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ABSTRACT

The alignment of two protein structures is a fundamental problem in structural bioinformatics.

Their structural similarity carries with it the connotation of similar functional behavior that could

be exploited in various applications. A plethora of algorithms, including one by us, is a testament

to the importance of the problem. In this thesis, we propose a novel approach to measure the

effectiveness of a sample of four such algorithms, DALI, TM -align, CE and EDAlignsse, for de-

tecting structural similarities among proteins. The underlying premise is that structural proximity

should translate into spatial proximity. To verify this, we carried out extensive experiments with

five different datasets, each consisting of proteins from two to six different families.

In further addition to our work, we have focused on the area of computational methods for

aligning multiple protein structures. This problem is known for its np-complete nature. Therefore,

there are many ways to come up with a solution which can be better than the existing ones or at

least as good as them. Such a solution is presented here in this thesis. We have used a heuristic

algorithm which is the Progressive Multiple Alignment approach, to have the multiple sequence

alignment. We used the root mean square deviation (RMSD) as a measure of alignment quality and

reported this measure for a large and varied number of alignments. We also compared the execution

times of our algorithm with the well-known algorithm MUSTANG for all the tested alignments.
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CHAPTER 1

Introduction

1.1 Overview

In recent years, a number of different pairwise alignment algorithm has been developed. Many

focused on the areas of computational methods for aligning pairwise protein structures. Since the

structural comparison problem is known to be np-complete, many different ways were proposed with

good approximations. The newly proposed alignment algorithms try to find the better alignment

than the previous or at least as good as an alignment achieved by the ones before.

Therefore, we have come up with an approach to evaluate some of the well- known and widely

accepted pairwise alignment algorithms proposed previously. In that case, we would be able to

examine which alignment algorithm works the best. In the process, we will also be able to reveal

the most significant similarities that are possible within a protein family.

Additionally, we have presented a heuristic algorithm for aligning multiple protein structures.

We have taken into account the progressive method in aligning the multiple proteins. To measure

the similarity between the alignment, we have used the Root Mean Square Deviation (RMSD) as

the metric.

1



1.2 Motivation

There are basically three main classes of motives behind these work:

1. Quality of Alignment - Once we have the pairwise evaluation techniques, we will be able

to find the alignment quality of all the pairwise alignment algorithms, and as a result for

a structural comparison application, or any alignment application we will be using the best

algorithm, fetching the best results. It will be a measure to find the quality of new pairwise

alignment algorithms. In short, we will be able to get the best alignment from the best

pairwise alignment algorithm.

2. Infer Functional Properties - In the process of evaluating different pairwise alignment tech-

niques, we will eventually be able to differentiate and classify different proteins with their

functional properties. For example, proteins 1YZQ and 1T91 belongs to the same family

resulting in same structures, so we can conclude that both the proteins have the high prob-

ability of performing same functions. Thus, the evaluation technique adopted will help us

infer functional properties of an entire family or a group of unknown proteins.

3. Evolutionary Relationships - Biologists found that there are about 8 to 100 millions species

of organisms living on Earth today. How amazing it is to think about the common ancestor

of humans and mouse. A lot of studies based on the three-dimensional structures of proteins

show that two proteins with insignificant sequence similarity have a common fold and therefore

performing same or identical functions. Hence, it is useful to use the three- dimensional

structures instead of the amino acid sequence similarities in finding evolution between distant

proteins. In this work, we will be able to conclude evolutionary relationships depending on

the functional similarity.

2



1.3 Problem Statement and Solution Outline

In this thesis, we proposed a novel approach to measure the effectiveness of a sample of four different

pairwise alignment algorithms, DALI, TM-align, EDAlignSSE and Combinatorial Extension (CE)

for detecting structural similarities among proteins and conclude their functional properties. As

a result, we can classify them according to their families. We have come up with an approach

and carried out extensive experiments. We have prepared five different datasets, each consisting of

proteins from two to six different families. For each dataset, we computed a distance matrix, where

each distance is the cRMSD distance of a pair of protein structures. For each distance matrix, we

used Principal Component Analysis to obtain an embedding of a set of points (each representing

a protein) that realize these distances in a two-dimensional space. To compare the clustering of

the families, we used the k-means clustering algorithm to cluster the points, sans family labels.

Our conclusion is that of the four algorithms considered, TM -align proved to be successful in

translating structural proximity to spatial proximity followed by CE.

In further addition to our work, we propose a Multiple Structural Alignment method. MSA is a

fundamental tool for correlating the structural similarity of proteins with their functional similarity.

It is a heuristic algorithm for multiple sequence alignment, we have used the Progressive Multiple

Alignment approach, in our algorithm. The steps involve building a guide tree representing the

similarity between sequences; this tree will guide us through the alignment process. We will then

build an alignment for each internal node of the tree, where the alignment at any internal node will

have all the sequences previously aligned. The root mean square deviation (RMSD) as a metric

measure of alignment quality is been used, and report this measure for a large and varied number

of alignments. We will be comparing the execution times of our algorithm with the well-known

algorithm MUSTANG for all the tested alignments.
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1.4 Thesis Organization

The remainder of thesis is organized as follows. Chapter 2 explains our first problem on evaluating

various widely available pairwise alignment algorithms, it gives a detailed description of the problem

and the technique used for evaluating the various Pairwise Alignment Algorithm and outputs

the best alignment algorithm among all. Chapter 3 presents our second problem on proposing

a heuristic method in aligning more than two proteins using a progressive alignment approach.

Chapter 4 contains the conclusions acquired from the two problems.

1.5 Fundamentals of Protein and Protein Structures

1.5.1 What are Proteins?

Small molecules resulting into gigantic sequential molecules are known as Proteins [11]. Made out

of hundred different amino acids found in nature, they are connected by peptide bonds to form

single or multiple polypeptide chains of polymers. In protein synthesis process, only twenty amino

acids are created by ribosomes [59]. In the process of peptide bond formation between amino

and carboxyl acid groups from adjacent amino acids, a water molecule is released and the residue

formed is the remains of amino acid [59]. The amino acid sequence is called Primary Structure of a

protein. Each Protein has a unique structure. The backbone of a protein comes into existence only

when all the liberated amino acids have bonded together to form a residue. A protein comprises

of Nitrogen (N) atom from one amino group, central α-carbon atom, and a Carbon (C) atom

from the carboxylic group repeated in a triplet, one for each residue which have very rigid peptide

bonds between them resulting into only two rotatable bonds along the protein backbone; the bond

between the Ca atom and its C atom neighbor, and between the Ca atom and its N atom neighbor
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[59].

FIGURE 1: Amino acid Structure in Protein [33]

Thus, the complete 3D structure of proteins is determined by rotational states of the above-

mentioned bonds in every residue. The angles of these two bonds are denoted by phi and psi

[11]. There two main types of proteins, namely, Globular proteins and Fibrous proteins, of which,

the former plays an active role in the expression of genes, categorizing metabolic process and

replication; and later are more passive and often serve a structural purpose. Globular proteins are

sphere-shaped, compact, nonrepetitive, between 100 to 300 residues in size and are considered to

be the workhorses of the cell. Lastly, there are membranes, which regulates and controls various

atoms and molecules traffic across the cells [59].

1.5.2 What are their functions?

There are several functions of a protein, the main are as follows:

1. Antibody - Protein helps in binding with foreign particles to help and protect the body from

unfavorable conditions within the body. It helps in fighting with a virus inside the body. It
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strengthens one’s immune system.

2. Enzyme - Proteins involves in chemical reactions, resulting in the formation of new molecules

by reading the information which is stored in DNA.

3. Messenger - Proteins plays a very important role in transmitting signals between cells, tissues,

and muscles to coordinate biological processes. It helps in all the biological processes needed

for the body to live and sustain.

4. Structural Component - Most importantly, proteins provides structure and support to cells

which in return, helps in moving the body and performing the daily routine need in ones’ life.

5. Transport - Proteins play a vital role in transporting atoms throughout the body by binding

itself to a particle ad carrying atoms within cells from one part of the body to another.

1.5.3 How are Proteins structured?

Protein structure organization is spread across four levels, namely, primary, secondary, tertiary and

quaternary structure [2], shown in Fig. 2.
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FIGURE 2: Different kinds of Protein structures [74]

The sequential arrangement of amino acid residues, also known as protein sequence is referred

as the primary structure. The table 3 below shows the 1- or 3- letter codes that are used to denote

amino acid residues.
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FIGURE 3: Amino acids in Proteins

A structure comprising of elements that are stabilized by hydrogen bonds between the carboxyl

group (C=O) and amide group (N-H) of two peptide bonds represents the secondary structure [59].

A large number of non-covalent interactions between amino acids results in three dimensional folded

arrangement of protein, which is known as the tertiary structure. When non-covalent interactions

bind multiple polypeptides into a one single larger protein, it is termed as quaternary structure.

For example, Haemoglobin, which has a quaternary structure resulting from a bond between two

alpha globin and two beta globin polyproteins [11].
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1.5.4 Relatability between a pair of protein

The external conditions and chemical factors cause random genetic mutations resulting into the

metamorphosis of proteins; this is a direct consequence of relatedness between proteins. The process

of protein alignment is designed to find out the genetic information that is preserved amongst the

proteins over the time and not reversing the evolution effects [59]. Using this technique common

ancestor can be traced with the help of simulated agents which results in achieving categorization of

evolutionary similarities and differences. This further helps in building an evolutionary tree based

on which the families of different protein species can be grouped [59]. If any of the protein spices

have a common ancestor, the proteins of that species can be closely related or not relatedly at all,

depending on the evolution that might have occurred. There are 3 kinds of relatedness between

the pair of protein(s):

1. Identity: If the formations of two proteins match with each other, they are termed as identical

proteins.

2. Similarity: If the formations proteins are nearly related to each other without being identical,

they are termed as similar proteins.

3. Homology: Homology is a special case in which proteins are expected to have common an-

cestors. Creation of super families of proteins is based on two kinds of homology that protein

represents, namely, Sequence and Structural.
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CHAPTER 2

Low Dimensional Clustering to Evaluate

Pairwise Protein Structure Alignment

Algorithms

2.1 Introduction

2.1.1 Life Origins

At the molecular level, protein molecules are known as the main drivers of all life processes. A

protein molecule is defined as a linear polypeptide chain, which contains adjacent pairs of amino

acids joined to each other by peptide bonds [54]. Therefore, it has the nomenclature “polypeptide”.

