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ABSTRACT

Large amount of Twitter accounts are suspended. Over five year period, about

14% accounts are terminated for reasons not specified explicitly by the service provider.

We collected about 120,000 suspended users, along with their tweets and social re-

lations. This thesis studies these suspended users, and compares them with normal

users in terms of their tweets.

We train classifiers to automatically predict whether a user will be suspended.

Three different kinds of features are used. We experimented using Nave Bayes

method, including Bernoulli (BNB) and multinomial (MNB) plus various feature

selection mechanisms (mutual information, chi square and point-wise mutual informa-

tion) and achieved F1=78%. To reduce the high dimensions, in our second approach

we use word2vec and doc2vec to represent each user with a vector of a shot and fixed

length and achieved F1 (73%) using SVM with RBF function kernel. Random forest

works best with F1=74% on this approach.
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CHAPTER 1

Introduction

Twitter is an online social network that provides users to send and read 140-short

messages named ”tweets”. It has already become one of the most-visited websites all

over the world. According to alexa.com, Twitter ranks 9th in the world top websites.

About 320 million users sending and reading tweets on Twitter every month and the

total number of registered users has already been over 1 billion [1]. By using tweets,

Twitter now has been considered as one of the fastest way to share information.

Obviously, it also attracts spammers.

Spammers are defined as those who send unsolicited tweets (spam), especially ad-

vertising tweets, as well as repeatedly sending mass duplicate messages [2, 3]. Spam-

mers are usually generated by computers and works automatically. Twitter also faces

the same problem as the war between websites and spammers never ends. Twitter

will suspend users once they detect the behaviors of users abnormally, such as sending

spam or abusing tweets.

So it is important to analyze the suspended users to explore some methods to pre-

dict whether a user is spammer or not. Some approaches have been studied, including

machine learning technologies [4, 5], URL blacklists [6, 7], and some spammer traps

[8, 9].

However all these approaches faced some problems. Machine learning approaches

have already been widely used to detect spam email. Compared to classify spammers,

detecting spam email is easy because they can collect a huge number of spam email

and then train a classifier on it. But for detecting spammers, thing changed a lot

because we don’t have a large dataset of spammers. In the work of [4], they collected

only 355 spammers and the authors of [5] collected 77 spammers, which should be

considered too small to draw the whole picture of spammers on Twitter.

Second, machine learning methods are based on the features of spammers. These

features can be content attributes, which are extracted from the tweets sent by users;
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1. INTRODUCTION

and user account attributes, such as how many friend or follower he has. However,

these features can be easily manipulated by spammers.

Other methods, such as blacklist or traps cannot work well all the time. Spam-

mers can easily avoid blacklists and traps by changing the approach of sending spam

message and the content because it is costless to generate new spammers.

In our work, we analyzed a large number of suspended users and proposed a

spammer prediction method. Unlike the previous work, we collected tweets from

113,347 suspended users during 5 years.

Based on this dataset, we combined the traditional machine learning technologies

and Paragraph Vector word embedding method to mapping tweets into vectors so

that we can predict whether a user will be suspended or not. We tried to classify

them by Naive Bayes classifier on n-gram models derived from the tweets. We also

tried 4 different feature selection methods, Mutual Information, Pointwise Mutual In-

formation, Weighted Averaged Pointwise Mutual Information and χ2. These methods

can rank the features by score so that we can know which features are important and

which features are noise. By analyzing the classification results on different selected

features of these feature selection methods, we found that almost half of unigram fea-

tures are noise and 9/10 of bigram features are noise. After removing these features,

we achieved 76.75 % accuracy and 78.54% F1 on using top 106 features selected by

WAPMI.

We also tried different word embedding methods to convert users into vectors. We

tried some classifiers on converted user vectors. When using SVM with RBF function

kernel, we achieved 73.28% accuracy and 73.39% F1 on 1,000 dimension user vector

trained by Paragraph Vector method. Although this result is lower compared to the

result of classification on feature selected n-gram models, this result is useful because

it only depends on a 1,000 dimension vectors.

After analyzing the characteristic of bad words using in suspended users, we found

the number of bad words using users is as twice larger as that number of normal users.

And we also introduced Badscore which can rank words by how close they are from

bad words.

The remainder of this thesis is structured as follows: In chapter II, we review

the previous works on spammer detection in OSNs. In chapter III, we address our

spammer detection method in detail. In chapter IV, we applied our experiments on

twitter suspended users dataset and tried 3 different model to encode words in tweets,

2



1. INTRODUCTION

together with classifications and feature selections on it. Finally, in chapter VI, we

summarize our work and give out the conclusions.
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CHAPTER 2

Review of The Literature

In this chapter, we will review some previews studies about suspended users on twit-

ter. By now, there are not many works analyzing the characteristic of suspended

users. The only work we found is proposed by Thomas et al [10]. They collected and

analyzed 1.1 million accounts suspended by Twitter. Their results show that 77%

spammers are suspended in the first day of their tweets, which makes them hard to

form relationships with normal users. Instead, 17% of them use hashtags and 53% of

them use mentions to reach out to normal users.

Other works were focusing on analyzing spammers and trying to find a way to de-

tecting spammers based on the extracted features [4, 11] or the relationships between

spammers [11, 5].

In 2010, Benevenuto et al. [4] addressed a study on the spammers who focused on

sending spam concluding the trending topics in Twitter. The main method they used

is to collect user profiles and tweets, then classify them into two groups, spammer and

non-spammer, by using Support Vector Machine (SVM). There are four steps in their

approach, crawling user data, labeling users, analyzing the characteristics of tweet

content and user behaviours and using a supervised classifier to identify spammers.

In the same year, Moh et al. [5] analyzed how much information gained from the

friends and followers of one user. They also proposed a learning process to determine

whether or not a user is spammer. There are two steps in this process. The first

step is to train a categorization algorithm to distinguish between spammers and non-

spammers on a set of basic user features. And the second step is to train a classifier

to generate new features, which depend on a user’s followers being spammers or non-

spammers.

In 2012, Ghosh et al. [11] analyzed over 40,000 spammer accounts suspended

by Twitter and found out that link farming is wide spread and that a majority

of spammers’ links are farmed from a small fraction of Twitter users, the social

4



2. REVIEW OF THE LITERATURE

capitalists, who are themselves seeking to amass social capital and links by following

back anyone who follows them. And they proposed a ranking system, Collusionrank,

to penalize users from connecting to spammers.

2.1 Approaches

The works which are using machine learning methods to detecting spammers are using

nearly the same approaches. First they collected data from twitter, including tweets,

user account attributes and user relationships. After collecting, they will extract

features from these data and try to train classifiers on the extracted features to see

whether the features can represent the users and how well the classifiers work.

In order to classify the users into spammers and non-spammers, they used su-

pervised classifier. So they need to label one collection that contains spammers and

non-spammers. In this paper they focused on the users who sent the tweets about

trending topic, so they need to build one collection of users who sent topics of (1) the

Michael Jackson’s death, (2) Susan Boyle’s emergence, and (3) the hashtag ”#music-

monday”. 8,207 users have been labeled manually, including 355 spammers and 7,852

non-spammers. They then randomly chose 710 non-spammers to reduce the number

of non-spammers. Thus, the total size of labeled collection is 1,065 users.

To use machine learning algorithms, they then identified the attributes of users.

The attributes are divided into two categories: content attributes and user behavior

attributes. Content attributes are the ones represented in what the users posted.

User behavior attributes are the properties of the users’ acting on Twitter. Both of

these two kinds of attributes are shown in Table 1.

5



2. REVIEW OF THE LITERATURE

Category Attribute

Content Attributes

number of hashtags per number of words on

each tweet

number of URLs per words

number of words of each tweet

number of characters of each tweet

number of URLs on each tweet

number of hashtags on each tweet

number of numeric characters (i.e. 1,2,3)

that appear on the text, number of users

mentioned on each tweet

number of times the tweet has been retweeted

(counted by the presence of ”RT @username”

on the text)

User Behavior Attributes

number of followers

number of followees

fraction of followers per followees

age of the user account

number of times the user was mentioned

number of times the user was replied to

number of times the user replied someone

number of followees of the users followers

number tweets receveid from followees

existence of spam words on the users screen

name

the minimum, maximum, average, and me-

dian of the time between tweets

number of tweets posted per day and per

week

TABLE 1: User Attributes in Benevenuto’s work

After extracted features, they used SVM to classify user collections with the at-

tributes that they identified in the previous section. The implementation of SVM they

6



2. REVIEW OF THE LITERATURE

used in their experiments is provided by libSVM. Each user in the user collection is

presented by a vector of values, which contains the attributes of this user. SVM will

first trains a model from the labeled user dataset, and then applies this model to the

classify the unknown users into two classes: spammers and non-spammers.

In the work [5], the authors used almost same idea of [4] but they introduced a

two steps categorization framework which can classify users not only based on the

content and user behavior attributes, and it also relies on the user’s friendships.

The first step of this framework is to train a model based on manually labelled user

collections. And then one extended attribute set will be generated for each user based

on the predictions provided by the first learner and the user’s position in the social

network. The learner will then be trained on this extended attribute set.

Category Attribute

Friend and Follower Attributes follower-friend ratio

Basic Attributes number of posts marked as favorites

Friend and Follower Attributes friends added per day

Friend and Follower Attributes followers added per day

Basic Attributes account is protected?

Basic Attributes updates per day

Basic Attributes has url?

Basic Attributes number of digits in account name

Friend and Follower Attributes reciprocity.

TABLE 2: User Attributes in Moh’s work

They extracted an attribute set for each user, which are shown in Table 2. Unlike

the previous works, the authors took the friend follower relationship into consider-

ation. They added some attributes which can measure the social network of users.

For example, the reciprocity is the rate of how likely a user follows his followers. In

practice, spammers tends to follow all the users who follows them. And they also

added some new basic attributes such as the number of digits in account name, which

has been proved useful in classification by Krause et al.[12].

The second step is to compute trust metric based on the classification result of

7



2. REVIEW OF THE LITERATURE

first step using extracted attribute set. The authors modified the original formula.

trust metric =
∑

followers

1

#users followed

They applied the following modifiers to this formula:

• legit accumulate only the values coming from users who are predicted to be

legitimate users

• capped accumulate only values coming from up to 200 users

• squared use 1
#users followed×#users followed

instead of 1
#users followed

They tried the combinations of different classifiers on different steps. Then they

calculated the accuracy, precision, recall, F1, and finally draw a Receiver Operating

Characteristic Curve (ROC curve) to evaluate the test results of each combination.

Unlike these two papers which are focusing on detecting spammers on Twitter, the

work of [11] studied the link farm formed by spammers on Twitter. The dataset they

used includes a complete snapshot of the Twitter network and the complete history

of tweets posted by all users as of August 2009 [13]. To identify the spammers in this

dataset, they collected the user accounts which are suspended by Twitter. Although

the primary reason for suspension of accounts is spam-activity, the accounts which

are inactive for more than 6 months can also be suspended. One URL blacklist which

contains the most popular URLs in spam tweets has been constructed to confirm

that the suspended users are truly spammers. The authors fetched all the bit.ly or

tinyurl URLs that were posted by each of the 379,340 suspended accounts and found

that 41,352 suspended accounts had posted at least one shortened URL blacklisted

by either of these two shortening services. These suspended accounts were considered

to be spammers.

The authors studied how spammers acquire links to study link farm in Twitter by

analyzing the nodes following and followed by the 41,352 spammers. They defined the

nodes followed by a spammer as spam-targets and the nodes that follow a spammer

as spam-followers. Spam-targets who also follow the spammer are called targeted

followers. After computing the numbers of spammer-targets, spammer-followers and

targeted followers, they found out that the majority (82%) of spam-followers have

also been targeted by spammers. And targeted followers are likely to reciprocate most

links from spammers. Top 100,000 spammer followers (rank based on the number of

8



2. REVIEW OF THE LITERATURE

links they created to the spammers) exhibited a reciprocation of 0.8 on average and

created 60% links to the spammers.

The authors also computed the Pagerank of each user in this dataset and found

out that by acquired large farm links from spammer followers, some of the rank of

spammers are very high, 7 spammers rank within the top 10,000 (0.018% of all users)

304 and 2,131 spammers rank within the top 100,000 (0.18% of all users) and 1 million

(1.8% of all users) users according to Pagerank, respectively.

The authors then analyzed the users who willing to reciprocate links from arbitrary

users and the reason why they need to farm links. They plotted how the probability

of a user reciprocating to a link from spammers varies with the user’s indegree and

found out that the lay users, who have low indegree, rarely respond to spammers. On

the other hand, users with high indegree value are more likely to follower a spammer.

And the authors also found out that the top link farmers (top 100,000 spam-

followers) sometimes are active contributors instead of spammers. The motivating

factor for such users might be the desire to acquire social capital and thereby, influ-

ence.

The authors proposed Collusionrank, a Pagerank-like approach, to combat link

farming in Twitter. Collusionrank algorithm can also be combined with any ranking

strategy used to identify reputed users, in order to filter out users who gain high

ranks by means of link farming. To evaluating Collusionrank, the authors computed

the Collusionrank scores of all users in the Twitter social network, considering as the

set of identified spammers S, a randomly selected subset of 600 out of the 41,352

spammers.

The result of evaluation showed the effect of ranking spammers of Collusionrank

is great. While more than 40% of the 41,352 spammers appear within the top 20%

positions in Pagerank, 94% of them are demoted to the last 10% positions in Collu-

sionrank. Even when only a small set of 600 known spammers is used, this approach

selectively filtered out from the top positions of Pagerank, most of the unidentified

spammers and social capitalists who follow a large number of spammers.

2.2 Experiments

We compare the results from works [4, 5], which are trying to detect spammers based

on machine learning approaches.

9



2. REVIEW OF THE LITERATURE

In [4], they collected all user IDs ranging from 0 to 80 million since August 2009,

which have been considered as all users on Twitter since there is no single user in the

collected data had a link to one user whose ID is greater than 80 million. Finally they

collected 54,981,152 used accounts that were connected to each other by 1,963,263,821

social links, together with 1,755,925,520 tweets. Among those users, there are 8%

accounts were set private and were ignored. The detail description of this dataset can

be found on their project homepage[14].

