | 0.44 x 1074
25 el 15212.64 | 24360 | 1080 | 788 | 0.39 x 1074
26 gw 3782.75 8830 132 | 177 | 0.39 x 107*
27 lo 9562.94 16923 | 1057 | 762 | 0.38 x 1074
28 #ftunsat 0.62 1323 1 3 0.37 x 1074
29 | @dolphinnancy 0.00 1292 0 0.36 x 1074
30 admartindia 0.00 1262 0 1 0.35 x 1074

TABLE 16: Top 30 Unigram Features by MI. Terms in bold fonts are distinguished

ones in suspended class.
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4. CLASSIFICATION USING N-GRAM MODELS

No Feature STF | NTF | SUF | NUF | Score
1 http://uk 0.00 2494 | 0 1 11.98
2 Q@cutie_jessica05 0.00 1674 0 1 11.40
3 fifty8 0.00 1589 0 1 11.33
4 @dolphinnancy 0.00 1292 0 1 11.03
5 admartindia 0.00 1262 0 1 11.00
6 @novawildstar 0.00 1261 0 1 10.99
7 prodotti 0.62 2467 1 1 10.96
8 geeksroom 0.00 1229 0 1 10.96
9 @nike 1980.12 0 3 0 10.95

10 | http://tinyurl.com/czzu6n | 0.00 | 1199 | 0 1 10.92
11 @mzsreyes 0.00 1098 0 1 10.80
12 http://wp.me/pivby 0.00 1036 0 1 10.71
13 @viramutiara 0.00 1015 0 1 10.68
14 Q@Qwillamutiara 0.00 950 0 1 10.59
15 @atirahn 0.00 947 0 1 10.58
16 @dmand21 0.00 917 0 1 10.54
17 @dirtymink 0.00 888 0 1 10.49
18 Qifew 0.00 879 0 2 10.47
19 @coolzebras 0.00 857 0 1 10.44
20 @kay_dead 0.00 851 0 1 10.43
21 @mike_tizzal 0.62 1661 1 2 10.39
22 tuwallstreet 0.00 807 0 1 10.35
23 @caprlcemd 0.00 801 0 1 10.34
24 @panda_baggins 0.00 784 0 1 10.31
25 @babimalez 0.00 757 0 1 10.26
26 @stacygardell 0.00 755 0 1 10.26
27 @shintashasya 0.00 744 0 1 10.23
28 Q@cher666 0.00 732 0 1 10.21
29 @xaveriouseja 0.00 714 0 1 10.18
30 @kathy;j3490 0.00 708 0 1 10.16

TABLE 17: Top 30 Unigram Features by PMI. Terms in bold fonts are distinguished

ones in suspended class.
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No Feature STF NTF | SUF | NUF Score

1 frxx 27380.28 | 16684 | 2876 | 1476 | 4.46 x 107°

2 lol 141102.19 | 104816 | 4958 | 2931 | 4.38 x 10™°

3 eu 29941.07 | 18141 | 537 | 436 | 3.72x 107°

4 @nike 1980.12 0 3 0 3.57 x 107

5 gHH* 22087.39 | 14140 | 2970 | 1622 | 2.96 x 10~°

6 Vg 4487.11 9175 124 | 201 |2.82x107°

7 snarf 2727.76 8 14 7 1277Tx107°

8 http://uk 0.00 2494 | 0 1 | 276 %1073

9 | http://blip.fm/ | 7436.88 3381 242 144 | 2.65 x 1073
10 gw 3782.75 8830 132 | 177 | 231 x107°
11 Imao 21995.87 | 13854 | 1714 | 813 | 2.31 x 107°
12 p¥F** 10994.53 6362 | 2465 | 1255 | 2.28 x 107
13 dont 25473.13 | 17505 | 3606 | 2064 | 2.20 x 10~°
14 dnt 4255.21 | 1638 | 631 | 307 |2.18 x107°
15 #teamdemi 936.88 0 7 0 |207x107°
16 smh 5398.63 2590 | 505 | 222 | 1.91 x107°
17 qe 2735.80 635 143 76 | 1.90 x 107
18 | @cutie_jessica05 0.00 1674 0 1 1.85 x 107°
19 ich 4193.99 1679 | 206 | 122 | 1.76 x 1075
20 fifty8 0.00 1589 0 1 1.76 x 107°
21 #nowplaying 10076.21 6129 | 1222 | 622 | 1.64 x 107
22 photo 16514.99 | 11427 | 2298 | 1423 | 1.63 x 1075
23 aja 2508.85 6197 146 189 | 1.54 x 107°
24 @parisfilmes 851.54 0 3 0 1.54 x 107°
25 wed 7172.82 4153 | 1949 | 1223 | 1.563 x 1077
26 quiz 6138.24 3359 | 1320 | 631 | 1.51 x 107
27 #funsat 0.62 1323 1 3 1.46 x 107
28 a** 14032.12 9251 | 2845 | 1526 | 1.45 x 1073
29 pra 14516.94 | 10164 | 419 | 310 | 1.45 x 1073
30 love 137609.47 | 111429 | 7411 | 5006 | 1.44 x 107°

TABLE 18: Top 30 Unigram Features by WAPMI.

guished ones in suspended class.
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No Feature STF NTF | SUF | NUF | Score
1 rt 239386.37 | 318635 | 4499 | 3340 | 14600.02
2 flight 2064.22 10172 | 1252 | 856 | 7870.01
3 #tb 2497.10 10961 | 341 | 283 | 7725.44
4 lol 141102.19 | 104816 | 4958 | 2931 | 6437.60
5 uk 2600.99 9561 906 | 590 | 5691.37
6 htm 149.03 3292 142 99 4520.19
7 gue 2618.31 8212 155 | 135 | 4066.28
8 http://uk 0.00 2494 0 4031.19
9 nuovi 1.86 2473 2 2 3986.41

10 prodotti 0.62 2467 1 1 3983.92
11 cheap 1387.07 5804 | 1065 | 672 | 3920.81
12 blog 13046.39 | 23263 | 2105 | 1424 | 3808.54
13 cc 672.82 4048 | 301 | 246 | 3586.53
14 eu 29941.07 | 18141 | 537 | 436 | 3387.25
15 love 137609.47 | 111429 | 7411 | 5006 | 3341.52
16 ga 4498.86 10485 | 634 | 490 | 3263.96
17 en 16877.37 | 27085 | 1018 | 875 | 3102.14
18 frkx 27380.28 | 16684 | 2876 | 1476 | 3038.40
19 el 15212.64 | 24360 | 1080 | 788 | 2766.51
20 gw 3782.75 8830 132 | 177 | 2756.93
21 lo 9562.94 16923 | 1057 | 762 | 2706.62
22 snarf 2727.76 8 14 7 2705.14
23 | @cutie_jessica0b 0.00 1674 0 1 2705.08
24 | @mike_tizzal 0.62 1661 2 2680.45
25 #gagavmas 2.47 1657 2 2663.18
26 fifty8 0.00 1589 0 1 2567.62
27 di 6167.30 11822 | 725 | 603 | 2373.58
28 lmao 21995.87 | 13854 | 1714 | 813 | 2170.84
29 Vg 4487.11 9175 124 | 201 | 2163.64
30 aja 2508.85 6197 | 146 | 189 | 2145.61
TABLE 19: Top 30 Unigram Features by x?. Terms in bold fonts are distinguished

ones in suspended class.
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No Feature STF | NTF | SUF | NUF Score

1 film blog 4.95 3039 5 3 9.75 x 107

2 cheap flight 21.03 | 2685 | 27 16 | 8.20x 107°

3 flight cc 0.00 2494 | 0 1 8.13 x 107°

4 nuovi prodotti 0.00 | 2467 | 0 1 [8.04x107°

5 uk flight 0.62 1928 1 1 6.26 x 107

6 www paid 1952.29 0 1 0 5.24 x 107

7 paid draw 1952.91 1 2 1 5.22 x 107

8 fifty8 uk 0.00 1514 | 0 1 4.93 x 107°

9 www fifty8 0.00 1509 | 0 1 4.91 x 107°
10 #gagavmas #gagavmas 0.00 1507 0 1 4.90 x 107°
11 air flight 3.09 1523 5 4 4.86 x 107
12 http://uk cheap 0.00 1459 | 0 1 4.75 x 107°
13 updat blog 207597 | 116 | 144 | 76 |4.23x107°
14 2009 price 0.62 1280 1 1 4.14 x 107°
15 book cheap 0.62 1250 1 6 4.04 x 107
16 blog post 2451.96 | 6393 | 463 | 400 | 3.89 x 107°
17 snarf snarf 1359.24 1 4 1 3.62 x 107
18 releas sep 0.00 1096 0 1 3.56 x 107
19 cordless show 0.62 986 1 1 3.18 x 107°
20 cheap uk 0.00 926 0 1 [3.01x107°
21 #stay #stay 1159.50 7 3 1 2.98 x 107
22 rt @kapanlagicom 1040.15 3 3 2 2.72 x 107
23 cc cheap 0.00 816 0 1 2.65 x 107
24 flight uk 0.00 815 0 2 2.64 x 107
25 | #veronicamars #veronicamars 5.97 857 1 1 2.64 x 107
26 vote ak 0.00 797 0 1 2.58 x 107
27 http://uk air 0.00 763 0 1 | 247x107°
28 cheap air 1.86 760 3 4 | 241 x107°
29 result credit 892.97 0 1 0 2.38 x 107
30 99 descript 0.00 726 0 1 2.35 x 107