This linear polypeptide chain of the protein structure folds into a stable, low-energy 3-dimensional

tertiary structure to perform its respective biological function [54]. There are other different struc-

tures in protein which are formed by loops joining together two types of secondary structures,

known as α-helices and β-sheets.

“The most important things we know about proteins have come therefore not from theory but

observation and comparison of sequences and structures” is observed by Taylor et al. [68]. There

is a wide number of heuristics approaches that have been proposed which shows the importance
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of this problem, as a result, it led to a board spectrum of the literature of this problem and

several large structural databases of proteins [49, 52, 30]. These databases help in classifying a

large number of protein sequences into their structurally equivalent classes using an alignment or

structure comparison algorithms.

There are namely two vital traits for pairwise protein structure alignment: (1) The way in

which folding occurs; (2) How an accurate role is performed by assuming a particular structure.

The protein folding is a well-known problem because of theorganic process drawback, predicting

how a macromolecule can fold, given the amino acid compound sequence that makes up its peptide

chain structure. A comprehensive solution is addressed for this disadvantage. The second draw-

back is that of predicting role of a known structure. Here a theoretical approach is a standard

one: structural comparison with proteins of known functions [54], which in return give rise to the

drawback of the structural alignment of a pairs of proteins.

In this work, we have come up with a solution to measure the effective of a sample of four

different pairwise alignment algorithms. The four different pairwise alignment algorithms are:

DALI, TM-Align, EDAlignSSE and Combinatorila Extension (CE).

2.1.2 Notations and Definitions of a Protein

A protein is modeled as a sequence of points, P = {pi|pi ∈ R3, i = 1, 2, 3, ...,m}, in a 3-dimensional

Euclidean space, where m(= |P |) is the number residues and pi represents the coordinates of the

central α-carbon atom of the i-th residue. In what follows, we will use this sequence P to refer to

the protein it represents. [54]

Given two proteins P and Q of length m and n respectively, an alignment of P and Q is:

• a sequence of corresponding pairs of points of P andQ, S(P,Q) = {(pi1 , qj1), (pi2 , qj2), ..., (pik , qjk)}
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[54], where 1 ≤ i1 < i2 < ... < ik ≤ m and 1 ≤ j1 6= j2 6= ... 6= jk ≤ n, together with

• a rigid transformation t, t(Q) = {t(qj) = q
′
j |q

′
j ∈ R3, j = 1, 2, 3, ..., n}, that optimizes some

similarity measure for the above correspondence [54].

2.1.3 Pairwise Protein Structure Alignment

The outline of a Pairwise Protein Structure Alignment problem is: Given two protein structures,

we find the transformation that produces the best superposition of one protein onto the other.

From the computational point of view, the rotations and the translations required by one of the

points set (protein A) which will produce a comparatively large superimpositions on the other set

(protein B). The fundamental question to this problem is: How to find the best superposition of

two protein structures? The problem of superimposing two structures of proteins is easy if we know

the equivalent amino acids in both the structures. The hard part is to find this mapping of the

corresponding atoms between two different protein structures.

Understanding a protein model clearly that will be used, is a vital step to design a pairwise

alignment algorithm. Some of the previous alignment algorithms expressed the protein model as

the central α carbon atom of every residue that are attached sequentially to form a polygonal chain

in three dimensions [54]. In a more primitive model, protein is viewed as a collection of points

(again the α carbon atoms) in 3-D space, where the alignment problem is allowed to view as that

of matching two point sets [54]. However, it is crucial to supplant these different kinds of models

with different features of the proteins like hydrophobicity, exposure to solvents, mutual affinities of

amino acids, etc. to draw biologically meaningful conclusions from an alignment [54].
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2.1.4 Similarity Measures

The root mean square deviation (RMSD) is widely used [37, 38] to measure the extent of structural

similarity of two proteins. There are basically two different RMSD [79, 62, 63, 81] measures that

have been proposed in the background study:

1. coordinate root mean square deviation (cRMSD)

2. distance root mean square deviation (dRMSD)

For any two aligned structures of proteins P and Q of length k, these are defined as below [54].

dRMSD =

√√√√ 2

k2 − k

k−1∑
u=1

k∑
v=u+1

(‖piu − piv‖ − (‖qju − qjv‖)2 (1)

cRMSD =

√√√√1

k

k∑
u=1

‖piu − t(qju)‖2. (2)

[54] The similarity measures, cRMSD and dRMSD, are both concerning absolute distances,

therefore, the value of RMSD gets poor even if there is any small presence of outliers irrespective

of the fact that the two structures are globally similar to each other the RMSD value will be poor.

Many other researchers [81, 37, 70, 43] have observed such similar kind of behavior. Zhang and

Skolnick [80] came up with a solution to overcome this problem, a sequence independent structural

alignment measure (TM-score) which is a variation of a metric, originally defined by Levitt and

Gerstein [41] [54]. Xu and Zhang have done a critical assessment of this TM-score. [76].

Given two proteins, a template protein P and a target protein Q, |P | ≥ |Q|, the structural

similarity is obtained by a spatial superposition of P and Q that maximizes the following score [54]

TM-score =
1

|Q|

k∑
i=1

1

1 + ( did0 )2
, (3)
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where k is the number of aligned residues of P and Q; di is the distance between i-th pair of aligned

residues and d0(= 1.24 3
√
|Q| − 15− 1.8) is a normalization factor [54].

When the value of d0 in equation (3) is set to 5Ao, the resulting TM-score is known as a raw

TM-score (rTM-score) [54].

Xu and Zhang [76] observed that two proteins are structurally similar and belong to the same

fold when the TM-score > 0.5 [54].

2.2 Prior Work

The protein structure alignment problem is a vital issue in structural bioinformatics. All the protein

alignment algorithms work mainly in three stages: finding correspondence between atoms, obtaining

a rigid transformation in space for aligning them together and finally measure the similarity between

the two aligned protein structure. The difference between all the protein structure alignment

algorithm lies on the principle or the method chosen to find the correspondence between the atoms.

Additionally, the similarity measure taken into account is different for different pairwise algorithm,

which helps in refining the correspondence for a better similarity value.

2.2.1 DALI

DALI (Protein structure comparison by alignment of distance matrices [29]) is a distance matrix

alignment method developed by Lisa Holm and Chris Sander. The DALI [29] method is based on

the fact that similar 3-dimensional structures have similar intra-molecular distances. However, the

main idea of this method revolves around the representation of each protein in a 2-dimensional

matrix storing their intramolecular distances. It tries to overlap a matrix of one protein on top of

another and gradually slide vertically and horizontally and stop when a common sub-matrix with
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the best match is found between the two matrices [29].

The actual implementation can be broken into three steps:

1. The method decomposes each distance matrix into contact patterns as small sub-matrices

which are of fixed sizes (hexapeptide-hexapeptide contact patterns)

2. Then it compares the contact patterns and tries to pair-up the sub-matrices, one from each

protein, which is similar and storing the matched pairs in a pair list.

3. Finally, it assembles the similar sub-matrix pairs in the correct order to obtain the overall

alignment.

2.2.2 TM-Align

TM-align: a protein structure alignment algorithm based on the TM-score [81] is a pairwise align-

ment method developed by Yang Zhang and Jeffrey Skolnick. The algorithm is nearly four times

faster than Combinatorial Extension method and 20 times faster than DALI and SAL [81]. Re-

garding accuracy and coverage, the resulting structure is higher than any of the ones provided by

other most often-used methods. This method uses the TM-score rotation matrix to increase the

speed of the process by identifying the best structure alignments.

The method involves mainly of two steps:

1. Identifying initial structural alignments

2. Feed the obtained initial structural alignments into an iterative heuristic algorithm

The algorithm performs three different kinds of initial alignment :

1. The first alignment is obtained by aligning the secondary structures elements (SSEs) of two

different proteins using dynamic programming (DP). The score matrix used for this alignment

15



is assigned to be 1 or 0 depending on whether or not the secondary structure elements of

aligned residues are identical. The penalty values of 1 for gap-opening works the best [81].

2. The second alignment is based on the gapless matching of two protein structures. For the

smaller of the two proteins, a gapless threading against the larger structure is performed,

then the one with the best TM-score is selected [81].

3. The third initial alignment is obtained by Dynamic Programming using a gap-opening penalty

of 1, but the score matrix used for the alignment is a half/half combination of the Secondary

Structure score matrix [81].

Finally, the algorithm feeds the initial three structural alignments to a heuristic iterative algorithm,

which is widely used in refining NP-hard structure-based alignments

2.2.3 EDAlign SSE

The EDAlign SSE (An eigendecomposition method for protein structure alignment [54]) is a pair-

wise alignment method developed by Satish Ch. Panigrahi and Asish Mukhopadhyay. This method

is designed for both equal length and unequal length proteins. In this method, protein is considered

as a polygonal chain of carbon residues in 3D. The solution of this method is depended on a matrix

eigendecomposition method to the protein structure alignment problem [54]. Finally, this proce-

dure reduces the protein structure alignment method to an approximate solution of a weighted

graph matching problem. To measure the similarity between two aligned proteins it uses TM-score

and cRMSD as the metrics [54].

For aligning equal length proteins, it refines the correspondence obtained from the matrix

eigendecomposition approach and maximizes the similarity measure, TM-score, for the refined
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correspondence. However, for the unequal length proteins, it works in three steps:

1. finds a correspondence between secondary structure elements (SSE-pairs);

2. finds a correspondence between residues within SSE-pairs;

3. applies a rigid transformation to obtain a structural alignment in space.

The final two steps are repeated until there is no further improvement found in the alignment.

2.2.4 Combinatorial Extension

Combinatorial Extension (Protein structure alignment by incremental combinatorial extension (CE)

of the optimal path [63]) is an alignment algorithm developed by I N Shindyalov and P E Bourne.

Combinatorial Extension method work with aligned fragment pairs in every step of the method.

At first, it breaks each structure in a series of fragments then tries to reassemble the fragments into

a complete alignment. An alignment fragment pair is defined as a continuous sequence of protein A

aligned against a continuous sequence of another protein B of same size [63]. If n1 and n2 are the

lengths of protein A and protein B, and AFP length is set to m, then there is a total of (n1−m)

X (n2 − m) AFPs. These series of pairwise combination of fragments which are called aligned

fragment pairs (AFPs) defines a similarity matrix. This matrix helps in generating an optimal

path to identify the final alignment. This optimal path increases linearly through the sequences,

extending the alignment [63].