They then trained SVM based on the features listed in Table 1. Table 3 shows

the confusion matrix of classification result. About 70% of spammers and 96% of

non-spammers were correctly classified. The Micro-F1 (which is calculated by first

computing global precision and recall values for all classes, and then calculating F1)

is 87.6 %.

Predicted

Spammer Non-spammers

True
Spammer 70.1% 29.9%

Non-spammer 3.6% 96.4%

TABLE 3: Basic classification result in Benevenuto’s work

To reduce the misclassifying of non-spammers, the authors used two approaches.

First is to adjust J parameter in SVM. In SVM, J parameter can be used to give

priority to one class over the other. With the varying of J, the rate of correctness of

classify can be increased to 81.3% (J = 5), with the misclassifying of legitimate users

has been increased to 17.9%.

The second approach they used is to reduce the size of attributes set. By sorting

the attributes by their importance, the authors can remove the non-important at-

tribute and give more weight to the important ones. They used two feature selection

methods, information gain and χ2, which are available in Weka. The results of these

two methods are similar and the top 10 attributes in result are same. Table 4 shows

the top 10 result of feature selection. And the result of classification when just using

top 10 attributes instead of all attributes shows that top 10 attributes are enough to

classify the users.
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Rank Attribute

1 fraction of tweets with URLs

2 age of the user account

3 average number of URLs per tweet

4 fraction of followers per followees

5 fraction of tweets the user had replied

6 number of tweets the user replied

7 number of tweets the user receive a reply

8 number of followees

9 number of followers

10 average number of hashtags per tweet

TABLE 4: Top 10 attributes in Benevenuto’s work

The authors of [5] collected the account names of spammers using the web page

twitspam.org, where users can submit the names of suspected spammers. Another

part of spammers were added by the authors during they collected data. They ob-

tained non-spammers from the users they followed. In total they collected one dataset

that contains 77 spammers and 155 non-spammers. And for each user in this dataset,

they also collected the information on up to 200 of their followers.

For there are two steps in classification, the authors tried different combination of

classifiers. Then they calculated the accuracy, precision, recall, F1, and finally draw

a Receiver Operating Characteristic Curve (ROC curve) to evaluate the test results

of each combination. Table 5 and Table 6 show the evaluation metrics for RIPPER

algorithm and C4.5 algorithm.

Metric basic basic+peer peer basic+trust all features

Precision 0.79 0.80 0.75 0.88 0.84

Recall 0.84 0.83 0.71 0.85 0.85

F1 0.81 0.81 0.73 0.87 0.84

Accuracy 0.87 0.87 0.82 0.91 0.90

TABLE 5: Evaluation metrics for RIPPER algorithms with the different extended

feature sets in Moh’s work
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Metric basic basic+peer peer basic+trust all features

Precision 0.80 0.81 0.72 0.85 0.86

Recall 0.85 0.79 0.67 0.85 0.86

F1 0.83 0.80 0.69 0.85 0.86

Accuracy 0.88 0.87 0.80 0.90 0.90

TABLE 6: Evaluation metrics for C4.5 algorithms with the different extended feature

sets in Moh’s work

The authors also tried to measure the information provided by each features. To

do so, the authors calculated the information gain and the chi square values for each

feature in extended feature set.

The authors claimed that using RIPPER in two steps achieved the best perfor-

mance among the combinations of classifiers. And top 10 features ranked by infor-

mation gain and chi square value is shown in Table. 7 and Table. 8.

Attribute Information gain

spammers to legit followers 0.48

friend-follower ratio 0.35

friends per day 0.34

trust metric legit. 0.34

trust metric legit. capped 0.29

trust metric 0.29

friend-follower average for friends 0.27

average protected for followers 0.25

trust metric legit. square 0.24

average protected for friends 0.24

TABLE 7: Top 10 Information gain values for data set extended with RIPPER in

Moh’s work. Added attributes are bold.
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Attribute Chi square value

spammers to legit followers 128.68

friends per day 106.72

trust metric legit. 105.49

friend-follower ratio 101.23

trust metric legit. capped 94.8697

trust metric 88.78

friend-follower average for friends 81.54

average protected for followers 80.57

trust metric legit. square 79.93

trust metric legit. square capped 74.99

TABLE 8: Top 10 χ2 values for data set extended with RIPPER in Moh’s work.

Added attributes are bold.

2.3 Conclusion

Previous works studied a lot of spammers and trained classifier to detect spammers on

Twitter. They found some extracted features based on the content attributes, account

attributes and relationships of users can identify whether users are spammers. The

classifiers they trained based on these features achieved a great results.

They also tried analyzing the structure in suspended users and behaviors of sus-

pended users. They found that the suspended users lack of ways of form the social

relationship with normal users, so they can only rely on mentions or hashtags to

contact with normal users.

However, these works still have their own problems. First is the way they collected

the spammers’ data. The authors of [4] used the data of users who sent the tweets

about trending topics, the authors of [5] used the data from twitspam.org and the

authors of [11] used the data of suspended users who sent tweets including shortened

URL. All the approaches should be considered can only show one part of suspended

users. According to the analysis of our dataset, there are many suspended users

who didn’t send any tweets about trending topics or including shortened URL. And

twitspam.org cannot provide a full list of suspended users because the users on that

website are submitted by other users. In our work, on the other hand, we used the data

13
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of all users who were suspended after 5 years, which can provide more information

and full characteristics of suspended users.

Second problem is when analyzing the behaviors of suspended users, they didn’t

use full text of tweets. Whether users should be suspended, firstly and mainly is

depending on the tweets they sent. So It is really significant to analyze the tweets

of suspended users. But in their works, they only used some content attributes, such

as number of hashtags per words or number of URLs per words. Such attributes can

be easily manipulated by spammers by simply increasing the percentage of normal

tweets in all tweets they send. What’s more, shortened URL can be hidden by just

remove http protocal header so that the blacklist system cannot detect the tweets

containing urls.

Our work tried to used full text of tweets and large dataset of suspended users to

avoid these problems.

14



CHAPTER 3

Dataset

The dataset we used in our experiments is collected by T. Xu et al [15]. There

are 3,117,750 users’ profile, social relations and tweets in this dataset. They used

4 machines with whitelisted IPs to crawl data by Twitter API. The crawling was

first started with the most popular 20 users reported in [16] and then used snowball

crawling strategy to crawl other users. The crawling period was from Mar. 6 to Apr.

2, 2010.

5 years later, 113,347 users in these dataset were suspended by Twitter. We

randomly sampled 10% (11,334) of suspended users and the same number of normal

users who are not in the suspended user set in the original dataset and combined them

as our dataset. For each user in our dataset, we used regular expression to extract the

tweets from the original dataset, resulting in 4,518,074 tweets from suspended users

and 2,588,032 tweets from non-suspended users. The statistics of tweets of suspended

and normal users are summarized in Table 9.

Suspended Users Non-Suspended Users

# Users 11,334 11,334

# Tweets 4,518,074 2,588,032

# Tokens 30,366,927 18,778,909

Vocabulary (# Unique Token) 1,489,281 1,089,437

Average Tweets Length 6.72 7.25

Average URL Rate 12.14% 11.90%

Average Mention Rate 27.43 % 23.39%

Average Hashtag Rate 4.32% 3.89%

TABLE 9: Statistics of tweet dataset

We analyzed some properties of our dataset and compared the results to show the

differences between suspended users and non-suspended users. We started with the
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number of tweets of each user. Fig. 1 shows the distribution the count of tweets from

users. They follow power laws for both suspended and normal users. Most users have

one or two tweets. Among suspended users, there are close to one thousand users who

send tweets only once, while there are more than two thousand users who send tweets

only once. Because of the scarcity of the text, these users will be difficult to classify.

There are also some users who sent tweets close to two thousands. The maximal

tweet number is two thousand, because the data are crawled with two thousand as a

limit. Such distributions differ from most text corpora – in corpora such as Reuters

data sets, document lengths follow normal or log-normal distributions, where most

documents have medium length. In our data, most documents have very few tweets.

This will make classification more challenging.

We can also find that suspended users tend to send more tweets, as the slopes

intersect around 10 tweets. There are more suspended users who send tweets more

than 10 times. In average, suspended user send 398.63 tweets, while normal users

send only 228.34 tweets in average.
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FIGURE 1: Tweet count distribution. Suspended users tend to have more tweets.

We then moved closer to look at the details of tweets by tokenizing the tweets

into tokens. We distinguished several types of tokens in tweets, which are listed in
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Table 10. We first used regular expression to split every tweet into tokens and then

normalized the word tokens. Tokenization in tweets are different from normal text,

because we need to keep track of urls, hashtags, and user mentioning.

Token Type Description Regular Expression Example

Words

contains

characters or

digit numbers

[ A-Za-z0-9]+ Sample

Shortened URL

an url should

start with http

or https

http://[ A-Za-z0-9\./]+ http://t.co/ABcd123

Mention Users

used to mention

other user by

their username

@[ A-Za-z0-9]+ @twitter

Hashtags

used to mark

keywords or

topics in a tweet

#[ A-Za-z0-9]+ #spam

TABLE 10: Token Types in Tweets

After tokenizing, we turn all the tokens in lower case, then remove stop words

using the stop word list from [17]. Stemming is also carried out using Porter2 stem-

ming algorithms [18]. the program used in the experiment is downloaded from [19].

Stemming converts words into the root form so that different derived words from the

same root will be treated as the same one. For example, after stemming ”making”

and ”made”, they will be converted into the root form ”make”.

After normalization, suspended user class contains total number of 30,366,927

tokens. Among them 1,489,281 are distinct. Normal users contain 18,778,909 to-

kens, 1,089,437 are distinct. These two vocabularies share 285,052 unique tokens in

common.

The frequency distribution of tokens is plotted in Fig. 2. In both classes, the

distributions follow Zipf’s law as expected. There are very large number of terms

that occur only once or twice. At the same time, there are also lot of popular terms

that occur frequently. The slope is roughly two, consistent with most other text

corpora. The counts for suspended class is higher because each user has more tweets.

After tokenizing, each tweet has been split into several tokens. We analysed the
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FIGURE 2: Frequency Distribution of Tokens

distribution of number of tokens in tweet. The average number of tokens in tweet

from suspended users is 6.72 and that from non-suspended users is 7.25. Fig. 3

shows the distribution of number of tokens in tweet. This figure illustrates why the

number of tweets from suspended users is larger than that of non-suspended users.

This larger part is because of the number of short tweets (number of tokens < 10)

from suspended users is much larger than that of normal users. This result and the

result of tweets distribution can draw a conclusion that suspended users tend to send

large number of short tweets. This conclusion can match our assumption that the

main reason of suspending is because these users sending tweets against Twitter Rule,

including abusive actives and spamming activities. Both of these two type of tweets

are usually short on length while large on number to either abusing normal users or

attracting normal users.

Among these tokens, URL, Mention and Hashtag are more special than the other

tokens. The probabilities of occurrences of these 3 types of tokens have been plotted

in Fig. 4. We excepted that the probabilities of these 3 types of tokens are very

different between suspended users and non-suspended users as the previous studies

[5, 4]. However, the results in Fig. 4 show that there is no big differences between
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FIGURE 3: Number of Tokens Per Tweet Distribution

suspended and non-suspended users. The average of URL rate, mention rate and

hashtag rate don’t vary too much between these two dataset. The average rates are

listed in Tabel 9.

What we can conclude from the analysis of suspended user dataset and non-

suspended user dataset is that when using large, random sampled suspended user

dataset instead of the target focusing crawling dataset in the previous studies, it is

hard to classify users based on the rates of special tokens. The collecting methods that

previous papers used cannot reveal the characteristics of suspending users because

they were only focusing on a small group of users.
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FIGURE 4: Distribution of Special Tokens

Summary we collected tweets of 113,347 suspended users, and tweets of equal

number of normal users to avoid the complexity arising from imbalanced data. there

are a few difference from other text corpora. In tokenization, we need to retain urls,

mentioning, and hashtags. Document lengths follow power law instead of lognormal

distributions. There are many very short documents. This will make classifications

more challenging.
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CHAPTER 4

Classification using N-gram

Models

4.1 Naive Bayes Classifier

In this approach, all the terms are potential features, although we will also need to

select from them for efficiency and performance consideration. This can be further

divided into at least two models, the unigram model and bigram model.

In the unigram model, a document (i.e., all the tweets of a user) is treated as a

bag-of-words. The word position information is discarded, while the count of word

occurrences are retained. This model has the disadvantage that the order of the words

are no longer relevant.

Thus, n-gram models are introduced. In n-gram models, a document is represented

as a set of n-grams, where an n-gram is a consecutive sequence of terms with length n.

Although in theory we can use tri-gram, or even 4-gram, in practice bigrams are most

often used. Unlike unigram model, bigram model can carry a little information of

word ordering. This is because when converting tweets into bigrams, the consecutive

two words will be converted into one bigram.

In both unigram and bigram models, the feature size is very large, in the order

of 106. Most classification methods can not run on such high dimension. Hence we

experiment with Naive Bayes classifiers.

There are two different Naive Bayes classifiers, i.e., Multinomial Naive Bayes

Model (MNB) and Bernoulli Naive Bayes Model (BNB). The difference between

these two models is that Multinomial Model takes the number of occurrences into

consideration while Bernoulli Model only considers weather a term occurs in user’s

tweets or not.
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These two models are based on Bayes’ theorem [20],

P (A|B) =
P (B|A)P (A)

P (B)

where P (A) and P (B) are the probabilities of A and B; P (A|B) is a conditional

probability of observing event A given that B is true; P (B|A) is the probability of

observing event B given that A is true.

Hence, the probability of a user being suspended can be computed by,

P (cs|w1, w2, ..., wn) =
P (cs)P (w1|w2, ...wn, cs)P (w2|w3, ...wn, cs)...P (wn|cs)P (cs)

P (w1, w2, ..., wn)

where cs is the event that user is suspended and wk is the kth word in tweets from

this user. After training, P (w1, w2, ..., wn) will be constant. So the probability

P (cs|w1, w2, ..., wn) is only depended on the prior probability P (cs) and the likeli-

hood P (cs)P (w1|w2, ...wn, cs)P (w2|w3, ...wn, cs)...P (wn|cs). If using the assumption

that the probability of each word are independent, which means the occurrences of

words are not replying on others, P (wi|w2, ...wn, cs) = P (wi|cs), we can simplify the

formula based on this assumption,

P (cs|w1, w2, ..., wn) ∝ P (cs)
∏

1≤k≤nd

P (tk|c)

So the classification result can be comparison of classes c which can maximize the

probability P (c|w1, w2, ..., wn).