TABLE 20: Top 30 Bigram Features by MI. Terms in bold fonts are distinguished

ones in suspended class.
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No Feature STF | NTF | SUF | NUF | Score
1 flight cc 0.00 2494 0 1 11.96
2 nuovi prodotti 0.00 2467 0 1 11.94
3 fifty8 uk 0.00 1514 0 1 11.24
4 www fifty8 0.00 1509 0 1 11.24
5 | #gagavmas #gagavimas 0.00 1507 0 1 11.23
6 http://uk cheap 0.00 | 1459 | 0 1 11.19
7 www paid 1952.29 0 1 0 10.95
8 releas sep 0.00 1096 0 1 10.77
9 uk flight 0.62 1928 1 1 10.59

10 cheap uk 0.00 926 0 1 10.53
11 cc cheap 0.00 816 0 1 10.35
12 flight uk 0.00 815 0 2 10.35
13 vote ak 0.00 797 0 1 10.31
14 http://uk air 0.00 763 0 1 10.25
15 99 descript 0.00 726 0 1 10.18
16 scade il 0.00 677 0 1 10.08
17 Qwww amazon 0.00 655 0 1 10.03
18 www cordless 0.00 641 0 1 10.00
19 2009 price 0.62 1280 1 1 10.00
20 book cheap 0.62 1250 1 6 9.96
21 paid draw 1952.91 1 2 1 9.95
22 rt Qatirahn 0.00 615 0 1 9.94
23 neue da 0.00 613 0 1 9.94
24 cc book 0.00 604 0 1 9.92
25 | click http://bit.ly/okvd7 | 0.00 600 0 1 9.91
26 cc fli 0.00 593 0 1 9.89
27 matter click 0.00 593 0 2 9.89
28 tuwallstreet comment 0.00 583 0 1 9.86
29 result credit 892.97 0 1 0 9.82
30 ak perform 0.00 558 0 1 9.80

TABLE 21: Top 30 Bigram Features by PMI. Terms in bold fonts are distinguished

ones in suspended class.
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No Feature STF | NTF | SUF | NUF Score

1 flight cc 0.00 2494 0 1 3.19 x 107°

2 nuovi prodotti 0.00 2467 | 0O 1 3.16 x 107°

3 www paid 1952.29 | 0 1 0 |253x10°°

4 book cheap 0.62 | 1250 | 1 2.46 x 107°

5 updat blog 2075.97 | 116 | 144 | 76 | 2.31x 107

6 snarf snarf 1359.24 1 4 1 2.18 x 107°

7 fiftyS uk 0.00 | 1514 | 0 1 [1.94x%10°5

8 www fifty8 0.00 1509 0 1 1.93 x 107°

9 #gagavimas #gagavmas 0.00 1507 0 1 1.93 x 107°
10 http://uk cheap 0.00 | 1459 | O 1 | 1.87x107°
11 super kit 828.04 0 3 0 | 1.75%x107°
12 paid draw 1952.91 1 2 1 1.60 x 107°
13 | #teamdemi #teamdemi 843.50 0 2 0 | 1.54x107°
14 rt @parisfilmes 831.75 0 2 0 1.52 x 107°
15 kit lua 827.42 0 2 0 1.51 x 107
16 #stay F#stay 1159.50 | 7 3 1 |1.49x107°
17 flight uk 0.00 815 0 2 1.47 x 107°
18 releas sep 0.00 1096 0 1 1.40 x 107°
19 cheap uk 0.00 926 0 1 1.19 x 107
20 result credit 892.97 0 1 0 | 1.16x107°
21 song wow 548.52 8 35 8 1.13 x 107°
22 @parisfilmes @ucicinemas 842.26 0 1 0 1.09 x 107°
23 | @espacozoficial @andreianapoleao | 828.66 0 1 0 1.07 x 107
24 @ucicinemas @Qespacozoficial 828.04 0 1 0 1.07 x 107°
25 @eric_twittando http://migre.me/baje 826.80 0 1 0 1.07 x 107°
26 matter click 0.00 593 0 2 1.07 x 107°
27 cc cheap 0.00 816 0 1 1.04 x 107
28 #glee #glee 484.21 6 16 3 1.03 x 107°
29 | #australiawantsjonas #australiawantsjonas | 483.59 0 3 0 1.02 x 107°
30 vote ak 0.00 797 1 1.02 x 107°

TABLE 22: Top 30 Bigram Features by WAPMI. Terms in bold fonts are distin-

guished ones in suspended class.
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No Feature STF | NTF | SUF | NUF | Score
1 film blog 4.95 3039 5 3 4820.73
2 cheap flight 21.03 | 2685 | 27 16 | 4163.86
3 flight cc 0.00 2494 0 1 3979.32
4 nuovi prodotti 0.00 2467 0 1 3936.21
5 uk flight 0.62 1928 1 1 3072.15
6 fifty8 uk 0.00 1514 0 1 2414.83
7 air flight 3.09 1523 5 4 2411.31
8 www fifty8 0.00 1509 0 1 2406.85
9 #gagavimas F#gagavmas 0.00 1507 0 1 2403.66

10 blog post 2451.96 | 6393 | 463 | 400 | 2355.50
11 http://uk cheap 0.00 | 1459 | 0 1 | 2327.03
12 2009 price 0.62 1280 1 1 2037.70
13 book cheap 0.62 1250 1 6 1989.81
14 www paid 1952.29 0 1 0 1975.89
15 paid draw 1952.91 1 2 1 1973.90
16 updat blog 207597 | 116 | 144 76 | 1813.15
17 releas sep 0.00 1096 0 1 1747.55
18 cordless show 0.62 986 1 1 1568.37
19 cheap uk 0.00 926 0 1 1476.18
20 snarf snarf 1359.24 1 4 1 1372.42
21 | #veronicamars #veronicamars 5.57 857 1 1 1334.14
22 cc cheap 0.00 816 0 1 1300.58
23 flight uk 0.00 815 0 2 1298.98
24 vote ak 0.00 797 0 1 1270.25
25 http://uk air 0.00 763 0 1 1215.98
26 cheap air 1.86 760 3 4 1200.48
27 99 descript 0.00 726 0 1 1156.91
28 #stay F#stay 1159.50 7 3 1 1154.43
29 #charice pyramid 0.62 719 1 1 1142.16
30 scade il 0.00 677 0 1 1078.69

TABLE 23: Top 30 Bigram Features by x?. Terms in bold fonts are distinguished

ones in suspended class.
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In these tables, we can figure out that MI and x? tend to select popular words
while PMI and WAPMI tend to select rare words. And many of selected features
show some characters about why users were suspended. Unigrams selected by MI
and 2, such as "uk”, "htm”, "cc” and ”en”, are more likely to be appeared in
a URL, which shows that URL plays an important role in distinguishing between
suspended users and non-suspended users. Although the token frequencies of ”uk”
or "htm” in suspended users are larger than these words in non-suspended users, the
user frequencies of these words are bigger in suspended user dataset, which means
that more suspended users are likely to send URL. Some studies [2], 22] also indicated
that spammers will try to use URL as text instead of shorten URL. In our splitting
and normalizing step, we used regular expression to split shorten URL into one token.
So the reason why we now got some part of URL in tokens is that these users tried to
send URL as text rather than shorten URL to avoid being blocked by URL blacklist.

The selected bigrams gave more evidences to this assumption. The bigram feature,
"www paid”, selected by WAPMI was only sent by a spammer who has already been
suspended. Before suspended by Twitter, this user sent 3,157 tweets and all of them
contains ”"www.Paid-To-Draw.com”, which is a website that can make money by
drawing. Tweets such as ”"Do you want to recieve huge notoriety as an artist? Visit
www.Paid-To-Draw.com”, ”Working on promoting a fantastic product www.Paid-
To-Draw.com”, include the URL as text in order to avoid blocking by shorten URL
detection. Another example is that inside non-suspended users, there is also a user
who sending URL as text to avoid being blocked. The bigram feature, ”www fifty8”,
was sent by a user who has not been suspended but keeping sending spams. This
user successfully passed URL blacklist detection by using this method.