The algorithm steps are as follows:

1. Select some initial Aligned Fragment Pairs (AFP)

2. An alignment path is built gradually by incrementing AFPs in a way that satisfies a certain

condition
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3. Step (2) is repeated until each protein’s length is traveled, or until no good AFPs remain

The Combinatorial Extension algorithm is a fast and accurate method that helps in finding an

optimal structure alignment. It is suitable for analysis of large protein families

2.3 Proposed Approach and Details

2.3.1 Algorithm description

Our approach can be broken up into four major steps.

1. Creating protein datasets, each consisting of proteins from up to six different families of

homologous proteins.

2. Constructing cRMSD distance matrices for each dataset, by running the selected pairwise

alignment algorithms.

3. Using Principal Component Analysis [27] to embed the points that realize the distances in

low-dimensional spaces

4. Applying a clustering algorithm to the embedded points, sans family labels, to test how

well the alignment algorithms have succeeded in translating structural proximity to spatial

proximity.

2.3.2 Creating Datasets

We have selected protein families which are completely different from one another structurally,

implying divergence in functional behavior. The proteins that make up our datasets have been

drawn from the following families.
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• Myosins: a class of motor proteins that are crucial to muscle contraction and other motility

processes in eukaryotes.

• GTPases: a large family of hydrolase enzymes that bind and hydrolase guanosine triphosphate

(GTP). These help in regulating cell growth, cell differentiation, and cell migration [1].

• Caspases : a family of protease enzymes playing essential roles in programmed cell death

and inflammation [12].

• EF-Hand Proteins : a large family of calcium-binding proteins, each with an EF-hand or

alpha-loop-alpha motif [42].

• Calmodulin is a calcium transducer. It is a calcium-binding protein that can bind to and

regulate the functions of different protein targets, thereby affecting many different cellular

functions [46].

• Phosphotransferase : a class of enzymes that catalyze phosphorylation reactions [73]. Phos-

phorylation is crucial for protein function as it activates or deactivates nearly half of the

enzymes. It is also a frequently-occurring post-translation modification in eukaryotic cells

[73].

• Cyclophilins: a family of proteins found in vertebrates and other organisms that bind to

cyclosporin A, an immunosuppressant commonly used to suppress rejection after an internal

organ transplant [16].

The five datasets below were created from the above protein classes.

1. Two families, each consisting of 10 proteins
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Family No. Family Name Proteins (PDBs)

1 GTPases 1YZQ, 1T91, 1YR9, 1XTS, 1MKY, 1PUJ, 2RCN, 2MSC, 2X2E, 1CEE

2 Myosins 1W7J, 1W7I, 1B7T, 1OE9, 2AKA, 2MYS, 4P7H, 2EC6, 2OS8, 2OGT

2. Three families, each consisting of 10 proteins

Family No. Family Name Proteins (PDBs)

1 GTPases 1YZQ, 1T91, 1YR9, 1XTS, 1MKY, 1PUJ, 2RCN, 2MSC, 2X2E, 1CEE

2 Myosins 1W7J, 1W7I, 1B7T, 1OE9, 2AKA, 2MYS, 4P7H, 2EC6, 2OS8, 2OGT

3 Caspases 1F1J, 1NW9, 1K86, 1QDU, 2C2O, 2H5I, 2NN3, 2CNK, 2CNL, 2CNN

3. Four families, each consisting of 5 proteins

Family No. Family Name Proteins (PDBs)

1 Caspases 3DEI, 2C2O, 1K86, 2H5I, 1QDU

2 Myosins 2AKA, 2EC6, 1OE9, 1B7T, 4P7H

3 ER Hand Proteins 1XO5, 1IJ5, 2BE4, 2KQ6, 5BFX

4 Calmodulin 1CLL, 1CFC, 3CLN, 1MXE, 1DMO

4. Five families, each consisting of 6 proteins
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Family No. Family Name Proteins (PDBs)

1 Caspases 3DEI, 2C2O, 1K86, 2H5I, 1QDU, 1RHK

2 Myosins 2AKA, 2EC6, 1OE9, 1B7T, 4P7H, 1W7I

3 ER Hand Proteins 1XO5, 1IJ5, 2BE4, 2KQ6, 5BFX, 1JUO

4 Calmodulin 1CLL, 1CFC, 3CLN, 1MXE, 1DMO, 2F2P

5 Phosphotransferase 2B0G, 1FYN, 2HWG, 1J7U, 1ND4, 4ORK

5. Six families, each consisting of 7 proteins

Family No. Family Name Proteins (PDBs)

1 Caspases 3DEI, 2C2O, 1K86, 2H5I, 1QDU, 1RHK, 1V0D

2 Myosins 2AKA, 2EC6, 1OE9, 1B7T, 4P7H, 1W7I, 1BR4

3 ER Hand Proteins 1XO5, 1IJ5, 2BE4, 2KQ6, 5BFX, 1JUO, 1JFK

4 Calmodulin 1CLL, 1CFC, 3CLN, 1MXE, 1DMO, 2F2P, 2K0F

5 Phosphotransferase 2B0G, 1FYN, 2HWG, 1J7U, 1ND4, 4ORK, 1PNJ

6 Cyclophilins 1CWA, 1M9C, 1AK4, 2CPL, 2RMB, 2Z6W, 1NMK

2.3.3 Running Pairwise Alignment Algorithms on the Datasets

For each dataset, we ran the four pairwise alignment algorithms, DALI [29], TM -align [81], CE

[63] and SSEAlign [54], on each pair of proteins in the set to create a distance matrix. The

distances are the cRMSD values of all the pairs. For example, from the first dataset, consisting

of two families of ten proteins each, for a total of 20 proteins, we obtained a 20 × 20 symmetric

distance matrix with 190 entries above the main diagonal.
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2.3.4 Principal Component Analysis

Principal Component Analysis [27] is a dimensionality reduction technique that makes it possible

to visualize data in low-dimensional spaces.

In this method, a new set of variables are obtained from the existing set of variables by a linear

combination of the existing variables. The new set of variables are called Principal Components.

The components are obtained in such a manner that the first one accumulates the maximum

variation of the existing data. The succeeding component has the next highest variation and so on.

In whatever reduced dimension the existing data is embedded, this process preserves the highest

possible variance of the original set of data [57].

2.3.5 K-Means Clustering Algorithm

The k-means clustering algorithm partitions a set of n data points in a m-dimensional Euclidean

space into k-clusters. Each cluster consists of data points closest to the cluster center. The param-

eter k is part of the input to the clustering algorithm.

The data points are obtained by applying Principal Component Analysis to the cRMSD dis-

tance matrix. The returned set of points (representing proteins) lie in a low dimensional space (we

have chosen two as the embedding dimension). The visualization of these points with their family

labels shows a natural clustering that demonstrates how well an alignment algorithm translates

structural proximity to spatial proximity.
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FIGURE 4: An example of how KMeans clustering look. [55]

When the same set of points, sans family labels, are subjected to the k-means clustering al-

gorithm which uses only the spatial proximities of the points, we expect the clustering to remain

largely unchanged with respect to the natural clustering. We discuss how well the four alignment

algorithms have fared with respect to our expectations in the section on experimental results.

2.3.6 Proposed Algorithm for Evaluating Pairwise Alignment Algorithms

We call our algorithm EPAA, short for Evaluating Pairwise Alignment Algorithms. Below, we

provide a formal description of EPAA in pseudocode form.
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Algorithm 1 EPAA

1: for Each alignment algorithm, A do

2: for Each dataset, DS do

3: Run A for every pair of proteins to build a cRMSD distance matrix

4: Input the distance matrix to the PCA algorithm to obtain a two dimensional embedding

5: Run the k-means clustering/k-medians clustering method on the embedded point set

6: Plot the points with original family labels

7: Plot the clusters obtained from the k-means/k-medians algorithm, sans family labels

8: end for

9: end for

2.4 Experimental Results and Discussion

Experimental results obtained in 2-dimensional and 3-dimensional plots

1. Dataset 1- Two families, each consisting of 10 proteins

(a) Known Family Labels (b) k-means clusters (c) k-medians clusters

FIGURE 5: Two family clusters formed by DALI in 2D.
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(a) Known Family Labels (b) k-means clusters (c) k-medians clusters

FIGURE 6: Two family clusters formed by TM -align in 2D.

(a) Known Family Labels (b) k-means clusters (c) k-medians clusters

FIGURE 7: Two family clusters formed by EDAlignSSE in 2D.

(a) Known Family Labels (b) k-means clusters (c) k-medians clusters

FIGURE 8: Two family clusters formed by CombinatorialExtension in 2D.

Referring to Figs. 5-8 we find that with TM -align and CE, the structural clustering (Fig. 6a
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and Fig. 8a) and the spatial clustering (Fig. 6b and Fig. 8b) are quite similar. The same

cannot be said of DALI (Fig. 5) and SSEAlign (Fig. 7). In each of those cases, the proteins

do not form two clearly distinguishable spatial clusters. For both DALI and SSEAlign, all

the proteins except one got clustered in the same family. But, for TM -align and CE all

proteins got clustered according to their family.

We have also used kmedians clustering to verify our result in terms of family mix. Referring

to (Fig. 6c and Fig. 8c) of TM -align and CE, the spatially clustering using kmedians is

similar to the the spatially clustering obtained by kmeans clustering whereas, for DALI and

SSE (Fig. 5c and Fig. 7c), the spatial clustering are different than structural clustering.

(a) Known Family Labels (b) Clusters with unknown family labels.

FIGURE 9: Two family clusters formed by DALI in 3D.
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(a) Known Family Labels (b) Clusters with unknown family labels.

FIGURE 10: Two family clusters formed by TM -align in 3D.

(a) Known Family Labels (b) Clusters with unknown family labels.

FIGURE 11: Two family clusters formed by EDAlign SSE in 3D.
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(a) Known Family Labels (b) Clusters with unknown family labels.

FIGURE 12: Two family clusters formed by Combinatorial Extension in 3D.