4.1.1 Multinomial Naive Bayes Model

In Multinomial Model, the class of a user can be determined by the following formula:

c = arg max
c∈C

P (c)
∏

1≤k≤nd

P (tk|c)

where c is the classified class of this user, C contains two classes: Suspended User

and Normal User, nd is the number of tokens in user d, P (c) is the probability of this

user occurring in class c and P (tk|c) is the probability of token tk occurring in a user

of class c.

Users will be converted into vectors by their tweets under MNB. For example,

there are two users whose tweets listed below:

1. User 1
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(a) This is a sample tweet. see this: http://bitly.com/abc @user

(b) This is another tweet. #somehashtag

2. User 2

(a) This tweet contains some different words.

will be converted into two vectors by using unigram model:

S1 = (1, 1, 1, 3, 1, 1, 1, 2, 2, 0, 0, 0, 0)

S2 = (0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1)

The vocabulary and converting details are shown in Table. 11. All the words in this

table are normalized so that they might be different from the original words in the

tweets.

Unigram # in User 1 # in User 2

#somehashtag 1 0

@user 1 0

anoth 1 0

see 1 0

this 3 1

sampl 1 0

http://bitly.com/abc 1 0

a 1 0

is 2 0

tweet 2 1

word 0 1

differ 0 1

some 0 1

contain 0 1

TABLE 11: Example of Unigram User Vectors

We estimated P (c) and P (tk|c) by Maximum Likelihood Estimate (MLE).

P (c) =
Nc

N

P (tk|c) =
Tct
Tc
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where Nc is the number of users in this class c, N is the total number of users,

Tct is the number of occurrences of token t in class c and Tc is the total number of

tokens that occur in class c. In our cases, the number of suspended users and normal

users are the same, so P (c) = 0.5. Laplace smoothing was used here to eliminate the

condition that the number of token occurrence is 0, which is to add 1 to each term

occurrences in the formula of P (tk|c):

P (tk|c) =
Tct + 1

Tc + |V |

where |V | is the size of vocabulary. Algorithm 1 illustrates how we train the Multi-

nomial Model and use it to classify a user.

Procedure 1 Train Multinomial Naive Bayes Model and Classify Users
Input: labelled user feature map set U , class set C

Output: multinomial naive bayes model MNB Model

1: procedure TRAIN MULTINOMIAL NB MODEL

2: V ← EXTRACT TOKENS(U)

3: for c ∈ C do

4: Nc ← COUNT USER IN CLASS(U , c)

5: MNB Model.clsProb[c]← log( Nc
|U| )

6: for t ∈ V do

7: Tct← COUNT TOKENS IN CLASS(U , c, t)

8: Tc ← COUNT TOKENS(U , c)

9: MNB Model.clsFeatureProb[c][t]← log( Tct+1
Tc+|V | )

10: end for

11: end for

12: return MNB Model

13: end procedure

Input: trained multinomial naive bayes model MNB Model, unclassified user feature map u, class set C

Output: classified class c for u

1: procedure CLASSIFY BY MULTINOMIAL NB MODEL

2: for c ∈ C do

3: score[c]+ = MNB Model.clsProb[c]

4: for k, v ∈ u do

5: if k ∈MNB Model.clsFeatureProb[c] then

6: score[c]+ = MNB Model.clsFeatureProb[c][k] ∗ v
7: end if

8: end for

9: end for

10: return arg maxc∈C score[c]

11: end procedure

4.1.2 Bernoulli Naive Bayes Model

Bernoulli Naive Bayes Model, on the other hand, uses the boolean model in which

the value of a token in user feature map in depending on whether this token occurs
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in the tweets this user posted. The value of a token is 1 if the token occurs, otherwise

it is 0. For example, the previous users will be converted into:

S1 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0)

S2 = (0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1)

The formula of classifying a user under Bernoulli Model is,

c = arg max
c∈C

P (c)
∏

1≤k≤|V |

P (tk|c)xi(1− P (tk|c)1−xi)

where xi is the boolean expression of whether token i occurs in the tweets of this user.

The P (c) and P (tk|c) can be estimated under Bernoulli Model like this,

P (c) =
Nc

N

P (tk|c) =
Nct

Nc

where Nct is the number of users in class c whose tweets contain token t. We also

smoothed the formula of P (tk|c):

P (tk|c) =
Nct + 1

Nc + 2

Algorithm 2 illustrates how we train the Bernoulli Model and use it to classify a user.
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Procedure 2 Train Bernoulli Naive Bayes Model and Classify Users
Input: labelled user feature map set U , class set C

Output: bernoulli naive bayes model BNB Model

1: procedure TRAIN BERNOULLI NB MODEL

2: BNB Model.V ← EXTRACT TOKENS(U)

3: for c ∈ C do

4: Nc ← COUNT USER IN CLASS(U , c)

5: MNB Model.clsProb[c]← log( Nc
|U| )

6: for t ∈ BNB Model.V do

7: Nct← COUNT USERS CONTAINING TOKEN IN CLASS(U , c, t)

8: BNB Model.clsFeatureProb[c][t]← Nct+1
Nc+2

9: end for

10: end for

11: return BNB Model

12: end procedure

Input: trained bernoulli naive bayes model BNB Model, unclassified user feature map u, class set C

Output: classified class c for u

1: procedure CLASSIFY BY BERNOULLI NB MODEL

2: for c ∈ C do

3: score[c]+ = BNB Model.clsProb[c]

4: for t ∈ BNB Model.V do

5: if t ∈ u.keys then

6: score[c]+ = log(BNB Model.clsFeatureProb[c][t])

7: else

8: score[c]+ = log(1−BNB Model.clsFeatureProb[c][t])

9: end if

10: end for

11: end for

12: return arg maxc∈C score[c]

13: end procedure

4.2 Evaluation and Confusion Matrix

To evaluate the result of classification, we used N-fold cross validation. First divided

the dataset into N folds, which are same size. And then run N times of validation on

the datasets that one fold is used as test dataset and other folds are used as training

dataset.

We used confusion matrix to visualize the result of cross validation. Table 12

shows the confusion matrix of 2 classes cross validation result, TP represents the

number of suspended users that are classified as suspended users, FP represents the

number of suspended users that are classified as normal users, FP represents the

number of normal users that are classified as suspended users and FN represents the

number of normal users that are classified as normal users. We can compute accuracy

or F1 value using confusion matrix as well.
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Classified

Suspended User Normal User

Actual Class
Suspended User TP FN

Normal User FP TN

TABLE 12: 2 Classes Confusion Matrix Example

Accuracy =
TP + TN

TP + FP + FN + TN

Recall =
TP

TP + FN

Precision =
TP

TP + FP

F1 = 2× Precision+Recall

Precision×Recall

These 4 parameters can measure the result of classification. Accuracy can measure

the total accuracy rate of classification of suspended users and non-suspended users;

recall shows the rate of how many users who are actually should be suspended will be

suspended; precision can measure the precision of classifier on predicting suspending;

F1 illustrates the overall performance of this classifier.

4.3 Feature Selection

When using n-gram language model, the main problems we face is the huge size of

feature set, leading to a lot of time spending on training and testing. We can use

feature selection algorithms to reduce the size of feature set. Another benefit we can

get is that using feature selection can remove the irrelevant features, also known as

noise features.

To remove the noise features and improve the result of classification, we used

several feature selection algorithms: Mutual Information (MI), Pointwise Mutual

Information (PMI), Weighted Average Pointwise Mutual Information (WAPMI) and

Chi Square (χ2). We computed the scores of each feature by these feature selection

algorithms and then sort them by the scores.
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Mutual Information, which is also called Information Gain, can measure how much

information contribution of a token during the classification. We computed Mutual

Information by the following formula,

MI(t, c) =
∑
et∈1,0

∑
ec∈1,0

P (U = et, C = ec) log2

P (U = et, C = ec)

P (U = et)P (C = ec)

where et is a boolean variable representing whether term t occurs in user’s tweets and

ec is a boolean variable that represents whether user is in class c. In our experiments,

we let ec = 1 represent the user is suspended and ec = 0 represent user is normal

user. We can also use MLE to estimate the probabilities P (U = et, C = ec), P (U =

et), P (C = ec):

P̂ (U = et, C = ec) =
Netec

N

P̂ (U = et) =
Net

N

P̂ (C = ec) =
Nec

N

where Ncond is the number of users that match condition cond. For example N11 is

the number of users that match two condition: t occurs in these users’ tweets and all

of these users are suspended. The formula of mutual information can be converted

by using MLE estimation

MI(t, c) =
N11

N
log2

NN11

N1.N.1

+
N01

N
log2

NN01

N0.N.1

+
N10

N
log2

NN10

N1.N.0

+
N00

N
log2

NN00

N0.N.0

The variable meanings in this formula are listed in Table 13. We applied adding-

one smooth to N11, N01, N10 and N00 to eliminate the problems that these numbers

can be 0.
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Variable Meaning

N11 the number of suspended users whose tweets contain term t

N01 the number of suspended users whose tweets don’t contain term t

N10 the number of non-suspended users whose tweets contain term t

N00 the number of non-suspended users whose tweets don’t contain term t

N1. the number of users whose tweets contain term t

N.1 the number of suspended users

N0. the number of users whose tweet don’t contain term t

N.0 the number of non-suspended users

N the number of total users in both suspended user set and normal user set

TABLE 13: Meaning of Ncond

However, when the token frequency is imbalanced between suspended users and

non-suspended users, although the number of suspended users (N.1) and the number of

non-suspended users are similar, we will still be facing the problem that the feature

selection method will have more probability to select the features from suspended

users than select from non-suspended users. We will show the result in experiment

section about this. In order to solve this problem, we used token frequency instead

of number of users. The definitions of N11 and N10, which now are the frequency

of this feature occurring in suspended user dataset and the frequency of this feature

occurring in non-suspended user dataset, remain similar to the original definitions.

And we can compute N01 and N00 by,

N01 = N.1 −N11

N00 = N.0 −N10

where N.1 is the sum up of total feature frequency in suspended users and N.0 is

the sump up of total feature frequency in non-suspended users.

Expected value of feature frequency of t in class c can be computed by,
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E11 = N × P (t)× P (c) =
N1.N.1

N

E10 = N × P (t)× (1− P (c)) =
N1.N.0

N

E01 = N × (1− P (t))× P (c) =
N0.N.1

N

E00 = N × (1− P (t))× (1− P (c)) =
N0.N.0

N

So the formula of MI can be simplified to,

MI(t, c) =
∑

et∈{0,1}

∑
ec∈{0,1}

Netec

N
log2

Netec

Eetec

We can easily figure out when 1) the frequency of this feature is high in both

suspended users and non-suspended users; 2) the frequency of this feature is different

between suspended users and non-suspended users slightly, MI will give this feature

a high score. The first condition can prove to increase P (U = et, C = ec) = Netct/N

and the second condition can make
Netec

Eetec
increase. So together this feature will be

selected by MI.

Pointwise Mutual Information is a little different from MI because MI is focusing

on the average of all the events while PMI only is focusing on the single events:

PMI(t, c) =
∑

ec∈{0,1}

| log2

P (U = etC = ec)

P (U = et)P (C = ec)
|

=
∑

ec∈{0,1}

| log2

N1ec

E1ec

|

Compared to the formula of MI, PMI only depends on the frequency difference

between suspended users and non-suspended users, which is measure by n
e
. So unlike

that MI will select those popular features in both datasets, PMI will focus on the rare

words instead.

Although MI and PMI can measure how strong the relationship between feature

and the class is, there are 2 problems in them. First is that they all treat the fea-

tures as independent random variables when they estimate the probability of features

occurring in tweets. However, in real tweets the features (words) are not indepen-

dent. This kind of estimation loses the relationship between features. Second is that

when classifying using probability, such as using Multinomial Naive Bayes to classify
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the tweets, the conditional probability usually is computed by merging all of tweets

together as a large tweet. This will give the words in longer tweet a larger weight.

In 2005, K Schneider et al [21] proposed a weighted algorithm for computing point-

wise mutual information. They added the weight to pointwise mutual information to

reduce the bias of giving longer tweet large score. WAPMI of token t in class c can

be computed by,

WAPMI(t, c) =
∑
c∈C

∑
d∈Dc

αdp(t|d) log2

p(t, c)

p(t)p(c)

where d is the tweet that contains token t, Dc is the set of tweets in class c. p(t|d)

is the conditional probability of t, which is computed by,

p(t|d) =
n(t, d)

|d|
where n(t, d) is the frequency of token t occurring in tweet d and |d| is the total size

of tweet d.

αd is the weight of token t. The authors gave 3 different weighting method in [21],

which are:

• αd = p(c) × |d|/
∑

d∈Dc
|d|. Each tweet has been given a weight correlation to

their length |d|.

• αd = 1/
∑

c∈C |c|. This will give tweets in the same class an equal weight.

• αd = 1/(|Dc| × |C|). This will give equal weight to the classes by normalization

by class size.

χ2 is another feature selection method which can measure the relationship between

the token and class. The lower the χ2 score is, the token and class are more inde-

pendent to each other. χ2 can be computed by the deviation between the excepted

frequency and the observed frequency of token t in class c.

χ2(t, c) =
∑

et∈{0,1}

∑
ec∈{0,1}

(Netec − Eetec)
2

Eetec

where et, ec, Netec are same as the formula of MI.
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4.4 Experiments

We first tried unigram and bigram model using two different Naive Bayes classifi-

cation, Multinomial and Bernoulli models. All the tweets have already been split

by regular expression. Then stop words have been removed and all the tokens have

been normalized in the previous section. So the only thing we need to do to convert

tweets into vectors is to generate unigrams and bigrams and count the frequency. For

Multinomial model, each location in the vector is the frequency of the gram of this

location; for Bernoulli model, each location in the vector is 1 if the gram occurring

in the tweets of this user. The dimension of word vectors using unigram is 2,293,666

and the dimension of word vectors using bigram is 17,485,806.

All these processes have been done by C++ so that we can manually control the

memory and achieve a better performance. When implementing, we used a feature-

frequency dictionary in memory because the matrix of user vectors are so sparse.