Another main reason of suspending is abusive activities. In the unigram features,
we can find there is a large number of suspended users who sent tweets include f-word,
b-word or s-word. The total number of suspended users who sent these words is 4,025
and this number of non-suspended users is 2,333. And these suspended users sent 24
tweets containing these words on average and these non-suspended users only sent 16
tweets. We will discuss this later in experiments on bad words.

Sending massive mentions and hashtags is another reason of suspending. In bigram
features selected by WAPMI (Table 22)), we can found features ranked from 16 to 20,
which contain a large number of mentions and hashtags. In fact all of these features

are extract from the tweets sent by same user. This suspended user sent a lot of

47
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tweets containing mentions and hashtags to get attention from other users.

The features selected by MI, PMI, WAPMI are slightly different from each other.
MI and x? tend to select popular words and resulting in the similar results. Fig.
shows the differences between these feature selection methods. Each plot contains
top 10,000 features selected by different methods. Each feature is located by token
frequency in suspended user dataset and non-suspended user dataset. Compared
to MI and 2, which selected the popular features, PMI tends to select those rare
features, especially those features which occur only in one dataset. And because of

the normalization factor ay, WAPMI selected both rare features and popular features.

MI PMI
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Frequency in N

10" 10° 10 10°
Frequency in S
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FIGURE 8: Locations of Features selected by MI, PMI, WAPMI and x>

In order to evaluate the performances of each feature selection methods, we tried to
adjust the size of features to filter the dataset and then run 10-fold cross validation on
classification by using Multinomial Naive Bayes classifier. The relationship between

the size of top selected features and the result of classification shows in Table [24] and
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20l
In Fig[9] both the accuracy and F1 have increased , especially on the results of

PMI and WAPMI. The accuracy and F1 on unigram now can be 67.70% and 68.98%
by using top 10° features selected by PMI; and the accuracy and F1 on bigram now
can be 76.75% and 78.54% by using top 1.5 x 107 features selected by WAPMI.
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FIGURE 9: Feature Size vs Accuracy and F1
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Model Feature Size | Precision | Recall | Accuracy F1

Unigram + MI 10 | 53.08 % | 54.83 % | 53.19 % | 53.94 %
Unigram + MI 100 | 55.11 % | 75.10 % | 56.97 % | 63.57 %
Unigram + MI 1000 | 54.70 % | 81.84 % | 57.03 % | 65.57 %
Unigram + MI 10000 | 54.42 % | 82.93 % | 56.74 % | 65.72 %
Unigram + MI 100000 | 55.08 % | 80.67 % | 57.44 % | 65.46 %
Unigram + MI 1000000 | 55.82 % | 89.17 % | 59.29 % | 68.65 %
Unigram + MI 1500000 | 54.81 % | 85.52 % | 57.50 % | 66.80 %
Unigram + MI 2000000 | 54.28 % | 82.30 % | 56.49 % | 65.42 %
Unigram + PMI 10 | 50.01 % | 50.04 % | 50.01 % | 50.03 %
Unigram + PMI 100 | 49.93 % | 50.11 % | 49.93 % | 50.02 %
Unigram + PMI 1000 | 49.96 % | 51.13 % | 49.96 % | 50.54 %
Unigram + PMI 10000 | 53.02 % | 49.35 % | 52.81 % | 51.12 %
Unigram + PMI 100000 | 59.35 % | 50.14 % | 57.90 % | 54.36 %
Unigram + PMI 1000000 | 66.35 % | 71.84 % | 67.70 % | 68.98 %
Unigram + PMI 1500000 | 56.50 % | 78.86 % | 59.07 % | 65.83 %
Unigram + PMI 2000000 | 55.76 % | 74.55 % | 57.70 % | 63.80 %
Unigram + WAPMI 10 | 5218 % | 58.82 % | 52.46 % | 55.30 %
Unigram + WAPMI 100 | 53.07 % | 67.94 % | 53.93 % | 59.59 %
Unigram + WAPMI 1000 | 53.81 % | 84.70 % | 56.00 % | 65.81 %
Unigram + WAPMI 10000 | 54.81 % | 84.92 % | 57.45 % | 66.62 %
Unigram + WAPMI 100000 | 57.14 % | 79.63 % | 59.95 % | 66.54 %
Unigram + WAPMI 1000000 | 60.89 % | 84.97 % | 65.20 % | 70.94 %
Unigram + WAPMI 1500000 | 60.22 % | 82.21 % | 63.95 % | 69.52 %
Unigram + WAPMI 2000000 | 59.03 % | 75.77 % | 61.59 % | 66.36 %
Unigram + x? 10 | 53.18 % | 55.46 % | 53.31 % | 54.29 %
Unigram + x? 100 | 55.20 % | 76.12 % | 57.17 % | 63.99 %
Unigram + x? 1000 | 54.47 % | 83.70 % | 56.86 % | 65.99 %
Unigram + x? 10000 | 54.45 % | 84.10 % | 56.87 % | 66.10 %
Unigram + x? 100000 | 55.00 % | 81.15 % | 57.37 % | 65.56 %
Unigram + x? 1000000 | 55.79 % | 89.21 % | 59.26 % | 68.65 %
Unigram + x? 1500000 | 54.81 % | 85.52 % | 57.50 % | 66.80 %
Unigram + x? 2000000 | 54.28 % | 82.31 % | 56.49 % | 65.42 %

TABLE 24: Classification Results of Unigram on Different Feature Sizes
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Model Feature Size | Precision | Recall | Accuracy F1

Bigram + MI 10 | 50.01 % | 49.96 % | 50.01 % | 49.99 %
Bigram + MI 100 | 49.93 % | 48.44 % | 49.93 % | 49.17 %
Bigram + MI 1000 | 54.12 % | 63.31 % | 54.82 % | 58.35 %
Bigram + MI 10000 | 55.58 % | 76.01 % | 57.63 % | 64.21 %
Bigram + MI 100000 | 57.74 % | 84.25 % | 61.29 % | 68.52 %
Bigram + MI 1000000 | 60.61 % | 91.48 % | 66.01 % | 72.91 %
Bigram + MI 10000000 | 53.58 % | 95.24 % | 56.37 % | 68.58 %
Bigram + MI 15000000 | 56.64 % | 87.63 % | 60.28 % | 68.81 %
Bigram + PMI 10 | 50.01 % | 50.02 % | 50.01 % | 50.02 %
Bigram + PMI 100 | 50.08 % | 50.09 % | 50.08 % | 50.09 %
Bigram + PMI 1000 | 50.20 % | 50.43 % | 50.20 % | 50.31 %
Bigram + PMI 10000 | 51.55 % | 53.41 % | 51.61 % | 52.46 %
Bigram + PMI 100000 | 61.49 % | 66.26 % | 62.38 % | 63.78 %
Bigram + PMI 1000000 | 65.98 % | 83.08 % | 70.13 % | 73.55 %
Bigram + PMI 10000000 | 54.27 % | 94.18 % | 57.41 % | 68.86 %
Bigram + PMI 15000000 | 59.51 % | 84.75 % | 63.55 % | 69.93 %
Bigram + WAPMI 10 | 50.18 % | 50.67 % | 50.19 % | 50.43 %
Bigram + WAPMI 100 | 5213 % | 59.22 % | 52.42 % | 55.45 %
Bigram + WAPMI 1000 | 54.38 % | 71.57 % | 55.76 % | 61.80 %
Bigram + WAPMI 10000 | 56.36 % | 79.03 % | 58.92 % | 65.80 %
Bigram + WAPMI 100000 | 61.66 % | 85.12 % | 66.10 % | 71.52 %
Bigram + WAPMI 1000000 | 70.04 % | 90.61 % | 75.92 % | 79.01 %
Bigram + WAPMI 10000000 | 61.85 % | 93.98 % | 68.01 % | 74.60 %
Bigram + WAPMI 15000000 | 72.92 % | 85.09 % | 76.75 % | 78.54 %
Bigram + x? 10 | 50.12 % | 51.93 % | 50.13 % | 51.01 %
Bigram + y? 100 | 49.67 % | 47.12 % | 49.69 % | 48.36 %
Bigram + x? 1000 | 54.16 % | 65.16 % | 55.01 % | 59.15 %
Bigram + x? 10000 | 55.56 % | 77.18 % | 57.72 % | 64.61 %
Bigram + x? 100000 | 57.49 % | 84.47 % | 61.01 % | 68.42 %
Bigram + x? 1000000 | 60.42 % | 91.50 % | 65.78 % | 72.78 %
Bigram + x? 10000000 | 53.58 % | 95.24 % | 56.37 % | 68.58 %
Bigram + x? 15000000 | 56.64 % | 87.63 % | 60.28 % | 68.81 %