Referring to Figs.9-12, we find that even in the higher dimensional plot, DALI (Fig. 9),

SSEAlign (Fig. 11), TM -align (Fig. 10) and CE (Fig. 12) obtains the same clustering

obtained in their 2-dimensional plot. This shows, there is no change in any family clustering

when the dimension changes from 2D to 3D. The result is same for both the dimensional plot.

2. Dataset 2- Three families, each consisting of 10 proteins

(a) Known Family Labels (b) k-means clusters (c) k-medians clusters

FIGURE 13: Three family clusters formed by DALI in 2D.
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(a) Known Family Labels (b) k-means clusters (c) k-medians clusters

FIGURE 14: Three family clusters formed by TM -align in 2D.

(a) Known Family Labels (b) k-means clusters (c) k-medians clusters

FIGURE 15: Three family clusters formed by EDAlign SSE in 2D.

(a) Known Family Labels (b) k-means clusters (c) k-medians clusters

FIGURE 16: Three family clusters formed by Combinatorial Extension in 2D.

Referring to Figs. 13-16, we find that with DALI (Fig. 13) and SSEAlign (Fig. 15), the
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structural clustering (Fig. 13a and Fig. 15a, respectively) and the spatial clustering (Fig. 13b

and Fig. 15b respectively) are very different. None of their clusterings resembles their actual

family clustering. For both of them, two families out of three got mixed up in the spatial

clustering. In the case of TM -align and CE, the structural clustering (Fig. 14a and Fig. 16a)

and the spatial clustering (Fig. 14b and Fig. 16b) are the same. All the three families can

be easily distinguished from the clusters formed. All the three families are well-clustered

spatially according to their structural clustering.

Referring to (Fig. 14c and Fig. 16c) of TM -align and CE, the spatially clustering is similar

to the spatially clustering obtained by kmeans clustering. It is not the same for DALI and

SSE (Fig. 15c and Fig. 13c), the spatial clustering obtained the kmedians clustering has also

mixed all the family.

(a) Known Family Labels (b) Clusters with unknown family labels.

FIGURE 17: Three family clusters formed by DALI in 3D.
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(a) Known Family Labels (b) Clusters with unknown family labels.

FIGURE 18: Three family clusters formed by TM -align in 3D.

(a) Known Family Labels (b) Clusters with unknown family labels.

FIGURE 19: Three family clusters formed by EDAlign SSE in 3D.
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(a) Known Family Labels (b) Clusters with unknown family labels.

FIGURE 20: Three family clusters formed by Combinatorial Extension in 3D.

Referring to Figs.17-20, we can say that even in this dataset the higher dimensional plot of,

DALI (Fig. 17), SSEAlign (Fig. 19), TM -align (Fig. 18) and CE (Fig. 20) obtains the

similar clustering achieved in 2D with this dataset, again proving the fact that the clustering

is not affected with the dimension of plot.

3. Dataset 3- Four families, each consisting of 5 proteins

(a) Known Family Labels (b) k-means clusters (c) k-medians clusters

FIGURE 21: Four family clusters formed by DALI in 2D.
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(a) Known Family Labels (b) k-means clusters (c) k-medians clusters

FIGURE 22: Four family clusters formed by TM -align in 2D.

(a) Known Family Labels (b) k-means clusters (c) k-medians clusters

FIGURE 23: Four family clusters formed by EDAlign SSE in 2D.

(a) Known Family Labels (b) k-means clusters (c) k-medians clusters

FIGURE 24: Four family clusters formed by Combinatorial Extension in 2D.

Referring to Figs. 21-24, we find that with TM -align, the structural clustering (Fig. 22a) and
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the spatial clustering (Fig. 22a) of the three families are very similar followed by CE where

two families out of 4 are well clustered. But in case of DALI (Fig. 21), the spatial clustering

of nearly all the families are dispersed. From Figs. 23a and 23b, we can say that the clustering

in SSEAlign is better than that of DALI as it has formed proper spatial clustering in two

families out of four. However, none is as good as TM -align.

Referring to (Fig. 22c and Fig. 24c) of TM -align and CE, the spatially clustering obtained

by k-medians has successfully clustered two-three families correctly unlike DALI and SSE

(Fig. 21c and Fig. 23c), they got wrongly clustered even using k-medians clustering.

(a) Known Family Labels (b) Clusters with unknown family labels.

FIGURE 25: Four family clusters formed by DALI in 3D.
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(a) Known Family Labels (b) Clusters with unknown family labels.

FIGURE 26: Four family clusters formed by TM -align in 3D.

(a) Known Family Labels (b) Clusters with unknown family labels.

FIGURE 27: Four family clusters formed by EDAlign SSE in 3D.
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(a) Known Family Labels (b) Clusters with unknown family labels.

FIGURE 28: Four family clusters formed by Combinatorial Extension in 3D.

Referring to Figs. 25-28, it again proves there is no change in any of the family clustering

when the dimensions change from 2D to 3D. DALI (Fig. 25), SSEAlign (Fig. 27), TM -align

(Fig. 26), and CE (Fig. 28), all of them, resemble the same clustering as in 2D.

4. Dataset 4- Five families, each consisting of 6 proteins

(a) Known Family Labels (b) k-means clusters (c) k-medians clusters

FIGURE 29: Five family clusters formed by DALI in 2D.
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(a) Known Family Labels (b) k-means clusters (c) k-medians clusters

FIGURE 30: Five family clusters formed by TM -align in 2D.

(a) Known Family Labels (b) k-means clusters (c) k-medians clusters

FIGURE 31: Five family clusters formed by EDAlign SSE in 2D.

(a) Known Family Labels (b) k-means clusters (c) k-medians clusters

FIGURE 32: Five family clusters formed by Combinatorial Extension in 2D.

Referring to Figs. 29-32, we again find that for TM -align and CE, the structural clustering
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(Fig. 30a and Fig. 32a) and the spatial clustering (Fig. 30b and Fig. 32b) are similar for two

to three families out of 5. Unlike DALI (Fig. 29) and SSEAlign (Fig. 31). We see that

SSEAlign has got one family clustered properly, as compared to DALI which has failed for

this large dataset. In this huge dataset, TM -align and CE behaved similarly.

Similarly for this dataset, we again find that TM -align and CE (Fig. 30c and Fig. 32c), the

spatially clustering obtained by k-medians is same as k-means clustering. But even using

k-medians, DALI and SSE (Fig. 21c and Fig. 23c), have proved that they are unsuccessful

in translating structural proximity to spatial proximity.

(a) Known Family Labels (b) Clusters with unknown family labels.

FIGURE 33: Five family clusters formed by DALI in 3D.
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(a) Known Family Labels (b) Clusters with unknown family labels.

FIGURE 34: Five family clusters formed by TM -align in 3D.

(a) Known Family Labels (b) Clusters with unknown family labels.

FIGURE 35: Five family clusters formed by EDAlign SSE in 3 D.
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(a) Known Family Labels (b) Clusters with unknown family labels.

FIGURE 36: Five family clusters formed by Combinatorial Extension in 3D.

Referring to Figs. 33-36, it shows even when the dataset gets higher along with the dimen-

sions, the spatial clustering is unaffected.

5. Dataset 5- Six families, each consisting of 7 proteins

(a) Known Family Labels (b) k-means clusters (c) k-medians clusters

FIGURE 37: Six family clusters formed by DALI in 2D.
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(a) Known Family Labels (b) k-means clusters (c) k-medians clusters

FIGURE 38: Six family clusters formed by TM -align in 2D.

(a) Known Family Labels (b) k-means clusters (c) k-medians clusters

FIGURE 39: Six family clusters formed by EDAlign SSE in 2D.

(a) Known Family Labels (b) k-means clusters (c) k-medians clusters

FIGURE 40: Six family clusters formed by Combinatorial Extension in 2D.

Referring to Figs. 37-40, we find that for this dataset CE and SSEAlign has performed better
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than TM -align. The structural clustering (Fig. 39a) and the spatial clustering (Fig. 39b) of

SSEAlign are similar for four families unlike TM -align which has similar clustering for three

families. Most of the families are easily distinguishable. From Fig. 37a and Fig. 37b, we find

that the structural clustering and the spatial clustering for DALI again proves to be the

worst with the proteins from different families all dispersed among the different clusters.

Finally, even in the last set using kmedians clustering, TM -align and CE (Fig. 38c and

Fig. 40c), has successfully clustered according to the family. But, DALI and SSE (Fig. 37c

and Fig. 39c), have proved mixed up the families again and proved that they are unsuccessful

in translating structural proximity to spatial proximity.

(a) Known Family Labels (b) Clusters with unknown family labels.

FIGURE 41: Six family clusters formed by DALI in 3D.

42



(a) Known Family Labels (b) Clusters with unknown family labels.

FIGURE 42: Six family clusters formed by TM -align in 3D.

(a) Known Family Labels (b) Clusters with unknown family labels.

FIGURE 43: Six family clusters formed by EDAlign SSE in 3 D.
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(a) Known Family Labels (b) Clusters with unknown family labels.

FIGURE 44: Six family clusters formed by Combinatorial Extension in 3D.

Referring to Figs.41-44, it resembles the same family cluster as it gets clusters in the 2D

dimensional plot.

2.5 Conclusions

The above experiments showed that TM − Align and CE are able to cluster proteins from the

same family spatially. Among all the four different algorithms taken into consideration, these

two pairwise alignment algorithm has been successfully correlated structural proximity to spatial

proximity. We have also confirmed our results by two ways:

1. Plotting in higher dimesnions to find if the cluster formation is same in both the dimension:

We applyed the same method on a little higher dimensional data (3D), even on 3D dimensional

plot, both TM −Align and CE has successfully clustered proteins from same family into the

same group with minimum family mix. The clustering remained unchanged even when the
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dimension had increased.

2. Used K-median clustering, which is known to be robust in nature: This clustering also ob-

tained the similar family mix in DALI and SSE and proper clustering in TM -align and CE,

as obtained in k-means clustering. It has showed that the TM -align and CE have success-

fully translated structural proximity to spatial proximity but DALI and SSE has again got

family mixed in the kmedians clustering

This work can be extended further by adding more pairwise alignment algorithms which are pro-

posed in the past, to test and evaluate their ability to detect structural similarity among proteins.