We tested Multinomial Naive Bayes classifier and Bernoulli Naive Bayes classifier on

processed dataset. Table 14 and 15 show the result of 10-fold cross validation of

these two classification models on unigram and bigram model. Fig. 5 and 6 show the

variant of classifiers during 10 runs.
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FIGURE 5: Accuracy for BNB and MNB. Both unigram and bigram models are

tested.
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FIGURE 6: F1 for BNB and MNB. Both unigram and bigram models are tested.

The tables show that bigram model outperforms unigram model when using MNB

classifier both on accuracy and F1. However the results of MNB are not good enough.

This is because the probabilities of grams in both classes is similar. Fig. 7 shows the

comparison of probabilities on each unigram feature in different classes. The red dots

in this figure represent the probability of this unigram feature in suspended class is

higher than it in non-suspended class and the blue dots represent the probability of

this unigram feature in suspended class is lower than that in non-suspended class.

The subplots in this plot indicate top 103, 104, 105 and all unigram features sorted

by the probability. In top 103 features, the probabilities of 680 features in suspended

class is higher. This number in top 104 is 5,952, in top 105 is 71,223 and in all the

features is 1,318,360. This number is surprisingly high, resulting in if a normal user

send a tweet in which all words are from top 105 unigram features, this user will be

classified as suspended user on a extremely high probability.
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FIGURE 7: Probabilities of all unigram feature in both classes
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Model No. TP FN FP TN Precision Recall Acc F1

MNB 1 1002 132 849 285 54.13 % 88.36 % 56.75 % 67.14 %

MNB 2 986 148 851 283 53.67 % 86.95 % 55.95 % 66.37 %

MNB 3 996 138 876 258 53.21 % 87.83 % 55.29 % 66.27 %

MNB 4 978 156 845 289 53.65 % 86.24 % 55.86 % 66.15 %

MNB 5 961 172 851 282 53.04 % 84.82 % 54.85 % 65.26 %

MNB 6 975 158 872 261 52.79 % 86.05 % 54.55 % 65.44 %

MNB 7 985 148 846 287 53.80 % 86.94 % 56.13 % 66.46 %

MNB 8 967 166 818 315 54.17 % 85.35 % 56.58 % 66.28 %

MNB 9 992 141 867 266 53.36 % 87.56 % 55.52 % 66.31 %

MNB 10 977 156 861 272 53.16 % 86.23 % 55.12 % 65.77 %

MNB Total 9819 1515 8536 2798 53.49 % 86.63 % 55.66 % 66.15 %

BNB 1 341 793 210 924 61.89 % 30.07 % 55.78 % 40.47 %

BNB 2 387 747 178 956 68.50 % 34.13 % 59.22 % 45.56 %

BNB 3 385 749 193 941 66.61 % 33.95 % 58.47 % 44.98 %

BNB 4 401 733 209 925 65.74 % 35.36 % 58.47 % 45.99 %

BNB 5 365 768 197 936 64.95 % 32.22 % 57.41 % 43.07 %

BNB 6 385 748 189 944 67.07 % 33.98 % 58.65 % 45.11 %

BNB 7 380 753 190 943 66.67 % 33.54 % 58.38 % 44.63 %

BNB 8 395 738 195 938 66.95 % 34.86 % 58.83 % 45.85 %

BNB 9 380 753 222 911 63.12 % 33.54 % 56.97 % 43.80 %

BNB 10 384 749 189 944 67.02 % 33.89 % 58.61 % 45.02 %

BNB Total 3803 7531 1972 9362 65.85 % 33.55 % 58.08 % 44.46 %

TABLE 14: Unigram Classification Result
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Model No. TP FP FN TN Precision Recall Acc F1

MNB 1 1066 68 923 211 53.59 % 94.00 % 56.31 % 68.27 %

MNB 2 1070 64 924 210 53.66 % 94.36 % 56.44 % 68.41 %

MNB 3 1061 73 935 199 53.16 % 93.56 % 55.56 % 67.80 %

MNB 4 1066 68 936 198 53.25 % 94.00 % 55.73 % 67.98 %

MNB 5 1057 76 916 217 53.57 % 93.29 % 56.22 % 68.06 %

MNB 6 1056 77 944 189 52.80 % 93.20 % 54.94 % 67.41 %

MNB 7 1070 63 910 223 54.04 % 94.44 % 57.06 % 68.74 %

MNB 8 1064 69 921 212 53.60 % 93.91 % 56.31 % 68.25 %

MNB 9 1056 77 939 194 52.93 % 93.20 % 55.16 % 67.52 %

MNB 10 1065 68 934 199 53.28 % 94.00 % 55.78 % 68.01 %

MNB Total 10631 703 9282 2052 53.39 % 93.80 % 55.95 % 68.04 %

BNB 1 227 907 145 989 61.02 % 20.02 % 53.62 % 30.15 %

BNB 2 281 853 109 1025 72.05 % 24.78 % 57.58 % 36.88 %

BNB 3 270 864 129 1005 67.67 % 23.81 % 56.22 % 35.23 %

BNB 4 285 849 117 1017 70.90 % 25.13 % 57.41 % 37.11 %

BNB 5 269 864 116 1017 69.87 % 23.74 % 56.75 % 35.44 %

BNB 6 277 856 118 1015 70.13 % 24.45 % 57.02 % 36.26 %

BNB 7 275 858 112 1021 71.06 % 24.27 % 57.19 % 36.18 %

BNB 8 272 861 124 1009 68.69 % 24.01 % 56.53 % 35.58 %

BNB 9 276 857 137 996 66.83 % 24.36 % 56.13 % 35.71 %

BNB 10 291 842 114 1019 71.85 % 25.68 % 57.81 % 37.84 %

BNB Total 2723 8611 1221 10113 69.04 % 24.03 % 56.63 % 35.65 %

TABLE 15: Bigram Classification Result

And in both tables we can find out that Bernoulli model works really bad on

unigram and bigram models. According to the testing formula of Bernoulli model,

c = arg max
c∈C

P (c)
∏

1≤k≤|V |

P (tk|c)xi(1− P (tk|c)1−xi)

, the rare words are important parameters here. If the number of rare words in a class

is significant higher than that in another class, because of each rare word that is not

occurring in user’s tweets will contribute a 1 − P (t) to the total value, the result of

classifying will more likely to be the class with more rare words. For example, if user

frequency of words in class A is (3, 2, 2), while this frequency of words in class B is
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(2, 1, 1). Supposing the number of users in both dataset is 4. And the testing case

only contains the first word in training dataset. We can compute the probabilities:

cA = log
4

8
+ log

3

4
+ log(1− 2

4
) + log(1− 2

4
) = −1.67

cB = log
4

8
+ log

2

4
+ log(1− 1

4
) + log(1− 1

4
) = −1.27

So the testing case will be labelled as class B. In our dataset, the number of rare

words in non-suspended user dataset is much smaller than that of suspended user

dataset. To be more precisely, the total user frequency of words of which the user

frequency is less than 5 in suspended user dataset is 1,638,942 while that number

in non-suspended user dataset is 1,195,925, which is the reason why BNB classifier

tends to classify users into non-suspended user.

4.4.1 Feature Selection

We also performed MI, PMI, WAPMI and χ2 feature selection methods on the N-

Gram models. In order to analyse the relationship between the size of selected feature

set and the performance of classification, We run 10-fold cross validation on the whole

dataset. We first divided the whole dataset into 10 subdatasets equally and for each

running of validation, 9 of 10 sub datasets has been merged as training dataset and

the rest one has been used as testing dataset. The training dataset will be split into

tokens and the tokens will be normalized. We then counted N11, N10, N01 and N00

for each unigram and bigram generated based on the tokens of training dataset.

We first tried MI based on the count of users who sent tweets containing the

grams. We found that the result of MI is not good because it tends to select the

features from suspended users rather than non-suspended users. In order to solve the

problem that the feature selection method will have more probability to select the

features from suspended users than select from non-suspended users, we used token

frequency instead of number of users. We changed the definitions of N11 and N10 to

the total frequency of this feature occurring in the whole suspended user dataset and

non-suspended user dataset. We then run experiments based on the token frequency

instead of user frequency and computed the score for each feature. The formulas of

these feature selection methods listed below,
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MI(t, c) =
∑

et∈{0,1}

∑
ec∈{0,1}

Netec

N
log2

Netec

Eetec

PMI(t, c) =
∑

ec∈{0,1}

| log2

N1ec

E1ec

|

WAPMI(t, c) =
∑
c∈C

∑
d∈Dc

αdp(t|d) log2

p(t, c)

p(t)p(c)

χ2(t, c) =
∑

et∈{0,1}

∑
ec∈{0,1}

(Netec − Eetec)
2

Eetec

where αd in WAPMI is defined as p(c)× |d|/
∑

d∈Dc
|d|.

Table 16 to 23 show the details of results of these 4 feature selection algorithms

on both unigram and bigram models. In these tables, STF represents normalized

token frequency in suspended user dataset, NTF represents token frequency in non-

suspended user dataset, SUF represents user frequency in suspended uses dataset and

NUF represents user frequency in non-suspended user dataset. We normalized the

token frequency in suspended user dataset by,

STF = ts
Tsuspended

Tnon−suspended

where ts is the token frequency in suspended user dataset, Tsuspended and Tnon−suspended

are the total token frequency in suspended and non-suspended user datasets. We

highlighted some distinguished grams in suspended class.
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No. Feature STF NTF SUF NUF Score

1 rt 239386.37 318635 4499 3340 2.10× 10−4

2 flight 2064.22 10172 1252 856 1.13× 10−4

3 #fb 2497.10 10961 341 283 1.10× 10−4

4 lol 141102.19 104816 4958 2931 0.97× 10−4

5 uk 2600.99 9561 906 590 0.81× 10−4

6 htm 149.03 3292 142 99 0.71× 10−4

7 http://uk 0.00 2494 0 1 0.70× 10−4

8 prodotti 0.62 2467 1 1 0.69× 10−4

9 nuovi 1.86 2473 2 2 0.69× 10−4

10 snarf 2727.76 8 14 7 0.61× 10−4

11 gue 2618.31 8212 155 135 0.58× 10−4

12 cheap 1387.07 5804 1065 672 0.56× 10−4

13 blog 13046.39 23263 2105 1424 0.54× 10−4

14 eu 29941.07 18141 537 436 0.52× 10−4

15 cc 672.82 4048 301 246 0.52× 10−4

16 love 137609.47 111429 7411 5006 0.50× 10−4

17 @cutie jessica05 0.00 1674 0 1 0.47× 10−4

18 f*** 27380.28 16684 2876 1476 0.47× 10−4

19 @mike tizzal 0.62 1661 1 2 0.47× 10−4

20 ga 4498.86 10485 634 490 0.46× 10−4

21 #gagavmas 2.47 1657 2 2 0.46× 10−4

22 @nike 1980.12 0 3 0 0.45× 10−4

23 fifty8 0.00 1589 0 1 0.45× 10−4

24 en 16877.37 27085 1018 875 0.44× 10−4

25 el 15212.64 24360 1080 788 0.39× 10−4

26 gw 3782.75 8830 132 177 0.39× 10−4

27 lo 9562.94 16923 1057 762 0.38× 10−4

28 #funsat 0.62 1323 1 3 0.37× 10−4

29 @dolphinnancy 0.00 1292 0 1 0.36× 10−4

30 admartindia 0.00 1262 0 1 0.35× 10−4

TABLE 16: Top 30 Unigram Features by MI. Terms in bold fonts are distinguished

ones in suspended class.
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No. Feature STF NTF SUF NUF Score

1 http://uk 0.00 2494 0 1 11.98

2 @cutie jessica05 0.00 1674 0 1 11.40

3 fifty8 0.00 1589 0 1 11.33

4 @dolphinnancy 0.00 1292 0 1 11.03

5 admartindia 0.00 1262 0 1 11.00

6 @novawildstar 0.00 1261 0 1 10.99

7 prodotti 0.62 2467 1 1 10.96

8 geeksroom 0.00 1229 0 1 10.96

9 @nike 1980.12 0 3 0 10.95

10 http://tinyurl.com/czzu6n 0.00 1199 0 1 10.92

11 @mzsreyes 0.00 1098 0 1 10.80

12 http://wp.me/pivby 0.00 1036 0 1 10.71

13 @viramutiara 0.00 1015 0 1 10.68

14 @willamutiara 0.00 950 0 1 10.59

15 @atirahn 0.00 947 0 1 10.58

16 @dmand21 0.00 917 0 1 10.54

17 @dirtymink 0.00 888 0 1 10.49

18 @ifew 0.00 879 0 2 10.47

19 @coolzebras 0.00 857 0 1 10.44

20 @kay dead 0.00 851 0 1 10.43

21 @mike tizzal 0.62 1661 1 2 10.39

22 tuwallstreet 0.00 807 0 1 10.35

23 @capr1cemd 0.00 801 0 1 10.34

24 @panda baggins 0.00 784 0 1 10.31

25 @babimalez 0.00 757 0 1 10.26

26 @stacygardell 0.00 755 0 1 10.26

27 @shintashasya 0.00 744 0 1 10.23

28 @cher666 0.00 732 0 1 10.21

29 @xaveriouseja 0.00 714 0 1 10.18

30 @kathyj3490 0.00 708 0 1 10.16

TABLE 17: Top 30 Unigram Features by PMI. Terms in bold fonts are distinguished

ones in suspended class.
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No. Feature STF NTF SUF NUF Score