TABLE 25: Classification Results of Bigram on Different Feature Sizes
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4.4.2 Conclusion

We experimented classification using n-gram model with BNB and MNB. Feature
selection methods, MI, PMI, WAPMI and y? have also been used in these experi-
ments. Among these methods, MNB + bigram + WAPMI is the best choice, which
achieved 75.92 % accuracy and 79.01% F1. We compared BNB and MNB with full
features and found both of them work badly. MNB tends to classify all users into sus-
pended because suspended user dataset contain more top features than non-suspended
user dataset, whil BNB tends to classify all users into non-suspended because non-
suspended user dataset contain more rare features. Among the 4 feature selection
methods, we found that MI and x? tend to select popular words while PMI selects
rare words and WAPMI select both popular and rare words. And the results of ex-
periments show that rare words can increase the accuracy and F1, but there is a
limitation because rare words may not occur in users’ tweets. So in all methods,

PMI, which select both popular words and rare words, performs best.
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CHAPTER 5

Classification using word2vec and

doc2vec

To apply other classification methods, we need to transform high dimensional repre-
sentation of documents into shorter vectors. It is based on word embedding method
that maps the tweets into low dimension vectors. We experimented with two methods:
one uses the sum of word vectors, where each word vector is obtained from word2vec
[23]. The other uses doc2vec introduced in [24].

5.1 Experiments of word2vec

In 2013, T. Mikolov et al. [23] proposed a new model named word2vec for computing
continuous vector representations of words that cannot only map the words into lower
dimension vector, and it can also represent the similarity of words by cosine distance
between the vectors of two words. This model can be used in many areas in NLP,
such as word clustering [25] and named entity recognition |26, 27]. It can even show
the inside relationship between words by simple algebraic operations, for example
that vector(” King”) — vector(” Man”) + vector(”Woman”) results in a vector that
is closest to the vector representation of the word ”Queen” [2§].

Word2vec is based on distributed representations of words learnt by neural net-
work. The task of word2vec is to train a matrix W, where each column represents
a mapped word w. The goal of word2vec model is to maximize the accuracy of
prediction of next word in sentence using the other word vectors in this sentence.
More formally, Given a sequence of words, wy, ws, ..., w,, word2vec model will try to

maximize the average log probability
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5. CLASSIFICATION USING WORD2VEC AND DOC2VEC

n—k

1
n Z log p(wi|wi—p, .., Wetr)
t=k

By using CBOW (Continuous Bag-of Words Model) or Skip-gram model, it can
easily process 783 million words within one day, which is a significant improvement on
the performance. This makes it possible to train more complex model on much larger
dataset, therefore the trained model can outperform the previous simple models.

However, word2vec can only map words to vectors, which is not enough for our
classification. We need a mapping function that can convert the tweets into vectors.
It can easily to come out with a naive idea that we can sum up all the word vectors in
one tweet and the result vector can represent this tweet [29]. The following formula

shows this idea:

vector(u) = Z vector(wy,)
k=1

where wj, are the words in the tweets sent by user. This approach have some
advantages. First is that it is easy to compute and understand. The previous example,
vector(” King” ) +wvector(”Woman”) = vector(” Queen” ) +vector(” Man”) illustrates
that it is possible to sum vectors together without losing the meaning of sentences,
and further more can somehow prove that this approach can be used to generate
the vector of tweet. Second is that the dimension size of the result vector will still
be the same as the dimension size of word vectors. Thus the tweets with different
lengths can be easily converted into the same dimension vectors and then be used in
classification.

But this simple method still have some problems in it. When converting words
vector into tweet vector, we may face the problem that the word cannot be found
in the vocabulary of pre-trained model. We have two options here to deal with this
problem, one solution is to ignore this word, treating it like a all-zero vector; another
is that we can assign a random vector to word and save this word together with the
new vector into model, so that next time when we find the same word we can still
use this vector. In our experiments, we tested all of these combinations.

In word2vec experiments, we tried to train 3 different dimensions: 300, 600, 1,000
using our tweets dataset with CBOW model. The parameters of training are window
= 5 (indicating how many words will be used around current words when training

vectors); min count = 5 (indicating the words of which the frequency is less than
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5 will be removed). We also tried a pre-trained word vectors that is trained based
on part of Google News dataset (about 100 billion words) [30]. This model contains
300-dimensional vectors for 3 million words.

After training, we used 4 different methods to concentrate word vectors to generate
vectors for users. These 4 methods are depending on whether we need to normalize
the concentrated user vectors and whether we need to discarding the missing words.

If using normalization, the concentrated user vectors will be

= Do vector()

vector

And if using discarding missing words method, the words which are not in the
pre-trained word2vec model will be discarded. If we don’t use discarding missing
words method, the missing words will be randomly assigned word vectors.

After concentrating user vectors, we then used several classifiers to test which
one performs best. The classifiers we used are listed in and all the parameters
remain default. Fig. and show the results of all the experiments. In these
tables, NORM = 1 represents using normalization method, DIS = 1 represents
using discarding missing words method and DI1.S = 0 represents assigning a random
vector to missing word method.

We achieved the best accuracy (63.02 %) when using SVM with RBF function ker-
nel on 1,000 dimension word vector model with normalization and discarding missing
words and the best F1 (67.24 %) when using SVM with linear function kernel on 600
dimension word vector model with discarding missing words.

In these figures, we can conclude that first is the model we trained based on tweets
can significantly improve the results of classification compared with pre-train model
based on google news. This is because our model is focusing tweets area. Words and
the way of using words may be very different between different area, so the trained
word vectors can be very different.

Secondly, normalization will lose some important information on user vectors,
resulting in bad results of classification. This is shown in bar plots of F1. The
average F'1 of different classifiers on normalized user vectors is 52.16 % while that on
user vectors which are not using normalization is 63.29 %.

Thirdly, different dimensions don’t play an important role in classification, which

means that 300-dimension word vectors are good enough for classifying.
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FIGURE 11: F1 of classifiers
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5.2 Experiments of doc2vec

The problem of word2vec is that although the vectors can contain some position
information during training word2vec model, the word order has been lost during
summing up, resulting in different tweets can share the exactly same vector as long
as the words they used are same. And this may also cause two tweets that contain
very different words but the vectors of them are still same or in closer distance. This
problem can be solved by using doc2vec.

In 2014, Q. Le et al. [24] proposed doc2vec that can learn continuous distributed
vector representations for variable-length texts, ranging from sentences to documents.

Doc2vec approach is inspired by word2vec. In word2vec model, during the training
of word vectors, this model will try to maximize the accuracy of prediction of next
word in sentence by the words before this word. This idea has been taken into doc2vec.
The difference between this two models is that in doc2vec, every document has also
been mapped to a unique vector and will be trained together during maximization.

We used doc2vec as another way to generate vectors for users. In our experiments,
we used Gensim [31], which contains an implementation of Paragraph Vector based
on [24]. For each user in our sampled dataset, the tweets he sent have been merged
into one document and then we trained document vector based on the merged tweets.
We also trained three different dimensions (300, 600, 1,000) to test the differences of
the results between Document Vector models. The parameters of training are same
as the parameters using in word2vec.

Fig and show the accuracies and F1s of different classifiers on different
dimensions of doc2vec models. We can figure out that SVM with RBF kernel on 1000
dimension of doc2vec model achieves best accuracy (73.28%) and best F1 (73.39%).

This result is better than all the results of classification on word2vec model.
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FIGURE 13: F1 of classifiers on doc2vec model

We also tried to visualize the users and tried to figure out the clusters and relation-
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ships among users based on the 1000 dimension Paragraph Vector result. We reduced
the dimension into 2D by t-Distributed Stochastic Neighbor Embedding (t-SNE) [32].
t-SNE is a faster dimension reduction algorithm that accepts a high-dimension ma-
trix and then outputs a 2D matrix. When converting, t-SNE will first compute the
distances between vectors and then it will build a similarity tree based on the distance
matrix. It will then train a set of 2D vectors which can also satisfy the similarity tree
so that these 2D vectors can still keep the structure of the high dimension vectors.

During the conversion, the order of rows won’t be changed so that the user that
the row represents is still the same. In our experiment, the t-SNE we used is an
open source implementation (bhtsne) [33] that is based on variants of the Barnes-Hut
algorithm and the dual-tree algorithm, whose time complexity is O(NlogN). The
input parameters of bhtsne are that the perplexity is 30.0 and 6 is 0.5.