It can be used as a measure to find how good is the alignment algorithm. The paiwise alignment al-

gorithm is considered to be more effective, if it has successfully been able to translate the structural

proximity of the proteins to the spatial proximity.
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CHAPTER 3

Revised-MASCOT using Progressive

Approach

3.1 Introduction

The Multiple Protein Alignment problems have received a lot of attention from Structural Biologists

because classification of protein structures and predicting their functions along with the other newly-

sequenced proteins are done by the Multiple Structure Alignment Algorithm. It is also used for

comparing the protein structures with the proteins of known functionalities. Additionally, the need

for fast, robust and reliable MStA algorithms cannot be ignored because of the increased growth

of the Protein Data Bank.

Based on the technique used, MStA algorithms can be classified roughly into one of four cate-

gories: MUSTANG [39], msTali [61], and CE-MC [22] imitates the progressive alignment approach

used for multiple sequence alignment [59]. These algorithms using the progressive approach have

succeeded in aligning multiple proteins way better than any other approaches. However, they fail in

guaranteeing convergence to the global optimum [59]. There are other algorithms which are based

on different approaches [47, 78] than progressive ones that have outperformed the progressive ones,

both in speed and accuracy [59]. The second category of algorithms MATT [47], MultiProt [60],
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Mass [14], Mapsci [32], and Smolign [64], which is taken into account when the goal is to find a struc-

turally conserved subset of residues among the proteins to obtain knowledge about their evolution

and origin. It refines the consensus structure, with repetitive iterations, and finds a core common

to all the input proteins [59]. Unfortunately, such cores are pseudo-structures that, although geo-

metrically interesting, are bereft of any biological significance. There is another method designed

by Ye and Godzik which is graph-based POSA [78] which represents a protein as a directed acyclic

graph (DAG) of residues, connected sequentially following the backbone of the protein structure.

POSA creates a combined non-planar, multi-dimensional DAG, taking hinge rotation and coming

up with residue equivalences among all the input proteins. Though POSA is known to incorporate

the protein structures’ flexibility, it completely misses the motifs on TIM-barrel and helix-bundle

proteins [64], and incur a higher cost of alignments, for instance, MATT [47] or Smolign [64]. The

pivot-based approach selects one of the input molecules, closest to all the other proteins as the

pivot [59]. To obtain residue-residue correspondences, rest of proteins are aligned iteratively to the

pivot either bottom-up manner [71] or top-down manner [77]. These correspondences are required

to minimize some objective function and define a score as a similarity measure [59]. Mistral [48],[71]

and [77] are some of the few published algorithms on this approach.

Our approach to this MStA problem is using the Progressive Alignment method used for mul-

tiple sequence alignment (MSA). We propose a new algorithm, Revised MASCOT (acronym

for Revised Multiple Alignment of Structures using Center Of proTeins), which is very similar

to the MASCOT [59] algorithm instead of using the center star method, we have taken the pro-

gressive method and tried aligning two or more protein structures together. Since we all know,

SSEs are fundamental components of protein structures which serves as well-preserved scaffolds,

we have taken this structural advantage of the protein polypeptide chain so that it contains all the
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important information about the secondary structural elements (SSEs) [59]. Mutations do affect

the loops which result in modifying the functionality, but the SSEs are evolutionarily remarkably

conserved. For example, the substrate specificity of different serine proteases is governed by the

confirmation of the binding loops [25]. Representing protein structures using their SSEs are also

used on several pairwise alignment problems [36], [3], [4]; [21], [44].

In this paper, our goal is to design and develop a fast, elegant algorithm that uses the sequences

of proteins using their SSEs to produce a structural alignment with high accuracy. Keeping this in

mind, we have designed a version of MASCOT [59] called Revised MASCOT as a similar hybrid

algorithm. It uses the most similar closely related proteins as a pair of sequences, and align those

using global alignment. Then, we identify the next most closely related sequence pair; it can be a

pair of sequences or a pair of alignments, and align them to each other. This concept of aligning two

sequences or two alignments or a sequence with an alignment is obtained by finding the minimum

sum of pairwise-distances between a pair of sequences.

Next, to align a pair of protein sequences, we find an optimal correspondence among the al-

pha carbon atom which is the backbone of the protein, using an inter-residue Euclidean distance

threshold and compares the centerRMSD of the structures aligned in space as a measure of their

similarity [59]. We have implemented Revised MASCOT and run experiments on the same set

of proteins done by MASCOT. Again similar to [59], we too have included a comparison of the

execution times of the Revised MASCOT with the well-known algorithm MUSTANG to show that

it is really a fast algorithm [59].
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3.1.1 Algorithm Aspects

What is an Alignment?

An alignment explains patterns of matching between some form of sequences, structures, and se-

quences with structures of proteins. An alignment gives a clear idea of the function and evolutionary

distance of the proteins from a common ancestor.

Various methods like local geometry matching [75], comparison of distance matrices [28], max-

imal common subgraph detection [7], spectral matching [62], geometric hashing [51], contact map

overlap [6, 13] and dynamic programming [81, 67] are used to obtain an initial equivalence set during

alignment of two protein structures which is a 3-dimensional analogue of linear sequence alignment

of peptide or nucleotide sequences [54]. Moreover, methods such as Monte Carlo algorithm or sim-

ulated annealing [28], dynamic programming [81, 67, 17, 18], incremental combinatorial extension

of the optimal path [63] and genetic algorithm [66] can be used to further optimize these previously

obtained equivalence set a goal to measure the amount of structural similarity for alignment of

protein residue. This similarity measure is classified into four different categories (1) distance map

similarity [28, 69, 5, 53] (2) root mean square deviation (RMSD) [62, 81, 63, 79] (3) contact map

overlap [20] (4) universal similarity matrix [40, 56] are used to quantify the structural similarity;

but even after all these classifications and research over the years, there is no universal definition of

similarity score to measure structural similarity extent. A comprehensive list of different similarity

measures is discussed by Hasegawa and Holm [24].

Global Alignment

In Global Alignment, the sequences are aligned along their entire lengths. This method of align-

ment is successful in finding the best alignment of a sequence with another sequence. The Global
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Alignment technique is done using the Needleman-Wunsch algorithm, which is based on dynamic

programming. The alignment received from this technique illustrates a lot about the protein and

its sequences which as a result leads to the understanding of its functions and structures.

Let Am, ... , An and Bm, ... , Bn be the two different protein sequences of length m and n

respectively which we need to align optimally. It contains input alphabets consisting of symbols

to represents different amino acids in the protein structure [59]. So, we define an alignment in a

much formal way. To perform a global alignment of A and B, we need to introduce gaps (−) at

the beginning or ending or between a pair of symbols, such that the alignment which is obtained

must have the following properties.

1. It should be a 2 X L matrix where max(m,n) <= L <= m+n

2. First row has either a blank or a character from A and second row has either a blank or a

character from B.

3. No column can have blanks in both the sequences.

Needleman-Wunsch Algorithm is a global alignment method used to find the optimal edit dis-

tance between two string [50] or protein sequences. The NeedlemanWunsch algorithm performs a

global alignment on two sequences. It is an example of dynamic programming and was the first

application of dynamic programming algorithm to biological sequence comparison. It is applied to

optimization problems..

Structure Alignment

In protein structure alignment, there is a comparison taken place between the positions of atoms

in two or more 3-D protein structures. The biological functions and properties of a protein are
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determined by its 3D structure [59]. Holms and Sander stated ”Comparing protein shapes rather

than protein sequences are like using a bigger telescope that looks father into the universe, and thus

farther back in time, opening the door to detect the most remote and most fascinating evolutionary

relations” [31]. The statement means aligning the 3D structure of proteins gives more insight into

their functions and evolutionary origins [31]. For a structural alignment to take place optimally,

we must first find out which residues correspondences, it is only possible if we are unaware of the

proteins 3D structure. There is a possibility when a residue cannot be mapped to any other residue,

in that case, it will be aligned with a gap ’-’. Therefore, in a set of N proteins, one-to-one mapping

of the protein residues gives rise to a protein structure alignment.

For two proteins of length NB and NA, the number of possible alignment grows exponentially,

min(NA,NB)∑
k=0

2k(kNA )(kNB )

The number of possible alignment increases, when the number of residues in both the proteins

is more. The problem is a pairwise alignment one, when N = 2, for which there are many widely

accepted algorithms such as, Dali [28], SSAP [53], Eigenvalue Decomposition [54], Combinatorial

Extension [63] etc. When N > 2, the problem is termed as Multiple Structure Alignment (MStA).

Our problem belongs to this category of problem [59].

3.1.2 Problem Statement

Consider P = P1, P2 ... PN a set of N protein structures and L1, L2 LN the number of residues

in each proteins respectively. All the protein structures are represented by the coordinates of their

alpha carbon (Cα) atoms. Pab denotes the bth residue of the ath structure, for a = 1 ... N and b =

1 ... LN .
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The multiple structural alignment of P is Y = (Yab) , 1 ≤ a ≤ N, 1 ≤ b ≤ L , such that:

• Max (L1, L2 ... LN ) ≤ L ≤ (L1 + L2 + ... + LN ).

• Each element in X either has to be one of the residues of Pij or a gap which is a special null

residue, denoted by the symbol ’-’.

• The ath row in Y contains the set of C positions of a protein structure i, it might contain gaps

in between. This shows that the alignment makes sure that it preserves the order of residues.

Now that the matrix of equivalences Y are obtained, a set of rigid body transformations needs to

be done, each having a proper rotation matrix Rota, where det(Rota)= +1, which can be denoted

as, TR( Rota , Transa ) 1 ≤ i ≤ N, where Transa is a translation tuple which is acted upon each

protein in Y, which will drive an optimal superposition of all the structures.

A superposition of minimum coordinate root mean square deviation (RMSD) is obtained with

the help of an input set of reference 3D points of the equivalent residues.

RMSD =

√
1

n

i=1∑
N

((vix − wix)2 + (viy − wiy)2 + (viz − wiz)2)

where, (vix; viy; viz) represents 3D coordinates of residue i which are obtained by superimposing

structure a on structure b. The distances between the corresponding residues vi and wi represents

the Euclidean distance. n denotes the number of aligned. Basically, our goal is to minimize root

mean square deviation (RMSD) while maximizing the number of aligned residues.