1 f*** 27380.28 16684 2876 1476 4.46× 10−5

2 lol 141102.19 104816 4958 2931 4.38× 10−5

3 eu 29941.07 18141 537 436 3.72× 10−5

4 @nike 1980.12 0 3 0 3.57× 10−5

5 s*** 22087.39 14140 2970 1622 2.96× 10−5

6 yg 4487.11 9175 124 201 2.82× 10−5

7 snarf 2727.76 8 14 7 2.77× 10−5

8 http://uk 0.00 2494 0 1 2.76× 10−5

9 http://blip.fm/ 7436.88 3381 242 144 2.65× 10−5

10 gw 3782.75 8830 132 177 2.31× 10−5

11 lmao 21995.87 13854 1714 813 2.31× 10−5

12 b**** 10994.53 6362 2465 1255 2.28× 10−5

13 dont 25473.13 17505 3606 2064 2.20× 10−5

14 dnt 4255.21 1638 631 307 2.18× 10−5

15 #teamdemi 936.88 0 7 0 2.07× 10−5

16 smh 5398.63 2590 505 222 1.91× 10−5

17 qe 2735.80 635 143 76 1.90× 10−5

18 @cutie jessica05 0.00 1674 0 1 1.85× 10−5

19 ich 4193.99 1679 206 122 1.76× 10−5

20 fifty8 0.00 1589 0 1 1.76× 10−5

21 #nowplaying 10076.21 6129 1222 622 1.64× 10−5

22 photo 16514.99 11427 2298 1423 1.63× 10−5

23 aja 2508.85 6197 146 189 1.54× 10−5

24 @parisfilmes 851.54 0 3 0 1.54× 10−5

25 wed 7172.82 4153 1949 1223 1.53× 10−5

26 quiz 6138.24 3359 1320 631 1.51× 10−5

27 #funsat 0.62 1323 1 3 1.46× 10−5

28 a** 14032.12 9251 2845 1526 1.45× 10−5

29 pra 14516.94 10164 419 310 1.45× 10−5

30 love 137609.47 111429 7411 5006 1.44× 10−5

TABLE 18: Top 30 Unigram Features by WAPMI. Terms in bold fonts are distin-

guished ones in suspended class.
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No. Feature STF NTF SUF NUF Score

1 rt 239386.37 318635 4499 3340 14600.02

2 flight 2064.22 10172 1252 856 7870.01

3 #fb 2497.10 10961 341 283 7725.44

4 lol 141102.19 104816 4958 2931 6437.60

5 uk 2600.99 9561 906 590 5691.37

6 htm 149.03 3292 142 99 4520.19

7 gue 2618.31 8212 155 135 4066.28

8 http://uk 0.00 2494 0 1 4031.19

9 nuovi 1.86 2473 2 2 3986.41

10 prodotti 0.62 2467 1 1 3983.92

11 cheap 1387.07 5804 1065 672 3920.81

12 blog 13046.39 23263 2105 1424 3808.54

13 cc 672.82 4048 301 246 3586.53

14 eu 29941.07 18141 537 436 3387.25

15 love 137609.47 111429 7411 5006 3341.52

16 ga 4498.86 10485 634 490 3263.96

17 en 16877.37 27085 1018 875 3102.14

18 f*** 27380.28 16684 2876 1476 3038.40

19 el 15212.64 24360 1080 788 2766.51

20 gw 3782.75 8830 132 177 2756.93

21 lo 9562.94 16923 1057 762 2706.62

22 snarf 2727.76 8 14 7 2705.14

23 @cutie jessica05 0.00 1674 0 1 2705.08

24 @mike tizzal 0.62 1661 1 2 2680.45

25 #gagavmas 2.47 1657 2 2 2663.18

26 fifty8 0.00 1589 0 1 2567.62

27 di 6167.30 11822 725 603 2373.58

28 lmao 21995.87 13854 1714 813 2170.84

29 yg 4487.11 9175 124 201 2163.64

30 aja 2508.85 6197 146 189 2145.61

TABLE 19: Top 30 Unigram Features by χ2. Terms in bold fonts are distinguished

ones in suspended class.
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No. Feature STF NTF SUF NUF Score

1 film blog 4.95 3039 5 3 9.75× 10−5

2 cheap flight 21.03 2685 27 16 8.20× 10−5

3 flight cc 0.00 2494 0 1 8.13× 10−5

4 nuovi prodotti 0.00 2467 0 1 8.04× 10−5

5 uk flight 0.62 1928 1 1 6.26× 10−5

6 www paid 1952.29 0 1 0 5.24× 10−5

7 paid draw 1952.91 1 2 1 5.22× 10−5

8 fifty8 uk 0.00 1514 0 1 4.93× 10−5

9 www fifty8 0.00 1509 0 1 4.91× 10−5

10 #gagavmas #gagavmas 0.00 1507 0 1 4.90× 10−5

11 air flight 3.09 1523 5 4 4.86× 10−5

12 http://uk cheap 0.00 1459 0 1 4.75× 10−5

13 updat blog 2075.97 116 144 76 4.23× 10−5

14 2009 price 0.62 1280 1 1 4.14× 10−5

15 book cheap 0.62 1250 1 6 4.04× 10−5

16 blog post 2451.96 6393 463 400 3.89× 10−5

17 snarf snarf 1359.24 1 4 1 3.62× 10−5

18 releas sep 0.00 1096 0 1 3.56× 10−5

19 cordless show 0.62 986 1 1 3.18× 10−5

20 cheap uk 0.00 926 0 1 3.01× 10−5

21 #stay #stay 1159.50 7 3 1 2.98× 10−5

22 rt @kapanlagicom 1040.15 3 3 2 2.72× 10−5

23 cc cheap 0.00 816 0 1 2.65× 10−5

24 flight uk 0.00 815 0 2 2.64× 10−5

25 #veronicamars #veronicamars 5.57 857 1 1 2.64× 10−5

26 vote ak 0.00 797 0 1 2.58× 10−5

27 http://uk air 0.00 763 0 1 2.47× 10−5

28 cheap air 1.86 760 3 4 2.41× 10−5

29 result credit 892.97 0 1 0 2.38× 10−5

30 99 descript 0.00 726 0 1 2.35× 10−5

TABLE 20: Top 30 Bigram Features by MI. Terms in bold fonts are distinguished

ones in suspended class.
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No. Feature STF NTF SUF NUF Score

1 flight cc 0.00 2494 0 1 11.96

2 nuovi prodotti 0.00 2467 0 1 11.94

3 fifty8 uk 0.00 1514 0 1 11.24

4 www fifty8 0.00 1509 0 1 11.24

5 #gagavmas #gagavmas 0.00 1507 0 1 11.23

6 http://uk cheap 0.00 1459 0 1 11.19

7 www paid 1952.29 0 1 0 10.95

8 releas sep 0.00 1096 0 1 10.77

9 uk flight 0.62 1928 1 1 10.59

10 cheap uk 0.00 926 0 1 10.53

11 cc cheap 0.00 816 0 1 10.35

12 flight uk 0.00 815 0 2 10.35

13 vote ak 0.00 797 0 1 10.31

14 http://uk air 0.00 763 0 1 10.25

15 99 descript 0.00 726 0 1 10.18

16 scade il 0.00 677 0 1 10.08

17 @www amazon 0.00 655 0 1 10.03

18 www cordless 0.00 641 0 1 10.00

19 2009 price 0.62 1280 1 1 10.00

20 book cheap 0.62 1250 1 6 9.96

21 paid draw 1952.91 1 2 1 9.95

22 rt @atirahn 0.00 615 0 1 9.94

23 neue da 0.00 613 0 1 9.94

24 cc book 0.00 604 0 1 9.92

25 click http://bit.ly/okvd7 0.00 600 0 1 9.91

26 cc fli 0.00 593 0 1 9.89

27 matter click 0.00 593 0 2 9.89

28 tuwallstreet comment 0.00 583 0 1 9.86

29 result credit 892.97 0 1 0 9.82

30 ak perform 0.00 558 0 1 9.80

TABLE 21: Top 30 Bigram Features by PMI. Terms in bold fonts are distinguished

ones in suspended class.
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No. Feature STF NTF SUF NUF Score

1 flight cc 0.00 2494 0 1 3.19× 10−5

2 nuovi prodotti 0.00 2467 0 1 3.16× 10−5

3 www paid 1952.29 0 1 0 2.53× 10−5

4 book cheap 0.62 1250 1 6 2.46× 10−5

5 updat blog 2075.97 116 144 76 2.31× 10−5

6 snarf snarf 1359.24 1 4 1 2.18× 10−5

7 fifty8 uk 0.00 1514 0 1 1.94× 10−5

8 www fifty8 0.00 1509 0 1 1.93× 10−5

9 #gagavmas #gagavmas 0.00 1507 0 1 1.93× 10−5

10 http://uk cheap 0.00 1459 0 1 1.87× 10−5

11 super kit 828.04 0 3 0 1.75× 10−5

12 paid draw 1952.91 1 2 1 1.60× 10−5

13 #teamdemi #teamdemi 843.50 0 2 0 1.54× 10−5

14 rt @parisfilmes 831.75 0 2 0 1.52× 10−5

15 kit lua 827.42 0 2 0 1.51× 10−5

16 #stay #stay 1159.50 7 3 1 1.49× 10−5

17 flight uk 0.00 815 0 2 1.47× 10−5

18 releas sep 0.00 1096 0 1 1.40× 10−5

19 cheap uk 0.00 926 0 1 1.19× 10−5

20 result credit 892.97 0 1 0 1.16× 10−5

21 song wow 548.52 8 35 8 1.13× 10−5

22 @parisfilmes @ucicinemas 842.26 0 1 0 1.09× 10−5

23 @espacozoficial @andreianapoleao 828.66 0 1 0 1.07× 10−5

24 @ucicinemas @espacozoficial 828.04 0 1 0 1.07× 10−5

25 @eric twittando http://migre.me/baje 826.80 0 1 0 1.07× 10−5

26 matter click 0.00 593 0 2 1.07× 10−5

27 cc cheap 0.00 816 0 1 1.04× 10−5

28 #glee #glee 484.21 6 16 3 1.03× 10−5

29 #australiawantsjonas #australiawantsjonas 483.59 0 3 0 1.02× 10−5

30 vote ak 0.00 797 0 1 1.02× 10−5

TABLE 22: Top 30 Bigram Features by WAPMI. Terms in bold fonts are distin-

guished ones in suspended class.
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No. Feature STF NTF SUF NUF Score

1 film blog 4.95 3039 5 3 4820.73

2 cheap flight 21.03 2685 27 16 4163.86

3 flight cc 0.00 2494 0 1 3979.32

4 nuovi prodotti 0.00 2467 0 1 3936.21

5 uk flight 0.62 1928 1 1 3072.15

6 fifty8 uk 0.00 1514 0 1 2414.83

7 air flight 3.09 1523 5 4 2411.31

8 www fifty8 0.00 1509 0 1 2406.85

9 #gagavmas #gagavmas 0.00 1507 0 1 2403.66

10 blog post 2451.96 6393 463 400 2355.50

11 http://uk cheap 0.00 1459 0 1 2327.03

12 2009 price 0.62 1280 1 1 2037.70

13 book cheap 0.62 1250 1 6 1989.81

14 www paid 1952.29 0 1 0 1975.89

15 paid draw 1952.91 1 2 1 1973.90

16 updat blog 2075.97 116 144 76 1813.15

17 releas sep 0.00 1096 0 1 1747.55

18 cordless show 0.62 986 1 1 1568.37

19 cheap uk 0.00 926 0 1 1476.18

20 snarf snarf 1359.24 1 4 1 1372.42

21 #veronicamars #veronicamars 5.57 857 1 1 1334.14

22 cc cheap 0.00 816 0 1 1300.58

23 flight uk 0.00 815 0 2 1298.98

24 vote ak 0.00 797 0 1 1270.25

25 http://uk air 0.00 763 0 1 1215.98

26 cheap air 1.86 760 3 4 1200.48

27 99 descript 0.00 726 0 1 1156.91

28 #stay #stay 1159.50 7 3 1 1154.43

29 #charice pyramid 0.62 719 1 1 1142.16

30 scade il 0.00 677 0 1 1078.69

TABLE 23: Top 30 Bigram Features by χ2. Terms in bold fonts are distinguished

ones in suspended class.
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In these tables, we can figure out that MI and χ2 tend to select popular words

while PMI and WAPMI tend to select rare words. And many of selected features

show some characters about why users were suspended. Unigrams selected by MI

and χ2, such as ”uk”, ”htm”, ”cc” and ”en”, are more likely to be appeared in

a URL, which shows that URL plays an important role in distinguishing between

suspended users and non-suspended users. Although the token frequencies of ”uk”

or ”htm” in suspended users are larger than these words in non-suspended users, the

user frequencies of these words are bigger in suspended user dataset, which means

that more suspended users are likely to send URL. Some studies [2, 22] also indicated

that spammers will try to use URL as text instead of shorten URL. In our splitting

and normalizing step, we used regular expression to split shorten URL into one token.

So the reason why we now got some part of URL in tokens is that these users tried to

send URL as text rather than shorten URL to avoid being blocked by URL blacklist.

The selected bigrams gave more evidences to this assumption. The bigram feature,

”www paid”, selected by WAPMI was only sent by a spammer who has already been

suspended. Before suspended by Twitter, this user sent 3,157 tweets and all of them

contains ”www.Paid-To-Draw.com”, which is a website that can make money by

drawing. Tweets such as ”Do you want to recieve huge notoriety as an artist? Visit

www.Paid-To-Draw.com”, ”Working on promoting a fantastic product www.Paid-

To-Draw.com”, include the URL as text in order to avoid blocking by shorten URL

detection. Another example is that inside non-suspended users, there is also a user

who sending URL as text to avoid being blocked. The bigram feature, ”www fifty8”,

was sent by a user who has not been suspended but keeping sending spams. This

user successfully passed URL blacklist detection by using this method.

Another main reason of suspending is abusive activities. In the unigram features,

we can find there is a large number of suspended users who sent tweets include f-word,

b-word or s-word. The total number of suspended users who sent these words is 4,025

and this number of non-suspended users is 2,333. And these suspended users sent 24

tweets containing these words on average and these non-suspended users only sent 16

tweets. We will discuss this later in experiments on bad words.

Sending massive mentions and hashtags is another reason of suspending. In bigram

features selected by WAPMI (Table 22), we can found features ranked from 16 to 20,

which contain a large number of mentions and hashtags. In fact all of these features

are extract from the tweets sent by same user. This suspended user sent a lot of
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tweets containing mentions and hashtags to get attention from other users.

The features selected by MI, PMI, WAPMI are slightly different from each other.

MI and χ2 tend to select popular words and resulting in the similar results. Fig. 8

shows the differences between these feature selection methods. Each plot contains

top 10,000 features selected by different methods. Each feature is located by token

frequency in suspended user dataset and non-suspended user dataset. Compared

to MI and χ2, which selected the popular features, PMI tends to select those rare

features, especially those features which occur only in one dataset. And because of

the normalization factor αd, WAPMI selected both rare features and popular features.

FIGURE 8: Locations of Features selected by MI, PMI, WAPMI and χ2

In order to evaluate the performances of each feature selection methods, we tried to

adjust the size of features to filter the dataset and then run 10-fold cross validation on

classification by using Multinomial Naive Bayes classifier. The relationship between

the size of top selected features and the result of classification shows in Table 24 and
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25.