Fig. shows the 2D matrix result of t-SNE. We can directly see that there are
some small clusters of suspended users located around the borders. And in the center,
the left part consists mainly of suspended users while the right part consists mainly

of non-suspended users.
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FIGURE 14: Visualizations of Users
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CHAPTER 6

Classification using bad words

In previous section, we found that there are a lot of bad words in top features selected
by PMI and WAPMI. This is a strong evidence that many users were suspended
because of their abusive activities. So we explored further in the bad words they
used.

First we collected a list of bad words from the term blocking lists of Google [34]
and Facebook [35]. After merging these two lists, we got 487 bad words which can be
found in our dataset. Table [26] contains top 10 bad words sorted by token frequency

in suspended user dataset.

No. | Word | STF | NTF | SUF | NUF
1 x| 44276 | 16684 | 2876 | 1476
2 s*** | 35717 | 14140 | 2970 | 1622
3 d*F 129031 | 14510 | 3077 | 1780
4 a** | 22691 | 9251 | 2845 | 1526
> s*** 120035 | 9939 | 3619 | 2004
6 W 119190 | 9773 | 3235 | 1853
7 pHHHE 17779 | 6362 | 2465 | 1255
8 k*#% 1 15126 | 7909 | 3189 | 1803
9 wH* | 14441 | 6810 | 2479 | 1333
10 | gk 114234 | 7159 | 3068 | 1620

TABLE 26: Top 10 Bad Words Sorted by Frequency in Suspended User Dataset,
STF = Suspended Token Frequency, NTF = Non-Suspended Token Frequency, SUF
= Suspended User Frequency, NUF = Non-Suspended User Frequency

However, there is a challenge when analyzing the using of bad words when sending
tweets, which is we cannot know the exactly reason of suspending of user. So even

every tweet of user includes bad words, we still cannot say this user is suspended
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because of abusing. But when looking at the whole picture, the number of suspending
users who sending bad words should be larger than that number of non-suspended
users. Fig. shows the counts of users who sent top bad words. We can clearly
figure out that the number of suspend users using top bad words is as twice as larger

than that number of non-suspended users.
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FIGURE 15: The number of users who sent top bad words

This character can also be detected by seeing Fig In this figure, we plotted all
the unigrams located by frequency in suspended user dataset and non-suspended user
dataset. This is because the total frequency of tokens in both datasets are different,
the directly comparison of raw frequencies is meaningless. The frequency has been

normalized by,

Nt,c
Ne
where N, . is the count of gram ¢ occurring in class c and N, is the total gram frequency

Norm(Ny.) =

in class ¢. The red circles are bad words. The features below green line represent
suspended users tend to use it more often and the features above green line represent
normal users tend to use it more often. It shows that bad words are more likely to

be used by suspended users, especially top bad words.
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6. CLASSIFICATION USING BAD WORDS

We trained a 300 dimension word2vec using the tokens of which frequency is larger
than 5 to get deeper inside the relations between bad words and other tokens. Fig.
is plotted by t-sne which can reduce the 300 dimension word vectors into 2 dimension
so that we can visualize all the words. The red markers are bad words and there is
one big cluster of bad words located in the left center and a small cluster of bad words
located in the right center. Because the vectors trained by word2vec can carry the
position and meaning information, it should be highly possible that the other words
which are close enough to the bad words can also be considered as bad words. So we
computed the score between feature ¢ and bad word w, which is defined as the token
frequency of bad word in suspended user dataset multiplies the cosine similarity of
feature word vector and bad word vector.

Vi Vi
BadScore(t,w) = Nwﬁm
Table [27| listed top 10 most similar hidden bad words. These hidden bad words

are not on the common bad words list.
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FIGURE 16: Bad words located by normalized token frequency
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6. CLASSIFICATION USING BAD WORDS

30

-30 -20 -10 0 10 20 30

FIGURE 17: Bad word vectors trained by word2vec

No. | Word | COS Score Similar To | STF | NTF | SUF | NUF
1 fraRRE 1 0.64 | 28286.24 Aok 334 | 362 70 37

2 R 10.64 | 28170.08 ok 213 | 111 | 123 76

3 et 0.63 | 28039.53 o 1189 | 522 | 453 | 202
4 a® k1 0.61 | 26929.79 frofek 1951 | 805 | 876 | 386
5 s* 0.73 | 26090.08 gHAK 1264 | 746 | 595 | 337
6 e* 0.59 | 25921.04 froex 1432 | 663 | 519 | 248
7 gHHH 0.71 | 25439.94 Sl 814 | 350 144 74

8 groRR 1 0.57 | 25316.79 froek 4975 | 2206 | 1613 | 825
9 oAk 0.57 | 25118.44 i 1055 | 422 391 166
10 | freelek ] 055 | 24366.71 o 976 | 436 | 405 | 198

TABLE 27: Top 10 Hidden Bad Words, COS = Cosine Similarity between hidden
word and bad word, STF = Suspended Token Frequency, NTF = Non-Suspended
Token Frequency, SUF = Suspended User Frequency, NUF = Non-Suspended User

Frequency

In order to detect whether bad words are the reasons why the users were sus-
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6. CLASSIFICATION USING BAD WORDS

pended, we tried to classify them based on the bad words frequency of these users.
Because this time we only got little number of features, so we can try a lot of classi-
fiers. We used scikit-learn library [36], which contains many different classifiers such
as Naive Bayes, Nearest Neighbours and Random Forest. All the parameters of the
classifiers remained default. The classifiers we used in our experiments listed in Table
29 Table 28| shows the result of classification. We can figure out when using decision
tree or random forest, we can achieve about 60% accuracy and 74% F1, which is
better than using MNB with full features. This is also an evidence to prove that bad

words are one of main reasons of suspending.

CLR | TP | FP | FN | TN | Precision | Recall | Accuracy F1

NB 820 | 6643 | 371 | 4710 | 68.85 % | 10.99 % | 44.08 % | 18.95 %
NN 6191 | 1272 | 4207 | 874 | 59.54 % | 82.96 % | 56.32 % | 69.32 %
LDA | 7067 | 396 | 4808 | 273 | 59.51 % | 94.69 % | 58.51 % | 73.09 %
QDA | 847 | 6616 | 410 | 4671 | 67.38 % | 11.35 % | 43.99 % | 19.43 %
DT 7279 | 184 | 4947 | 134 | 59.54 % | 97.53 % | 59.10 % | 73.94 %
RF 7462 1 5081 0 59.49 % 1 99.99 % | 59.49 % | 74.60 %
AB 7086 | 377 | 4761 | 320 | 59.81 % | 94.95 % | 59.04 % | 73.39 %

TABLE 28: Classification Results using Bad Words
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CHAPTER 7

Conclusion

In this thesis, we analysed the suspended users in Twitter and studied several ap-
proaches to predict whether a user will be suspended or not. First, we took a review
of the some related works. Benevenuto et al. [4] and Moh et al. [5] gave a good work
on classification of spammers with high accuracy. However the works from them meet
a problem that the size of dataset is too small. They only focus on a narrow subdo-
main of twitter, which means their work cannot directly be scaled to the whole twitter
social network. Moreover, the feature set they selected can be easily manipulated by
spammers to act like a real user so that their approach cannot detect them.

In our research, we collected a large dataset of suspended users and analysed
this dataset to reveal the different between suspended users and normal users. We
tried to classify them by Naive Bayes classifier, together with several feature selection
methods on n-gram models derived from the tweets, resulting in 76.75% accuracy and
78.54% F1. We also tried different word embedding methods to convert users into
vectors. We tried some classifiers on converted user vectors. When using SVM with
RBF kernel function, we achieved 73.28% accuracy and 73.39% F1 on 1000 dimension
user vector trained by Paragraph Vector method.

After analyzing the characteristic of bad words using in suspended users, we found
the number of bad words using users is as twice larger as that number of normal users.
And we also introduced Badscore to evaluate probability of whether a word can be a

bad word.
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A. CLASSIFIERS USED IN EXPERIMENTS

Name Short Name | Description

Gaussian Naive Bayes NB Gaussian Naive Bayes Classifier.
The likelihood of features is as-

sumed to be Gaussian distribution.

Nearest Neighbour NN k-nearest neighbour classifier with k
= 10. Classify test case by vote of

k-nearest neighbour of it.

Linear Discriminant Analysis LDA A classifier with a linear decision
boundary, generated by fitting class
conditional densities to the data and

using Bayes’ rule.