3.2 Prior Work

We have studied a couple of papers, which are relevant to our work.
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3.2.1 A center star approach - MASCOT

The center-star approach was first proposed by Gusfield [23]. This approach falls under the class

of approximation algorithms as it aims to give a solution quality and a run-time bound which can

be proved [59]. Gusfield stated the solution of Multiple Structure Alignment could be optimal up

to a constant factor 2 with the sum-of-pairs metric [23].

The following properties must be satisfied by the cost function of sequences a, b, and c:

Cost[a, a] = 0 (reflexive)

Cost[a, b] = Cost[b, a] ≥ 0 (symmetric)

Cost[a, b] + Cost[b, c] ≥ Cost[x, z] (triangle inequality)

The center-star algorithm follows the following steps:

1. By minimizing the Sum-of-Pairs metric, we need to find the center protein sequence Sc such

that
N∑
j=1

EditDistance(Pi, Pj)

is minimum.

2. Next, align all the rest N − 1 protein sequences, Si, where i = 1 ... N, and i 6= c to Sc,

following once a gap always a gap policy [59].

For the first step, they perform a global alignment on every pair of protein sequences using

Needleman-Wunsch algorithm [50] which requires an affine gap opening penalty, and a scoring

matrix.
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3.2.2 A progressive approach - MUSTANG

The progressive alignment algorithm falls under the class of heuristic algorithms as it sometimes

comes out with an optimal solution and sometimes with not-so-good results. There are many

algorithms that used this technique to solve the problem of multiple structure alignment. This

method starts the process of multiple alignments by beginning with the most similar pair of protein

structures and iteratively adding more and more distant structures to the alignment [59]. To do

this process, it uses a guide tree. They use different algorithms such as neighbor-joining method

[15] or Unweighted Pair Group Method with Arithmetic Mean (UPGMA) to build the guide tree.

Under this category of approach, Mustang [39] is one of the best paper worth reviewing. It

is proposed by Konagurthu et al., in 2006. Mustang starts by first identifying the most similar

fragment pairs, aligning them and then extending this pair to the find more distant pair and finally

covering the entire protein length. It applies an all-pair-all-fragments scoring in the input proteins,

finally obtaining a guide tree [59]. Using the guide tree, it progressively aligns multiple proteins

and obtains the set of correspondence for each protein, required for the rigid body superposition

[59].

This algorithm along with others also have got flaws, which cannot be ignored. For example,

its dependencies on the initial alignments, once an error as occurred in the alignment process it

gets propagated throughout the alignment and effects the final alignment result, it takes in large

running time, and since the method is heuristic it gives relatively low accuracy result [59].
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3.3 Proposed Approach and Details

3.3.1 Protein Data Bank

The crystallographic database for three-dimensional structure data of large biological molecules [72],

first conceived at Brookhaven National Laboratories is known as Protein Data Bank (PDB) [59].

PDB [10], which is overseen by the organization called Worldwide Protein Data Bank (wwPDB),

get its data by submission through biologists and biochemist using technologies such as X-ray

crystallography and Nuclear Magnetic resonance. Due to the exponential growth of the data as

well as the arrival of the internet, PDB was easily available through the website of its member

organizations [59].

PDB repository contains all the known protein structures in PDB format since it is the key

resource in areas of structural biology and mandatory for scientists to submit their structure data

to PDB [59]. Every atom taking up a single line in the PDB file has a structure which shows its

type, carbon atom position, residue number and type of residue. Below representation shows an

entry in a PDB file [59].

ATOM 83 CA ALA A 8 24.850 0.000 17.421

The above line indicates that there is a carbon atom at the position (24.850, 0.000, 17.421).

Moreover, the CA shows that it is the central C atom of a residue, namely residue 8 of type ALA

from chain A [59]. The value 83 is a unique atom identifier within the file [59]. In short, a PDB

file is a digitized version of the actual protein chemical.
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3.3.2 Input data set

Protein structures are saved as PDB files in the Protein Data Bank [8]. Since the protein structures

are growing rapidly in number, it contains more than 100000 structures. In this algorithm, the

first step is to feed the algorithm with a proper and correct data, which can be retrieved from a

standard protein database or from the local computer itself [59]. The vital step in the algorithm is

to preprocess the data before proceeding with it in the algorithm since we have to align thousands

of proteins [59]. This is an important step because, in the process of aligning thousands of proteins,

the required proteins needs to be fetched and readied correctly by the next step in the algorithm.

For example, an input set could be 1AOR: A 6ACM 2ACT 1TRQ: B, etc.

3.3.3 Representing the proteins

After taking the correct input set, we represent each protein in a manner that will make the

subsequent processing easier and convenient as well as retain all the necessary information that

is needed by the algorithm [59]. To obtain a robust and fast multiple alignment algorithms, the

observations are dependent on this particular step.

We depict the proteins by motif sequences which are obtained by the DSSP-program [35]; this

is done to keep a balance between complexity and functionality. The DSSP-program Assigns each

residue of a protein to one of the eight possible structural motifs (see Table 1). As a result, a

linear motif sequence is obtained as a backbone of the protein structure. For example, for SEA

CUCUMBER CAUDINA (1HLM), it will show as follows,

...HHHHGGGZZIIIITTHHHHHHTTSSI...

This step converts the problem from structure alignment to a sequence alignment problem. So,

we are now able to use an algorithm for sequence similarity in this problem to obtain an optimal
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Symbol Motif

H Alpha Helix

B Beta bridge

G Helix 3

E Beta strand

T Turn

S Bend

I Helix 5

Z No motif

TABLE 1: The DSSP code [59]

− H B G E T S I Z

H 1 0 1 0 0 0 1 0

B 0 1 0 1 0 0 0 0

G 1 0 1 0 0 0 1 0

E 0 1 0 1 0 0 0 0

T 0 0 0 0 1 1 0 0

S 0 0 0 0 1 1 0 0

I 1 0 1 0 0 0 1 0

Z 0 0 0 0 0 0 0 1

TABLE 2: Example of a Scoring Matrix [59]

alignment of any two or more sequences. The next step in the algorithm is built on this observation.

3.3.4 Pairwise global alignment

This is the next step in the algorithm. We perform a pairwise global alignment on the different N

DSSP sequences obtained in the previous step, corresponding to the N input proteins [59]. For the

pairwise global alignment, we use the Needleman-Wunsch algorithm. The scoring matrix used was

of Table 2 along with an appropriate gap opening penalty.

These pairwise alignments produce a rudimentary picture of SSE-SSE alignments. This is

apparent from the pairwise alignments of the DSSP sequences of the globins 1DM1, 1MBC, 1MBA,

shown below [59].
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1DM1 ..ZZZHHHHHHHHHHHHHHHHTHHHHHHHHHHHHHHHSGGG-...

1MBA ..ZZZHHHHHHHHHHHHHHHHT-HHHHHHHHHHHHHHHZGGG...

1DM1 ..ZZZHHHHHHHHHHHHHHHHTHHHHHHHHHHHHHHH-SGGG...

1MBC ..ZZZHHHHHHHHHHHHHHGGGHHHHHHHHHHHHHHHZTHHH...

1MBC ..ZZZHHHHHHHHHHHHHHGGGHHHHHHHHHHHHHHHZTHH-H...

1MBA ..ZZZHHHHHHHHHHHHHHHHTHHHHHHHHHHHHHHHZGGGGG...

We can see that the helices are properly aligned against one another. These alignments are

saved in a list and referred to when needed.

3.3.5 Tree-based Progressive Alignment

The main idea is to align large groups of protein sequences by using a sequence of pairwise align-

ments; these alignments take place between closely related proteins. The alignment occurs from

the tip and proceeds towards the root of the tree [19]. It follows the branching order of the guide

tree. In progressive alignment method, we have developed an N×N symmetric distance matrix for

multiple sequence alignment, an N ×N (see Table 3) whose entries are calculated taking Kmer dis-

tance as the metric (values shown in the table have been arbitrarily assigned) between the various

multiple sequences in the list mentioned above.

From this distance matrix, we find the least paiwise alignment scores between the sequences

which are closely related to each other and form a cluster of those sequences and gradually the next
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− P1 P2 . . . PN

P1 0 10 . . . 20

P2 10 0 . . . 30

... · · · · · · · · ·
...

PN 20 30 · · · 0

TABLE 3: A sample distance matrix [59]

alignment with the next related pair of sequences or a related pair of sequences and an alignment it

will give us a guide tree. The leaves of the guide tree formed are considered to be the sequences and

the node between two sequences will give us the alignment between the sequences. We call this tree

as a guide tree because it will be guiding us through the process of multiple sequence alignment.

The internal nodes of the tree are considered to be the alignment between a pair of sequences or a

pair of sequence and an alignment or a pair of alignments. The alignment at a given internal node

contains all of the sequences in the clade defined by that node. The alignment obtained at the root

node is our multiple sequence alignment.

3.3.6 Guide Tree

In progressive alignment, the guide tree plays a vital role as it determines which sequences to be

considered for the next step of alignment. A guide tree is a phylogenetic tree that is constructed

dependent on the distance matrix obtained from the sequences. This phylogenetic tree shows the

distance between the pairs of sequences when the edges of the tree are weighted. In this work, we

will be using a rooted phylogenetic tree as our guide tree. Guide trees are built using clustering

algorithms. In our work, the guide tree is developed using UPGMA (Unweighted Pair-Group
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Method with Arithmetic mean) method [26]. We use to cluster the sequences with UPGMA and

print out a dendrogram.

FIGURE 45: A guide tree

For example, the above guide tree will be shown as:

(((s1 : 0.23, s2 : 0.23) : 0.77, s2 : 0.87) : 1.76,(s4 : 0.99 ,s5 : 1.00) : 1.52)

3.3.7 How did we build a guide Tree

We used UPGMA [26] clustering algorithm for developing our guide tree. Building a UPGMA tree

requires only a distance matrix which is obtained using a pairwise distance between the protein

sequences. Once we have the distance matrix, we will be able to cluster the sequences based on

their similarities/dissimilarities.

For UPGMA method [26], we first find the pairwise distances between all the sequences. Then,

we find the shorter distance of the sequences with the smallest value in the distance matrix. For

example, the shorter distance between two sequences is S1 and S2. Now, S1 and S2 form a cluster

named C1 eliminating S1 and S2 from the distance matrix. Similarly, we find the next smallest

distance and its corresponding sequences or clusters formed by previous sequences and form the

new cluster. We repeat this process of finding new clusters from the existing sequences, merging

and updating the distance matrix, until we have found a single cluster at the end. Once we have

an alignment between two protein sequences, we find a sequence or any other alignment which has
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a score similiar to that and merge that alignment to the previous alignment and this propagates

through the tree from the leaves to the root.