In Fig 9, both the accuracy and F1 have increased , especially on the results of

PMI and WAPMI. The accuracy and F1 on unigram now can be 67.70% and 68.98%

by using top 106 features selected by PMI; and the accuracy and F1 on bigram now

can be 76.75% and 78.54% by using top 1.5× 107 features selected by WAPMI.
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Model Feature Size Precision Recall Accuracy F1

Unigram + MI 10 53.08 % 54.83 % 53.19 % 53.94 %

Unigram + MI 100 55.11 % 75.10 % 56.97 % 63.57 %

Unigram + MI 1000 54.70 % 81.84 % 57.03 % 65.57 %

Unigram + MI 10000 54.42 % 82.93 % 56.74 % 65.72 %

Unigram + MI 100000 55.08 % 80.67 % 57.44 % 65.46 %

Unigram + MI 1000000 55.82 % 89.17 % 59.29 % 68.65 %

Unigram + MI 1500000 54.81 % 85.52 % 57.50 % 66.80 %

Unigram + MI 2000000 54.28 % 82.30 % 56.49 % 65.42 %

Unigram + PMI 10 50.01 % 50.04 % 50.01 % 50.03 %

Unigram + PMI 100 49.93 % 50.11 % 49.93 % 50.02 %

Unigram + PMI 1000 49.96 % 51.13 % 49.96 % 50.54 %

Unigram + PMI 10000 53.02 % 49.35 % 52.81 % 51.12 %

Unigram + PMI 100000 59.35 % 50.14 % 57.90 % 54.36 %

Unigram + PMI 1000000 66.35 % 71.84 % 67.70 % 68.98 %

Unigram + PMI 1500000 56.50 % 78.86 % 59.07 % 65.83 %

Unigram + PMI 2000000 55.76 % 74.55 % 57.70 % 63.80 %

Unigram + WAPMI 10 52.18 % 58.82 % 52.46 % 55.30 %

Unigram + WAPMI 100 53.07 % 67.94 % 53.93 % 59.59 %

Unigram + WAPMI 1000 53.81 % 84.70 % 56.00 % 65.81 %

Unigram + WAPMI 10000 54.81 % 84.92 % 57.45 % 66.62 %

Unigram + WAPMI 100000 57.14 % 79.63 % 59.95 % 66.54 %

Unigram + WAPMI 1000000 60.89 % 84.97 % 65.20 % 70.94 %

Unigram + WAPMI 1500000 60.22 % 82.21 % 63.95 % 69.52 %

Unigram + WAPMI 2000000 59.03 % 75.77 % 61.59 % 66.36 %

Unigram + χ2 10 53.18 % 55.46 % 53.31 % 54.29 %

Unigram + χ2 100 55.20 % 76.12 % 57.17 % 63.99 %

Unigram + χ2 1000 54.47 % 83.70 % 56.86 % 65.99 %

Unigram + χ2 10000 54.45 % 84.10 % 56.87 % 66.10 %

Unigram + χ2 100000 55.00 % 81.15 % 57.37 % 65.56 %

Unigram + χ2 1000000 55.79 % 89.21 % 59.26 % 68.65 %

Unigram + χ2 1500000 54.81 % 85.52 % 57.50 % 66.80 %

Unigram + χ2 2000000 54.28 % 82.31 % 56.49 % 65.42 %

TABLE 24: Classification Results of Unigram on Different Feature Sizes
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Model Feature Size Precision Recall Accuracy F1

Bigram + MI 10 50.01 % 49.96 % 50.01 % 49.99 %

Bigram + MI 100 49.93 % 48.44 % 49.93 % 49.17 %

Bigram + MI 1000 54.12 % 63.31 % 54.82 % 58.35 %

Bigram + MI 10000 55.58 % 76.01 % 57.63 % 64.21 %

Bigram + MI 100000 57.74 % 84.25 % 61.29 % 68.52 %

Bigram + MI 1000000 60.61 % 91.48 % 66.01 % 72.91 %

Bigram + MI 10000000 53.58 % 95.24 % 56.37 % 68.58 %

Bigram + MI 15000000 56.64 % 87.63 % 60.28 % 68.81 %

Bigram + PMI 10 50.01 % 50.02 % 50.01 % 50.02 %

Bigram + PMI 100 50.08 % 50.09 % 50.08 % 50.09 %

Bigram + PMI 1000 50.20 % 50.43 % 50.20 % 50.31 %

Bigram + PMI 10000 51.55 % 53.41 % 51.61 % 52.46 %

Bigram + PMI 100000 61.49 % 66.26 % 62.38 % 63.78 %

Bigram + PMI 1000000 65.98 % 83.08 % 70.13 % 73.55 %

Bigram + PMI 10000000 54.27 % 94.18 % 57.41 % 68.86 %

Bigram + PMI 15000000 59.51 % 84.75 % 63.55 % 69.93 %

Bigram + WAPMI 10 50.18 % 50.67 % 50.19 % 50.43 %

Bigram + WAPMI 100 52.13 % 59.22 % 52.42 % 55.45 %

Bigram + WAPMI 1000 54.38 % 71.57 % 55.76 % 61.80 %

Bigram + WAPMI 10000 56.36 % 79.03 % 58.92 % 65.80 %

Bigram + WAPMI 100000 61.66 % 85.12 % 66.10 % 71.52 %

Bigram + WAPMI 1000000 70.04 % 90.61 % 75.92 % 79.01 %

Bigram + WAPMI 10000000 61.85 % 93.98 % 68.01 % 74.60 %

Bigram + WAPMI 15000000 72.92 % 85.09 % 76.75 % 78.54 %

Bigram + χ2 10 50.12 % 51.93 % 50.13 % 51.01 %

Bigram + χ2 100 49.67 % 47.12 % 49.69 % 48.36 %

Bigram + χ2 1000 54.16 % 65.16 % 55.01 % 59.15 %

Bigram + χ2 10000 55.56 % 77.18 % 57.72 % 64.61 %

Bigram + χ2 100000 57.49 % 84.47 % 61.01 % 68.42 %

Bigram + χ2 1000000 60.42 % 91.50 % 65.78 % 72.78 %

Bigram + χ2 10000000 53.58 % 95.24 % 56.37 % 68.58 %

Bigram + χ2 15000000 56.64 % 87.63 % 60.28 % 68.81 %

TABLE 25: Classification Results of Bigram on Different Feature Sizes
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4.4.2 Conclusion

We experimented classification using n-gram model with BNB and MNB. Feature

selection methods, MI, PMI, WAPMI and χ2 have also been used in these experi-

ments. Among these methods, MNB + bigram + WAPMI is the best choice, which

achieved 75.92 % accuracy and 79.01% F1. We compared BNB and MNB with full

features and found both of them work badly. MNB tends to classify all users into sus-

pended because suspended user dataset contain more top features than non-suspended

user dataset, whil BNB tends to classify all users into non-suspended because non-

suspended user dataset contain more rare features. Among the 4 feature selection

methods, we found that MI and χ2 tend to select popular words while PMI selects

rare words and WAPMI select both popular and rare words. And the results of ex-

periments show that rare words can increase the accuracy and F1, but there is a

limitation because rare words may not occur in users’ tweets. So in all methods,

PMI, which select both popular words and rare words, performs best.
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CHAPTER 5

Classification using word2vec and

doc2vec

To apply other classification methods, we need to transform high dimensional repre-

sentation of documents into shorter vectors. It is based on word embedding method

that maps the tweets into low dimension vectors. We experimented with two methods:

one uses the sum of word vectors, where each word vector is obtained from word2vec

[23]. The other uses doc2vec introduced in [24].

5.1 Experiments of word2vec

In 2013, T. Mikolov et al. [23] proposed a new model named word2vec for computing

continuous vector representations of words that cannot only map the words into lower

dimension vector, and it can also represent the similarity of words by cosine distance

between the vectors of two words. This model can be used in many areas in NLP,

such as word clustering [25] and named entity recognition [26, 27]. It can even show

the inside relationship between words by simple algebraic operations, for example

that vector(”King”) − vector(”Man”) + vector(”Woman”) results in a vector that

is closest to the vector representation of the word ”Queen” [28].

Word2vec is based on distributed representations of words learnt by neural net-

work. The task of word2vec is to train a matrix W , where each column represents

a mapped word w. The goal of word2vec model is to maximize the accuracy of

prediction of next word in sentence using the other word vectors in this sentence.

More formally, Given a sequence of words, w1, w2, ..., wn, word2vec model will try to

maximize the average log probability
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1

n

n−k∑
t=k

log p(wt|wt−k, ..., wt+k)

By using CBOW (Continuous Bag-of Words Model) or Skip-gram model, it can

easily process 783 million words within one day, which is a significant improvement on

the performance. This makes it possible to train more complex model on much larger

dataset, therefore the trained model can outperform the previous simple models.

However, word2vec can only map words to vectors, which is not enough for our

classification. We need a mapping function that can convert the tweets into vectors.

It can easily to come out with a naive idea that we can sum up all the word vectors in

one tweet and the result vector can represent this tweet [29]. The following formula

shows this idea:

vector(u) =
n∑

k=1

vector(wk)

where wk are the words in the tweets sent by user. This approach have some

advantages. First is that it is easy to compute and understand. The previous example,

vector(”King”)+vector(”Woman”) ≈ vector(”Queen”)+vector(”Man”) illustrates

that it is possible to sum vectors together without losing the meaning of sentences,

and further more can somehow prove that this approach can be used to generate

the vector of tweet. Second is that the dimension size of the result vector will still

be the same as the dimension size of word vectors. Thus the tweets with different

lengths can be easily converted into the same dimension vectors and then be used in

classification.

But this simple method still have some problems in it. When converting words

vector into tweet vector, we may face the problem that the word cannot be found

in the vocabulary of pre-trained model. We have two options here to deal with this

problem, one solution is to ignore this word, treating it like a all-zero vector; another

is that we can assign a random vector to word and save this word together with the

new vector into model, so that next time when we find the same word we can still

use this vector. In our experiments, we tested all of these combinations.

In word2vec experiments, we tried to train 3 different dimensions: 300, 600, 1,000

using our tweets dataset with CBOW model. The parameters of training are window

= 5 (indicating how many words will be used around current words when training

vectors); min count = 5 (indicating the words of which the frequency is less than
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5 will be removed). We also tried a pre-trained word vectors that is trained based

on part of Google News dataset (about 100 billion words) [30]. This model contains

300-dimensional vectors for 3 million words.

After training, we used 4 different methods to concentrate word vectors to generate

vectors for users. These 4 methods are depending on whether we need to normalize

the concentrated user vectors and whether we need to discarding the missing words.

If using normalization, the concentrated user vectors will be

vector(u) =

∑n
k=1 vector(wk)

n

And if using discarding missing words method, the words which are not in the

pre-trained word2vec model will be discarded. If we don’t use discarding missing

words method, the missing words will be randomly assigned word vectors.

After concentrating user vectors, we then used several classifiers to test which

one performs best. The classifiers we used are listed in 29 and all the parameters

remain default. Fig. 10 and 11 show the results of all the experiments. In these

tables, NORM = 1 represents using normalization method, DIS = 1 represents

using discarding missing words method and DIS = 0 represents assigning a random

vector to missing word method.

We achieved the best accuracy (63.02 %) when using SVM with RBF function ker-

nel on 1,000 dimension word vector model with normalization and discarding missing

words and the best F1 (67.24 %) when using SVM with linear function kernel on 600

dimension word vector model with discarding missing words.

In these figures, we can conclude that first is the model we trained based on tweets

can significantly improve the results of classification compared with pre-train model

based on google news. This is because our model is focusing tweets area. Words and

the way of using words may be very different between different area, so the trained

word vectors can be very different.

Secondly, normalization will lose some important information on user vectors,

resulting in bad results of classification. This is shown in bar plots of F1. The

average F1 of different classifiers on normalized user vectors is 52.16 % while that on

user vectors which are not using normalization is 63.29 %.

Thirdly, different dimensions don’t play an important role in classification, which

means that 300-dimension word vectors are good enough for classifying.
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FIGURE 10: Accuracy of classifiers on word2vec model
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FIGURE 11: F1 of classifiers on word2vec model
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5.2 Experiments of doc2vec

The problem of word2vec is that although the vectors can contain some position

information during training word2vec model, the word order has been lost during

summing up, resulting in different tweets can share the exactly same vector as long

as the words they used are same. And this may also cause two tweets that contain

very different words but the vectors of them are still same or in closer distance. This

problem can be solved by using doc2vec.

In 2014, Q. Le et al. [24] proposed doc2vec that can learn continuous distributed

vector representations for variable-length texts, ranging from sentences to documents.

Doc2vec approach is inspired by word2vec. In word2vec model, during the training

of word vectors, this model will try to maximize the accuracy of prediction of next

word in sentence by the words before this word. This idea has been taken into doc2vec.

The difference between this two models is that in doc2vec, every document has also

been mapped to a unique vector and will be trained together during maximization.

We used doc2vec as another way to generate vectors for users. In our experiments,

we used Gensim [31], which contains an implementation of Paragraph Vector based

on [24]. For each user in our sampled dataset, the tweets he sent have been merged

into one document and then we trained document vector based on the merged tweets.

We also trained three different dimensions (300, 600, 1,000) to test the differences of

the results between Document Vector models. The parameters of training are same

as the parameters using in word2vec.

Fig 12 and 13 show the accuracies and F1s of different classifiers on different

dimensions of doc2vec models. We can figure out that SVM with RBF kernel on 1000

dimension of doc2vec model achieves best accuracy (73.28%) and best F1 (73.39%).

This result is better than all the results of classification on word2vec model.
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FIGURE 12: Accuracy of classifiers on doc2vec model

NB NN LDA QDA DT RF AB Linear RBF
0

10

20

30

40

50

60

70

80

 

 

Dim = 300

Dim = 600

Dim = 1000

FIGURE 13: F1 of classifiers on doc2vec model

We also tried to visualize the users and tried to figure out the clusters and relation-
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5. CLASSIFICATION USING WORD2VEC AND DOC2VEC

ships among users based on the 1000 dimension Paragraph Vector result. We reduced

the dimension into 2D by t-Distributed Stochastic Neighbor Embedding (t-SNE) [32].

t-SNE is a faster dimension reduction algorithm that accepts a high-dimension ma-

trix and then outputs a 2D matrix. When converting, t-SNE will first compute the

distances between vectors and then it will build a similarity tree based on the distance

matrix. It will then train a set of 2D vectors which can also satisfy the similarity tree

so that these 2D vectors can still keep the structure of the high dimension vectors.