Quadratic Discriminant Analysis QDA A classifier with a quadratic decision
boundary, generated by fitting class
conditional densities to the data and

using Bayes’ rule.

Decision Tree DT A classifier that trains a model
which can predict the value of a tar-
get variable by learning simple de-
cision rules inferred from the data

features.

Random Forest RF A random forest is a meta estimator
that fits a number of decision tree
classifiers on various sub-samples of

the dataset.

Adaptive Boosting AB It is also a meta-estimator that be-
gins by fitting a classifier (decision
tree) on the original dataset and
then fits additional copies of the

classifier on the same dataset

SVM with Linear Kernel Linear Support vector machines with linear

function kernel

SVM with RBF Kernel RBF Support vector machines with radial

basis function kernel

TABLE 29: Classifiers in Experiments
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APPENDIX B

Classification results of word2vec

and doc2vec
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B. CLASSIFICATION RESULTS OF WORD2VEC AND DOC2VEC

CLR N|D TP FP FN TN | Precision | Recall | Accuracy F1

NB 0| 0| 10348 | 986 | 9654 | 1680 | 51.73 % | 91.30 % | 53.06 % | 66.05 %
NN 0| 0| 7547 | 3787 | 5291 | 6043 | 58.79 % | 66.59 % | 59.95 % | 62.44 %
LDA 0] 0| 9796 | 1538 | 8073 | 3261 | 54.82 % | 86.43 % | 57.60 % | 67.09 %
QDA 0| 0| 10034 | 1300 | 9155 | 2179 | 5229 % | 88.53 % | 53.88 % | 65.75 %
DT 0| 0| 6548 | 4786 | 3845 | 7489 | 63.00 % | 57.77 % | 61.92% | 60.28 %
RF 0] 0| 6012 | 5322 | 3235 | 8099 | 65.02% | 53.04 % | 62.25 % | 58.42 %
AB 0| 0| 6524 | 4810 | 3595 | 7739 | 64.47 % | 57.56 % | 62.92 % | 60.82 %
Linear | 0 | 0 | 10389 | 945 | 9260 | 2074 | 52.87 % | 91.66 % | 54.98 % | 67.06 %
RBF 0] 0| 9319 | 2015 | 7480 | 3854 | 55.47 % | 82.22 % | 58.11 % | 66.25 %
NB 1] 0| 3784 | 7550 | 1813 | 9521 | 67.61 % | 33.39 % | 58.70 % | 44.70 %
NN 1] 0 | 5455 | 5879 | 3672 | 7662 | 59.77 % | 48.13 % | 57.87 % | 53.32 %
LDA 1] 0| 5395 | 5939 | 3221 | 8113 | 62.62 % | 47.60 % | 59.59 % | 54.09 %
QDA 1] 0| 4042 | 7292 | 1726 | 9608 | 70.08 % | 35.66 % | 60.22 % | 47.27 %
DT 110 | 6196 | 5138 | 3952 | 7382 | 61.06 % | 54.67 % | 59.90 % | 57.69 %
RF 1] 0| 6010 | 5324 | 3552 | 7782 | 62.85 % | 53.03 % | 60.84 % | 57.52 %
AB 1] 0| 6242 | 5092 | 3617 | 7717 | 63.31 % | 55.07 % | 61.58 % | 58.91 %
Linear | 1 | 0 | 4558 | 6776 | 2428 | 8906 | 65.24 % | 40.22 % | 59.40 % | 49.76 %
RBF 1] 0| 5726 | 5608 | 2817 | 8517 | 67.03 % | 50.52 % | 62.83 % | 57.61 %
NB 0| 1] 10348 | 986 | 9661 | 1673 | 51.72 % | 91.30 % | 53.03 % | 66.03 %
NN 0| 1| 7558 | 3776 | 5315 | 6019 | 58.71 % | 66.68 % | 59.90 % | 62.44 %
LDA 0| 1| 9817 | 1517 | 8100 | 3234 | 54.79% | 86.62 % | 57.57 % | 67.12 %
QDA 0 | 1 | 10031 | 1303 | 9160 | 2174 | 52.27 % | 88.50 % | 53.84 % | 65.72 %
DT 0| 1| 6692 | 4642 | 4007 | 7327 | 62.55 % | 59.04 % | 61.84 % | 60.75 %
RF 0| 1| 5972 | 5362 | 3220 | 8114 | 64.97 % | 52.69 % | 62.14 % | 58.19 %
AB 0| 1| 6522 | 4812 | 3628 | 7706 | 64.26 % | 57.54 % | 62.77 % | 60.71 %
Linear | 0 | 1 | 10383 | 951 | 9236 | 2098 | 52.92 % | 91.61 % | 55.06 % | 67.09 %
RBF 0| 1| 9311 | 2023 | 7534 | 3800 | 55.27 % | 82.15 % | 57.84 % | 66.08 %
NB 1] 1| 3748 | 7586 | 1800 | 9534 | 67.56 % | 33.07 % | 58.59 % | 44.40 %
NN 1 | 1 | 5457 | 5877 | 3673 | 7661 | 59.77 % | 48.15 % | 57.87 % | 53.33 %
LDA 1] 1| 5389 | 5945 | 3244 | 8090 | 62.42 % | 47.55 % | 59.46 % | 53.98 %
QDA 1] 1| 4020 | 7314 | 1708 | 9626 | 70.18 % | 35.47 % | 60.20 % | 47.12 %
DT 1| 1| 6437 | 4897 | 4261 | 7073 | 60.17 % | 56.79 % | 59.60 % | 58.43 %
RF 1] 1| 6005 | 5329 | 3521 | 7813 | 63.04 % | 52.98 % | 60.96 % | 57.57 %
AB 1] 1| 6226 | 5108 | 3683 | 7651 | 62.83 % | 54.93 % | 61.22 % | 58.62 %
Linear | 1 | 1 | 4620 | 6714 | 2515 | 8819 | 64.75 % | 40.76 % | 59.29 % | 50.03 %
RBF 1] 1| 5743 | 5591 | 2808 | 8526 | 67.16 % | 50.67 % | 62.95 % | 57.76 %

TABLE 30: Classification Result on Tweets Trained Word Vector (Dimension = 300)
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B. CLASSIFICATION RESULTS OF WORD2VEC AND DOC2VEC