3.3.8 Correspondence matrix

Formally, a correspondence matrix is an N × l matrix with respect to a new protein Po in the set

of input proteins, P = {P1, P2, . . . , PN} such that

max(|P1|, |P2|, . . . , |PN |) ≤ l ≤ |P1|+ |P2|+ · · ·+ |PN |

with the following properties:

1. The ith row contains the DSSP sequence of protein Pi, with added gaps.

2. No column consists entirely of gaps

FIGURE 46: Alignment along the tree.

In this step, all alignment pairs between Po and every other protein are retrieved from the saved

list, and merged sequentially, using Algorithm 3.2.2.
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Algorithm: Correspondence Matrix

Input: List of proteins

Output: Multiple sequence alignment (correspondence matrix).

1: Initialize the correspondence matrix to null, calculate the pairwise alignment between all the

pairs of protein sequences, starting with two closely related sequences obtained

2: for all combination of protein pair do

3: Compute the distance between the sequences

4: end for

5: Build a distance matrix

6: Build a dendogram for the guide tree using UPGMA method [26] in the distance matrix

7: for each closely related protein pairs or an alignment pair or a pair of protein and an alignment

p in the set of exsiting set of proteins do

8: apply a pairwsie global alignment with the alignment obtained in the previous step, it is

done through the guide tree, until the root node is reached

9: end for

A sample correspondence matrix for the globin family is shown in Figure 47. The column-wise

alignment of the SSEs of all the proteins is quite conspicuous.

At this point, we have identified conserved regions across all the proteins, but not aligned them

in any way. Janardan’s method [77] reaches a similar result, creating a correspondence matrix by

carefully manipulating vectors.

The result is an MSA of DSSP sequences Si for proteins Pi, 1 ≤ i ≤ N . The output from this

step helps identify residue equivalences among the protein structures. To align them in 3D space,
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FIGURE 47: A correspondence matrix. [Notice there are no columns with gaps in all rows.]

we feed this output to the next step of our algorithm.

3.3.9 Rigid body superposition

We perform a rigid body superposition on the set of input proteins, to obtain a spatial alignment

of the proteins. It is a transformation which involves a proper translation and rotation, preserving

all the angles and distances between all the alpha carbon atoms of each protein. After this trans-

formation, the distance between the alpha carbon atoms of equivalent residues is reduced below a

threshold value [59].

For a rigid body superposition to take place, we keep the frame of reference to be fixed and the

set of alpha carbon atoms equivalence. For this, we need a set of equivalences and a reference frame

against which the rigid body superposition is to take place. We have both: the correspondence

matrix from phase 2 gives us the residue-residue equivalences, and our chosen guide tree will guide

us through the alignment.

We apply Kabsch’s method [34] on each protein Pi to superpose the structures from the leaf

nodes of the guide for aligning them by walking through it to the root. The structure obtained in

every step of the alignment is superposed with the previous alignment. For example, the spatial

alignment of the globins 1DM1, 1MBC, 1MBA (see Figs. 48, 49, 50) generated by our algorithm is

shown in Fig. 51.
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FIGURE 48: 1DM1 FIGURE 49: 1MBC FIGURE 50: 1MBA

3.3.10 Dynamic programming and scoring

After applying rigid body transformation on the different proteins which were spatially aligned,

the proteins are now very close to each other [59]. Since the distance between them are very close,

we can compute the Euclidean distance between the pair of proteins so that we can increase the

number of equivalence between the pairs [59].

The formula used to find the enterRMSD which determins the quality of the alignment is as

follows:

1

N − 1

N∑
i=1,i 6=o

RMSD(Pi, Po)

Keeping the threshold value to (5Å), we can say that the pairs of alpha carbon atoms as equiv-

alent pairs. An alignment which score is typically less than the threshold value is considered as

a good alignment which means it has more equivalent pairs. Also, with similar biological prop-

erties, we find difficult alignments which result in exceeding this value by about 1.5Å [59]. The

centerRMSD value of the above alignment, for example, is 0.36Å.
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FIGURE 51: Alignment of 1DM1, 1MBC, and 1MBA
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3.3.11 Algorithm description

A flowchart of Revised-MASCOT is given below:

FIGURE 52: Flowchart of Revised-MASCOT [59]

A pseudo-code description of our algorithm is given below.
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Algorithm: Revised-MASCOT

Input: Protein pdbids : (pdbid1, pdbid1, · · · , pdbidN )

Output: Multiple alignment of proteins with files created for pdbids1...N

. Phase 1

1: Extract protein structures into P = {P1, P2, . . . , PN}

2: Represent P by corresponding DSSP-based sequences S = {S1, S2, . . . , SN} consisting of DSSP-

defined SSE motifs

3: compute the distances between all of the pairs of protein structures by measuring the similarity

between every (Si, Sj) pair,

. Phase 2

4: Create an edit-distance matrix that stores the distances between every (Pi, Pj) obtained using

the distance computation method

5: Apply UPGMA method to the distance matrix and produce a guide tree

6: Create an MSA of S w.r.t all the sequences alignments using the guide tree

. Phase 3

7: Treat all alignments of symbols with non-gaps as residue-residue equivalences of the pair (Pi, Pj)

8: Apply Kabsch’s method to every (Pi, Po) pair to obtain (transi, roti) for this pair

9: Use (transi, roti) from Step 8 to transform and place Pi in space, with Po being brought to

origin first, to produce output pdb files
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3.4 Experimental Results and Discussions

Revised MASCOT was implemented in Python 3.4, using packages from Bio-python 1.67 and Scikit-

bio library, on a 64-bit HP desktop with a 3.4 GHz Intel CPU, running under Ubuntu 12.04.5. In

the next few sections, we will be discussing the large variety of datasets and the experiments that

were conducted. Given that TT and TG represent the time taken right from giving the input to

producing the output files for Revised MASCOT and MUSTANG, respectively.

3.4.1 Globins

Studies show for the Multiple structural Alignment problems; Globin family plays an important

role. This family is used for studying approximately 150-residue proteins [59]. Also, a common

thing amongst the humans, for example, hemoglobin and myoglobin. Hence, the MStA algorithm

is considered to be the best fit to find the similarity amongst the members of this family.

The following four sets of globins have been aligned using Revised MASCOT.

FIGURE 53: Set 1 FIGURE 54: Set 2 FIGURE 55: Set 3 FIGURE 56: Set 4

We have taken Set 1 and experimented on this as it was used by [48], and [64] to show how their

algorithms work on aligning globins. In our algorithm, the rmsd obtained for this superposition is

3.63Å. Similarly, we have a set from [77], Set 2; it has obtained an rmsd of 3.00Å to align the

proteins. Set 3 is taken from [60], and obtaining an rmsd 3.30Å. A random collection of 20 globins
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TABLE 4: The table below shows the globins used in this section:

Name PDB ids Count TT TG

Set 1 1HHO:A 2DHB:A 2DHB:B 1HHO:B 1MBD

1DLW 1DLY 1ECO 1IDR:A 2LH7

10 17s 29s

Set 2 1MBC 1MBA 1DM1 1HLM 2LHB 2FAL 1HBG

1FLP 1ECA 1ASH

10 18s 26s

Set 3 5MBN 1ECO 2HBG 2LH3 2LHB 4HHB:B

4HHB:A

7 13s 13s

Set 4 1ASH 1ECA 1GDJ 1HLM 1MBA 1BAB:A

1EW6:A 1H97:A 1ITH:A 1SCT:A 1DLW:A 1FLP

1HBG 1LHS 1MBC 1DM1 2LHB 2FAL 1HBG

1FLP

20 27s 1m 47s
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is Set 4 which is taken from [45] and [32] and gets an rmsd value of 3.10Å.

From all the alignments, we can see that the secondary structured elements of the pair of

proteins are closely placed, it happens to be within a certain threshold distance.

3.4.2 Serpins

Serpins, which stands for Serine Protease Inhibitors, is considered to play a vital role in the biological

world [9]. For example, they are considered to play important roles in human body like transporting

hormones to various parts of the body which is done by a serpin Thyroxine-hiding globulin; and

Maspin is another serpin which controls gene expression of certain tumors [9]

The following set of serpins have been aligned using Revised MASCOT.

TABLE 5: The table below shows the serpins used in this section:

Name PDB ids Count TT TG

Set 5 7API:A 8API:A 1HLE:A 1OVA:A 2ACH:A

9API:A 1PSI 1ATU 1KCT 1ATH:A 1ATT:A

1ANT:L 2ANT:L

13 2m 55s 4m 14s

Set 5 represents Serpins, and it is taken from [60]. It is one such kind of a set which is large in

size and motif distribution, hence aligning this set of proteins is difficult and claimed to be quite

difficult to align owing to their large size and motif distribution [59]. The set 5 figure, shows in

spite of all these difficulties, it still manages to put all the secondary structures elements (beta

sheets, hinges, and helices ) of the proteins in close proximity to each other. For the alignment

purpose,[60] tried to find a common core. But in our algorithm, we applied a global alignment over
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FIGURE 57: Set 5

the length of the proteins. The rmsd for this alignment is 3.82Å.

3.4.3 Barrels

The eight-stranded TIM-barrel, a family whose ancestry is still unknown and is still a mystery.

There has been a strong debate on evolution history of this family, this is found in a lot of enzymes

[59]. This ever-expanding family grows further after the adding the aligned TIM-barrel proteins

[59]. The table below shows the aligned proteins in this set.