During the conversion, the order of rows won’t be changed so that the user that

the row represents is still the same. In our experiment, the t-SNE we used is an

open source implementation (bhtsne) [33] that is based on variants of the Barnes-Hut

algorithm and the dual-tree algorithm, whose time complexity is O(NlogN). The

input parameters of bhtsne are that the perplexity is 30.0 and θ is 0.5.

Fig. 14 shows the 2D matrix result of t-SNE. We can directly see that there are

some small clusters of suspended users located around the borders. And in the center,

the left part consists mainly of suspended users while the right part consists mainly

of non-suspended users.
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FIGURE 14: Visualizations of Users
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CHAPTER 6

Classification using bad words

In previous section, we found that there are a lot of bad words in top features selected

by PMI and WAPMI. This is a strong evidence that many users were suspended

because of their abusive activities. So we explored further in the bad words they

used.

First we collected a list of bad words from the term blocking lists of Google [34]

and Facebook [35]. After merging these two lists, we got 487 bad words which can be

found in our dataset. Table 26 contains top 10 bad words sorted by token frequency

in suspended user dataset.

No. Word STF NTF SUF NUF

1 f*** 44276 16684 2876 1476

2 s*** 35717 14140 2970 1622

3 d*** 29031 14510 3077 1780

4 a** 22691 9251 2845 1526

5 s*** 20035 9939 3619 2004

6 h*** 19190 9773 3235 1853

7 b**** 17779 6362 2465 1255

8 k*** 15126 7909 3189 1803

9 w** 14441 6810 2479 1333

10 s***** 14234 7159 3068 1620

TABLE 26: Top 10 Bad Words Sorted by Frequency in Suspended User Dataset,

STF = Suspended Token Frequency, NTF = Non-Suspended Token Frequency, SUF

= Suspended User Frequency, NUF = Non-Suspended User Frequency

However, there is a challenge when analyzing the using of bad words when sending

tweets, which is we cannot know the exactly reason of suspending of user. So even

every tweet of user includes bad words, we still cannot say this user is suspended
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6. CLASSIFICATION USING BAD WORDS

because of abusing. But when looking at the whole picture, the number of suspending

users who sending bad words should be larger than that number of non-suspended

users. Fig. 15 shows the counts of users who sent top bad words. We can clearly

figure out that the number of suspend users using top bad words is as twice as larger

than that number of non-suspended users.
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FIGURE 15: The number of users who sent top bad words

This character can also be detected by seeing Fig 16. In this figure, we plotted all

the unigrams located by frequency in suspended user dataset and non-suspended user

dataset. This is because the total frequency of tokens in both datasets are different,

the directly comparison of raw frequencies is meaningless. The frequency has been

normalized by,

Norm(Nt,c) =
Nt,c

Nc

where Nt,c is the count of gram t occurring in class c and Nc is the total gram frequency

in class c. The red circles are bad words. The features below green line represent

suspended users tend to use it more often and the features above green line represent

normal users tend to use it more often. It shows that bad words are more likely to

be used by suspended users, especially top bad words.
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6. CLASSIFICATION USING BAD WORDS

We trained a 300 dimension word2vec using the tokens of which frequency is larger

than 5 to get deeper inside the relations between bad words and other tokens. Fig. 17

is plotted by t-sne which can reduce the 300 dimension word vectors into 2 dimension

so that we can visualize all the words. The red markers are bad words and there is

one big cluster of bad words located in the left center and a small cluster of bad words

located in the right center. Because the vectors trained by word2vec can carry the

position and meaning information, it should be highly possible that the other words

which are close enough to the bad words can also be considered as bad words. So we

computed the score between feature t and bad word w, which is defined as the token

frequency of bad word in suspended user dataset multiplies the cosine similarity of

feature word vector and bad word vector.

BadScore(t, w) = Nw,s
Vt · Vw
|Vt||Vw|

Table 27 listed top 10 most similar hidden bad words. These hidden bad words

are not on the common bad words list.

FIGURE 16: Bad words located by normalized token frequency
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6. CLASSIFICATION USING BAD WORDS
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FIGURE 17: Bad word vectors trained by word2vec

No. Word COS Score Similar To STF NTF SUF NUF

1 f***** 0.64 28286.24 f*** 334 362 70 37

2 c**** 0.64 28170.08 f*** 213 111 123 76

3 e** 0.63 28039.53 f*** 1189 522 453 202

4 a***** 0.61 26929.79 f*** 1951 805 876 386

5 s* 0.73 26090.08 s*** 1264 746 595 337

6 e* 0.59 25921.04 f*** 1432 663 519 248

7 s*** 0.71 25439.94 s*** 814 350 144 74

8 s**** 0.57 25316.79 f*** 4975 2206 1613 825

9 e**** 0.57 25118.44 f*** 1055 422 391 166

10 f****** 0.55 24366.71 f*** 976 436 405 198

TABLE 27: Top 10 Hidden Bad Words, COS = Cosine Similarity between hidden

word and bad word, STF = Suspended Token Frequency, NTF = Non-Suspended

Token Frequency, SUF = Suspended User Frequency, NUF = Non-Suspended User

Frequency

In order to detect whether bad words are the reasons why the users were sus-
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6. CLASSIFICATION USING BAD WORDS

pended, we tried to classify them based on the bad words frequency of these users.

Because this time we only got little number of features, so we can try a lot of classi-

fiers. We used scikit-learn library [36], which contains many different classifiers such

as Naive Bayes, Nearest Neighbours and Random Forest. All the parameters of the

classifiers remained default. The classifiers we used in our experiments listed in Table

29. Table 28 shows the result of classification. We can figure out when using decision

tree or random forest, we can achieve about 60% accuracy and 74% F1, which is

better than using MNB with full features. This is also an evidence to prove that bad

words are one of main reasons of suspending.

CLR TP FP FN TN Precision Recall Accuracy F1

NB 820 6643 371 4710 68.85 % 10.99 % 44.08 % 18.95 %

NN 6191 1272 4207 874 59.54 % 82.96 % 56.32 % 69.32 %

LDA 7067 396 4808 273 59.51 % 94.69 % 58.51 % 73.09 %

QDA 847 6616 410 4671 67.38 % 11.35 % 43.99 % 19.43 %

DT 7279 184 4947 134 59.54 % 97.53 % 59.10 % 73.94 %

RF 7462 1 5081 0 59.49 % 99.99 % 59.49 % 74.60 %

AB 7086 377 4761 320 59.81 % 94.95 % 59.04 % 73.39 %

TABLE 28: Classification Results using Bad Words
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CHAPTER 7

Conclusion

In this thesis, we analysed the suspended users in Twitter and studied several ap-

proaches to predict whether a user will be suspended or not. First, we took a review

of the some related works. Benevenuto et al. [4] and Moh et al. [5] gave a good work

on classification of spammers with high accuracy. However the works from them meet

a problem that the size of dataset is too small. They only focus on a narrow subdo-

main of twitter, which means their work cannot directly be scaled to the whole twitter

social network. Moreover, the feature set they selected can be easily manipulated by

spammers to act like a real user so that their approach cannot detect them.

In our research, we collected a large dataset of suspended users and analysed

this dataset to reveal the different between suspended users and normal users. We

tried to classify them by Naive Bayes classifier, together with several feature selection

methods on n-gram models derived from the tweets, resulting in 76.75% accuracy and

78.54% F1. We also tried different word embedding methods to convert users into

vectors. We tried some classifiers on converted user vectors. When using SVM with

RBF kernel function, we achieved 73.28% accuracy and 73.39% F1 on 1000 dimension

user vector trained by Paragraph Vector method.

After analyzing the characteristic of bad words using in suspended users, we found

the number of bad words using users is as twice larger as that number of normal users.

And we also introduced Badscore to evaluate probability of whether a word can be a

bad word.
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APPENDIX A

Classifiers used in experiments
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A. CLASSIFIERS USED IN EXPERIMENTS

Name Short Name Description

Gaussian Naive Bayes NB Gaussian Naive Bayes Classifier.

The likelihood of features is as-

sumed to be Gaussian distribution.

Nearest Neighbour NN k-nearest neighbour classifier with k

= 10. Classify test case by vote of

k-nearest neighbour of it.

Linear Discriminant Analysis LDA A classifier with a linear decision

boundary, generated by fitting class

conditional densities to the data and

using Bayes’ rule.

Quadratic Discriminant Analysis QDA A classifier with a quadratic decision

boundary, generated by fitting class

conditional densities to the data and

using Bayes’ rule.

Decision Tree DT A classifier that trains a model

which can predict the value of a tar-

get variable by learning simple de-

cision rules inferred from the data

features.

Random Forest RF A random forest is a meta estimator

that fits a number of decision tree

classifiers on various sub-samples of

the dataset.

Adaptive Boosting AB It is also a meta-estimator that be-

gins by fitting a classifier (decision

tree) on the original dataset and

then fits additional copies of the

classifier on the same dataset

SVM with Linear Kernel Linear Support vector machines with linear

function kernel

SVM with RBF Kernel RBF Support vector machines with radial

basis function kernel

TABLE 29: Classifiers in Experiments
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Classification results of word2vec

and doc2vec
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B. CLASSIFICATION RESULTS OF WORD2VEC AND DOC2VEC

CLR N D TP FP FN TN Precision Recall Accuracy F1

NB 0 0 10348 986 9654 1680 51.73 % 91.30 % 53.06 % 66.05 %

NN 0 0 7547 3787 5291 6043 58.79 % 66.59 % 59.95 % 62.44 %

LDA 0 0 9796 1538 8073 3261 54.82 % 86.43 % 57.60 % 67.09 %

QDA 0 0 10034 1300 9155 2179 52.29 % 88.53 % 53.88 % 65.75 %

DT 0 0 6548 4786 3845 7489 63.00 % 57.77 % 61.92 % 60.28 %

RF 0 0 6012 5322 3235 8099 65.02 % 53.04 % 62.25 % 58.42 %

AB 0 0 6524 4810 3595 7739 64.47 % 57.56 % 62.92 % 60.82 %

Linear 0 0 10389 945 9260 2074 52.87 % 91.66 % 54.98 % 67.06 %

RBF 0 0 9319 2015 7480 3854 55.47 % 82.22 % 58.11 % 66.25 %

NB 1 0 3784 7550 1813 9521 67.61 % 33.39 % 58.70 % 44.70 %

NN 1 0 5455 5879 3672 7662 59.77 % 48.13 % 57.87 % 53.32 %

LDA 1 0 5395 5939 3221 8113 62.62 % 47.60 % 59.59 % 54.09 %

QDA 1 0 4042 7292 1726 9608 70.08 % 35.66 % 60.22 % 47.27 %

DT 1 0 6196 5138 3952 7382 61.06 % 54.67 % 59.90 % 57.69 %

RF 1 0 6010 5324 3552 7782 62.85 % 53.03 % 60.84 % 57.52 %

AB 1 0 6242 5092 3617 7717 63.31 % 55.07 % 61.58 % 58.91 %

Linear 1 0 4558 6776 2428 8906 65.24 % 40.22 % 59.40 % 49.76 %

RBF 1 0 5726 5608 2817 8517 67.03 % 50.52 % 62.83 % 57.61 %

NB 0 1 10348 986 9661 1673 51.72 % 91.30 % 53.03 % 66.03 %

NN 0 1 7558 3776 5315 6019 58.71 % 66.68 % 59.90 % 62.44 %

LDA 0 1 9817 1517 8100 3234 54.79 % 86.62 % 57.57 % 67.12 %

QDA 0 1 10031 1303 9160 2174 52.27 % 88.50 % 53.84 % 65.72 %

DT 0 1 6692 4642 4007 7327 62.55 % 59.04 % 61.84 % 60.75 %

RF 0 1 5972 5362 3220 8114 64.97 % 52.69 % 62.14 % 58.19 %

AB 0 1 6522 4812 3628 7706 64.26 % 57.54 % 62.77 % 60.71 %

Linear 0 1 10383 951 9236 2098 52.92 % 91.61 % 55.06 % 67.09 %

RBF 0 1 9311 2023 7534 3800 55.27 % 82.15 % 57.84 % 66.08 %

NB 1 1 3748 7586 1800 9534 67.56 % 33.07 % 58.59 % 44.40 %

NN 1 1 5457 5877 3673 7661 59.77 % 48.15 % 57.87 % 53.33 %

LDA 1 1 5389 5945 3244 8090 62.42 % 47.55 % 59.46 % 53.98 %

QDA 1 1 4020 7314 1708 9626 70.18 % 35.47 % 60.20 % 47.12 %

DT 1 1 6437 4897 4261 7073 60.17 % 56.79 % 59.60 % 58.43 %

RF 1 1 6005 5329 3521 7813 63.04 % 52.98 % 60.96 % 57.57 %

AB 1 1 6226 5108 3683 7651 62.83 % 54.93 % 61.22 % 58.62 %

Linear 1 1 4620 6714 2515 8819 64.75 % 40.76 % 59.29 % 50.03 %

RBF 1 1 5743 5591 2808 8526 67.16 % 50.67 % 62.95 % 57.76 %

TABLE 30: Classification Result on Tweets Trained Word Vector (Dimension = 300)
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B. CLASSIFICATION RESULTS OF WORD2VEC AND DOC2VEC