CLR N|D TP FP FN TN | Precision | Recall | Accuracy F1

NB 0| 0| 10350 | 984 | 9654 | 1680 | 51.74 % | 91.32 % | 53.07 % | 66.05 %
NN 0| 0| 7550 | 3784 | 5276 | 6058 | 58.86 % | 66.61 % | 60.03 % | 62.50 %
LDA 0] 0| 9726 | 1608 | 7954 | 3380 | 55.01 % | 85.81 % | 57.82% | 67.04 %
QDA 0| 0| 9707 | 1627 | 8667 | 2667 | 52.83 % | 85.64 % | 54.59 % | 65.35 %
DT 0] 0| 6225 | 5109 | 3646 | 7688 | 63.06 % | 54.92 % | 61.38 % | 58.71 %
RF 0| 0| 5932 | 5402 | 3155 | 8179 | 65.28 % | 52.34 % | 62.25 % | 58.10 %
AB 0| 0| 6563 | 4771 | 3669 | 7665 | 64.14 % | 57.91 % | 62.77 % | 60.86 %
Linear | 0 | 0 | 10269 | 1065 | 8955 | 2379 | 53.42 % | 90.60 % | 55.80 % | 67.21 %
RBF 0] 0| 9330 | 2004 | 7509 | 3825 | 55.41 % | 82.32 % | 58.03 % | 66.23 %
NB 1] 0| 3788 | 7546 | 1817 | 9517 | 67.58 % | 33.42 % | 58.70 % | 44.73 %
NN 1] 0 | 5348 | 5986 | 3578 | 7756 | 59.91 % | 47.19 % | 57.81 % | 52.79 %
LDA 1] 0| 5316 | 6018 | 3241 | 8093 | 62.12 % | 46.90 % | 59.15 % | 53.45 %
QDA 1] 0| 4264 | 7070 | 1894 | 9440 | 69.24 % | 37.62 % | 60.46 % | 48.75 %
DT 1] 0| 5953 | 5381 | 3751 | 7583 | 61.35 % | 52.52 % | 59.71 % | 56.59 %
RF 1] 0| 6068 | 5266 | 3586 | 7748 | 62.85 % | 53.54 % | 60.95 % | 57.82 %
AB 1] 0| 6254 | 5080 | 3590 | 7744 | 63.53 % | 55.18 % | 61.75 % | 59.06 %
Linear | 1 | 0 | 4649 | 6685 | 2568 | 8766 | 64.42 % | 41.02 % | 59.18 % | 50.12 %
RBF 1] 0| 5663 | 5671 | 2769 | 8565 | 67.16 % | 49.96 % | 62.77 % | 57.30 %
NB 0| 1] 10349 | 985 | 9659 | 1675 | 51.72 % | 91.31 % | 53.04 % | 66.04 %
NN 0| 1| 7553 | 3781 | 5293 | 6041 | 58.80 % | 66.64 % | 59.97 % | 62.47 %
LDA 0| 1] 9733 | 1601 | 8015 | 3319 | 54.84 % | 85.87 % | 57.58 % | 66.93 %
QDA 0| 1| 9703 | 1631 | 8676 | 2658 | 52.79 % | 85.61 % | 54.53 % | 65.31 %
DT 0| 1| 6418 | 4916 | 3771 | 7563 | 62.99 % | 56.63 % | 61.68 % | 59.64 %
RF 0| 1| 5946 | 5388 | 3167 | 8167 | 65.25 % | 52.46 % | 62.26 % | 58.16 %
AB 0| 1| 6576 | 4758 | 3650 | 7684 | 64.31 % | 58.02 % | 62.91 % | 61.00 %
Linear | 0 | 1 | 10276 | 1058 | 8954 | 2380 | 53.44 % | 90.67 % | 55.83 % | 67.24 %
RBF 0| 1] 9322 | 2012 | 7520 | 3814 | 55.35 % | 82.25 % | 57.95% | 66.17 %
NB 1] 1| 3731 | 7603 | 1798 | 9536 | 67.48 % | 32.92 % | 58.53 % | 44.25 %
NN 1 | 1 | 5347 | 5987 | 3543 | 7791 | 60.15 % | 47.18 % | 57.96 % | 52.88 %
LDA 1] 1| 5321 | 6013 | 3214 | 8120 | 62.34 % | 46.95 % | 59.30 % | 53.56 %
QDA 1] 1| 4221 | 7113 | 1869 | 9465 | 69.31 % | 37.24 % | 60.38 % | 48.45 %
DT 1] 1| 6072 | 5262 | 3854 | 7480 | 61.17 % | 53.57 % | 59.78 % | 57.12 %
RF 1] 1| 6015 | 5319 | 3563 | 7771 | 62.80 % | 53.07 % | 60.82 % | 57.53 %
AB 1] 1| 6301 | 5033 | 3648 | 7686 | 63.33 % | 55.59 % | 61.70 % | 59.21 %
Linear | 1 | 1 | 4611 | 6723 | 2597 | 8737 | 63.97 % | 40.68 % | 58.88 % | 49.74 %
RBF 1] 1| 5718 | 5616 | 2739 | 8595 | 67.61 % | 50.45 % | 63.14 % | 57.78 %

TABLE 31: Classification Result on Tweets Trained Word Vector (Dimension = 600)
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B. CLASSIFICATION RESULTS OF WORD2VEC AND DOC2VEC

CLR N|D TP FP FN TN | Precision | Recall | Accuracy F1

NB 0| 0| 10351 | 983 | 9655 | 1679 | 51.74 % | 91.33 % | 53.07 % | 66.06 %
NN 0| 0| 7556 | 3778 | 5266 | 6068 | 58.93 % | 66.67 % | 60.10 % | 62.56 %
LDA 0| 0| 9579 | 1755 | 7890 | 3444 | 54.83 % | 84.52 % | 5745 % | 66.51 %
QDA 0| 0| 9318 | 2016 | 8038 | 3296 | 53.69 % | 82.21 % | 55.65 % | 64.96 %
DT 0| 0| 6464 | 4870 | 3859 | 7475 | 62.62 % | 57.03 % | 61.49 % | 59.69 %
RF 0| 0| 5954 | 5380 | 3217 | 8117 | 64.92% | 52.563 % | 62.07 % | 58.07 %
AB 0| 0| 6514 | 4820 | 3706 | 7628 | 63.74 % | 57.47 % | 62.39 % | 60.44 %
Linear | 0 | 0 | 10101 | 1233 | 8750 | 2584 | 53.58 % | 89.12 % | 55.96 % | 66.93 %
RBF 0| 0| 9320 | 2014 | 7477 | 3857 | 55.49 % | 82.23 % | 58.13 % | 66.26 %
NB 1] 0| 3763 | 7571 | 1802 | 9532 | 67.62 % | 33.20 % | 58.65 % | 44.54 %
NN 110 | 5294 | 6040 | 3554 | 7780 | 59.83 % | 46.71 % | 57.68 % | 52.46 %
LDA 1] 0| 5263 | 6071 | 3205 | 8129 | 62.15 % | 46.44 % | 59.08 % | 53.16 %
QDA 1] 0| 4535 | 6799 | 2165 | 9169 | 67.69 % | 40.01 % | 60.46 % | 50.29 %
DT 1] 0| 6519 | 4815 | 4350 | 6984 | 59.98 % | 57.52 % | 59.57 % | 58.72 %
RF 110 | 5971 | 5363 | 3530 | 7804 | 62.85 % | 52.68 % | 60.77 % | 57.32 %
AB 1] 0| 6145 | 5189 | 3634 | 7700 | 62.84 % | 54.22 % | 61.08 % | 58.21 %
Linear | 1 | 0 | 4664 | 6670 | 2623 | 8711 | 64.00 % | 41.15 % | 59.00 % | 50.09 %
RBF 1] 0| 5672 | 5662 | 2726 | 8608 | 67.54 % | 50.04 % | 63.00 % | 57.49 %
NB 0 | 1| 10347 | 987 | 9659 | 1675 | 51.72% | 91.29 % | 53.04 % | 66.03 %
NN 0| 1| 7525 | 3809 | 5297 | 6037 | 58.69 % | 66.39 % | 59.83 % | 62.30 %
LDA 0| 1| 9611 | 1723 | 7925 | 3409 | 54.81 % | 84.80 % | 5744 % | 66.58 %
QDA 0| 1| 9317 | 2017 | 8048 | 3286 | 53.65 % | 82.20 % | 55.60 % | 64.93 %
DT 0 | 1| 6559 | 4775 | 3874 | 7460 | 62.87 % | 57.87 % | 61.84 % | 60.27 %
RF 0| 1| 5909 | 5425 | 3175 | 8159 | 65.05 % | 52.14 % | 62.06 % | 57.88 %
AB 0| 1| 6523 | 4811 | 3724 | 7610 | 63.66 % | 57.55 % | 62.35 % | 60.45 %
Linear | 0 | 1 | 10138 | 1196 | 8709 | 2625 | 53.79 % | 89.45 % | 56.30 % | 67.18 %
RBF 0| 1] 9338 | 1996 | 7536 | 3798 | 55.34 % | 82.39 % | 57.95% | 66.21 %
NB 1] 1| 3690 | 7644 | 1779 | 9555 | 67.47 % | 32.56 % | 58.43 % | 43.92 %
NN 1] 1| 5294 | 6040 | 3535 | 7799 | 59.96 % | 46.71 % | 57.76 % | 52.51 %
LDA 1] 1| 5179 | 6155 | 3217 | 8117 | 61.68 % | 45.69 % | 58.66 % | 52.50 %
QDA 1] 1| 4481 | 6853 | 2146 | 9188 | 67.62 % | 39.54 % | 60.30 % | 49.90 %
DT 1] 1| 6860 | 4474 | 4654 | 6680 | 59.58 % | 60.53 % | 59.73 % | 60.05 %
RF 1] 1| 5989 | 5345 | 3529 | 7805 | 62.92 % | 52.84 % | 60.85 % | 57.44 %
AB 1] 1| 6228 | 5106 | 3622 | 7712 | 63.23 % | 54.95 % | 61.50 % | 58.80 %
Linear | 1 | 1 | 4717 | 6617 | 2701 | 8633 | 63.59 % | 41.62 % | 58.89 % | 50.31 %
RBF 1] 1| 5688 | 5646 | 2736 | 8598 | 67.52 % | 50.19 % | 63.02 % | 57.58 %

TABLE 32: Classification Result on Tweets Trained Word Vector (Dimension =
1,000)
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B. CLASSIFICATION RESULTS OF WORD2VEC AND DOC2VEC