There is total of 66 molecules in set 6; this set is taken from MASS [14] which they used for

an alignment algorithm to obtain some insight into how proteins with barrels align. Figure 58

shows how the alignment obtained by our new algorithm successfully superimposed the TIM barrel

proteins [59]. The figure shows that this set of proteins share common structures and functions

since all eight helices and eight beta sheets have been aligned. Revised MASCOT produced a rmsd
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TABLE 6: The table below shows the barrels used in this section:

Name PDB ids Count TT TG

Set 6 1A49:A 1A49:B 1A49:C 1A49:D 1A49:E 1A49:F

1A49:G 1A49:H 1A5U:A 1A5U:B 1A5U:C

1A5U:D 1A5U:E 1A5U:F 1A5U:G 1A5U:H

1AQF:A 1AQF:B 1AQF:C 1AQF:D 1AQF:E

1AQF:F 1AQF:G 1AQF:H 1F3X:A 1F3X:B

1F3X:C 1F3X:D 1F3X:E 1F3X:F 1F3X:G 1F3X:H

1PKN 1F3W:A 1F3W:B 1F3W:C 1F3W:D

1F3W:E 1F3W:F 1F3W:G 1F3W:H 1PKM

1PKL:A 1PKL:B 1PKL:C 1PKL:D 1PKL:E

1PKL:F 1PKL:G6 1PKL:H 1A3W:A 1A3W:B

1A3X:A 1A3X:B 1E0T:A 1E0T:B 1E0T:C

1E0T:D 1PKY:A 1PKY:B 1PKY:C 1PKY:D7

1E0U:A 1E0U:B 1E0U:C 1E0U:D

66 47m 2h 32m

Set 7 1SW3:A 1SW3:B 1WYI:A 1WYI:B 2JK2:A

2JK2:B 1R2T:A 1R2T:B 1R2R:A 1R2R:B

1M5W:A 1M5W:B 1M5W:C

13 1m 12s 1m 26s
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of 3.4Å for this set.

Set 7 has been extracted from the manually curated SCOP database Surprisingly, Figure 59

shows, our algorithm has been able to align the barrel motifs perfectly on each other and obtained

an RMSD value of 3.55Å, in spite of the fact that all the proteins of this set belong from different

superfamilies [59].

FIGURE 58: Set 6
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FIGURE 59: Set 7

3.4.4 Twilight-zone proteins

The structural comparison comes into play when the sequence similarity is less, but sequence

alignment still stays an option until the proteins have 30% or more sequence identity [59]. The

table 7 below shows datasets that belong to the twilight-zone.
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TABLE 7: The table below shows the sets used in this section:

Name PDB ids Seq. Identity TT TG

Set 8 1STF:I 1MOL:A 1CEW:I <8% 3s 5s

Set 9 1BGE:A 1BGE:B 2GMF:A 2GMF:B <12% 6s 15s

Set 10 1NSB 2SIM 1F8E 4DGR <20% 35s 75s

FIGURE 60: Set 8 FIGURE 61: Set 9 FIGURE 62: Set 10

For the significantly low sequence similarity proteins, we have created the above three sets

[59]. Revised MASCOT proved itself better than any other versatile MStA algorithms since it has

successfully aligned proteins that are very different from each other. It is only possible because

Revised MASCOT uses Secondary structure elements as the sequential representation, unlike many

other MStA algorithms which use primary residues[59]. Sets 8, 9, and 10 represent three bands of

sequence identity within the twilight zone obtaining rmsd values of 3.71Å, 4.00Å, and 2.73 Å

respectively [59].
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3.4.5 Pig, Malaria, Human, and Dogfish - connected?

The Tree of life has sprung many branches over millennia. Could the branches for pigs, malaria

parasites, humans, and dogfish have had a common root at some point in time? The below tables

shows the structures used to seek more insights by alignment of the above species.

TABLE 8: The table shows the sets used in this section:

Name PDB ids Count TT TG

Set 11 1MLD:A 1MLD:B 1MLD:C 1MLD:D

1T2D:A 1I0Z:A 1I0Z:B 1LDM:A

8 1m 2s 115s

FIGURE 63: Set 11

The crystal structure of mitochondrial malate dehydrogenase from porcine heart (1MLD) con-
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tains four identical subunits [9] [59]. The protein 1T2D uses, Plasmodium falciparum, the causative

agent of malaria to enhance NAD+ regeneration [59]. New anti-malarial drugs [9] uses this protein.

Protein from Homo sapiens is produced by the HRAS and HRAS1 genes [9] [59]. 1LDM represents

the crystal structure of M4 apo-lactate dehydrogenase from the spiny dogfish (Squalus acanthius)

[9] [59].

The alignment obtained from Set 11 is shown in Figure 63. A striking similarity is found by

Revised MASCOT among these molecules with rmsd 2.885Å, which proves that at some point in

time these species might have had evolved from some common ancestor [59] .

3.4.6 Human, Chicken, Rabbit, Yeast, and Nematode

A collective group of protein from species like human, chicken, rabbit, yeast, and nematode were

taken into consideration to check weather molecules taken from such diverse taxa be aligned to find

structural similarity?

TABLE 9: The table below shows the sets used in this section:

Name PDB ids Count TT TG

Set 12 1SSG:A 1SSG:B 1HTI:A 1HTI:B 1R2S:A

1R2T:A 1MO0:A 1MO0:B 7TIM 3YPI

10 49s 11m 15s
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FIGURE 64: Set 12

Different family performs the same function in their way. For example, glycolysis is the

’metabolic pathway’ [58] using which glucose is broken down to form free energy [59]. This process

is done differently by a different group of species. Chicken does this using the protein 1SSG [9],

Humans do the same thing using protein 1HTI[9]. Revised MASCOT is applied to structures taken

from rabbit muscle (1R2S, 1R2T), baker’s yeast (7TIM, 3YPI), and nematode (1MO0) obtaining

a rmsd of 1.74Å. We did this to confirm that these proteins are used for the same purposes [59].
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3.4.7 Seafood allergy in Fish!

The presence of some proteins cause havoc in the immune system which is the general cause of

seafood allergy amongst the humans and rats [59]. This further raises a question whether such

behavior is exhibited amongst the fishes? This further raises a concern if all the fishes become

allergic to seafood, how will the possibly survive? [59]

TABLE 10: The table below shows the sets used in this section:

Name PDB ids Count TT TG

Set 13 1RWY:A 1RJV:A 4CPV 3PAL 1BU3

5PAL

6 6s 10s

FIGURE 65: Set 13

Seafood allergy is caused by proteins 1RWY and 1RJV in common brown rats and humans.
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We have seen, proteins 4CPV, 3PAL, 1BU3, and 5PAL taken from common carp, pike, silver

hake and leopard shark have highly similar tertiary structures [59]. Therefore, after performing

exhaustive experiments, we have come to this conclusion that there are some fishes that have a host

of proteins with similar structure and function [59]. Is there a possibility that these proteins might

cause seafood allergy in these fishes? It turns out that indeed they do. A recent study by Swoboda

et al. [65] shows that parvalbumins, such as the ones taken above, are the major cross-reactive fish

allergen. Figure 65 shows how Revised MASCOT correctly aligns the EF-hand motifs in these

proteins, albeit with a rmsd of 3.82Å [59] .

3.5 Conclusion

The above varied experiments shows Revised-MASCOT is very simple and fast in aligning multiple

proteins efficiently. It works well with a wide range of proteins. But has struggled for proteins

from different families and different ancestors. Keeping in mind, Revised-MASCOT is an heuristic

algorithm it obtains a multiple structure alignment in lesser time as compared to the widely known,

MUSTANG algorithm.

80



CHAPTER 4

Conclusion and Future Work

4.1 Evaluating Pairwise Alignment Algorithm

The evidence from the experiments suggests that of the four algorithms TM -align, and CE are the

successful ones in correlating structural proximity to spatial proximity. In TM -align and CE, the

majority of the proteins were clustered according to their family, and there was a minimal mix-up

of the families as compared to the other two pairwise alignment algorithms. As for EDAlignSSE,

it performed creditably as compared to DALI[29]; in fact, it managed to get some of the proteins

clustered according to their families. This is particularly evident for dataset 3, in which case it

formed four family clusters with similar proteins. However, only in this dataset, CE performed

better than TM − Align. In the final datasets, with 42 different proteins, DALI[29] showed very

poor clustering. The huge data set accentuated its weakness more emphatically. Moreover, from

the 3-dimensional plot that we have obtained from all the dataset, it verifies that the translation of

the structural proximity to spatial proximity remains unchanged even when the dimensions change

from 2D to 3D. The clustering of the families is the same for both the dimensions. Therefore,

based on our clustering technique, we conclude that TM -align, and CE are the more effective

pairwise alignment algorithm than EDAlignSSE or DALI [29]. The alignment obtained from an

algorithm is possibly, may depend on how the algorithm has abstracted a protein structure. All the
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four algorithms taken for evaluation in my thesis has taken the backbone of a protein (the C − α

atom) as an abstract of the protein structure. This abstraction of a protein structure plays a very

crucial role in how the alignment algorithm performs.

This work can be extended further to test and evaluate many other pairwise alignment algo-

rithms proposed in the past. It can be used as a measure to find the quality of new pairwise

alignment algorithms. This work can also be used to infer evolutionary relationships from the

clusters. Our solution also opens a problem on how to define an abstraction of a protein structure

which is the first step in any alignment algorithm, this step will result in giving an efficient output.

This can be considered as an important step on how an alignment algorithm works.

4.2 Revised MASCOT

Our goal was to design an algorithm, which aligns more than two proteins accurately, optimally

and efficiently by comparing their 3-D structures, which will allow us to find biological similarities

leading to functional similarities of protein. To achieve, we reduced the problem to a sequence

similarity problem by converting the 3D structures to SSE elements of the proteins and performing

a progressive heuristic approach.

We studied Revised MASCOT very carefully and compared the results with the famous MUS-

TANG algorithm. Similar to MASCOT [59], Revised MASCOT is also a simple, fast and elegant -

features. It can be used to its potential use to solve more complex and more sophisticated multiple

structure alignment problems [59]. Revised MASCOT has proved its ability and capability to align

different kinds of proteins efficiently by obtaining the centerRMSD scores in a large variety of ex-

periments. Despite being a heuristic method like MUSTANG, it took lesser time than MUSTANG

for aligning multiple complex proteins. Datasets which contains proteins from different families
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and are not closely related has shown not-so-good alignment but still managed to get the loops and

bends of different proteins near each other. It successfully reveals the structural alignments with

high accuracy and efficiency [59].

In future, we plan to extend our work on Revised MASCOT in the following directions:

1. Incorporate more protein flexibility into the algorithm [59].

2. Derive a common core structure from the aligned input proteins for use as a template for

protein threading [59].

3. Try a different approach to the same problem and compare its result to the existing algorithm

results.
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