CLR N D TP FP FN TN Precision Recall Accuracy F1

NB 0 0 10350 984 9654 1680 51.74 % 91.32 % 53.07 % 66.05 %

NN 0 0 7550 3784 5276 6058 58.86 % 66.61 % 60.03 % 62.50 %

LDA 0 0 9726 1608 7954 3380 55.01 % 85.81 % 57.82 % 67.04 %

QDA 0 0 9707 1627 8667 2667 52.83 % 85.64 % 54.59 % 65.35 %

DT 0 0 6225 5109 3646 7688 63.06 % 54.92 % 61.38 % 58.71 %

RF 0 0 5932 5402 3155 8179 65.28 % 52.34 % 62.25 % 58.10 %

AB 0 0 6563 4771 3669 7665 64.14 % 57.91 % 62.77 % 60.86 %

Linear 0 0 10269 1065 8955 2379 53.42 % 90.60 % 55.80 % 67.21 %

RBF 0 0 9330 2004 7509 3825 55.41 % 82.32 % 58.03 % 66.23 %

NB 1 0 3788 7546 1817 9517 67.58 % 33.42 % 58.70 % 44.73 %

NN 1 0 5348 5986 3578 7756 59.91 % 47.19 % 57.81 % 52.79 %

LDA 1 0 5316 6018 3241 8093 62.12 % 46.90 % 59.15 % 53.45 %

QDA 1 0 4264 7070 1894 9440 69.24 % 37.62 % 60.46 % 48.75 %

DT 1 0 5953 5381 3751 7583 61.35 % 52.52 % 59.71 % 56.59 %

RF 1 0 6068 5266 3586 7748 62.85 % 53.54 % 60.95 % 57.82 %

AB 1 0 6254 5080 3590 7744 63.53 % 55.18 % 61.75 % 59.06 %

Linear 1 0 4649 6685 2568 8766 64.42 % 41.02 % 59.18 % 50.12 %

RBF 1 0 5663 5671 2769 8565 67.16 % 49.96 % 62.77 % 57.30 %

NB 0 1 10349 985 9659 1675 51.72 % 91.31 % 53.04 % 66.04 %

NN 0 1 7553 3781 5293 6041 58.80 % 66.64 % 59.97 % 62.47 %

LDA 0 1 9733 1601 8015 3319 54.84 % 85.87 % 57.58 % 66.93 %

QDA 0 1 9703 1631 8676 2658 52.79 % 85.61 % 54.53 % 65.31 %

DT 0 1 6418 4916 3771 7563 62.99 % 56.63 % 61.68 % 59.64 %

RF 0 1 5946 5388 3167 8167 65.25 % 52.46 % 62.26 % 58.16 %

AB 0 1 6576 4758 3650 7684 64.31 % 58.02 % 62.91 % 61.00 %

Linear 0 1 10276 1058 8954 2380 53.44 % 90.67 % 55.83 % 67.24 %

RBF 0 1 9322 2012 7520 3814 55.35 % 82.25 % 57.95 % 66.17 %

NB 1 1 3731 7603 1798 9536 67.48 % 32.92 % 58.53 % 44.25 %

NN 1 1 5347 5987 3543 7791 60.15 % 47.18 % 57.96 % 52.88 %

LDA 1 1 5321 6013 3214 8120 62.34 % 46.95 % 59.30 % 53.56 %

QDA 1 1 4221 7113 1869 9465 69.31 % 37.24 % 60.38 % 48.45 %

DT 1 1 6072 5262 3854 7480 61.17 % 53.57 % 59.78 % 57.12 %

RF 1 1 6015 5319 3563 7771 62.80 % 53.07 % 60.82 % 57.53 %

AB 1 1 6301 5033 3648 7686 63.33 % 55.59 % 61.70 % 59.21 %

Linear 1 1 4611 6723 2597 8737 63.97 % 40.68 % 58.88 % 49.74 %

RBF 1 1 5718 5616 2739 8595 67.61 % 50.45 % 63.14 % 57.78 %

TABLE 31: Classification Result on Tweets Trained Word Vector (Dimension = 600)
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B. CLASSIFICATION RESULTS OF WORD2VEC AND DOC2VEC

CLR N D TP FP FN TN Precision Recall Accuracy F1

NB 0 0 10351 983 9655 1679 51.74 % 91.33 % 53.07 % 66.06 %

NN 0 0 7556 3778 5266 6068 58.93 % 66.67 % 60.10 % 62.56 %

LDA 0 0 9579 1755 7890 3444 54.83 % 84.52 % 57.45 % 66.51 %

QDA 0 0 9318 2016 8038 3296 53.69 % 82.21 % 55.65 % 64.96 %

DT 0 0 6464 4870 3859 7475 62.62 % 57.03 % 61.49 % 59.69 %

RF 0 0 5954 5380 3217 8117 64.92 % 52.53 % 62.07 % 58.07 %

AB 0 0 6514 4820 3706 7628 63.74 % 57.47 % 62.39 % 60.44 %

Linear 0 0 10101 1233 8750 2584 53.58 % 89.12 % 55.96 % 66.93 %

RBF 0 0 9320 2014 7477 3857 55.49 % 82.23 % 58.13 % 66.26 %

NB 1 0 3763 7571 1802 9532 67.62 % 33.20 % 58.65 % 44.54 %

NN 1 0 5294 6040 3554 7780 59.83 % 46.71 % 57.68 % 52.46 %

LDA 1 0 5263 6071 3205 8129 62.15 % 46.44 % 59.08 % 53.16 %

QDA 1 0 4535 6799 2165 9169 67.69 % 40.01 % 60.46 % 50.29 %

DT 1 0 6519 4815 4350 6984 59.98 % 57.52 % 59.57 % 58.72 %

RF 1 0 5971 5363 3530 7804 62.85 % 52.68 % 60.77 % 57.32 %

AB 1 0 6145 5189 3634 7700 62.84 % 54.22 % 61.08 % 58.21 %

Linear 1 0 4664 6670 2623 8711 64.00 % 41.15 % 59.00 % 50.09 %

RBF 1 0 5672 5662 2726 8608 67.54 % 50.04 % 63.00 % 57.49 %

NB 0 1 10347 987 9659 1675 51.72 % 91.29 % 53.04 % 66.03 %

NN 0 1 7525 3809 5297 6037 58.69 % 66.39 % 59.83 % 62.30 %

LDA 0 1 9611 1723 7925 3409 54.81 % 84.80 % 57.44 % 66.58 %

QDA 0 1 9317 2017 8048 3286 53.65 % 82.20 % 55.60 % 64.93 %

DT 0 1 6559 4775 3874 7460 62.87 % 57.87 % 61.84 % 60.27 %

RF 0 1 5909 5425 3175 8159 65.05 % 52.14 % 62.06 % 57.88 %

AB 0 1 6523 4811 3724 7610 63.66 % 57.55 % 62.35 % 60.45 %

Linear 0 1 10138 1196 8709 2625 53.79 % 89.45 % 56.30 % 67.18 %

RBF 0 1 9338 1996 7536 3798 55.34 % 82.39 % 57.95 % 66.21 %

NB 1 1 3690 7644 1779 9555 67.47 % 32.56 % 58.43 % 43.92 %

NN 1 1 5294 6040 3535 7799 59.96 % 46.71 % 57.76 % 52.51 %

LDA 1 1 5179 6155 3217 8117 61.68 % 45.69 % 58.66 % 52.50 %

QDA 1 1 4481 6853 2146 9188 67.62 % 39.54 % 60.30 % 49.90 %

DT 1 1 6860 4474 4654 6680 59.58 % 60.53 % 59.73 % 60.05 %

RF 1 1 5989 5345 3529 7805 62.92 % 52.84 % 60.85 % 57.44 %

AB 1 1 6228 5106 3622 7712 63.23 % 54.95 % 61.50 % 58.80 %

Linear 1 1 4717 6617 2701 8633 63.59 % 41.62 % 58.89 % 50.31 %

RBF 1 1 5688 5646 2736 8598 67.52 % 50.19 % 63.02 % 57.58 %

TABLE 32: Classification Result on Tweets Trained Word Vector (Dimension =

1,000)
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B. CLASSIFICATION RESULTS OF WORD2VEC AND DOC2VEC

CLR N D TP FP FN TN Precision Recall Accuracy F1

NB 0 0 10359 975 9619 1715 51.85 % 91.40 % 53.26 % 66.17 %

NN 0 0 7330 4004 5202 6132 58.49 % 64.67 % 59.39 % 61.43 %

LDA 0 0 9720 1614 8021 3313 54.79 % 85.76 % 57.50 % 66.86 %

QDA 0 0 9967 1367 9010 2324 52.52 % 87.94 % 54.22 % 65.76 %

DT 0 0 6150 5184 3577 7757 63.23 % 54.26 % 61.35 % 58.40 %

RF 0 0 5853 5481 3131 8203 65.15 % 51.64 % 62.01 % 57.61 %

AB 0 0 6249 5085 3488 7846 64.18 % 55.13 % 62.18 % 59.31 %

Linear 0 0 10566 768 9724 1610 52.07 % 93.22 % 53.71 % 66.82 %

RBF 0 0 8719 2615 7099 4235 55.12 % 76.93 % 57.15 % 64.22 %

NB 1 0 2923 8411 1421 9913 67.29 % 25.79 % 56.63 % 37.29 %

NN 1 0 5519 5815 3971 7363 58.16 % 48.69 % 56.83 % 53.01 %

LDA 1 0 4796 6538 3276 8058 59.42 % 42.32 % 56.71 % 49.43 %

QDA 1 0 3012 8322 1278 10056 70.21 % 26.57 % 57.65 % 38.56 %

DT 1 0 5491 5843 3450 7884 61.41 % 48.45 % 59.00 % 54.17 %

RF 1 0 5636 5698 3331 8003 62.85 % 49.73 % 60.17 % 55.52 %

AB 1 0 5143 6191 3100 8234 62.39 % 45.38 % 59.01 % 52.54 %

Linear 1 0 2995 8339 1705 9629 63.72 % 26.42 % 55.69 % 37.36 %

RBF 1 0 4021 7313 2046 9288 66.28 % 35.48 % 58.71 % 46.22 %

NB 0 1 10331 1003 9723 1611 51.52 % 91.15 % 52.68 % 65.83 %

NN 0 1 7269 4065 5358 5976 57.57 % 64.13 % 58.43 % 60.67 %

LDA 0 1 9908 1426 8525 2809 53.75 % 87.42 % 56.10 % 66.57 %

QDA 0 1 10051 1283 9209 2125 52.19 % 88.68 % 53.71 % 65.71 %

DT 0 1 5626 5708 3156 8178 64.06 % 49.64 % 60.90 % 55.94 %

RF 0 1 5324 6010 2945 8389 64.39 % 46.97 % 60.49 % 54.32 %

AB 0 1 4933 6401 2562 8772 65.82 % 43.52 % 60.46 % 52.40 %

Linear 0 1 10418 916 9322 2012 52.78 % 91.92 % 54.84 % 67.05 %

RBF 0 1 9008 2326 7081 4253 55.99 % 79.48 % 58.50 % 65.70 %

NB 1 1 2883 8451 1411 9923 67.14 % 25.44 % 56.49 % 36.90 %

NN 1 1 5481 5853 3941 7393 58.17 % 48.36 % 56.79 % 52.81 %

LDA 1 1 4814 6520 3256 8078 59.65 % 42.47 % 56.87 % 49.62 %

QDA 1 1 3007 8327 1223 10111 71.09 % 26.53 % 57.87 % 38.64 %

DT 1 1 5530 5804 3437 7897 61.67 % 48.79 % 59.23 % 54.48 %

RF 1 1 5671 5663 3321 8013 63.07 % 50.04 % 60.37 % 55.80 %

AB 1 1 5193 6141 3118 8216 62.48 % 45.82 % 59.15 % 52.87 %

Linear 1 1 4020 7314 2175 9159 64.89 % 35.47 % 58.14 % 45.87 %

RBF 1 1 5465 5869 2637 8697 67.45 % 48.22 % 62.48 % 56.24 %

TABLE 33: Classification Result on Pretrained Word Vector (Dimension = 300)
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B. CLASSIFICATION RESULTS OF WORD2VEC AND DOC2VEC

CLR Dim TP FP FN TN Precision Recall Accuracy F1

NB 300 5364 5970 3654 7680 59.48 % 47.33 % 57.54 % 52.71 %

NN 300 9877 1457 9553 1781 50.83 % 87.14 % 51.43 % 64.21 %

LDA 300 7106 4228 3958 7376 64.23 % 62.70 % 63.89 % 63.45 %

QDA 300 6572 4762 4131 7203 61.40 % 57.98 % 60.77 % 59.65 %

DT 300 6083 5251 5008 6326 54.85 % 53.67 % 54.74 % 54.25 %

RF 300 6766 4568 5599 5735 54.72 % 59.70 % 55.15 % 57.10 %

AB 300 6585 4749 4652 6682 58.60 % 58.10 % 58.53 % 58.35 %

Linear 300 7014 4320 4284 7050 62.08 % 61.88 % 62.04 % 61.98 %

RBF 300 8159 3175 3421 7913 70.46 % 71.99 % 70.90 % 71.21 %

NB 600 6613 4721 5658 5676 53.89 % 58.35 % 54.21 % 56.03 %

NN 600 11089 245 11070 264 50.04 % 97.84 % 50.08 % 66.22 %

LDA 600 7399 3935 4009 7325 64.86 % 65.28 % 64.96 % 65.07 %

QDA 600 7016 4318 4931 6403 58.73 % 61.90 % 59.20 % 60.27 %

DT 600 5840 5494 4884 6450 54.46 % 51.53 % 54.22 % 52.95 %

RF 600 7018 4316 6209 5125 53.06 % 61.92 % 53.57 % 57.15 %

AB 600 6760 4574 4645 6689 59.27 % 59.64 % 59.33 % 59.46 %

Linear 600 7490 3844 4523 6811 62.35 % 66.08 % 63.09 % 64.16 %

RBF 600 8202 3132 3337 7997 71.08 % 72.37 % 71.46 % 71.72 %

NB 1000 6314 5020 5267 6067 54.52 % 55.71 % 54.62 % 55.11 %

NN 1000 11304 30 11313 21 49.98 % 99.74 % 49.96 % 66.59 %

LDA 1000 7848 3486 3983 7351 66.33 % 69.24 % 67.05 % 67.76 %

QDA 1000 6223 5111 3411 7923 64.59 % 54.91 % 62.41 % 59.36 %

DT 1000 6917 4417 5979 5355 53.64 % 61.03 % 54.14 % 57.09 %

RF 1000 7034 4300 6013 5321 53.91 % 62.06 % 54.50 % 57.70 %

AB 1000 6851 4483 4652 6682 59.56 % 60.45 % 59.70 % 60.00 %

Linear 1000 7795 3539 4460 6874 63.61 % 68.78 % 64.71 % 66.09 %

RBF 1000 8353 2981 3077 8257 73.08 % 73.70 % 73.28 % 73.39 %

TABLE 34: Classification Result on doc2vec
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