CLR N |D TP FP FN TN | Precision | Recall | Accuracy F1

NB 0| 0| 10359 | 975 | 9619 | 1715 | 51.85% | 91.40 % | 53.26 % | 66.17 %
NN 0| 0| 7330 | 4004 | 5202 | 6132 | 58.49 % | 64.67 % | 59.39 % | 61.43 %
LDA 0| 0| 9720 | 1614 | 8021 | 3313 | 54.79 % | 85.76 % | 57.50 % | 66.86 %
QDA 0| 0| 9967 | 1367 | 9010 | 2324 | 5252 % | 87.94 % | 5422 % | 65.76 %
DT 0| 0| 6150 | 5184 | 3577 | 7757 | 63.23 % | 54.26 % | 61.35 % | 58.40 %
RF 0 | 0| 5853 | 5481 | 3131 | 8203 | 65.15% | 51.64 % | 62.01 % | 57.61 %
AB 0| 0| 6249 | 5085 | 3488 | 7846 | 64.18 % | 55.13 % | 62.18 % | 59.31 %
Linear | 0 | 0 | 10566 | 768 | 9724 | 1610 | 52.07% | 93.22 % | 53.71 % | 66.82 %
RBF 0| 0| 8719 | 2615 | 7099 | 4235 | 55.12% | 76.93 % | 57.15% | 64.22 %
NB 1] 0| 2923 | 8411 | 1421 | 9913 | 6729 % | 25.79 % | 56.63 % | 37.29 %
NN 1 10| 5519 | 5815 | 3971 | 7363 | 58.16 % | 48.69 % | 56.83 % | 53.01 %
LDA 1] 0| 4796 | 6538 | 3276 | 8058 | 59.42 % | 42.32 % | 56.71 % | 49.43 %
QDA 1] 0| 3012 | 8322 | 1278 | 10056 | 70.21 % | 26.57 % | 57.65 % | 38.56 %
DT 1] 0| 5491 | 5843 | 3450 | 7884 | 61.41 % | 48.45 % | 59.00 % | 54.17 %
RF 1] 0| 5636 | 5698 | 3331 | 8003 | 62.85 % | 49.73 % | 60.17 % | 55.52 %
AB 1] 0| 5143 | 6191 | 3100 | 8234 | 62.39 % | 45.38 % | 59.01 % | 52.54 %
Linear | 1 | 0 | 2995 | 8339 | 1705 | 9629 | 63.72 % | 26.42 % | 55.69 % | 37.36 %
RBF 1] 0| 4021 | 7313 | 2046 | 9288 | 66.28 % | 35.48 % | 58.71 % | 46.22 %
NB 0| 110331 | 1003 | 9723 | 1611 | 51.52% | 91.15% | 52.68 % | 65.83 %
NN 0| 1 | 7269 | 4065 | 5358 | 5976 | 57.57 % | 64.13 % | 58.43 % | 60.67 %
LDA 0| 1 | 9908 | 1426 | 8525 | 2809 | 53.75 % | 87.42 % | 56.10 % | 66.57 %
QDA 0 | 1 | 10051 | 1283 | 9209 | 2125 | 52.19 % | 88.68 % | 53.71 % | 65.71 %
DT 0| 1| 5626 | 5708 | 3156 | 8178 | 64.06 % | 49.64 % | 60.90 % | 55.94 %
RF 0| 1| 5324 | 6010 | 2945 | 8389 | 64.39 % | 46.97 % | 60.49 % | 54.32 %
AB 0| 1 | 4933 | 6401 | 2562 | 8772 | 65.82 % | 43.52 % | 60.46 % | 52.40 %
Linear | 0 | 1 | 10418 | 916 | 9322 | 2012 | 52.78 % | 91.92 % | 54.84 % | 67.05 %
RBF 0| 1 | 9008 | 2326 | 7081 | 4253 | 55.99 % | 79.48 % | 58.50 % | 65.70 %
NB 1| 1] 2883 | 8451 | 1411 | 9923 | 67.14 % | 25.44 % | 56.49 % | 36.90 %
NN 1] 1| 5481 | 5853 | 3941 | 7393 | 58.17 % | 48.36 % | 56.79 % | 52.81 %
LDA 1| 1| 4814 | 6520 | 3256 | 8078 | 59.65 % | 42.47 % | 56.87 % | 49.62 %
QDA 1| 1] 3007 | 8327 | 1223 | 10111 | 71.09 % | 26.53 % | 57.87 % | 38.64 %
DT 1| 1] 5530 | 5804 | 3437 | 7897 | 61.67 % | 48.79 % | 59.23 % | 54.48 %
RF 1] 1] 5671 | 5663 | 3321 | 8013 | 63.07 % | 50.04 % | 60.37 % | 55.80 %
AB 1] 1] 5193 | 6141 | 3118 | 8216 | 62.48 % | 4582 % | 59.15 % | 52.87 %
Linear | 1 | 1 | 4020 | 7314 | 2175 | 9159 | 64.89 % | 35.47 % | 58.14 % | 45.87 %
RBF 1| 1] 5465 | 5869 | 2637 | 8697 | 67.45 % | 48.22 % | 62.48 % | 56.24 %

TABLE 33: Classification Result on Pretrained Word Vector (Dimension = 300)
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B. CLASSIFICATION RESULTS OF WORD2VEC AND DOC2VEC

CLR Dim | TP FP FN TN | Precision | Recall | Accuracy F1

NB 300 | 5364 | 5970 | 3654 | 7680 | 59.48 % | 47.33 % | 57.54 % | 52.71 %
NN 300 | 9877 | 1457 | 9553 | 1781 | 50.83 % | 87.14 % | 51.43 % | 64.21 %
LDA 300 | 7106 | 4228 | 3958 | 7376 | 64.23 % | 62.70 % | 63.89 % | 63.45 %
QDA 300 | 6572 | 4762 | 4131 | 7203 | 61.40 % | 57.98 % | 60.77 % | 59.65 %
DT 300 | 6083 | 5251 | 5008 | 6326 | 54.85 % | 53.67 % | 54.74 % | 54.25 %
RF 300 | 6766 | 4568 | 5599 | 5735 | 54.72 % | 59.70 % | 55.15 % | 57.10 %
AB 300 | 6585 | 4749 | 4652 | 6682 | 58.60 % | 58.10 % | 58.53 % | 58.35 %
Linear | 300 | 7014 | 4320 | 4284 | 7050 | 62.08 % | 61.88 % | 62.04 % | 61.98 %
RBF 300 | 8159 | 3175 | 3421 | 7913 | 70.46 % | 71.99 % | 70.90 % | 71.21 %

NB 600 | 6613 | 4721 | 5658 | 5676 | 53.89 % | 58.35 % | 54.21 % | 56.03 %
NN 600 | 11089 | 245 | 11070 | 264 | 50.04 % | 97.84 % | 50.08 % | 66.22 %
LDA 600 | 7399 | 3935 | 4009 | 7325 | 64.86 % | 65.28 % | 64.96 % | 65.07 %
QDA 600 | 7016 | 4318 | 4931 | 6403 | 58.73 % | 61.90 % | 59.20 % | 60.27 %
DT 600 | 5840 | 5494 | 4884 | 6450 | 54.46 % | 51.53 % | 54.22 % | 52.95 %
RF 600 | 7018 | 4316 | 6209 | 5125 | 53.06 % | 61.92 % | 53.57 % | 57.156 %
AB 600 | 6760 | 4574 | 4645 | 6689 | 59.27 % | 59.64 % | 59.33 % | 59.46 %
Linear | 600 | 7490 | 3844 | 4523 | 6811 | 62.35 % | 66.08 % | 63.09 % | 64.16 %
RBF 600 | 8202 | 3132 | 3337 | 7997 | 7T1.08 % | 7237 % | 71.46 % | 71.72 %

NB 1000 | 6314 | 5020 | 5267 | 6067 | 54.52 % | 55.71 % | 54.62 % | 55.11 %
NN 1000 | 11304 | 30 | 11313 | 21 49.98 % | 99.74 % | 49.96 % | 66.59 %
LDA 1000 | 7848 | 3486 | 3983 | 7351 | 66.33 % | 69.24 % | 67.05 % | 67.76 %
QDA | 1000 | 6223 | 5111 | 3411 | 7923 | 64.59 % | 54.91 % | 62.41 % | 59.36 %
DT 1000 | 6917 | 4417 | 5979 | 5355 | 53.64 % | 61.03 % | 54.14 % | 57.09 %
RF 1000 | 7034 | 4300 | 6013 | 5321 | 53.91 % | 62.06 % | 54.50 % | 57.70 %
AB 1000 | 6851 | 4483 | 4652 | 6682 | 59.56 % | 60.45 % | 59.70 % | 60.00 %
Linear | 1000 | 7795 | 3539 | 4460 | 6874 | 63.61 % | 68.78 % | 64.71 % | 66.09 %
RBF | 1000 | 8353 | 2981 | 3077 | 8257 | 73.08% | 73.70 % | 73.28 % | 73.39 %

TABLE 34: Classification Result on doc2vec
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